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Abstract

The cycle-to-cycle jitter produced by circuit noise sources in most relaxation oscillators

severely limits their applications in telemetry and communications circuits. The mechanism of

jitter production, a non-linear time-varying problem, has not been reported anywhere in the

literature, and is the subject of this thesis. A model of this mechanism has been derived which

applies to all relaxation oscillators, and, in fact, to noise in all regenerative circuits. Although

the statistics of jitter are difficult to describe analytically, some very useful empirical results

have been obtained. The criteria for the design of low jitter oscillators thus become evident,

and have been used to demonstrate a prototype circuit with an order of magnitude less jitter

than any commercial circuit.

Finally, as an extension of this model, the synchronisation and aperiodic dynamics of

relaxation oscillators in the presence of periodic signals are investigated.
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Prologue

Relaxation oscillators belong to amost useful, yet quite mysterious class of electronic cir

cuits. If one were to attempt aclassification ofcommonly used circuits by intricacy of their

dynamical behaviour, it would probably resemble the following: Passive circuits, like

resistors,capacitors and inductors; Transistor amplifiers without feedback; Sinusoidal, single fre

quency, oscillators; Amplifiers with negative feedback; and Relaxation Oscillators. It is interest

ing to note that the last two categories were discovered at about the same time, and have

engaged the interest oftheoreticians and engineers since. Relaxation oscillators have come to

the fore recently because ofarenaissance ofinterest in the dynamics ofthe van der Pol oscilla

tor [1], and of the widespread need for multivibrators with voltage-controllable frequency of

oscillation for use in integrated circuit Phase Locked Loops [2].

Relaxation oscillators have certain other properties which makes them eminently suitable

as aworkhorse in signal generation. They require only one timing element, which need not be

an expensive selective element like aquartz crystal or an L-C circuit; the amplitude of oscilla

tion is easily adjustable; and the frequency ofoscillation can be swept over four decades or

more by electronic control without changing the timing element. Aversatile circuit like this is

not without its attendant problems, foremost ofwhich are drift and noise. Whereas aquartz

crystal has anatural insensitivity to temperature and other environmental factors, the frequency

ofarelaxation oscillator can have avery large temperature coefficient, because it is directly

determined by active device parameters, like the ON voltage ofadiode. The problem is not

insurmountable, as is demonstrated by recent designs [3], where temperature dependent

currents are used for compensation. Again, ahighly frequency selective circuit has anatural

filtering effect on broadband noise, so reducing its presence on the periodic output, whereas a

relaxation oscillator is essentially abroadband circuit, with no frequency limitations other than

the maximum frequency response of its active devices. Thus, it is susceptible to all forms of

noise in the frequency spectrum, which, manifested on the output waveform, produce a



random modulation of the oscillation's period known as the Phase Jitter.

It is appropriate here to point out the essential differences between aSinusoidal oscillator

and a Relaxation oscillator. The former relies on the frequency selectivity of a tuning element

to generate asingle frequency. More precisely, the sharp rolloff of the phase characteristic of

the tuning element as a function of frequency is used in a feedback loop to satisfy the Nyquist

criterion for instability. At least two independent energy storages are necessary to produce the

desired phase characteristic in the timing element, that is, the system must at least be second

order for oscillation. The amplitude of oscillation is determined by the limiting characteristics

ofthe loop, produced by the non-linear active elements in the circuit. This, in turn, produces

distortion in the oscillation, which is minimised by ensuring "softness" in the limiting [4].

A relaxation oscillator is best described by analogy with the sinusoidal oscillator. If one of

the energy storages is reduced in value so that it becomes of the order of the parasitic elements

in the circuit, the dynamics ofthe circuit will significantly change from those during the

sinusoidal operation. The phase criterion will no longer be satisfied at asingle frequency, yet a

highly non-sinusoidal oscillation will exist, whose frequency and amplitude both will be deter

mined by the large scale limiting behaviour of the circuit, and by the magnitude of certain cru

cial currents and voltages. The oscillation cycle will typically consist ofa fast transition between

two astable states, and aslow energy input period during which the circuit is said to be "relax

ing", whence the name. There are certain provisos to this analogy, discussed in chapter 1 ,

but, roughly speaking, it is merely adegenerate sinusoidal oscillator.

There are other forms ofoscillators and oscillations which could be classified as the relax

ation type; the above discussion should be regarded as asimplified prototype for most of them.

A broadband circuit like arelaxation oscillator is strongly influenced by noise. The Phase

Jitter so produced sets alimit on the usefulness of the circuit as afrequency detector in aPhase

Locked Loop, for clearly it cannot resolve frequency shifts less than the jitter. In practice, this

is often the major limitation in using the oscillator. Yet, there exists no theory for determining

the effect ofnoise on such non-linear, time-varying circuits, and consequently no systematic



circuit design methods to reduce its effects.

The central object of this study has been to develop, and verify, such atheory of Phase

Jitter in relaxation oscillators, and examine its implications on circuit design.



CHAPTER

Oscillators: Harmonic and Relaxation

The desire to generate periodic signals has existed throughout the history of electronics,

principally motivated by radio applications. Early oscillators were of the harmonic type, where

the energy exchange properties of two coupled reactive elements were used, as an analogue to

the simple pendulum, to produce asimple harmonic oscillation of electromagnetic energy. A

charged lossless capacitor, C, when discharged into alossless inductor, L, will produce a

sinusoidal oscillation of voltage and current of frequency (LCV'h In the presence of dissipation,

the resulting oscillation has adecaying amplitude. Oscillation is sustained by using an active cir

cuit to make up for the dissipation in each cycle.

The presence of the active circuit necessarily results in asteady state oscillation different

than asinusoidal one. The operation of this circuit is as follows: it provides adynamic negative

resistance slightly in excess ofthe dissipation ofthe reactive elements used for tuning, and lim

its the resulting oscillation of growing amplitude by reverting to apositive resistance at some

pre-determined voltages. The steady state oscillation amplitude balances the energy input by

the nett negative resistance per cycle, with the dissipation. The methods ofharmonic oscillator

design are well documented [4], [5], and it is possible to obtain an impressively low distortion in

the output by careful design !.

Harmonic oscillators where the lumped circuit assumptions above are true can typically

produce frequencies upto many megahertz. Beyond this range, from microwaves to X-rays,
'However, there appears to be atradeoff in the design of stable (over time) and Jow distortion (spectrally
pure) oscillators, e.g. the HP 10811 uses aquartz crystal to attain astability of10 parts/day while the HP
239A uses aWien bridge to produce total harmonic distortion of-95 dB, with much worse stability.



oscillators rely on the physical properties of suitable resonant cavities to sustain stationary

waves, and cannot strictly be called electronic circuits. For example, lasers operating in the

infrared wavelengths and beyond, although harmonic oscillators, are distributed oscillators from

the circuit point of view, and not of direct interest in this study 2.

Atypical harmonic oscillator circuit is shown in Fig.l.Ka), which uses an L-C tank circuit

for frequency selection, and bipolar transistors as active devices. These devices simulate the

limited negative resistance of Fig. 1.1 (b). The steady-state oscillation defines aclosed cycle in

the phase plane of Fig. 1.1(b), where time is aparameter on the trajectory. Such acircuit can

be generically, and concisely, represented by the differential equation that van der Pol originally

studied [1]:

x+xa-M*2)**"2*-0 (u)

where X,M are determined by the degree of limiting in the negative resistance, and o> is the fre

quency of oscillation for small X.

This study concerns itself with the effects of circuit noise on the output waveform. For

harmonic oscillators, this is awell studied problem, motivated originally in the 1950's by the

need to make precise electronic clocks for high resolution applications like Doppler radar[6].

These results are now summarised.

Harmonic Oscillator noise

The earliest attempt at understanding the effects ofnoise in harmonic oscillators was

made by Stewart in 1956(7], where he extended the results of modulation theory to the physical
2It is often desirable to model the operation of adistributed oscillator by an electronic circuit analogue. The
frequency of oscillation mustbe scaled accordingly.
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An L-C oscillator circuit using bipolar transistors
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Negative resistance characteristics produced by active devices



processes of noise in oscillator circuits. Low-pass filtered white noise, after modulating a

sinusoidal carrier, produces sidebands around the carrier (Fig. 1.2). The bandwidth of these

sidebands is proportional to the noise density; this was the central result of the paper, from

which the sideband power could be calculated.

Edson [8] attacked the same problem in aslightly different manner, by considering the

noise as randomly spaced impulses exerting asynchronising influence on the oscillator. His

results were similar to Stewart's, with the noise sidebands given by

v2(tt>) „ , **rG «.2)

where

vjCkT
2PQ2

+ 4C2(o>-o>o)2

G - loss conductance of tank circuit

wo •* oscillation frequency

C = capacitance in tank circuit

P = oscillator output power

Q «= quality factor of tank circuit

Simplified calculations such as these assume that the loss resistance is the only source of noise,

and hence determines the noise density at a,-^ The total noise power in the sidebands then

depends on their -3dB bandwidth and from (1.2) it is evident that this varies inversely with P
and Q. Therefore, for low noise, alarge oscillation amplitude and high Qare necessary.

The other important analyses by Mullen[9], GolayllO] and Grivet &Blaquierellll arrive

at slight variations of the same basic results. They set up simple models of the active circuit
associated with the tank circuit, and calculate the noise vector which adds to the steady state

oscillation vector. The noise vector may be resolved into its in-phase and quadrature com

ponents, and while the in-phase component results in arandom amplitude modulation, the qua

drature component produces phase noise. The results for the phase noise spectrum are as
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follows:

kT Rloil „ ,,
iMulleni Noise bandwidth •» —-j-— u.j;

, <"o /2kf(oo n ,v
[Golay] Noise bandwidth = T~0 V—PO~~

r i kT <t)Q n «.,
[Grivet] Noise bandwidth = —;—r uo'

All these formulae show the same dependence of the noise bandwidth on the oscillator vari

ables as (1.2).

