

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VIRTUAL STORAGE MANAGEMENT IN

THE ABSENCE OF REFERENCE BITS

by

Ozalp Babaoglu

Memorandum No. UCB/ERL M81/92

17 November 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

.1 >v

Virtual Storage Management in the Absence of Reference Bits

Copyright* 1981

by

Ozalp Babaoglu

Virtual Storage Management in the Absence of Reference Bits

Ozalp Babaoglu

Ph.D.
in Computer Science

Electrical Engineering
and Computer Sciences

Domenico Ferrari
'Chairman/of Committee

ABSTRACT

Virtual storage management requires a policy to replace data in pri

mary storage with incoming data from secondary storage. To be effective,

such a policy must select for replacement data that is not going to be

needed in the near future. Having no knowledge about future demands for

data, the replacement policy must anticipate them based on past demands.

In most implementations of virtual storage systems, past demand for

data is recorded in a reference bit associated with that data. These bits can

then be examined and/or altered by the replacement policy. This thesis

extends the virtual storage concept to within each storage hierarchy level.

The analysis of suchhierarchical replacement policies confirm their suitabil

ity for managing storage hierarchies that lack reference bits.

Our preliminary studies are concerned with results that can be used in

the evaluation of virtual storage systems in general. This includes the

development of a program that is capable of synthesizing ceKain referencing

behaviors in a virtual storage.

Then, a class of hybrid replacement policies that employ different algo

rithms for the management of data in two logical partitions of primary

storage is introduced andanalyzed. It is shown that undercertain conditions

these hybrid policies incur little additional cost and perform as if reference

bits were available. Trace-driven simulations are conducted to validate the

findings of the analytic studies. These indicate that the conditions under

which the hybrid policies exhibitgood performance arerarely satisfied in an

actual system.

As alternatives, the Clock and Sampled Working Set replacement poli

cies are developed for this environmentand shown to perform more robustly

with respect to most variations encountered in a typical system.

Based on this work the global Clock algorithm is adopted as the page

replacement policy in avirtual storage extension madeto the UNIX operating

system. The system runs on the VAX-11/780 computer, which lacks refer

ence bits.

Formal models based on inventory control theory are finally developed

to optimize certain policy parametersadopted in the implementation.

TABLE OF CONTENTS

1. Virtual Stores *

1.1. Introduction - - *

1.2. Virtual Memory Management -. *

1.2.1. Program Behavior - ~ 4

1.2.2. Page ReplacementPolicies -. *

1.2.2.1. Unrealizable Algorithms -. *

1.2.2.2. Realizable Algorithms - 5

1.3.Evaluation Techniques -.-. - 7

1.3.1. Stochastic Models - - 7

1.3.2. Trace-Driven Simulation - - 8

1.4. Summary and Concluding Remarks ...» 9

1.5. References - **

2. Efficient Generation of Memory Reference Strings 15

2.1. Introduction 15

2.2. The LRU Stack Model 17

2.2.1. The Descriptive Model 17

2.2.2. The Generative Model -...1 19

2.2.3. Model Use 2a

2.3.The TransformationMethod 21

2.3.1. Fault Rate Characteristics 21

iv

2.3.2. Mean Memory Occupancy Characteristics 2°

2.4. Comparison with the Stack Deletion Method 31
322.5. Applications

34
2.8. Conclusions

34
2.7. References •;•

a ConstrucUng SyntheUc Programs for Virtual Memory 39
39

ai. IntroducUon

3.2. The Model 4

3.2.1. EstimaUng the Model's Parameters 42

3.2.2. GeneraUon ofReference Strings **
Aft

a2.3. The Transformation Method

48a3. StaUstlcal Considerations

50Synthetic Program Overview

51a5. Practical Considerations

a5.1. Efficient Generation of Stack Distances 51
CO

3.5.2. Stack ManipulaUon •

543.5.3. Sample Implementation

59
3.6. Conclusions

59
3.7. References

4. Hybrid Page Replacement Policies -AnalyUc Studies 83

4.1. IntroducUon

Ail4.2.The Independent Reference Model — °*

4.3. Hybrid Policies • 65

v

4.3.1. Fixed Partition Hybrids 80

4.3.1.1. The FIFO-LRU Hybrid Policy 67

4.3.1.2. The RAND-LRU Hybrid Policy 74

4.3.2. Variable Partition Hybrids 77

4.3.2.1. The FIF0-WS Hybrid Policy 77

4.3.2.2. The RAND-WS Hybrid Policy „ 84

4.3.2.3. Simple Variations 80

4.4. Numerical Results 87

4.5. Cost Considerations 92

4.6. Conclusions 93

4.7. References , 94

5. Hybrid Page Replacement Policies - Empirical Studies 97

5.1. IntroducUon - 97

5.a The Trace Data 90

5.3. Fixed-Size Partition Empirical Results 90

5.3.1. Hybrid Policies „ 99

5.3.2. The Clock Page Replacement Algorithm 105

5.4. Variable-Size Partition Results 100

5.4.1. Hybrid Policies - , 100

5.4.2. The Sampled Working Set Algorithm 111

5.5. Conclusions - H?

5.6. References - 110

Vi

6.VMUNIX- Design. ImplementaUon andMeasurements 120

6.1. IntroducUon l2°

6.2. Search fora Replacement Policy ;•••• 121

6.3. Memory Demand andClock Triggering 125

6.4. Implementation; New System Facilities 129

6.5. LimiUng Page Traffic and Controlling MulUprogramming Load

132

6.6. Comparison withthe Swap-Based System 133

6.7. Performance Enhancements and Comparisons with Hybrid Pag-

ing I*7

6.a Conclusions . 14t)

6.9. References 14J

7. Memory Management as Inventory Control 143

7.1. Introduction 143

7.2. The Stock Room Problem 144

7.3. Modeling the Demand Process 146

7.4. Data Analysis M9

7.4.1. Test for Trend : 160

7.4.2. Tests for Serial Independence 151

7.4.3. Marginal Distributions 15G

7.5. Solution of Order Quantity and Order Point 180

7.6. Cost Coefficient Estimation 161

7.7. Implementation Issues 163

vii

7.8. Conclusions 164

7.9. References lfl&

8.Summary and Conclusions *"7

8.1. Summary 167

8.2. Conclusions andTopics for Future Research I70

ACKNOWLEGMENTS

1 would like to express my gratitude to Professor Domenico Ferrari for

being my advisor, teacher and. most important of all. friend during the last

four years. Through hisencouragement and guidance has this work come to

being.

I am also indebted to the following persons and organizations:

Professor Alan J. Smith for the careful reading of this thesis and invalu

able suggestions throughout.

Professor Sheldon M. Ross for inspiring me through his deep knowledge

of applied probability models and beinga member of my thesis committee.

The Italian National Research Council for supporting me through a fel

lowship during my stay in Italy in 1980. Professors Enrico Magene.s and

Giuseppe Serazzi of the Numerical Analysis Institute at Pavia for being gra

cious hosts in an intellectually and culturally stimulating environment.

The National Science Foundation for support as research assistant under

Grants No. MCS 7824818 and MCS 7807291.

My colleagues Edwin Lau. Makoto Kobayashi. Jehan-Francois Paris. Juan

Porcar. Newton Faller. Luis Cabrera and Frank Olken of the PR0GRES (PRO-

Gram REStructuring) group at Berkeley for their friendship that went much

beyond academics. 1 am especially indebted to my friend Juan Porcar for

acting as the "BerkeleyConnection" during my several unforeseen periods of

absence within the course of preparing this thesis.

Bill Joy for teaching me the internals of UNK and playing an important

role in realizing the material of Chapter 6.

Finally, my parents and brother for their love and support since the

beginning.

CHAPTER 1

VIRTUAL STORES

1.1. IntroducUon

Since its introduction with the Atlas computer [Fot61a.Kil62a]. the vir

tual memory concept has been extensively studied and implemented in vari

ous forms [Den70a]. The primary motivation in the design of these systems

is to achieve a cost-speed tradeoff across a hierarchy of storage levels. Here,

we constrain our studies to the classical two-level hierarchy where the first

level is fast-but-expensive main memory (also called primary, physical or

real memory), and the second level is a slow-but-cheap secondary memory

(also called backing store). Informally, a virtual memory system tries to

create a memory hierarchy (the virtual memory) that has the speed charac

teristics of the first level but the cost and size characteristics of the second

level and is transparent to user programs. Thus, from the user's point of

view, the system appears to support a one-level address space. This greatly

simplifies the programming task as then users can write programs as if they

were to be run in a very large one-level memory.

1.2. Virtual Memory Management

The dynamic relocation capabilities of the host system determine the

form of the virtual memory mechanism that can be implemented on it.

These capabilities allow the logical addresses that are generated by the pro

gram to be mapped into physical addresses at the time of execution. In a

purely segmented virtual memory, the logical address space of the program

is divided into smaller logical segments of arbitrary size [Den70a]. Aseg

ment is any logical unit of the program with an associated name. In this

scheme, an item is referenced by naming the segment containing it along

with its location within the segment. The mapping of logical addresses to

physical addresses is done through the segment table for theprogram. Seg

mentation is a natural choice for managing logical address spaces but results

in inefficient use of main memory due to fragmentation. Alternatively, the

entire logical address space of the program can be divided into equal-sized

blocks called pages. Similarly, the main memory consists of page frames

that are the same size as pages. The resulting virtual memory technique,

called paging, maps the logical address space of a program to the main

memory through the page table. Each logical address implicitly names a

page and an offset within the page. Paging, then, solves the fragmentation

problem of segmentation (except in the very last page of the program) but is
unsuitable for managing the logical address space since it treats the entire

program as one segment The two techniques can be combined in what is

called paged segmentation to employ paging within the several segments of

the program.

The virtual memory system we will deal with is a paging system. Since

the logical address space of a program can be much larger than the size of

main memory, there must be provisions for executing programs that are

partially loaded. Areference by the program toa page not currently in main
memory causes a page fault. These events initiate the transfer of informa

tion between the levels of the memory hierarchy.

As with all finite-capacity, shared-resource management problems, the

implementation of paging involves various policies. Specifically, the policies

relevant to the management of the main memory resource in a paging

environment are:

(i) The fetch policy: Determines when and how much information to

transfer from secondary storage to main memory.

(ii) The replacement policy. Selects the page(s) to be removed from main

memory so that their page frame(s) can be used to hold incoming

information.

(iii) The placement policy: Determines where in main memory to place the

incoming information. In the paging systems we will consider, there

are usually no alternatives for this decision since the page frame for

the incoming page is that just selected by the replacement policy.

The class of paging schemes we consider employ demand fetch policies.

In a demand fetch policy, the page containing the requested information is

brought into main memory at the time of the page fault and not earlier. The

alternative of prepaging [Smi7fla. Lau79a], whereby information is

transferred to main memory before it is needed, will be discussed in Chapter

6.

For the effective operation of a computer system with virtual memory, it

is desirable to minimize the rate at which programs reference missing infor

mation since the speed ratio of the memory levels is large. Consequently,

the performance measure we will use to judge the effectiveness of various

algorithms is based on the page fault rate. The page fault rate observed in a

system is heavily dependent on the nature of the programs that are execut

ing and. to a lesser extent, on the particular page replacement policy

employed [Bel66a, Fra74a, Smi76a]. We comment on each of these factors

below.

1.2.1. Program Behavior

If virtual memory systems ever come close to achieving their goal of

having a two-level hierarchy exhibit the speed of the faster level, it is only

because programs do not generate page reference strings that are random.

The success of virtual memories relies entirely on the property of reference

strings that is known as locality of reference [Spi72a, Den72a]. Informally,

this property states that the pages referenced by a program in a short inter

val of time constitute a small subset of its pages, called spatial locality, and

that this set of pages varies slowly in time; the latter aspect of the property

is called temporal locality.

It is certainly possible to improve the performance of a virtual memory

system by altering the programs that run on it so that they generate well-

behaved page reference strings. This technique is called program restruc

turing and has been studied extensively [Hat71a.Fer74a.Fer76a. Lau79a].

Our work will not extend to this method of performance enhancement- we

will assume that the programs to be executed on the system are unalterable.

1.2.2. Page Replacement Policies

The world of replacement policies or algorithms (we use the two terms

interchangeably) can be partitioned into two classes: unrealizable and realiz

able algorithms.

1.2.2.1. Unrealizable Algorithms

Unrealizable algorithms, also called look-ahead algorithms, are those

algorithms that require knowledge of future elements of the reference string

and cannot therefore be implemented in real time. The M1N algorithm

[Del66a] for fixed partitions and its variable partition counterpart, the VM1N

algorithm [Pri76a] are examples of unrealizable algorithms. Upon a page

fault, the MIN replacement algorithm removes from main memory the page

that will not be referenced for the longest period of time into the future; the

VM1N algorithm replaces a page that will notbereferenced sooner than t vir

tual time units, where t is the parameter of the algorithm. TheGeneralized

Optimum policy (GOPT) [Den78a] extends the VM1N algorithm tovariable size

segments rather than fixed size pages, whereas the DMIN algorithm [BudBla]
minimizes the product of the memory space occupied by the program and

the raoi time delays encountered due to faults. Although unrealizable in

practice, these algorithms define the theoretical minimum number of page

faults necessary for a given reference string in a fixed and variable memory

partition, respectively. Thus, they serve as.useful benchmarks or lower

bounds.

1.2.2.2. Realizable Algorithms

The Least Recently Used (LRU) [Mal.70a] and the Working Set (WS)

[Den68a] algorithms are realizable counterparts of MIN and VMIN respec

tively. These algorithms canbeimplemented in real time since LRU operates

by replacing the page that has not been referenced for the longest period of

time in the past, while WS retains in memory exactly those pages that have

been referenced in the preceding T time units.

Other realizable algorithms include First-In-First-Out (FIFO) which

removes from main memory the oldest page, and Random (RAND) which

removes a page selected at random over all the pages in main memory

[Cof73a, Kin71aj. Note that while MIN. LRU. FIFO and RAND operate in a fixed

partition of memory. VMIN and WS result in a variable partition whose mean

size depends on the setting of the algorithm parameter t.

Although realizable, the pure LRU and WS algorithms are rarely imple

mented in practice due to their high implementation cost in hardware

and/or software. The LRU algorithm requires an ordering to be maintained of

all the pages according to their recency of usage. Since this list must be

updated at each memory reference, it must be implemented in hardware in

order to keep overhead at acceptable levels. Oliver [01i74a] describes such

an implementation on the CDC Star computer system. The WS algorithm, on

the other hand, requires recording the time of the last reference to each

page, and updating the working set after each reference. Again, any efficient

implementation must rely on a great deal of hardware support.

The majority of the practical implementations that constitute the class

of realizable algorithms are approximations of pure LRU or of pure WS. Their

exact form is often dictated by the type of support provided in the hardware.

Examples of these algorithms include the CLOCK [CorGBa. Eas79a], the Sam

pled Working Set (SWS) [Fog74a. Pri74a) and the Page Fault Frequency (PFF)

algorithms [Chu76a]. The hardware support that all of these algorithms base

their decisions on is a reference bit associated with each page frame. A

reference to a page results in the corresponding reference bit being (.timed

on. This bit. in turn, can be examined and reset by the replacement algo

rithm.

In this dissertation, we extend the virtual memory concept to within

each memory hierarchy level. Each level is thought of as containing a two-

level hierarchy within it. This hierarchy is not a physical one as in the

primary-secondary memory case, but rather an artificial one arising from

the employment of two different replacement algorithms. Given two replace

ment algorithms, one of which has good performance but high implementa-

tion cost and the other poor performance but low implementation cost, we

propose schemes that result in an overall algorithm having the performance

characteristics of the first and the cosl characteristics of the second. The

utility of these hierarchical paging strategies in a hierarchical storage sys

tem lacking page reference bits is obvious.

l.a Evaluation Techniques

In our studies, performance evaluation of a virtual memory system con

sists of obtaining expressions or numerical values for the page fault rate gen

erated by the execution of a program as a function of the amount of main

memory allocated to it. To accomplish this, we resort to analytic methods

based on stochastic models of various system components (including pro

grams) and trace-driven simulations. To keep the complexity of the studies

within reasonable limits, we study the execution of each program in isolation

(i.e., uniprogramming environment) although we comment on the implica

tions of their interactions in a multiprogramming system.

l.ai. Stochastic Models

Digital computer systems along with the programs they execute are

finite state machines. As such, their operation is entirely deterministic

(given deterministic programs). By choosing to observe them at suitable

fixed-length time intervals, we can also describe the operation of the com

mon input/output devices as transitions between a finite number of states.

The state space of the composite system (cpu, programs and input/output

devices), while finite, is extremely large. Consequently, any analytic study of

the system having this deterministic view becomes intractable even for the

simplest of systems.

8

To model computer systems analytically, one often constructs a sto

chastic model of one or more of the components. For example, the opera

tion of a disk device can be assumed to result in a random delay correspond

ing to the service request that is drawn from a given probability distribution.

Similarly, the execution of a program can be modeled as a sequence of pro

cessor activity intervals and input/output activity intervals, where the

lengths of the intervals are random variables with appropriate distributions.

In both of these examples, we were able to model the particular system com

ponent in a very simple way that is able to hide the many internal states that

are of no interest to us.

In this dissertation, we make extensive use of stochastic models for the

analysis of system performance. Certain results from elementary probabil

ity theory and general stochastic process theory (with renewal and Markov

processes as special cases) will be used without proof. References

[Fel88a, Ros72a, Ros70a] can be consulted for an in depth treatment of that

material.

1.3.2. Trace-Driven Simulation

Rather than building a stochastic model for an event, we can use data

that was collected from an instance of the process that generated the events.

The collection of such data, called a trace, can be input to a simulator

representing the remaining portions of the system. In our studies, the

results obtained using stochastic models are validated through trace-driven

simulations, where the trace data represents the execution of a program by

the sequence of memory addresses it generated.

1.4. Summary and Concluding Remarks

The next two chapters are concerned with the development of the

appropriate tools to be used in virtual storage performance evaluation stu

dies. In the next chapter, the problem of generating memory reference

strings that are to be used instead of real program address traces with a

generator based on the Least-Recently-Used Stack Model (LRUSM) of pro

gram behavior is considered. A method to transform the stack distance pro

bability mass function that drives the generator is proposed which results in

memory reference strings that are a fraction of the original string length

while preserving most of its essential performance characteristics. The

reduced string can be processed in the same way as the original string for

virtual memory studies that deal with memory sizes greater than Jfc, the

parameter of the transformation.

In Chapter 3 we apply the results of the previous chapter to the problem

of constructing synthetic programs that can be used for performance studies

of systems which support virtual memory. Due to its significant effect on the

performance of such systems, the usual characterization of program

behavior is extended to include the memory referencing pattern. The results

of Chapter 2 are applied to this problem and we outline how to construct a

synthetic program that is able to reproduce a given lifetime curve. The sta

tistical and practical limitations of this method are also discussed. Results

obtained from an actual implementation of the proposed program indicate

that it is able to conform to a given lifetime function as it executes in varying

amounts of memory.

The central theme of Chapter 4 is the development and analysis of page

replacement algorithms in a virtual memory environment where hardware

10

collection of page reference information is lacking. This study was motivated

by the existence of such an environment in the VAX-11/780 computer sys

tem. We introduce a class of page replacement algorithms for the VAX that

partition the main memory into two logically disjoint regions and employ

different policies for their management. Software is used to collect page

reference information. The memory-management scheme implemented by

VMS. the vendor-supplied operating system for the hardware, is shown to be a

member of this broader class of hybrid policies for which we derive expres

sions for the relevant performance indices based on the Independent Refer

ence Model (1RM) of program behavior.

Due to the complexity of the expressions derived in Chapter 4. the cost

incurred by using software to detect references to pages in order to over

come the deficiencies in the hardware cannot be dealt with analytically.

Furthermore, the computational complexity of the results which have been

obtained makes the analysis of program models that are realistic in size

prohibitive. Chapter 5 extends our analysis of the hybrid policies by per

forming trace-driven simulation studies. From these, we find the conclusions

derived from unrealistically small analytic models to be also applicable to

the real programs we experimented with. Furthermore, the hybrid policies

are found to lack robustness with respect to our performance measure in a

multiprogramming environment. As alternatives, we considered the clock

and the sampled working set policies in our simulations.

Based on its relative performance and ease of implementation, we chose

the global clock policy as the page replacement algorithm for the virtual

memory extensions to the UNIX operating system for the VAX-11/780 com

puter system. Chapter 6 describes this effort, which involved converting a

11

swap-based system to one employing paging. Measurement results compar

ing the two live systems under identical workloads are presented.

The problem of optimal free memory pool size is considered in Chapter

7. We are able to formalize the problem by using results from inventory con

trol theory. In our model, the free memory pool appears as a stock room

containing a certain commodity with a stochastic demand process. Optimum

policies for the model are those that minimize the long run operating costs

for holding the inventory at a certain level, ordering additional items, and

loosing orders due to depleted inventory. By a mapping of these costs and

actions to the free memory pool management problem, we can obtain simple

policies that have been shown to be optimal in the sense described above.

Traces of memory demand from the system described in Chapter 6 arts stu

died to test the assumptions made about the demand process. Requests for

memory are seen to exhibit serial correlation contrary to the model assump

tion. Although not incorporated into the model at this point, such properties

of the demand process can be exploited by using forecasting techniques.

Chapter 8 concludes the thesis by summarizing the major findings and

indicating avenues for future research.

