

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FAST ALGORITHMS FOR VLSI LAYOUT RULE CHECKING

by

Dale Skeen

Memorandum No. UCB/ERL M81/74

17 September 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Fast Algorithms for VLSI Layout Rule Checking

Vale Skeen

Computer Science Division
EECS Department

University of California, Berkeley

Abstract

This memo discusses two ofpne algorithms for VLSI layout rule
checking, specifically for checking minimum separation and
minimum feature size. In the first part a rule checker using
a data structure similar to two-dimensional bins is presented.
It is a (worst case) linear algorithm that is fairly restricted in
scope. However, it can be generalized (with some loss in per
formance) to perform incremental checking. The second
part presents a rule checker based on a scan line algorithm.
Scan line algorithms constitute a powerful class of 0(e log e)
algorithms that are applicable to a wide variety of planar
geometric problems. It is the purpose of the second part to
serve as a tutorial introduction to this class of algorithms.

IV

Fast Algorithms for VLSI Dale Skeen

The advent of VLSI technology with its 10 to 100 fold increase in circuit

complexity has spurred the need for computationally efl&cient algorithms to

assist in circuit design. Many of computer aided design problems encountered

in VLSI can be formulated as planar geometric problems. In this memo we con

sider one such problem —the problem of layout rule checking, which includes

(1) checking that the internal dimensions of components satisfy minimum width

rules and (2) checking that rules for minimum spacing between (unconnected)

components are satisfied.

We assume that the geometries defining the components of the circuit are

of the Mead and Conway variety ([MEAD80]) — geometries are rectangles

oriented parallel to the x- and y-axes (often called "Manhattan rectangles").

Although, components are distributed on several layers (typically 5 to 12), we

will present the algorithms as if only a single layer was involved. Extending

them to multiple layers is straightforward.

The memo is logically divided into two self-contained parts, which may be

read separately. In the first part we discuss an asymptotically optimal layout

rule checker using two dimensional bins. The algorithm requires linear time

and space, and it is easy to implement. However, it is rather limited in scope —

in particular, it is not suitable for the more general problem of identifying

intersecting rectangles.

The second part is a tutorial introduction to a simple but powerful class of

algorithms: the scan line algorithms. Scan line algorithms are (worst-case)

asymptotically optimal for many geometric problems involving oriented rectil

inear polygons (Le. rectagons), and in particular, they are optimal for the inter

secting rectangles problem. Many VLSI design problems —including layout rule

checking, finding connected components, and (geometric) normalization of

components —can be reduced to a special case of this problem. In addition to

- 1-

6 V L

Fast Algorithms for Y1S1 Dale Skeen

introducing the scan line technique, we show how it can be tailored to the

problem of layout rule checking.

The algorithms presented are ofpne algorithms: they require that the

geometries be known a priori. The algorithm in the first section can be

extended in a straightforward manner to perform online (or incremental) lay

out rule checking; although, it will lose its (worst case) linear performance. The

scan line algorithms can not be generalized to perform online checking.

-2-

£v

Fast Algorithms for V1SI Dale Skeen

I. Linear Time Design Rule Checker

The algorithm described is tailored to the following types of layout rule

checking:

(1) checking for minimum overlap of intersecting regions,
(2) checking for minimum separation of nonoverlapping regions,
(3) checking for minimum width of a region.

While this method can be extended to solve the general intersecting rectangles

problem, it will lose its linear worst-case bound. (Although, from the statistics

presented in [BENT80a], an average-case linear time bound is still expected for

typical circuit layouts.)

To simplify the presentation we will discuss only minimum separation

checking ((2) above) on Manhattan rectangles. We will present the algorithm

using the simple layout rule: (unconnected) components must be separated by a

minimum width of A. (Having a single parameter denoting minimum separation

is a simplification of the layout rule checking problem. We discuss using more

complicated layout rules at the end of the section.)

