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ABSTRACT

We consider an interconnected system S made of linear multivariable

subsystems which are specified by matrix fractions with elements in a

ring of stable scalar transfer functions H. Given that the kth sub

system is perturbed from Gk =N^D^1 to §k »(Nrjc+ANr|c)(Dk+ADk^1
and that the system S is H-stable, we derive a computationally

efficient necessary and sufficient condition for the H-stability of the

perturbed system. These fractional perturbations are more general than

the conventional additive and multiplicative perturbations. The result

is generalized to handle simultaneous perturbations of two or more

subsystems.
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1. Introduction

Within the theory of large interconnected systems, the problem of

determining whether the system remains stable after being subjected to

perturbations is a wery important one which has an abundant literature.

The existing results impose restrictions on the nature of the perturbations

(e.g., they must be "small", must be "stable", etc.). In this paper, we

propose a general algebraic theory that allows large perturbations with

out any essential restrictions. We also consider carefully the compu

tational aspects of the problem.

Most of the results on robust stability use the formulation of

additive/multiplicative perturbations. For example, for Jinear time-

invariant systems: Desoer et. al. [Des 1] considered coefficient

perturbations of subsystem descriptions for lumped feedback systems.

Singular perturbation considerations impose some rather unnatural

restrictions on such perturbations (no numerator- or denominator-degree

increase). Astrom [Ast. 1] and Francis [Fra. 1] considered stable

perturbations on single-input single-output stable plants: Astrom

discussed the robustness of a design method for lumped feedback systems

with a two-input one-output controller while Francis examined various

notions of perturbations for distributed unity-feedback systems. The

key mathematical technique used in [Des. 1], [5\st. 1] and [Fra. 1] is

Rouche's theorem and hence only sufficient conditions for robust

stability are obtained. Still considering stable perturbations, [Cru. 1],

[Pos. 1] and [Zam. 1] also included a number of sufficient conditions.

Recently, Doyle and Stein [Doy. 1], considering lumped feedback systems,

stated elegant necessary and sufficient conditions for robust stability
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over a prescribed class of possibly unstable perturbations. Later, Chen

and Desoer [Chen 1] proved and generalized these conditions for distributed

systems having more general feedback configurations. For nonlinear and

time-varying systems, considering stable perturbations on open-loop I/O

maps and using the small gain theorem, Zames [Zam. 2] and later Sandell

[San. 1] gave sufficient conditions for robust stability of unity-feedback

systems. Safonov [Saf. 1] gave sufficient conditions for the robust

stability using general state-space models.

More recently, considering matrix fraction description of transfer

functions, Vidyasagar et. al. [Vid. 1] introduce a novel formulation of

perturbations. More precisely, using coprime facotorizations, they define

a topology for unstable systems and show that it is the weakest topology

such that the map from open-loop transfer functions to closed-loop trans

fer functions is continuous. Throughout this paper, we use this more

general formulation of perturbations and call them the fractional

perturbations.

In this paper, we consider an interconnected system S made of u

linear time-invariant multivariable subsystems each described by a matrix

fraction with elements in the ring of stable scalar transfer functions

W. Suppose the kth subsystem is the only one subjected to fractional

perturbations; more precisely, let it be perturbed from a r.c.f. (right

coprime factorization) Gk =N^1 to ar.c.f. Gk := (Nrk+ANrk)(Dk+ADk)"1
where both ANrk and ADk have elements in Hbut are not assumed to be

"small". Given that the nominal system S is H-stable, we derive an

efficient necessary and sufficient condition for the tf-stability of the

fractionally perturbed system. The result is generalized to handle

simultaneous perturbations of two or more subsystems. Finally, using
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Nyquist type argument, we obtain graphic stability tests for the four

special algebras of transfer functions commonly used in control problems.

Computational considerations are also included.

This paper is organized as follows. In section 2, we define the

algebras and the matrix fraction descriptions of transfer functions. In

section 3, we describe the nominal and the fractionally perturbed inter

connected systems. In section 4, we derive efficient necessary and

sufficient conditions for the stability of the perturbed system. In

section 5, we generalize the results to handle simultaneous perturbations.

In section 6, considering the four commonly used algebras, we give Nyquist-

type stability tests and discuss their computational aspects.