The magnitude of the noise bandwidth is much smaller than the -3dB bandwidth of the

dissipative tank circuit. For example, for typical values of Q •» 106, wo"* 10 Mrad/s, and P =

10 ptW, the effective noise bandwidth of the oscillator is 10"14 rad/s while the -3dB bandwidth

of the tank circuit is 10 rad/s. This is because the active circuit raises the effective Q of the

tank to a very large value in order to sustain oscillation, and ultimately the Q is bounded above

by the presence of noise. For the previous values, the circuit Q «= 1021.

For precise frequency applications, it is important that the spreading of the oscillator line

spectrum be kept to a minimum. A low phase noise oscillation can also be used for precise tim

ing where the instants when the waveform crosses its mean value (hereafter assumed zero) are

used as a clock to measure time. While the phase noise sidebands are obtained by a linear

(Fourier) transformation of the noisy waveform, the zero-crossing instants result from a non

linear transformation. Phase noise produces a jitter in the periodicity of the zero-crossing

times. The jitter can be calculated knowing the noise bandwidth. If the noise density at the

centre frequency is AkTR V/jHz and the noise bandwidth is 5, then the total noise voltage in

quadrature is AkTRyfB V. At the instant of zero crossing, this produces an uncertainty in time

given by

AkTR^B
ht

Slope of oscillation at crossing
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This is explained in Fig.1.3, where the noise is represented as random variations in the mean

value. As the noise power is bunched around the oscillation frequency, these variations are

slow compared to the latter.

Relaxation Oscillators

cross

Relaxation oscillators developed independently of sinusoidal oscillators, evolving from the

-coupled trigger circuit of Eccles and Jordan (1919) [12]. The principle is described in

block diagram form in Fig.1.4, where an energy storage is charged through avalve from a

power supply, and when the stored energy exceeds an upper threshold, arapid discharge

results, whence the cycle repeats, resulting in asawtooth periodic waveform. There are various
practical realisations of this idea, and atriangle wave can be produced if asymmetrical scheme

is used.

According to the theory of dynamical systems, asystem must at least be second-order to

oscillate. How can arelaxation oscillator work with only one energy storage? The operation

can be explained if the parasitic elements are considered. In any real circuit, small parasitic ele
ments will exist which increase the order of the system. Normally, in a robust system, the
parasitics do not qualitatively change the dynamics, but arelaxation oscillator is adegenerate
system, where the parasitics solely determine part of the oscillation. The phase plane diagram
for the steady state relaxation oscillation is shown in Fig.1.5. Although it resembles the van

der Pol cycle, there are two time scales to this motion: aslow charging governed by the energy

storage, and a fast transition determined by the parasitics.



Fig. 1.3

Zero crossing times of a sinusoid with superimposed noise
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Block diagram of a relaxation oscillator
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Fig. 1.5

Phase plane trajectory of a relaxation oscillation
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Oscilloscope time bases are relaxation oscillators which produce asawtooth waveform;

other, special purpose waveforms can also be produced using suitable charging and shaping

schemes. For most timing applications, asymmetrical waveform like atriangle wave and a

square wave are desired. Two topologies of oscillator have evolved for such applications,

known as the Grounded Capacitor Oscillator3 (G.CO.) and the Emitter Coupled Oscillator4
C£.COJwhose bipolar circuit implementations are shown in Fig.1.6 and Fig.1.7 respectively.

The associated waveforms explain their operation. In the G.C.O., the capacitor is alternately

charged and discharged by acurrent between the two thresholds at the input to the Schmitt

trigger, whose output then controls the bidirectional current switch. In the E.C.O. the switch

ing and charging-discharging functions are combined. One of the transistors is off during one

half of the cycle, and when the capacitor voltage reaches athreshold determined by the circuit,

this transistor turns ON and the circuit switches to the symmetrically opposite state to continue

the other half cycle.

A few general remarks are in order concerning the operation of these circuits. While the

capacitor is being charged, the circuit is in one of its astable states, and afast transition between
these states is made regeneratively at certain thresholds. The regenerative aspect is fundamen

tal because of the memory necessary to remember each astable state. The way that the circuit

enters its regenerative mode must be understood in detail to see how external disturbances

manifest their effect. This is the topic of chapter 3. The waveform at the output of the

regenerative portion of the circuit is a square wave.

Unlike harmonic oscillators, there are no frequency selective tuning elements in these cir

cuits. The frequency of oscillation is determined by the global circuit variables that is, by the

regenerative thresholds of the active circuit, the magnitude of the timing capacitor, and the
charging current sources for the topologies of Fig. 1.6 and Fig. 1.7. In particular for the

G.C.O., if the Schmitt thresholds are K,, and K,2, then

3Anatural outcome of the hysteretic Schmitt trigger 1131 4Due to Grebene (14]



Fig. 1.6

The Grounded Capacitor Oscillator
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Fig. 1.7

The Emitter Coupled Oscillator
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f „ 7° (1.7)
Jox 2C(V,rVt2)

The frequency can be varied with 70 and, in practice, about four decades of frequency can be

swept. More important, the dependence of fox on the current is linear, which is necessary for

accurate frequency demodulation when the oscillator is used in aPhase Locked Loop. This

dependence of frequency on the circuit variables has its disadvantages as well, because the

latter can be subject to large drifts due to temperature and other environmental fluctuations.

By proper circuit design 13], it is possible to compensate for most of these drifts.

The final limitation of relaxation oscillators , if not the most serious one, is their suscepti

bility to noise. They are very broadband circuits because they have no embedded frequency

selective elements, and thus are subject to noise throughout the frequency spectrum. Noise

modulates the switching instants between the astable states, resulting in a random pulse duration

modulatedoutput square wave. In afrequency demodulator, such anoisy oscillator limits the

minimum modulation that can be resolved. Most commercially available relaxation oscillators

are inadequate for broadcast quality F.M. demodulation.
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CHAPTER 2

Noise in Relaxation Oscillators:

Characterisation and Measurement

A noiseless relaxation oscillator produces aperfectly repetitive square wave. Noise ran

domly modulates this square wave, as shown in Fig. 2.1. The modulation is due to the super

imposed noise on the switching current, fc as it approaches aregeneration threshold, /,.

Regeneration requires the presence of apositive feedback loop, which will also amplify any

small-signal noise generator, /„, in the circuit as

Jo_ a (2.1)
in 1 " ab

where ab is afunction of fc and |ab |= 1at *-/„ At this current, one of the closed loop

poles enters the right half plane, and, simultaneously, the small-signal gain becomes infinite.
Thus, the noise is subject to alevel-dependent gain, and is represented in Fig. 2.2 as agrowing
noise added to the switching current. If the circuit switches when the noisy current first crosses

the regeneration thresholdthere will be an uncertainty in switching instant determined by the
root-mean-square (r.m.s.) noise. This model of switching is examined in detail in chapter 3.

The spectrum of asquare wave contains an infinite number of harmonics, specified by the

following Fourier series:

v(,) - £ -^sin(2wkfQt) kodd <2-2)
*-l *

where /, is the frequency of oscillation. Jitter in the square wave produces sidebands around
each harmonic, where the height of each sideband, and thus the power contained in them,

with the amount of noise. The measured spectrum of anoisy square wave is shown in
vanes



Fig. 2.1

A perfectly repetitive square wave compared to one

modulated by noise
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Fig. 2.2

A noisy current waveform in a regenerative circuit
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Figs.2.3(a) and (b). Their shape resembles the noise sidebands for aharmonic oscillator, yet

are not produced by alinear filtering action as was the case there. These sidebands can be

understood better by considering the spectrum of asingle frequency, fh modulating asquare

wave. From standard f.m. theory [15], this is given by:

2 h ff *-i Kir

A-l/-±l
mir

and is graphically shown in Fig.2.4. An infinite number of side frequencies are produced
around each harmonic, and their amplitude envelope is the Bessel function of order n, /„,

When white noise is the modulating signal the discrete side frequencies change into continuous

sidebands, but preserve the decaying envelopes as above. So the shape of the sidebands is an
outcome of the modulation process and not due to anarrowband frequency selection.

Alternatively, the phase jitter can be represented in the time domain as the standard devia

tion of single pulse periods. When defined this way, it becomes more tedious to measure the
jitter because alarge number of single cycle periods must be obtained to generate areliable his-
togram. Recently available instruments 5can automatically produce the desired statistics, thus
making this definition a feasible one in practice.

There is no standard way of specifying phase jitter in square waves: technical journals or

manufacturers' specification sheets seem to exercise the choice between the frequency and time
domains quite arbitrarily. Before proposing astandard definition, let us consider how noise
arTects the oscillations. Noise in aharmonic oscillator modulates the phase continuously, and
thus produces arandom "distortion" in asine wave; whereas, in arelaxation oscillator, it varies
the instants of transition between the two astable states. Thus, it is appropriate to specify phase
noise in asine wave in the frequency domain, and the phase jitter in asquare wave in the time
5 Like the HP 5370 microprocessor controlled frequency counter.



Fig. 2.3

Measured spectra of square waves with jitter
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domain. In this study, the following definition is used:

STANDARD DEVIATION OF SINGLE CYCLE PERIODS
JITTER = AVERAGE PERIOD

This normalised quantity is specified in parts per million (p.p.m.) of the oscillation period.

An oscilloscope can be used as a rough and ready method to measure phase jitter without

having to plot ahistogram. This method is fairly accurate, particularly ifadual time-base oscil

loscope is used when measuring small jitter. The procedure is as follows: One complete cycle

ofoscillation is displayed on the main time base, and its transition edge is magnified in time

using the delayed time base. Any jitter produces a"fuzz" in this edge; an example of this is

shown in Fig. 2.5. The maximum thickness of the fuzz is about 4times its standard deviation.

