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ABSTRACT

A method for deriving dynamic security regions of power systems is

developed. A power system operating state is defined to be dynamically

secure with respect to a given disturbance if the system, starting in

that state maintains transient stability after experiencing the disturbance

Specifically, these are regions of pre-fault angles such that the post-

fault system is asymptotically stable. The proposed approach is to con

struct affine approximations to the nonlinearities in the transient

stability model and then derive quadratic bounds on the errors between

the nonlinearities and their approximation. These are then used to derive

sufficient conditions for a polytope of operating states to be dynamically

secure.



1. INTRODUCTION

Security of a power system refers to its robustness relative to a

set of imminent disturbances during operation [1]. In [2], a framework

for probabilistic dynamic security assessment was established using both

steady state and dynamic security regions. The problem of finding steady

state security regions, being sets of power system operating points which

satisfy the load flow and associated constraints, is dealt with in [3].

In this paper, a method of finding dynamic security regions is derived.

A power system operating state is defined to be dynamically secure

with respect to a given fault or disturbance if the system, starting in

that state and then undergoing that disturbance, is transiently stable.

A set of such states is called a dynamic security region. Loss of

transient stability corresponds to the system failing to maintain sychronism

in operation which is, of course, a severe breach of security.

The concept of power system security was introduced by Dy Liacco

[4]. He also established a framework for deterministic security assess

ment, in which the robustness of the system is tested with respect to a

set of selected disturbances or contingencies. For each of these con

tingencies, a digital simulation is performed to obtain the system

response [5,6,7]. This "scenario-study" approach is also traditionally

used in transmission system planning [8]. The salient feature of this

type of approach is that, because each scenario defines system configura

tions and a trajectory, it is possible to perform the analysis using

load flow and transient stability programmes. One major difficulty with

this approach to dynamic security assessment is the on-line computational

burden. In our framework for probabi 1istic dynami c securi ty assessment [2],

the use of regions of security operation in the state space of present
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operations is advocated. It is intended that these regions be computed

off-line. Other proposed techniques for dynamic security assessment

include the use pattern recognition [9], Liapunov functions [9,10],

transient energy functions [11], transient energy margins [12] and

transient security indices [13,14].

In transient stability analysis, a power system is generally con

sidered as undergoing two changes in configuration: from pre-fault to

fault-on and thence to post-fault. In the pre-fault configuration, the

power system is in a steady state condition, 6. The fault occurs and

the system is then in the fault-on condition for a fixed time period,

during which the state of the system changes dynamically. The fault is

then cleared by protective relay systems operation, moving the system

to its post-fault configuration. The state of the system then changes

according to different dynamics, the initial condition of which is the

value of the fault-on state at the instance of fault clearing. If this

post-fault system is asymptotically stable to a post-fault equilibrium

operating point, 9 , then the system is transiently stable. The fault-on

dynamics can be considered as a map D from the pre-fault operating con

dition,8, to the dynamic state value at the instance of fault clearing.

The post fault equilibrium, 9 depends on the pre-fault operating point,

6, via assumptions about the way in which the steady state value of the

power injections change with configuration (e.g. they remain constant).

A map 9 can be defined so that 6 (e) - 6 . We assume that the post-
H r r

fault dynamics have been analysed using either Liapunov or transient

energy techniques to yield a region of attraction to 6 . In other words,

if D(0) is in this region, then the post-fault system is asymptotically

stable to 6 . Thus, we shall define a region L such that if (e ,D(e))
r r
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is in L, the post-fault system is asymptotically stable. In fact, if 6

is a pre-fault steady state such that (6 (e), D(0)) lies in L then 0 is

dynamically secure. The problem of finding a dynamic security region

is then to find a subset of the inverse image of L under the map defined

by (9p(0),D(0)).
Evaluating D at a particular 0 involves solving a set of nonlinear

differential equations representing the generator swing equations and

the power flow equations of the fault-on transmission network. In the

classical "scenario study" approach, this is achieved using numerical

integration [15]. Various approximations for D have been proposed

[10,11], with the aim of reducing computation time. Analytic studies of

these approximations have not been reported. Evaluating 0p(0)» on the

other hand, requires solving a power flow, which is a set of nonlinear

algebraic equations [16]. The DCloadflow [17] is a commonly used

approximation to the power flow.

Our approach in this paper is to construct affine approximations

to D and 0 , using the derivative values obtained from one numerical

simulation of the model. Quadratic bounds on the errors between the

nonlinear maps and their approximations are then found. The affine

nature of the approximations, and the quadratic form of the bounds are

used to derive sufficient conditions for a polytope of pre-fault operating

states to be dynamically secure.

The paper is organized as follows. In section 2, details of the

model are given. This model is a generalization of a large

variety of transient stability models to which Liapunov and transient

energy techniques have been applied. Further details of the approximation

and bound philosophy are given in section 3 as well as the fundamental
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circuit theoretic lemma upon which most of the analysis is based. In

sections 4 and 5, the affine approximations and bounds for D and 0 ,

respectively, are derived. The sufficient conditions for a polytope to

be a dynamic security region are presented in section 6. In section 7,

we apply the preceding analysis to a slightly different transient event.

Here, we are considering the case of instantaneous changes in power

injection or of a single switching action on a line.

The notation used in this paper is standard. IR+ is the set

{zeiR :z>0}. If x, yG]Rn, then the vector inequality x^ y implies

the partial ordering relation xk _< yk for all k= l,...,n, where x.
J.L.

refers to the ktn component of x. Similarly, if AejRmxn, then [A]..

is the i, jth entry of A. For xG ]Rn, llxil denotes any norm on Rn,
n

while Ilxil-j and Ilxd^ denote I |xk| and max{|xk| : k= 1, •••, n}

respectively. B(x,X) is the set {z e IR : llz-xll < X} and BJx.X) is

{z E ]Rn :llz-xll^ < X}. The statement Mx := E" implies that x is defined

by the expression E.

2. TRANSIENT STABILITY MODEL

2.1. General Features

The sequence of events considered for transient stability analysis

of power systems are the following. The power system is in steady state

prior to a balanced three phase fault occurring on the transmission net

work. The fault is then cleared by the protective relay system. The

model for transient stability analysis therefore has three components:

pre-fault, fault-on and post-fault. The pre-fault system is in steady

state and is represented by power flow equations. The fault-on system

is represented by a differential equation corresponding to the generator

swing equations and the power flow equations of the transmission network
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with the faulted line [15]. The post-fault system is again a dynamic

system. The steady state condition of the post-fault system is represented

by power flow equations. The stability of this system is represented by

a Liapunov region [18] or by a region established using transient energy

functions [11,19].