2. Preliminaries

2.1 Algebraic Framework

Throughout this paper, we assume the following general algebraic

structure:

H : an entire ring, i.e., a commutative ring with no zero-

divisor. Let 0 and 1 denote the additive and multiplicative

neutral elements, respectively.

I : a multiplicative subset of tf, i.e., ICH, 0 £ I, and

x, y e i=> x-y e I. w.&.o.g., let 1 e I.

G :=[H][I]_1 := {n/d :n€ H, d6 1}, i.e., G is the ring of

fractions with denominators in I[Bou. l][Lan. 1, p. 66]

F : a field. Typically, F =IR or C.

We assume that both (H,F) and (GSF) form vector spaces over the

field F (i.e., multiplication by scalars is defined on F x Hand on

F x G, and the axioms of vector spaces are assumed satisfied).
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Table I shows four special cases of the algebraic structure above:

(see Sec. 6 for the definition of U). These special cases have additional

properties which will be used in Sec. 6 in order to obtain Nyquist-type

test.

Comments:

(a) Since by assumption 1 e I, we can identify n £ H and n/1 € G; hence

we view H as a subring of G.

(b) By construction of G, every element of I has an inverse in G.

(c) Since both H and G are commutative rings, both (tf,F) and (G,F) are

commutative algebras over the field F . a

2.2 Coprime Factorizations

Definition 2.1

Let He Gmxn. We say that ND"1^"1^, resp.) is aright-coprime
factorization (r.c.f.) (left-coprime factorization (l.c.f.), resp.) of

H if and only if

(1) H=N^"1^"1!^, resp.);
(11) Nr €Hmxn, DGHnxn (D GH , Nft <5 H , resp.), and det DGI;(mxn, DGHnXn (D GHmXm, N0 eT

(iii) (N ,D) are right-coprime (r.c), i.e., ] U € tPm and

v eHnxn such that UH + v D a j (2>5j
r r r r n

((ill') (D,N£) are left coprime (I.e.), i.e., 3 U£ e Hnxm and

V^ €Hmxm such that N£U£ +DV^ =Im, resp.) (2.6)

Definition 2.2

Let H€ G™". We say that N/\ is a right-left-coprime factoriza-
tion (r.l.c.f.) of Hif and only if (1) H=lyf1!^, (11) Nr,D and N^ all
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have their elements in H with det D e I, (iii) conditions (2.5) and (2.6)

hold. n

Comment:

Recently, Vidyasagar et. al. give a set of sufficient conditions for

the existence of coprime-factorizations [Vid. 1, Thm. 3.34]; it is easily

seen that all the examples in Table I satisfy those conditions. In this

paper, we assume the existence of coprime-factorizations throughout (see

assumptions (3.4) and (3.15) in Sec. 3). n

3. System Descriptions

3.1 The Nominal System S

Given u subsystems, each one described by its transfer function
n .xn..

matrix G. € G J (j=l»...>y)> we consider the interconnected system

S„ obtained as follows:
o

(i) We assign a summing-node to each subsystem input; (3.1a)

(ii) We associate an additive exogenous input with each summing node;

(3.1b)

(iii) We feed each subsystem-output through gain-matrices with

elements in F to all the summing nodes. (Some of these gain-matrices

may be zero). (3.1c)

More precisely, as shown in Fig. 1, the subsystems are interconnected

according to :

y

e. = u. + I F. y . (3.2)

> j = l,...,y,
y. = G.e. (3.3)
y3 3 3 J
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where e. is the jth subsystem-input, y. is the jth subsystem-output, u.
J J n..xn J

is the jth exogenous input at the jth summing node, and F. €F 1J oa

represents the gain-matrix from the output y to the jth summing node.

We assume that

for j=l,...,y, G. has ar.l.c.f. G. =N.D^N.. . (3.4)
3 3 rj J *J

Now, let u := [u{ j ... i uJ]T, y := [y{ i ... i yjf, 5 :=
[J i ...:J]T, (where C, is defined in Fig. 1); let D:= diag[D,,...,D ],

• • • y j u

Nr :- diag[Nr1 N^], and N^ := <Hag[NM N^]; let nQ :- In,
JJ. \Xmm I

n. := J n. , and denote by F the n x n. matrix with its (a,B)th block
a=l

equal to F g, for a, 6 = l,...,y. Thus, the nominal system S is

described by

DCC = Ityj, Nr? =y, (3.5)

where

Dc := D- N£FNr . (3.6)

From (3.5), H : u «• y, the I/O map of the system S , is given by

Hyu =HrtTc\ . (3.7)

Comments:

(a) The G.'s are assumed in (3.4) to be specified by a r.l.c.f. in
j

order to have a flexible general theory : the resulting framework allows

some G.'s to be specified by l.c.f. while others may be specified by a
j

r.c.f. or a r.l.c.f.