The factor of4 is due to the statistics of the process, discussed later. This measurement is

prone to error in two ways: first, the measured fuzz can change substantially with the brightness

of the oscilloscope trace, and second, improper triggering ofthe time base gives too large a

value ofmeasured jitter. However, exercising precaution by using the maximum brightness

available before the trace distorted, and by adjusting the triggering levels to minimise the fuzz,

we obtained results which corresponded well with more accurate measurements. Finally, the

oscilloscope time base itself adds anegligible jitter to the measured value, as discussed in

CHAPTER 3.

Let us examine the jitter performance of some widely used voltage-controlled oscillator

(V.C.O.) circuits, all ofwhich work on the relaxation principle. Standard operating conditions

have to be used to compare their performance, and these were decided to be /o^l kHz and

the capacitor charging current - 1mA. The results of the measurements are shown in Table 1.

The AD 537 is the lowest jitter V.C.O. available commercially. To put these numbers in per

spective, we examine the jitter requirements for broadcast quality f.m. demodulation assuming

that aPhase Locked Loop (P.L.L.) demodulator is used. The following specifications apply:

Intermediate frequency (i.f.) - 10.7 MHz; maximum deviation of carrier = 200 kHz; max

imum modulating frequency - 15 kHz; and,the dynamic range ofmodulating signal ** 80 dB.



V.C.O. Topology

Signetics NE 562 G.C.O.

Signetics NE 565 E.C.O.

Wavetek 132

(function generator) G.C.O.

Analog Devices

AD 537 E-C'°-

23a

Cycle-to-cycle jitter !

at 1kHz.

125 p.p.m.

250 p.p.m.

70 p.p.m.

25 p.p.m.

Table 1

Measured jitter at 1kHz of standard V.C.O.s



Fig. 2.5

Oscillogram of a single cycle transition of

a jittered square wave
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Therefore, the minimum deviation of the carrier is -80 dB of 200 kHz = 20 Hz. If the demo

dulator operates at the i.f., it should ideally be able to resolve ashift of 20 Hz in 10.7 MHz, i.e.

2 p.p.m.; however, its resolution shall be limited by the cycle-to-cycle jitter in the local relaxa

tion oscillator. What is the maximum tolerable jitter in the oscillator to will meet this require

ment? If all the modulating power was concentrated at 15 kHz, then 10.7xl06/15xl03=720

cycles will elapse per cycle ofinformation. So if the V.C.O., nominally oscillating at 10.7 MHz,

has Np.p.m. jitter per cycle, the jitter in ensembles of 720 cycles will be N/V720 '. For the

jitter to be less than the minimum modulation, it is required that N/V720 « 2p.p.m., i.e.

N=53 p.p.m. Strictly speaking, this is the bound on the "peak-to-peak" jitter, so the r.m.s.

jitter bound should be 1/4 of this, i.e. less than 14 p.p.m.

None of the V.C.O.S inTable 1meet this requirement, and Phase Locked Loops are con

sequently not used as f.m. demodulators [16]. The 14 p.p.m. can be regarded as the value to

be attained in the circuit designs to follow.

1After frequency division, or period multiplication, the jitter of adivided square wave of period AT is less^^n^TJon^^of period Tby afactor of 1/V* Each cycle of the *«**£<££
corresponds to Ncycles of the original frequency, and by the Central Limit Theorem ^ ^l™** ?
viation of each cycle of the latter is ST, then that of the divided frequency is </NT. The fractional Jitter ,
however, is this uncertainty divided by the period, and so 1/VN times reduced.



CHAPTER 3

A Theory of Jitter
in Relaxation Oscillators

To motivate the following discussion, the Emitter Coupled Oscillator (E.C.O.) is con

sidered in detail, and the results are generalised to other circuits at the end of the chapter. The

circuit discussed is shown in Fig. 3.1, marked with the necessary circuit variables. We assume

that all the noise sources in the circuit can be lumped into the single noise current source, /„,

and that the rest of the circuit is noiseless; that this assumption is valid for every noise source

other than the timing current sources shall become evident. The unity gain elements are

assumed to be perfect buffers. We consider the circuit dynamics when transistor Ql is turning

ON, and carries asmall current /</„ so the differential equations describing the circuit are:

Ve2~ vfl - c
7<r-' (3.1)

v. . y - K.-Cf-/.)* <3-2a>
»2 cl

v.-v.-Vcc-<.21<ri)R <3-2b>

^-VrXoLJ- <"a)

v*,-rHog,^ 0.3b)



Fig. 3.1

Emitter Coupled Oscillator used for analysis
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where VT - kT/q (the thermal voltage)

and /, - saturation current of B-E junction.

Upon eliminating the transistor voltage variables from these equations we get:

1^1 + R—
d[ C dt (3.4)

i

Rather than solving (3.4) exactly, let us examine its solutions qualitatively. We can do so by

plotting the vector field generated by the R.H.S. of (3.4) in the i-t plane, and studying the tra
jectories resulting from this vector field. In the absence of noise, the trajectory of Fig. 3.2(a) is

obtained; note that its slope becomes infinite at the threshold of regeneration 7,=-^, when the

denominator of the R.H.S. of (3.4) becomes zero. For /> /„ this differential equation no

longer describes the circuit because the dynamics of the circuit are then determined by the vari

ous parasitic capacitors at its nodes.

Another differential equation applies for this part of the oscillation because, by ignoring

the parasitic components, (3.4) is an incomplete description of the circuit. The order of the set
of differential equations describing the circuit would increase by one for each independent

parasitic energy storage that was included, so that for nparasitic capacitors C€, C«n and

the timing capacitor C, the differential equations would be
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Switching trajectories of oscillator without,

and with, parasitic capacitances
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Fig. 3.2(a)

Fig. 3.2(b)



C vo - /o(v, v1# . . . , v„) + /„

C€,V! «= /i(v, Vi , v„)

G v„ - f„(v, V! v.)

The circuit must be decomposed systematically and exhaustively into an n-port for such

description [18], but often, guided by intuition, only afew important parasitics need to be

sidered.

30

(3.5)

a

con

When acomplete description of the system is used the slope of the switching current6

never becomes infinite, but rather is limited to afinite slew rate by the parasitics 7, as in Fig.

3.2(b). However , as the parasitics are much smaller than the timing capacitor, the dynamics

can be separated into a slow time scale during relaxation, and afast time scale during regenera

tion, the transition between the two being made smoothly in the approach to regeneration,

when the circuit becomes a variable gain amplifier. The difference between these two time

scales is typically large enough that we can adequately describe the effects of noise using the

simplified model of (3.4).

As the circuit approaches regeneration, the "signal" and noise components ofdi/dt grow at

an equal rate because they have acommon denominator which approaches zero. While

0< /<7,, the circuit is being driven by the capacitor ramp voltage, the first term on the R.H.S.

of (3.4); the relaxation period , where Ql is OFF and i= 0, is included in this regime. For

I,< i < 270 the circuit enters an autonomous switchingregime, where the dynamics are

independent of the driving ramp. These two portions of the switching transient are summarised
6We refer to aswitching current for the example being considered, whereas in general it will be asuitable set

^oTLTCTemental description of the system in the s-plane, this corresponds to some pole attaining afinite
value in the right-half plane.value in the right-half plane.
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in Fig. 3.3.

The noise term in the numerator of (3.4) adds arandom component to di/dt at each

point, so that the instant, 7\ of crossing the regeneration threshold is modulated, as illustrated

in Fig. 3.4. Jitter is the r.m.s. variation in Tproduced by agiven r.m.s. value of /„8. We now

estimate this variation. Separating variables in (3.4) and integrating from some reference time

r=0 (in the relaxation period,where /(0)=0) to r= 7", we get

Now /< 7,« 70 for 0< /< 7\ because VT/R is typically only afew microamps while 70 is milli-

amps. Furthermore, the L.H.S. of the equation is completely determined by circuit variables and is

independent of the random variables i„ and T. So,

/ T
K (a constant) •» —p- + & 'n(T')

We are interested in the variations in Tdue to /„. This equation shows that the sum oftwo

random variables on the R.H.S. equals aconstant, so the variations in /„ must be balanced by

variations in T. Re-writing the equation as

K-!£- RiAT) (3.6)

it can be graphically solved, as in Fig. 3.5, where the circuit is assumed to switch when the

ramp first crosses anoisy threshold Twill be vary slightly each time the circuit switches, and

^ - Variation in threshold value (37)
Variation in T< Stop* of ramp

so that, in terms of standard statistical notions, if <r ( •)' is the standard deviation, then
*rhe noise may have anystatistical distribution.
This inequality requires proof, which is given in chapter 4.

9
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The two regimes of the switching process,

while the circuit is active
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Fig. 3.4

Modulation of the regeneration instant, T,

by superimposed noise
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Fig. 3.5

Graphical solution of the noisy switching equation
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<t(T) < *f-irUm) 0.8)
7o

Thus, we have an upper bound on the jitter per switching.

The ramp crossing the noisy threshold is the main model of jitter production to be used in

the rest of this study. The following question arises concerning the results of the analysis thus

far: How is it that a linear ramp represents the switching of a non-linear circuit? The answer

lies in the fact that in Fig. 3.5 the horizontal axis is not real time, /, but rather the regeneration

instant, T (measured with respect to some suitable origin 7*=0). The dynamics ofthe circuit

in time t will still resemble Fig.3.2(a), but their (non-linear) details are unimportant ifwe are

only concerned with the variations in T. Alternatively, we can think of Fig. 3.5 as being

obtained by asmooth deformation of the time scale of Fig. 3.2(a), and because the signal and

noise currents grow at the same rate, they are linearised with respect to each other. It is impor

tant to note that this linearisation is not due to an incremental model ofthe circuit, but is the

outcome of a large-scale analysis.