These three components are coupled together in the following fashion.

Suppose a pre-fault equilibrium angle is specified. Then the vector of

steady state power injections is determined by the pre-fault load flow

and is assumed to remain constant throughout the fault-on and post-fault

periods. Thus

(i) The fault-on dynamics contain a term in the pre-fault angle,

representing the dependency of the swing equations on the injections.

(ii) The initial condition of the fault-on dynamics is a linear

function of the pre-fault angle.

(iii) The post-fault network is asymptotically stable if the value

of the fault-on state at the time of fault clearing is in the Liapunov

stable region.

(iv) The post-fault equilibrium angle depends on the pre-fault

equilibrium angle via the constancy of steady state power.

(v) Finally, the Liapunov stable region depends on the post-fault

equilibrium angle [18].

The model is given in detail below. It can easily be seen that it

is a generalization of the models in [11,18,19] and thus represents a

wide range of transient stability formulations to which Liapunov or

transient energy techniques have been applied.

2.2 Prefault System

We assume the network has n busses, excluding the slack bus. The

steady state power injections, pGIRn, and the pre-fault equilibrium
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angle, 0GIRn, are related by the decoupled real power flow equations

[11,18,19,20].

fo(0) - P (1)

0

form

where f : IR •*• IR is the load flow function and is assumed to have the
o

*„(♦) - Aogo(A0T$) (2)
nx£ I A

Hence, Art SIR and g : IR -^IR where
o .o

90(a) = (9ol(crl)»9o2(a2),-*-,goJi {ai )] W
0 0

Further, gQ is assumed to be twice continuously different!able. The pre-

fault angle, 0, is said to be a stable equilibrium if the Jacobian,

^(9), is positive definite. A justification of this definition is

given in [18].

R§2Slks. 1. Although it is not assumed for the work in this paper,
A0 is generally areduced node incidence matrix [21,p. 417]. in this
case, Z0 is the number of branches in the network and the kth component
of g0, written gQk :**„, gi-ves the power flQw in ^ ^ ^^ ^ ^
function of the angle difference across that branch. The decoupled
nature of gfl as seen in equation 3, is equivalent to assumming no two
branches of the network are coupled. It has been shown [13,22] that
equation 1can then be interpreted as the node equations of anonlinear
resistive network. We will have occasion to refer to this analogy.

2. Under the assumption of lossless transmission lines,
9ok(ak) "Yksi"(^k) «here Yk is apositive real constant [3,ch 7].

n
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2.3 Fault-on System

The fault occurs at time t =0 and is cleared at time t = tf.

Suppose that the pre-fault equilibrium angle is 0. Then it is assumed

that the fault-on system at time t € [0,tp] can be represented by a

state vector x(t) eiRm given by the solution of

x(t) = E x(t) + fd(x(t)) + FfQ(9) x(0) = G0 (4)

where EejRinxn,f FeRmxn, 6 <=IRmxn and fd : IRm -IRm is Lipschitz contin
uous and is given by

fd(x) - 8dgd(Ajx) (5)
mx£. I, I,

Hence, 6d and Ad SIR aand gd :IR -*IR a such that

9d(a) • (9dl(a1),gd2(a2) gd (a )) (6)
a a

g, is also assumed tobe twice continuously differentiable.

Examining equation 4, it can be seen that the state at time t = tp,

x(tp), is uniquely determined by 0. Thus, amap D:IRn -^3R171 is defined by

D(0) := x(tF) (7)

That is, D maps a pre-fault equilibrium angle into the corresponding

fault-on dynamic state at the instance of fault clearing.

Remarks: 1. Equation 4 can be seen to be a generalization of the

transient stability models used in [11,18 and 19], Specifically for the

case of the model of Bergen and Hill [18], the matrix A. is composed of

the reduced node incidence matrix of the faulted network and some zero

blocks to remove the frequency terms in the state vector. Thus the term

-8-



g(A^x(t)) is the vector of real power flows in the branches at time t.
f (0) is the steady state value of the injected powers.

2. The generality of the model presented in this section thus

allows for loads which vary dynamically in time [eg. 18]. However we

shall still require that the steady state values of the power injections

remain constant throughout the event. n

2.4 Post-Fault System

2.4.1 Equilibrium: It is assumed that the post-fault network also

has n busses, excluding the slack bus. In a fashion similar to the pre-

fault case, if 0 GIRn is the post-fault equilibrium angle and p<=IRn

the steady state injections then

fp(8p) =p (8)

where f : IRn ->-IRn is the post-fault load flow function. It is assumed
P

to have the form

fp(*) - Apgp(AJ*) (9)
nxit z I

where Ap €]R and gp : IR p-IR pis twice continuously different!able
with the form

gp(a) =^pl<ffl)'9p2(a2,"-',9p£ (a* ]) (10)
P P

The post-fault equilibrium angle, 9 , is said to be stable if the

Jacobian, fp(9p)» is positive definite.

2.4.2 Stability Set: We represent the post-fault dynamics by

defining a stability set LCIRn x IRm by the following property. Suppose

0p SIR is a stable post-fault equilibrium and x €Rm is the initial
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condition of the post-fault dynamical system (i.e. the post-fault

dynamical state at time t = tF). If

V|Si (in

then the post-fault system is asymptotically stable.

Remarks.: 1. The fault-on dynamic state at time t =tp, x(tF), is, in
general, the initial condition for the post-fault dynamical system, x.

2. It is more usual, when refering to Liapunov or transient energy

stability techniques for power systems, to calculate a set l/(p) CIR™

with the property that if p €lRn is the steady state post-fault injections

and x SIR"1 the post-fault initial dynamic state and if

x - ^(P) (12)

then the post-fault system is asymptotically stable. That is, l/(p) is a

domain of attraction [23, p.8] of the post-fault dynamical system to a

stable equilibrium when the injection is p. The stable equilibrium in

question will be the dynamic state corresponding to 0 where 0 is a
P P

solution of the following nonlinear problem.

f(0D) =Pand f'(0p) is positive definite (13)

That there might be more than one such 9 and that l/(p) might consequently

be disconnected is immaterial to this discussion.

A region L can then be found using the following procedure. A set

ICRn is selected such that for each 9 e I the Jacobian f'(0 ) is
P 9 9

positive definite. Then L can be the union of the cartesian products of

0Q and (/(p) where p= fD(0J. That is,
1 K K
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L = U {0} x l/(f (0j) (14)
q ST p p p

In this fashion the state space of the problem is augmented to obtain a

single stability set. a

2.5 Problem Statement

We seek a set of dynamically secure pre-fault equilibrium angles.