The algorithm proceeds by partitioning the layout across one of its dimen

sions (e.g. horizontally). The partitions are then processed sequentially (e.g.

from bottom to top). Within each partition, the contained vertices are exam

ined. It is in this latter phase that this algorithm resembles the scan line

approaches of the next section. However, since there are significant

differences between the approaches, we will call the sequential processing of

the partitions, a sweep.

The major data structure used in the implementation of the algorithm is a

bin. A bin is an unordered list whose elements have values within a predefined

interval [a, b]. The width of this interval is referred to as the width of the bin.

Bin algorithms have previously been applied to VLSI problems, notably in

-3-

17 ;; ,

Fast Algorithms for VLSI Dale Seeen

[BENT80b].

In contradistinction to other layout rule checkers, this algorithm never

requires the vertices to be sorted; instead, only the classification of vertices

with respect to partitions is required. This accounts for the speed of the algo

rithm.

While we discuss only Manhattan rectangles, the extension to rectagons is

straightforward. However, the algorithm is not extensible to other geometries

(e.g. circles or 45 degree angles).

The Algorithm

It is convenient to consider the circuit as being bounded by the y-axis on

the left and by the x-axis along the bottom. Therefore, the lower left corner

coincides with the origin.

The algorithm consists of two sweeps: one in the vertical direction (from

bottom to top) to detect violations in the horizontal spacing of the geometries,

and one in the horizontal direction to detect violations in the vertical spacing

of the geometries. We will discuss only the vertical sweep; the horizontal sweep

is symmetric to the vertical one.

For the vertical sweep, the layout must be decomposed into horizontal par

titions of equal width, and a bin allocated for each partition. Then, each vertex

is placed into the bin associated with the partition containing it. This is illus

trated in Figure 1, where vertices are labelled and stored in their respective

bins. The attributes stored with a vertex are its Cartesian coordinates and an

indication of its orientation with respect to the rectangle containing it (e.g.

lower-left, upper-right). After the completion of this step the sweep can begin.

Recall again that the purpose of a vertical sweep is to detect horizontal

spacing violations, and this entails measuring the spacing between vertical

-4-

b \i

Fast Algorithms for VLSI

LAYOUT

A B

C"D

M N

0 P

BINS

A

B

I
J

C
E

D
F

G
M

H
N

0
K

P
L

Dale Skeen

Figure 1. A horizontally partitioned layout and the grouping of labelled vertices
into bins.

edges. Conceptually, the sweep proceeds as follows. For every partition, we will

project all of the vertical edges intersecting the partition onto the x-axis. This

is illustrated in Figure 2 for the highlighted partition. Now, if the distance

between two vertical edges is less than X, then the distance between their pro

jections will also be less than X. For example, in Figure 2 the edges FH and IK

are too close. Of course, it is not always the case that a horizontal spacing vio

lation occurs when the projections are too close. For example, edges EG and NP

obey the layout rules, even though their projections indicate that they could

actually overlap.

-5-

Fast Algorithms for VLSI Dale Skeen

LAYOUT

Figure 2. Projecting the vertical edges intersecting with the highlighted parti
tion of the layout onto the x-axis.

Alist of the projected edges, the projections list needs to be maintained by

the algorithm. Again, bins can be useful in the implementation of this list with

the bins holding (the representation of) the projected edges. The x-axis should

be decomposed into equal length intervals, and a bin associated with each

interval Now, to check if a given vertical edge is too close to any other vertical

-6-

L'i/i.

Fast Algorithms for VLSI Dale Skeen

edge, one need only check those edges projected into the same or adjacent

bins.

The algorithm for maintaining the projections list depends primarily on the

sequential processing of partitions. A vertical edge is first encountered when

the its lower vertex is found in the partition currently being processed. This

lower vertex is then projected into correct bin (i.e. a marker for the edge is

moved into the appropriate bin). Clearly, all subsequent partitions will inter

sect with that edge until its upper vertex is found. After processing of the par

tition containing the upper vertex, the edge (i.e. its marker) can then be

removed from the projected bin. No subsequent partitions will encounter that

edge.

Initially the bins holding projections are empty.

