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Abstract

The real power flow equation for a three node network is analyzed in terms

of its topological and geometric aspects. It is shown that the set of feasible

power injections is convex and to each feasible injection there corresponds a

unique stable solution. Certain aspects of the behavior of the associated swing

equations are studied. This behavior is quite different from that of a two node

network; in particular, the system may not be completely stable even when the

damping is made arbitrarily large.

1. Introduction

While great advances have been achieved in the numerical solution of the

power flow equation, important questions pertaining to the geometric and topo

logical character of the solutions remain unresolved (see [l].)

This study presents a comprehensive analysis of three node power net

works in which the transmission network is modeled by the real power flow

equation and the generator dynamics by the classical swing equations. Primary

attention is devoted towards revealing the geometric and topological structure

of the power flow equation.

It is clear from the literature that intuition guiding both load flow and

transient stability studies derives largely from the well-understood one dimen

sional problem, i.e.t a two node network. It turns out, however, that even in the

"slightly" more complex case of three nodes, the behavior changes dramatically

and conjectures that seem reasonable in light of the one dimensional problem

are invalid.

Analysis of the power flow equation for three nodes is quite involved and

points to the great difficulties to be encountered in the general case. To the

extent possible, however, we have used general arguments avoiding the topolog

ical properties of the plane.
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Section 2 is devoted to the load flow equation. There are two principal

results. First, the set of feasible power injectons is convex (Theorem 2.5).

Second, to each feasible injection there corresponds a unique stable solution

(Theorem 2.4). Surprisingly, the set of stable solutions need not be convex

(Theorem 2.3).

Section 3 discusses certain properties of the associated pair of coupled

swing equations. The main result is an example where the system is not com

pletely stable no matter how large the damping is. This is in sharp contrast with

the behavior of an isolated swing equation. The example is "generic" in the

sense that every three node network loses complete stability whenever the

power injections become sufficiently large.

2. Global Proprties of the Power Flow Equation

The principal properties of the power flow equation are derived in this sec

tion.

2.1 The Load Flow Function

Consider the three node network of Figure 1. Each node is a PV bus, and

the third bus is a slack bus. Take the third bus voltage angle as reference and

denote the voltage phasor at bus i by:

V, expQ tfi). i = 0,1.2.

By definition,

tf0 s 0.

Yjj is the admittance of the lossless transmission line joining i and j. Deflning

By = VjVjYjj we obtain the load flow equation in the form:

Pi = fi(*i.*a) = Bxsinfax) + Bl2sin(i>i-^2), 02-1)

P2 = fz&v'&z) = B2sin(tf2) + B12sin(tf2-tf t).
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Throughout this section we assume Bx >0, B2 >0, B12 >0 ; otherwise, the
analysis is trivial in the sense that it reduces to the one dimensional case.
Define the vector « =(U,.^). Utilizing the periodicity of function f. we restrict

its domain to the set:

T8 = [-n.it]2
where the end points it and -ir are identified. The Jacobian of fat« is given by

B^OStJi+BizCOS^j-iJe) -Blzcos(i>i-i»2)

-Blgcos(*i-*g) Bgoostfi+BjaCoafo-aj)

FoUowing [1] write F(tf) >0or F(i» a= 0according as F(«) is positive definite
or positive semideflnite. Furthermore. «eT* is said to be stable if F(0) >0.
Denote the stable region by H, In addition let H„ denote the subset of « in Ta
for which F(i» a 0 but F(i>) is not strictly positive definite.

Definition 8.1 (see [1]) The principal polytope Hp is the subset of all* eT2 such

that I* J* f-.l»J* f-andl*,-*J* f.

Also define the following subsets of T2 :

A,-j«eI«ll*ll*f-.l*.-«J*fi {2<3a)
Aa ={*eT*IkJ* 1.I»,-«J* §-} <2-3b)

A.-r«eT«IW»jf.W*fJ • (2-3C>
Denote by Hb the union of these subsets:

1

(8.3)w-g-

Hb = A! U Ag U A3

These sets are exhibited in Figure 2.

2.2 The Geometry o/HB

We begin byestablishing an estimate of the stable region.

(2.4)
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Theorem 2.1 Hp c Ha \j H0 c Hb.

Fhroof: The flrst inclusion is proved in [l] for a general network. To prove the

secpnd inclusion suppose that tf is not in Hb. Then of course tf is not in A3.