A stable pre-fault equilibrium angle, 0 £IRn, is said to be dynamically

secure if the resulting dynamic state at fault clearing, 0(0) €lRm, is

an asymptotically stable initial condition for the post-fault network.

Since the steady state power injection is assumed to remain constant in

time, it is sufficient that

0(0) € l/(fo(0)) (15)

Thus, we define a dynamic security region in the pre-fault state space to be

Hd = {0 €IRn : f^(0) is positive definite
and 30 eiRn such that

-1 P

(i) fp(ep)-f0(e)
(ii) ^(O is positive definite

r r

(iii) (9p,D(9)) € L} (16)

In [2], a dynamic security set, ftd, was defined in the space of injections.

This is the image of ^d under the map, f ,(i.e. fQ(ftd)) and is thus a

set of injectious such that for each p€ n^, there exists a dynamically

secure pre-fault stable equilibrium, 0 €lRn such that p is the associated

injection (i.e. p= fQ(9).)

In equation 16, the constraint "f (0) = f (9 )" expresses the

assumption of constant steady state power. It will be shown below
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(section 5) that it locally defines an implicit function 0 : U -IR11,

where U CIRn. That is, V9 S u
o o

fp(9p(9)) =fQ(9) (17)

so that 9Q maps a pre-fault equilibrium into a post-fault equilibrium

with the same injection.

A set of dynamically secure states would be (9 xD) (L), the inverse

image of L under the map 9 x 0 : u -IRn x IRm where

(0pxO)(0) =(9 (8),D(9)) (13)

Both 8 and D are nonlinear and no closed form expression for the inverse
P

operator is known. Evaluating 0 and D at a particular point 0 involves

solving a nonlinear algebraic equation and a nonlinear differential

equation, respectively. In this paper, we develop a viable method for

finding a subset of the dynamic security region, (0 xD)~ (L) in the

space of pre-fault equilibrium angles.

3. EXACT TAYLOR SERIES ANALYSIS

3.1 Solution Approach

The method developed in this paper for finding a dynamic security

region in the prefault angle space is based on expanding the nonlinear

maps 0 and § in the above model about an operating ooint 0 to exact
P '

three term Taylor series. The first two terms correspond to the linear

ization of the maos D and 0 . We then obtain bounds on the third terms
P

and use them to derive quadratic bounds on the difference between D and

its linearization, and between § and its linearization. In the final
P

part of our analysis we derive a condition under which a polytope in the

pre-fault equilibrium angle space contains only dynamically secure angles.
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That is, the image of this polytope under 9 x D lies in L. Verification

of this condition requires only evaluation of the linearized maps and the

quadratic bounds. Only one solution of the full nonlinear model, to

obtain the derivative values and the operation point, is required for

verification of the security of an entire polytope.

3.2 Linearization

The process of Taylor series expansion of the model is most easily

seen in the treatment of the map 0. Suppose that 9 €IRn is a stable pre-

fault equilibrium and x(-) is the corresponding fault-on trajectory i.e.

x= Ex + fd(x) + FfQ(9) x(0) = G0 (19)

Suppose, in addition, that for y €IRn, x (•) is the fault-on trajectory

when the pre-fault angle is 0 + y» so that

XY =ExY +fd(xY' +FiV8+^ XY(°) =G(6+^> (20)

Thus

D(0) =x(tF) and D(9+y) =xy(tp) (21)

Defining

eY(t) := xy(t) - x(t) (22)

from equations 19 and 20 we obtain

S =E£y + fd(X+£Y) " fd(x> +F^fo(e+Y) " fO(9)]

eY(0) =QY (23)

This can be re-written

ey= [E +f^(x)]ey +Fr(9)y +rd(t,Y) +rQ(y) ty(Q) =Gy (24)
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where

rd(t,y) := fd(x(t)+e (t)) -fd(x(t)) -f^(x(t))^(t) (25)
Y

and

rAy) :- F[f (9+Y) - f (9) - f'(9)y] (26)
0* " u 0xw " 0V ' 0

The terms rd(t,y) and r (y), which are both functions of y and 9, are

the third terms in a three term Taylor series expansion of f<j(x+e ) and

Ff (0+y), respectively. They are thus given by [24, p.190]

fl
rd(t,Y) = (1-X)f»(x(t)+X£Y(t))-(£(t),8Y(t))dX (27)

u J0 r Y

•1

10

where the notation f"(a)'(8,3) implies the second derivative of f

at a, evaluated as a bilinear operator at (6,3) [24, p.179]. If r.(t,y)

and rQ(y) are small, then the linear part equation 24 forms an

approximation. That is, £ (t) * e (t) where

£Y - [E + f^(x)]gY + Ff;(0)Y ey(0) =Gy (29)

Thus £ (t) is a linear function of y. In the language of small signal

analysis of nonlinear circuits [21, pp.91-95], e (t) is the linearized

output perturbation when the input is y away from its quiescent value, 6.

(The input, in this case, is the initial condition).

Our approach is to bound rd(t,y) and r (y) using their specific

form as derived from equations 2,3, 5 and 6 and then to use the Bellman-

Gronwell Lemma [25, p.38] to thus obtain an upper bound on

^Y(tF) - £Y(tF)H. Since 0(0) +e(tp) is affine in yand

»D(0+y) -[D(9)+eY(tF)]0 =il£y(tF) -ey(tF)l (30)

rQ(Y) =f| (l-X)f^(9+XY)-(Y,Y)dX (28)
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we thus have an affine approximation and error bound. A similar but

more sophisticated approach is used to deal with the variation of the

post-fault equilibrium angle with the pre-fault equilibrium angle.

3.3 Bounding The Third Terms

rd(t,y) and rAy) depend on z (t) and y respectively in a very

complicated fashion. However, if, in equations 27 and 28, the points of

evaluation, x(t) + Xe (t) and 0 + Xy, are ignored, these expressions

become quadratic in e (t) and y. Thus, it makes sense to seek quadratic

bounds.