(b) Assumption (3.4) implies that

(Nr,Dc) are r.c; (D^) are I.e. (3.9)

-7-



Indeed, by definition,^ U , Vr, U , V , all with elements in H, such
y

that UN +VrD = I and N^U£ + DV& = I , where n := I n and n

is the dimension of £ . Consequently,

«VW>Nr +Vr(0-HtFNr) - I . (3.11)

Nt«U*+FNrVJl' +̂ WV " !nc> <3-12>
and hence (3.9) follows.

+

(c) Note that none of the G.'s are assumed to be H-stable.'
j

3.2 The Perturbed System S(AN .,Ap )

Suppose that one subsystem, say Gk, is perturbed into the subsystem

Gj. We assume that

(D fifc-MrtD-1. (i.e.,N,k =Inik); (3.15a)
i n«uxn-u

(11) S := (Nrk+ANrk)(Dk+ADk} GG Jand (3.15b)

(iii) ANrk and ADk> all with elements in H, are such that (3.15b) is

a r.c.f. of Gk. (3.15c)

Perturbations of this type are called the fractional perturbations

We denote by S(ANrk,ADk) the resulting fractionally perturbed inter

connected system.

Comments:

(a) Note that the fractional perturbations AN .and ADk are H-stable.

Compared to H-stable additive or multiplicative perturbations (i.e.,

+
A transfer function matrix is said to be H-stable iff it has all its

elements in H.
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G +• 6. + AG. , G. *• (I +M.)G.), fractional perturbations are much more
k k k k n k K K

flexible : in the context of stable proper rational functions H = R(0),

fractional perturbations allow us to change the number and the locations

of poles and zeros anywhere in C. In contrast, both stable AGk and stable

M, cannot move C -poles; furthermore, stable AG. cannot change the number

of C-poles while stable MR may delete some I+-poles with the consequent

difficulties of unstable pole-zero cancellations,

(b) The fractionally perturbed subsystem can be obtained by applying

(see Fig. 2) (i) an H-stable feed-forward perturbation ANrk on Nr|<, and

(ii) an H-stable feedback perturbation -ADk on D~ .

Let H (AN ,,AD, ) denote the I/O map of the perturbed system
yu rk k

S(ANrk,ADk); it is given by

V^rk^V =MAVDc(ANrk'ADkrV (3J8)
where Dc(ANrk,ADk), Nr(ANr|<) are obtained from DQ and Nf, respectively,
by the substitutions: Nfk * Npk +AN^-, Dk ^- DR +ADk. Using assumptions

(3.4) and (3.15), we can easily prove that, (similar derivation to (3.9)

above):

(Nr(ANrk), Dc(ANrk,ADk)) are r.c; (Dc(ANrk,ADk), N^) are I.e.
(3.20)

4. System Stability

In this section, we define stability and derive necessary and

sufficient conditions for the stability of interconnected systems.

Definition 4.1

An interconnected system such as S (specified by (3.1), (3.2) and
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(3.3)) is said to be H-stable iff aTJ_ the (closed-loop) transfer function

matrices from any exogenous input u. to any_ subsystem-output y have all

their elements in H. In the case these transfer functions have all their

elements in G, the interconnected system is said to be well-posed.

Lemma 4.2

(I) Consider S specified by (3.1) - (3.4). U.t.c,

the system S is H-stable * (4.6a)
n xn.

(by def., Hyu<SH° ')

det D„ has an inverse in H. (4.7a)
c

(II) Consider S(AN .,ADk) defined as S except for §k specified in

(3.15b,c). U.t.c,

the system S(AN . ,AD. ) is H-stable (4.6b)
rK K n xn.

(by def., Hyu(ANrk,ADk) 6H° ')

det D (AN .,AD. ) has an inverse in H. (4.7b)

Comments:

(a) The conditions (4.7) are necessary and sufficient conditions for the

H-stability of the systems S and S(AN .,ADk), respectively.