For each partition encountered:
f
For each lower vertex in the partition:

!
Add a marker for the vertical edge
containing this vertex to the
appropriate bin.

Check for layout rule violations
involving this edge. (This involves
checking at most 2 adjacent bins.)

For each upper vertex in the partition:

Delete the marker for the vertical
edge containing it.

Figure 3. The algorithm for performing a vertical sweep.

-7-

Fast Algorithms for VLSI Dale Skeen

The complete algorithm for performing a vertical sweep is given in Figure

3.

Diagonal Violations

A vertical sweep can detect all violations between vertical edges, and simi

larly, a horizontal scan can detect all violations between horizontal edges. How

ever, not all violations fall into these categories —Figure 4 illustrates a violation

between diagonally positioned regions. Neither a horizontal nor a vertical

sweep is guaranteed to detect this type of violation.

It is easy to augment the sweep algorithm to check for diagonal violations:

during a sweep, maintain the projections of edges intersected by two adjacent

partitions. This can be accomplished in the algorithm given in Figure 3 by

changing the second nested loop (the loop for upper vertices). The revised loop

Figure 4. Example of a die.gonal violation.

-8-

D -J

Fast Algorithms for VLSI Dale Skeen

reads: For each upper vertex in the previous partition.... Note that one modified

sweep is guaranteed to detect all diagonal violations. (If both sweeps are

modified, then all diagonal violations will be detected twice.)

The complete algorithm for layout rule checking, with diagonal checking, is

summarized in Figure 5.

Analysis

The speed of the algorithm is determined by the width of the bins used in

partitioning and the width of the bins used in representing the projections list.

To achieve linear performance, both bin sizes must be equal to a small constant

times X.

Consider a vertical sweep, where there are no layout rule violations. Let

fciX be the width of a horizontal partition (i.e. bin), and let fcgX be the width of

the bins representing the projections list. Recall that these bins hold the pro

jections of the edges intersecting a kzX wide section of a partitioned region.

Now, the dimensions of one of these sections are (kiX)(k2X). Since the minimum

&1 ^8
2 2

size of a legal component is X8, a section can be tiled with at most -—- -r- legal

I. Partition the layout into horizontal regions of equal width, assigning
vertices to their respective regions. (Using a bin to hold the vertices
contained in a region).

Perform a modified vertical sweep (detecting all horizontal and diagonal
violations).

II. Partition the layout into vertical regions of equal width, assigning ver
tices to their respective regions. (Again using bins.)
Perform a horizontal sweep (detecting all vertical violations).

Figure 5. The complete linear algorithm for layout rule checking.

-9-

us

Fast Algorithms for VISI Dale Skeen

components that obey the minimum separation rule. Therefore, the maximum

number of points in a bin of the projections list is proportional to the constant

kikz- Since at most two bins are checked for each vertical edge encountered,1*

the amount of work to process an edge is proportional to ktk2' We have shown

that a sweep encountering no violations requires time proportional to fcjfcge.

If we consider violations, then we observe that violations (between two

edges) are detected once during a sweep except for some diagonal violations

which are detected twice.2 Therefore, the total running time of the algorithm is

0(e + V), where Vis the number of violations.

More complicated layout rules can be handled with little degradation in

speed. To handle several layers with a variety of separation rules, we can asso

ciate a color with each layer. Now, let the color of an edge be the color of the

layer containing the edge. We can define a C\(muC table, where C is the

number of distinct colors. The table contains minimum separation rules

between the colors. Each rule can be arbitrarily complex, but most rules simply

contain a minimum separation constant. Now, checking for separation viola

tions between two edges is a simple table look-up.

lThe bin containing the vertical edge is checked, and one of the neighboring bins is also
checked if the edge lies close to a boundary of its containing bin.

8Some diagonal violations are detected during both sweeps. In the algorithm presented in Fig
ure 5, the (unmodified) horizontal sweep should suppress reporting all diagonal violations.

