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1. INTRODUCTION

A binary relation language is an important tool of the theory of

measurements (see, for example, book [4]). Specifically, the theory of

nonimal and ordinal scales is based on theories of equivalence relations

and weak orderings. These binary relations have a simple structure

which can be described as follows (bearing in mind a context of the

measurement theory). Let M be a finite set of empirical objects and IR

denotes the set of real numbers. If f is a mapping f: M+IR (a scale),

then the inverse image of a diagonal relation on IR is an equivalence

relation I on M which is a kernel of a mapping f. Classes of equiva

lence relation I form a partition of M and each class is an inverse image

of some u=M and vice versa. Moreover, any equivalence relations on M is

a kernel of some mapping f. Further, let L denote a natural linear order

ing on real numbers. Then an inverse image of L with respect to a mapping

f: M-»-IR is a weak ordering over M, i.e., a reflexive, complete and trans

itive binary relation on M. Any such a relation R defines an ordered

partition of M; elements of this partition are classes of equivalence

relation I = R~ or, these classes are inverse images of elements from f(M)

and ordered in accordance with L. Again, any ordering on M may be obtained

in this way.

The aim of this paper is to extend this framework keeping in mind

applications to measurements in a fuzzy environment. For technical rea

sons we will consider a finite subset N= f(M)ciR instead of the set of

all reals.

Section 2 deals with coverings and resemblance relations in fuzzy

set theory. The notions of a covering and a resemblance relation are

important and useful generalizations of partitions and equivalence re

lations, for they yield models for mechanisms of "likeness."
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Let M be a finite set of objects and N a finite set of their attri

butes, such that any object a^M has at least one attribute ieN. If P.

denote the subset of all a€M that possess an attribute i, then,

obviously,

M= u P (1.1)
iSN n

More generally, elements of the set N may be regarded as "names"

of attributes and subsets P. as "models" of these attributes. Any family

of subsets of M, which fulfills (1.1), is called a covering of M. Thus,

attributes form a covering of the set of objects. Conversely, if

covering (1.1) of the set M is given, one can consider P. as an attri

bute: "belongness to P." with name i. In this sense, there is a one-to-

one correspondence between families of attributes and coverings.

This framework provides a very important mechanism of resemblance

relations. Namely, we say that two objects are resembled if they have

a common attribute. Formally, this notion of likeness can be described

in the following way. Let R be a binary relation on M defined as

xRy if only if there exist i^N such that x,y€P.. (1.2)

Then R is a reflexive and symmetric binary relation. Such relations are

called resemblance relations. It is easy to see that, generally speak

ing, a resemblance relation defined by (1.2) is not necessarily a transi

tive relation. Note that non-transitivity usually arises from comparisons

by means of different parameters or attributes.

The notion of resemblance relation provides a more abstract des

cription of likeness than that of covering language. Let R be a resem

blance relation on the set M, i.e., any reflexive symmetric relation on

M. We say that x resembles y if and only if xRy. Properties of
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reflexivity and symmetry provide the most common properties of likeness.

Nevertheless, it turns out that resemblance relations give a description

of likeness which is equivalent to the covering one. Namely, for any

given resemblance relation there is a covering which generates this rela

tion by (1.2). Thus, we have two equivalent mechanisms of likeness which

fuzzy extensions will be studied in Section 2.

There is a very important particular case of the framework described

above when each object of M has exactly one attribute in N. This case

is called a classification problem. In addition to (1.1) we have a pro

perty

P. np = <j> for i f j (1.3)
' j

in this case. Coverings satisfying (1.3) are said to be partitions. It

is easy to verify that a resemblance relation defined by (1.2) for parti

tions is a transitive relation, i.e., an equivalence relation. Such

relations provide a proper mathematical model for a common notion of

"sameness." We have classical dual descriptions of classifications in

terms of partitions and equivalence relations in this case. An extension

of this framework on fuzzy set theory will be studied in Section 3. Note

that the term "similarity relation" will be used below instead of equi

valence relation (see [5]).

Fuzzy surjective mappings are defined and studied in Section 4. It

is shown that similarity relations can be described as inverse images of

crisp diagonals under fuzzy mappings as well as inverse images of fuzzy

diagonals under crisp mappings.

Fuzzy weak orderings are a subject of study in Section 5. Necessary

and sufficient conditions are established for a quasi-inverse image of

a linear ordering on N to be a fuzzy weak ordering on M in terms of

surjective mappings.
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Authors are grateful to Professor E. Trill as for his interest in

this work.