1.5. References

[Bel66a] L. A. Belady. "A Study of Replacement Algorithms for a Virtual

Storage Computer," IBM Syst. J. 5 pp. 78-101 (1966).

[Bud81a]R. L Budzinski. E. S. Davidson. W. Mayeda. and H. S. Stone. "DMN:

An Algorithm for Computing the Optimal Dynamic Allocation in a

Virtual Memory Computer." IEEE Trans. Software Eng. SE-7(t) pp.

113-121 (January 1981).

12

[Chu76a] W. W. Chu and H. Opderbeck. "Program Behavior and the Page Fault

Frequency Replacement Algorithm." Computer Dpp. 29-38

(November 1976).

[Cof73a] E. G. Coffman and P.J. Denning. Operating Systems Theory,

Prentice-Hall. Enlewood Cliff, New Jersey (1973).

[Cor68a] F. J. Corbato, "A Paging Experiment with the Multics System." Pro

ject MAC Memo MAC-M-3B4 Mass. Inst of Tech. (July 1988). Pub

lished in In Honor of P. M. Morse ed. Ingard MIT Press 1989. pp. 217-

228

[Den68a]P. J. Denning, "The Working Set Model of Program Behavior."

Cbmm. ACM 11(5) pp. 323-333 (May 1988).

[Den70a] Peter J. Denning. "Virtual Memory." Comptng. Surveys 2(3) pp.

153-189 (September 1970).

[Den72a] Peter J. Denning and Jeffrey R. Spirn. "Some Thoughts About Local

ity in Program Behavior," Proc. Symp. on Computer Communica

tions Networks and TeleLraffic. pp. 101-112 . New York. N.

Y.(1972).

[Den78a] Peter J. Denning and Donald R Slutz, "Generalized Working Sets for

Segment Reference Strings." Cbmm. ACM 2l(9)(September 1978).

[Eas79a] M. Easton and P. A. Franaszek. "Use Bit Scanning in Replacement

Decisions." IEEE Trans. Comptrs. C-28pp. 133-141 (February

1979).

[Fel68a] W. Feller. Introduction to Probability and its Applications, Wiley

(1988). 3rd. ed.. vol. 1

13

[Fer74a] Domenico Ferrari, "Improving Program Localityby CriticalWorking

Sets." Comm. ACM 17(11) pp. 614-620 (November 1974).

[Fer76a] Domenico Ferrari, "The Improvement of Program Behavior," Cbm-

puter 9(11) pp.39-47 (November 1976).

[Fog74a] M. H. Fogel, "The VMOS Paging Algorithm- A Practical Implementa

tion of a Working Set Model" Operating Systs. Rev. 8 pp. 8-17

(January 1974).

[FotGla] John Fotheringham, "Dynamic Storage Allocation in the Atlas Com

puter Including an Automatic Use of Backing Store." Cbmm. ACM

4(10) pp. 435-438 (October 1981).

[Fra74a] P. A. Franaszek and T. J. Wagner. "Some Distribution Free Aspects

of Paging Algorithm Performance," J. ACM 21 pp. 31-39 (January

1974).

[Hat71a] D. J. Hatfield and J. Gerald, "Program Restructuring for Virtual

Memory." IBM Syst. J. 10(3) pp. 168-193 (1971).

[Kil62a] T. Kilburn. D. B. G. Edwards. M. J. Lanigan, and F. H. Sumner. "One j
i

Level Storage Systems," IRE Trans. Electronic Computers EC-

11 pp. 223-235 (April 1982).

[Kin71a] W. F. King. "Analysis of Demand Paging Algorithms," Proc. IFIPS

Congress, pp.TA-3-155 - TA-3-159. Ljubljana. Yugoslavia(1971).

[Lau79a] E. Lau. "Performance Improvement of Virtual Memory Systems by

Restructuring and Prefetching." Ph.D. Th.. Univ. California Berke

ley, California (1979).

[Mat70a] R L Mattson. J. Gecsei, D. R. Slutz, and I. L. Traiger. "Evaluation

Techniques for Storage Hierarchies." IBM Syst. J. 9 pp. 78-117

14

(1970).

[01i74a] N. A. Oliver. "Experimental Data on Page Replacement Algorithm."

Proc. NCC. pp. 179-184(1974).

[Pri74a] B. G. Prieve. "A Page Partition Replacement Algorithm." Ph.D. Th..

Univ. of California Berkeley. California (1974).

[Pri76a] B. G. Prieve and R. S. Fabry. "VMIN- An Optimal Variable Space

Replacement Algorithm." Cbmm. ACM 19 pp. 295-297 (May 1976).

[Ros70a] S. M. Ross. Applied ProbabUUy Models unth Optimization Applica

tions, Holden-Day, San Francisco (1970).

[Ros72a] S. M. Ross. Introduction to ProbabUUy Models, Academic Press. New

York. New York (1972).

[Smi78a]Alan Jay Smith. "Sequential Program Prefetching in Memory

Hierarchies." Computer 11(12) pp.7-21 (December 1978).

[Smi76a]A. J. Smith. "Analysis of the Optimal Look Ahead Demand Paging

Algorithms." SIAM J. Comptng. 5 pp. 743-757 (December 1976).

[Spi72a] J. Spirn and P. J. Denning. "Experiments with Program Locality."

Proc. fall Joint Comptr. Cbnf. pp. 611-622 (1972).

CHAPTER 2

EFFICIENT GENERATION OF MEMORY REFERENCE STRINGS

2.1. IntroducUon

Trace-driven simulation is a frequently used method for studying the

performance of various aspects of storage hierarchies, ranging from cache

buffers to file systems [Bel86a.Lau79a.Mat70a.SmiHla]. Although we limit

our discussion to the classical primary memory-secondary memory level of

the hierarchy in a paging environment, the ideas and results we will present

are naturally applicable to the others levels. The trace data used in these

studies consists of a record of all the memory accesses (data and instruc

tions) generated during an interval in the execution of a program. One of the

drawbacks of this approach is that the selected programs have to be inter-

pretively executed in order to obtain the desired address traces, unless the

system being used has appropriate tracing facilities. Furthermore, simula

tion studies dealing with realistically long trace data (at least a few million

references) are very costly both in space and time. To reduce these costs,

trace-driven simulation studies can work with a reduced version of the origi

nal trace. A scheme to obtain such a reduced trace was first proposed by

Coffman and Randell [Cof71a] for studies employing the class of stack poli

cies [Mat70a]. The method was recently applied to working set environments

by Alanko et al [AlaBOa]. In both schemes, the reduced trace is constructed

by recording the events corresponding to the entry and exit of pages from

the set of memory resident pages as the original trace is processed by the

particular management policy with a given control parameter. Due to the

15

16

inclusion property of stack policies [Mat70a] and of the working set policy

[Fra78a] with respect to their parameters, studies employing values of policy

parameters greater than those used for the reduction can be carried out on

the reduced trace with exact results.

Smith [Smi77a] has studied two other trace reduction methods that are

approximate in nature. The first of his methods, the Stack Deletion Method

with parameter k, removes from the original trace data all references to

pages that are elements of the set of the k most recently used pages. In

other words, this scheme is identical to the one proposed by Coffman and

Randell for the Least Recently Used (LRU) policy except for the fact that the

exU events corresponding to pages leaving the top k elements of the stack

are omitted in the reduced trace. The second method studied by Smith, the

Snapshot or Reference Set method [Pri74a,Lau79a] with sample interval 7',

removes from the original trace data all references that are re-references to

pages within a given sample interval of length T. The claim that these

compression techniques preserve the essential performance characteristics

of the original reference string has been verified empirically when they are

processed by a wide variety of paging algorithms: [Smi77a].

An alternative approach to reducing the space cost of such studies is to

use a model of program behavior such as the Independent Reference Model

(IRM) [Aho71a,Bas76a.Spi72a] or the Least-Recently-Used Stack Model

(LRUSM) [Rau77a.Spi76a] in conjunction with a random number source, thus

obtaining a generative model [Spi77a]. Since most such models require a

small fixed number (usually proportional to the number of pages contained

in the program) of parameters to identify them, memory reference strings of

arbitrary length can be generated one reference at a lime with essentially no

17

space cost Note that, from the operational viewpoint of the simulator, the

trace-driven and the generator-driven methods are identical.

In addition to their ability to generate reference strings of arbitrary

length, probabilistic models of program memory reference behavior are

compact, often analytically tractable, and can be modified to represent

diverse behaviors through an appropriate perturbation of their parameters

[Spi76a]. The goalof this chapter, however, is not to advocate the global sub

stitution of actual address traces with probabilistic models. We are simply

interested in an efficient method for generating through the LRUSM memory

reference strings that can be used in studies where the predictive capabili

ties of this particular model are deemed to be of sufficient accuracy.

Further discussion of the nature of these studies, along with a formal

description of the LRUSM. follows in the next section. Section 2.3 defines the

transformation method and investigates its implications on the string length,

the steady-state fault rate, and the mean memory occupancy. Section 2.4

presents a comparison of our proposed transformation method with the

Stack Deletion Method. Finally, in section 2.5 we discuss a novel application

of the developed method to the design of synthetic programs that are to

exercise virtual memory systems.

2.2. The LRU Stack Model

2.2.1. The Descriptive Model

The model of program behavior that our study will be based upon is the

LRUSM. In this model, the n pages that constitute the program's virtual

address space are envisioned to be ordered in a stack according to their

16

recency of usage. The page referenced at time t, rt, is the one currently

occupying stack position a*. We assume that the page references occur at

equidistant time points and that the interval between references is taken to

be the unit of time. The sequence of stack positions \di\ is called the dis

tance string. The LRUSM assumes the a\'s to be independent and identically

distributed samples from the population (1,2,3 n) with the stationary pro

babilities Pr\dt=j\=6i. The probability mass function (pmf) D=(<5,.<J2.....(5n).

where 2j<$t =l and d<>0 for all i, uniquely defines the LRUSM. An instance of
id

the LRUSM corresponding to a particular program execution is realized upon

providing point estimates for the n parameters of D.1 Each generated refer

ence causes the stack to be updated by placing the referenced page, rt, at

the top (stack position 1) and all pages in stack positions 1 through d,-1 to

be shifted down one position so as to preserve the LRU ordering [Mat70a].

The set of pages occupying stack positions below a\ remain unaffected. In

terms or this description of the LRUSM. the Stack Deletion Method of trace

data compression with parameter k can be characterized as removing from

a given trace all references that are to stack positions less than or equal to

k.

Properties of the LRUSM based on analytic and experimental studies

have been extensively reported in the literature

[Lew71a.Lew73a.Rau77a.Smi76a,Spi76a]. Although it is able to model the

steady-state page fault rate and the mean memory occupancy characteris

tics of real programs under a variety of paging algorithms with reasonable

accuracy [Raf76a, Smi76a. Spi72a] (prediction errors in one study [Spi72a]

averaged about 10% for the mean working set size and about 30% for the page

'Actually, only (n-1) of these parameters are independent.

19

fault rate), the LRUSM has several known shortcomings at a more micros

copic level of program behavior. In'particular, the assumptions of indepen

dent and identically distributed stack distances in the LRUSM have been for

mally shown to be inadequate for particular address traces [Lew73a, Lew71a].

The inter-fault times, which are independent, identically and geometrically

distributed with a constant parameter as a consequence of this lack of serial

correlation in the distance string for the LRUSM, have been empirically

observed to be correlated and to have highly skewed distributions with long

tails [Lew73a. Lew71a]. Finally, the property of the LRUSM (independent of

the stack distance pmf) that results in a reference string where each page of

the program is accessed with the same frequency (in the limit as the length

of the string tends to infinity) is not representative of real programs

[Bas76a.Lau79a.Cof73a]. In light of these shortcomings, the use of the

LRUSM as a micromodel in a two-level model of program behavior is more

appropriate [Den80a]. As an example, the second level, or macrojnodel,

could represent phase transitions and consist of a semi-Markov chain

[Kah76a].

2.2.2. The Generative Model

Constructing a generative model based on the LRUSM simply involves

generating the distance string \di\ as independent samples from the popula

tion (1,2.3 n) according to D and obtaining the reference string j^J

through the required stack manipulations. The stack distance pmf D is* said

to drive the generator. The dj's can be obtained by transforming a sequence

of uniform pseudo random numbers through a technique such as the atiising

scheme of Walker [Wal77a].

20

One possible approach to reducing the time cost of a generator-driven

simulator is the following. The generator is allowed to run unaltered as

described above. The resulting reference string is processed by the Stack

Deletion Method of Smith with parameter k thus resulting in a compressed

version of the generated string. This compressed string is then used as the

actual input to the simulation study. What we seek is a method for combining

the generation and compression functions whereby we obtain the

compressed string directly as the output of the generation process.

2.2.3. Model Use

In light of the deficiencies listed in section 2.2.1, the use of the LRUSM in

a particular study has to be justified, no matter how efficient the generation

process. These accuracy and validity concerns are universal to all modeling

efforts and must be resolved prior to model use. Typically, selected predic

tions of an instance of the model are compared to measured results in order

to determine their accuracy. This step should then be repeated for several

other instances of the model to establish a domain of validity. Model use can

then proceed and obtain further predictions from yet different model

instances with attention paid to keeping the model within the above domain

[Spi77a].

As shown by the published results regarding the accuracy of the LRUSM

as a predictor of the page fault rate and mean memory occupancy

[Raf76a.Smi76a, Spi72a], its use is natural for studies interested in these

measures where real program trace data is unavailable. It is also conceivable

to use LRUSM generated traces to develop and test simulators that will even

tually run using real trace data in an effort to minimize the cost of program

21

development Perhaps the most common application of model generated

traces, however, is found in those studies interested in the relative rather

than absolute performances of various management schemes and/or algo

rithms and data structures used to process trace data (as an example, refer

to the study by Olken [OlkBOa], which compares three different data struc

tures for obtaining LRU fault rate statistics for extremely large disk caches,

where the file access string is generated through the LRUSM). Finally, for

certain measures of interest in a given environment, the LRUSM is analyti

cally intractable. In such cases one naturally resorts to simulation based on

the LRUSM. The analysis by Rau [Rau79a] of the effective bandwidth of an

interleaved memory system, where the program memory module reference

behavior is modeled through the LRUSM, is a case in point

2.3. The Transformation Method

In this section we will develop a method (called the transformation

method) for modifying the stack distance pmf of an LRUSM. and will formally

show that the resulting string preserves the steady-state page fault rate of

the original string while being only a fraction of its length. In section 2.3.2.

the implications of this transformation on the mean memory occupancy

statistic are investigated.

2.3.1. Fault Rate Characteristics

Our strategy in developing the method will be as follows. We will review

some of the basic properties of the LRUSM and eventually derive an expres

sion for a confidence interval of the steady-state page fault rate. We will

repeat these steps also for an incompletely specified LRUSM obtained from

the original model through a transformation of the stack distance pmf. The

requirement that a statistic based on this new LRUSM result in a confidence

interval of the same width at the same confidence level as the original LRUSM

will then be used to completely define the transformation.

Let D, =(6t,6 0 be the driving stack distance pmf for the original

generator, hereafter referred to as GENl. For D, . we define the cumulative

probabilities as A. = £o"»-
<=i

The page faults due to the reference string generated by GENl in a fixed

memory partition of m pages managed by the LRU policy constitute a

discrete time renewal process. In particular, the inter-fault time distribu

tion isgeometric with parameter XTO = £ 5i=(l-am) lSpi76a].
i=mH

Let the random variable Nt(t ,;m) denote the number of faults generated

until some arbitrary time t, in a fixed size memory of m pages. By renewal

theory [Ros70a], the steady-state fault rate is givenby

lim T = (1-Am) - A,,
l,— *i

(2.3.1.1)

Equation (2.3.1.1) holds with probability 1.

For t ,<•» . however, applying Chebyshev's inequality for the random variable

W,(*i;m)/fi we have

Pr
/V,(f,;m)

f,
- Am < « |>-^ (2.3.1.2)

for any e>0 and where o2^i) = Var(Ni(t i.m)/1 x).

For fixed t, and m, the random variable N^t^.m) has e, binomial distribution

23

with parameters (l-Ap,) and tt because it simply counts the number of

successes in 11 Bernoulli trials with' a constant probability of success. Thus,

the variance cP{tx) is given by

o*(f,) = \ar{Nx(t ,;m)/f,) = (Am(l-Aro))/f,. (2.3.1.3)

Note thal ,MpL_ e#Mpl+ £ „alevel (1 _̂ iL) conadence
interval of length 2e for Xm.

Now consider a second generator, called GEN2, that is driven by the fol

lowing transformed stack distance pmf:

Da = {6U6Z 6,k.R6k¥l.R6ktr2 *°»)

where k is the fixed parameter of the transformation and R is an arbitrary

positive constant.

Note that the transformation of £< (l^i^/fc) is left unspecified; the only con

straint it has to satisfy is

£o'< =W?(l-A*)
<=l

(2.3.1.4)

so that Da is indeed a pmf.

As before, let the random variable Mz(t,.;m) denote the number of faults

resulting from GEN2 by some arbitrary time tz under the same cir

cumstances as with GENl (i.e.. Axed memory partition of m pages managed

by the LRU policy).

Note that, for GEN2 with k<m, the statistic Nz(tz;m)/ Rtz is an unbiased

24

estimate of Xm. Furthermore.

V*r{No{tz.m)/Rtz) = (l-i^Xl-R(l-&m))/Rtz. (2.3.1.5)

since Nz(tz\m) is binomiallydistributed with parameters R(l-&,n) and tz. As

for GENl. the level of a confidence interval of length 2e for Xm in terms of

this new statistic is given by

Pr
fkg(*2;m)
II «• Xm\<*\>l-VbrMtT)/m*)- (2-3.1.6)

The motivation for the transformation method becomes evident if we make

the following observation: for some given tt, there exist values of R and tz

with tz<tl such that Nz{tz,m)/Rt2 is as good a statistic for Xm as

N,(tl;m)/tl. We formalize this statement in the following proposition:

Proposition : For some given memory size m, time t,. and transformation

parameter k<m, the smallest possible time tz for which ihe statistic

Nz(tz;m)/ Rtz achieves the same confidence as N\(tx;m)/1% for the steady-

state fault rate X^ is obtained by a Dg where R=R * - 1/(1—A*).

Proof : Equating the right hand sides of equations (2.3.1.2) and (2.3.1.6)

corresponding to the confidence levels due to GENl and GEN2 respectively

for a given e. and substituting equations (2.3.1.3) and (2.3.1.5) for the two

variances, we obtain

x AmO-a.n) _ jJl-OO-ffO-O)
A, E*Rt. (2.3.1.7)

Simplifying and solving for tz yields

«B =
f ,(!-*(1-Am))

8" #Am

Thus, the minimization of tz as a function of R can be formulated as the fol

lowing optimization problem:

minimize tz = f lO-flO-Am))//?*™

1
subject to 0 jfi /? ^

1-A*

25

(2.3.1.8)

where the constraints simply ensure that Dfe is a valid pmf. Note that for

given t, and m. f2 is a strictly decreasing function ofpositive R. Therefore,

the minimum 12value is that imposed by the upper bound on R. That is. the

optimum value ofRisgiven by /? = /?* = ^_^

Evaluating tz at /? = 7?* yields

Note that

with the equality holding only when m=n. This observation leads us to. the

conclusion that the length of the string generated by GEN2 need only be at

most \/R'lh the length of that due to GENl to achieve the same confidence

for Xm for all memory sizes greater than *.

Recalling the form of Dg and equation (2.3.1.4). the stack distance pmf

transformation implied by the optimal value of R is of the form

26

Dg = (0.0 O.R*6t„.R'6k>z R'6n).

Given Dg. the operation of GEN2 is identical to that of GENl except that now

the dji's are generated as independent random variables with the frequencies

specified by Dfe.

We make the following observations about the transformation method:

(1) The transformation preserves the long-run relative occurrences of stack

depths greater than k, i.e., 6i/6j = d'i/6'j for all i and j>k.

(2) GEN2 produces no references to stack depths less than or equal to k,

while it references depths greater than k with increased probabilities.

This result shows the analogy between the above scheme of generating

memory references and the Stack Deletion Method of compressing exist

ing memory reference trace data.

(3) The optimal value of R, R*, may be interpreted as the expected number

of references until the first reference to a stack depth greater than k.

This confirms our earlier observation that GEN2 suppresses the refer

ences to the top A: pages of the stack.

2.3.2. Mean Memory Occupancy Characteristics

In the previous section, we have shown that the proposed method

preserves the page fault rate characteristics of the original string in an

environment managed by a particular fixed partition policy (namely LRU).

Due to its strong interaction with the process scheduling mechanism and

significant impact on overall system performance, mean memory occupancy

in a variable partition environment is another important property associated

with a reference string. As an example of a variable partition policy, we will

27

consider the behavior of the output of GEN2 when processed by the working

set algorithm [Den68a]. !

Let cj(t) denote the steady-state working set size with parameter (win

dow size) r. Recalling the definitions of the LRUSM and of the working set pol

icy, the steady-state working set size distribution can be expressed through

the recursive relationship

PrJo(T)=iJ = AiPrio(T-l)=iJ + (l-A,_,)Prtcj(T-l)=i-l| (2.3.2.1)

where Pr|o(l)=lj = 1 [Spi77a].