The above results are independent ofthe statistics ofthe noise. If the noise satisfies a

Gaussian distribution, as is normally the case, what are the statistics of the first-crossing times?

They are clearly not Gaussian for broadband white noise because the first-crossings shall mostly

occur at the positive peaks of the noise waveform, and almost always before the ramp reaches

its mean value. Therfore, apeculiar distribution of Twill result. This First Crossing Problem

[191,120] was motivated originally in the 1940s by attempts to reduce the noise sensitivity of

pulse triggered circuits, but remains unsolved; consequently, there is no analytic form for the

statistics. We have, nevertheless, obtained some quite useful empirical results to this end,

detailed in chapter 4.

What if the disturbing signal, /„(?), is not random, but rather is periodic? If it is near a

multiple or sub-multiple of the oscillator frequency, it will try to synchronise the oscillation to

its own frequency under certain conditions. This is an extremely interesting and detailed study

in its own right, and has occupied acentral role in recent dynamical system theory [21]. Suffice
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it to say that the model developed here gives an insight into how aperiodic signal would exert
its influence on the oscillator from cycle to cycle during the short period of time while the cir

cuit approaches regeneration.

Even though it is an upper bound, the result (3.8) is useful because it specifies the vari

ables which can be used to reduce the jitter. Strictly speaking, the jitter is the uncertainty in T

normalised to the period, so that if the triangle wave is KA volts peak to peak, then

<r(T) . R<rlO (3.9Jitter ~ rr < -777
2KAf 2Ka

7o

The numerator of the last term is the r.m.s. noise voltage at the collector of the E.C.O., which,

by the follower action of the circuit, appears in series with the timing capacitor. It is always

possible to refer all the small signal noise voltages and currents in the circuit to an equivalent

source vn in series with the timing capacitor, while the circuit is near regeneration. Noise in the

current sources 7n, for example, will be converted into avoltage at the collector after passing

through Q2 (Fig. 3.1), so then

Jitter » -ttt

What is the jitter due to anoise current i„c through C? The following differential equa

tion describes the circuit if this were the only source of noise:

7p-/ H_
dl C C (3.10)

Using the same procedure as before to integrate it, we get

/(it-*)*- *£+!;/(,(,)*
J0 / c c 0
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so that

/'*<'> dt (3.11)

The capacitor integrates the noise current, and the variance ofthe resulting voltage determines

<t(T). An analytic expression is derived in Appendix 1for this variance, assuming that i„( is

white noise with density / A/VHz, whence

<r(rt < f -ft «.12)
7o

This completes the characterisation of all the noise sources.

Appendix 2extends these results to an E.C.O. consisting of generalised active devices

and non-linear loads.

The analysis can easily be extended to the G.C.O. topology. Here, the regenerative ele

ment is the Schmitt trigger, which is analysed exactly as above, except that the capacitor is out

side the loop. The results of the analysis are identical to (3.9) and (3.12) above, which is not

surprising because the two circuits are duals of one another, their apparent differences being in
no way fundamental. The E.C.O. and G.C.O. are schematically compared in Fig. 3.6 to

emphasise their similarities.

For completeness, we consider the case when the magnitude of I, becomes comparable to

7q. The denominator of (3.8) should then be (70-7,) because

'tfv* *- "" it - .ti-ir

for small A T.

The estimates of uncertainties in switching time apply to asingle transition, with the

reference time T- 0being the previous transition. The jitter, however, is defined as the

uncertainty in widths of complete cycles. As shown in Fig. 3.7, noise affects acomplete cycle
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Fig. 3.6

Schematic comparison of the E.C.O. and G.C.O. topologies
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Fig. 3.7

Noise in a complete cycle
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at three distinct times: the starting point {TO, the half cycle point (7"2) and the end point (7j).

The uncertainty at each of these points is vn(T0/K 2v„(r2)/X , and vn(r3)/X respectively,

where \ is the slope of the ramp, and the uncertainty is doubled at T2 because noise equally

affects both the upgoing and downcoming ramps. If v„(7i), v„(T2) and vn(7-3) are uncorre

cted (which is the case when most of the noise power is contained in higher frequencies than

fox), and if they have the same r.m.s. value (which is the case if the oscillator circuit is sym

metrical), then

V(r(vn2 (TQ) +4<r(v,2 (fl)) +<r(vj (T3)) _ ^rlv.)

This factor of -Jl must always be taken into account in making predictions of cycle-to-cycle

jitter10.

The model of the noisy oscillator is shown in Fig. 3.8, where the capacitor is replaced by

an ideal voltage source because it does not exert any integration effect on the noise voltage;

equivalently, we can think of the series effect of the capacitor as being inherent in (3.4) , the
function of the timing capacitor being to provide aramp voltage. The resulting waveform is a

noisy rampwhich triggers the regenerative element to produce the oscillation. With the noise

thus referred back to the undefiled ramp , we have yet another explanation for the linearisation

in Fig. 3.5.

Experimental results

We now have avery simple model for jitter production, consisting of a ramp crossing a

noisy threshold. There is an upper bound for the mils, uncertainty in period (8 T) due to the

noise in the circuit, given by the ratio of the noise voltage to the ramp slope. From this model,

it is evident that the jitter is in fact, directly proportional to this bound. This has been verified

experimentally, by obtaining alinear fit in the plots of r.m.s. 87-vs. noise (Fig. 3.9), and r.m.s.
10Should the triangle wave not be symmetrical, the appropriate X's must be taken into account.
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Equivalent input noise model of the relaxation oscillator
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87* vs. ramp slope (Fig. 3.10).

Atechnique we used throughout this study was to measure the jitter produced in an oscil

lator due to aknown and controllable amount of noise; in particular, this is how the data of Fig.

3.9 was obtained. This was done by injecting anoise current, derived from an external noise

source, into an appropriate node of the circuit. The noise signal was chosen to be large enough
to dominate the inherent noise in the circuit, but not so large that it grossly altered the circuit's
operation. We could then extrapolate the results to estimate the response to the inherent noise.

Injecting an external noise allowed independent control of its amplitude and bandwidth;
furthermore, the response at different nodes of the circuit to the same noise signal could be

compared, thus establishing their relative sensitivities. Finally, the injected signal could be a

periodic one, to investigate the synchronisation properties of the oscillator.

Noise bandwidth of relaxation oscillators

Which elements of arelaxation oscillator determine the bandwidth limitation on white

noise in the circuit? With few exceptions, it is the regenerative element which does so,

because as it approaches regeneration, at least one of its poles moves towards the origin in the

s-plane and becomes the dominant pole in the circuit. As discussed in chapter 2, the pole
movement is anatural consequence of positive feedback. It is either aparasitic or adevice

capacitance which is responsible for producing this pole, because the timing capacitor's effect is
completely specified in (3.2), and clearly it only provides the necessary ramp without any
bandlimiting. The solution to this differential equation will admit noise at any frequency what-

soever without attenuation.

To see the high frequency rolloff characteristics, we must solve the complete differential

equation, inclusive of parasitics (3.5). We found no convenient way of qualitatively
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interpreting its solutions; in fact, because of its complexity, this is precisely what we have tried

to avoid throughout this study. However, under the assumptions that the switching time is negli

gible compared to the relaxation time and the noise is broadband, some very useful results can be

obtained. These assumptions amount to saying that the parasitics should be much smaller than

the timing capacitor, and the bandwidth that the noise is subject to prior to the regenerative ele

ment should bewide enough so that the maximum slew rate of noise the timing ramp rate.

Under these conditions, we can make a quasi-static modelof noise in the circuit near

regeneration. Consider the complete switching trajectory of / from relaxation, through the

active region, into regeneration, di/dt is small near relaxation, and to the rapidly varying noise,

the circuit appears linear whose gain and bandwidth are slowly varying with time. As i

increases in the active region, so does di/dt, until the latter becomes equal to the maximum

slew rate of the noise; because the circuit parameters vary at the same rate as the noise, steady

state assumptions no longer apply. If this happens at /=77, the noisy current trajectories look

like those in Fig. 3.11. For / > 7/ the superimposed noise has no effect, while the noise

fluctuation at i- If is the final arbiter of the time Twhen /- /,. Therefore, the bandwidth of

the circuit biased at If should be the noise bandwidth.

Where is 7/ relative to 7,? If we straightforwardly interpret its definition that is,

{Noisedensity* GainxJBandwidth }x {2ir Bandwidth } (at If) - -jt (fl/ ^

then by doing aseries of small signal analyses we can find the appropriate bias point at which

this inequality is satisfied. However, it is disconcerting to observe that this bandwidth depends

on the noise level.

Let us examine how sensitive If is to the noise power. We seek the small-signal transfer

function of v„ onto /, that is, di/dvn. From the chain rule,

dv„ dt1 dt JUU dt
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Fig. 3.11

Effect of band-limiting of noise,

as the circuit approaches regeneration

Fig. 3.12

Variation of di/dt with i for AD 537 V.C.O.
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where /(/) is the R.H.S. of (3.4). Now dvjdt is fixed by the input noise, so di/dvH"s depen

dence on / is proportional to /(/). A plot of loge/(/) vs. / is given in Fig. 3.12; observe that

/(/) increases rapidly past aknee in the curve, and the knee (Iknee) can be estimated by a

piecewise linear approximation to the curve. Due to the rapid increase of di/dt at Iknee, the

variation of7/ with noise power shall be small. In other words, lf - Ikttee-

All relaxation oscillators have asimilar knee due to the regenerative element, which

will,in general, introduce aterm of the type (7, - /)m in the denominator of /(/).