2. COVERINGS AND RESEMBLANCE RELATIONS

Let U be a fuzzy set with a universe M.

Definition 2.1. A family I =* {P..}^ €N of fuzzy sets with a common

universe Mis said to be a coveri ng of the set U if and only if

U = u P..

iEN n

Below we suppose that M and N are finite sets. Definition 2.1 is

a natural extension of (1.1). In accordance with Section 1 the set N

could be regarded as a set of attributes. Then one can say that P.(x)

is a degree of certainty with which an object x has an attribute i. In

this context P. is considered as a fuzzy subset of objects which have an

attribute i.

The following definition presents a natural extension of (1.2).

Definition 2.2. A fuzzy binary relation defined by

Rr(x,y) = V P,(x)AP.(y) (2.1)
h 1<SN T 1

is said to be a fuzzy relation associated to Z.

Lemma 2.1. Any relation R~ fulfills the following properties:

1) RL (x,y) = R2(y,x) for all x,y€M; (2.2)

2) Rz (x,y) _< Rz(x,x) ARE(y,y) for all x,yeM; (2.3)

3) RE (x,x) =U (x) for all xSM. (2.4)
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Proof. (2.2) and (2.4) are evident. We have P..(x) <U(x) and P..(y) _<

U(y) which implies

P^xjAP.fy)^ U(x)AU(y) = Rz(x,x)AR2:(y,y)

for all ieN. Hence,

Ry(x,y) = V {Pi(x)AP.(y)}<R (x,x)aR (y,y). *L iGN 1 1 - L L

By (2.2), R„ is a symmetrical relation. Note that (2.3) is ful

filled for reflexive relations. This property can be regarded as a weak

reflexivity (see [6]). We consider fuzzy relations satisfying properties

(2.2), (2.3) and (2.4) as analogous to crisp resemblance relations.

Definition 2.3. A fuzzy binary relation is said to be a resemblance

relation on a fuzzy set U if and only if it fulfills properties (2.2),

(2.3) and (2.4).

It follows from Lemma 2.1 that any fuzzy binary relation associated

to a covering is a resemblance relation. The following theorem shows

that the converse is also true (see also [6] where the same result is

proved independently in a different context).

Theorem 2.1. Let R be a resemblance relation on a fuzzy set U. There

is a covering Z such that R=Rj<.

Proof. A fuzzy set K is said to be a pre-class of R if and only if

K(x)AK(y) < R(x,y) for all x,y€M. The set of all pre-classes of R is

an inductive poset (see [2], p. 192). Maximal elements of this poset are

called classes of R. Let N denote the set of all classes. We define a

family of fuzzy sets by
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R(a,b), if x=a or x=b,

Ka,bW " <
otherwise

for all a,b€M. Then Kfl b is a pre-class of R for any a,b€M by (2.2)

and (2.3). If P. (i^N) is any class of Rwhich contains K b then

Pn-(a) AP.(b) =R(a,b). Hence,

V {P,(x)aP (y)} = R(x,y)
i€N n 1

for all x,ySM, which implies

V P,(x) = U(x) ,
i<=N 7

since R is a relation on U, i.e., I =' {P.}. eN is a covering of U such

that R=RE. n

Thus, for each covering Z of a fuzzy set U there is a resemblance

relation R^ on U associated to I by (2.1) and, conversely, for each

resemblance relation R on U there is a covering Z of U such that R=Rj..

Usually, it is possible that Rj, =Rj, for different coverings Z, and Z«.

Let us consider the following

Example 2.1 .

Let M = {x, ,x2,x3> and U=M.

coverings of U:

Let us consider the two following

Z1= x£

P P P
*1 2 K3

1 a a

a 1 Y

0 Y 1

and Z2 = x2

Pl P2 P3
1 a 3

a 1 a

B Y 1

From a different point of view an analogous example is examined in [1]
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where a <3<Y- It is easy to verify that

1 a 3

a 1 Y

3 Y 1

Since R=Ry =Ry is a resemblance relation, it is possible to calculate
Ll L2

all its classes. It turns out that they form a covering

Pl P2 P3 P4

1 a a 3

a 1 Y a

3 Y 1 1

Hence, we have at least three different coverings Zp Z2 and Z3 such

that Rv = Rr = RT .
L} hz L3

If R is a resemblance relation on U and Z is a covering such that

R=RS then, obviously, each element of Z is a pre-class of R. Therefore,

classes of R form a covering which is a maximal one among coverings Z

possessed a property R=Rr. This covering will be denoted by ZR. Then

we have Rr = R,but, generally speaking, ZD f Z.
h KZ

Example 2.2.