Hence cos ^ <0. cos tf2 <0. Let u =(1,1). Then <u,FWu> = Bjcostfj +

B2 cos tf2 < 0 implying that F(tf) is not positive semideflnite. The assertion fol

lows.

Corollary 2.1

Let i>eH8lj H0. Then for 0 <; s < 1, etf € H8.

F*roof:

UtiUzing Lemma 2.5 in [l] it suffices to prove that H8 \j Hq c H„, where H, is the

subset of * e T2 such that Itfj-^J ^ n. By the previous theorem it is then enough
to show that Hb c H„. By definition of A, and A2, Ax cH^AgC H^. Suppose that

* eAa. Then bj*|-. h>J * p implying Itft-^J**, so that AgC^and the proof is
complete.

Corollary 2.1 impUes that HB is connected, that is, the stable region has

only one component in contrast with the general case (see [l, Example l]).

Also, H,, \j H0 =Hs, where the bar denotes closure. Hence H0 =3HS (boundary of
H8). The next result characterizes this boundary.

Theorem 2.2 H0 =dHa is a connected one dimensional differentiable manifold in

Proof:

Connectedness follows easily from the previous discussion. To establish that
0H8 is a manifold, observe that

3H,, =ftf e Hb Idet F(tf) =0} (2 5)
Hence, it suffices to show that V„ det F(tf) 9* 0 on aHs. For # € T2 define the fol
lowing real functions:



^iW =[1.0] F(tf) [J] =Bi costf j+B12 cos(tfj-tf2) (2.6a)
ifzW =[0.1] F(tf) [5] =B2 costfg +Bl2 cos^j-^a) (2.6b)

^sW =[1.1] F(tf) [J] =B1 cos-*! +B2 costf2 (2-6c)
It is clear that these functions are nonnegative on H0. Also note that F(tf)

never vanishes on T2 since this would imply cos tfL=0, cos tf2 =0,

cos(i>!-^2) =0, an obvious contradiction. Hence, since [1,0], [0,1] and [1,1] are
pairwise independent, it follows that atmost one of the functions f jmay vanish

at any * € T2. Assume now that 4 e 3H8 butV* det F(tf) =0. Without loss ofgen

eralitywe can suppose that faW > 0, fsW > 0.

We have

B1sina>1^2(^)+B12sin(^1^2)^3(^) (27)
B2sini>2^1(i>)-B12sin(^1-^2)^3(^)]

Therefore, V* det F(tf) = 0 implies

BiSintfi i>2(#) +B12sin(^1-^2) ^g(tf) =0 (2-8a)
B2sintf21>xW - B12sin(tf j-tfg) i>QW =0 (2.8b)

Without loss of generality, assume that sin ^ St 0. From (2.8a) we then have

sinfax-tfg) *s 0. Since tf e 3H8 QHff it follows that 0<; 4X * it, -rr ^ tfi-tf* ^ 0;
thus, 0<;tf2sSfr or sintf2fe0. This contradicts (2.8) unless sin ^ =0 and

sin(tfi - fl2) =0 in which case ^ is a multiple of n. By Lemma 3 of [l] it is
unstable and so tf cannot belong to 3H8. The proof is complete.

2.3 On the Convexity of H8.

It was conjectured in [2] that the set of stable solutions HB is convex. If

this were true, one could conclude almost immediately that the stable solution

of the load flow function is unique. Here we give a counterexample to this con

jecture.

V« det F(tf) = -

6
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Theorem 2.3 H8 is not generally convex.

Proof: Suppose Hs is convex. Let tf e 3H8 be arbitrary. Let v e T* 3HS, the

tangent space of 3H8 at tf. Then tf + tv, t e R, is a hyperplane (which is a straight

line in this context) through tf supporting H8. In addition, since F(tf) has one

strictly positive eigenvalue for tf in 3H8 we conclude that for some e > 0,

det F(tf+tv) <> 0 for all 111 < t. So it must be the case that

vT~T(detF(tf))v<;u. (2.9)

We can find explicit expressions for v and -^-=- (det F(tf)).
3$

v =

where

vi

V2
J?
3tf

2 (det F(*» =
all al2

a21 a22

vj =B12 sin^i-tfg) Va(tf) - B2 sin tf2 ^(#) (2.10a)

v2 =B12 sinOflj-tfg) ^3(tf) - B! sin tfx ^2(tf) (2.10b)

an =-Bi cos 1?! B12 cos^j-^b) +2B! sintfj B12 sin (tfj-tf.j) (2.10c)

ass = -B2 cos $2 B12 cos^ - tf2) + 2B2 sintf2 B12 sin (#i-tf2) (2.10d)

ai2 = a2J = -B! cos tJj B2 cos tf2 + Bt sintfj B2 sintf2

+ B2 sin tf2 B12 sinfiJj-iJg) - Bx sin 4j B12 sin (^-tfj,)