As applied to the LRUSM that drives GEN2. equation (2.3.2.1) becomes

Pri>(T')=ti = A'tPrMT'-l^iJ + (l-A'i_,)PfJw(T'-l)=i-lJ (2.3.2.2)

where the transformed cumulative stack distance probabilities are given by

i=i i=**i

At "A*
= ff'fA-A*) =

1-A*

and we replace the original window size by

t-= t//?# = (1-A*)t;

note that t is scaled down by a factor of R' since each reference generated

by GEN2 advances the clock by R' ticks rather than by one.2 If the o"4's are

BAa we have defined it, /?'. being the mean of a random variable, is a real number. Concep
tually, there is no reason why the clock of the simulator cannot be advanced bji this norontegral
amount. However, for studies that require /?* to be integer, wecandefine R*- I l/(l-o4) I (i.e..
we can truncate it to an integer), in which case the probability measure 1-/?*(1-A*) as given by

28

nonzero for all i>k, equation (2.3.2.2), which is valid only for i>k, has the

closed form solution [Spi77a]

<l-AV«)(l-A*rt>...0-AV-i> t
J=k*l

«£-

Pr(«(T,)=i| =

l=k*l
, k<i£n

. i^k.

Having the distribution of o(t) at hand, the mean, «(t). can be obtained trivi

ally.

14 . n-20

skewnessa2.0 ^-""^^"^
,

• .^^ ..•**

<^> *

jS* •*'*
yr

k-0 A' y

' y? i// ;

- // /—k=6
/* .'
fi
/' •"/ 1—k-3 •'

/ '
/ ' :
/ ' .'' i

i •

t i i :—i i l- 1 '

12

10

oc 8
c

o 6

X

40 80 120 160 200 240 280 320 360 400

Window Size

Figure 2.3.2.1 Mean working set size of sample program
vs. window size for various values of the transformation parameter k.

equaUon(2.3.1.4) willhave to be assigned (in an arbitrary manner) to the first A: stack positions.

29

Ideally, one would like to show analytically that, for small A: and large t

(note that these are the normal operating conditions for the method), the

first moment of the above distribution approaches the mean working set size

of the original string. However, due to the complexity of the expressions

involved, only numerical results have been obtained. Figure 2.3.2.1 presents

the mean working set size of a sample program whose LRUSM parameters

were obtained through Ziprs Law with skewness 2.03 [Knu73a]. The figure

shows that the transformation preserves with good approximation the first

moment of the working set size distribution even for large k. particularly

when the window size t is large. Recall that setting fc=0 results in the null

transformation and reduces GEN2 to GENl. For the example at hand, the

relatively large errors encountered for small values of t are simply due to

the scaling that is performed on the window size (which happens to be

T'=T/15.15whenJb=6).

In an effort to identify the region of validity with respect to k, we plot

the percentage error of w(t) and the reduction ratio (tz/11) as functions of

k inFigure 2.3.2.2. For the particular value oft being used, the error ino(t)

is very close to zero for allJfe^7. These values of k are such that the following

inequality is satisfied:

T* = (l-o*)rfcn. (2.3.2.4)

where n is the number of pages in the program. This condition parallels the

one requiring memory sizes greater than it to be used in the study of fault

rate statistics under LRU management. Figure 2.3.2.2 also shows that a sub

stantial reduction ratio in string length is obtained for this set of transforma

tion parameter values.

'According toZipf'a Law with skewness 2.0. the stackdistance pmfis tf4=c/ieo.where C is a
normalizing constant.

2 3 4 5 6 7

Transformation Parameter k

Figure 2.3.2.2 Percentage error and reduction ratio for
sample program as a function of the transformation parameter.

30

The above results for the mean working set size are directly applicable

to the steady-state fault rate observed under working-set memory manage

ment, since one can express the fault rate as the first difference4 of the

mean working set size [Spi77a]

X(t) = D(t)-0(t-1).

Because GEN2 consistently underestimates the mean working set size, its

predictions at t and t-1 can be expressed as S(t)-b(t) and c>(T-l)-e(T-l)
respectively, where e(r) and e(r-l) are the corresponding error terms and

4This is the discrete time analog of die first derivative

31

o(t) and o(t-1) are the true mean working set values. We observe that for

similar window sizes, the errors in the mean working set predictions of GEN2

are also similar, i.e.. 8(t)*8(t-1). so that these error terms approximately

cancel each other out in the fault rate estimate X(t). In other words,

although the curves in Figure 2.3.2.1 display large absolute errors im the

mean working set size for certain values of t and k, their slopes at any given

value of the window size are very close.

2.4. Comparison with the Stack Deletion Method

In the previous section we have seen that the Stack Deletion Method and

the proposed transformation method are very similar to each other. We

note, however, that the page names associated with the references in the

strings resulting from the compression of the GENl output by the Stack Dele

tion Method and in that produced by GEN2 are not the same. This con be

explained by observing that, while the transformation method generates no

references to stack depths less than or equal to A:, the Stack Deletion Method

processes all of the references in the original string (in this case. that, pro-

Parameter k WATFIV FFT APL

2 4.54 5.08 5.26

3 7.04 11.64 9.55

4 9.80 24.80 13.15

5 13.00 33.75 17.85

8 25.38 73.34 43.48

12 38.17 178.22 88.50

Table 2.4.18 Ratio of GENl string length to GEN2 string length (*,/tj)

6Gcneratcd from data presented by Lau [Lau79|.

32

duced by GENl). thus causing stack updates at each reference. In other

words, the two methods produce results that have similar distance strings

(the a\'s) but different reference strings (the r4's).

The reduction in string length due to both methods is given by

1/(1—Ajj). Table 2.4.1 shows the length reductions obtained when we apply

the transformation method with various values of the parameter k to the

LRUSM of three sample programs. More data about the traces from which

the LRUSM for the three programs were obtained are presented by Smith

[Smi76b.Smi?7a].

2.5. Applications

The application of the transformation method to generator-driven simu

lation studies within the framework discussed in section 2.2.3 is immediate.

The simulators being driven by GEN2 process the references jusl. as before,

but increment the clock by the quantity R* instead of by 1 at each refer

ence. Choosing a value of k to use as the transformation parameter involves

a tradeoff between the simulation speed-up desired and the range of validity

of the results. Working-set management studies should be restricted to the

set of window size values that satisfy inequality (2.3.2.4). while LRU replace

ment studies are applicable only for memory sizes greater than *:.

Although we have emphasized generator-driven simulation studies as the

main application area, the method can also be used in the construction cf

synthetic program design for virtual-memory environments. Recall that a

synthetic program [Buc69a] is a parameterized piece of code that consumes

controlled amounts of system resources. In a virtual-memory environment.

33

programs consume resources (CPU cycles, disk I/O bandwidth, etc.) notonly

explicitly, but also implicitly (CPU cycles, main memory, and paging 1/0

bandwidth) because of the automatic memory management functions. One

of the simplest ways to characterize the behavior of a program in a virtual

memory environment is to specify its lifetime function [Bel69a]. This func

tion gives the mean number of instructions executed by the program

between consecutive page faults when it is allocated m page frames of

memory8. Suppose we extend the classical synthetic program requirements

by specifying a lifetime function it has to conform to. We proceed by deter

mining the parameters of the LRUSM corresponding to the given lifetime

function 7. The synthetic program is simply an implementation of the refer

ence string generation algorithm that is based on the above-constructed

LRUSM. However, the execution of this synthetic program (observed at the

memory reference level) results in a string of the form

ql,qz qo.rl.qi.qz go.r2.... The Q references (all to a small set of pages

containing the code and data for the synthetic program) between each of the

desired references (the rt's) are due to random number generation, stack

updating and other functions that the program has to perform. To be able to

run the synthetic program in real time, these Q references are clearly

undesirable and will be termed overhead references. Suppose that we apply

our transformation method with parameter As to the LRUSM built into the

program, withJb being the smallest integer for which R*&Q. Now, the 0 over

head references appear to be part of the desired reference string, and the

synthetic program reproduces the paging behavior specified by the input

• In an extended definition of the lifetime function, the memory allocated to the program
con vary over lime and we let m represent its mean value. In our case however, we are con
cerned with LRU replacement with a fixed partition of m pages.

7 Under LIU) management, there exists a one-to-one correspondence between an I.RUiiU and
a nondecrcasiiig lifetime function.

34

lifetime function within the applicability of the transformation method with

parameter Jfc in real time. Further details of the topic along with an actual

implementation are discussed in the next chapter.

2.6. Conclusions

We have presented a method for the efficient generation of memory

reference strings based on the LRU stack model of program behavior. The

claim that the shorter output of the modified generator preserves the page

fault rate characteristics of the original string (i.e.. that produced by the

unmodified generator) when processed by the LRU policy was shown analyti

cally for memory sizes greater than k. The range ofapplicability under the

working set memory-management policy is not as sharply defined. However,

some necessary conditions that need to be satisfied for the fault rate and

mean memory occupancy results to bevalid were also presented.

The method provides a generator that is extremely economical both in

space and in time and can be used, whenever the LRUSM has been judged an
adequate model of the characteristics that are of interest to the particular
study, as a source of memory references for any simulator that relies on
trace data as input. Another interesting application of the method to the

construction of synthetic programs for virtual-memory environments has

also been briefly discussed.

2.7. References

[Aho71a]A. V. Aho. P. J. Denning, and J. D. Ullman. "Principles of Optimal
Page Replacement," J. ACM IB pp. 80-93 (January 1971).

35

[Ala80a] T. 0. Alanko. I. J. Haikala, and P. H. Kutvonen, "Methodology and

Empirical Results of Program Behaviour Measurements." Perfor

mance Eval. Rev. 9(2) pp. 55-66 (Summer 1980). Proceedings of

Performance 80

[Bas78a] F. Baskett and A. Rafli. "The AQ Inversion Model ofProgram Paging

Behavior." Stanford U. Comp. Sci. Dept. Report STAN-CS-76-579

(October 1976).

[Bel66a] L. A. Belady. "A Study of Replacement Algorithms for a Virtual

Storage Computer." IBM Syst. J. 5 pp. 78-101 (1966).

[Bel69a] L A. Belady and C. J. Kuehner. "Dynamic Space Sharing in Com

puter Systems." Comm. ACM 12(5) pp. 282-288(May 1989).

[Buc69a] W. Buchholz. "A Synthetic Job for Measuring System Performance."

IBM Syst. J. 8 pp. 309-318(1989).

[Cof71a] E. G. Coffman and B. Randell, "Performance Prediction for

Extended Paged Memories." Actafyiformatica l(l) pp. 1-13 (1971).

[Cof73a] E. G. Coffman and P.J. Denning. Operating Systems Theory,
Prentice-Hall. Enlewood Cliff. New Jersey (1973).

[Den88a]P. J. Denning. "The Working Set Model of Program Behavior."

Cbmm. ACM 11(5) pp. 323-333 (May 1988).

fDenBOa] Peter J. Denning. "Working Sets Past and Present." IEEE Trans.

Software Eng. SE-6(l) pp. 84-84 (January 1980).

[Fra78a] Mark A. Franklin. G. Scott Graham, and R. K. Gupta. "Anomalies

With Variable Partition Paging Algorithms," Cbmm. ACM 21(3) pp.

232-236 (March 1978).

36

[Kah76a] Kevin Kahn, "Program Behavior and Load Dependent System Per

formance." Ph.D. Th.. Purdue U. Computer Science Department

(May 1976).

[Knu73a]D. E. Knuth. 77ie Art of Computer Programming - Sorting and

Searching, Addison-Wesley. Mass. (1973). vol. 3

[Lau79a] E. Lau. "Performance Improvement of Virtual Memory Systems by

Restructuring and Prefetching." Ph.D. Th.. Univ. California Berke

ley. California (1979).

[Lew71a] P. A. W. Lewis and P. C. Yue, "Statistical Analysis of Program Refer

ence Patterns in a Paging Environment" Proc. IEEE Int. Cbmptr.

Soc. Cbnf. pp. 133-134 , Boston. Mass.(September 1971).

[Lew73a] P. A. W. Lewis and G. S. Shedler. "Empirically Derived Micro Models

for Sequences of Page Exceptions." IBM J. Res. Develop. 17(2) pp.

88-100 (March 1973).

[Mat70a] R L. Mattson, J. Gecsei. D. R Slutz. and I. L. Traiger. "Evaluation

Techniques for Storage Hierarchies." IBM Syst. J. 9 pp. 78-117

(1970).

[OlkBOa] F. Olken, "Efficient Methods for Calculating the Success Function of

Fixed Space Replacement Policies," M.Sc. Report, Univ. of California

Berkeley. California (19U0).

[Pri74a] B. G. Prieve. "A Page Partition Replacement Algorithm." Ph.D. Th..

Univ. of California Berkeley. California (1974).

[Raf76a] A. Rafii, "Empirical and Analytical Studies of Program Reference

Behavior." Ph.D. Th.. SLAC Report 197. Stanford California (1976).

37

[Rau77a] B. R Rau. "Properties and Applications of the Least-Recently-Used

Stack Model." Stanford U. Digital Syst. Lab. Report No. 139 (May

1977).

[Rau79a] B. R Rau. "Program Behavior and the Performance of Interleaved

Memories." IEEE Trans. Oamptrs. C-28pp. 191-199 (March 1979).

[Ros70a] S. M. Ross. Applied ProbabUUy Models unth Optimization Applica

tions. Holden-Day. San Francisco (1970).

[Smi76a]A. J. Smith, "Analysis of the Optimal Look Ahead Demand Paging

Algorithms." SIAM J. Oamptng. 5 pp. 743-757 (December 1976).

[Smi76b]A. J. Smith, "A Modified Working Set Paging Algorithm." IEEE lran&.

Comptrs. C-25pp. 907-914 (September 1976).

[Smi77a]A. J. Smith, "Two Simple Methods for the Efficient Analysis of

Memory Address Trace Data." IEEE Trans. Software Eng. SE3 pp.

94-101 (January 1977).

[Smi81a]A. J. Smith. "Analysis of Long Term File Reference Patterns for

Application to File Migration Algorithms." IEEE Trans. Software

Eng. SB-7(4) pp. 403-417 (July 1981).

[Spi77a] Jeffrey Spirn. Program Behavior: Models and Measurementa.

Elsevier North-Holland. New York (1977).

[Spi72a] J. Spirn and P. J. Denning. "Experiments with Program Locality,"

Proc. FallJoint Cbmptr. Conf, pp. 611-622(1972).

[Spi76a] J. Spirn. "Distance String Models for Program Behavior." Computer

Dpp. 14-20 (November 1976).

[Wal77a] A. J. Walker, "An Efficient Method for Generating Discrete Random

Variables With General Distributions," ACM Trans. Math. Software

38

3(3) pp. 253-256 (September 1977).

CHAPTER 3

CONSTRUCTING SYNTHETIC PROGRAMS FDRVIRTUAL MEMORY

3.1. IntroducUon

The concepts ofsynthetic program and virtualmemory (throughout this

thesis, we consider a payed implementation of virtual memory) have been

with us for many years [Buc69a,Den70a]. As introduced by Buchholz. a syn

thetic program is a highly parametric program that is able to mimic a wide

range of behaviors as measured by the amount of system resources con

sumed, for instance, CPU cycles and I/O bandwidth. While performing no

useful task, the behavior of a synthetic program can be tailored to match

that of any one of the actual programs that constitute a givensystem's work

load.

Workload models are important constituents of system models such as

queueing networks or simulators, but can also be used, when in executable

form, to drive actual systems [Fer72a]. In particular, synthetic workloads

consisting of synthetic programs may be used in empirical performance stu

dies (see [Sre74a] for an example). Performance evaluation studies of the

tuning; upgrading and competitive system procurement type that use exe

cutable program models such as synthetic programs need to have access to

the actual system. In return, they provide greater credibility than analytic

model or simulation-based studies since they employ the real system

(hardware, operating system, compiler-generated code, etc.). Compared to

benchmarking, the use cif synthetic programs has the additional advantages

of transportability and flexibility. For an extended discussion of these and

39

40

related topics refer to chapters 5 and 6 of [Fer78a].

One of the most important factors affecting the performance of a

virtual-memory system is the manner in which programs running on it

access their address spaces. Thus, synthetic programs that are constructed

to be used for performance evaluation studies of such systems must be able

to reproduce this behavior in a controllable manner. Compared to oLher

aspects of program behavior (such as CPU time required, 1/0 activity gen

erated, etc.). reproducing the memory referencing pattern is a far more

difficult task. Fortunately, the problem has received wide attention and

there exist models of varying complexity and accuracy for program memory

referencing behavior [Lew73a, Spi72a, Spi76a. Spi77a, Raf70aJ. To be effective

in performance studies of virtual-memory systems, a synthetic program

must incorporate one of these models. That way, its memory referencing

behavior can be varied in a controllable manner by modifying the model's

parameters.

In a recent study comparing our paging subsystem for UNIX1, and VMS2

(the two operating systems that exist for the VAX-11/780 computer system).

Kashtan used three synthetic programs that had different memory referenc

ing patterns [KasSOa]. While these programs, which advance through their

address spaces (i) sequentially, (ii) in uniformly distributed random incre

ments, and (iii) in random increments normally distributed about the

current page with a given standard deviation, may adequately model pro

grams for a particular application, namely, image understanding (in

Kashtan's case), they lack the ability to capture the behavior of a broader

class of programs that exhibit varying degrees of spatial and temporal

1 UNIX is a Trademark of Bell Laboratories.

8VMSand VAXare Trademarks of Digital Equipment Corporation.

41

locality [Spi72a]. Furthermore, Kashtan's approach does not deal in a satis

factory manner with the problem of overhead references resulting from that

amount of computation the synthetic program has to perform in order to

generate the next desired reference according to the three patterns

described above.

In the following sections of this chapter, we discuss the suitability of the

Least-Recently-Used Stack Model (LRUSM) of program behavior to be incor

porated in a synthetic program and propose certain modifications to the

approach described above that allows us to deal effectively with the "over

head references" problem. The statistical and practical limitations of our

approach are discussed in the light of a prototype implementation.

3.2. The Model

Consider the page reference string rx,rz r<-i.r4,rt«.|,... that is

observed as a result of the execution of a given program. Each member rt of

the string is an element of the set of page names, |l,2,....nj, where n is the

size of the program's address space. Requiring that an instance of our model

corresponding to the given program generate a page reference string identi

cal to the observed string would be overdemanding and for most practical

purposes, useless. Instead, we will be satisfied if the model is able to repro

duce certain functions which are defined over the string. Namely, we will be

interested in reproducing Q(A,a) and M(A.a), which correspond to the mean

time interval between consecutive page faults and the mean memory occu

pancy, respectively, that result when the string is processed by the page

replacement algorithm A with parameter a. The choice of these two meas

ures follows directly from the observation that two of the more important

resources in a virtual-memory system are paging 1/0 bandwidth and physical

42

memory.

Amongst the variety of models that have been proposed as predictors of

program memory referencing behavior, the one we will incorporate in our

synthetic program is the LRUSM [Spi76a, Cof73a]. Properties of the'LRUSM,

which is able to capture certain aspects of the "locality of referencing"

behavior, have been analytically and experimentally investigated

[Rau77a.Smi76a.Spi77a.Raf76a]. As stated in the previous chapter, the

LRUSM has been observed to be a reasonable predictor of the two measures

that have been defined over the page reference string; the mean inter-fault

time and the mean memory occupancy [Spi76a, Raf76a].

We recall the notation introduced in chapter 2. where the d^'s are the

independent and identically distributed stack distances having the common

probability mass function (pmf) D=(<5,.<52 6n) and cumulative stack dis

tance probabilities Aj = l)fy. Note that, since we are interested in long-run

statistics, the initial stack contents are immaterial.

3.2.1. Estimating the Model's Parameters

An instance of the LRUSM. corresponding to a given program, is realized

by estimating the n parameters of the model. Although the stack distance

probabilities can be measured directly from a given page reference string,

we will choose to estimate them from the curve of mean inter-fault time vs.

mean memory occupancy. This so-called lifetime curve [Bel69a] is one of

the more natural ways of specifying referencing behavior in addition to being

one of the measures we are directly interested in.

Figure 3.2.1.1 displays the lifetime curve of an n-page program which

references its address space in a uniformly distributed random manner as

Memory size m

Figure 3.2.1.1 Lifetime curves of two programs with
varying amounts of locality.

43

indicated by the dashed curve of the form 9(m) = cn/(n-m). The solid

curve, on the other hand, represents a program which exhibits a more local

behavior. Unless otherwise noted, we let y4=LRU and drop it from our nota

tion of 0() and M().

Returning to the LRUSM, in a memory of m page frames that is managed

by the LRU policy, the events corresponding to page faults constitute a

discrete-time renewal process with a geometric inter-event time distribution

[Ros70a]. The parameter of the inter-fault distribution is simply given by

p = Pr [page fault \ - 1-A^ and the mean inter-fault time by l/p. Recalling

the definition of the lifetime curve, for the memory size m, the quantity

44

6(m) equals l/p if the lifetime curve is obtained under an LRU replacement

policy (or some approximation of it). Thus, in general, we obtain the LRUSM

parameters through the set of equations3

A^sl-l/atm). IsSmsSn (3.2.1.1)

where we define 9(n) to be «».

3.2.2. Generation of Reference Strings

Given an instance of the LRUSM where the model parameters.

D=(<J|.<$2.....dn). have been obtained from a given program as outlined in the

preceding section, we construct a generator of page reference strings based

on the LRUSM by sampling the stack distances, a\'s. from a population having

distribution D and then transforming them into page names through the

stack updating mechanism. Formally, the steps that need to be performed

are outlined below:

GENl (Generator of page reference strings based on LRUSM).