Experimental results

The noise bandwidth of the core ofthe AD 537 E.C.O was measured experimentally using

amodified noise injection method. We expected this bandwidth to be large, because it is acon

nection ofsix emitter followers with capacitive loading at the output, which produces zeros in

the s-plane leading to peaking in the small signal frequency response. Ideally, the noise

bandwidth could be estimated by aseries of experiments consisting of injected noise of afixed

r.m.s. value, but with increasing bandwidths; the jitter produced by the noise would decrease

once the noise bandwidth was exceeded. However, the noise generator available to us had a

maximum usable bandwidth of 50 kHz; by amplitude modulating ahigh frequency carrier with

it, we heterodyned it up to the required frequency range. When injected into the AD 537, the

jitter in response to the centre frequency of this signal is shown in Fig. 3.13. The rolloff is

around 10 MHz.

The small signal frequency response of the AD 537 was simulated on spice, with the cir

cuit biased at 7,, the timing capacitor shorted at ax. and using the device models of chapter

4. A rolloff frequency of 6 MHz was obtained.

There are two major differences in these results. First, while the simulation predicts a

rolloff rate of20 dB/decade, the measured rolloff is much steeper. Second, the mesurements

show asmall peak at 20 MHz, whose height increases with the amplitude of the injected signal.

Although we cannot explain this, it is due to the slight dependence of the noise bandwidth
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Noise bandwidth of AD 537 V.C.O.
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model on the signal level.

Generalisation of results

The preceding results not only add to our undestanding of relaxation oscillators, but to all

regenerative circuits. For example, noise in aflip-flop (bistable) circuit driven by some input

waveform can now be analysed. A flip-flop acts just like aSchmitt trigger, except that it is not

driven by slowly varying waveforms as in timing circuits, but by edges of pulses, which vary

rapidly; consequently, jitter is never an issue. For example, even though the input stage of a

T.T.L. flip-flop has an equivalent input thermal noise voltage of about 6kfl, this matters little

when the flip-flop is used to divide down very low jitter frequency sources. The divided fre

quency preserves the stability of the source, no degradation being introduced by the divider cir

cuits, because each one is driven by apulse. An exception is the first divider which may be

driven by asine wave output from the frequency source; the slope of this at its zero crossing is

2w x amplitude x frequency, so alarge amplitude will reduce any jitter due to this divider.

The results apply equally well to relaxation circuits with exponential and other timing

waveforms, where the jitter is determined by the slope at the trigger threshold.

Now we can justify the oscilloscope method of measuring jitter described in chapter 2.

The Time Base oscillator (a relaxation oscillator) of the oscilloscope is capable of jitter, but it is

triggered by fast pulses obtained from the output of the Trigger Level voltage comparator.

This, in turn, when triggering on the transition of our square wave, is driven by the large slope
of this transition. Consequently, even if this voltage comparator had asubstantial input noise,

itwould produce avery small jitter in the Time Base oscillation.
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Accuracy of the switching model

How accurately does the First Crossing model correspond to the physical process of
switching? To cause premature triggering, anoise peak must initiate regeneration in the circuit
by conveying enough energy into some active device. For abipolar transistor, this means that
the noise peak deposits asuitable charge of minority carriers into its base. The farther away the
circuit is from its "natural" regeneration point, the greater must be this charge. To understand
the circuit's response to noise peaks, let us model the noise as randomly spaced unit impulses.
ASchmitt trigger, biased in its active region short of its regeneration, when driven by asmall
impulse will produce aslowly decaying response, as shown in Fig. 3.14. This will be an out
come of the charge storage dynamics of the input device of the Schmitt. If the impulse is large
enough, however, the current of the device turning ON can exceed the threshold, /„ and put

the circuit into regeneration.

The active devices and parasitics capacitors in the Schmitt determine anon-zero energy

input for Ito exceed /, Thus, the noise may exceed the threshold at the circuit input many
times before /(/) actually switches. This does limit the usefulness of the First Crossing model if
i, is to be used to predict the precise instant of atransition. However, the statistics of switching
still obey this model, because, if we refer our attention to the Schmitt current, it does indeed
regenerate after it first crosses the threshold. That is, many noise spikes crossing at the input
stimulate one crossing of the output variable. This is why the distribution of the jitter is
remarkably uniform over awide variety of circuits, all of which consist of active devices of

widely varying dynamical properties (i.e. speeds).

We must also include the energy storage requirements of the active devices which precede

the Schmitt, and their associated parasitic capacitances. Thus, before it causes switching, noise
superimposed on the ramp must provide enough energy to all the devices which exist between

itself and the Schmitt output.
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Fig. 3.14

Impulse response of Schmitt trigger

biased near regeneration
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CHAPTER 4

The Statistics of Phase Jitter

Considering the effort that has gone into attempting to solve the First Crossing Problem,

to hope to obtain aclosed form solution for the statistical distribution of phase jitter is futile.

This is not to imply that this problem is insoluble, but rather that it is outside the scope and

interest of the circuit designer, whose main intent is to reduce the variance of the pulse

periods, whatever the details of their distribution may be.

Middleton [19] appears to be the first to have posed and attempted to solve the problem

of spurious triggering of ideal comparators due to the noisy input waveforms. The inputs were

square waves, and would trigger the comparator during their transition, which was modelled as

aramp. For the input acertain distance away from the comparator threshold, Middleton calcu

lated the expected number ofcrossingsby the noise, indicating the susceptibility of the circuit to

spurious triggering.

Estimating the probability of the first crossing is adifferent matter though, and this is what

we require for the triggering of our regenerative circuit. Such an estimate must consider the

dynamics if the ramp as well as the bandwidth of the noise. More precisely, if the driving ramp

is Id below the threshold, 7„ at time / (Fig. 4.1), then we require the probability of {No cross

ings of I, by the noise on the ramp in the interval (0,r) and acrossing in the increment

(t,t+St)} for various values of Id ". Methods similar to Middleton's could be used, but we did

not find any convenient means of doing the integrations.

Both the noise power and its bandwidth will be important, for in a given bandwidth, a

large noise power will be more likely to cross the threshold, but conversely, for agiven power a

uFor noise of finite bandwidth, as 8 f—0, there can at most be one crossing.
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broader bandwidth will produce agreater rate of change and increase the likelihood of crossing

the threshold. The experimental investigation of these ideas is described in the remainder of

this chapter.

To clarify the process, we consider the ramp to be noiseless, and the threshold to have

noise superimposed on it. The slope of the noise satisfies adistribution whose variance is

determined by the noise bandwidth, thereby making it extremely improbable for the slope to be

greater than acertain magnitude. For example, if dvjdt satisfies aGaussian distribution, we

can assume that \dvn/d\ < 3<r with a99.97% probability [17]. Let us call this "limiting" slope

v . For white noise with density vn and asingle pole rolloff at bandwidth B

v,nmax
vmJBx2vB (41)

We can think of this quantity as the maximum slew rate of the noise, while emphasising again

that this is practically amaximum value even though with avanishingly small probability the

slope can be arbitrarily large.

First consider the case when the ramp slope is much greater than the maximum slew rate

of the noise. Over alarge enough series of intersections, the ramp will uniformly explore the

complete noise waveform (Fig. 4.2(a)); that is, the first-crossing instants will be proportional to

random samples of the noise, the proportionality being true because the ramp is linear. Thus,

the distribution ofthe resulting jitter will be the same as that of the noise, and

•(70 liL (4.2)

where X is the slope of the ramp.

On the other hand, the maximum slew rate of the noise may be greater than the ramp

rate, either due to awide noise bandwidth or large noise power. In this case, the first crossing

will almost always occur at apositive noise peak and almost never near its mean value

(Fig. 4.2(b)).

This results in only one ofthe tails of the noise distribution being sampled, so that



Fig. 4.2(a)

Fig. 4.2(b)

Spread of first-crossing instants for low bandwidth

and high bandwidth noise waveforms
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<t(T) < g^J (4.3)

From the illustration of the first crossing process in Fig. 3.5, it is evident that even

though the inequality in (4.3) is true, a(T) is proportional to the R.H.S.; call this constant of
proportionality a. In (4.2), when W«X, a - 1; it is plausible to expect that it tends to

some asymptotic value less than 1when 7nmflX»X. Extensive data obtained from two different

oscillator circuits revealed this asymptotic value to be about 0.5. If we define u>N - -y-, tnc

variation of a with o>N of Fig. 4.3 results, with a fairly sharp transition between the two asymp

totes at co/y=l.

Histograms of the jitter were obtained from accurate measurements of single cycles of

oscillation for various values of »N. For a>/v«l, the histograms are symmetrical and fit a

Gaussian function well, as expected (Fig. 4.4). For o>*»l, the histograms, when plotted on a

normalised scale, did not change measurably (Fig. 4.5). Itappears that for asmall noise, the

distribution remains Gaussian.

The mgflrtfrequency due to the presence of noise when <oN» 1. This is due to the

premature first crossing of the ramp with the threshold that almost always results in the pres

ence of noise, and if T is the period of oscillation , then

v

8T--T (4.4)

Measurement methods for jitter statistics

Obtaining reliable statistics from most oscillator circuits is not an easy task, primarily

because this requires alarge number of independent measurements of the period, and the oscil

lation frequency can drift over the course of the measurement by an amount greater than the

data sought. In our experiments, the frequency of oscillation was stabilised by referencing it to

acrystal derived frequency in a P.L.L. However, the slightest instability in the loop or
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asynchronous feedthrough to the V.C.O. control input could produce grave errors.

The measurement system is shown in Fig. 4.6. Most laboratory frequency counters can

only resolve down to 10ns, so the V.C.O. was made to run at alarge period (70 like 10ms,

thereby extending the ATjitter well into the measurement range of the counter. The data con

sisted of single cycle periods obtained by manual triggering of the counter, thus ensuring that

the noise in each measurement was uncorrected; an automated measurement scheme which

obtained statistics from the variance of consecutive cycles might ignore slow changes due to

flicker (1/f) noise.