(b) Lemma 4.2 remains valid when we replace H by G in (4.6) and (4.7).

The conditions (4.7), with H replaced by G, are then necessary and

sufficient conditions for the systems S and S(AN .,aD.), respectively,

to be well-posed.
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Proof of Lemma 4.2:

(I) *=. Since H is a commutative ring, (4.7a) implies, by Cramer's rule,
l nrxnr i noxnithat D^6P * [Mac.l, p.303]. Consequently, H =Nr d~Q'n^ € H° 1

by the closure properties of H.

=>. Let Ur := Ur +V^F, U£ := U£ + FN^. Postmultiply (3.11) by

Dc\v PremultiP1y (3-12) by Dc1* and add:

Dc] =W* +V A +h <4-10>
Equation (4.10), the closure properties of H, and assumption (4.6a)

-1 nExn£
give D €H s . Hence, conclusion (4.7a) follows.

(II) Same as above.

Theorem 4.3

Consider the systems S and S(AN .,AD. ) defined in (3.1) - (3.4) and

(3.15). Assume that

the nominal system S is H-stable (4.13)

n xn.

(by def., Hyjj €H° 1).

U.t.c, the following statements are equivalent:

(I) The perturbed system S(AN .,ADk) is H-stable

n xn.

(by def., Hyu(ANrk,ADk) GH° '); (4.14)

(II) det[In +HC u ADR - (HCuF)kkANr|<] has an inverse in H
I Is Is K

(4.15)

where H_ and Hr are the transfer function matrices of the nominal
Huk ^u

system S mapping uk into £. and u into £, respectively, and
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(V>tt !" j, \u> (4J6)
is the (kJOth block of (H^F);

n..x(n..+n . )
(III) H(ANrk,ADk) e H1K 1K 0K (4.17)

where H(AN .,ADk) is the transfer function matrix of the system S(AN .,ADk)

I:aJ]T into Ikshown in Fig. 4 mapping [til : av] into £..

Comments:

(a) There is no restrictions on (1) the "size" of the perturbations

ANrk and ADk, and (ii) the number of unstable poles of the perturbed

subsystem Gk when considering any of the algebras of Table I.

(b) The transfer functions Hr and (Hr,F).. have- the following
Si,Uk sU KK

interpretations: Consider Fig. 3 which shows the fractionally perturbed

system S(AN k,ADk) with interconnections cut at (5\T), (IT} and (C?) .
H- is the transfer function mapping the input injected at (7\T) into
Vk vJS/

the "output" measured at (C|j ;(H£ F)kk is the transfer function mapping

the "input" injected at ni?) into the "output" measured at (C^\ . These
transfer functions describe the behavior of S at the site of the pertur

bation.

(c) Theorem 4.3 shows that, in order to test the stability of the

fractionally perturbed system S(AN .,ADk), we need only know the transfer

functions Hr and (H-F).. of the H-stable nominal system S . This
k k

is illustrated by Fig. 4: When we examine the stability of the perturbed

system S(ANrk,ADk), the nominal system S is reduced to a equivalent

system with two inputs uk and d. ,and one output £• . Furthermore, the

stability of S(ANrk,ADk) is equivalent to that of the system S(ANrk,ADk)

-12-



with two inputs u, and d. , and one output j. .

(d) Since both H- and (Hp F).. do not depend on the perturbations
5,,ukuk

tu ;kk

(ANrk,ADk), the stability test (4.15) is very efficient when one has to

examine the effects of a number of specified perturbations.

Proof of Theorem 4.3:

Vni(4.14) *> (4.15). By.assumption (4.13), H e H * \ and hence both

H^ u and (H£ F).. have all their elements in H. Thus, the determinant
Is K

in (4.15) is in H. We claim that

det Dc(ANrk,ADk) - det Dc • detCl^ +̂ ADk - (H5/)kkANpk]
(4.22)

Indeed, by direct calculations ,

det Dc(ANrk,ADk) =det{d1ag[Dl§... ,Dk +ADk,...,D ]

-N,Fdiag[Nrl,...,Nrk+ANrk,...,Nry]}

det{(D-N£FNr) +

L.

det(Dc + (
AD,

i i
i i

!ADk!
I I
i i

"•" —

-v
• 1 1

1 1

!ANrk|
i |

1 i

N£F I'n
AN

rk
]_ I Ik!-"