For coverings from the previous example we have ZR = ZR = Z3,
z1 z2

and ZR = Z3 too. Obviously, Z3 contains both Z-j and Z2.
E3

Any covering Z ={P.}-GN admits an interpretation as a fuzzy

correspondence. Namely, let us consider a fuzzy correspondence F^: M->N

defined by its membership function

Fs(x,i) = P^x)
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In the classical case a resemblance relation Rp on M based on a corres

pondence F is a kernel of F, i.e., Rp =F oF. The latter formula can

be extended on the fuzzy case by a (a,v)-composition rule which gives

RF (x,y)=(F-1oFz)(x,y)=y{Fz(x,u)AFz(y,i)} = V ff^x) aP.(y)} =
Z i i

Rj(x,y), i.e., the same result as (2.1).

On the other hand for a given fuzzy correspondence F:M-»-N one can

consider a covering ZP =' {F(x,u)}.cM of a fuzzy set U(x) = V F(x,u).
r 1<=N i€N

Thus, coverings and fuzzy correspondences provide equivalent descriptions

of resemblance mechanisms.

3. SIMILARITY RELATIONS, PARTITIONS AND QUOTIENT-SETS

There is an important particular case of fuzzy resemblance rela

tions, namely, similarity relations. These relations were introduced in [5]

and studied, for example, in [1] and [3].

Definition 3.1. A fuzzy binary relation S on M is* said to be a similarity

relation on U if and only if it is a symmetric and transitive relation

and S(x,x) = U(x) for all x^M.

Recall that a fuzzy relation S is said to be transitive if and only

if

S(x,y) AS(y,z) < S(x,z)

for all x,y,z€M.

Since a similarity relation S is a symmetric and transitive one we

have S(x,y) =S(x,y) AS(y,x) < S(x,x). In the same way S(x,y) <_ S(y,y)

which implies that S has weak reflexivity property (2.3). Thus,

similarity relations are a particular case of resemblance relations.
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Let Z be a covering of U. According to Section 2 a fuzzy binary

relation R- associated to Z is a resemblance relation. Is this relation

a similarity relation? The following theorem gives an answer.

Theorem 3.1. Let Z =^iK*eN ^e a covenn9 of U. A fuzzy binary rela

tion R- is a similarity relation if and only if for each pair i,j 6N and

each pair x,y^M there is k^N such that

h.jAP.MAP^y) <Pk(x)APk(y) (3.1)

where h.. = V (P,-(x) aP.(x)} is a height of P,-nP,-.
1J x€M J J

Proof. Let Z fulfills (3.1). It is necessary to prove only transitivity

of R-. We have

Rz(x,y) ARE(y,z) = V IPiWAP.ty)}] a[v {P,(y)AP.(z)}l
i€N 1 ' J LiSN n ' JLi6N

= V {P,(x)AP.(y)AP.(y)AP (z)} < V {h..AP.(x)AP (x)}
i,j€N 1 1 J J i,j€N 1J 1 J

< V {Pl(x)aP.(z)} = R7(x,z), by (3.1).
"kGN K K *•

Hence, R- is a transitive relation.

Now, let R- be a similarity relation associated to a given covering

Z. Since R„ is transitive, we have

Rz(x,t) ARE(t,y) _<Rz(x,y)

for any t^M, which implies, as above,

V {P,(x)AP.(t)AP.(t)AP (y)} <V {Pk(x)APk(y)h
i,jSN 1 1 J J k K K

Hence, for given pairs i,jSN and x,y€M there is keN such that
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P1(x) aP1(t) aP.(t) a?.(y) <Pk(x) aPk(y)

for any t^M, "which implies

h..AP (X)aP (y) = V {P,(x)aP (t)AP (t)AP.(y)}
•J • J t€M

<Pk(x) APk(y) . n

There is another necessary and sufficient condition on Z for R- to

be a similarity relation which involves the notion of a-level-set. Recall

(see [5]) that a a-level-set of a fuzzy set A is a crisp set

Aa ='{xSM|A(x)>a}, a€[0,l].

LetZ= {P.}ieN be a covering of a fuzzy set U. Then Za ={Pa}^eN
is, obvioulsy, a crisp covering of Ua for all aS[0,l].