In order to consider both these terms simultaneously, as well as a
n. n0

similar term in f , a function f : IR ->-IR is defined by

f(z) = Bg(ATz) (31)

n.xJl n xjl

where ASIR 1 , B€IR ° and g : IRA +IR*' is given by

g(a) =(g1(a1),g2(o2)t...tgJl(az)) (32)

g is assumed to be twice continuously differentiate. It can be seen

that, by appropriate choice of n., n , l, A, B and g that f generalizes

any matrix multiplied by f , fd of f . The following lemma gives an

upper bound on

rl
If(z+p) - f(z) - f'(z)p« = II (l-X)f"(z+Xp)-(p,p)dX!l (33)

J0

Lemma 1

Let £GIR^ and define

ni TS(5) := {p SIR ^ : -^ < A'p < O (34)

ni TLet z SIR ,a = A z and for each ie {!,...,£} let a. SIR+ such that

a. > max{|g',(a1+6.)| :- ?• < 5. < ?.}
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For each j G{!,... ,nQ}, let 0. be the diagonal i x %matrix with i,i th
entry

Under these conditions, Vp e s(£)

(1) |jth component of f(z+p) - f(z) - f'(z)p! £ pTAQ.ATp (35)

(2) If kn €IR+ such that

n_

llwil < k M Vw € R ° (36)

then

If(z+p) - f(z) - f'(z)p!l <pTAQATp (37)
no n.xn.

where Q = k J Q. SIR 1 1 .
n j=l J

(3) AQA and AQ.A are positive semi definite symmetric matrices, n
j

Remarks: 1. The bounding technique in Lemma 1 can be interpreted as

follows, in the case where B = A is the reduced node incidence matrix

and f is the node admittance function of a nonlinear resistive circuit.

By bounding the voltage perturbations in each branch (equation 34),

limits can be found for the branch current swings and hence for the node

current deviation (equation 35).

2. If f is a load flow function such as f or f , then S(£) can

be considered as a set of constraints on line angle deviations. These

naturally arise from line power flow constraints in the study of steady

state security [3].

3. Q and Q. depend on z and £, but are independent of p. In the
j
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case where g. is a constant multiplying a sinusoid, the calculation of

a. is trivial.

no
4. Values of k for different norms on IR are available in

n

[26, p.170]. n

Proof

Consider p€ S(£) and let 5= ATp. Thus

< < 5 < 5

and f(z+p) - f(z) - f'(z)p

= B[g(a+6) - g(a) - g'(a)<5]

= B vec[g.(a.+6.) - g.(o\) - gl(a.)6.]

=Bvec[6? | (l-x.)g!|,(j.i+xi<5i)dxi] (38)

where the terminology vec(xi) means x, avector in IR1 with ith component
x.. It follows that

|j component of f(z+p) - f(z) - f*(z)p|

1 .IlWjil )o(l^)|gV(ai+Xi6.)|dX. 6?

<j, ICB]d1l 4V «5
=5TQ.6 = pTAQ ATp

J J

which proves part (1) of the lemma. Part (2) follows immediately and

part (3) is true because Q and Q. are diagonal with non-negative entries.

a.e.d.
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4. THE FAULT-ON DYNAMICS MAP

The analysis of the fault-on dynamics is herein completed. Our

method does not require that a solution to the exact fault-on dynamics

(equation 19) be found. Instead, an approximate quiescent trajectory

can be found by replacing the nonlinear part of the dynamics, fd, with a

simpler term, fd. This latter might be, for example, piecewise linear

[27] or any other function which approximates f. but renders the

differential equation easier to solve.

In section 3 (equations 19 and 20), x(-) and x (•) were defined to

be the trajectories of the fault-on dynamics corresponding to pre-fault

equilibria 0and 0+y, respectively. Now suppose fd :lRm +lRm is

Lipschitz continuous and that there exists e src such that
CO +

sup{ilfd(z) - fd(z)ll :zSIR"1} <e^ (39)

Thus, equation 19 remains unsolved and instead y(-)» our approximation

for x(-)» is found from

y(t) = Ey(t) + fd(y(t)) + FfQ(0) y(0) = G0 (40)

In the spirit of equation 29, for each y SIRn, define i (t) SIR01 for

t S [0,tF] by

iY(t) =[E+f^(y(t))]eY(t) +Ff;(0)y ey(0) =Gy (41)

Note that the exact fault-on dynamics derivative, f\, is used in this

linearization but that it is evaluated at the approximate quiescent

trajectory, y(t) and not at the exact value, x(t). Thus, we place no

restrictions on fd other than equation 39 and those necessary to ensure

the existence and uniqueness of a solution to equation 40.
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Equation 41 has a closed form solution in terms of $(*,*)» the

state transition matrix [25, p.63] associated with the matrix function

t- E+ f^(y(t)),

It is

eY(t) «.Y(t) y (42)

where Y(t) SRmxn is

Y(t) :» *(t,0)6 + *(t,T)dT Ffj(0) (43)

Note that ¥(•) depends only on y(-) and not on y. Our approximation for

D(0+y) is y(tF) +Y(tFh and a bound on llx (t) - [y(t)+y(t)y]tl is thus

sought.

To this end, we apply the Bellman-Gronwell lemma to obtain lemma 2

below. First, however, it is useful to make the following definitions.

For ySlRn, tS[0,tF], let

rd(t,Y) :- fd(y(t)+Y(t)Y) - fd(y(t)) - fld(ylt)Mt)y (44)

Comparing this to equation 25, we see that x(t) has been replaced by

y(t), and e (t) by a linear approximation e (t) = 7(t)y. Also, let

kd := IIEII + kf (45)

where k^ is the Lipschitz constant of fd.

Lemma 2:

For all tS [0,tF],

«x (t) -[y(t) +¥(t)y]l <kd](e d-l)(eoo+!!r0(y)ll)

* t m kd(t"T)rd(T,y)lle dx
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Proof

From equations 19, 40 and 41, it is easily seen that

xy - (y+§y) •E[xy -(y+eY)] +fd(xy) -fd(y+£Y)

+ fd(y) - fd(y) + r (y) + rd(t,y)

Integrating and taking norms yields

llx (t) - [y(t)+e (t)]ll <kd ilx (t) - [y(T)+e (xflldx

+ (e +llrn(y)ll)t +
x oo 0

f^..

0

rd(T,y)IldT (46)

Applying the extended Bellman-Gronwell lemma [25, p.38] to equation 46

and integrating by parts, we get

IxJt) - [y(t)+Ut)]!l <f [em +HrMII +llf.(T,y)ll] ed TdT

whence the lemma follows

q.e.d.

Lemma 1 is now applied to convert the terms llr (y)il and llfd(T,y)ll in

Lemma 2 into quadratics in y. To achieve this, we need the following

definitions and assumptions.