(4.23)

'Throughout all unfilled blocks in a matrix have all their elements equal
to zero.
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= det D. det{I + d:](
n_ c N

N-F

AD,

n

AN
I1-,.

det D^ • det(l +
C nik

rk l_ i

1 I '.... nik; ... &
-X

- V
.%

(4.24)

=det Dr •det[I +(Dl1)^ AD, -(d;\f)l1ANJ
'ik

c 'kk "~k c £ 'kk rk-
(4.25)

where (i) we use the equality

det(I+MN) = det(I'+NM) (4.26)

to obtain (4.24); and (ii) in (4.25), (-)kk denotes the (k,k)th block

of the matrix in the argument. Now, by (3.5), Hr„ =D"^-; hence
cU C X>

Hr u =(°c )^ since in (3.15a) we assumed that N£k =In . Consequently,
(4.22) follows.

The equivalence of (4.14) and (4.15) follows immediately by (4.13),

(4.22), and Lemma 4.2.

(4.15) ~(4.17).

From Fig. 4, it is easy to show that

H(ANrk,ADk) =NrD(ANrk,ADk) -1

where

-14-
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' nikx(nik+nnk)
Nr^[\uk:^uFWGH (4.32)

°<*V*V •- «nik+nok
-AD, (nik+nok)x(nik+nok)V € H

*AN
rk

Direct calculation using (4.26) gives

det D(ANrk,ADk) = det{In - \
1 K

-AD,

AN
rk

=detClnik +\ukADk - (WNrkl

(4.33)

(4.34)

From (4.31), (4.34) and the closure properties of H, the implication

"(4.15) =>(4.17)" follows immediately.

To prove "(4.17) => (4.15)" : observe that (4.32) and (4.33) give

-AD,

AN
rk

N + D(AN .,ADk) = I
r rk K nik+nok

(i.e., (Nr,D(ANrk,ADk)) are r.c) and hence

D(ANrk,ADk)-1 _ -AD,

AN
rk

^V*V +\^ok • (4.36)

1 ("ik^ok^^ik^ok'(4.17) and (4.36) imply that D(ANrk,ADkr' e H
Hence, conclusion (4.15) follows.

If we assume the existence of a norm on the algebra H of stable

transfer functions (and this holds for the four examples of H in

Table I), then we can state a robust stability result:
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Corollary 4.4 (Robust Stability)

Let the conditions of Theorem 4.3 hold. Let (H,II-II) be a Banach

algebra and let p-j > 0 and p« >0 be such that

"V/"1 +1(H5uF)kkSp2 <1• (4.46)

U.t.c, if

•kuk

t

ANrk 6 B(Nrk;p2} and ADk € B(Dk;pl)j (4-47)

then

S(ANrk,ADk) is H-stable. (4.48)

Comment: Corollary 4.4 shows that the H-stability of the system S is

robust with respect to fractional perturbation (AN k»AD.).

Proof of Corollary 4.4:

Assumptions (4.46) and (4.47) imply

llH€,^ADk " (HSuF)kkANrk" <Ti tnus tDie- 1- (8.3.2.1)],
'k"k

[Sk +VkADk"(H^F)kkANrk^,GW

Consequently, (4.15), or equivalently (by Theorem 4.3), (4.48) follow,

, n.,xn..
i-l a u ik lk

+VH 6 H, Vp >0, B(H;p) := {H' :llH'-Hll <p} .
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5. Simultaneous Perturbations

The analysis above can easily be extended to handle simultaneous

perturbations of two or more subsystems. For example, suppose that the

jth and the kth subsystem are simultaneously subjected to perturbations.

We assume that

Gj =NrjDj1 and Gk =NrkDklj both r-c-f-'s»
are perturbed to r.cf.'s G. := (N .+AN .KD.+AD.)"1J rj rj j j (5<5)

and Gk := (N^+AN^KD^AD^"1 where ANrj, AD..,
ANrk and ADfc are all H-stable.

Let S(AN .,AD.;AN ,,ADk) denote the resulting perturbed system and let the

corresponding I/O map be given by

Hyu(ANr.,AD.;ANrk,iDk) =Nr(ANrj,ANrk) • D^AN^AD.^.^r1 • N,
(5.6)

where Nr(ANrj,ANrk) := diag[Nrl Nrj+ANrj Nrk+ANrk'• ••*Nnj] »
and

Dc(ANrj,AD.;ANrk,ADk)

:= diag [D1,...,Dj + ADJ.,...,D|c + ADk>...,D ] - V^M^rj'^rk5

(5.7)

As before, it is easy to see that coprimeness conditions similar to (3.20)

hold.