Now let # =(tfL^g) be given by tfj =75°, tf2 =-60°. Consider the following

sequence of parameter values Bn = (Bf, Bf, Bf2j given by

1 L 2 + 2»J 4 ' a" 2 + 2*' 12~ F

One can check that det F^tf) =0 for all n, where F11^) denotes the Jaco-

bian of the load flow function with parameters Bn. Furthermore, since

cos #! >0, cos tf2 >0 we deduce that F11^) Ss 0 for all n and hence tf e 3H8.

Denoting by vf, ajf the values of v,. a,j (see 2.10) at Bn, tf we investigate the

asymptotic behavior of •,» aft noting that terms containing Bf ~ 2n~2 will dom

inate over the rest.



This leads to

vn „_2n-2 r^jL (l +̂ j cog ^ (g Ua)

•J ~-2n"2 -^"cos <*! (2.11b)

tn ^ 2n"2 ^ cos # +2n-l 2^1. gin ^
4 4

(2.11c)

aft =aft ~2*"2 ^- cos *, - 2n"2 ^fL(a+V3) sin tfj (2.1 Id)
while agj is bounded above. Thus:

(yI1)T frtf2" id6t ^^ *" =(vf )2 afl +2v"v£a*2 +Wf )'•* ~2n_8 VS,
so that for n large enough,

(vn)T^-(detFaw)va>0
contrary to the original hypothesis.and the proof is complete.

2.4 On the number of stable solutions

We now seek to establish the uniqueness of the stable solution of the load

flow equation. The proof is rather involved, and for reasons of clarity, we first

establish two lemmas.

Lemma 2.1 Let tf, V e H8 be such that tf * fl, f(tf) = f(fl). Then there exist f € H8

and f G 3H8 such that f(£) = f($),

Proof: Since i), 9 6 H,,, det F(tf) * 0, det F(ft) # 0, and in view of the inverse func

tion theorem, there exist disjoint neighborhoods V , V of 4 and # respectively,

and a diffeomorphism n: V -» 7 such that if x e V, then f(x) = f(?7(x)), x * rj(x).

Therefore, given the differentiable curve 7(t) = (l-t)tf, there exists an open

interval [O.ct) and a differentiable curve y(t) defined on the interval such that

?(0) = fl and f(9(t)) = f(7(t)), ?(t) * y(t), ?(t) e Hg. Now let a € [0,1] be the larg

est such real number. Let f = lim9(t) and let £ = (l-a)tf. Observe first that f y* f

since (l-a)tf € Hg by Corollary 2.1 and hence F((l-a)tf) is nonsingular. Next

B
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note that a < 1 because if a = 1 then f(f) = f(0) for some f e H8. But then by

Corollary 2.1, sf € H8 for e e (0,1). Hence,

l

0 =<fcf(?)-f(0)> =f <f, F(ef) f> de >0,
o

which is a contradiction. It remains to show that f e SHg. This is clear, for if

f G H8 then the definition of ^(t) can be extended beyond a, contradicting its

maximality. The proof is complete.

Lemma 2.2 Let i?° e 3Ha O A where

A=(tf e T21 £.<; i?! <5tt, 0<; #2 <; £•, 0<; t51-tJ2 <; f-}.
» c 2

Then,

Bj sin tf? + B2 sin tfj ^ Bi.

Bj sin i?!0 + B12 sin (tf?-^) ^ Bj.