-10-

I * '-

Fast Algorithms for VLSI Dale Skeen

n. Scan line Algorithms

In the first subsection of this part we define the terminology used in the

remainder of the paper and introduce the scan line paradigm. One particular

variant of the paradigm is examined in detaiL Since all scan line algorithms

require sorting, they exhibit 0(e log e) worst case time complexity, where e is

the number of edges in the components. In the variants that we present,

0(e log e) is also the average case performance. 0(e) space is required.

In the second subsection we introduce the problem of layout rule checking

and then present a scan line solution. This solution serves as an archetype for

scan line algorithms because of its simplicity and its adherence to the general

paradigm. It is a straightforward application of scan line techniques. The algo

rithm requires two passes over the circuit layout.

Scan line algorithms are attractive because they are conceptually simple

and applicable to a wide variety of planar geometric problems. (Shamos

discusses many such problems in his thesis [SHAM78].) Moreover, for many

problems, scan line algorithms are asymptotically optimal in the worst case,

and in particular, they are optimal for the problem of reporting all intersecting

rectangles ([BENT80b]). Many VLSI design problems can be cast into the inter

secting rectangles problem, including layout rule checking. However, in this

memo, we will view layout rule checking as a distinct problem and present an

algorithm that is specifically tailored to solve it. The algorithm presented is

simpler than those for solving the more general intersection problems.

2.1. The Scan lone Paradigm

We assume that the area of interest is bounded by a rectangle lying in the

first quadrant of a Cartesian co-ordinate system. For convenience let the x- and

y-axes coincide with the bottom and left sides of this region. A legal geometry

\ component) within this area has an exterior face defined by a rectagon. It

-11-

6-zj l

Fast Algorithms for VISI Dale Skeen

may also contain one or more "holes" (i.e. cutouts), and if it does then its inte

rior face(s) are also defined by rectagon(s). An interior face for one region may

be the exterior face of a contained region. A collection of legal geometries is

illustrated in Figure 6.

Two regions are said to be nonoverlapping if their interiors do not inter

sect. Two regions are adjacent if they are nonoverlapping and if they share at

least one common vertex or edge. We will also use the term abutted to describe

adjacent regions sharing at least one edge. The normalized form used in some

t cz
J

u

•

Figure 6. Examples of legal regions.

-12-

t 2

Fast Algorithms for VISI Dale Skeen

algorithms does not allow adjacent or overlapping regions.3

In a scan line algorithm, a line is systematically swept across the primary

region in either the vertical or the horizontal direction. Figure 7a illustrates a

horizontal scan line traversing a region in normal form. Since the line is mov

ing in the vertical direction, the figure illustrates a vertical scan. The scan is

frozen at the instant that the scan line is at position y on the y-axis. At this

particular position, the scan line is intersecting all of the components defined

in the figure.

The representation of the scan line is dependent upon the particular appli

cation and upon the restrictions placed on the regions (e.g. normalization).

However, for most applications two standard representations prevail, and these

are illustrated in Figures 7b and 7c. They are:

(1) An ordered list of line segments defined by the intersection of the scan line
with the regions themselves.

(2) An ordered list of points defined by the intersection of the scan line with
faces of the regions.

Representation (l) is suitable only for nonoverlapping regions (as in the case of

Figure 7a).

The scan list (the representation of the scan line) is ordered on the x-

coordinate for a vertical scan (on the y-coordinate for a horizontal scan). A

node in the scan list of Figure 7b contains the x-coordinates of the endpoints

defining a segment and an unique region id. The y-coordinate is not recorded

since it is the same for ail segments in the scan list.

The second representation is normally only used when the regions, and

therefore the segments used in the first representation, overlap. Again, the

intersection points are stored ordered on their x-coordinate (for a vertical

however, scan line techniques can be used to decomposed arbitrarily overlapping rectangles
into an equivalent set of nonoverlapping rectangles ([BENT79]). Therefore, using nonoverlapping
rectangles does not diminish the significance of the algorithm.