Theorem 4.3 for one fractional perturbation can now be generalized to
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Theorem 5.1

Consider the nominal system S and the perturbations (5.5). The

perturbed system S(AN .,AD.;ANrk,ADk), defined as in (3.1) - (3.4), has

the I/O map defined in (5.6). Let

(a) H- , for a, be {j,k}, and Hr denote the transfer function matrices
Vb *u

of the nominal system Srt mapping uK into £_ and u into £, respectively;
o o a

(5.11)

(b) (H£uF)ab, for a,b € {j,k},denote the (a.b)th block of (H-UF);

(c)

X(ANrj,AD.;ANrk,ADk) :-

U.t.c, if

S is H-stable,

then

Hr „ AD.-(Hr F)..-AN ,
h 3 J

\u.-ADj-(HCup)kj-ANrj

S(ANr..,AD..;ANrk,ADk) is H-stable

(5.12)

^.u^V^k^rk

\ukADk-(HCuF)kk-ANrk
(5.13)

(5.14)

(5.15)

det[I +n + X(ANV,.,AD.;AN . ,AD. )] has an inverse in H. (5.16)
nij lk rj j rK k

Proof of Theorem 5.1:

First, using (5.7) and calculating det DC(AN .,AD.;AN .,ADk) (as in

Sec. 4 to obtain (4.23) et seq.), we obtain
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det D^AN^.AD^AN^AD^ =det Dc •det[In +n +X(ANrj,ADj;ANrk,AD|<)]
1J IK

(5.21)

with X(AN .,AD.;ANrk,ADk) defined in (5.11)-(5.13).

With (5.21), the rest of the proof is similar to that of Theorem 4.3.

Remarks:

(a) We can also derive (5.21), and hence prove Theorem 5.1, by considering

one perturbation at a time. More precisely, consider S(AN .,AD.;ANrk,ADk)

as the result of perturbing first SQ into S(ANrk,ADk) and second S(ANrk,ADk)

into S(AN .,AD.;ANrk,ADk) :calculating directly (as in the derivation for

(4.22)), we obtain for the second step

det Dc(ANrk,ADj;ANrk,AD|<)

=det Dc(ANrk,ADk) 'det{In +H^U UNrk,ADk)AD.-[H?u(ANrk,ADk)F]..ANr.}
'j j j

(5.31)

where H u(ANrk,ADk) and [Hr^ANric'^k^jj are the transfer function
matrices of S(ANrk,ADk) defined as H^ u and (H^F)^- of SQ. Substitution

of (4.22) for the first step in (5.31) then gives

det Dc(ANrj,ADj;ANrk,ADk) =det DQ •xUN^.AD^AN^AD^ (5.32)
where

x(ANr.,AD.;ANrk,AOk)

• ADj " VANrk'ADk>F];)j ' mn} (5.33)
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Now, direct calculation shows that

H5.u>Nrk'4V
J J

1-1=H^%AV(VV^kH
(5.34)

[HCu(ANrk,ADk)F]
JJ

' {%%-\k^%r^^\k\h^%%kM^ -1

Using (5.34) and (5.35), we can easily show that

detCl"ij+nik+X(iN''J,ADJ;AN'-k,ADk)] =*(iVAVNrk>AV • (5-36)
Therefore, we obtain (5.21) by substituting (5.36) in (5.32).

(b) By (5.36), the stability test (5.16) is equivalent to

x(AN .,AD.;ANrk,ADk) has an inverse in H,

n

6. Nyquist Tests for Special Cases

The results so far obtained invoke only algebraic properties of the

transfer functions. In order to obtain Nyquist-type stability tests, we

have to use their analytic properties. In this subsection, we consider

the four algebraic structures listed in Table I, namely, the following

four algebras of (scalar) transfer functions for single-input single-

output linear time-invariant systems: (i) IR (s) (continuous-time lumped

case); (ii) 8(aQ) (continuous-time distributed case [Cal. 1-2]);

-20-



(iii) 1RDU) (discrete-time lumped case); and (iv) b(p ) (discrete-time

distributed case [Che. 1]).