Another source of inaccuracy in this measurement scheme was the feedback signal in the

loop ,which tried to correct the V.C.O. frequency from cycle to cycle. As an example, the his

togram of Fig. 4.7 shows adecided asymmetry in favour of smaller periods, and while it had the

same variance as one obtained without the loop, the latter was symmetrical about its mean

value. The feedback signal could be reduced by greater filtering, at the expense of asmaller

margin of stability in the loop. The most satisfactory data was obtained when an intrinsically

low drift oscillator like the AD 537 was used without a loop.

If the injected noise was to serve as alarge signal model of the intrinsic noise in the cir

cuit, it was essential to use atrue Gaussian noise generator12, rather than one which derives

pseudo-random noise from binary sequences. The two differ most in the tails of their distribu
tions, because the latter has severely truncated tails compared to white noise, and the jitter pro

duction ismost sensitive to the peaks of the noise waveform.

To accurately predict jitter, the appropriate a had to be used as follows:

,(70 - . Vf (45)

We found that circuits could have either of the asymptotic values of a for typical magnitudes of

noise power and bandwidth; both these variables had to be known in advance to calculate »N.
12Like the General Radio GR 1390B.
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Measurement setup for obtaining data on jitter statistics
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Examples of predicting jitter

l.The AD 537 V.C.O. This circuit,shown in Fig.4.8, was simulated on spice with the fol

lowing assumptions:

NPN transistors PNP transistors

p 100 30

rb 200 300

T/ 12xl0-10 3xl0-8

Using the methods of chapter 3of biasing the circuit near regeneration, the noise bandwidth

was calculated to be 6MHz and at the same bias point the equivalent noise density, v„, was

1.3xl0-8 V/VHz. The noise analysis was done with avery large value for the timing capacitor

to prevent it from introducing alow frequency rolloff into the circuit, because its action is

already contained in the analysis leading to the jitter formula (3.6). The output variable for the

analysis was the emitter current of the transistor about to turn ON. With the peak-to-peak trian

gle wave of 1.8 V, and at fox - 1kHz, we get <oN - 83, so that a=0.5. Then, from (4.5),
the r.m.s. jitter per cycle - 45 p.p.m. The measured value was 35 p.p.m.

l.The NE 562 E.C.O. Asimplified circuit diagram of this oscillator is given in Fig. 4.9:

The major sources of noise here are the Zener diodes used for level shifting, where the noise

measured in a10 MHz bandwidth was about 200 MV per diode. The two Zener diodes contri

bute to the jitter in different ways. Zl at the common collectors presents acommon mode vol

tage to the (topologically symmetrical) circuit but as the currents are quite different in the two

halves of the circuit near regenaration, it does add some noise to the ramp. If the output resis

tance of the timing current sources is r0, then the noise in series with the capacitor is

g„«214) R v

where Qll is assumed to be turning ON, and the circuit is biased at its regeneration threshold.
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Fig. 4.8

Simplified circuit of the AD 537
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Fig. 4.9

Simplified circuit of NE 562 E.C.O.
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Z2, whose purpose is to level shift down to the control current source, produces anoise current

in Q22, which gets converted to a noise voltage

Ri V-.-£ gm(Q22) vZ2
Ri+R2 h

This is the most significant noise contribution, and we can estimate the jitter it produces by

assuming *i=*2, /c(022Wo, the noise bandwidth = 10 MHz and a - 1, whence

200xV6xlQ-6 ,mnnwJitter = 2>[\2 2Wp.p.m.

where the 1.2 V in the denominator is the triangle wave amplitude. Although this is arough

estimate, it agrees well with the measured value (Table 1).

The deficiencies ofthis circuit are clear: the Zener diodes introduce alarge noise, and the trian

gle amplitude is small, both factors contributing to an increased jitter.

3.The NE 565 G.C.O. We only consider the Schmitt trigger ofthis circuit in Fig. 4.10.

The main sources of thermal noise in the circuit are the resistors Rx - R* which are probably

afew kilohms, their values not being specified in the data book; the transistors in the followers

and the Schmitt trigger; and the diodes. The purpose of these diodes is to prevent the Schmitt

trigger from saturating, but they only worsen the jitter by transmitting the noise in the elements

of the rest of the circuit into the Schmitt. With atriangle amplitude of only 2V, the relatively

large noise produces a large jitter.

In our appraisal of oscillators thus far, we have ignored the effect of noise in the timing

current sources. Let us compare the jitter produced by the thermal noise due to rb = 100 n

appearing in series with the timing capacitor, with the same source of noise in the transistors

comprising the timing current mirror. The following assumptions are made: KA - 2V, /„ =1
mA, Noise bandwidth - 10 MHz and T=1ms. The r.m.s. noise due to the resistance will be

4 /xV, which will produce ajitter of 5 p.p.m.
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Simplified circuit of NE 565 G.C.O.
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Noise at the bases of a current mirror is amplified as shown in Fig. 4.11, so that the output

noise is

h
in - 8m vn - "fT Vn

For the values above, the output noise density is J, - 5.2x10"" A/VHz, so from (3.12)

Jitter - VS-t-^T = 4xlO"W«-

Normally, as this calculation shows, the current noise makes anegligibly small contribution to

the jitter. For very large Tor small /o, however, it may become important.



©

<i>
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Current mirror noise
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CHAPTER 5

Low Jitter Oscillator Circuits

From the theory of jitter, and the examples considered above, the criteria for low jitter

design have become evident, and can now be simply stated. The significant contributions to

jitter are made by the noise sources which appear in series with the slowly varying signals, while

the noise driven by fast slopes makes asmall (and often negligible) contribution. This separa

tion of the circuit into sections defined by the time scale of the signals present there is called

hierarchical decomposition, and is an important first step in the analysis ofsuch circuits. For

example, we always assume that in the G.C.O. the voltage on the timing capacitor and the

emitter follower is constant while the Schmitt trigger switches between its two states. Thus, the

slow part of the circuit is in asteady-state while the the fast one is in motion.

At agiven frequency ofoscillation, the jitter is reduced by increasing the slope ofthe tim

ing ramp. This can be done either by increasing the amplitude of the triangle wave, or by suit

able waveform shaping. Let us consider the second alternative first.

Suppose in aG.C.O. that the Schmitt is directly driven by the timing capacitor ramp. The

slope of the ramp only matters when the Schmitt is in its active region, ifthe slope were to be

increased during this short interval of time, it would reduce the jitter proportionally without

greatly altering the period of oscillation. This could be realised using awave-shaping circuit

(Fig.5.1) with asuitably non-linear transfer characteristic. Were this scheme to be imple

mented, however, we would observe little or no change in jitter; for, having rendered the noise

in the Schmitt ineffective, the noise at the wave-shaper's input would instead appear in series

with the ramp. In short, the approach is futile, because we simply transfer the problem from

one part of the circuit to another, without ever getting rid of it.
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Fig. 5.1

Circuit for driving the Schmitt trigger with large slopes
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Fig. 5.2

Producing a cusped voltage on the timing capacitor,

and the voltage dependent current source characteristics
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In principle, however, a significant improvement could be brought about if the rampon

the capacitor were replaced by another timing waveform which, intrinsically, had sharp edges in

the Schmitt's active region. The capacitor voltage would then be a cusped triangle as in Fig.

5.2, but the "current source" required to produce it would be a non-linear resistance with a

"well" characteristic. There being no straightforward way of synthesising this, the scheme

remains a hypothetical one.

The first alternative is more practical, where a linear ramp with a large amplitude is used,

and, additionally,the noise in series with it is minimised. This led to the circuit described

below.

To minimise the noise on the ramp, we consider the oscillator topology which will permit

the least number of active devices in the slow time scale sub-circuit. By combining both the

timing and regeneration functions, the E.C.O. necessarily involves at least six transistors, and

very likely more for temperature compensation. The G.C.O., on the other hand, can be

modified so that at most three transistors contribute to the noise. If a two-level comparator is

inserted between the timing capacitor and the Schmitt, it can both define the amplitude of the

triangle as well as the noise at the input (Fig. 5.3). The amplitude of the ramp is then the

difference in the two reference voltages, and the noise is determined by the comparator input

stages only. The main disadvantage of this scheme is the large propagation delay through the

loop, which reduces the maximum frequency of oscillation; however, arecently published i.e.

[22] shows that with careful design, an oscillator of the same species can work upto 100 MHz,

certainly performing as well as any E.C.O.

Using single-stage differential pairs as comparators, the circuit of Fig. 5.4 was bread-

boarded. Low noise bipolar transistors " •with aspecified broadband input noise density
of 2nV/VHz and 600 nV of flicker noise in a10 Hz bandwidth were used. Atriangle wave of
8Vpeak-to-peak was obtained using ±6Vpower supplies. The r.m.s. cycle-to-cycle jitter was
13 National Semiconductor LM 394 supermatched pairs.
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Modified version of the basic Grounded Capacitor Oscillator

72

!



LTIMING C

Fig. 5.4

Circuit diagram of the low jitter prototype
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measured to be about 2 p.p.m. at fox •» 1 kHz. Discrete series diodes had to be added at the

emitters to drop upto 8V of reverse voltage, but these became the dominant noise sources in

the circuit, producing about 5 pV of flicker noise in a 100 Hz bandwidth.

The circuit was primarily meant to test the theory of jitter, and was by no means regarded

as competition for general purpose V.C.O.s. Its drawbacks are avery large drift with tempera

ture, sensitivity to power supply fluctuations (which are transmitted directly through the refer

ence voltage resistors) and a frequency of oscillation limited below 50 kHz. Despite differential

comparators, the voltage regulators noise from the power rails dominated the jitter, and it

became necessary to run the final version off batteries.

To minimise power dissipation, large resistors were liberally used in the fast time scale

portions of the circuit, as their contribution to the jitter was small. In fact, reducing these resis

tors by xlO, and thus their noise by x3 M, did not measurably affect the jitter. Neither did the

noise in the current mirrors.

