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such systems, the resonances represent "leaks" capable of draining the "trapped" regions of

phase space and thereby reducing the average confinement time. Physical applications may be

found in studies of high energy storage rings, the magnetic confinement of plasmas, and plane

tary motion.

Streaming should not be confused with the well known neoclassical diffusion [2]-[4] or

Arnold diffusion [5]-[7]. It may be viewed as an extension of the theory of resonant transport

[8]-[10] to multidimensional systems. Like the processes mentioned above, streaming is limited

to systems with small diffusion rates, where the motion induced by the external transport pro

cess is slower than that induced by the resonant libration.

Experimentally, the observed effects of streaming are very similar to those of Arnold

diffusion. In confinement systems, particle densities become depressed near the resonance sur

faces and "halos" or "tails" appear outside the main body of confined particles. Streaming has

been identified as the major cause of particle loss in a two dimensional computer simulation of

the colliding beams at SPEAR [11].

2. Description

2.1. A Simple Model

The mechanics of streaming are easily illustrated with a simple model consisting of two

uncoupled nonlinear oscillators. The system is integrable and has a well defined two-

dimensional action manifold S. The hamiltonian function H0(I) depends only on the actions

/, and defines two important families of curves on S:

1) the energy level sets (or contours)

H0U) = h (1)

where h is a constant 0 </*<<», and

2) the resonance curves

ai1(/1)mkl+a»2(/2)AMk2 = 0. (2)

Here k = 1,2,...©o, cuj = QH0/dI\ and <o2 = dH0/dl2 are the oscillator frequencies,

and wk|,mk2 are a pair of integers, unique for each k.

These curves are illustrated in fig. 1. The trajectories are confined to two dimensional "invariant

tori" defined by fixed values of /] and I2 in the four dimensional phase space. The phase point

does not move on the action manifold S.
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1. Introduction

Demands for the long term magnetic confinement of energetic charged particles in both

the high energy physics and fusion energy fields have prompted a growing interest in the

behavior of near integrable hamiltonian systems. Particular attention has been given to

diffusion processes, both those associated with the so-called "intrinsic stochasticity" of the

motion and those involving the enhancement of an externally generated noise. This paper

describes a process of the later type, resonance "streaming", and presents the formalism neces

sary for its application to real systems.

Streaming occurs in multi-dimensional [1] nonlinear systems that are close to integrable

and subject to an externally generated transport process such as a diffusion or dissipation on the

action space. In such a system, integrability is destroyed by the presence of a perturbation in

the hamiltonian function. This perturbation, if sufficiently small, does not significantly change

the unperturbed motion, but results only in a small bounded oscillation in the action space of

the unperturbed system. Although the oscillation itself may be unimportant, it necessitates an

averaging procedure when the long term behavior is of interest. Specifically, transport

phenomena must be described in terms of the motion of the oscillation-center, rather than of

the instantaneous position. When the phase point is outside nonlinear resonance, the

oscillation-center transport is almost identical to the unperturbed classical transport. But when

the system is resonant, the two can be drastically different in both magnitude and direction.

The difference is most pronounced when the direction of the resonant oscillation (refered to

henceforth as "resonant libration") is nearly tangent to the resonance surface. In this case the

oscillation-center can move rapidly along the resonance surface at a rate that is much greater

than, but still proportional to, the classical transport rate. These ideas will be described in

greater detail in the following sections.

Streaming is potentially present in any multidimensional system that depends on approxi

mate or adiabatic invariants to confine particles to a particular locality of the phase space. In
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ABSTRACT

When a small perturbation is added to the hamiltonian function of an

integrable multi-dimensional nonlinear system, classical transport processes on

the action space can be dramatically altered when the phase point is inside a

nonlinear resonance. This phenomena, called "streaming" here, can result in

the rapid migration of the phase point along the resonance, and a corresponding

enhanced transport through the action space. The magnitude of the enhanced

transport depends on the direction of the resonant libration induced by the per

turbation.