6.1 Nyquist Tests

Referring to Table I, note that U C c is the "region of instability"

in the sense that (a) e^/ery element of H is analytic in ti; (b) for any

h€H that has an inverse in G,

h has an inverse in H *> h has no zeros in U; (6.1)

and (c) whenever G€ Gmxn is not in Hmxn, G is analytic in U except for a

finite number of poles [Cal. 1-2], [Che. 1]. Hence using the "argument

principle" [Die. 1, p. 246-247] to determine whether (6.1) holds or not,

we obtain the following

Corollary 6.1 (Nyquist Test for Special Cases)

Let all the conditions of Theorem 5.1 hold with all transfer function

matrices have elements in one of the four algebraic structures of Table I.

For simplicity, let the transfer function matrix X(AN .,AD.;AN .,ADk),

defined by (5.11)-(5.13), be strictly proper (i.e., goes to zero as s,

(or z), goes to » in. (C+).

the system S(AN .,AD.;ANrk,ADk) is H-stable

the Nyquist diagram of det[I +n +X(AN .,AD.;AN .,AD.)]
nij nik rj j rK k

neither goes through nor encircles the origin. (6.5)

Comments:

(a) For given perturbations (AN .,AD.) and (AN .,ADk), Corollary 6.1
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provides a graphic stability test (6.5) for the system S(AN .,AD.;AN .,ADk).

(b) Setting AN . and AD. equal to zero matrices reduces (6.5) to a graphic
' j <j

stability test for the system S(AN k,ADk).

n

6.2 Computational Aspects

The stability test (6.5) is very convenient for computations when

system studies require us to check the stability of the perturbed system

for a prescribed finite set of perturbations V. for G. and a similar set
j • j

V. for Gj. More precisely, let j =u - 1 and k = u, then given a suitable

finite set of frequencies ft, we propose to sketch the corresponding Nyquist

diagrams using the following

Algorithm 6.2 (Stability Test for S(AN / ,\,AD ,;AN ,AD ) over

V , and V )
V-l w

Data ft := {a> : a = l,...,nu};

Vl := {(ANr(i-l)'ADi-l> :B-1....,V1>'
\ '•' ^(anJ.aoW) :y- I....,*,,};

for (a=l....,m )

obtain H^ u (jooj and CHru(Jwa)F]aD» for a»D e {P"1* U>» bY
a b

solving appropriate sets of linear equations;

for (B=l,....ni «|)

compute and store V^ := H^ ,, (jw ) • AD^](jw ),
r c, -,u ,w a u-1 a

u-1 y-1

•ANr(i-l)( '̂> and«(6) := IVVWl) •ANr(i-D(Juah
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for (Y°l>....m )

compute and store Y^ := H^ .. (jwJ • AD^fjuJ.
VlV a' a

.(Y) .„Y " "WW ^(J^). ZM :- [H,u(jcoa)F](y„1)y -AN™^).
Z(Y) := [Hril(jco )F] • ANW(ju> );

£uw a w r]i VJ a

for (B=l,...,m ^

for (Yal....,m )

compute and store

NB (jai0) :- det
I +vW-w(B)
.iLi-U

V^-W<3)

yM^y)

I +y(y).z(y)
iy

for (8=l,...,my-1)

for (Y=l,...,my)

use the points NgY(jcoa), a= 1,... ,mQ, to plot

the Nyquist diagram;

use the Nyquist test (6.5) to determine

the stability of StANjg^j.ADj^-.AN^.ADj^);
•

Remark:

The algo above determines the stability of the perturbed system

^(AN,,/ -i\,AD t;AN_ ,AD ) over the sets V , and V by aDDlving the Nyquist
r(y-l;' \i-Y r\i y y-1 y •• - J^

test (6.5) to the Nyquist diagram of det[In +n +X(AN, _-,),AD ^;AN ,AD )].
Alternately, by (5.36), we can also determine the stability by checking the