Proof: 3Hg is a closed connected one dimensional manifold. Furthermore,

^sf' 2 '̂ ^2"' °^ are the °nly Points m 3Af)3Hs. This assertion can be verified

very easily. One can conclude, then, that there exists a differentiable curve

7(t):R-A such that r(0)=(^, |). ?(!)=( f. 0). 7(t0) =tf°, 0*s t0 <s 1, and

7(t) £ 3HS n A for all t € [0,1]. Consider the function <p : T2 -> R given by

tpW =B! sin 7>! + B2 sin tf2 (2.12)
We have

95(7(0)) =Bj +B2, ^(7(1)) =Bx (2.13)
Hence it suffices to show that <p(y(t)) is monotone on (0,1). Consider

^ p(7(t)) =(1.1) F(7(t)) 7(t) (2.14)
But yitHTywidHa), and ^(SHg) is spanned by the vector v(tf) given in (2.10). By

direct computation,

(1,1) F(tf) v(#) = - B2 sin tf2 Bi cos tfx ft(tf) (2.15)
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+ Bt sin 1>! B2 cos tf2 ^2(tf) + B12 sin (tf i-tf2) (^a(fl))2
Finally, by inspection, (1,1) F(tf) v(tf) > 0 on 3H8 n int(A) and the proof is com

plete. (The proof of the second inequality follows by symmetry upon inter

changing tfi-tf2 and tf2.)

We are now ready to prove the main result.

Theorem 2.4 The function f is one-to-one on Eg.

Proof: By contradiction. Suppose there exist tf, $ in Hg with tf * & and

f(tf) = f(#). By Lemma 2.1 we can assume # € 3H8, and in view of the symmetry

ofthe load flow function we may assume i?! ^ ^-. Note that since ©e Hg we must

necessarily have 0sS $2 -s ^L 0^ $i-fl2 <5 §• and Lemma 2.2 implies

fxW = B! sin^j) + B12 Binffj-^g) £: Bx . (2.16a)

fiW + fsW = Bj sin(9,) + B2 sin(S2) s* B^ (2.16b)
Since f(tf) = f(#) we get

fi(*)*B! (2.17a)

'iW +*«(*) ^ Bt (2.17b)
Observe that (2.17) implies sin tf2 ^ 0, sin (tfi-tf2) Ss 0, hence, since # € H8 we

must have

0^ i>! ^ 7T. 0sS tf2 ^ £., 0ss #X-4Z ^ §-.
Now distinguish two cases:

i) sin tfj ^ sin &i :

This clearly implies

0 SS TT-Btj ^ tf 2SS &x ^ 7T (2.18a)

0<#2-s fl2 «S j (2.18b)

0<; i>1-t>2 ^ fli-Bjj as j (2.18c)

Let u e R2 be given by

10

Elfr



By direct computation,

<u, F(tf + ut)u> = Bj cos^! + (#! -i^Ot)^! -tfj)2

+ B2 cos(tf2+(#2-tf2)t)(#2-tf2)2

+ B12 cos(i>l-i>2+(91-^2-a>1+^2)t) (#i-#2-tfi-H*g)2

> Bt cos(i?1)(91-^x)2 + B2 cos $2 (fl2-tf2)8

+ B12 cos^t-tts) (^1-^2-^1+^2)2 = <u, F(3) u> & 0
for all t in (0,1), and hence,

uT (f(&)-f(fl)) =/ <u, F(tf+ut) u> dt >0 (2.21)
o

contradicting our initial hypothesis that f(9) = f(tf).

ii) sin #j > sin i>! :

A contradiction here is established in a similar manner and completes the

proof.

It is clear that f(H8) is an open set in R2. By the continuity of f we also get

3f(H8) c f(3H8). In fact, we can now also establish that 3f(H8) = f(3Ha). If this is

not the case, then there exists tf° in 3Ha such that f(#°) e f(Hs), in violation of

Theorem 2.4.

2.5 On the range of f

We seek to characterize the range of the load flow function. We first estab

lish that f(Hs) is a convex set in R2. The following lemma is useful.

Lemma 2.3 Let C be an open bounded set in Rn such that 3C is an (n-l) dimen

sional manifold. Suppose that for any three distinct points x, y, z, in 3C,

TX(3C) as Ty(3C), implies Ta(3C) * TX(3C). Then Cis convex.

Proof: By contradiction. Suppose C satisfies the hypothesis of the lemma and C

is not convex. Then there exist xx and x2 in C such that Jfcfo+x^ is not in C.

Define g: R-»Rn by

11



g(t) =txj +(l-t)x2. (2.22)
Let t0 in (0,1) be such that g(t0) € 3C. Let Xq =g(t0) and consider T^SC) and a

vector w0 normal to T^SC). Define the linear functional XonC by

X(x) = <x, w0> (2.23)
Since Cis bounded, C is compact, there exist points x^, xH where X attains a glo

bal minimum and maximum respectively.