-13-

V h

Fast Algorithms for VLSI Dale Skeen

2

t

1

J_ Ciuin 1

i

3

i

1 1

i

—

1

1

—11

i

i

i

1 1

i

i

i i

1 1I

i

i

i

1 1
k8

(a)

x, x2 X3 ><4 X5 *6 *7 *8
region 1 region 2 region 3 region 2

(b)

x, x2 x3 X4 x5 x6 x7 xe

1 1 2 2 3 3 2 2

(c)

Figure 7. (a) a scan line, (b) a segmented scan list, (c) a point scan list

-14-

ss*.

Fast Algorithms for VLSI Dale Skeen

scan). Figure 7c illustrates such a scan list.

To implement a scan efficiently we require the following observation: during

a vertical (horizontal) scan, the scan list changes only when a horizontal (verti

cal) edge is encountered. For a collection of rectilinear regions defined by e

edges, half of the edges will be horizontal, and thus there will be exactly |- dis-

tinct instances of the scan list (this holds only for rectilinear regions).

A scan can be made to proceed efficiently because:

(1) The scan list is updated at discrete intervals along the scan (rather than
continuously). For a vertical scan the list is updated only when a horizon
tal edge is encountered.

(2) Since the list is ordered, a segment (or point) in the list can be accessed
quickly. If the list is stored as a balanced tree, then access requires
Oflog e) time at most.

(3) Updates to the list are localized to either one or two nodes (and possibly
the nodes lying on the access path — for rebalancing). The scan list need
never be completely restructured.

The generalized algorithm for making a vertical scan is the following:

Step 1. Sort the horizontal edges in increasing order on the y-
coordinate.

Step 2. For each edge, e, in the sorted list do:

a. Update the scan list to reflect e.
b. (This step is application dependent.)

Step 2a. generally requires a lookup into the scan list and modifying one or two

nodes. The modifications performed in this step can be classified into several

cases depending on the geometry currently being scanned. The cases for a scan

list consisting of line segments (i.e. using the first representation) are given

shortly.

An analysis of the algorithm is straightforward. Step 1 sorts —- edges, thus

requiring 0(e log e) time. Step 2 iterates |- times. Since the list can be stored

as a balanced tree and since the list always contains less than ~ entries, then

-15-

3 2 L.

Fast Algorithms for VLSI Dale Skeen

each iteration of Step 2a requires Oflog e) time. This includes the time it takes

to access and modify at most 2 nodes. This implies a worst case time bound of:

0(e log e) + 0(V)

where Vis the total number of operations performed in Step 2b. In many appli

cations V is dependent upon the "interactions" between the regions.

The details of Step 2a are dependent on the representation of the scan

line. We now present an algorithm for the representation based on line seg

ments. The algorithm for the point representation is very similar. (Again, for

simplicity, we are assuming that the geometries in the layout are nonoverlap

ping and have no shared edges.)

Consider a vertical scan. Figure 8 repeats the regions given in the previ

ous figure, labelling each horizontal line with a number identifying the case to

which it belongs. Some cases, notably 2 and 5, have symmetric left and right

variants. The cases are briefly described below (note that the line is traversing

the layout from bottom to top):

1. Enter - a new region (or distinct leg thereof) is entered by the scan line.
2. Expand - the width of a region intersected by the scan line is increased.

3. Join - in a U-shaped region, the bridge that joins the two legs already
scanned is encountered.

4. Beit - a region (or distinct leg thereof) is exited by the scan line.
5. Reduce - the width of a region intersected by the scan line is reduced.

6. Split - in a U-shaped region, the scan line has left the bridge of the region
and is entering the legs.

Edges that fall in the first three categories are called leading edges,

because they indicate that the scan line is moving into a new region. Similarly,

edges in the last three cases are called trailing edgest because they indicate

that the scan line is moving out of a region.

When an edge is encountered in the scan, it is first classified according to

case, and then the scan list is transformed to record the presence of the edge.

-16-

Z.3

Fast Algorithms for VLSI Dale Skeen

A
direction

of

scan

Figure8. Horizontal edges labelled with their case number for a vertical scan.