GO: (Initialization) Initialize the stack with an arbitrary content.

Gl: (Random number generation). Generate a pseudo-random number uni

formly distributed in the interval (0,1).

G2: (Transformation). Transform the uniform random variable to another

integer random variable, d*. that is distributed according to D.

G3: (The actual reference). The pager4, currently occupying stack position

dj. becomes the next reference.

G4: (Stack updating). Update the slack by placing the referenced page at

the top and pushing pages in positions 1 through dj-1 down one posi-

' We assume that 8(m) isexpressed in "memory references perinter-fault interval".

45

tion.

»

G5: (Loop). GotoGl.

Within the limitations due to statistical convergence (to be discussed

later) and those of the LRUSM. the reference string. rx,rz,ra generated in

the above manner will in fact have as its lifetime curve the curve from which

the model parameters were derived. The incorporation of the above genera

tor into a synthetic program would then appear to be a solution to the prob

lem at hand. However, if the synthetic program is to generate the next page

to be referenced on the fly during execution, the amount of computation

that is required for the task has to be dealt with effectively. The following

sketch illustrates the problem:

r. rp — desired
/ ' * * . i. j I observed

qxqz..qq -qiqx-qq' 9i9z- QQ " overhead

The reference string rxrzr3... represents the desired string in that it

captures the behavioral properties of the original program from which the

instance of the LRUSM was derived. The generation of each one of the

desired page references requires carrying out the steps outlined in G1-G4.

which in turn result in the memory references, 9i92..-9o-i9o. as a by

product*. From the point of view of the memory management mechanisms of

the system on which the synthetic program is run. the observed memory

reference string is the combined string having the form

q xqz.qor xq\q2-.qorzq xqz...qqr^q xqz.

4 Due to the probabilistic nature of the generation process, the number of memory refer
ences to be issued to generate one desired reference is a random variable, of which we consider
the meun, Q.

46

where the desired string has been diluted by a factor of Q due to the over

head references.

Since each of the Q overhead references is to a small set of s pages that

contain the instructions and the data necessary to carry out steps G1-G4 of

the generation algorithm, for memory sizes greater than s we know that

page faults can only occur at references rxr-zr3... resulting in an obsecved

lifetime 9'(m)= Q&(m). where 0(m) is the lifetime due to the string

rir2rs--- &l°ne-

3.2.3. The Transformation Method

Consider a reference string generator GEN2. that is identical to GENl

except that it is driven by the transformed stack distance pmf

D* =(0.0 O.R6ktX.R6ktZ R6n). where A: is the parameter of the transfor

mation and R =1/(1-A*). In the previous chapter we have observed that, for

memory sizes greater than k, the expected number of page faults due to a

string of length L generated by GENl (the original generator) is identical to

the expected number of page faults due toasiring of length \L/ R\ generated
by GEN2 (the transformed generator). Furthermore, for a reference string

generated by GEN2. if virtual time is advanced by R units rather than by 1

unit between consecutive references, the transformation also preserves

(within the limits discussed in section 2.2.3) the fault rate and the mean

memory occupancy statistics with respect to the desired string produced by

GENl. Here, we will show how the method can be put to use in order to deal

with the overhead references.

Since the Q overhead references cause no page faults, their effect on

the desired string is simply the stretching of the time scale by a factor of Q.

If, by anticipating this effect in advance, we transform the stack distance

47

pmf that is used to drive the generator with a parameter k such that k is the

smallest integer for which /? = 1/(1-A*)<tQ. in the observed string the 0

overhead references will serve only to advance virtual time by Q units

between the rt's. just as required by the transformation method. In other

words, rather than using the model parameters that are derived from the

program directly, we use the transformed parameters. D*. in conjunction

with the generator, thus generating a reference string with increased proba

bility of faults such that, when diluted by the Q overhead references, the

observed statistics are nearly those of the original program.

Yet another view of the solution is the following. In terms of the cumula

tive stack distance probabilities, the transformation can be expressed as

. m-£kA* — I • "I**
**»-1 flfAn-A*) ,m>k

from the definitions of A„» and D*.

Now. inverting equation (3.2.1.1) and substituting for A^ the above expres

sion, we obtain

1 _ 1
9*(m) = 1-A,; ~ l-tf^-A*)

1

~^ •= 4-e(«0 . rn >k.
1-Am R

Thus, the transformation method corresponds to using, in deriving the

LRUSM parameters, the modified lifetime function

8#(m) = ^-e(m)
.m£fc
,m>k

48

rather than the original lifetime function 0{m). Now, when we combine the

effects of the transformation method and the Q overhead references on the

lifetime function (see section 3.2.2), we realize that the observed lifetime

function. 9'(m). is in fact identical to the original for all memory sizes

greater than k. That is.

8'(m) =QQ'(m) =Q(^-Q(m)) * 9(m). m>k
n

since we have chosen k such that R w Q. The validity of the approach is

clearly restricted to memory sizes greater than k, the transformation

parameter.

3.3. Statistical Considerations

It was mentioned above that, for a given value of the mean memory

occupancy, one of the measures we are interested in, 9(m), is Ihe mean of a

random variable. Thus, in reporting point estimates for it based on our

measurements, we need to be concerned with the length of the reference

string from which the estimate is obtained (equivalently, the deration of the

synthetic program's execution). In statistical terms, we are interested in the

minimum sample size (page fault count) that is required for the true mean.

9(m). to be contained within a confidence interval about the observed mean.

9(m). From our previous discussion, in a memory of m page frames

managed by the LRU replacement policy, the set of random variables

XxXzX-j...Xh corresponding to inter-page fault times are independent and

49

identically distributed random variables having a geometric distribution with

mean E[Ai] = 1/(1-ATO) and variance Var(Xi) - o2 - Affl/(1-Am)2. Using

the fact that, for large samples (by the central limit theorem), the distribu

tion of the sample estimate. §(m). about the true mean. 9(m). is approxi

mately normal, an approximate confidence interval with confidence level

(l-a) is constructed as

§(m) ± o{(l-%a)/ym. (3.3.1)

where ((a) is the ath quantile of the standard normal distribution. Thus, the

minimum sample size required for the true mean to lie within an interval of

length L about the observed mean with probability l-a is given by the ine

quality

Ate(2ot(l-J$a)/Z,)2. (3.3.2)

To relate the above sample size (page fault count) to the reference string

length, we make use of a result from renewal theory known as Wald's equa

tion [Ros70a]. Let S be an integer-valued random variable which

corresponds to the minimum page reference string length for which we

observe N page faults. In other words.

where

S=m\n\s:Ix+Iz+...+I,=N\

1. if the ith reference is a fault

* "* I 0, otherwise.

Since the event \S-s\ is independent of I,*x,IttZ 5 may be viewed as a

stopping time for the sequence /,./z./3 /,. Then, by Wald's equation, we

have the following result:

E[5] = E

where N satisfies inequality (3.3.2)

50

= B[5]-E[/f].

As applied to our particular example, the expected minimum string length

required to contain N page faults is given by

f/i/E[/t] =W/(l-Am)
i=i j

a 4. Synthetic Program Overview

In this section, we sketch the principle components of a program that

fulfills the requirements discussed in the preceding sections. The kernel of

the program consists of an "implementation of the generation algorithm out

lined in section 3.2.2. However, before the generation can proceed, the input

to the program (a point-by-point or analytic representation of the lifetime

function) is used to derive the LRUSM parameters which are then

transformed as described in section 3.2.3 (note that these two steps can be

combined and the transformed parameters derived directly from the input).

Apart from thedata structures that are local to thegenerator's implementa

tion, the program declares another single dimensional array ofa fundamen

tal data type (such as an integer) which constitutes the program's virtual

address space. Given the output of the generator (a page name), the pro

gram accesses an element of this array that isknown tobe contained in the

desired page 6. Here, we assume that the host system page size and the

6The choice ofaread orawile access to the desired page isa nontrivial one. in thatdirty
pages imply awile-back tosecondary storage before reuse, thus affecting overall system perfor
mance. Tlus decision can be randomized by busing it on some function of a pseudo-random
number that is independent of theone used to general.: theslack distances. Assumptions sue
asindependent reads and writes where 00% ofah references are reads and 10X are writes seem

51

fundamental data type storage size are known, so that the mapping or the

array elements into pages can easily bededuced.

Although the implementation of the generation algorithm is a very

straightforward task, it requires subtle coding and intelligent use of data
structures in order to keep Q. the number of overhead references, to a

minimum. The smaller the value of Q. the smaller the transformation
parameter Jb. and thus the greater the range of validity of the synthetic pro
gram. Some of these issues are discussed in the next section.

3.5. Practical Considerations

As presented in section 3.2.2. the reference generation algorithm has
two expensive operations that contribute substantially to the overhead refer
ences. These are (i) the generation of the stack distances with frequency

given by D* and (ii) mapping the stack distance to the page name and updat
ing the stack to preserve LRU order. We will examine possible solutions to
these two issues before presenting results from a sample implementation of

the synthetic program.

3.5.1. Efficient Generation of Stack Distances

In the LRUSM. stack distances are independent random variables with a

common general distribution. In a digital computer, there exist methods for
the efficient generation of pseudo-random numbers that are uniformly distri
buted over some interval [Knu69a]. Given such a uniform random integer X.
we are interested in transforming it to another discrete random variable Y

that has an arbitrary distribution over this same interval. The classical

appropriate.

52

method of transforming Y through the cumulative probability function of X

has the drawback that it requires a search amongst the range of Y(this can

be accomplished at best in 0(log n) steps, where n is the distinct number

of values that Y can assume) and consequently is costly. Given two indepen

dent uniform random variables X and U. where X is uniform over the range

of Yand V is uniform over (0.1). we state without proof that it is possible to

construct an array of integers A(X) and an array of probabilities F(X) such

that the random variable defined as

_(X if U^F(X)
Y~\ A(X) if U>F(X)

has a general distribution over the range of X. The algorithm for determin

ing the olios vector A(X) and the cutoff probabilities F(X) from the desired

distribution of Yis given in [Wal77a]. Since the construction ofthe A(X) and

F(X) arrays can precede the string generation phase, we have reduced the

cost of the stack distance generation operation to constant time (indepen

dent of n). Note that, since we generate a sequence of stack distances, at

each reference we need only generate one pseudo-random number, Xit over

the set ofpossible stack depths and use the pair (Ai.Ai_,/n) as the (X.U)

pair as required by the algorithm. This is possible since the set of random

numbers ...Xi-2tXi-i.Xi.Xm.... produced by the generator are pair-wise

independent andXt~x/n is uniform over (0.1).

3.5.2. Stack Manipulation

Given a stack distance generated as described above, the next step in

the generation algorithm requires that the page occupying that stack posi

tion be referenced and the stack be updated to preserve the LRU ordering.

53

The two operations that we have to perform on the stack data structure are

an index operation to map the stack distance into a page name and an

update operation to move the referenced page to the top. Consider an array

data structure representation of the stack. The index operation can be per

formed in constant time, whereas the update operation requires 0(n) time,

where n is the program size in pages. A linked list representation of the

stack on the other hand requires 0(n) time for the index operation and con

stant time for the update. Since we are concerned with the maximum of the

cost of the two operations, these two data structures are equivalent for our

purposes. Consider a simple variation of the linked list implementation of

the stack where we divide the n elements into K/nl piles, each containing

k/nl elements (except for the last pile) with secondary pointers to the head

of each pile. Now, both of the operations of interest can be performed in

0(Vn) time. Such a two-level data structure was first suggested by Franta

and Maly [Fra77a] as an efficient representation of the event queue in simu

lations. Olken [OlkBOa] has studied the dual of our problem (the computa

tion or LRUhit ratios) and has compared the linked list representation with a

binary treee representation of the stack. Although the binary tree represen

tation requires 0(log n) time for the two operations we are concerned with,

due to the complexity of the implementation, the simple two-level data

structure described above has smaller actual cost for moderate sizes of the

stack.

0 Actually, the tree structure studied was an AVL tree rather than a perfect binary tree.

54

3.5.3. Sample Implementation

In an effort to gain insight into the magnitude of Q for a real implemen

tation, the generator algorithm of section 3.2.2 incorporating the above

enhancements was coded in the C programming language and run on a VAX-

11/780 computer system under the Virtual Unix operating system (see

chapter 8 for further details of this system). To minimize the number of

input parameters, the LRUSM parameters were derived directly from Zipf's

Law with a skewness of 2.0[Knu73a], i.e., by the equation fi4 =c/izo. where c

is a normalizing constant. In Figure 3.5.3.2 we plot the number of overhead

references, Q, and the reduction ratio as a function of k, the transformation

parameter. The reduction ratiocurve is the plotof the expression l/(l-Lk),

whereas the overhead curve was derived experimentally by timing the execu

tion of 100.000 generation operations and then converting the mean time

between desired references of this sample to the number of memory refer

ences through the constant of proportionality

7=1 /^second/memory reference.

Note that, actually, this number y is the mean of a random variable that is

dependent on the instruction mix. cache hit ratio, and other architectural

features. The figure indicates a nonconstant relationship between k and Q.

This is due to the shifting of the stack distance pmf towards larger depths for

increasing k, thus resulting in deeper index and update operations on the

slack. Due to this unfortunate dependency of Q on A:, we resort to graphical

methods for the solution of £(*)«#(*)'• For the sample program with 500

pages to which the figure refers, the value of k which satisfies this condition

* Since both Q{k) and R{k) are discrete functions, the equality Qik)-R(.k) *•» rarely be
satisfied for an integer value of *. Inthe casethis cquulity is not satisfied, we choose the smal
lest Jfc for which R(k)*Q(k).

Determination of A for Sample Implementation

300

n=500 pages

skewness=2.0

0
0 10 20 30 40 50 60 70 80

Transformation Parameter k

Figure 3.5.3.2 Variation of the overhead and of the
reduction ratio as a function of the transformation parameter.

55

k

R

WATFIV APL FFT SAMPLE

2 4.54 5.26 5.08 4.15

3 7.04 9.35 11.64 6.84

4 9.80 13.15 24.80 9.62

5 13.00 17.85 33.75 12.47

6 16.39 25.64 47.55 15.38

8 25.38 43.48 73.34 21.40

10 33.44 66.67 84.29 27.70

12 3B.17 88.50 178.22 34.28

14 46.30 107.30 205.59 41.17

16 55.25 125.63 213.14 48.39

18 58.62 154.68 243.26 55.96

20 63.98 190.84 368.05 63.92

24 70.72 287.36 369.89 81.08

28 80.26 389.11 370.08 100.15

Table 3.5.3.1 String reduction ratios for three LRUSM
and the sample implementation with 100-page address space.

56

is seen to be about 54 pages (less than 11% of the address space of the pro

gram).

To relate these values of Q to the transformation parameters that would

have to be used when modeling real programs (as opposed to the hypotheti

cal program we have modeled through Zipf's Law), we report in Table 3.5.3.1

the string reduction ratios (R values) for various values of k of three LRUSMs

whose parameters were derived from three real programs called WATFIV.

APL, and FFT[Lau79a] along with those of the sample implementation scaled

down to a 100-page address space to make its size comparable with the oth

ers. The three LRUSM. WATFIV. APL. and FFT. consist of 98. 114. and 02

pages, respectively. More data about the traces from which the three

LRUSMs were constructed can be found in [Smi76b. Smi77a]. Compared to

these models of real programs, our contrived LRUSM has reduction ratios

that are very similar to those of the WATFIV model over the displayed range

of k. Note that, amongst the three real program models, WATFIV exhibits the

least local behavior (i.e., has the least skewed stack distance pmf towards

57

the top as can be observed from Table 3.5.3.1) and consequently requires the

largest k for a given Q such that Rf*Q. Based on this observation, we claim

that the A: value reported for the sample implementation is a rather pes

simistic one.

The above-constructed synthetic program was run with k =54 in varying

amounts of memory under the Virtual Unix operating system. This was to

confirm that the program in fact conformed to the desired lifetime function

under real operating conditions. The desired and observed lifetimes for the

program are shown in Figure 3.5.3.3. The observed lifetime points were

obtained by timing the execution of the program and recording the number

of page faults generated and the mean memory allocated to the program

during the execution. As can be seen, the program indeed generated life

times very close to the desired lifetimes over a wide range of mean memory

occupancies. The differences in the two curves can be attributed to several

causes:

(i) The page replacement algorithm under which the program was run is

not an implementation of the pure global LRU policy. The actual

replacement policy employed by the Virtual Unix operating system is

< the global clock policy which is known to be only an approximation of

the pure LRU policy (further details of the Virtual Unix memory

management mechanisms will be discussed in chapter 6).

(ii) The amount ofmemory allocated to the program varied during its exe

cution and we have only reported the mean. Since the desired lifetime

curve is concave up. the line representing the linear combination of

any two points on the curve will always fall above the curve.

58

Desired and Observed Lifetimes for Sample Implementation

w

o

a

10 Ll I I I I I1I I | I I I I I I I I I | M I I I M I I | I I I I I>I I U

_ desired
o observed

tf 10

J,
<i&

a>

B

0)

a

3S

10d-

I...... I •• I till I III I III
100 200 300 400 500

Mean Memory Occupancy m. (Pages)

Figure 3.5.3.3 Execution of sample implementation
showing desired and observed values for the lifetime.

59

(iii) For the points corresponding to large amounts of mean memory occu

pancy, the number of page faults generated was very small (less than
100). resulting in a very large confidence interval at a reasonable

confidence level (see section 3.3).

3.6. Conclusions

We have discussed the construction of a synthetic program based on the

LRUSM that is suitable for performance studies of virtual memory systems.

A modification of the LRUSM that transforms the model parameterji was

shown to allow the generation of memory references on the fly as the syn

thetic program is run. at the cost of restricting the range of validity of the

results to memory sizes greater than k, the parameter of the transforma

tion. The study of an actual implementation of the generator has demon

strated that, for modelsof programs which exhibit realisticamounts of local

ity, this limitation of the transformation method is not unreasonable. The

incorporation of the total CPU time requirement into the synthetic program

can be effected simply by varying the length of the string generated (within

the statistical convergence limits that have been discussed in section 3.3).

As for the inclusion of explicit1/0 requirements, this can be achieved simply

by interspersing the 1/0 requests amongst the references generated (at the

cost of further increasing Q and thus k).

3.7. References

[Ucl69a] L A. Belady and C. J. Kuehner. "Dynamic Space Sharing in Com

puter Systems." Comm. ACM 12(5) pp. 2H2-2HB (May 1969).

60

[Buc69a]W. Buchholz. "A Synthetic Job for Measuring System Performance,"

IBM Syst. J. 8 pp. 309-318 (1969).

[Cof73a] E. G. Coffman and P.J. Denning. Operating Systems Theory,

Prentice-Hall, Enlewood Cliff. New Jersey (1973).

[Den70a] Peter J. Denning. "Virtual Memory," Comptng. Surveys 2(3) pp.

153-189 (September 1970).

[Fer72aJ Domenico Ferrari, "Workload Characterization and Selection in

Computer Performance Measurement." Computer 5(4)(1972).

[Fer78a] D. Ferrari. Cbmputer Systems Performance Evaluation, Prentice-

Hall. Englewood Cliffs. New Jersey (1978).

[Fra77a] W. R. Franta and K. Maly. "An Efficient Data Structure for the Simu

lation Event Set," Comm. ACM 20(8) pp. 598-602 (August 1977).

[KasBOa] D. L. Kashtan, "UNIX and VMS: Some Performance Comparisons."

SRI International Internal Report (1980).

[Knu69a)D. E. Knuth. The Art of Cbmputer Programming - Semi Numerical

Algorithms, Addison-Wesley, Mass. (1989). vol. 2

[Knu73a]D. E. Knuth. 7he Art of Computer Programming - Sorting und

Searching. Addison-Wesley, Mass. (1973). vol. 3

[Lau79a] E. Lau, "Performance Improvement of Virtual Memory Systems by

Restructuring and Prefetching," Ph.D. Th.. Univ. California Berke

ley, California (1979).

[Lew73a] P. A. W. Lewis and G. S. Shedler. "Empirically Derived Micro Models

for Sequences of Page Exceptions." IBM J. Res. Develop. 17(2) pp.

86-100 (March 1973).

61

[OlkBOa] F. Olken, "Efficient Methods for Calculating the Success Function of

Fixed Space Replacement Policies." M.Sc. Report. Univ. of California

Berkeley, California (1980).

[Raf76a] A. Rafii, "Empirical and Analytical Studies of Program Reference

Behavior." PhD. Th. SLAC Report 197.Stanford California (1976).

[Rau77a] B. R Rau, "Properties and Applications of the Least-Recently-Used

Stack Model." Stanford U. Digital Syst. Lab. Report No. 139 (May

1977).

[Ros70a] S. M. Ross. Applied ProbabUUy Models with Optimization Applica

tions, Holden-Day. San Francisco (1970).

[Smi76a]A. J. Smith, "Analysis of the Optimal Look Ahead Demand Paging

Algorithms." SIAM J. Comptng. 5 pp. 743-757 (December 1976).

[Smi76b]A. J. Smith. "A Modified Working Set Paging Algorithm." IEEE Trans.

Comptrs. C-25pp. 907-914 (September 1976).

[Smi77a]A. J. Smith. "Two Simple Methods for the Efficient Analysis of

Memory Address Trace Data." IEEE Trans. Software Eng. SE-3pp.