Obviously, xm * xH. Furthermore, since

X(x0) = t0X(x1) •+ (l-t0)X(x2)

and xlf x2 are in C, it is evident that x0 * xm, and x0 j* xH, while

TXa(3C) =TXH(3C) =TXo(3C)

contrary to the hypothesis, and the proof is complete.

Lemma 2.4 3f(Hg) = f(3Ha) is a one-dimensional differentiable manifold in R2.

F*roof: Note that f: 3Hg -» 3f(Ha) is a continuous bijective map. Thus it suffices to

prove that F(tf) is bijective on T„(3Ha) for ail tf in 3HS. Without loss of generality.

assume tf e A(see Lemma 2.2), i.e., £- ss tfj-£ tt, 0<; tf2 =s £-. 0<; tfi-tfg ^ —.

We already know from the proof of Lemma 2.2 that F(tf)v(tf) * 0 for all tf in

3HgQlnt(A) where v(tf) is the vector defined in (2.10) which spans T^SHg). So it

remains to show that F(tf)v(tf) }«0on 3H8 n 3A, namely, at (£-, §•) and (£-. 0).

n nAt(f-. f) we get

F(tf) vW = Bis ~B12
—Bi2 Bl2

—B2B12
BiB12 =(B^BgjBSif-j1] *0.

On the other hand at (—, 0) the assertion follows by inspection from (2.15) and

the proof is complete.

Theorem 2.5 f(Ha) is an open convex set in R2.

12
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F*roof: Observe that if ft belongs to 3Ha, then so does -ft and Tf^(3f(Ha)) =

Tj{-&)(df(Ha)) so that in view of the lemmas above, it suffices to show that there

exists no tf e 3HB such that tf * ft, tf *-ft and F(i?) = aF(ft) for some a^O.

We proceed by contradiction. Let iJ, ft be as above. Without loss of general

ity we can assume ft e A, i.e., ~ ^ ftj :£ rr, 0ss ft2 s£ £-, 0s£ fti-ft2 =* ?"• Evidently,

we must have a > 0, so again without loss of generality we can assume a 5s 1, as

well as #! ^ 0. Then from F(tf) = aF(ft) we obtain

cos tfj = a cos ftj (2.24a)

cos tf2 = a cos ft2 (2.24b)

cos (tfi-tf2) = a cos (fti-ftg). (2.24c)

Hence, in view of our assumptions,

cos tf! jS cos ftj ^ 0 (2.25a)

cos tf2 > cos ft2 ^ 0 (2.25b)

cos (i>i-tJ2) > cos (fti-ftg) ^ 0 (2.25c)

Since tfj ^ 0, we obtain from (2.25a)

|- ^ fti ^ 1?! ^ m (2.26a)
And from (2.25b) and (2.25c)

tf2 -S ft2 sS -|- (2.26b)

tfi-flg «S ft^g ^ |-. (2.26c)
But adding (2.26b) and (2.26c) gives tf x^ ft1§ in violation of (2.26a). The proof is

complete.

So far we have established that f( H8) is a convex set. Notice that f(Ha) is

thus the convex hull of f(3H8). The question that arises now is whether

^HJsfXT8); i.e., whether we can always guarantee the existence of a stable solu

tion. Observe that the point (—, -r-) is in 3Hg, and in addition, the function

13
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'iW +fsW attains a global maximum over fCT2) at (£, £-). Hence, f(f-, £)

belongs to 3f(T2) and f(3H8) n 9f(T2) is nonempty.

After this initial observation we proceed to establish the theorem conclud

ing this section.

Theorem 2.6 f^) = fCT2)

Proof: By contradiction. Sup-pose f(H8) * fCT2). From the preceding paragraph,

3f(SU n df(T2) * 0. (2.28)
On the other hand, since f(H8) * f(T2). and f(rXg) is convex, therefore

SfCT2) - 3f(H8)*0. (2.29)
Let H0_ denote the set of points in T2 such that F(i5) ^ 0 but F(tf) is not strictly

negative definite. It is evident that SfCT2) - 3fTHa) c f(H0_). Also, because f(T2) is

connected and f(Hs) is convex, it must be the case that

sfdy n f(Ho-) * 0.
Equivalently, since 3f(Hg) = f(3Hg) = f(H0), we must have

f(H0) O f(Ho-) * 0 (2.30)