Let E, SIR+ . Define

S0U) := {YSlRn : -£ <A^y <O (47)

R(€,t) := mtJySlR"1 : -5 <A^y <£} =f(t)^U) (48)

For each £d SIR+ , let

Sd(Cd) := (2SIRm : -5d <Ajz <^} (49)

-20-



Assumption Al

*dFor each ts[0,tF], there exists a n(t) S1R+ such that

R(C,t) csd(n(t)) (50)

That is, Vt S [0,tp], if yS SQ(5) then e(t) S $d(n(t)) H

T

Remark: If A' is of.rank n, then assumption Al is satisfied. This is
T

true because, if A is of rank n, SQ($) is compact and its image under

the continuous map y >+ ¥(t)y, which is R(£,t), is also compact. Thus,

this latter set is bounded in IR and a n(t) SIR can thence be found so

that it is included in 3"d(n(t)). In the case where AQ is the reduced

node incidence of the pre-fault power system, it is sufficient for this

network to be connected [21, p.417], °

*dFor each ts [0,tp], we define p(t) sir by

P(t) := Ajy(t) (51)

and, for each is {!,...,&d>, let b.(t) SIR+ such that

b.(t) >maxClgJ^p^tJ+z.)! :-n^t) < z. < n^t)} (52)

Let Qd(t) be the I. x I, diagonal matrix with i,ith entry

; f ice^ib^t).
J. *o , ~ „. *x*oSimilarly, let a := AQ0 SIR and B := FA SIR . For each i in

{!,...,lQ}> let c. SIR+ such that

c. >maxdg^.ta.+z.)!: -£. <z. <£.} (53)

1 mLet Q0 be the lQ x ZQ diagonal matrix with i,1th entry ± £ | [b]..|c.
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Theorem 1

Under assumption Al and if k is a norm bound described in the

hypothesis of lemma 1, then Vy s SQ(s), Vt s [0,tp]

HxY(t) -[y(t)+Y(t)y]ll <YTNd(t)y +ed(t)

where

f* t t k.(t-x)
Nd(t) =kn J ^T) AdQd(T)V(T)e dT

+ kJc'^e d-l)AnQJ\I
n d * ' o^o o

and

l knted(t) =k^e^De^

Further, Nd(t) is positive semidefinite symmetric inIRnxn. n

Remarks: 1. The proof is immediate from lemmas 1 and 2.

2. A consequence of this theorem is that, under these conditions,

Vy € s0(5)

«D(0+y) -Ey(tF) +Y(tp)Y]il <yTNd(tF)y +ed(tp) (54)

That is, the error between the approximate state at the fault switching

time and the exact state is less than yTNd(tp)y +ed(tp).
3. The approximation y(-) can also be chosen as an approximate

solution to equation 19 rather than as the solution of a differential

equation. We only insist that y(-) be continuously differentiable and

that y(0) = G0. It might be obtained using approximate numerical

integration or as some convenient form, such as a sinusoidal waveform [11]

In this case, fd is defined on the set {y(t) :ts [0,tp]} by
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fd(y(t)) :=y(t) - Ey(t) - FfQ(0) (55)

and e^ by

sup{ilf(y(t)) - f(y(t))H :ts [0,tp]} < em (56)

The results of this section would then remain unchanged. n

5. PRE-FAULT TO POST-FAULT EQUILIBRIUM MAP

In this section, the dependency of the post-fault equilibrium angle

on the pre-fault equilibrium angle is studied. The objective is to repro

duce the above approach, dealing now with the equilibrium map. That is,

we aim to find a linear approximation for the perturbation in the post-

fault equilibrium when the pre-fault equilibrium is disturbed y from its

quiescentvalue© and a bound on the error involved in this approximation.

Recall that the pre-fault and post-fault equilibrium angles are coupled

by the constancy of power assumption.

Specifically, suppose 0 and 0 slRn are respectively stable pre-

fault and post-fault equilibria with the same steady state power injec

tions. That is

yep •f0(9) <57>

We seek a4> siRn such that 0+ y and 0 + <j> are pre- and post-fault

equilibria with the same injections. That is

y VV =fo(9+Y) (58)

We first find a local map <f> : y -»• <f> using the implicit function theorem

[24, p.270]. Define A : lRn x IRn * IRn by

A(Y,<fr) := fp(9*+4>) - fQ(0+Y) (59)
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Thus,

A(0,0) = 0 (60)

and

£ A(0,0) =fp(ej) (61)

Since 9 is a stable equilibrium, f'(0j is symmetric positive definite

and thus nonsingular. Hence, there exists U and U , neighborhoods of

zero inIRn, and a twice continuously differentiable map $ :UQ -* Un with

the properties that

0 P

graph(<J) ={(y,<J>) SUQ xUp :A(y,<f>) =0} (62)

and

$'(0) =[f'tepjrV^e) (63)

Thus cj) can be expressed as a function of y in a neighborhood of zero and

* -1
y •*• [f'(0D)]~ fo(0)Y is a best linear approximation to that function in

that neighborhood.

Note the equation 62 also establishes the existence of the map

0 :UQ ->-IRn referred to in section 2(see equation 17). 0 and $are

related by

0(0+y) =0* +?(y) Vy sUq (64)
r r

Further,

G = {0+Y : y S U } (65)
o o

Our method does not require an exact solution of equation 57 for

the post-fault equilibrium angle 0 . Suppose that 0 is unknown and,

-24-



instead, 0 siRn has been calculated such that

lyepj-veji.ie,, (66)

where e is some positive parameter. In practice, this corresponds to

terminating some iterative solution scheme for equation 57 when the power

mismatch, "fpfO -^(ejlj,,, is sufficiently small. Defining

J0 :- f'(e) and Jp :- f-(6p) (67)

our approximation for a;+ ,Y is now ep +J-V. so that ahound on
* -1

"(ep+,t>Y) " ^ep+Jp Jo^'"cois now sought. The technique used is to pose the
above as an existence problem. To achieve this, some definitions and

assumptions are required.

Assumption A2

AQ is of rank n

Remarks: In the case where A is the reduced node incidence matrix

of the post-fault network and this network is connected, then part (i)

of the assumption is valid [21, p.417].

I i_
Let £ SIR,0, f SIR,p and Bsre. Define

+ p + +

SJO := (Y ^IRn : -£ <A^y <O (68)
= o' =

5 (5) := {* SIRn : -Cp <aJ* <Cp> (69)

From Lemma 1, there exists positive semi-definite symmetric matrices

P
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«f0(8+Y) - f0(e) - ^(ehiji, ytn0y vYes0(5) (70)

•y y*>" VV " f'p{%w\ - *TV v* e sp(5p) (71'

Note use of the 1-norm here.