Theorem 3.2. A resemblance relation R„ associated to Z is a similarity

relation on U if and only for all a€ [0,1], each pair i,j^N and each

pair x,y€M such that x<=pa, y€Pa and Panpa f 0 there is k^N such that
i j 'j

x,yep£.

Proof. Let Z fuliflls conditions of the theorem and a €[0,1] be any

given number. We have

xR?y if and only if Rz(x,y) >a if and only if

V {P,(x) AP.(y)} > a if and only if
i€N n 1

there is isuch that P.j(x) aP..(y) >a if and only if

there is i such that P..(x) >a and P^y) >a if and only if

there is i such that x,yepa.
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It is easy to verify now that Rj, is atransitive relation on the set Ua,

Let x,y,z€M and a=R2(x,y) AR^fy.z). Then xR^y and yR®z which imply

xR?z, by transitivity of R^. Hence,

Rz(x,z) >a = Rz(x,y) ARz(y,z),

i.e., R is a similarity relation on U.

Conversely, let R- be a similarlity relation on U and a€[0,l].

Let, also, Panpa f o and xepa, yepa. since Panpa f o,there is

zGpanpa. We have xR^z, because x,z€p® and zR^y, because z,yepa.
R® is a transitive crisp relation, since R^. is a similarity relation.
Hence, xR^y which implies x,y£Pk for some kGN. n

Theorems 3.1 and 3.2 give an internal description of those coverings

which generate, by (2.1), similarity relations.

As in the general case, it is also possible that different cover

ings generate the same similarity relation. Let S be a similarity

relation on U. It was mentioned in Section 2 that there is a unique

maximal covering Z such that S = R~. Elements of this covering are classes

of S. Classes of similarity relations admit a very simple description.

They turn out to be classical similarity classes which were introduced

in original Zadeh's work ([5]).

Theorem 3.3. Any class of a similarity relation S is a similarity class

[a] for some a^M.

Proof. Recall (see [5]) that a similarity class [a] is a fuzzy set

with a membership function [a] (x) =S(a,x). We have

[a] (x)A[a] (y) =S(x,a) AS(a,y) < S(x,y)
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because of symmetry and transitivity of S. Hence, each [a] is a pre-

class of S. Let P be a class of S. Denote a an element such that

P(x) £ P(a) for all x^M. Since P is a class we have

P(x) = P(x)AP(a) < S(x,a) = [a] (x).

But it is possible only if P=[a], since [a] is a pre-class of S. a

Generally speaking, a converse theorem is not true. For example,

let us consider a similarity relation S defined by

xl x2 x3

Xl Z
S = x

x

on the set U= {(x,,l), (x2,l), (x3,a) }, where 0 <a<1. There are two

similarity classes in this case, namely,

1 1 a

1 1 a

a a a

[x-,] = [x2] ={(x-,,l), (x2,l), (x3,a)} and

[x3] ={(x1,a), (x2,a), (x3,a)} .

But there is only one class of S, namely, P={(x, ,1), (x2,l), (x3,a)}.

Note that [x3]cp.

Nevertheless, there is an important particular case when the con

verse statement is true.

Theorem 3.4. If S is a reflexive similarity relation then each similarity

class [a] is a class of S.

Proof. Let us suppose that there is a class P of S which contents a pre-

class [a], i.e., P(x) > [a] (x) for all x<=M. Then P(a) > [a] (a) =1
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which implies P(a) = l. Since P is a class, we have

* P(x) = P(x) AP(a) < S(a,x) = [a] (x)

which implies P = [a]. n

Corollary 3.1. Classes of reflexive similarity relations are exactly

their similarity classes.

In the general case, any class of a similarity relation S is a maxi

mal similarity class, i.e., a similarity class which is not contained

in any other. Since similarity classes are known as soon as S is known

it is easy to determine classes of S.

Coverings, which elements are similarity classes of some similarity

relation, are very important in similarity relation theory.

Definition 3.2. A coveringII ={P.}. eN is said to be a partition if and

only if there is a similarity relation S such that n is a set of all

similarity classes of S.

Fuzzy partitions, thus defined, admit an independent description in

internal terms. Namely, let us define a family of crisp sets {n^}^ eN

by

n1 ={x|P.(x) =h(P.) =U(x)}

for any given covering H ={ P.}.GN. If {H.j}.jGN is a crisp partition

of M then for each a^M there is a unique i such that a^L and for each

iSN there is a such that a^n,-• We denote [a] =P.. if and only if a€n^

in this case. We also use a notation Ilr -i for n. if aen...
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Theorem 3.5. (See also [3]) A covering IT is a partition if and only if

1) {H-shcM is a crisp partition of M, and
1 ieN - (3.2)

2) h([a]n[b]) = [a] (b)A[b] (a).