An improved version of this circuit is being tested in the continuation ofthis project ,5,

which promises an improved stability, alarger maximum oscillation frequency with jitter of

about 10 p.p.m. using a 5V power supply. The improvement in stability has been brought

about by using a precision voltage reference to determine the amplitude of the triangle wave,

op amps with a low temperature coefficient ofoffset to determine the timing currents and

differential comparators with a large power supply rejection.

The noise bandwidth of this breadboard circuit was, no doubt, determined by the Schmitt

trigger. The comparators, though, had abandwidth of only 50 kHz, dominated by the Miller

multiplied breadboard capacitance. To simplify calculations, we assumed that the noise

bandwidth was also 50 kHz. The gain of each two-stage comparator was about 50.

The jitter due to broadband noise was estimated as follows: Including the emitter follower,

the total input noise is at most due to four devices, obtained by the square root of the sum of

14Assuming the noise bandwidth did not change.
15By Mr. T.-P. Liu of U.C. Berkeley.



their mean square contributions. Thus,

Vn . V4 x 2xl0"9 x VIxlO3 - Im V

so at A* = 1kHz, atN = 2xl0-4, predicting

10~*Jitter per cycle •» >/6 -77- •» 0.15p.p.m.
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The flicker noise in the diodes will produce ajitter of1p.p.m., thereby dominating the total

jitter in the circuit.

When it drives alarge output capacitance, the rate of the Schmitt trigger transition can be

slower than expected . Therefore, if the stage following the Schmitt were very noisy, it could

measurably add to the jitter. Now, the oscillation is defined by the time that the Schmitt

changes state, - once this has happened, and irreversibly so, how can the following stage

influence the jitter? It is through the memory on the timing capacitor that noise in the current

switch affects the switching instant one halfcycle later. That is , noise in the signal path from

the capacitor to the Schmitt affects the imminent switching; noise between the Schmitt and the

capacitor affects the next switching 16 (except that this latter effect is normally small, because it

is driven by a large slope).

Finally, to reduce the jitter still further, provided it was due to wideband noise, the com

parator and Schmitt bandwidths could be artificially reduced by externally loading them with
capacitance. This scheme would only be useful in applications where the V.C.O. frequency was

expected not to exceed some medium value, or be subject to rapid changes.

The design criteria used on the breadboard can be directly extended to integrated circuits.

A few critical devices determine the equivalent noise responsible for the jitter, and this can be

minimised by making their areas large. The cicuit surrounding the timing capacitor should be

able to withstand avoltage swing near the power supplies without saturating. Using a5V
16This separation is not as clear in the E.C.O.
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power supply, it is impractical to expect ajitter less than 0.5 p.p.m., which would result from

the thermal noise of about 200 ft.



CHAPTER 6

Synchronisation in Relaxation Oscillators

"... Wherefore, it seems to me you had best not be too fastidious in your curiosity

touching this leviathan."

H. Melville. MOBY DICK.

Suppose that instead of noise, aperiodic signal /,„ was present in the oscillator circuit. 1.
would modulate the switching instants in much the same way as noise, except that the modula-
tion would now be systematic, and would depend on the frequency difference A/ - \fm - IJ,
Alarge A/ should produce astraightforward frequency modulation of the oscillator; however,
it is observed that if A/ is less than athreshold value, the modulation disappears altogether.
This phenomenon is known as synchronisation, so called because the two frequencies now
become equal, and the oscillator's phase is in synchronism with the phase of /,„.

Appearing in such diverse phenomena as closely placed clocks and the flashing of fireflies,
synchronisation has interested natural scientists for along time. For example, certain species of
firefly in Pacific Asia emit light as swarms in mutual synchrony, often doing so without stopping
for amajor portion of their lifetimes. This group behaviour, which is thought to produce an
advantage in reproduction of the species, has been modelled by asimple biological relaxation
oscillator (called apacemaker) in each fly, which is responsible for triggering the light emission.
Each new member of aswarm synchronises by observing the flashing of the others[23].

It appears that synchronisation is ageneric characteristic of relaxation oscillators. Using
the switching mode, of our oscillator, we now consider its response to aperiodic perturbation.



Suppose fi„«fox, so that aslow frequency modulation of fox results; the depth of this

modulation is

A.
** in

8/o$c - —
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(6.1)

where Ain is the amplitude of fin. If, keeping Ain constant, fm is now increased and brought

closer to fox, then at some point A/ shall become equal to 8/osc, so that the frequency modu

lation can instantaneously make fox equal to fin. With an appropriate phase difference between

the two oscillations, this frequency shifting effect can repeat in precisely the same way in each

cycle. The oscillator's transitions are then governed by the input frequency; that is, the two are

synchronised.

The study of the dynamics of synchronisation is very involved , and we restrict ourselves

to examining some basic issues. In particular, we consider the range of frequencies which can

synchronise the oscillator (called the capture range), the number of cycles required for syn

chronisation to occur, and the response of the oscillator to frequencies outside the capture

range. The switching model we use is summarised in Fig.6.1, where the switching instant is

determined by the first crossing of alinear ramp with aperiodically varying threshold. Unlike

the case of white noise, the curve of the modulation index a vs. a> now decays down to zero for

a, » 1, because the ramp almost always crosses aperiodic waveform of high frequency at the

same point, its peak value, thus producing no cycle to cycle variation in fox.

To examine the modulation of the oscillator by afixed external frequency, we mark the

switching instants of the former with respect to the phase of the latter. More precisely, we

define the Poincare map F[24], which maps the phase of fin at the start of arelaxation cycle

(Bo) to that at the end (0,), that is, F:0o-0i. Using the switching model of Fig.6.1, we can

write Fexplicitly for a sinusoidal input as follows:

Tl „ h. +i*.si„0o- hL sin(9o +o^r,) (6.D



Fig. 6.1

Model of switching in the presence of a periodic excitation
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VL Ain . ,_ . _% . A,T-Tl „ 1± - ^2- 5/n(e0 +a,in TO + -=• sm(0o +«*, 70 (6.2)
xx x

T can be obtained from these equations by eliminating Th whence

/•(0O) = gT - f90 +o),nr (mod2ir) (6.3)

To investigate periodic solutions, we study the iterates of the map Fon the interval l0,27r),

that is, F(9), F(F(9)), •••, where the k'h is written as Fk(9). If there exists afixedpointof

/", or of some /*, then aperiodic solution of period k exists, as defined below.

We now investigate the properties of Fas prescribed by (6.1) to (6.3), assuming Ain is

small compared to KA; this is almost always the case in practice. If, in addition, /,„-/„«:, then

(6.1) may be written

Tl „ IL +i*L {sin(0o _sin(0o +"fc-J '̂

with an error in the last term of o(<oinAjk) « o(Aj VJ — 0. Thus,

T . IZi +i*L {sin^o - 2sin(0o +<oin^) +sin(0o +"//.-r^l
XX A A

. ro _iiL {1 - cosfo^A)) sin(0o +-«i«y)
X ^

where T0 is the unperturbed period of the oscillator. So,

F(9) - «+<O(„r0-^(l-cos(<Uin^))sin(« +.fc|) <*«>rf2») (6.4)
A *

The graph of F(0) is thus an oscillation superimposed on aramp, with an offset of a> in T* The

graphical solution to (6.1) is given in Fig.6.2(a). Equation (6.2) may be written as

T - 2Ti + — Isin(0o+<"/n T) - sin0o 1

so
that T can be obtained similarly, as in Fig.6.2(b). This process has to be repeated for all 90



Fig. 6.2(a)

Fig. 6.2(b)

Graphical solutions to Ti and T
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in the interval [0,2tt), so a graph of T vs. 9Q is obtained (Fig.6.3). The magnitude of the oscil

latory component is small compared to the offset, by the ratio of Ain to KA. A typical curve of

F(B0) vs. Bq is shown in Fig.6.4(a). The modulation of the oscillator from cycle to cycle is a

discrete process which iteratively applies F(-) to an initial phase 9$ this is graphically

represented in this figure as arectilinear ray which successively reflects between the curve of

F(-) and the straight line of unit slope. We define 90 to be aperiod ksolution of /*(•) if the ray

closes upon itself after kreflections off the unit slope line. As an example, aperiod 3solution

is shown in Fig.6.4(b).

Various sorts ofmotion are possible in this dynamical system, and these are considered

separately below.

Case 1: a>;„7o =2(2«+l)ir +8, n- 0,1,2, ••• (small integers), 8 small

This case corresponds to modulation by odd harmonics of 7o, and

m _, +8+*!s4l *,(,+!) (6.5)

as shown in Fig.6.5. There are two fixed points of F(«), 0, and Bh where the first is globally

stable and the second is unstable. Synchronisation occurs here, because 0, corresponds to a

period 1solution, with /,„ different from fox by an amount proportional to 8. The frequency
of the oscillator is thus entrained by the periodic perturbation. This diagram also gives an esti

mate of the rate of entrapment, that is, the number of cycles which elapse between starting

from an arbitrary initial condition to when the Bis within aprescribed error away from 0* This

cycle slipping represents the transient of synchronisation, and is often an important consideration

in system design.

Case 2: a>,„T0 - 4/m + 8 , n - 1,2,3, • • •, 8 small

This case corresponds to modulation byeven harmonics, and



Fig. 6.3

Graph of T vs 0o

vr
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Fig. 6.4(a)

A typical curve of F(0O) vs. 0o

Fig. 6.4(b)

A period 3 solution



Fig. 6.5

A stable, and an unstable, period 1 solution
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F(B) =0+8- o(82) ^^ sin(0 +f) (6-6)

The important difference from the previous case is that the last term has avery small

coefficient, so F(B) does not intersect the unit slope line, and no fixed point exists. This makes

perfect sense when we consider an even harmonic of T0 as the modulation signal in Fig.6.1,

which, by producing acancelling modulation over each half cycle, cannot entrain Tq. The pres

ence ofthe periodic signal does, however, influence the oscillator, as discussed in Case 3.