As an example, consider encountering the edge with endpoints (xlfy) and (x ,y).

where x2 < x2. We will assume that the scan list already contains entries for

segments [a.b] and [c,d] and that the nodes for these are adjacent in the lexi

cographical ordering of the nodes in the list. Table 1 lists each case and gives

its defining equations and the transformations required to update the scan list.

The sets of equations given in Table 1 are pairwise inconsistent; therefore,

only one set can apply. Also the family of sets for the six cases (including the

symmetric right variants that are not illustrated) is complete - in the sense

that at least one set of equations must apply. The transformation rules give a

before and after image of the scan Ust. (The solid connector between nodes

-17-

Fast Algorithms for VLSI

Case

(I) Enter

(2) Expand
(left variant)

(3) Join

(4) Exit

(5) Reduce

(left variant)

(6) Split

Defining
Equations

b<x. , x2<c

b<x, , x2=c

b=x, , x2=c

a=x, , x2=b

c=x,

c< x2<d

a< x, <x2 <b

Dale Skeen

Scan List Transformation

a|b c|d -*> o\ b xjx2 c d

1 2 1 5 2,

a|b c|d a|b x,|d
1 2 1 2

a b c|d

- fr

a|d
• •

1

a|b

1 1

1 (deleted)

a|b c d _..■♦ .. a|b x2|d
1 2 » 2

all? ""^^ * *
a|x, x2|t>

1

Table 1. Transformations required to update the scan list when edge with end-
points (Xj.y), (x2,y) is encountered.

indicates adjacency within the scan list.)

The implementation of the above transformation rules in a balanced tree is

not difficult. The primitive operations required are: search for a point, modify

the contents of a given node, insert/delete a node with rebalancing, and find

the successor/predecessor of a node. All of these operations can be performed

in Oftog e) time.

-18-

c r

Fast Algorithms for VLSI Dale Skeen

In this section we have defined the scan line paradigm and have given the

details of a vertical scan. A horizontal scan is identical to a vertical scan

except that vertical edges are used instead of horizontal edges. In the next

section we give an example illustrating these techniques.

2.2. A Scan Line Algorithm for Design Rule Checking

In this section we adapt the general scan line algorithm of the previous

section to the problem of checking layout rules. The adaptation is straightfor

ward and serves to illustrate the power and generality of the scan line

approach.

As in Part I, we will assume that the minimum feature size is X. (Most likely,

X is composed of several components. See [MEAD80] for a complete discussion

of layout rules). We will study two (simplified) design constraints:

external constraint —the minimum separation between two components is X,

internal constraint —the minimum width of a component is X.

In layout rule checking, it is convenient to measure distance as the max

imum displacement in either the horizontal or vertical direction. Hence, the

distance between two points (xx%y±) and (xz,yz) is given by the formula:

max(|x1-x2|,|y1-i/2|)
where |ar| denotes the absolute value of a.

The Algorithm

The algorithm uses a segmented scan line as described in detail in the pre

vious section. Referring back to Figures 7a and 7b. we observe that checking

for internal rule violations is tantamount to checking that line segments (i.e.

nodes in the scan list) are at least X wide. Also, we observe that the external

layout rule requires that the minimum distance between any two line segments

in the scan list is at least X. This latter observation suggests an efficient way for

-19-

U J

Fast Algorithms for VLSI Dale Skeen

checking external layout rules. Given a segment [x , xg] in the scan list, we

need only check segments whose endpoints lie in the interval [Xj-X, xg+X] to

discover external layout rule violations involving the given segment.

Now external and internal layout rule checking can be performed at the

time an edge is encountered in the scan. The checks are localized to the vicin

ity of the update, and the type (i.e. internal or external) and range of checking

is dependent on which of the 6 cases is encountered. External checks need

only be made when:

1. A new region is encountered in the scan (case 1).
2. A region is expanded (case 2).
3. A region is split (case 6) —the two new regions

must be separated by a distance of X.

Internal checks need to be made when:

1. A new region is encountered in the scan (case 1).
2. A region is shrunk (case 5).
3. A region is split (case 6) —the two new regions

must have width X.