94-101 (January 1977).

[Spi77a] Jeffrey Spirn. Program Behavior: Models and Measurements,

Elsevier North-Holland. New York (1977).

[Spi72a] J. Spirn and P. J. Denning, "Experiments with Program Locality,"

Proc. FaU Joint Cbmptr. Cbnf. pp. 611-622 (1972).

[Spi76a] J. Spirn. "Distance String Models for Program Behavior." Cbmputer

9 pp. 14-20 (November 1976).

[Sre74a] K. Sreenivasan and A. J. Kleinman. "On Construction of a Represen

tative Synthetic Workload." Cbmm. ACM 17(3)(March 1974).

62

[Wal77a] A. J. Walker. "An Efficient Method fur Generating Discrete Random

Variables With General Distributions." ACM Trans. Math. Software

3(3) pp. 253-256 (September 1977).

CHAPTER 4

HYBRID PAGE REPLACEMENT POLICIES - ANALYTIC STUDIES

4.1. Introduction

Although it is well known that the LRU and WS page replacement algo

rithms have performances (as measured by the number of page faults gen

erated for a given mean memory occupancy) superior to both FIFO and

RAND [Kin71a,Raf76a], they are rarely implemented in practice due to their

high cost in hardware and/or software. The author is aware of only one

machine, the CDC Star-100 computer system [0U74a], which implements LRU

page replacement in hardware. However, hardware LRU management of

cache memories is more common, as in the IBM 370/168 [Lip88a]. The situa

tion is quite similar for the implementation of the WS policy [Mor72a).

The vast majority of actual implementations of replacement algorithms

can be considered to be approximations of the pure LRU and pure WS algo

rithms. Their exact form is often dictated by the type of support provided in

the host memory-management hardware. Examples of these approximations

include the clock [Cor68a,Eas79a], sampled working set (SWS)

[Fog74a, Pri74a], and page fault frequency (PFF) [Chu76a] replacement algo

rithms. The iiingle common hardware feature that all of these algorithms

base their decisions on is a reference bU associated with each page frame in

main memory. A reference to a page causes the hardware to turn on the

corresponding bit. which is then examined and reset by the replacement

algorithm.

63

64

In this chapter, we address the problem of making page replacement

decisions in the absence of reference bits. Note that, if given no information

about page references between page faults, the two reasonable choices for a

replacement algorithm are FIFO and RAND. In the following sections, we

introduce a class of hybrid replacement policies that achieve performances

close to those of LRU and WS while having implementation costs comparable

to those of FIFO and RAND. The next section introduces the program model

on which our analysis will be based.

4.2. The Independent Reference Model

The mathematical analysis of a replacement algorithm requires a model

of the programs on which the policy operates. For our purposes, an execu

tion of a program consisting of n pages labeled (1.2 n{ results in a page

reference string, rx.rz.r3 *i_,.r|.r,u where rt=i if page i is referenced

at time instant t (memory references are assumed to occur at equidistant

time points, and we define their distance to be the unit of time). We will

assume a particularly simple stochastic structure for the reference string,

known as the Independent Reference Model (IRM) [Aho71a]. As the name

implies, the string {r»;i=1.2....J is assumed to be a sequence of independent,

identically distributed random variables from the population {1.2....,nJ

where Pr(r,=i)=p\ for all t and fjft =l.

Modeling an actual program with the IRM involves obtaining simple point

estimates for the model parameters (p\'s) from an actual reference string

generated by the program. Rafii has proposed a different method for obtain

ing estimates for the ft's which he called the A0 Inversion Model [Bas76aJ.

65

The resulting model, although structurally identical to the IRM. has much

better predictive capabilities for real programs.

4.a Hybrid Policies

In a demand-paged virtual memory system, referencing a page that is

invalid — not in main memory — causes a trap, which is known as a page

fault. We note that, even in the absence of reference bits, this address

translation mechanism can be put to use to detect references to pages that

are already in memory. All that is required is that we be able to distinguish

these faults from normal page faults and refrain from initiating th« 1/0

operation. This special state of a page will be called the reclaimable state

and will be identified by one additional bit in each page table entry. Since

this method of detecting references to pages comes at a cost (to be dis

cussed later), we are interested in replacement algorithms that collect refer

ence information only for a subset of the pages that a program has in

memory. More formally, we have partitioned the set of pages in memory into

two disjoint classes \valid\ and {reclaimable {, such that

(memory) = jvalid{y(reclaimable) and. (valid) f^(reclaimable) = di.

To keep the cost of generating spurious faults to the reclaimable pages at

reasonably low levels, we would like

| (reclaimable) |«| (valid) |.

We make these statements more precise in the following sections. For rea

sons which will become clear below, we shall refer to the set (valid) as top.

denoted T. and the set (reclaimable) as bottom, denoted B. Having parti

tioned the program's pages in memory into these two classes, we consider

66

various policies for top-to-bottom and memory-to-secondary storage replace

ments. Because we assume a single program to be executing for our investi

gation, the analyses presented in the forthcoming sections coqsider locai

management policies. Extensions of these policies to employ global replace

ment schemes required for multiprogramming environments are discussed

in section 4.6 and in the next chapter.

The two reasonable choices for the management of T are FIFO and RAND,

since for those pages we have no reference information. On the other hand,

we can employ either the LRU or the WS algorithm for the management of 11

since the necessary information can be gathered at the times of these

artificial page faults. This results in four possible combinations that make up

the hybrid class to be studied: using the obvious notation, these hybrid algo

rithms are denoted by Hfifo-lr'J> Hrand-lr'J- Hfifo-ws> and Hrand-ws-

4.3.1. fixed Partition Hybrids

Employment of the LRU policy for the management of B results in

hybrid algorithms that operate in a fixed size memory partition. However, in

a multiprogramming environment, the use of a common bottom amongst all

the active processes results in a variable size partition for each even though

the tops are strictlylocal. We comment about such extensions in section 4.6

and restrict our study here to uniprogramming environments. For the fol

lowing analysis, assume thatT consists of k pages (i.e.. |T| =k). where k is

the parameter ofthe policy, whereas the fixed partition size ism pages (i.e..

| (memory) | = m , k^m-&n).

67

4.3.1.1. The FIFO-LRUHybrid Policy

Given a page reference, r|a at time t, the operation of the Hf]po-LRtj{k)

policy is as follows:

HI: If r|€T. no control state change takes place. This is because this type of

reference is transparent to our mechanism.

H2: (Reclaim) If rt€B. then T«-T+r,-i, where x is the FIFO page in T. and

B«-B—rt+i. Note that, in these expressions. "+" and "-" denote set

membership operations.

H3: (Page fault) If r^}memory) then T*-T+r|-t. where page i is as in H2.

and B«-B+i-^ where page j is the one that has been (approximately)

least recently used amongst all pages.

We cannot state that page j is exactly the LRU page because the ordering

amongst the top is by time of entry and not recency of use. Consequently,

there may be pages in memory that have been referenced earlier than page

j if, for example, page ;' was referenced just prior to its departure from T. A

more appropriate name for the replacement policy employed in the bottom

is Least Recently Reclaimed In section 4.4 we present numerical results

that suggest that, under a wide range of circumstances, the page replaced by

these fixed partition hybrid policies from the bottom is very close to being

the LRU page.

If we envision the control state associated with the algorithm to consti

tute a stack, the HfjFo-LRU policy can be regarded as a modification to the

pure LRU policy where references to the top k positions of the LRU stack

cause no control state change [Mat70a]. Note that, for the degenerate case

k-l, the page replaced from memory to secondary storage by the Hnpo-ut'j

68

policy is exactly the same page that would be replaced by the pure LRU pol

icy. Furthermore, when k-m, the Hfjfo-wj policy degenerates into the

pure FIFO policy.

The performance index that we will use to compare different policies is

the steady-state fault rate. For a replacement algorithm A, the steady-state

fault rate is defined as:

F(A) - Urn [Prfajejmemory))].

In other words. F(A) is the limiting probability with which a reference to a

page causes a page fault.1

We are now in a position to derive an expression for /"(///7ro-£/?y(it)).

based on the IRM. Note that the analysis technique, including the notation to

be used, is similar to that used in [Cof73a]. Let a=\jx,jz jk.jktX jm] be

an m-tuple (without repetitions) corresponding to the memory control state

of the policy. The first A: entries of s contain the page names that constitute

T. whereas the remaining m-k entries contain the names of the elements of

B Define the Markov chain \Xt.t =0.1....) so that Xt=a if the memory control

state at time t is given by s. Let Q=(s) denote the state space of this Markov

chain. From the description of s, one may conclude that Q consists of the set

of all permutations of m elements chosen from n items. Therefore.

|Q| =(£)m! =n!/(n-m)!.

The one-step transition probabilities denoted by

p(a.sJ)= Pr(Ai=s,|Ai_I=s). ffel

can be determined easily based on the IRM parameters and on the

1Forthe class of hybrid policies,this limit always exists under the IRU.

algorithm's description. Specifically, for the //p/ro-u?!/*

pOfctf) =

Eft,
i=> . if 8*=8

Ph .if *=\ji4x.U A-i<Jm iml k<i*;m
Pj .if B-=\j.jx>h im-Z'im-ll J**
0 . otherwise

69

The three nonzero cases correspond to the HI. H2. and H3 events of the

algorithm's description respectively. The above-defined chain is clearly

homogeneous, aperiodic, and positive recurrent [Ros70a]. It can be easily

shown that for fcin-2, the chain is also irreducible. Thus, the limiting state

occupancy probabilities, n. exist and satisfy

n = nP, (4.3.1.1.1)

where P=[p(s.8,)l is the one-step transition matrix. The limiting state occu

pancy probabilities, n. which are the eigenvalues of P.havealso to satisfy the

normalization condition £n,= 1. For a particular state B=[jx.jzja Jm)>

the matrix equation (4.3.1.1.1) can be written as

jtm k<lsm
(4.3.1.1.2)

where u^fizJa jm.j] and v,=[j2j3]\.j\.U*\ jml Note lhat states u*
and yi have been constructed so that a reference to page j, causes the algo

rithm to make a transition to state a

Lemma 4.3.1.1.1: For the HriFO-LRV policy with parameter *. the equilibrium

probability of state 8=[jx.}2.ja 3m] «s g"»ven DV

where

fk

ak) n a(s)
t=2

\n Kji ^q i=l 1=l

70

Proof: It suffices to show that the proposed solution satisfies equation

(4.3.1.1.2). First, note that, from its definition, the A() function for the

states u, and Vj can be written as

m-112

4(uj) = l- I! Pit =A-ito+ft,. t>l (4.3.1.1 •3)

and

A(v,) =
A (a) , i^m -1 +1
4-i(*)+Pi, . i>m-l +l (4.3.1.1.4)

In terms of A(s). equation (4.3.1.1.2) becomes

ff. =ff.(l-4n-**i(s))+fr1[5>«i+ E «nl-
\itrn ' Jk<l*m J

Substituting the proposed solution into the above equation, we have

ira4n-*»i(a)ssPjl
ftflft,

«=2

+ E
i=i

i**G(k) n AK) '<'*"<?(*:) n A(v,)
i=2 <=2

Using equations (4.3.1.1.3) and (4.3.1.1.4) for A(«>) and A(v»). respectively,

and simplifying, we obtain

G(k)Dm-k+x(a) A(s)

fW Tf(A(3)+ft,)
4=1 <=1

y»

*<te»"li1f,AW If (A(a)+ft,)
ft,

4=2 ism-l + 1

71

(4.3.1.1.5)

where we have used the fact that Eft = Dx(a).
in

putting the right hand side terms over a common denominator and

applying the transformations y=m-k and z=f-fc to the indices results in

mzfc+l „
G(k) n A(a)

i«2

«=1

ftA«+fc,- E ft A(a)fl(A(s)+pV
* - l««*y i=y-»*2 <sl«*=!

ft(AM+JW

Through the identity

ftf^+X) =f[Zi +x- E[Tfc+M- ft Zi
4=a-t>+2id 4=1 l*6*al i»l

the right hand side of equation (4.3.1.1.6) reduces to unity and finally w«e find

that

as claimed.

i=i
*.=• m-k*l

G(k) n A(a)
ise

•= Ar

(4.3.1.1.6)

That the normalizing condition Ew»= 1 is satisfled can be shown by an

aggregation argument where first nm is summed over the (n-Ar)l/(n-m)l

72

states that have the same T (the first k elements of s) and then these aggre

gates are summed to cover the entire state space Q. The second sum can be

shown to be the normalization condition for the equilibrium probabilities of

the memory control states for a Jb-page memory managed by the pure FIFO

policy.

Having the above lemma at hand, the following theorem can easily be

proved:

Theorem 4.3.1.1.1: The steady-state fault rate generated by the Hfifo-lr'J

policy with parameter Jb and operating in a memory of m page frames is

given by

F(U„ro-LR>Ak)) =%G*(k)D?(B) ^
** H A(a)

i=i

where G(k) and A(a) are as defined above.

Proof. Note that, given the current memory state & the probability of a page

fault is simply l~Eift, or Dx(s). Thus, conditioning on the state a. we can
<s|

write

Pr(page fault) = E^P8^ fault|A,=s) Pr(Ai=s).

In steady state, we can replace the above probabilities with their limiting

values and obtain

Firlnro-utyik)) =EO-£ft<) "•
•EQ i=l

= E Cr*(k)Df(s)

as desired.

fk
i=l

II A(a)

73

(4.3.1.1.7)

Corollary 4.3.1.1.1: The steady-state fault rate for the pure LRU policy is

given by

F(LRU) = E Df(a) i=l

ftA(a)

Proof. For Jb = l, the Hfifo-lr'J policy replaces the same page that the pure

LRU policy replaces. Thus. F(Hfjpo-iRv(l))=F(LRU). Substituting k = l into

equation (4.3.1.1.7) we immediately have

F(LRU) = E 2/„_*=LDf(a)
ftA(a)

ainceC(0=^J^=1.

Corollary 4.3.1.1.2: The steady-state fault rate for the pure FIFO policy is

given by

F{FIFO) = E
•cQ

G-*(m)Dx(a)U(ih

Proof: For k=m (i.e., B=0), the Hfjpo-LR'J policy degenerates into the pure

FIFO policy. Therefore. F(HnFO-LR'jim))=F{FIFO). The result follows trivi-

74

ally upon substituting k-m into equation (4.3.1.1.7).

4.3.1.2. The RAND-LRU Hybrid Policy

In this section, we consider the simple variant of the Hfifo-lr'J policy

where the page to be moved from T to B at the time of a replacement is

selected at random, uniformly over the pages that currently constitute T.

More precisely, the algorithm is identical to the Hfipo-lr'j policy except that

the top-to-bottom replacement is performed according to the RAND policy.

We proceed with the analysis after a formulation identical to that in the

previous section. For this policy, however, the one-step transition probabili

ties are

P(&s*) =

£ft,
4 = 1

ft/*

A/*

if 8=8

>f 8*=[j j 1J2 • Jh-lJHU-JkJhJk♦ I-• im-ll
where j£s and l£h£k

ifa'=[>jj,j2• h-iinn •JkJhik+i- Ji-iJm-
where l£h^k and k<l£m

otherwise.

•jm]

Note that all pages in the top are eligible for replacement with the same pro

bability —. It can easily be demonstrated that the resulting Markov chain is
k

ergodic (for all k), and therefore n exists and is a solution to

n=trP. (4.3.1.2.1)

where again P=[p(a.a')] is the one-step transition probability matrix. F'or

state a={jx.jz,ja jm], equation (4.3.1.2.1) can be written as:

75

n.= tr.£ft,+ ^-|E>S+£ E* (4.3.1.2.2)

where UfsrJfr7a 3h*3k*\ >W**2 Jm.j] ^d

•i^OWs hJkH.Jh jk-jk* ji.3\>3i+\>->}m\ aga*n. constructed to

result in state s upon the referencing of page j x.

Lemma 4.3.1.2.1: For the Hrand-lrv policy with parameter A:, the equili

brium probability of a={jx.jz,ja jm)is given by

i=l

G(k) £ A(a)
4=2

where G(k) and A (a) are as defined in Lemma (4.3.1.1.1).

Proof. To verify that the proposed solution (which, by the way. is identical to

the solution of the Hpifo-LR'J equilibrium equation) satisfies equation

(4.3.1.2.2). we proceed as before and derive expressions for A(uj) and A(vi)

in terms of A(s)> Using the definitions, we obtain

A(uj) =

and

AWi) =

A-i(a)+ft, § Ki&m-k +l
Di(*)+Pjt-Pjktl. m-fc +Kissm-n +l (4.3.1.2.3)
A-i(a)+ft, , i>m-A + l

A(«) . i^m-Ul
A-i(a)+ft, , m-l>l<i-;m-Jb +l
A(a)+ft,-fttn . m-Jb+Ki<-m-A +l
A-iW+fc, *' *>«»-*+»

Substituting the proposed solution into equation (4.3.1.2.2) yields

(4.3.1.2.4)

G(fc)An-f,(a) _ 1
*A=1

4=1

o ft , « fti
>*• n a(ui) *«— n a(vi)

4=2 4=2

76

We proceed by using equations(4.3.1.2.3) and (4.3.1.2.4) for A(u>)and A(v<)

in the above equation:

G(k)Dm.ktx(a) _ i
-hi A.

"•"ff'CA-iM+ft.)

ft,

4=2

♦ Ek<*m j^ A(s) fl (A-.W+ft.)
4=2 4=m-i+2

ft ft,=f*£ •+ E
^•TfCAW+ft.) *<to'"f1f,AWn(A(«)+ft1)

4=1 4=2 '

Notice that the above equation is identical to equation (4.3.1.1.5), which was

obtained during the proof of Lemma 4.3.1.1.1. Thus, we conclude that the

proposed tt. indeed satisfies equation (4.3.1.2.2).

•

Theorem 4.3.1.2.1: The steady-state fault rate for the Hrand-lrv policy with

parameter k is equal to that of the Hfifo-lrij policy, i.e.,

F(HRAND-ut'Alc)) = F{HFifo-lr>j{Ic))

Proof: The proof trivially follows from lemma (4.3.1.2.1) by conditioning on

the states of the Markov chain.

Corollary 4.3.1.2.1: For programs whose behavior is perfectly represented

by the IRM, the FIFO and RAND policies result in identical steady-state fault

rates. That is.

77

F(FIFO) = F(RAND) under IRM.

Proof: The proof trivially follows from Theorem (4.3.1.2.1) upon observing

that, for k-m, the Hr^no-lr'J policy degenerates into the pure RAND policy

and the Hfifo-lr'J policy degenerates into the pure FIFO policy.

•

Note that the above result has been obtained through a different method

by Gelenbe [Gel73a].

4.3.2. Variable Partition Hybrids

In this section we consider hybrid policies that use WS management for

B. thus resulting in variable size partitions. Note, however, that the partition

size can never become less than k pages (the size of T). where A: is a static

parameter of the policy. Recall that the pure WS algorithm with parameter r

retains a page in memory only if it has been referenced at least once during

the previous t time units [Den88a]. In our case, since we have no informa

tion about references to a page during its membership in T. we must

somehow estimate the last time it was referenced when it leaves T. We will

consider two different estimates for this information in our analysis.

4.3.2.1. The FIFO-WS Hybrid Policy

Given the page reference r, at instant t, define the following terms:

(i) An event is said to occur if r4£T.

(ii) Apagefault is said to occur ifrt£.(memory).

78

Obviously, all page faults are also events (since (memory)=TljB). Further

more, witheach page ieB. associate a time ft that is an estimate of the time

of last reference to that page. We can now describe the operation of the

HFiFO-ws policy with parameters k and t.

Wl: (Null case) If rt eT. no action istaken (actually, no action can be taken).

W2: (Event or fault) Ifr,£T. thenT«-T+r,-i. where page i is the FIFO page in

T. As before. "+" and "-" denote set operations. We provide our esti

mate of the time of last reference to page i as the current time: t^t.

Note that this is actually one instant when we know page i cannot have

been referenced since an event occurred and page i was in T. We com

ment on this choice of last reference estimates in the following sections.

We update B by removing all pages with last reference time estimates

earlier than the policy parameter t; B«-B+i-J. where J=(>eB;f^f -r).

For the variable partition hybrid policies, we are interested in obtaining

expressions for not only the steady-state fault rate. F(A). but also the mean

memory occupancy. M(A), which is the expected number ofpages that are in

memory in steady state.

We proceed with the analysis after the following definitions and prelim

inaries. Let /- be a random variable such that

1 , if page i is in memory
0 . otherwise

Let the random variable ft denote the number ofevents that have occurred

since page t last left T. As before. rt represents the page name correspond

ing to the current reference. Note that, ifT is examined in isolution. refer

ences that cause events will always correspond to page faults in a memory of

79

fc page frames that is managed by the pure FIFO policy. Consider a Markov

chain formulation of the FIFO policycompletely analogous to our formulation

in section 4.3.1.1 [Kin71a. Cof73a]. LetQbe the state space consisting of the

states vljijtja Jtl. representing all combinations of n items taken fc at

a time (note that, for the FIFO and RAND analysis, knowledge of the ordering

amongst the combinations is not necessary). For a given page i. partition

the state space into two disjoint sets R* and P4 such that R< contains all the

states that include page i and Pt all otherstates. In other words, let R»cQ be

such that 8eRi iff iea Note that RiUPi=Q and RinPi=0- ^t 7rt denote the

steady-state probability that page i is an element of T. Then, from our pure

FIFO analysis, the steady-state occupancy probabilities for the states of a

memory of fc page frames are known. The desired expression is obtained

simply by summing the limiting state occupancy probabilities over all those

states that contain page i. That is.

tr, =Pr(iGT) = E "• =C-»(fc) E lift-

l«t p denote the steady-state probability of an event given that page i is not

in the top. That is,

p =limPr(r,/£T|ij£T).