In sum, then, odd harmonics can synchronise, and even ones cannot "; when sychronisation

2(Oj„Ajn
occurs, the capture range from Fig.6.5 is ±—-—.

Case 3: <oinT0 - 2nir +8, n- 1,2,3, •••(small integer), 8 large, and fti[0,2ir).

This is, by far, the most likely case in practice. F(B) resembles the curves in Figs.6.4(a) and

(b), so only higher order periodic solutions, or aperiodic ones, can exist. We now study the

conditions for period k solutions, starting by way of aspecific example.

Suppose Ain-0 in (6.4), so that F(B) is astraight line (Fig.6.6). If aperiod 3solution

exists, the following must hold:

02 - 01 + 0o

03-02 +00 (67)

01 - 03 + 0o - 2w

which implies that

t - 2z-

17The opposite may be true ifthe oscillator topology inverts the modulating signal over successive transitions
every half cycle.



Fig. 6.6

F(0) without the oscillatory component

87



88

that is,

To - —

In general, for a period k solution, we must have

a, _ l^L.n (6.8)0o = k P

where the integer p< k is the number of times the phase has advanced by 2ir before repeat

ing itself.

Therefore, if the amplitude of the perturbing signal is neglected completely, the intercept

0o is defined uniquely by the rational number p/k. If the amplitude Ain =€, asmall number,

then

F(B) - 0o+ 0 + «in(0 + 0o)

Repeating the procedure of (6.7), except with aperiod ksolution with initial condition 0O, we

get

02 = B\ + 4>o + «sin(0i + 0o)

^3 . 02 + 00 + €sin(02 + 0o)

(6.9)

Bk «* B\ + 2ptr - 0*-i +0o +€Sin(0/c_i +0o)

Substituting for 02 to 0*, and ignoring terms of second or higher order in e, we obtain

k

Bi + 2pir - *0o + 0i + £€sin(/0o+0i)

This sum of this series can be written explicitly, giving



where

and

k<f>o - 2ptr + e.R*sin(0i + Qk) - 0

- . (k , n 0o2sin (y + D-z-

. /00 s
sin(-r-)

4>i arctan

00 \
2 or 2cot(-r-) if k is even or odd

0o , k+\ v .
cos— cost-r—J00

, , . 0o . tk±l\n
l + sin-z-sin(—r—)0
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(6.10)

If $ „ Is*, then a/*?r/W ktrajectory exists with initial condition 0, - *r - <P*. More impor-

tantly, though, if0o is changed by asmall amount, this periodic solution will persist, and the ini

tial condition will change to

—<Pt + arcsin(
/c0q - 2pir

eRk

The range of permissible variation of 0o is

A0O <
e*i

(6.11)

(6.12)

This illustrates the structural stability of the periodic solution, which means that its character is

retained while some parameter is varied over a finite range.

The implications of this fact are interesting when we consider solutions of different

periods. The period ksolution defined by (6.10) can be uniquely associated with the rational

number p/k\ let its associated lock range, determined by (6.12), be Ap/*. Together, these

define aunique open set on the interval [0,1) of the real line. As the rational numbers are

dense on the real line, there always exists another rational pjk\ € A,/*, where kx > k. For

the periodic solution of period *i associated with this number, there is acapture range A,,/*,

which defines an open set around it. Inside this open set is another rational number Pl/k2,
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where k2 > k\. This process can be repeated ad infinitum.

00
For each choice of pjkh the associated Rk. is either 2or 2cot(—), depending on

whether p, is even or odd; for small «, the value of Rk. remains constant, independent of kh

Let R be the smaller of its two values. We choose

so that as *,—», A,A CA„,_)Ay_, C ••• CApM. Being contained in nested subsets (Fig.

6.7), the sequence (a./wi+2/A:,) is then aCauchy sequence, with an accumulation point 0 .

Thus, if oiin - 0\ the solution could have one ofinfinitely many different periods. We state

without proof that 0" is an irrational number, and the set ofall 0* is densely spread out in the

interval.

It is also posible for an initial condition to give rise to aperiodic solutions, which are

generically classified as either chaotic [25], or almost periodic [26]. Investigating detailed pro

perties ofsuch solutions is adifficult task; their existence is established by considering how

intervals are mapped into themselves under repeated applications ofthe map F(-). In the sim

ple case when e is set to zero, an irrational value of0O gives rise to almost periodic solutions.

Only those solutions which are locally stable can be observed experimentally. A periodic

solution of period kwith initial condition 0O is locally asymptotically stable if there exists aneigh

bourhood of 0o, such that for any 0in this neighbourhood, |Fk(9) - 0OI < |0 - 0o I To

ensure such stability, it is sufficient that \+ Fk(9)\ < 1, which by the chain rule is equivalent to

|fi^wl< * (613)
1-0 av

where 0, - F(9q) is the /* iterate in the oscillation. In our case

A. f(g) - 1- € cos(0+0o) (614)
d9
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Nested subsets
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which is strictly greater than 1when 0€[O,f-0<J Ul^-0o,2ir). To satisfy (6.13), this

requires that all k-\ iterates of F(9) between one cycle of period k should be contained in this

range. This never happens for small € for the case we are considering; however, note that this

is only asufficient condition, it might be possible to find astronger one which can be verified.

A few remarks are in order concerning our /*(•), when it is compared with the maps

which are known to produce chaotic motions [25], [27]. The latter are non-monotonic continu

ous functions which map an interval into itself; ours, on the other hand, produces periodicity

due to the modulo 2v property ofa phase angle. Strictly speaking, F(-) maps a meridian on the

surface ofatorus into some shifted value of itself, rather than an interval on the real line. This

torus is obtained by identifying opposite edges ofthe square [0,2tt) x [0,2ir), and an example

of a"discrete" periodic trajectory on its surface is shown in Fig.6.8.

It should now be evident how complex the motions of arelaxation oscillator can be when

it is subject to aperiodic excitation. Under certain conditions, the solutions can have one of

infinitely many periods, or be altogether aperiodic. Others can have periodic solutions of very

large periods; often, when these are experimentally observed, they give the impression of being

aperiodic as well. Figs.6.9(a) and (b) show , on the trajectories in the phase plane, the effects

of modulation by low and high level periodic signals.

@ @ ©



Fig. 6.8

A discrete periodic trajectory on the surface of a torus
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Fig. 6.9(a)

Fig. 6.9(b)

Phase plane trajectories of a relaxation oscillator

subject to periodic excitations of low and high amplitudes
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Appendix 1

The standard deviation of the definite integral

T

y(T) - J i„(T) dt (A.D

is to be calculated, where i„(t) is white noise with a finite bandwidth. From [28], the distribu

tion of y(T) is

,2

•"•<"• n - -wkmexph T*!kw] (AJ)

which is Gaussian, with a variance of

Ky(T,T) - // Kin(tht2) dtxdt2 (A.3)def TT

0 0

where Kx(tht2) is the co-variance kernel ofthe random variable x(t).

For white noise with density / A/-jHz and bandwidth o» radians

Kia(tut2) - R(t) - iro>?exp(-a>M) (A.4)

where / - fi-/2 [28]. Integrating this as in (A.3), we have

Ky(T,T) - irw?JJ exp(-<o\t2- tx\) dtxdt2

2n(o? JJ exp(t2- t\) dt\dt2

e-"T-U_^.2*?[t+*—=^} = 27r?r
(ti

because T » — for typical values. Therefore,
to
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o- [y(T)\ - y/KyLT,T) = J£Pt / (A.5)

and the corresponding jitter is

rwT:= iv¥ (A.6)
/o "
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Appendix 2

Using analogous methods to those in the text, we analyse the jitter due to anoise current,

/„, in an Emitter Coupled Oscillator made from generalised active devices and loads, as shown

in Fig. A2.1.

The active devices have atransconductance specified by the function /i(0, and the loads

are voltage controlled resistors with characteristics f2(-). For the circuit, then,

/, - fl(v2- K4) (A2.1)

V2 - KJ-/2(2/0-/o) (A12)

Vx - Vs - f2(Ix) " hR (A2'3)

(2/o-/,) - /i(K,- K3) (A2.4)

where R - (—)_1(/i), and is the incremental resistance applying to the small noise signal.
dV

The capacitor determines the dynamics of the rircuit:

C^iVt-Vi - /0-/1 (A2f5)
at

Eliminating all the variables except Ix in (A2.1) to (A2.5), we get,

^ <nnR- /o-/i-/i +C-^-

and re-arranging,

(A2.6)

/0-/1 ( d!„R
i_L _. c dt (A2.7)

dt G(IX)
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Fig. A2.1

Generalised E.C.O.
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where

c(/l) *- __^L _J- /r. Q/o - /,, +±. mh - w+J- /,-• </,)

If the circuit is to oscillate, there must exist some I, 6 (0,/o) such that G(Ir) - 0; this is the

regeneration point. In turn, this requirement places restrictions on the functions /i() and

/2(->.

Consider now the timing cycle of the oscillation from / - tA> when Ix » IA, to / - tR.

when /i - Ir. Integrating (A2.7),

f G(Ix)dIx -/[£-•£ +*/.]->

so

/o('*~^ _ 'f 2l * +* [/„(,*) - /„(/„)] - n (A2.8)
C

*/''
where Kk - J G(/i) <//i

and Vk depends only on device parameters.

Equation (A2.8) specifies the variations in tR due to the noise /„; if these variations are

small compared to the relaxation time, we can write (A2.8) as

!°^Jl*- T + RI„(t) - Vk (A2.9)

where T- /* - r„, A* - /i(fr) and In(tA) is ignored because noise during relaxation is

unimportant when we are concerned with the uncertainty in the instant of asingle transition.

Consisting of aramp crossing anoisy threshold, this is precisely the same result as for the bipo

lar transistor circuit in chapter 3.
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