The proof will, therefore, be complete if we show that (2.30) is false. Let

tf e Hq_, ft e H0 be arbitrary. It should be evident by now that there is no loss of

generality if we assume that ft e int(A), where the set A was defined in Lemma

2.2. In other words, we have

|-<ft1<7T.0<ft2< p0<ftl-ftg< |- (2.31)
Also, since i> e H0_, ft e H0, we obtain

Bx cosi>! + Big cos^-tfg) «s 0 ^ Bx cosftj+B12 cos^-ft^ (2.32a)

B2 costf2 + B12 cos(tfi-tf2) <> 0 ^ Bg cosftg + B12 cos^-ftg) (2.32b)

Bj costf j + B2 cos-i^ ^ 0 ^ Bj cosft! + B2 cosft2. (2.32c)

Multiplying (2.32a) and (2.32b) and noticing that det F(tf) = det F(ft) = 0 we get

cos2(^1-tf2) ^ cos2(ft!-ft2). Doing the same thing with (2.32a) and (2.32c) as well

14
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as with (2.32b) and (2.32c) we finally obtain

cos2tfj ^ cos2ftlt cos2tf2 «s cos2ft2, cos2^!^)^ cos^ftj-ftg) (2.33)
It must be the case, then, that

sin2^! 2* sin^i, sin2tfg :> sh^ftg, sin2(i>1-^2)^ sin^-ft;,) (2.34)
Now we utilize Lemma 2.2 to obtain

B! simJj +B12 sin^j-tfg) =Bj sinfti +B2 sin^-ft.,) >Bj (2.35)

Bj sim^ + B2 sintf2 =Bj sinftj + B2 sinft2 > B!

Hence, sin tf2 >0, sin^j-^g) >0. which combined with (2.34) yields

sin tf2 ;> sin ft2, sin (tfj-tfj;) 2s sin (fti-ftj.) (2.36)
Hence, there are only two alternatives: either

sin #! ^ sin ftx

which immediately yields

tf=ft

contradicting the hypothesis, or

sin tf! «s - sin ftx

in which case, from (2.31) and (2.36),

-n < -ftj <; tf j «s ftj-^ < 0

0 < ft2 «S tfg <S TT-ftg < n

so that

-2tt < -^-(ftj-ftg) <; i>1-i?2 <s (ft^g-Tr) < 0
which yields sin^-tfg) < sin^-ft^ unless

tf l - -fti. tfg = TT-ftg

which in turn contradicts (2.35). The proof is complete.

3. Remarks on the Dynamic Behavior

3.1 The Differential Equation

According to the classical model, the motion of the 3-bus power network is

governed by the differential equations

15
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mi *i +dj ix =Pi - tifru tf2) (3.1)

mg *2 +dg i2 =P2 - fg^!, tfz)
where the third bus is taken to be a slack bus and the vector P=(Pi, Pg)

corresponds to the mechanical power input. It is not difficult to show analyti

cally that (3.1) has at most six equilbrium points in T2 corresponding to the

solutions of

P =*W (3.2)
Thus, if P is a regular value of f(#), i.e„ detF(tf) * 0, the points in the inverse

image f""l(P) must fall under one of the following cases (see Figure 3):

i) for P in I^g, f"x(P) contains two points in T2, one of which is stable and the

other is a saddle with one positive eigenvalue.

ii). for P in R4, f_1(P) contains four points in T2, one of which is stable, two are

saddles with one positive eigenvalue, and the fourth a saddle with two posi

tive eigenvalues; and finally

iii) for P in Rg, fl(P) contains six points in T2, one of which is stable, three are

saddle points with one positive eigenvalue, and the rest are saddles with

two positive eigenvalues.

In the statements above the eigenvalues refer to the linearization of (3.1)

around the equilibrium.

In the study of the dynamics of (3.1) we should expect to encounter saddle

connection bifurcations giving rise to much more complex phenomena than in

the one-dimensional problem studied in [3], The next situation is devoted to

the study of a certain kind of dynamic bifurcation.

3.2 The Role of Damping in Complete Stability

The motivation of this section stems from the study of the one-dimensional

problem as well as the characterization of complete stability to be found in [3].

16
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A dynamical system is said to be completely stable if every trajectory con

verges to an equilibrium.

Consider the one-dimensional classical equation for a power network:

tf +atf =0-sini> (3-3)

The global properties of (3.3) are well known (see [3,4]). In particular it is

known that if /} < 1; i.e. as long as a stable equilibrium exists, then the

differential system is completely stable provided that the damping constant a is

large enough. This fact, combined with the role played by damping in the char

acterization of complete stability in [3], suggests the conjecture that

sufficiently large damping should produce complete stability in higher dimen

sional problems as well. The following example shows that this is false.