For each j s {!,...,* }, let A9. SIRn be the jth column of A . Let

a := Ale SIR'P
P P

Assumption A3

Vj s a,...,y

miin{9pj(aj+Zj' :lZjliSj +BllAPj" (72)

Remark: If g',(a.) > 0 for all j s {1,...,£}, then, by the continuously
kJ J P ©

differentiable nature of 9D1-(*)» there exists aE SIR pand a8S]R+

such that assumption A3 is valid, g'-(a.) > 0 is a sufficient condition,

under assumption A2, for 0 to be a stable equilibrium. This follows

from

w - Vp(o)aI (73)
In the case where g . is a positive constant multiplying the sin function [18],

it is sufficient that the magnitude of the angle difference across each

transmission line is less than tt/2. This latter condition usually arises

in steady state security studies from thermal limits on power flow.

-26-



For each j s {1,...,^}, we define d. S3R+ by

0<dj<min{gp.(aj+Z.) :\z.\ <?p. +glA^} (74)

Let Mbe the I x I diagonal matrix with j,jth entry [M].. = d.. Let
y) IJ J J J

a SJR+ be such that

0 <a <min{zTA MaIz : flzil^ =1} (75)
r r

Remarks 1. Such an a exist since, under assumption A2, A MA^ is positive

definite.

2. In the case where A is the reduced node incidence matrix of the

post-fault network, there exists a simple technique for calculating a.

Consider an electrical network with graph described by A and with jth

branch conductance d. > 0. For k = 1, •••, n, let
j

<*k =(lk)T(ApMAj)" lk (76)

where 1_ is the k standard unit basis vector in Rn. a. is then the

voltage at node k when a unit element source is connected to node k and

all other nodes are left unconnected. Then

min{zTAnMA"[z :HzII =1} =minfj- :k=1, ••., n} (77)
P P ak

This result can be derived from simple linear circuit theory considerations

[28, p. 54] with a diagonally dominant inverse.

Equations (76) and (77) remain valid when AMA^ is aStieltjes matrix

Let N be the positive semi definite symmetric n x n matrix

K := - (J J^Mn^ +K) (78)savoPPPoo

and e SIR+ be given by
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e :.l.
s am

(79)

Further let K jr" be defined by

ss := JoVp(V ° So(5) n{z SIRn : zTnsz 18- es} (80)
Here, it is implicitly assumed that $ > e .

Theorem 2

Under assumptions A2 and A3, for each y S sg, there exists a unique

<j> SIRn satisfying

(1) fp(0p+(D) -f0(9+Y) (81)

and

(2) l(e*+*) -(e+J-1^)!. <ytnsy +es (82)

Also, V8pGBj9p+0p JoY,YTNsY+es), f'(6 ) is positive definite and thus
f'(0n+4>) is positive definite. That is, 8 and 8 + <j> are stable post-

P P p p r

fault equilibria. a

Proof

Fix y in Ss, and define h:lRn -»-IRn by

h(y) :- fptep+J'^oY+p) -f0(9+y) (83)

and let

6:» yTNsy +eg (84)

We seek to prove that h has a zero inside the closed ball B" (0,6). For

suppose there exists a ft SB" (0,6) such that h(y) = 0. Then
00

fp(6p+JpljoY411) =fo(e+Y) (85>
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Defining

$=0p +Jp]J0Y -e* +M (36)

and substituting into equation 85, we get

VV^ =Ve+^ <87>

and, from equation 86,

•(eJ+$) -(ep+JpVJL-^.ie <88)

Equations 87 and 88 are the existence part of the theorem. Thus, we need

to establish the existence of a zero of h in BJ0,$). This is achieved
oo

using the following variant of the Leray-Schauder fixed point theorem.

Existence Theorem [28, p.163]

Let C be an open and bounded subset of IRn, and fi :C •+ IRn be con

tinuous. If there exists a y s c" such that

(y-y)Tfi(y) >0 Vy S 8C (89)

then h(y) = 0 for some y S Z. a

It is thus sufficient to establish that

yTh(y) >0 Vy 3 llyll^ =6 (90)

From equation 83, it can be seen that

yTh(y) = v(y) +w(y) (91)

where

v(u) :• u^fpOp+J"1^^) -fptep+J'^oY)] 02)
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w(y) := yT[f (0J^'Vy) -f(0 )-f'(0 JJ"1^]x ' L p p p o" pv p7 pv p7 p uo,J

-yT[fo(0+Y) -fo(0) -fo(0)Y] +uT[fp(ep) -f0(e)] (93)

Our strategy is to obtain an upper bound on |w(u)| and a lower bound on

v(y) for all y such that llyi = 6, and thus show that the sum of these two
00

terms is positive.

First, we address the v term. Consider y sir" such that llyll = 6 and
00

define a and 6 SIR p by

6:= Ajy (94)

*:= AJ(9p+Jp1joY) (95)
From equation 80, J" J y g 5(f) so that Vj S {!,...,£ },

po PP P

|oj "^j1 -5pj and |6j' -B,A?j'i (96)
T

Further, since y N y <: 3 - e » we get that

0 < 3 < 6 (97)

We conclude from equations 96 and 97 that VX S [0,1]

h +M^br^rWih'j +Spi**^ m
Thus,

v(u) =ST[gp(a+6) - gp(X)] (99a)

• I &l fo «pJ(VVj)dxJ (99b)
P 2

J=l J J
(99c)
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= <5TM6 (99d)

=yTApMAjy (99e)

>allyll2 (99f)

=a32 (99g)

Equation 99b follows from the decoupled nature of g (see equation 10) and

an exact two term Taylor series expansion [24, p.190] for g .($.+6.).
rJ J J

The validity of equation 99c can be seen from equations 74 and 98. The

inequality in 99f follows from equation (75).

We now obtain a lower bound on the w term, using Holder's

inequality. Let ySIRn 3 llyll^ = 3. Then

|w(y)| <llyll llf(0 +J!1JnY) - fn(0n) - ^(©JJ'^Ylli1 *^'i _ ** 00 px p p 0 p p p p p 0' 1

+ HylMfo(0+y) - fQ(0) - f^(8)Y01

+ MJfp(6p) " V8'11! t100'

Since y S J" JQ5 (^Q) n SQ(£)» from equations (70) and (71) and from
equation (66)

|w(y)| <BtY^J^NpJp^Y +YTNQY +ej (101)

Thus, from equations(78) ,(79) , (84) and (99g), Vy s IR n 3 lluil^ =3

|w(y)| <a32 <v(y) (102)

and it follows that y h(y) >_ 0, and the existence part of the theorem

is thereby proved.

We establish uniqueness by showing that there exists a v > 0 such

that V0" SB (0 +J~1J y,3+v),f (9*J is positive definite. For then it
p °° p p 0 'pp
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follows that f is injectiveonB (0+0" J y,3) [28, p.143] and thence
p °° p p o

that $ in the theorem is unique.