Proof. 1) Let II be a fuzzy partition, i.e., there is a similarity

relation S such that n is a set of all similarity classes [a] of S. We

have

n[a] "'^IMW =h(M)-U(x)>

={x|S(a,x)= V S(a,u)=S(x,x)}
uSM

= {x|S(a,x) =S(a,a) =S(x,x)}. (3.3)

IIpi f 0, since a^IIr -i. Let us suppose that xeilra-|nnrh"|- Then, by

(3.3),

S(a,x) = S(a,a) = S(x,x) = S(b,b) = S(b,x). (3.4)

We have

[a](t) = S(a,t) > S(a,b)AS(b,t) > S(a,x)AS(x,b)AS(b,t)

= S(b,b)AS(b,t) = S(b,t) = [b](t),

by (3.4), symmetry and transitivity of S. In the same way, [b](t) > [a](t)

which implies [a]=[b]. Hence, {nrai}ra-|eN is a crisp partition of M.

Further, we have

h([a]A[b])= V [a](x)A[b](x) = V S(a,x)AS(x,b)
xSM xSM

= S(a,b) =S(a,b)AS(b,a) = [a](b)A[b](a),

by transitivity and symmetry of S.

2) Let n be a covering satisfying conditions of the theorem.

We define S(x,y)=[x](y). Then, by (3.2),
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[x](t)A[y](t) < [x](y)A[y](x), for each t. (3.5)

Substituting t=x a"nd t=y, we obtain, respectively, [y](x) < [x](y)

and [x](y) < [y](x). Hence, [x](y) =[y](x), i.e., S is.a symmetric

relation. By (3.5) and symmetry of S we also have

S(x,y)AS(y,z) = [x](y)A[z](y) < [x](z)a[z](x) = S(x,z),

i.e., S is a transitive relation. By definition of Ilr-i we have

S(x,x)= [x](x) = U(x). Hence, S is a similarity relation on U. n

Note that partitions are defined whereby similarity classes but not

classes. The following example illustrates the difference between these

cases.

Example 3.1.

Let S be again a similarity relation defined by

Xi Xo x*>

Xi ' ' *~
kl

S =

1 1 a

1 1 a

a a a

, 0 < a < 1 .

There is a unique class P= {(x-j ,1), (x2,l), (x3,a)} of S. On the other

hand a partition II defined by S has two elements: P=[x-,] =[x2] and

[x3]= {(xlsa), (x2,a), (x3,a)}.

The notions of quotient-set and cannonical mapping are very impor

tant in classical set theory. Our previous exposition permits to give

a proper extension of these notions on fuzzy set theory.
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Defintion 3.3. Let S be a similarity relation on the set U with universe

M and N a set of all similarity classes of S. A fuzzy set H with uni

verse N defined by

H([a]) = V [a](x)
X€M

is said to be a fuzzy quotient-set of U with respect to S and denoted

H= U/S. A fuzzy mapping n:M^N defined by

n(x,[a]) = [a](x)

is said to be a canonical mapping.

It is easy to verify that n is a well-defined mapping. The follow

ing theorem establishes some common properties of notions introduced.

Theorem 3.6. 1) n(U) = H, i.e., H is an image of U with respect to II;

2) H (H) =U, i.e., U is an inverse image of H with respect to II;

3) n" ([a])=[a], i.e., an inverse image of a fuzzy singleton [a] in H

is a fuzzy subset [a] in M;

4) S=n" on, i.e., S is a kernel of II.

Proof. 1) (n(U))([a]) = V {n(x,[a])AU(x)}
xeM

= V {S(x,a)AS(x,x)} = V S(x,a) = V [a](x) = H([a]).
x€M x€M x6M

2) (n_1(H))(x) = V {if^x.MjAHtCa])}
[a]eN

= V {[a](x)A\/ Ca](u)} = V S(a,x) =S(x,x)=U(x).
[a]€N u€M [a]€N

3) By definition, a fuzzy singleton [a] in H is a fuzzy set [a] with

a membership function
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H([a]), if [x] = [a],

[a]([x]) =

0 , otherwise

We have

(n"1([a]))(x) = V {n(x,[t])A[a]([t])} =n(x,[a])AH([a])
[t]eN

= S(a,x)A V S(a,u) =S(a,x) =[a](x).
u€M

4) (n_1on)(x,y) = V {n(x,[t])An(y,[t])}

= V (S(x,t)AS(t,y)} = S(x,y). *
[t]€N

For any given partition n ={P.}.. g, of U one can consider a fuzzy

set H with a membership function

H(i) = h(P.)