When the two oscillators are weakly coupled (an interaction perturbation is added to the

hamiltonian function), the system is no longer stationary on S. But for small perturbations, the

motion induced by the coupling is a bounded oscillation about a fixed oscillation-center. The

boundedness results from the fact that most of the invariant tori are not destroyed by the cou

pling, but only distorted somewhat [12-14]. The perturbed tori are shown in fig. 2 where the

distortion is seen to be most severe in the region close to a resonance. In fact, an entirely new

type of torus appears in this region. These "resonant tori" are nested tubes that run between the

leaves of the nonresonant tori. Resonant trajectories spiral around and along these tubes. It

will be shown in the next section that the projections of the resonant tori onto S are approxi

mately straight line segments. In an autonomous system such as this, these line segments are

always tangent to an energy curve (1).

The survival of the invariant tori under small perturbations allows for the replacement of

the old invariants I\J2 by new invariants </i>,</2>. These are just the coordinates of the

oscillation-center on S defined as the time average of the actions [15].

2.2. Transport Enhancement

An external process on S is an induced motion on S (random or deterministic, continuous

or descrete) that acts in addition to the hamiltonian phase flow. It may be a diffusion, due for

example to scattering effects, or a drift, resulting perhaps from a dissipation or accretion of

energy. The simplest example of an external process is an instantaneous, or "classical", dis

placement on S (which may be infinitessimal). Other processes may be constructed from a

sequence of such displacements. For an uncoupled system, the long term motion on S may be

determined by simply adding up (or integrating) the classical displacements. For a coupled sys

tem with a weak external process, such a determination is made by adding up the oscillation-

center displacements instead. The two types of displacement are quite different when the phase

point is on a resonant torus. The relationship is illustrated in fig. 3.

In fig. 3, the phase point is initially on a resonant torus and the motion on S is an oscilla

tion on a line segment. The oscillation-center is on the resonance curve at the point A. A clas

sical displacement then occurs which takes the phase point from the point a to the point b.

Correspondingly, the oscillation-center jumps from A to B. The magnitude of the oscillation-

center displacement is then related to that of the classical displacement by

|A-B| = |a-b|sin(a)csc(<£). (3)

If the angle <f> is very small, |A-B| may be much larger than |a-b|. Furthermore, the

oscillation-center displacement is always along the resonance as long as both a and b are on

resonant tori. Thus, any sequence of classical displacements that does not take the system out



of resonance will result in a net displacement of the oscillation-center along the resonance, and

this net displacement may be much larger in magnitude than the sum of the classical displace

ments.

The relation (3) is valid for any Riemannian metric on S. However, the angles a and <f>

are metric dependent, and so is the ratio |A—B| / |a—b|. Consequently, the extent to which a

particular resonance produces a significant enhancement depends critically on the additional

physical considerations from which a convenient metric is chosen.

2.3. Transport Regimes

A resonant torus may be classified into one of three distinct transport regimes. These are

approximately equivalent to the well known regimes of neoclassical theory [3].

1) The oscillation-center (or weak transport) regime. For the oscillation-center concept

to be valid inside a resonance, the system must remain in the resonance for a time

greater than one libration period. This means that the period of resonant libration

must be smaller than the time necessary for the classical transport process to move

the phase point from the center of the resonance to its edge. The enhancement

ratio (3) is only valid in the oscillation-center regime.

2) The classical (or strong transport) regime. If the external process induces a motion

on S that is faster than that induced by the resonance, then the presence of the

resonance is inconsequential. The transport is said to be "classical" in this case.

Although a generic near integrable system has an infinite number of resonances, all

but a finite number will fall within the classical regime and can thereby be ignored.