Again from our Markov chainanalysis of the pur*FIFO policy, weobtain

_ ^ £[0-Eft>nft|
Prfo/tT.i/CT) *Ptl je» jci J

* =K Pr(i*T) "cft-Hi-Wi)

Similarly, let q denote the steady-state probability of an event given that

page t is in the top. Through an argument analogous to the one used in the

derivation of p:

80

^ *,. ,* SId-Eft)nft 1PrtV|*T.teT) seiM jc« jt. J
q ~!~ PrfteT) = G(k) ir4

Let i\ be the steady-state probability that page i is referenced given that an

event has occurred and page i is not in T. An expression for I\ is derived as

follows:

T< = lim PrtV|=i\rt/CT,iKt).

but

. Pri>i=i.r|j£T.i*:T)Mrt=i\rt*T.i*T)= p^.,.^

Pr(rt=i,i£T)
Pr(rtjLT.ijLT)

Pr(rt=i|i^T)Pr(i^T)
PrfajCTliXT) Pr(i>£T)

A
PrtV^TlijeT)

(4.3.2.1.1)

since, by the IRM assumption, pages are referenced independently of their

position in memory. Now consider Pr(r|£T|i£T). This can be obtained by

conditioning on the states of our Markov chain formulation as

lim Prfa/TlijeT) =EPrt>«*T|i;tT.s) Pr(s|i*T)

•$J>mt£j (4.3.2.1.2)

Finally, substituting equation (4.3.2.1.2) into (4.3.2.1.1) and invoking the

definition of I\:

rt=(l-ni)pV E^i(a)n.=
•£P,

a e nft
•6Pt je«

E|(»-Eft)JIft

Given the above background, we can prove the following:

Bl

Lemma 4.3.2.1.1: The steady-state probability that page i is in a memory

that is managed by the Hfifo-vs policy with parameters fc and r is given by

pKA^O^+O-ttJ t r4<i-r\)>->-£('-})P>(i-j>)'-' L.3.2.1.3)

where

and

n< = Pr(i€T)= £ nw
•en,

rt = limPr(r4=i|i)eT).

p = HmPlKr^TlijeT).

Proof: Conditioning on the position of page i in memory, we obtain

Pr(/i =l) = Pr(/4=l|teT) Pr(ieT)+rY(/4=l|^T) Pr(i^T)

= 1-fff+O-fit) Pr(Ii=l\iKT) (4.3.2.1.4)

since pages in T are always in memory. What we have to do is derive an

expression for the probability that a page is still in memory given that it is

not in T. We proceed by conditioning on the number of events that have

occurred since page i last left T.

Pr(/4 =l|i*T)= £PK/4=l|**T.ft=j)-Pr(ft=i|i£T). (4.3.2.1.5)
J=l

Now, based on the IRM assumption, given that page i is not in T. referencing

it at the instant of an event constitute independent Bernoulli trials [Fel6Ba]

with probability of success given by iy Therefore, the number of events that

have occurred since page i last left the top has a geometric distribution with

parameter I\. That is.

PKft=j HKT) = r4(l-ri)'-1 . j&l. (4.3.2.1.6)

02

Returning to equation (4.3.2.1.5), the probability that page i is in memory

given that it is not in the top and j events have occurred since it left the top

can be expressed as

PK/^ili/rT.ft^) = PKyi+ra+.+r^T)

where the Tj's are the interevent times given that page i is not in the top

and r is the policy parameter. Recall that with probability p a reference

causes an event given that i£T. Thus, with respect to events, memory refer

ences constitute independent Bernoulli trials with probability of success p

under the given condition. Hence, the number of references between events

has a geometric distribution with parameter p. That is,

Pr(Ti=x)=p(l-p)'-1 . xfel.

Finally, the random variable Tx+Tz+... +Tj. which is the sum of j indepen

dent geometric random variables, has a negative binomial distribution with

parameters p and j [Fel68a]. In other words.

Pr(Tx+Tz+...+Tj*x) =fi({:5)p'0-p)'-' . x*j. (4.3.2.1.7)
l=j •>

Substituting equations (4.3.2.1.6) and (4.3.2.1.7) into equation (4.3.2.1.5). we

obtain

Pr</4=l|i*T)= t ^-^-^({-VO-p)'-'
4=1 l=> •*

(4.3.2.1.8)

where the first summation terminates at r since Pt(7,i+7'2+... +7)=Jt)=0 for

all }>t due to the fact that 7\&1. Combining equations (4.3.2.1.8) and

(4.3.2.1.4), the desired result is obtained.

83

Theorem 4.3.2.1.1: The steady-state fault rate for the Hfifo-ws policy with
. i

parameters fc and t is given by

r(Hm-a)=i-£a|*4+<i-iti> |l[r*<1-r*)>_,||(i-i >P^l-P),_i]]•
where rr4, I\. and p are as defined in Lemma 4.3.2.1.1.

Proof. In steady state, the probability ofpage i causing a fault is simply the

steady-state probability that it is not in memory and it is referenced. Thus,

conditioning on the page,

F(Hfifo-ws)= £(i-iM4=D)-ft.
4=1

The result then follows trivially upon the substitution of equation (4.3.2.1.3)

into the above expression.

Theorem 4.3.2.1.2: The mean memory occupancy due to the Hfjfo-ws policy

with parameters fc and t is given by

M(HnFo-ws)=t n4+(l-nt)£ r.d-r.V"*•£(\l) *p'(l-p)'-' 1
i=i[I=i[t=j J \]

where n"4. r4, andp are as defined in Lemma 4.3.2.1.1.

Proof: Conditioning on the page,

M(Hf,fo-«s)= £lM/4=l)-
4 = 1

The result follows immediately from the substitution of equation (4.3.2.1.3)

into the above expression.

84

Corollary 4.3.2.1.1: For fc = 1.

F(HFiFO-vs)*r(WS) a"d

M(Hfjfo-ws)>M(WS)

Proof: (Informal) From the algorithm's description, note that the HFjfo-ws

policy with parameters fc =l and t operates identically to the pure WS policy

with the same parameter t except that repeated references to the same

page cause no memory state change. Therefore, we conclude that the

memory states generated by the Hfifo-ws policy with fc =l are supersets of

those generated by the WS policy. This obviously results in an increased

mean memory occupancy and a reduced steady-state fault rate.

4.3.2.2. The RAND-WS Hybrid Policy

Here we consider a variation of the Hfifo-ws policy that operates exactly

as described in the previous section except that, at the times of events, the

page to leave the top is selected at random uniformly over the pages

currently in T.

Theorem 4.3.2.2.1: The steady-state probability thai, page i is in a memory

managed by the Hrand-ws policywith parameters fc and t is identical to that

of the Hfifo- ws policy with the same parameters. That is.

Pr(/i =l) =7Ti4-(l-TTi)- £ J-l

l=i J

where n4.I\. andp are exactly as defined in Lemma 4.3.2.1.1.

85

Proof: We proceed in a manner similar to the Hfifo-ws analysis. Condition

ing on the location of the page in memory,

Pr</4=1) = Pr(/4=l|i€T) Pr(iGT)+Pr(/4 =l|*^T) Pr(^T).

From the Markov chain analysis of the RAND policy based on IRM, we know

that the equilibrium probabilities for the states are the same as those for the

FIFO policy (this is the m-k special case of Lemma 4.3.1.2.1). Furthermore,

by Corollary 4.3.1.2.1. the steady-state fault rates for the RAND and FIFO poli

cies are identical. Therefore,

Pr(/4=1) = Tr4+(1-Tr4) Pr(/4=l|i*T)

as before.

Consider Pr(/4=l|i£T). From the algorithm's description, it is clear

that the probability of a page remaining in memory outside the top is

independent of the time it spent in the top and depends only on the

interevent time distribution and the probability of the page being referenced

given that it is not in the top. Since both of these properties are derived

from the Markov chain analysis of the RAND policy for the top, the expres

sions must be identical to those of the FIFO case. Thus, the proof proceeds

just as that of Lemma 4.3.2.1.1.

•

Corollary 4.3.2.2.1: The steady-state fault rates and the mean memory occu

pancies for the Hrand-ws policy are identical to those of the Hfifo-ws policy

with the same parameters.

Proof: Trivially follows since the expressions for l*r(/4 =l) are the same for

both policies.

86

4.3.2.3. Simple Variations

As we noted in section 4.3.2.1, the proposed estimate for the time of last

reference to a pageas it leavesT is clearly optimistic for the Hfifo- ws policy.

We have no way of knowing the exact time of last reference to the page. For

the Hrand-ws policy, however, it is much more difficult to make a statement

about the accuracy of this proposed estimate - the page may. in fact, have

been last referenced one time instant before it was selected to leave T. The

relative merits of these two cases are discussed in the next chapter.

As an alternative, we can mark a page as having been last referenced at

the instant that it entered the top rather than when it left it. This results in

a rather pessimistic estimate since the probability that the page remains

unreferenced between the time of entry and exit from the top is very small.

Since pages cannot be removed from memory while they reside in the top.

regardless of how long they have been there, under this variation the

Hfifo-ws a"d ^rand-ws policies will have to be modified to remove from

memory a page that has been in the top longer than the window t as soon as

it exits the top. To analyze this variantof the Hfifo-ws policy, define the ran

dom variable V4 to be amount of time page i remains in the top. For the

Hfifo-ws policy, page 1 remains in the top for exactly fc interevent limes

(due to the FIFO nature of the top) which are independently and identically

distributed as geometric random variables with parameter q. Hence the

random variable V4 has a negative binomial distribution with parameters q

and fc. Proceeding as in the proof of lemma (4.3.2.1.1). an expression for

PKA^lli^T) can be derived by conditioning first on the time spent in the

top:

Pr</4 =lK*T) = £PK/i=l|i*T.Vt=x) Pr{V4=x)
x=I i

T 1-1
= EPr</4=l|^T.y4=*Hx-A:)9l!(l-7)x"1

x-k

87

=£l(^~i>9fc(i-9)^^r[r4<i-r4y-'if(j:i)^d-p)'-> 11
*=kl * * j«il »«i ii

The desired fault rate and mean memory occupancy can nowbe obtained by

substituting the above expression inequation (4.3.2.1.4). The analysis of the

Hrand-ws policy under this variation can be carried out in a manner com

pletely analogous to theabove derivation. Note that, under this modification

or the estimate of the time of last reference to a page,

F(H„fo-wsUf(Hrand-ws)
and

M(Hpifo-ws)*M(Hrand- ws)

except for the degenerate case fc~l.

Since both of the proposed estimates for the time of last reference to a

page are incorrect, perhaps a more reasonable estimate is the arithmetic

average of the times of entry to and exit from the top. We comment further

on these alternatives in the next chapter in light of our trace-driven simula

tion results.

4.4. Numerical Results

Given the closed-form expression for F(HFlF0-uiAk)) (recall that this is

same expression for F(Hrani).ut'Ak)) in equation (4.3.1.1.6). we are

interested in its functional dependency on the policy parameter fc for various

values of m and of the IRM parameters. However, due to the complexity of

88

the expression, its form between the two end points fc =1 and fc =m (which

correspond to pure LRU and FIFO/RAND, respectively) is difficult to study

analytically. We know that, for the IRM. the fault rate due to pure LRU is

always less than or equal to the FIFO/RAND fault rate for all m and model

parameters [Kin71a]. The shape of F(HFjFO-UiAk)) between these two points

can be of three types:

(i) Straight line, meaning that F(HFiFO-iR'Ak)) is a linear combination of

the LRU and FIFO/RAND fault rales. However, examination of the

expression rules out this possibility since it cannot be written as the

desired linear combination.

(ii) Concave down. We would be disappointed if this were the case since

this result would contradict our desire of achieving fault rates close to

LRU at costs comparable to FIFO/RAND. In other words, to keep the

fault rate close to the LRU value, we would have to operate the policy

with a small fc resulting in a large | B| and thus a large cost incurred

due to the reclaim events taking place from the bottom.

(iii) Concave up (convex). We would be happy since now we could operate

the policy with a large parameter and still retain the low LRU fault

rate as well as reducing | B| and thus the number of reclaim evenlls.

To resolve this question, we resort to obtaining numerical values for the

expression for various instances of the program model. To minimize the

number of parameters involved, the two instances of the IRM we consider are

generated through the equations fii =ci and /3i=c*. which are called the arith

metic and the geometric model respectively. In both cases, the constant c is

chosen such that £A =1- In Figure 4.4.1. F(HFiF0~LR'Ak)) is-plotted as a
4=1

function of fc for the fixed values n =8 and m=7. Note the strong convexity of

89

Arithmetic IRM

1

Geometric IRM

2 3 4 5 6

Top Size k (pages)

(a)

Figure 4.4.1 Hfifo-LR'J fau,t rates for two sample programs a& a
function of the policy parameter fc.

2 3 4 5 6 7

Top Size I (pages)

(b)

90

the two curves; particularly the one corresponding to the geometric IRM.

where fault rates are achieved that are practically identical to the pure IJttJ

fault rateeven for top sizes of5 pages (equivalently. bottomsize of2 pages).

Note that, although not indicated in Figure 4.4.1. for the case where Bt=l/n

(uniform distribution of the IRM parameters). aU demand algorithms result

in the same fault rate of (n-m)/n. For this case. F(HFiF0-utAk)) is obvi

ously a constant. i.e.. it does not depend on fc. Outside of this degenerate

case, the strict convexity of F(HnFo-LR'Ak)) as a function fc for all m and

IRM parameter values remains a conjecture. Next, compare the perfor

mances of the hybrid policies as a function of the mean memory occupancy

for a fixed value orthe parameter fc and two instances of the IRM (again, the

arithmetic and geometric models). In Figure 4.4.2 we have also included the

pure FIFO (or RAND). LRU. WS. and A0 results for comparison (informally, the

A0 policy replaces the page with the smallest probability of reference and

has been shown to be the optimal policy for the IRM [Aho71aJ). Note that, for

the two hybrids. HFifo-lR'J *na Hfifo-ws withparameters fc =4. the fault rates

rapidly approach those of LRU and WS. respectively, for memory sizes

greater than the parameter value. For these cases, the relative fault rates

due to Hp,po-LR,j and Hfifo-ws for equal fc are of the same magnitude as

those of the pure LRU and WS.

The above results have to be interpreted with caution for two reasons,

(i) They are based on a model of program behavior that is known to lack

many of the properties of real programs,

(ii) The numerical results presented are for unrealistically small values of
the program size. n. and of the memory size. m. due to the factorial

growth of the complexity of the expressions involved.

.8

.7

.6

.5

fc.4

.3

.2

.1•

0.

.Arithmetic

-FIPO-l

PIFO-I

FIFO(RAND)

Meanmemorysize

Hgurc4.4.2Faultratesfortwosampleprogramsundervtxious
replacementpoliciesasafunctionofthememorysizem.

9192

Thissecondlimitationcanbeovercomepartiallythroughanumerical

techniqueproposedbyFaginandPrice[Fag76a].However,bothofthese

concernswillbeaddressedinthenextchapterwherewepresentresults

derivedfromtrace-drivensimulations.

4.5.CostConsiderations

Uptothispoint,theonlyperformancemeasurewehavebeenconcerned

withhasbeenthesteady-statefaultrateasafunctionofthemeanmemory

occupancy.WhileappropriateforpoliciessuchaspureLRUandWS.forthe

hybridalgorithmsthecostofcollectingpagereferenceinformationthrough

faultingonreclaimablepagesmustbeconsidered.Forexample,the

Hfifo-lr'Jpolicyachievesitsminimumfaultratevalueforfc=l.However,

withthissettingoftheparameter,weforceareclaimfaultateachreference

thatisnotarepeatreferencetothesamepage.Thus,whatweseekisa

valueforthehybridpolicyparameter,fc.forwhichtherearefewreclaims

whilethefaultrateissufficientlyclosetothatoftheLRUorWSfaultrate.

Moreprecisely,weareinterestedinthevalueoffcthatminimizesacost

functionwhichisaweightedsumofthesteady-statefaultandreclaimrates.

Foraparticularimplementation,letarepresenttheratioofthemeantime

delaysencounteredbyaprogramduetoapagefaultandapagereclaim.

DefinethecostfunctionC()tobe

C(HnFO-utu(k).a)=[F(FIFO(k))-F(HF,FO-utu(k))}+aF(HFiFO-UiAk))

wheretheterminthesquarebracescorrespondstothesteady-slatereclaim

rate(i.e..theprobabilityofareferencetoapageinB).Analogousequations

fortheotherhybridpoliciescanbewrittenaswell.Notethat,while

appropriateasaresponsivenessmeasurefromthepointofviewofa

93

program, the cost function C() is inappropriate for system throughput con

siderations since the major part of the delay due to a page fault results from

the I/O operation which can be overlapped with other CPU activity. On the

other hand, a reclaim operation is performed by the CPU and cannot be over

lapped.

Due to the complexity of the expressions for the steady-state fault and

reclaim rates, an analytic minimization of the cost function defined with

respect to fc cannot be carried out. Empirical studies of this cost have been

performed based on trace-driven simulations and are reported in the next

chapter.

4.6. Conclusions

We have introduced a class of hybrid algorithms that are suitable for

page replacement decisions in a virtual memory environment that lacks

hardware reference bits. Expressions for the steady-state fault rates gen

erated by these policies have been derived based on the Independent Refer

ence Model of program behavior. Numerical results suggest that these algo

rithms are capable of achieving fault rates close to those of the pure LRU and

WS policies while incurring costs comparable to those of the FIFO and RAND

policies. For example, for the Hfifo-lr'J policy applied to an eight-page pro

gram that is an instance of the IRM with geometric model parameters

operating in a memory of 7 pages, we have observed that with a reclaimable

set containing as few as 2 pages, fault rates are achieved that are practically

the same as that produced by the pure LRU policy.

In a multiprogramming environment, the fixed partition hybrids can be

extended in a natural way to operate as what may be considered to be FIPO-

94

Global LRU (GLRU) and RAND-Global LRU hybrids, thus resulting in variable

partitions for the individual programs. This can be accomplished simply by

maintaining a single fixed size bottom that contains the reclaimable pages of

all the programs that are currently being multiprogrammed (the tops for

each of the programs, however, are still maintained separately). In such an

environment, the total number of page frames allocated to a process at any

given point in time will be the size of its top plus a random variable that

represents the number of pages belonging to the given process amongst the

common bottom. Note that, under this extension, the study of the perfor

mance of individual programs is severely complicated due to their interac

tions with the other programs running concurrently.

Although not studied analytically, we note that this extension adequately

models the memory management policy employed in the VMS operating sys

tem for the VAX-11/780 computer system [DEC78a]. The implications of this

extension on the selection of the optimal policy parameter will be com

mented on in the next chapter based on simulation studies of real programs.

4.7. References

[Aho71a] A. V. Aho. P. J. Denning, and J. D. Ullman. "Principles of Optimal

Page Replacement." J. ACM IB pp. 80-93 (January 1971).

[Bas76aJ F. Baskett and A. Rafii. "The AQ Inversion Model of Program Paging

Behavior." Stanford U. Comp. Sci. Dept.. Report STAN-CS-76-579

(October 1976).

[Chu76a)W. W. Chu and H. Opderbeck. "Program Behavior and the Page Fault

Frequency Replacement Algorithm," Computer 9 pp. 29-UU

(November 1970).

95

[Cof73a] E. G. Coffman and P.J. Denning, Operating Systems Theory,

Prentice-Hall. EnlewoodCliff,'New Jersey (1973).

[Cor68a] F. J. Corbato. "A Paging Experiment with the Multics System." Pro

ject MAC Memo MAC-M-384 Mass. Inst, of Tech. (July 1968). Pub

lished in In Honor of P. M. Morse ed. Ingard MIT Press 1989. pp. 217-

228

[DEC78a]DEC, VAX-11/780 Software Handbook, Digital Press (1978).

[Den68a] P. J. Denning. "The Working Set Model of Program Behavior."

Cbmm. ACM 11(5) pp. 323-333 (May 1988).

[Eas79a] M. Easton and P. A. Franaszek. "Use Bit Scanning in Replacement

Decisions," IEEE Trans. Comptrs. C-28pp. 133-141 (February

1979).

[Fag76a] R Fagin and T. G. Price, "Efficient Calculation of Expected Miss

Ratios in the Independent Reference Model," IBM Research Report

RJ-1849 (October 1976).

[Fel68a] W. Feller, Introduction to ProbabUUy and its Applications, Wiley

(1988). 3rd. ed.. vol. 1

[Fog74aJ M. H. Fogel. "The VMOS Paging Algorithm - A Practical Implementa

tion of a Working Set Model," Operating Systs. Rev. 8 pp. 8-17

(January 1974).

[Gel73a] E. Gelenbe. "A Unified Approach to the Evaluation of a Class of

Replacement Algorithms." IEEE Trans. Comptrs. C-22pp. 611-618

(June 1973).

[Kin71a| W. F. King. "Analysis of Demand Paging Algorithms." Proc. IFIPS

Congress, pp. TA-3-155 - TA-3-159 . Ljubljana. Yugoslavia(l97l).