Table 2 details the checking required whenever a vertical scan encounters an

edge with x-coordinates xt and xg. The cases are those defined in Table 1 and

illustrated in Figure 8.

It should be apparent from the previous figures that a vertical scan can

detect all violations between vertical edges, and similarly, a horizontal scan can

detect all violations between horizontal edges. However, diagonal violations fall

into neither category (as was illustrated in Figure 4 in Part I.). Clearly, neither

a horizontal nor a vertical scan can detect diagonal violations, because at no

position during the scan are both regions simultaneously intersected by the

scan line.

We now propose an extension to the scan line algorithm that detects diago

nal violations. This extension requires an additional constraint: the regions

-20-

I b /.

Fast Algorithms for VISI

Case

(1) enter

(2) expand

(3) join

(4) exit

(5) reduce

(6) spft*

Internal Check on

inserted node

modified node

both modified nodes

Dale Skeen

External Check
(in the range(s) of)

[Xj-X. xj and [xg, xg+X]
(left variant) [Xj-X, xj
(right variant) [xg, xg+X]

Table 2. Design rule checking required when the horizontal edge with vertices
(Xj.y), (xg,y) is encountered.

must obey the internal layout rule.4 This implies that external and internal

rule checking must be performed separately.

Figure 4 illustrates that the minimum distance between two diagonally

positioned regions are two corner points: one of them is an endpoint for a lead

ing edge (point A in the figure), while the other is an endpoint for a trailing

edge (point B). Aprocedure for finding diagonal violations is:

for each leading edge, e, encountered:

search for previously encountered
trailing edges that are in the
vicinity of either endpoint of e.

The vicinity searched is a X by X square diagonally adjacent to an endpoint

(refer to the shaded area of Figure 4).

This solution requires maintaining a second list of trailing edges. This list

contains all trailing edges lying in the region bounded by the current scan line

and a parallel line a distance of X behind it. Notice that trailing edges outside

This constraint can be relaxed at the expense of a slightly more complex representation of
the scan line. We do not pursue that here because a more efficient layout rule checker was intro
duced in Part I.

-21-

cdi

Fast Algorithms for VLSI Dale Skeen

of this region can not be involved in a diagonal violation with any edge on the

scan line. We will call this list the trailing edge list.

If the constraint that regions must satisfy the internal layout rule (i.e have

width X) is added, then the projections of the edges in the trailing edge list onto

the x-axis will not overlap. In this case, the trailing edge list can be imple

mented in a data structure similar to that used for the scan list. Specifically, a

balanced binary tree storing line segments could be used.

In Table 3 we give the steps necessary to perform a scan with checking for

diagonal violations. Again, the table is decomposed into the six cases described

earlier. The table repeats the steps given in Table 2 for external layout rule

checking and it adds the steps necessary to (1) maintain the trailing edge list

and (2) check for diagonal violations. Essentially Table 3 states that, upon

encountering a leading edge, a range within the trailing edge list must be

searched for diagonal violations, and that, upon encountering a trailing edge, it

must be inserted into the trailing edge list.

Case Modifications to Check in trailing edge list
trailing edge list (in the range(s) of)

(1) enter — [Xj-X, xj and [xg, Xg+X]

(2) expand —•™ (left variant) [Xj-X, x]
(right variant) [xg, Xg+X]

(3) join — -

(4) exit add segment [x , x] —

(5) reduce add segment [xlt xg] —

(8) split add segment [x , xg]

Table 3. Design rule checking for diagonal violations and the required
modifications to the trailing edge list when the horizontal edge with vertices
(Xj.y), (xg.y) is encountered.

-22-

Fast Algorithms for VLSI Dale Skeen

Now. we are ready to state a completed version of the algorithm for exter

nal rule checking. The algorithm is summarized in Figure 9. Notice that two

scans are required: one in the vertical direction and one in the horizontal

direction. To detect diagonal violations, one of the scans must be augmented

with a trailing edge list. Since one augmented scan can detect all diagonal vio

lations, it is important that only one scan is so augmented; otherwise, diagonal

violations will be detected twice. We have arbitrarily chosen the horizontal scan

to check for diagonal violations.