3) The plateau regime. Since the upper limit of 1) does not coincide with the lower

limit of 2), there is an intermediate situation. Here the phase point is not in the

resonance long enough to complete one libration cycle, but the libration motion that

does occur moves the phase point along the resonance a distance greater than the

resonance width. In physical systems, transport enhancement is often more impor

tant in the plateau regime than in the oscillation-center regime. This is because the

plateau regime gets wider as the libration angle <f> gets smaller (see (52), next sec

tion). Thus, the plateau regime is widest in precisely the situation where there is

the most enhancement.
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2.4. Examples of External Processes

Two well known processes that cannot be built into the hamiltonian function, but may be

expressed as sequences of classical displacements, are dissipation and diffusion. In a physical

system, dissipation may be due to such things as mechanical friction, "dynamical" friction, or

classical radiation. Diffusion might result from particle collisions, quantum radiation, or

"quasilinear" scattering from a continuous background spectrum.

2.4.1. Dissipative Processes

A dissipative process is perceived locally as a drift on the unperturbed invariant space S.

The presence of a small coupling perturbation allows the phase point to become temporarily

trapped in one of the nonlinear resonances. When the phase point is inside such a resonance,

the resonant libration is constantly inverting the accumulated drift, effectively cancelling its

component perpendicular to the resonance. This phenomena is similar to the phase point trap

ping that is observed in nonautonomous systems with one degree of freedom [16], where the

resonance pumps energy into the system as fast as it is dissipated (see fig. 4). The difference

lies in the fact that here the system is autonomous and has no source of energy. The resonance

can constrain the system in one direction on S, but cannot effect the rate at which energy is

lost. This is seen clearly in fig. 3 where the classical displacement and the oscillation-center dis

placement connect the same two energy contours. A consequence of this is the fact that the

phase point must fall out of the resonance when it approaches a point where the resonance

curve is tangent to an energy contour [17], (see fig. 5). Thus, unless it actually intersects an

attractor, a nonlinear resonance cannot perpetually "trap" the dissipative system. It can only

force a detour on the route to its ultimate destination.

The motion of a phase point under the influence of both dissipation and nonlinear reso

nance is somewhat analogous to the motion of a frictionless iceboat with a flat sail. The ice

boat, like the phase point, is constrained to move in only one direction on the plane. The sail

angle relative to the heading of the boat corresponds to the angle of resonant libration <£, and

the wind velocity plays the role of the drift velocity v. When the maximum velocity of the ice

boat is calculated, it is found to correspond exactly to that derived for the resonant oscillation-

center (eq. (19) next section). Just as an iceboat can travel considerably faster than the wind

(even when close-hauled!), so can the resonant oscillation-center travel more quickly than (and

against) the classical drift.

Figure 6 shows two computer generated trajectories plotted on an action space. The sys

tem is composed of two weakly coupled nonlinear oscillators with a vertical dissipation (an

externally imposed downward velocity which is proportional the vertical coordinate /2). The

attractor is the /2 =» 0 line. The first trajectory is initially nonresonant. It drifts down to the



resonance, makes a small horizontal jump as it crosses, and then continues on. The direction

and magnitude of the horizontal jump depend on the difference between the phases of the two

oscillators when the crossing occurs. The second trajectory becomes trapped inside the reso

nance as it attempts to cross and its oscillation-center is consequently constrained to move

along the resonance curve. The libration angle is about 22 degrees and the ratio of resonant to

nonresonant drift speed is 2.55 (both of these depend on the scale ratio). The resonant libra

tion is slowly damped by the dissipation and the phase point is drawn toward the center of the

resonance (barely perceptable here).

2.4.2. Diffusive Processes

A dissipative process can be described by a vector field on S. A diffusive process, on the

other hand, is characterized by a second rank tensor d. The components of this tensor are

defined by

d'J = <v'V>

where v' and vj are the ith and jth components of a random classical displacement v. The

diffusion consists of a sequence of such jumps. The probability distribution for this sequence is

known and used in the calculation of the average < > . The diffusion allows the phase point to

wander in and out of the nonlinear resonances. When the phase point is resonant, the

oscillation-center diffusion perpendicular to the resonance is zero while the parallel diffusion

may be either stronger or weaker than the classical. The enhancement ratio E between the

parallel oscillation-center diffusion and the parallel classical diffusion depends, as before, on the

metric. It is often convenient, however, to set the components of the metric tensor giJ equal to

those of the diffusion tensor d'J (see section 3). This makes the diffusion isotropic and reduces

the expression for the enhancement factor to a particularly simple form.