96

[LipSBa] J. S. Liptay, "The Cache." IBM Syst. J. 7 pp. 15-21 (1968).

[Mat70aJ R L Mattson. J. Gecsei. D. R Slutz. and I. L. Traiger. "Evaluation

Techniques for Storage Hierarchies," IBM Syst. J. 9 pp. 78-117
(1970).

[Mor72a] J. P. Morris. "Demand Paging Through Utilization of Working Sets on
the MANIAC II." Cbmm . ACM 15 pp. 867-872 (October 1972).

[0li74a] N. A. Oliver. "Experimental Data on Page Replacement Algorithm."
Proc. NCC. pp. 179-184(1974).

[Pri74a] B. G. Prieve. "A Page Partition Replacement Algorithm." Ph.D. Th.,
Univ. of California Berkeley, California (1974).

[Raf76a] A. Rafii. "Empirical and Analytical Studies of Program Reference

Behavior." PhD. Th. SLAC Report 197. Stanford California (1976).

[Ros70a] S. M. Ross. Applied ProbabUUy Models wUh Optimization Applica
tions, Holden-Day. San Francisco (1970).

CHAPTER 5

HYBRID PAGE REPLACEMENT POLICIES - EMPIRICAL STUDIES

6.1. Introduction

In the previous chapterwe presented results about the performance of

the hybrid policies based onanalytic methods. The utUity ofthese results is

questionable for two reasons:

(i) They are based on an over-simplified model of program behavior- the

IRM. Thismodel specifically excludes the possibility of locality, known to

be exhibited by real programs and to be a fundamental factor of virtual

storage performance,

(ii) The numerical examples presented were obtained from unrealistically

small programs and memory sizes due to the combinatorial explosion of

the expressions for larger values of these sizes.

To resolve these issues in a clear-cut manner, we now turn to the study

of these hybridpolicies(and several others) using trace-driven simulation.

As introduced in Chapter 2, trace-driven simulation mimics the opera

tion of a system as it would behavein response to input data that is recorded

in the trace. For our purposes, the trace data consists of an address record

for each memory access (both data and instruction) generated by a program

during an interval of execution. Since the data originated from the execu

tion of a real program, conclusions based on studies using this data do not

require assumptions about the underlying model for the program. Further

more, results for a range of operating conditions and memory sizes can usu-

97

98

ally be obtained with equal ease.

Our simulators simply implement the various page replacement algo

rithms as they would function in a uniprogramming environment; the

memory references generated by the executing program are read from the

address trace.

6.2. The Trace Data

The simulation studies described in this chapter are based on the trace

data obtained from three programs. They were traced while running on an

IBM 380/91 system at the Stanford Linear Accelerator Center. These pro

grams represent a range of applications and behaviors and are referred to by

the following names:

WATFIVThe execution of the WATFIV compiler compiling a small program.

The compiler size is 96 pages of 1024bytes each; the trace length is

1048882 references.

APL A plotting program running under an APL interpreter. The inter

preter size is 114 pagesof512bytes each; the trace length is 2870921

references.

FFT An implementation of the Fast Fourier Transform. The program size

is 82 pages of 512bytes each; the trace length is 2954787 references.

More data about the source and nature of these programs can be Bound

in [Smi76a].

Some of the difficulties encountered in using memory address trace

data are discussed in Chapter 2. Often, such data is voluminous since tracing

one second of program execution time can easily produce over one million

references. Therefore, multiple simulation runs, representing different

99

operating environments, over this data can be very expensive.

The compressed versions of the three address trace data, generated by

Lau [Lau79a], were used in all of our simulation studies. The reduction

method used by Lau is a combination of the Stack Deletion and Snapshot

Methods as discussed in section 2.1. The method has two parameters, fc and

7*. and retains references to the LRU stack positions greater than fc in addi

tion to the initial references to pages within each sample interval of length

7'. regardless of their position in the stack.

5.3. Fixed-Size Partition Empirical Results

5.3.1. Hybrid Policies

One of the main conclusions of the previous chapter was that the

Hfifo-lr'J or Hrand-lrv policy can achieve fault rates almost identical to

those of the pure LRU fault rate even when the bottom consists of just a few

pages. This conclusion was based on the numerical evaluation of the analytic

expression obtained for the fault rate for two rather small programs operat

ing in a small memory. Figure 5.3.1.1 shows that the same conclusions are

also valid for the three programs available to us. All three results display

strong convexity with a well-defined knee at approximately fc=40 pages. Note

that this represents a bottom size of 10 pages or. equivalently, 20 percent of

total memory. Wealso note that the Hfifo-LR'J and Hrand-lrv policies result

in different fault rates for these programs. This confirms the fact that these

programs do not satisfy the IRM assumptions. No general conclusion about

the relative performances of the Hfifo-LR'J ana Hrand-lr'J policies, however,

can be derived from these results as each is uniformly superior in one

instance while both perform about the same in the remaining instance.

.0006

^ .0005

% .0004

.0003

.0002

jin111111111111111|111111111[1111111111111111111

WATFIV
mcS0 pages

• 111111111111 it 11111 ••• 111... I i • • I • i • • • • • • i"

10 20 30 40 50

Top Size A (pages)

(a)

100

.0006 III I III I I j I II I In 1111 MII II111 III I I II I111 I I I I I11 I

APL
m»S0 pages

.00006 1111 11 111 j I I11 j II 111111 l| 11111 111 11 ITimfTT
: FFT

m=S0 pages

_0005

;J0004
os

.0003

.0002
0 10 20 30 40

Top Size k (pages)

(b)

H /
1111111111111.11 n • I .• 1 • • 1. •. I •. 11. • • .• I.........-

50

J00005

|.00004

-00003"ll"""J|""""l'""""l""'"1'l""i'm
0 10 20 30 40 50

Top Size k (pages)

(c)

Figure 5.3.1.1 Hmv-LR'J a"«* #ftWD-ii?!/ fault rates
as a function of the policy parameter fc for
(a) WATFIV. (b) APL and (c) FFT.

101

The operation of these hybrid policies requires setting the policy param

eter fc to some value. If the cost of referencing a page that is in the bottom

were negligible, then setting fc =l would almost always produce optimum per

formance with respect to the page fault rate (there are few points in the

graphs of Figure 5.3.1.1 where the fault rate actually drops as fc is increased

beyond l). However, since a finite cost is incurred each time a page in the

bottom is referenced, the selection of the policy parameter should be guided

by the desire to keep the fault rate close to the pure LRU value (i.e.,

corresponding to fc=l) while minimizing the size of the bottom. This minim

izes the rate of reclaims. Intuitively, the policy should be operated with the

parameter set to a value close to the knee that occurs in all three fault rate

graphs. Formally, we define a performance measure, C(). that is the

weighted sum of the fault rate and the reclaim rate for a given value of the

policy parameter. For a page replacement algorithm A and a ratio of page

fault service time to page reclaim service time given by a let

C(>l.m.fc.a) = f (A,m-k)+aF(A.m.k)

where m is the memory size, fc is the policy parameter (or the lop size) and

/(•) is the reclaim rate. We will comment on the suitability of this measure

for system throughput considerations in section 5.4.2.

Figure 5.3.1.2 displays this measure under the Hfifo-LR'J ar*d Hrand-lrv

policies for the three programs. All evaluations of this weighted sum in this

chapter have been carried out for a= 100. This is done for brevity of presen

tation, since all of our conclusions are also applicable to results lor a=10 and

a=1000 (i.e., spanning a range of three orders of magnitude). Furthermore,

measurements from an actual implementation to be described in the next

chapter are in agreement with this choice of a. With respect to this new

10'
APL
a°l00

10

10"

10'

' I ' I

WATFIV
o = IOO

SfcrC^Ss
Vv.V.C-^0^ DI,IO

k.s—*>..•"'*••*•
J i I i X. i10

10 20 30 40 50 60 70 80

Memory size m. (pages)

(a)

ioV

102

10°:-

5
o ,
- 10 104 V •»••—-—_» ._

io!
10 20 30 40 50 60 70 80

Memory size m. (pages)

(b)

1010 20 30 40 50 60 70 80

Memory size m. (pages)

(c)

Figure 5.3.1.2 The weighted sum measure observed
under Hfifo-lru (lines) and Hrand-lr'J (points) for various policy
fiarameter as a function of the memory size for (a) WATFIV.
b) APL and (c) FFI\ Note that the two policies produce

identical results when fc = 1.

103

measure, the Hfifo-LR'J and Hrand-lrv policies perform similarly. Because

Hfifo-LR'J 's easier to implement than the Hrand-LRU policy1 and has equal

performance, it will be the only representative of the fixed-partition hybrids

to be investigated in the sequel.

Given a particular program, a and the memory size m, we have seen

that there usually exists a value of the policy parameter fc that minimizes

the C{) function. In an actual system, few, if any. of these values remain con

stant over lime. As was mentioned in the previous chapter, an implementa

tion of the Hfifo-LR'J policy in a multiprogramming environment results in a

bottom that is globally shared by all active programs. While the tops for all

of these programs are local and have a fixed size, the number of pages in this

global bottom associated with a particular program (i.e., the value of m for

this program) varies in a complicated manner based on the activities of the

other programs. Each program in the system has a different memory access

behavior and would consequently require a different value of fc for optimal

operation even if m and a were fixed. These variations are illustrated in Fig

ure 5.3.1.3. where the weighted sum measure is shown as a function of the

policy parameter for varying memory sizes and different programs. The

value of fc that minimizes this function is clearly seen to be sensitive to the

amount of memory available to a given program as well as being sensitive to

the program itself for a fixed m. This undesirable property of the Hfifo-LR'J

policy will be further commented on in the next section.

1 Implementing Random replacement for the lop requires the generation of pseudo-random
integer in the range [l...k] while implementing FIFO replacement requires simply the mainte
nance of a linked list of the pages in top.

I07

10«

106

\o\

-*—i—•—r
WATFIV
a»IOO

«v.40

^m.S* -

m>(o

10 20 30 40 50 60

Top size k

(a)

107

10'

- w

10'

-*—i—•—r
FFT
a-100

H„

104

^ ~ „!4o
""•"•*

104

"*•'**•-» _«*50

10' -L J i I • L_i_
10 20 30 40 50

Top size k

(c)

Top size 1

(b)

Figure 5.3.1.3 The weighted sum observed under Hfifo-LR'J
policy for varying amounts of memory as a function of the
policy parameter and programs (a) WA1F1V. (b) APLand (c) FFT.

60

105

5.3.2. The Clock Page Replacement Algorithm

As an alternative to the hybrid fixed-size partition policies, we investi

gate the performance of the Clock page replacement algorithmwith parame

ter/*, denoted asclock(u). This algorithm was first implemented and studied

as the page replacement policy for the Multics operating system [Cor88a]

and is generaly regarded as a practical approximation of the LRU algorithm.

In its more general form, as introduced and investigated in [Eas79a], the

algorithm has a parameter u and functions as follows. At the time of a page

fault, the pages of the program are examined sequentially (modulo m. the

partition size) until the first page that has not been referenced during the

time interval defined by the last u examinations is found. In other words,

each page frame has a modulo u counter associated with it that is reset to u

each time the page is referenced and decremented by one each time the

page is examined by the replacement algorithm. The page is selected for

replacement only if its counter contains a zero at the time of examination.

The special case /x=l is particularly simple to implement since it requires

only one bit per page, usually called the reference bU, that is set when the

page is referenced and reset when it is examined. The algorithm selects for

replacement the first page encountered with the reference bit off. In our

environment where there are no reference bits, we simulate them by moving

a page from.the reclaimable state to the valid state whenever wewant to set

its reference bit and vice versa to reset it.

Contrary to what is suggested in [Cor6Ba], the performance of the

clock(/x) policy does not approach that of the pure LRU asymptotically forall

reference strings as u tends to infinity (one can construct reference strings

for which clock(ji) always replaces the most recently page regardless of how

a

3 60
«
o

50

5 70

60-

50

40

30

20

10

WATFIV
CLOCKfjj)

40-

•

• 1 ' 1
APL
CLOCKG*)

1 1 ' 1 • 1

-

-

/
/

/

~^'
V v.

V ,ij.M.

-

- \ ..--•••. -

• •'-/•B -

-

1 ,1—

-

.1.1 «... 1 • /"!

30-

20-

10-

10 20 30 40 50 60

Memory size m. (pages)

(b)

70

v—.

/'•

10 20 30 40 50 60

Memory size m. (pages)

(a)

10

70

Figure 5.3.2.4 Overhead associated withthe clockfji)
algorithm for (a) WATFIV. (b) APLand (c) FFT.

20 30 40

Memory size «v (pages)

(c)

106

70

107

large u is) [Bas79a]. Empirically and analytically, increasing u beyond 1

results in an insignificant improvement in performance but increases the

cost of implementation noticeably.

Define the overhead associated with the implementation of page replace

ment algorithm A. denoted as Q(A). to be equal to the work done during the

selection of the page to be replaced. For the clock(/i) policy, this is reason

ably measured by 0 (clock(/i)) = (mean number of pages scanned per page

fault) * (number of page faults). Figure 5.3.2.4 plots this overhead normal

ized by the number of page faults (i.e., the mean number of pages examined

per page fault) for the three programs for various values of u. Since the

page fault rates were indistinguishable for all the values of u, the clock(l)

policy is clearly superior to the others due to its uniformly low overhead.

Based on this observation, we will only consider the clock(l) policy in the fol

lowing and drop the parameter from our notation. Thus, "clock" stands for

"clock(l)" unless otherwise noted.

The values of the weighted sum measure for the three programs under

the clock and Hfifo-LR'J policies are illustrated in Figure 5.3.2.5. As was also

evident in Figure 5.3.2.3. the relative ordering of the Hfifo-LR'J results for

various values of the policy parameter changes as the memory size and the

program vary. We note, however, that the weighted sum associated with the

clock policy is always close to the minimum value attainable by the Hfifo-LR'J

policy for the entire range of memory sizes (especially for large memory

sizes) and programs. In other words, with respect to this measure, the clock

policy is much more robust to variations in the memory size, in the program

characteristics and. although not displayed (for brevity), n the value of a.

This is primarily due to the ability of the clock algorithm to dynamically par-

107F

10'

APL
a-100

10V

I07 t—r—r—r

WATFIV
as 100

O CUXK.

**ttlft >•!•

10'

106

1010 20 30 40 50 60 70 80

Memory size

(a)

108

10*10 20 30 40 50 60 70 80

Memory size m. (pages)

(b)

10 20 30 40 50 60 70 80

Memory size m (pages)

(O

Figure5.3.2.5Hfifo-lr'J (lines) and clock (circles)
policy weighted sums as a function of the memory size m
for (a) WATFIV, (b) APLand (c) FFT.

109

tition the available memory into the valid and reclaimable sets.

5.4. Variable-Stee Partition Results

5.4.1. Hybrid Policies

Recall that variable-size partition hybrid policies result from the use of

the working set policy for the management of the bottom. These policies

have two parameter: the top size fc and the window size r.

Figure 5.4.1.8 compares the performance of the two variable-size parti

tion hybrids with that of the fixed-size partition hybrid. For the three pro

grams studied, the Hfifo-ws °nd Hrand-ws policies have similar perfor

mances, with neither exhibiting uniform superiority. This is not surprising if

we recall our experience with the performance of the FIFO and RAND policies

in conjunction with the LRU bottom. Both of these policies, however, outper

form the fixed-size partition hybrid, by more than an order of magnitude in

some cases, for equal values of the parameter and of the mean memory size

in all three programs. Furthermore, these variable-size partition hybrids

tend to have performances that are more uniform with respect to changes in

the memory size than the fixed-size partition hybrid. Note that Figure

5.4.1.6 (c) contains mean memory sizes that are less than the parameter

value for the case fc =50. This results from the fact that our simulation stu

dies assume an empty initial memory that may take a long time to fill.

In section 4.3.2.3, we discussed alternatives to the estimate of the time

of last reference to a page during its residency In the top. Our simulations

so far have assigned the time of departure from the top as this estimate.

The proposed alternatives of the time of entry to the top and the arithmetic

mean of the lime of entry and exit were also simulated. These results did not

10'

8 106

o

,030

10* ;—i—1—1—r™j • 1—t—r • I 1 1 • • , • 1 1 • .

^ WATFIV •

• ^ a-100 -

>v \ —

>v \
\ \

\ N\ \
\ \

\ * -

\\
\\ ,

\\
_ \ _

A l

•S»

v fi^fe~~^

•

. 1 ...I 1..1 _i ,.| 1 i. 1 _J—i—1—1 1 1 l__

10'

1030 40 50 60 70

Mean memory size m. (pages)

(a)

110

—1—1—1—1—r

APL
a-100

I ' ' ' ' I
10° 1—1—1—r~\—1—1—r—1—[—1—1—1 «"-:

*> 106

° A
*• 104

_£1

^ f™-

I fl»l t I I I | I I I I I I I I I I I ' • »-
1O20 30 40 50 60i_J I I I ' ' L_l I I I I I I—I I—I—L.

40 • 50 60 70

Mean memory size m. (pages)

(b)

Mean memory size m. (pages)

(c)

Figure 5.4.1.6 Hfifo-lr'J (lines). Hfifo-ws °nd ///ww-rc
policy total costs as a function of the memory size m for
(a) WATFIV. (b) APL and (c) FFT. The window size. t.
was varied between 11730 and 117300 references to obtain
the variable partition results. Key: •, A
and V represent Hfifo-ws with fc =10.30.50 respectively
whereas <>. o. and © represent Hrand- rs wi^1
fc=10.30,50 respectively.

Ill

show anappreciable difference in performance and are not presented for the

sake of brevity.

5.4.2. The Sampled Working Set Algorithm

The Sampled Working Set (SWS) algorithm has been proposed as a prac

tical implementation ofthe pure Working Set algorithm [Fog74a. Pri74a]. For

simplicity, we assume that the sample interval T is equal to the working set

window size t. At the end of each sample interval the algorithm removes

from the working set those pages that have gone unreferenced during th'13

interval. The reference bits of all the remaining pages are reset. At the time

of a page fault, the page that is referenced is added to the working set.

Adapting this algorithm to an environment with no reference bits can be

accomplished through the same scheme that we used with the clock algo

rithm where resetting the reference bit of a page is equivalent to changing

its state from valid to reclaimable. while setting the reference bit is

equivalent to changing its state from reclaimable to valid.

Given ann-page program modeled by the Independent Reference Model

with parameters (pYftj fin) operating under the SWS policy with sample

interval T. the rate at which pages are reclaimed is given by

/(T)=^r£(l-(1-A)r)2

=^n-2£(l-ft)T+£(l-A)2T).
' i=l i=l

Note that, during a sample interval, a page reclaim occurs if a pagehas be.m

referenced at least once during the last sample interval (thus it is an ele

ment of the working set at the beginning of the current interval)and is refer

enced at least once during the current interval. Since each of these events

to7

10°

5
o .

i i i i I i i i i I i i i i I i i i • I • i i i I

WATFIV
" a°IOO

. CLOCK(I)

... SWS

104 • ' • ' I ' ' ' • I » ' • • I • ' • • I • » » • I

10 20 30 40 50 60 70

Mean memory size m. (pages)

(a)

112

10". ., • , | I i i i i | i i i i | i i i i | 10 LI I I I | I I I I | I I I I | I I I I | I I I I |

8 106

' _ CL0CK(1)
... SWS

10'

5
o .

H 10'

FFT
O-I00

CLOCK(I)
SMS

1Q4I i i i i I i i i i I i i i i I i i • ill ' i 'J ' ' _.,_
1 10 20 30 40 50 60 70

. rv4l I I I •«• l I l I IT-I l 1 l
1 10 20 30 40 50 60 70

Mean memory size «> (pages)

(b)

Mean memory size *» (pages)

(c)

Figure 5.4.2.7 Weighted sums for the clock. SWSand
Hfifo-ws (*-ne square points) policies as a function
of the memory size m for (a) WATFIV. (b) APLand (c) FFT.

113

occurs independently with probability (l-(l-p\)r). the number of page

reclaims within a sample interval is given by

A'(7') =£(l-(l-ft)r)2
i=i

=n-£(2(l-ft)J,-(l-ft)8T).
is I

Obviously, the reclaim rate is f(T)=N(T)/ T.

The mean working set size, vj(T). and the page fault rate, F(T), under

the SWS policy as obtained by Rafii [Raf?6a] are:

*ffl*n-f£<'-ft)r-,<'-ft)'r"
M-l Pi

and

/•(?•) =f£((i-ft)T-(i-/s4)2n.

Figure 5.4.2.7 compares the weighted sum measure under the SWS pol

icy with those of the clock and Hfifo-ws policies. In all three programs, the

SWS has uniformly better performance, especially for smaller mean memory

occupancy values, than the clock policy with respect to this measure. While

having comparable performances, the SWS policy has over the Hfifo-ws P°l"

icy the advantage of not requiring the specification of a top size.

Recall that the overhead associated with an implementation of the clock

policy was defined as fl(cfocfc)= (mean number of pages examined per page

fault) * (number of page faults). The equivalent measure for the SWS policy

can be expressed as Q(SWS)= (mean working set size) * (number of sample

intervals), assuming that the same unit of work is involved in performing the

same operations under the two different algorithms.

|]U 1 1 • 1
WATFIV

i | . | i 1 ' .