Some implementation details are important in the complete algorithm. The

first is the case where several edges are encountered simultaneously. Notice

that in the case where a trailing edge and a leading edge are encountered

simultaneously, the detection of a violation during a normal scan (i.e. without

the trailing Ust) may depend on whether the trailing edge is deleted before the

leading is inserted. To circumvent this problem we defer the deletion of trail
ing edges until all leading edges at the level of the scan line have been pro

cessed.

Asecond point is that the trailing edge list requires the removal of edges

when they are more than distance Xbehind the scan line. Acouple of schemes

for removing the edges are possible. One is to leave inactive edges in the tree

Step 1. Perform a vertical scan, using Table 2
to check vertical spacing and using
Table 3 to check diagonal spacing.

Step 2. Perform a horizontal scan, using Table 2
to check only horizontal spacing.

Figure 9. The Design Rule Checking Algorithm.

-23-

Fast Algorithms for VLSI Dale Skeen

until they are encountered during a search. They can be deleted at that time.

A second scheme is maintain a queue of descriptors for the edges in the tree.

Each time the scan line advances, descriptors are removed from the queue until

the front descriptor is for an edge that belongs in the tree. Every time a

descriptor is removed from the queue, the corresponding edge is removed from

the trailing edge list.

2.3. Conclusions

We have illustrated the scan line algorithms using a single layer; however,

more complicated layout rules can be handled with little degradation in speed.

(We outlined a multilayer approach at the end of Part I.)

All scan line algorithms require sorting the edges; therefore, they have an

0(e log e) worst case time complexity. For layout rule checking, the complexity

is better described by 0((e log e) + V), where Vis the number of violations found

(maximally, this number is quadratic in the number of edges).

These algorithms are conceptually attractive but tend to be hard to imple

ment. While they exhibit the optimal asymptotic worst case performance for

several important VLSI problems, in practice they sometimes lose to more naive

algorithms, which have an 0(ez) average case time complexity, on reasonable

sized and realistic layouts. (See [BAIR78] for a discussion of the naive algo

rithms currently in use.) This is due to the relatively large overhead for main

taining the data structures.

Nonetheless, the scan line algorithms constitute an important class of

algorithms because of their generality. Other applications include decomposing

rectagons into rectangles (required in manufacturing masks) and finding con

nected components.

-24-

Fast Algorithms for VU3I Dale Skeen

Acknowledgements

I would like to thank Bernard Mont-Reynaud for introducing this problem

in his Problem Solving Workshop, Richard Newton for many meaningful discus

sions, and Ken Keller for his comments on an early draft of this paper and for

sharing his insight on the current issues of CAD-VLSI.

References

[BAIR78]

[BENT79]

[BENT80a]

[BENT80b]

[MEAD80]

[SHAM78]

Baird, H. S., "Fast Algorithms for LSI Artwork Analysis," Jour-
nal of Design Automation and Fault-Tolerant Computing, 2, 2,
pp. 179-209.

Bentley, J., and D. Wood, "An Optimal Worst-Case Algorithm for
Reporting Intersections of Rectangles," to appear in IEEE
Transactions on Computers.

Bentley, J., D. Haken, and R. Hon, "Statistics on VLSI Design."
Carnegie-Mellon Technical Report No. CMU-CS-80-111, April
1980.

Bentley, J., D. Haken, and R. Hon, "Fast Geometric Algorithms
for VLSI Tasks," available from IEEE as reprint CH1491-
0/80/0000-0088, 1980.

Mead, C. A., and L. Conway, Introduction to VLSI Systems,
Addison-Wesiey, Reading, Mass., 1980.

Shamos, M. I., "Problems in Computational Geometry," Ph.D.
Thesis, Yale University, 1978.

-25-

8eo /.

	Copyright notice 1981
	ERL-81-74