Nyquist diagram of x(AN .,AD.;ANr|<,ADk) as prescribed by (5.33). In this

case the labels j = y and k = y - 1 are chosen so that m , < m [Bra. 1]
y-1 - y J
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and the complex matrices H^ u(^(y-D^Vl^^a5 and
[H- (AN / ,,,AD ,) • F] (jo)) are obtained by first updating the LU-factors

of Dc(jWo) to obtain those of Dc(ANr(y-1),ADy^)(jwa) [Haj. 1], and then
using the resulting LU-factors to solve appropriate sets of linear

equations. A careful study of operations count shows that the reduction

of computational cost by using (5.33) is insignificant. Indeed, calculating

at each frequency the second determininant on the right-hand side of (5.33)
3 3

requires (2n +n /3) multiplications while calculating the determinant in

(6.16) requires (2n) /3 multiplications; furthermore, these calculations

are repeated (^.-I'm^-m^) times. In other words, the benefits of calcu

lating the determinant of a smaller size matrix in (5.33) is almost wiped

out by the cost of calculating 2matrix products (2n3).

•

6.3 Lumped Systems

For lumped systems whose rational transfer function matrices have

the usual polynomial matrix fractions, we can perform all the calculations

in the ring of polynomials IR[s]. For example, considering only one perturbed

subsystem, we can easily prove the following

Corollary 6.3 (Continuous-Time Lumped Systems)

Consider the continuous-time lumped nominal system S defined in
o

(3.1) - (3.4) and (3.15a) where all the N's and the D's are polynomial

matrices. Suppose that the polynomial fractional perturbations AN , and
rk

ADk are such that

(i) the perturbed k.th subsystem is described by a (polynomial) r.c.f.

\ ••- ("rk^rkXV40*)"1'
(ii) the perturbed system S(ANrk,ADk) is well-posed
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n xn.

(i.e., Hyu6IRp(s) ° ') . (6.21)

U.t.c, if

then

o

S is exp. (exponentially) stable
n xn.

(by def., Hy(jeR(0) ° 1), (6.22)

S(AN .,AD. ) is exp. stable
n xn.

(by def., Hyu(ANrk,ADk)€=R(0) ° ') (6.23)

Z{*tCSk +VkADk"V,kkANrk3}CC- (6'24)

for some convenient a > 0, the Nyquist diagram of

1 - det[I +Hr „ AD,, - (H^F),. AN . ]
(s+a)p nik 5kuk k 5u kk rk'

neither goes through nor encircles the origin (6.25)

t
where

p := 3[det Dc(ANrk,ADk)] - 3[det Dc]. (6.26)

Comments:

(a) It is easy to see that

P[Hyu(ANrk,ADk)] nt+ CZtdetCl ♦ H^AD, - (H^F),^,]}

+V peiR[s], 3[p] ':= degree of p
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(b) p in (6.26) is such that the Nyquist diagram goes to a nonzero

constant at ». Indeed, from (4.22),

det DjAN . ,AD. )(s) • . , _# x
, P/ " =77T? ' det[In.,+%u ADk " (V^rklW(s+ar-det Dc(s) . (s+ar lk sk k

(6.27)

By (6.21) and (6.22), det Dc(ANrk,ADk) * 0 and det Dc t 0; hence from

(6.26), both sides of (6.27) approach some nonzero constant as s •»• «.

7. Conclusions

The algebraic theory of robust stability developed in this paper

shows that a single algebraic theory covers all the important classes of

systems used in engineering (see Table I): the cost is small: "think

in terms of commutative rings and define strictly proper as "tends to

zero as s, (or z), goes to infinity in I+."

The formulation presented above is particularly efficient if one

has to test the stability of a given interconnected system for a specified

class of perturbations: at the cost of some overhead, the test cost per

perturbation is considerably reduced by the consideration of the simple

system shown Fig. 4.

The fractional perturbations used in this paper are the most general

perturbations possible (while remaining within the class of systems under

consideration): they do not suffer from the restrictions of the well

known additive and multiplicative perturbations.
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Table I. Examples of H, I, G, and U. (Note: a < 0 and 0 < p <. 1)

H R(0) A>o> *(0) V(po>

I R°°(0) *"(0) *7>o>

G Vs) §(*,) Kp(z) b(p0)

U h <E

V
D(DC D(PQ)C

Ref. [Cal. 1-2] [Che. 1]
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Figure Captions

Fig. 1. The jth subsystem G. with its interconnections.
j

Fig. 2. The fractionally perturbed kth subsystem G/.

Fig. 3. The system S(AN .,ADk) with interconnections cut at

V) .My and (ck

Fig. 4. The two-input (uk and dL) one-output (C. )

system S(ANrk,ADk).
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