An example of resonant diffusion is shown in fig. 7. The classical diffusion is in the verti

cal direction only [18]. The phase point starts at the center of the resonance and diffuses slowly

out. Meanwhile, its oscillation-center diffuses almost horizontally, along the resonance curve.

When the phase point eventually leaves the resonance, the oscillation-center stops its horizontal

motion and begins to diffuse vertically, following the classical displacements.

3. Formal Development

A precise description of the streaming phenomena requires the use of curvilinear coordi

nates (see for example [19]). These make it possible to develop formal expressions without

referring to a particular coordinate system or metric.



The system is defined [20] by an autonomous near integrable hamiltonian function on the

direct product S x T" of the n-dimensional torus T" = {£= (9}, . . . ,9n)mod2tr) and a region

S of the n-dimensional real vector space S C R" = {/ = (I\, ...,/„)),

#(/,£) = H0U) +€//, (/,£). - (4)

The coordinates / and £ are the n-component action-angle variables of the unperturbed hamil

tonian function H0. Because the angle space is an n-torus, the small perturbation H\ can be

expanded into a Fourier series in £. Equation (4) can accordingly be rewritten,

//(/,£) =H0U) +€£ Fk(/)e''(ak* (5)
k-1

where {mk = (mkU...ymkn)} is the set of all n-tuples of integers and mk£ is shorthand for

(/Wki^i+/Mk2^2+—+w*«0«)- The equations of motion are,

/ - -6/£mkFk(/)e'(-k- (6)
k-1

£ = o>(/)+0(e). (7)

Each of the terms in (6) defines a vector field on S. The direction of the kth vector field is

given by the "kth resonance vector" rk. The components of rk in action coordinates are

independent of / and equal to the integers mk,

r'k = >Wk,. (8)

The resonance vector defines the direction of the motion on S induced by the kth term in (6).

The frequencies o>, = &H0/dIj define a covector field on S. For each k, there is an additional

scalar function on S, the "k-resonance frequency" defined by [21]

/*(/) = /•'«,(/) (9)

(the subscript "k" is implicit here and in all future references to r and those expressions derived

from it). The derivative of R is a new covector

„,(/)_ MiiL (10)
9 /,

and a pairing with r results in a third scalar function, the "effective nonlinearity" ([6] p. 278)

MU) = rV,(/) (11)

or



M(l) =r'^f-rJ. (12)

The "k-resonance surface" is defined by

R (/) - 0. * (13)

This is the condition for stationary phase in the kth term of (5) when e = 0. Equation (13)

identifies the k-resonance surface with those points on S where r (and thus the resonant libra

tion), is tangent to an energy level set H0 = h.

The normal to the k-resonance surface is defined by

//'=£*(/) *,(/), <14>

where g'J is an arbitrary Riemannian metric tensor. This tensor defines an angle 4> between r

and n,

M -ty/iV- |r||n|sin(0)t (15)

where the norms |r| and |n| are given by

|r|2-$,/V (16)

|n|2 = gUviVj; (17)

For a given classical displacement v on S, the oscillation-center displacement V differs

from v by a vector parallel to r (see figs. 3 and 8). Since V has no component perpendicular to

the resonance surface, any enhancement that occurs must be along the "enhancement line"

defined by the projection of r onto the tangent to the resonance surface.

The relationship between v and V is evident from fig. 8. The magnitude of the projection

of v onto the direction defined by n is

The difference between v and V is then

V-V = yyVnCSc(<£). (19)

Using (15),(16) and (17), this can be rewritten

V = v' h\-^-4-r . (20)
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This expression depends only on metric-independent tensors, and is applicable to systems with

n degrees of freedom. It may be applied directly to systems with a uniform (or locally uni

form) drift.

Although the strength of the perturbation € does not affect the enhancement directly, it

does affect the resonance width and libration frequency. Thus, as e goes to zero, resonances

occupy a smaller and smaller portion of the phase space. They eventually disappear (relative to

the external process) into the classical regime.