Then, by Theorem 3.5, H is a quotient-set of U with respect to a proper

similarity relation S. Thus, fuzzy partition theory presented above is

quite analogous to a crisp one.

4. SIMILARITY RELATIONS AND FUZZY MAPPINGS

There is an important relationship between equivalence relations

and surjective mappings in a classical set theory. Namely, let F:M-*N

be a (crisp) mapping from M onto N. Then there is an equivalence rela

tion I on M such that the following diagram

M —L*. n

•I
M/I
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is commutative, i.e., F = i o ir, where * is a canonical mapping and i is an

isomorphism. Roughly speaking, any crisp mapping onto may be regarded as a

canonical mapping.

A particular class of fuzzy mappings onto is studied in this section;

these mappings may be considered as fuzzy canonical mappings (within to

isomorphisms). The reader is refered to [3] for definitions of fuzzy

mappings and their compositions.

We begin with establishing some additional properties of canonical

mappi ngs.

Definition 4.1. A similarity relation A on X is said to be a diagonal

on X iff A(x,y) = l implies x=y.

Remark. A diagonal on X may be regarded as a fuzzy relation of equality.

Lemma 4.1. Let II: M-*M/S be a canonical mapping. Then noil" is a

diagonal on M/S.

Proof. Obviously, noil" is a symmetric and reflexive fuzzy binary

relation. Further, we have

(n oifbtM.Cy]) -VCn(a,[x])An(af[y])}

=V{S(a,x)AS(a,y)} = S(x,y),
a

which implies transitivity of IIon" .

Lemma 4.2. Let n:M-*M/S be a canonical mapping. Then

n = nof o n,,

where n, is a crisp mapping defined by
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1, if W = [y],

n^x.Cy]) =

0, otherwise.

Proof. We have

(n on"1 onJJx.Cy]) =v {n(x,[a])An(a,[z])An(z,[y])}
a,z

=V{S(a,x)AS(a,y)} = S(x,y) =n(x,[y]). n
a

A natural decomposition F=ion of crisp surjective mappings,

generally speaking, has no place in a fuzzy case even if N= F(M) is

demanded. Let us consider, for instance, a fuzzy mapping F from 3-ele-

ment set M into 2-element set N defined by matrix

1 0.3

1 0.5

0.7 1

It is easy to verify that there are no fuzzy isomorphism i and similarity

relation S such that F = ion.

The following definition suggests a proper generalization of (crisp)

surjective mappings.

Definition 4.2. A fuzzy mapping F:M-»-N is said to be a fuzzy surjective

mapping iff there is a similarity relation S on M such that a diagram

F

M *-N

n | y^\
M/S

is commutative, where n is a (fuzzy) canoncial mapping defined by S and

i is a crisp isomorphism.
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Evidently, a problem of a proper generalization find the simplest

solution in Definition 4.2: we employ a desirable property as a defini

tion. Nevertheless, it is possible to characterize a class of fuzzy

surjective mappings in the following way:

Theorem 4.T. A fuzzy mapping F:M-*N is a fuzzy surjective mapping iff

there is a crisp surjective mapping f:M-*N and a fuzzy diagonal relation

A on N such that F = Aof:

A

N

Proof. 1) Let F be a fuzzy mapping from M onto N. Then F=i on, by

definition. Let us define f =ion, (see Lemma 4.2) and A=FoF" . Then

Aof = i on on" o i" o i on, = i on on on, = i on = f,

by Lemma 4.2. Further, we have

A(u,v)=V (F(x,u)aF(x,v)},
x

which implies symmetry and reflexivity of A. Moreover, A(u,v) = l iff

u = v, since F is a fuzzy mapping. Finally, we have

AoA = 1 ollon o i o 1 ollon o 1

= iollon ollon oi = 1 ollon o1 =A,

since non" is a diagonal relation, by Lemma 4.1. Hence, A is a fuzzy

diagonal relation on N.