Consider 0" := 0rt + J" Jny + z + z where z, z SlRn such that
P P P 0

II2II < 3. As used in equation 99c, we have Vj S {1,...,£ }co _. p

gpj(^.+(ApJ.)T2) 1 dj >0 (103)

Since each g'. is continuous, there exists a v. > 0 such that whenever
HJ J

ilzll <v.
J

9PJ(V(APJ)T£ +(aP,)Tz) >0 (104)

Defining v := min{v,,... ,v. } >0, we get that whenever ^DGB©o(0D+uC ^oYs
_ p T-

3+v), the diagonal matrix g'(A'0 ) has strictly positive diagonal entries.

Since A is full rank, the Jacobian

yep) =Ap 9p(Ajep)Aj (105)

is positive definite [21, p.768]

q.e.d.

6. P0LYT0PES OF DYNAMIC SECURITY: SHORT-CIRCUIT FAULT

In this section, the results of sections 4 and 5 are used to derive

a sufficient condition for a polytope inlRn to contain only dynamically

secure pre-fault equilibrium angles. These results are first presented

in summary form.

From theorem 1, we have aconvex set Sj CIRn, e^ SIR+ and a positive

semi definite symmetric matrix Nd slRnxn such that Vy ssd,

HD(0+y) -(y+¥Y)H 1YTNdy +ed (106)

Note that for simplicity we have not shown explicitly the dependency on
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t and it is understood that the appropriate functions are evaluated at

t= tF (eg. NdsNd(tp),Vs,PCtp)). Further, we have renamed S U) as Sd.

!s CIRn» esFrom theorem 2, there exists a convex set S„ ciRn, e„ SIR, and a
s s +

positive semidefinite symmetric matrix N slRnxn such that Vy S s

«0p(0+Y) -Op+KYlB^l YTNSY +es (107)

Note that here

K:= J"1JQSlRnxn (108)

Recall from section 2 that a stability set L CIRn xIRm was defined,

in terms of the above notation, by the following relation.

If yS Sd n ss and (0 (0+y)»D(0+y)) S Lthen 0+y is a dynamically

secure pre-fault equilibrium. The following theorem gives a sufficient

condition for a polytope of pre-fault angles to be mapped by 8 x D

into L.

Theorem 3

Assume L is convex. Suppose Q is a polytope in IRn such that for

each vertex y of ft>

Bj0p+Ky\YTNsY+es) x3(y+4'Y,YTNdy+ed) CL (109)

Then, Vy S Qn Sd n s ,

(e (0+y). d(8+y)) e l (no)

and hence 0 + y is a dynamically secure pre-fault angle. In other words,

if we define the set addition a •+ {0.} by {0 + y : y S Q},then

iSAnsnn) + {e} ctt (ill)
<- S a
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Remark: Here, ¥ refers to the closed ball using the arbitrary norm of

sections 3 and 4 while B^ is defined using the infinity norm as in

section 5. n

Proof

Let ySa and ws SB(0,yTNsY+es) and wd SB0O(0,yTNdY+ed). It is
then sufficient to show that (0 +Ky+w ,y+H,Y+wd) S L. Let {y^}. nbe the

m vertices of Q. Then there exists X. >_ 0, j = l,...,m such that
j

m m

I A. = 1 and y = I A.yJ (112)
j=l J j=l J

For j = 1,... ,rh,let

qsj - (YJ')TNsYj+es and qdj :=(yj)TNdYj+ed (113)

Ilw II Hw.ll
xg := . s °° and t, := -^ (114)

s m dm

I Msi ^ Xiqdij=l J SJ j=l J aj

*s :=inrrws and Qd =iwVwd (115)
s oo d

Since the matrices N and Nd are positive semi definite symmetric, the

maps z -*• zTN z +eg and z •*- z Ndz +ed of IRn +IR are convex [29, p.27].
Thus, by Jensen's inequality [29, p.25],

T m
0 < y N y + e < I X.q .s s - jal j sj

(116>
T

vJ

so that t and id s [0,1]. Thus for j = l,...,m
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V^^sjV^+Wd*
SBj0p+Kyj,qsj) xB(y+¥yj,qdj.) <= L (ny)

It then follows from the convexity of L that

m . .

i.e.

(6 +KrH*s,y+iYH*d) s l (119)

q.e.d.

7. POLYTOPES OF DYNAMIC SECURITY: STEP CHANGES IN INJECTION AND LINE

SWITCHING

7.1 Introduction

In this section, the above analysis is modified to handle the second

major type of transient stability event, a step change in the injections.

In this case, there is no fault-on period. Instead, the steady-state

injections change instantaneously at time t = 0 from their constant pre-

fault value to their constant post-fault value. This represents the

situations of an instantaneous generator outage or repair, and a switching

in or out of a block of load. Also, since we do not insist that the pre-

fault and post-fault load flow functions be the same, this can also

represent a line switching action, in which case the difference between

pre-fault and post-fault steady state injections is zero.

The model for this type of events is a special case of the previous

model, given in section 2 (i.e. with tp=0) with one minor modification

(i.e. the steady state injections are no longer the same for pre-fault
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and post-fault.) The analysis required to derive a sufficient

condition for dynamic security of a polytope of pre-fault angles for this

situation differs from the above in a minor fashion. Thus, after

establishing the model, we state the two theorems which are the analogues

of theorems 2 and 3. No proofs are given, as these can be done by

inspection of the proofs of the latter two theorems.

7.2 The Model

The pre-fault and post-fault models are precisely as they are stated

in sections 2.2 and 2.4. That is, there is f , the pre-fault load flow

function and f , the post-fault load flow function given by equations

1,2,3 and by equations 8,9,10 respectively. Also, we have a region L

given by equation 11, representing the post-fault dynamics. The

difference is in the way that these two models are coupled together. We

do not assume constancy of steady state injected power, nor do the fault-

on dynamics couple these two, as there are no fault-on dynamics. Instead,

they are coupled as follows.

Suppose 0 SIRn is the pre-fault equilibrium angle, so that the pre-

fault injection is f (0). Then the steady-state value of the post-fault

power injections, p SlRn is given by

Pp »Wf0(e) +6 (120)

where W SIRnxn and pS]Rn are fixed by the nature of the event. Thus,

the corresponding post-fault equilibrium angle, 0 siRn, is given by a

solution (if one exists) of

f (eD) = wfo(0) + p
(121)

and fl(0 is positive definite
P P
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The post-fault steady state injection is an affine function of the

pre-fault injection.

The way in which the choice of W and 6 can represent the different

types of transient stability events in as follows.