With a diffusive process, the linear transformation used in (20) can also be used to define

an oscillation-center diffusion tensor Dlj in terms of a classical diffusion tensor db"

Du = du* 8/-
"/''

M
Bi -

v,„rJ

M
(21)

Any increase in the diffusion rate D over the classical rate d will appear in the direction parallel

to the enhancement line. It is useful therefore to project the two diffusion tensors onto the

enhancement line and compare them. The projections are scalar diffusion coefficients that

depend on the metric. Their ratio E compares the enhanced diffusion to the classical diffusion

in the same direction. The definition of E is

£ =
<A2>

<B2>
(22)

where A is the magnitude of the projection of an oscillation-center displacement V onto the

enhancement line

A = csc(0)tan(0)v'&, T-i i—rCSC(0)

and B is the corresponding magnitude for the classical displacement v

B = tan(<£)v% •T-rCSC(0) - -j—r

The diffusion tensor d is related to the classical displacement v by

d'J = <vV>.

Using (25) and (15), the mean squared values of A and B are

<A2> -sec*Wd,JgM,gJ,\

<B2> =ian2(<t>)d'Jgl„lgjl]

1kl2
—

w'V ! /j'"/;'|r|2
M M2

n'"n'

I Inl2
r'"n'

M
-

n'"r' rVlnl2
M M2

(23)

(24)

(25)

(26)

(27)
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When (26) and (27) are substituted into (22), the resulting expression is rather cumbersome.

It can be simplified considerably however, by choosing a particular metric. This metric, called

the "standard" metric here, is defined by setting the components of the metric tensor equal to

those of the diffusion tensor

g,J = diJ. (28)

With this definition, the diffusion is isotropic on S. Using the metric identity

g,Jgim = 8>, (29)

and (28), the ratio of (26) to (27) reduces to

E=csc2(0) - iliilfJi, (30)
M

where

|r|2 = 4//-V (31)

|n|2 = ^v/^. (32)

The choice of metric (28), means that the oscillation centers of an ensemble of points

with the same nonresonant initial conditions on S will diffuse isotropically under d. The

oscillation-centers of a similar ensemble, starting inside a resonance, will by (21) diffuse iso

tropically in all directions except two. They will not expand at all in the direction perpendicular

to the resonance surface, and they will expand faster by a factor esc (<f>) in the direction along

the enhancement line. For practical applications then, (30) is very useful in determining the

relative dangers of the different resonances.

4. The Analysis of a Physical System

There a four basic steps in analyzing a given system for streaming effects.

1) Find a reasonable analytic (hamiltonian) model.

2) Determine which resonances are not in the classical regime.

3) Discard those that give insignificant enhancement factors.

4) Examine the enhancement directions of those remaining. Do they lead to and from

interesting places? For example, can they transport particles to a limiter, a loss

cone, or an escape trajectory?
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4.1. Finding a Model

For a physical system to exhibit "near integrable" behavior, a faithful analytic model

//(/,£) must satisfy certain properties. The model must consist of an unperturbed function

H0U) which depends only on the actions, and a small perturbation e//i(/,£) which must be

periodic in £. The function //„(/,£) may be linear in / as long as the average of //i(/,£) over

all 9 is nonzero and nonlinear in / (for further details, see [22]). To be sure that invariant tori

do indeed exist, it is advisable to check another condition of the K.AM theorum [13]; the deter

minant of the Hessian matrix of H0 must be nonzero at the point of interest

det
d2Ha
BIjBIj

*0. (33)

4.2. Resonance Classification

At any point on S, the nth resonance of the system may be classified according to the

scheme described in sec. 2.3. To do this, it is necessary to know the width w of the resonant

libration and the libration frequency /. Expressions for these quantities are derived in a

number of works (see for example [5] or [6]). They are

w = 4|r| eF

M
(34)

and

/ = UFMY\ (35)

where F is the resonance amplitude from (5). The definition of the effective resonance width

A is dependent on whether the external process is diffusive or dissipative.