2) Conversely, let us have a decomposition F = A6f. Let us define S = F" o F

and i([a]) = f(a). Obviously, S is a reflexive and symmetrical fuzzy binary

relation on M. We have
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SoS=F" oFoF" oF = f" oA oAofof" oA oAof

= f~ oA~ oAof = S,

since f is a crisp mapping onto. Hence, S is a similarity relation.

Evidently, i is a surjective mapping. Let us prove that it is an injec-

tive mapping too. We have S = f oAof, since A is a diagonal relation.

Hence,

S(x,y) = A(f(x),f(y))

and we have

[x] = [y] iff S(x,y) =l iff A(f(x),f(y)) = 1 iff f(x) = f(y).

Therefore, i is an isomorphism. Finally, we have

(ion)(x,u) =nfx.Cf"1^)]) =S(x9f"\u))

= A(f(x),u) = (Aof)(x,u) = F(x,y). a

It is easy to verify that

S = F'1oF = f"1oAof

if F is a fuzzy surjective mapping. This formula provides dual des

criptions of similarity relations: as inverse images of a crisp dia

gonal under fuzzy mappings and as inverse images of fuzzy diagonals under

crisp mappings.

5. FUZZY WEAK ORDERINGS

Concepts of a weak ordering and a linear ordering play basic role

in the theory of ordinal scales. Remind the reader that a weak ordering

R is a reflexive, complete and trasitive binary relation, i.e.,

1) xRx for all x,

2) xRy or yRx for all x f y,

3) xRy and yRz imply xRz for all x,y,z.
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The following definition gives a proper extension of this notion

on fuzzy set theory.

Definition 5.1. A fuzzy weak ordering is a fuzzy binary relation R ful

fi11i ng

1) R(x,y)v R(y,x) = 1 for all x,y, (completeness)

2) R(x,y)A R(y,z) ^ R(x,z) for all x,y,z (transitivity)

Remark. 1) implies R(x,x) =l for all x (reflexivity).

Crisp weak orderings have a very simple structure. Namely,

I= R hr is an equivalence relation and R can be regarded as a linear

ordering over classes of F. In this section we investigate analogous

properties of fuzzy weak orderings.

Theorem 5.1. Let R be a fuzzy weak ordering. Then S= R~ hr is a

similarlity relation.

Proof. Obviously, S is a reflexive and symmetric fuzzy binary relation.

Further, we have

S(x,y) AS(y,z) = R(x,y) AR(y,x) aR(y,z) aR(z,y)

< R(x,z) aR(z,x) = S(x,z),

by transitivity of R. H

Hence, we may employ notions of quotient-set and canonical mapping

in a study of fuzzy weak orderings.

Let us define a crisp relation ^ on M by

x > y iff R(x,y) = 1. (5.1)

Obviously, > is a 1-level set of R and, therefore, a weak ordering on M.

Lemma 5.1. Let x > y and [x'] = [x], [y1] = [y]. Then x' > y1.
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Proof. We have S(x',x) = S(y*,y) = 1 which implies

R(x',x) = R(y,y") = 1.

Further,

R(x',y') iRtx'.xlARtx.y') = R(x,y») > R(x,y)AR (y?y< ) = 1,

since R(x,y) = 1. n

The lemma proven provides correctness of the following definition

[x] > [y] iff x >_y. (5.2)

Lemma 5.2. ^defined by (5.2) is a linear ordering on M/S.

Proof. It suffices to prove that [x] >_ [y] and [y] >_ [x] imply [x]= [y]

We have R(x,y) = R(y,x) = l, or S(x,y) = l, which impliy [x] = [y]. «

An important property of a similarity relation associated with a

fuzzy weak ordering is established in the following

Lemma 5.3. x >_ y >^ z implies S(x,z) = S(x,y) AS(y,z).

Proof. We have R(x,y) = R(y,z) = R(x,z) = 1. Hence, S(x,y) = R(y,x),

S(y,z) = R(z,y) and S(x,z) = R(z,x). By transitivity of R

R(y,x) > R(y,z) aR(z,x), or S(x,y) > S(x,z)

and

R(z,y) > R(y,x) AR(x,y), or S(y,z) > S(x,z).

Hence, S(x,y) AS(y,z) > S(x,z) which imply S(x,z) = S(x,y) AS(y,z),

by transitivity of S. °

If I is an equivalence relation, then any linear ordering over its

classes generates a weak ordering R such that I= R hr. The previous

lemma shows that it is not, generally speaking, true in a fuzzy case.
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Nevertheless, as the following theorem shows, for any similarity rela

tion S there is a fuzzy weak ordering R such that S = R hr.