Example 3.1 Consider the three node network of Figure 4. The differential

equations for such a system are

ij + d tfi =(c-e2) - e sin t>! - sin(tf!^i?2) (3.4)

ij2 + d tf2 =(e-e2) - e sin #2 - sin(tf1-tf2)
Let Kn be the closed subset of R4 defined by

Kn = K*i.*b.*i.*2) l*i=*s. *i-*8 =27m j (3.5)
The projections of the Kn on the (^=0,^=0) plane are shown in Figure 5.

4
Notice that each Kn is an invariant set of the motion of (3.4), and that if e < -r-,

then all the equilibrium points of (3.4) lie in the sets Kn.

By changing coordinates to z = I*!—t^, we obtain from (3.4):

z + dz = - e (sin i>1-sin^2) - 2 sin z (3.6)
It is straightforward to show from (3.6) that there exist e0 > 0, d0 > 0 such that

the invariant sets Kn are stable for all e < e0. d > do- (A closed set is said to be

stable if every open neighborhood of the set contains a positively invariant

neighborhood.)
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Let An be the region of attraction of Kn. The An are open disjoint sets of R4

and hence their union does not cover R4. Thus the complement of this union is

a nonempty invariant set and it contains no equilibrium points. Hence a trajec

tory which starts in this complement can never converge and so the system is

not completely stable.

3.3 Complete Stability Revisited

In the example of section 3.2, we showed that arbitrarily large damping need

not lead to complete stablity. Upon closer examination of equation (3.4) one

can see that for s = 1 (3.4) not only has six equilibrium points in T2 x R2, but it

is also completely stable for all positive values of the damping d. So, if we vary s

continuously from e = 1 to s = 0, we should expect not only static bifurcations,

i.e. appearances or disappearances of equilibrium points, to take place, but

dynamic bifurcations, i.e. saddle connection bifurcations, as well. In Figures

6a and 6b we depict the abstract flow diagrams of (3.4) for e =1and s = *r. At
5

4
£= g- the number of critical points changes from 6 to 2. Notice how the stable

manifolds and unstable manifolds fuse together.

The following proposition throws some light on the mechanism of the loss

of complete stability.

F^opositUm 3.1 Consider a three node network such that there are exactly two

equilibrium points. Then the system is not completely stable.

Proof: By contradiction. Suppose that the system is completely stable. Let

tfs = (tff. tf|) and tfu = (tff, tf£) be the stable and unstable points respectively.

Now, consider the system behavior in R4. Let W^tf11) be the 1-dimensional

unstable manifold of tfu. By the assumption of complete stability, W^) must

be bounded. Hence Wu(i>u) is a compact one dimensional manifold with boun

dary. Let tf+27r(m, n) denote the point (tf1+27rm, tf2+2;m ). The boundary of

IB

\Z'>]



W^tf11) consists of critical points. It is not hard to show, hence we omit it here,

that there is no loss of generality if we assume that

SW^tf*) = (tfa + 27r(m, n), tf8 + 27r(m, H)J (3.7)

for some pairs of integers (m, n) and (fn, n).

Now, let tf£j be the point

tf£i =^ + 2tt (lm - km, In - kn) (3.8)
for some integers i and k.

Let

Nk = U VK«£i) (3.9)

The sets N^ are closed, invariant and pairwise disjoint. In addition, each N^ is

stable, which completes the proof of the proposition.

We conclude with the following theorem which is stated without proof.

Theorem 3.1 Consider the (n+l)-node power network governed by the equation

MJ + D^ = P-f(iJ) (3.10)
where M and D are n-dimensional diagonal matrices. Let i?i, i = l,...,k in T11 be

the equilibrium points. Then (3.10) is completely stable if and only if:

i) ^W) is bounded in Rn x Rn, i = 1 k.

ii) U U W^tfj+v) is a connected set in Rn x Rn where II is the set of vectors v
veil i=i

all of whose components are multiples of 2tt.
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Figure Captions

Fig 1 The three node network

Fig 2 The sets Ha, Hp

Fig 3 Number of solutions of (3.2)

Fig 4 Network of Example 3.1

Fig 5 The sets Kn

Fig 6a Flow diagram for s = 1

4Fig 6b Flow diagram for s = -g-
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