For a diffusive process, this definition is (see fig. 9a)

or

A =

A = \w sin(<£)|

H' M
= 4

(eFM),/:
|n||r| |n|

(36)

(37)

where |n| is determined by the standard metric (32). The time it takes for the classical

diffusion to move the phase point across the resonance is

.-v.. eFA/
(38)
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Therefore, the resonance is in the oscillation-center regime if

2tt
/ >

/

or

8UFA03/2
> 2ir.

(39)

(40)

The definition of the classical regime depends on the rms speed of the resonant libration. This

is simply

V8
(41)

The classical regime is given then by

/ s < A (42)

or

UeFM)m V8Af (43)
iniiri

Finally, the plateau regime is defined by the reverse of the two inequalities (40) and (43),

2*> 8(ef^2)3/2 >V8sinW. (44)

For a dissipative process with an approximately uniform drift velocity v across the reso

nance, the definition of A is (see fig. 12b)

A= |wsin(0)csc(a)| (45)

or

A = 4
eF

M

M , |
v,y

(46)

where a is the angle between the classical velocity v and the resonance surface. The time it
takes for the phase point to drift classically across the resonance is

|v
VelW

uy
(47)

Using (39), the oscillation center regime for this case is



The classical regime is

- 13

4€FM

VjV1
> 2tt. (48)

5 < |v| • ' (49)

or

MM |n||r|- WW

The plateau regime for the dissipative case is thus

2ir > —:— > . Ml-. > V8 sm(<f>). (51)
v'vj \v\\M\

Since the definition of the plateau regime depends on the metric, the significance of

enhanced motion for "crossing" trajectories (illustrated by the nonresonant trajectory in fig. 6) is

dependent entirely on physical considerations beyond those already specified. In cases where

both dissipation and diffusion exist together, it is usually convenient to use the standard metric.

In a typical Fourier spectrum, the resonance amplitudes eventually fall off exponentially

with increasing |r|. This means, from (44) and (51) that there is a cutoff value of |r| above

which all resonances are in the classical regime. It should be noted that although the enhanced

transport on a single resonance is proportional to the classical transport, a reduction of the clas

sical transport, say of d'j, extends the enhanced regimes, (oscillation-center and plateau) to

higher values of |r|. Since more resonances are now available for streaming, the overall tran

sport is not necessarily reduced.

4.3. Enhancement Magnitude

Even when a resonance is well inside the oscillation-center regime, it does not necessarily

provide enhanced transport. For a diffusive process, the level of enhancement is determined by

(30),(31) and (32). The enhanced diffusion along the resonance is £ times the classical

diffusion in the same direction.

4.4. Enhancement Direction

In systems with only two degrees of freedom, the resonance surface is a curve on S, and

the enhanced transport can proceed in only one direction. But when n>2 (when the resonance

surface has more than one dimension), this direction is determined by the enhancement line,

which in turn, is defined by the vector
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e= -rrsec(0) - -A-tanfo). (52)
M |n|

This is the direction given by the projection of r onto the resonance surface.

5. Conclusion

A small amount of diffusion or dissipation in a near integrable hamiltonian system may be

redirected and amplified in the regions of phase space occupied by the nonlinear resonances. In

particular, the resonances may provide corriders along which phase points can "stream" rapidly

from one region of phase space to another.

Given a particular hamiltonian function and a classical transport process on the action

space, it is possible to determine on which resonances the streaming occurs, how strong it is,

and in which direction it proceeds.

Streaming is only one of several transport mechanisms associated with near integrable sys

tems. Its importance relative to the other mechanisms depends rather critically on the perturba

tion strength e, and the magnitude of the classical diffusion d (or classical drift v). If d is very

small, Arnold diffusion will be more important than streaming. If d is very large, the reso

nances will be in the classical regime and there will be no enhancement at all. The conditions

on e are similar. If € is very large, resonances will overlap, destroying the invariant tori. If € is

very small, the resonances will again be in the classical regime with no enhancement effects.