Theorem 5.2. For any similarity relation S there is a fuzzy weak order

ing R such that S = R OR.

Proof. Let us consider a resolution (see [5])

S =a.,*S +a«S +...+aS ,
1 a«i 2 a« n a

1 2 n

where 0 <a, <a0 < ... < a„ = 1, S„ 3S„ 3... 3 S and all S are12 n a, a2 an a.
equivalence relations. Then there is a nested sequence R 3 R 3...D R

a-, a« aM
-1 \ d n

of weak orderings such that S = R~ nR for all i. A fuzzy binary
i i i

relation R defined by

R = a^R^ +a«R„ + ... +a R1 a^ d a« n a

is a fuzzy weak ordering such that S = R~ hr. q

Remark. Note that R is, actually, an ordering defined by (5.1) which
an

induces a linear ordering over classes of S.

Now we will study relationships between fuzzy weak orderings and

canonical mappings.

Theorem 5.3. Let R be a fuzzy weak ordering on M and S = R hr. Then

R is an inverse image of a linear ordering >^ on M/S with respect to a

canonical mapping n : M+ M/S.

Proof. We need to prove that

R(x,y) - V Ol(x,[z])An(y,[t])} = V CS(x.z) AS(y,t)} (5.3)
[z]>[t] z>t

If x > y, then both sides of (5.3) are equal to 1. Let x<y. Then

-24-



R(x,y) = S(x,y). It is obvious that right side of (5.3) is greater than

S(x,y). Hence, it suffices to prove that

S(x,z) AS(y,t) < S(x,y) for all z > t. (5.4)

Let z>y>x. Then S(x,z) < S(x,y), by Lemma 5.3, which implies (5.4).

Let y>x^t. Then S(y,t) < S(x,y), by Lemma 5.3, which implies (5.4).

Let nowy>z^t>x. Then, by Lemma 5.3,

S(x,z) AS(y.t) = S(x,t) AS(t,z) AS(y,t)

= S(x,y) AS(z,t) <_S(x,y)9

which implies (5.4). n

It follows from Theorem 5.3 that fuzzy weak orderings are inverse

images of crisp linear orderings induced on quotient-sets. They can

also be described as quasi-inverse images. We define u= f(x) if

F(x,u) = 1.

Definition 5.2. Let F:M-*N be a fuzzy mapping, and >_ be a crisp linear

ordering on N. A fuzzy binary relation R on M with membership function

1. if f(x) > f(xy)

R(x,y) = <

F(x,f(y)), otherwise

is said to be a quasi-inverse image of ^ with respect to F.

It is easy to verify that any fuzzy weak ordering R on M is a quasi-

inverse image of > defined by (5.2) with respect to n defined by S= R hr(

Generally speaking, it is false that an inverse image or a quasi-

inverse image of a crisp linear ordering on N with respect to a fuzzy

surjective mapping F is a fuzzy weak ordering. For we have the following
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Theorem 5.4. Let F= Aof be afrizzy mapping from M onto N and > be a

crisp linear ordering on N. A quasi-inverse image of >_with respect to

F is a fuzzy weak ordering iff

A(u,v) = A(u,w) aa(w,v) for any u>w>v (5.5)

Proof. We have

r

1, if f(x) > f(y)

R(x,y) = /

v.

(f(x),f(y)), if f(x) < f(y)

by the definition of a quasi-inverse image.

1) Let R be a fuzzy weak ordering. Then S(x,y) = A(f(x),f(y)). Let

u > w > v and u = f(x); w = f(y), v = f(z). We have

R(x,y) = R(y,z) = R(x,z) = 1,

which imply S(x,z) = S(x,y) aS(y,z), by Lemma 5.3. It means that

A(u,v) = A(u,w) aA(w,v).

2) Let (5.5) holds. Obviously, R is a complete fuzzy binary relation.

Let us prove transitivity, i.e.,

R(x,y) AR(y,z) < R(x,z). (5.6)

It is true if f(x) > f(z). Let f(x)<f(z). If f(y) > f(z) >f(x), then

A(f(y),f(x)) < A(f(z),f(x)), by (5.5), which implies (5.6). Let f(z) >

f(y) >f(x). Then

A(f(z),f(y))AA(f(y),f(x)) < A(f(x),f(z)),

by (5.5), which implies (5.6). If f(z) >f(x) >f(y), then A(f(z)f(y)) <

A(f(x),f(z)), by (5.5), which implies (5.6). «
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