(i) Partial generator outage or repair and switching a block of

load of fixed size. This is the event where pre-fault and post-fault

injections differ by a constant amount, p, independently of 0. Thus,

W is set equal to the n x n identity matrix. If, for example, a generator

connected to node j were to loose 50 MW of its capacity at time t = 0

then p is the vector of all zeros except at the jth entry which is -50

and, then,

Pp - f0(e) +p (122)

Note that the range of 0 is restricted in order that the jth entry of

p does not become negative thereby representing a load.

(ii) Total outage of a generating station or load at a node. This

is the event where the post-fault injection at the node at which the

fault occurs is fixed independently of the pre-fault injections. Thus,

supposing the fault occurs at the jth node, W is the diagonal n x n matrix

with zero in the j,jth position and unity in all other diagonal entries.

All entries of p are zero except, possibly the jth, which contains the

post-fault value of the injection at the jth node.

(iii) Line switching. Here, W is the n x n identity matrix and 6 is

zero, so that

Pp =fQ(0) (123)

The significant feature of this model is the difference between A^ and A .
3 p o
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The second way in which the pre-fault and post-fault models are

coupled is that the initial condition for the post-fault dynamical system

in uniquely determined by the pre-fault equilibrium. As before, we use

the function D:IRn ->IRm but, now, because tp =0we assume that Dis
the linear function

0(0) = G0 (124)

where G SRmxn is the "selector" matrix.

The problem of finding regions of the pre-fault equilibrium space

which are dynamically secure can then be stated as seeking subsets of

Bd ={0 SlRn :f^(e) is positive definite and
3 0 siRn such that

(1) fp(0p) =WfQ(0) +p

(ii) fMO is positive definite
p p

(iii) (0p,D(0)) S L} (125)

This differs from ftd in equation 16 only in condition (i) and in that D

is a linear function. Thus, the philosophy of the the analysis remains

unchanged. However, since D is linear, the work of section 4 is no

longer required, and we need only concentrate on the pre-fault to post-

fault equilibrium map. It can easily be seen using the same process with

which the existence of 0 was established (equation 59 et. seq.) that

there exists a 8 : 0 -*-IRn where U is an open set of IRn such that
P o o v

veeQ0

fp(ep(e)) =Wf0(e) +p (126)
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Defining § x D in the same fashion as equation 18, the problem is to

find subsets of (0 xD)~ (L). The process of linearizing 0 about a

quiescent 0, finding quadratic error bounds and then using these to give

sufficient conditions for a polytope to be mapped by 0 x D into L is

now derived from the above work.

7.3 Results

First, the analysis of section 5 is modified for these types of

events. We maintain almost all the definitions of section 5 and make

only the following alterations to 0p and 0 . Let 0 SIR". We assume

there exists a 0 SIRn such that

fp(8*) -Hf0(6) +p (127)

but, as before, we do not expect to know it exactly. Instead, we assume

P

•fp(ep) -[WfoOJ+p]^ <em (128)

where em is some positive parameter. It is assumed that these values of
*

0 and e are used in all other subsequent definitions. The following

additional definitions are made. Let JQ €lRnxn be

30 := Wf;(0) (129)
/%

and N be the positive semidefinite n x n matrix, derived from Lemma 1,

such that

llWfo(0+y) -WfQ(0) -W-f^(e)yll-, <YTN0Y Vy SSq(Z) (130)

Remark: In lemma 1, we let B =WA and A =A to obtain N = AQAT.
o o o

that we have a 0_ siRn such that
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Let N$ be the positive semi definite n x n matrix

8e := - (J J-1N J"1! +N) (131)

and e\ SIR. be
s +

^ 1 ^ i .
e := — e (132}

s am u°*'

Further, let §s C!Rn be defined by

5S := S^JpSptSp) n5Q(5) n{z S]Rn : zTNsz <3- \) (133)

Theorem 3

Under assumptions A2 and A3, for each y s s there exists a unique

<j> sir" such that

(1) ye*+<j>) =Wfo(0+y) +p

and

(2) H((Dp+(D) - (ep+Jp^^Jl.i YTNSY +es
1 T

Also, V0" s BJ0 +J" Jqy,y NsY+e$), f'[\) is positive definite and thus
it if

f'(0 +<J>) is positive definite. That is, 6 and 0 + <f> are stable post-
r r r r

fault equilibria. °

Remarks: If we define f : IRn +lRn by
o J

f0(6) := WfQ(0) + p (134)

then this theorem can be proved in precisely the same fashion as

theorem 2 by changing f ,J ,N ,N . em and e„ to f ,3 ,N , N .S and
ooosm s ooosm

e , respectively whenever they occur. Note that eqution 83 becomes
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h(y) := fpOp+J^^Y+M) - f0(6+Y)

=fpOp+Jp^QY+y) - WfQ(0+y) - P (135)

and, thus equation 93 becomes

w(u) :- uVpOp+J^V) *VV ' WJAy3
- UT[WfQ(0+y) - WfQ(8) - Wf;(0)y]

+yT[fp(0p) - WfQ(0) - p] (136)

The analysis is completed by setting Nd and ed to zero in theorem 3.

The following definition is required in addition to those already made

in this section. Let

K:- tft0 (137)

Theorem 5

Assume L is convex. Suppose Q is a convex polytope in IRn such that

for each vertex y of ft

-_ /\/*. aTa /\| /v /\

BJep+KY,Y sY es} x {Ge +Gy} c L

Then, Vy s a n §d

(0p(0+Y),D(0+Y)) S 1/

and hence 0 + y is a dynamically secure pre-fault angle

(i.e. (Sdna) + (8} cS) a
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8. CONCLUSION

Two classes of transient stability events were considered in this

paper. One is short circuitfaults on a transmission lines and the other is sudden

changes in injection or line switching actions. We have given the analysis

required to design an algorithm for finding dynamic security regions

in the pre-fault state space. The proposed approach was to linearize

the maps representing the fault-on dynamics (in the former class) and

the dependency of the post-fault equilibrium on the pre-fault equilibrium

(both classes) about a quiescent pre-fault equilibrium angle. Bounds on

the difference between the nonlinear maps and their affine approximations

were then found. A sufficient condition for a polytope of pre-fault

angles to be a dynamic security region was then derived, using the con

vexity of L, the affine nature of the approximations and the quadratic

plus constant nature of the bounds. The proposed approach is fairly

general and represents the first attempt to treat the problem rigorously.

The computational scheme herein suggested requires that the full

nonlinear model be approximately solved once only after the quiescent

values. Calculation of the bounds and checking sufficient conditions are

straightforward numerical procedures. The actual design of an algorithm

for computing dynamic security regions is outside the scope of this paper.
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