There is some analytical and computational evidence for streaming effects in colliding

beam machines [11,24]. Conclusive experimental corroboration has yet to be made, but past

phenomenological studies of the beam-beam interaction (see for example [25]), appear to be at

least compatible with the above theory. Studies of resonance transport in magnetic mirror

machines [9,10] indicate that streaming phenomena may also occur there. However, whether or

not the multidimensional model described above is superior in this application to the conven

tional (one dimensional) model is not clear at this time.
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FIGURE CAPTIONS

Resonance curves (lines) and energy contours (ellipses) in two dimensional action space.

The hamiltonian function for this example is //„(/) = /2+(6/2)2. The resonance labels

are the values of nt\ where a>i/wi+a>2 = 0. The small square is expanded in detail in fig. 3.

Invariant tori in the three dimensional energy surface. By definition, a trajectory remains

on a particular torus for all time. At a resonance, the coupling perturbation creates tubu

lar "resonant" tori that run between the leaves of the nonresonant tori.

Oscillation-center displacement inside a resonance. The phase point, originally oscillating

about the point A, is instantaneously displaced from a to b. The oscillation center jumps

from A to B The ratio of the magnitudes of the two displacements is

\A-B\l\a-b\ = sin(a)csc(<*>).

Dissipative trapping in one dimension. A charged particle moves under the influence of a

traveling electrostatic wave (with phase velocity v^ = 1) and friction. The particle is ini

tially traveling in the same direction as the wave but faster. When the friction reduces the

particle's velocity to v^, the particle becomes trapped and spirals into the resonance. This

trajectory is somewhat exceptional since for most initial conditions, the particle will not be

trapped as it crosses the resonance.

Quasi-isochronous points. When the elliptical contours of constant energy (fig. 1) are dis

torted to produce inflection points, quasi-isochronous points appear. Here three reso

nances are shown, labeled by the ratios m\/m2. The 1/1 resonance forms a separatrix.

The resonances inside the separatrix form closed curves. The quasi-isochronous points are

the intersections between these closed curves and the dotted line. The hamiltonian func

tion represented here is H = /2+/22+1.5exp{[(/i-l)2-l-(/2-l)2]/.562}. The energy con

tours are labeled with the values of H.

Dissipative trapping in two dimensions. Two trajectories are shown in action space. The

system consists of two nonlinear, oscillators with a weak coupling

H = I\+f2 +lO~5cos(0]-02) and a superimposed weak dissipation /2 = —/2xlO~5. The

first phase point begins at i\ and descends to f\, crossing the coupling resonance <*\ = cu2

on its way. The second phase point descends from i2 but instead of crossing the reso

nance, becomes trapped (as in fig. 4). The time intervals for the two trajectories are the

same. The dashed lines show the energy contours at the initial and final positions.

Resonance diffusion in two dimensions. The hamiltonian function is the same as in fig. 6.

The external process is now a vertical diffusion consisting of small steps

A/2 = 6xl0~5sin(///) where m is a random number between zero and 27r, and the lime

between jumps is A/=l. The trajectory shown is that of the oscillation-center since the



position of the phase point is averaged over successive time intervals of length T = 500.

Successive averaged positions are connected by line segments. The initial position / is at

the center of the resonance (o\ = o>2. The particle eventually diffuses out of and away

from the resonance, ending the run at /.

8. Displacements in three dimensions. The space shown is the action space to a three

dimensional action manifold S. The horizontal plane is the resonance surface. The verti

cal plane is defined by the two vectors rk and nk. The intersection between these planes is

the "enhancement line". The oscillation-center displacement V differs from the classical

displacement v by a vector parallel to rk. The magnitude of this vector is

|V-v| = |Vp-vp| = v;/csc(0) where \p and vp are the projections of V and v onto the

vertical plane. The length v„ is the magnitude of the projection of v onto nk.

9. Resonance widths, a) With diffusion, the width of the resonance A is the perpendicular

width defined relative to the standard metric, b) With dissipation, the resonance width is

that seen by a drifting phase point, ie. the width parallel to the dissipative drift v.
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