25
_ CL0CK(1)
.. SVS • -_

20 '- -j

15 '- -_

10 '- -_

5 ~ -m

.lil . i . iT—
-

10 20 30 40 50 60 70

Mean memory size «v (pages)

(a)

10 20 30 40 50 60 70

Mean memory size. m. (pages)

(b)

«s
e

•s
>

o

10

Figure 5.4.2.8 Overheadmeasures for the clock and SWS
policies as a function of the memory itize m for
(a) WATFIV. (b) APL and (c) FFT.

114

~ZQ 30 ^40 50 60 70

Mean memory size m. (pages)

(c)

115

This overhead measure for the three programs is displayed in Figure

5.4.2.8. The SWS algorithm incurs lower overhead uniformly for small values

of mean memory occupancy. This overhead measure, while appropriate for

an implementation where reference bits are available, is not capable of

accounting for the time cost associated wilh a page reclaim operation in our

environment. An algorithm that achieves good performance, asmeasured by

our weighted sum function, may generate a very high page reclaim rate

resulting in an unreasonable amount of CPU cycles devoted to servicing

them.

A more appropriate measure of this overhead is the page reclaim rate

generated by an algorithm to achieve acertain page fault rate. The SWS and
clock algorithms are compared in this manner for the three programs in Fig
ure 5.4.2.9. Observe that the SWS algorithm in fact generates a uniformly

higher page reclaim rate than the clock algorithm. Let tr denote the

number of instructions required to service a page reclaim. For the SWS algo-

rUhmt !iLk_ Where w is the mean working s«t size and 7* is the sample

interval expressed in number of references, represents the mean fraction of

the CPU cycles devoted to servicing page reclaims. In the next chapter, we

report numerical results obtained from an implementation that show this

fraction approaching 1 for reasonable values of w and T under SWS. To

reduce this cost to levels comparable with that of the clock algorithm, we

must increase the sample interval T of the SWS This reduces the frequency

of sampling. However. Figures 5.4.2.7 and 5.4.2.8 show that for large values

of T (thus large values of the mean memory occupancy), the SWS algorithm

degenerates in performance and overhcatl measures such that it becomes

indistinguishable from the clock algorithm.

a. MOO

S00 1000

.SWS

CLOCK

100 100 500 700 900 1100 1100

Ifcwbar of paga (suit*

(a)

2. 3000 .

116

100 100 J00 J00 900 1100 U50

Nuabar of paga fault*

(b)
Hiatbar of paga faults

(c)

Figure 5.4.2.9 Number of page reclaims for the clock a nd
SWS policies as a function of the number of page faults for
(a) WATFIV. (b) APL and (c) FFI'.

117

5.5. Conclusions

The observations of the previous chapter have been confirmed using

trace-driven simulations. The fixed-size partition hybrid policies perform

very well for a given program and memory size if the policy parameter is

selected correctly. Under usual circumstances, the operating conditions of

the policy are rarely constant. This requires that the policy parameter be

modified to track these variations. The hybrid policies, however, have no

built-in mechanism for doing this. External mechanisms must be introduced

to vary the policy parameter based on certain heuristics.

The clock algorithm was observed to be much more robust with respect

to the variations that affect the performance of the hybrid policies. The abil

ity of this algorithm to dynamically partition the memory into the valid and

reclaimable regions is at the root of its robustness.

The variable-size partition hybrid policies were observed to be uniformly

superior in performance to their fixed-size partition counterparts. The use

of FIFO or RAND replacement for the top had negligible influence on perfor

mance as did the choice of the estimate of the time of last reference to a

page during its residency in the top. In addition to superior performance,

the use of the WS algorithm for the management of the bottom results in

completely local policies with total isolation amongst processes. The

specification of the fixed top size remains the major drawback of these poli

cies.

A truly variable-sized partition local page replacement algorithm was

studied in the context of an environment lacking reference bits. The Sam

pled Working Set algorithm appears to have performance comparable to

those of the variable-size partition hybrids and of the pure working set algo-

118

rithm but does not have any of the problems associated with the fixed-size

tops. However, the SWS algorithm results in page reclaim rates that are

prohibitively high for reasonable values of the sample interval. Increasing

the sample interval and, consequently, decreasing the frequency of samples

reduces the fraction of CPU cycles spent servicing page reclaims. At the

same time, this results in performances for the SWS that are similar to those

for the clockalgorithm. We further address this issue in the next chapter.

5.6. References

[Cor68a] F. J. Corbato, "A Paging Experiment with the Multics System." Pro

ject MAC Memo MAC-M-384 Mass. Inst, of Tech. (July 1968). Pub

lished in In Honor of P. M. Morse ed. Ingard MIT Press 1909. pp. 217-

228

[Eas79al M. Easton and P. A. Franaszek. "Use Bit Scanning in Replacement

Decisions." IEEE Trans. Comptrs. C-«8pp. 133-141 (February

1979).

[Fog74a] M. H. Fogel. "The VMOS Paging Algorithm - APractical Implementa

tion of a Working Set Model." Operating Systs. Rev. 0 pp. 8-17

(January 1974).

[Lau79a] E. Lau. "Performance Improvement ofVirtual Memory Systems by

Restructuring and Prefetching." Ph.D. Th.. Univ. California Berke

ley. California (1979).

[Pri74a] B. G. Prieve. "A Page Partition Replacement Algorithm." Ph.D. Th..

Univ. of California Berkeley. California (1974).

[Raf76a] A. Rafii. "Empirical and Analytical Studies of Program Reference

Behavior." Ph.D. Th.. SLAC Report 197. Stanford California (1976).

119

[Smi76a] A. J. Smith. "A Modified Working Set Paging Algorithm." IEEE Trans.

Comptrs:. C-2Spp. 907-914 (September 1976).

CHAPTER 6

VMUNIX-DESIGN. IMPLEMENTATION AND MEASUREMENTS

6.1. Introduction

In the rail of 1978 the Computer Science Division of the University of Cal

ifornia at Berkeley purchased a VAX-11/780 and arranged to run an early

version of UNIX for the VAX provided by Bell Laboratories under a coopera

tive research agreement. The VAX was purchased because it is a 32-bit

machine with a large address space, and we had hopes of running UNIX,

which was successfully being used on other smaller machines.

Except for the machine-dependent sections of code. UNIX for the VAX

was quite similar to that for the PDP-11, which has a 16-bit address space and

no paging hardware. It made no use of the memory-management hardware

available on the VAX aside from simulating the PDP-11 segment registers with

VAX page table entries. The main-memory management schemes employed

by this first version of the system were identical to their PDP-11

counterparts— processes were allocated contiguous blocks of real memory

on a first-fit basis and were swapped in their entirety. A subsequent version

of the system was capable of loading processes into noncontiguous real

memory locations, an allocation policy called scoffer loading, and was able to

swap only portions of a process (partial swapping) as deemed necessary by

the memory contention. This became the basis for the paging system we

developed, called VMUNIX (for Virtual Memory UNIX), that is discussed in this

chapter.

120

121

6.2. Search for a Replacement Policy

The VAX memory-management architecture supports paging within

three segments (two for user processes, one for the system). The interesting

aspect of the architecture is the lack of page-referenced bits (also calleduse

bits). To remedy this situation, the dynamic address translation mechanism

of the VAX was used to detect and record references to pages. With this

scheme, a page for which reference information is to be gathered is marked

as invalid although it remains in main memory. This state for a page is called

the reclaimable state. A reference generated to a location within this page

causes an aadress-translation-not-valid fault. However, the fault handler can

detect this special state of the page and thus refrains from initiating the

page transfer from secondary memory. In other words, the reclaimable

state for a page corresponds to a valid page with the reference bit off, if a

reference bit were available. Since this method of simulating page-

referenced bits through software has a nonnegligible cost, the relative per

formances of some of the most popular replacement algorithms in this

environment are no longer known.

In VMS, the vendor-supplied operating system for the VAX, the solution

to the replacement decision is simple [TurBla]. Each process is assigned a

fixed-size memory partition, called a resident set, that is managed according

to the FIFO policy. Pages that are not members of any of these resident sets

are grouped together to constitute the global free list which functions as a

disk cache. Although there is some isolation between the paging behavior of

the various processes due to the strictly local resident sets, the coupling

that is introduced through this global free list has significant performance

implications. Lazowska [Laz79a] reports that in measurements based on a

122

real workload, system performance was significantly improved by increasing

the minimum size of the free list (a system generation parameter). An

unfortunate consequence of allocating fixed-size partitions to processes is

that a process has its pages taken away from its resident set (relatively small

in size compared to the total real memory available on the machine) and

placed in the free list to be subsequently reclaimed even though it may be

the only active process in the system.

In the last two chapters we have studied the class of hybrid page

replacement policies. This class includes the VMS algorithm described above,

called Segmented FIFO in [TurSla], as an instance where the resident set

management is according to the FIFO policy and the free list management is

approximately Least-Recently-Used (LRU).

UNIX is particularly ill-suited for such a scheme for several reasons. The

UNIX system encourages the creation of a number of processes to accom

plish most tasks-- processes are cheap. As in most systems, these processes

are nonhomogeneous; they vary greatly in size and in the manner in which

they access their address space. Furthermore, in certain processes the page

reference behavior varies radically over time as the process enters different

phases of execution. The LISP system, which initiates garbage collection

after an interval of execution, is an example of such a process. Thus, in this

environment, it is unlikely that we will find a single system-wide value fcr the

fixed resident set size that will nearly optimize an objective function such as

the weighted sum of the page fault rate and the rate at which reclaimable

pages are referenced under the hybrid policy. In fact, even for a single: pro

cess, the value of the resident set size must vary in time in order to irack

different phases of its execution and the varying amounts of real memory

123

available to it. As described earlier, the total number of pages from the free

list belonging to a certain process is a dynamic quantity due to its sensitivity

to the system-wide paging activity.

However, simulation studies based on actual program address traces,

reported in the previous chapter, showed the clock page replacement algo

rithm [CorSBa] to be much more robust with respect to the objective func

tion defined above to variations in the amount of memory available to the

program, the relative costs of page faults and reclaims, and the nature of the

program itself than the fixed-partition VMS scheme.

We now introduce some terminology associated with the algorithm that

will be used in the remainder of this chapter. Recall that, under the simplest

form of this policy, all the pages allocated to a program are thought of as

ordered around the circumference of a circle, called the loop, according to

their physical page frame number. In addition, there is pointer, called the

hand that is advanced circularly through them when page faults occur until

a replacement candidate is located. A page is chosen for replacement if it

has not been referenced during the time interval between two successive

passages of the hand through this page. The movement of the hand to per

form these functions is called the scan operation.

Another major departure in the VMUNIX memory management from the

VMS design resulted from our decision to apply the clock page replacement

algorithm globally to all pages in the system rather than locally to the pages

of each process. Note that all of our studies in the previous chapters have

assumed a uniprogramming environment, whereas this modification results

in a variable-size memory partition for each process. This was motivated by

studies where global versions of fixed-partition replacement policies had

124

been found to have better performances than their local counterparts

[0li74a.SmiB0a.Smi8 la], and by the following considerations:

(i) The relativesimplicity of the global clock policy and. consequently, the

ease of implementation.

(ii) The projected workload for the system had no requirement of

guaranteed response times as in time-critical applications. Whereas a

local algorithm can allocate large amounts of memory to processes on

a selective basis, a global algorithm cannot.

(iii) It was unreasonable to expect users to specify the sizes of the fixed

program partitions since from the existing system they had little or no

information about the memory requirements of their programs.

(iv) Without reference bits, the cost of implementing variable-partition

local replacement policies such as SWS or Page Fault Frequency

[Chu76a] was observed to be too high (see section 5.4.2 of the last

chapter). We comment further on this point in the following section.

(v) UNIX encourages the construction of tasks consisting of two or more

processes communicating through pipes, whichmust be co-scheduled if

they are to execute efficiently. In most instances, the intensity of

activity, thus the memory demand, shifts over time from the left-most

process to the right-most process in the pipe while all of them remain

active. It is our belief that, in such an environment, dynamic partition

ing of memory amongst these processes in real time is more appropri

ate than having local partitions (working sets) that are maintained in

process virtual time.

• 200 -

125

6.a Memory Demand and Clock Triggering

The clock page replacement policy as described in the previous chapter

is only engaged upon a page fault, at which time it selects a page to be

replaced. Given that the demand for memory exhibits nonuniform patterns

with occasional high spikes (see Figure 6.3.1). this strategy for the activation

of the replacement policy is clearly suboptimal.

Having incurred the cost of page replacement policy activation, we

would like to select more than a single page to be replaced in order to antici

pate short-term demand for more memory. To this end. the system

:Liil^l™jLLiilni
Itsal lias (accondo)

Figure 6.3.1. Number ofpage frames requested globally in one
second intervals during a 33 minute observation period. The data was
obtained by tracing the memory request events under the VMUNIX system
with the performance enhancements (section6.7) turned off.

126

maintains a free page pool containing all of the page frames that are

currently not in the loop. Our version of the clock policy is triggered when

ever the size of this pool drops below a threshold. Then, the algorithm scans

a given number of pages per second of real time (a simplified version of this

algorithm is discused in [Eas79a]). Currently, the default trigger point for

the free page pool size is set at 1/4 of the real memory size and the default

minimum scan rate of the hand is approximately 100 pages per second. As

the free page pool size further drops below the threshold, the scan rate of

the hand is increased linearly up to a given maximum value. The primary

factor that determines this maximum value is the time it takes to service a

page reclaim from the loop (i.e., the time to simulate the setting of a refer

ence bit). Measurements based on the current-system indicate that on the

average this action consumes approximately 250 microseconds of processor

time. The full distribution of the page reclaim service time is shown in Fig

ure 6.3.2 (a). We note in passing that the ratio of the mean page fault service

time to the mean page reclaim service time (a as defined in the previous

chapter) is approximately 200 based on the data of Figure 6.3.2. Our use of

a-100 for the simulation studies in Chapter 5 is, therefore, fully justified.

Since the number of pages scanned by the clock algorithm provides an upper

bound on the number of pages that can be reclaimed, the processor over

head due to the simulation of reference bits can be controlled by limiting

this maximum scan rate. Currently, we allocate at most 10 percent of the

available processor cycles to this function. This implies that the maximum

scan rate of the hand is limited to approximately 400 pages per second. Due

to the existence of the free page pool, however, short duration memory

demands far in excess of this value can be satisfied. The problem of formal

izing some of these decisions along with the selection of parameter values is

.0001
U0 160 IB0 200 220 240 260 280 100 320 340

Tina (|iaec)

(a)

127

1

.1V:
•
3
r

!.oi•\
.001 Vv

^^V\
0001

12 32 S2 72 92 112 132 152 172 192 212

Time (atacc)

figure 6.3.2. (a) Page reclaim service time distribution.
(b) Page fault service time distribution. Mean service time for a
page reclaim is 250 microseconds while it is 50 milliseconds for a
page fault. The page fault distribution was obtained under a
two-disk drive system with the paging activity on a model RM0CI.
The page fault service time distribution includes all queueing delays
(at the device and the processor) in addition to the device service time.

128

discussed in the next chapter.

The system maintains enough data to be able to reclaim any page from

the free page pool regardtess of how it arrived there. In addition to being

replenished from the loop, the free page pool also receives pages of

processes that are swapped out or completed. In both cases, these pages

can be reclaimed by the process upon a subsequent swap in or a future

incarnation of the same code, provided that in the meantime the pages have

not been allocated for another purpose.

Given the cost to simulate the setting of a reference bit, our previous

remarks concerning the unsuitability of local variable partition page replace

ment policies in the UNDC environment are justified. As an example, using

the Sampled Working Set policy with a window size of 100.000 instructions

(approximately 100 milliseconds on the VAX) operating with a program hav

ing a 400-page working set would consume 50 percent of the processor cycles

just to simulate reference bits (assuming that the working set of the pro

gram remained unchanged between two consecutive sample points and! that

virtual time does not advance during the page reclaim service intervals).

The use of a modified clock page replacement algorithm where the scan

rate is based on the available memory has several other advantages as well.

The length of the free page pool becomes a natural indicator of the amount

of memory contention in the system. Aswe shall see, the inability of the sys

tem to maintain some specified amount of free memory is the basis for load

control, and causes process deactivation by swapping. Control of the scan

ning rate allows the page write-back activity, that is initiated when dirty

pages are removed from the clock loop, to be spread more uniformly over

time, thereby easing the contention for the disks.

129

8.4. Implementation; New System Facilities

The UNIX system memory-management facilities are particularly sim

ple. Each user process has a read-only shared program area, a modifiable

data area, and a stack. An exec system call overlays a process' address

space with a particular program image from a file consisting of the shared

code and the initialized data. New processes are created by the fork system

call, which causes a process to clone itself. Usually, the command inter

preter accomplishes its task by first creating a copy of itself to establish the

context for the command and then causes this copy to overlay itself with the

file that is the image of the command. Except for shared program areas, no

other memory between processes can be shared. Access to files and devices

is through read and write system calls; no segment-based or page-based

shared access to file pages is available.

Consistent with our design goals, we wished to keep changes to the sys

tem as simple as possible and orthogonal to the rest of the system's design.

Then, further changes to the UNIX system would be less likely to invalidate

our efforts.

The conversion of the swap-based system to a paged system began in the

late spring of 1979 and the first version of the paging system was put into

production use on a single machine in September of 1979. At that time, the

primitives for the swap-based UNIX system were still in use. Processes were

created using the fork system call which copied a process' address space

page by page to create the new address space. This newly-formed address

space was then overlaid with a new image through the exec system call.

These primitives, while simple to implement and relatively cheap (involving

memory-to-memory copying and file reading) in a swap-based system, were

130

very expensive under the new system, since programs could be partially

loaded in memory and could be much larger.

We found that a vast majority (over 80 percent) of alt forks executed in

the system were due to the command interpreter. Since these forks only

serve to establish the context for the new process, duplication of the entire

address space was a wasted effort Most of the sharp spikes in the global

memory demand pattern of Figure 6.3.1 could be attributed to processes

forking and/or execing. The nondemand nature of these requests for

memory (in the sense that they are an implementation artifact) overtaxed

the page replacement algorithm and had grave performance consequences.

A natural solution to the problem would have been to include a "copy-

on-write" facility to implement a fork similar to that used in various PDP-10

operating systems (such as TENEX [Bob72a]). In this scheme, the two

processes would be allowed to share the same address space and the copying

at the page level would be deferred until the time of the first modification of

a page by either process. However, this would have significantly increased

the number of modifications to UNIX and hence delayed the completion of a

workable and useful system. At the time, the desires of our user community

did not indicate that shared-memory primitives would be necessary in the

near future.

A new primitive to replace most instances of the fork system call was

designed. This primitive, called virtual-fork, allows the original process to

establish the system context for the new process but refrains from creating

the address space until the subsequent exec system call that is issued by the

new process or until the completion of the new process. During this interval,

the system context of the original process is dormant. To put it another way.

131

the new process is allowed to run within the address space of the original

process until it establishes its own address space through an exec system

call or through completion, at which point the original process, which was

dormant, regains its address space. Obviously, during this transition period

the new process must not modify the contents of the address space that is

"on loan" to it. This mechanism allows a new process to be created without

any copying of address space and without requiring a mechanism like "copy-

on-write."

Note that there are instances of process creation where the virtual-fork

system call is inappropriate. An example of such a case occurs when com

mands are executed in the "background". Then, the new process is ini

tiated, but the command interpreter does not wait for its completion and is

ready to accept a new command line. However, all other instances of the

fork system call could be (and were) replaced with the virtual-fork call

without change to the calling program. It is quite easy to implement this

primitive on non-paged machines as well as on paged machines, and there

are strong indications that the overhead of process creation in the swap-

based PDP-11 implementation of UNIX would be reduced if such a primitive

were implemented.

A new load format was also provided to reduce the implied overhead of

the exec call. Programs loaded using this new format would have their pages

demand-loaded from the file system rather than pre-loaded as in the previ

ous swap-based system. This reduced the overhead of process invocation,

and was soon made the default load format.

132

6.5. Limiting Page Traffic and Controlling Multiprogramming Load

In addition to the processor overhead considerations which limit the

scan rate of the clock replacement algorithm, there are global system con

siderations involved in limiting page traffic. Input-output activity generated

by page replacement should not delay too much of the input-output activity

generated by program request UNIX typically runs on relatively small

machines that often have only two moving head disk drives used for all sys

tem activity including paging, swapping and file system transfers. Special

paging devices are rare in such systems. It is not practical to design a sys

tem that saturates one of these arms to maximize memory usage. Input-

output bandwidth is often as precious as memory residency. Thus, load)con

trol mechanisms such as the "L=S" or the "50 percent" criterion

[Den76a,Den77a] which assume the availability of a separate paging device,

are inappropriate. We therefore decided to deactivate processes by swap

ping them to secondary storage when demand for main memory exceeded

our ability to supply it.

Multiprogramming load control in our system is thus based on a desire

to limit paging overhead. When the system finds that it cannot maintain an

acceptable amount of free memory by consuming approximately 10 percent

of the available processor time to sample page utilization, it lowers memory

demand by removing a process from the set of runnable processes. The: pro

cess to be swapped out is selected by choosing the oldest amongst the n larg

est resident processes. This policy represents a compromise between the

largest-first and the oldest-first policies [Chu76a. Cof73a]. Neither of these

policies was found to be satisfactory in its pure form; the former prohibits a

large process from making any progress while the latter wastes effort by con-

133

stantly swapping out small processes that do not contribute much to the

memory demand. Currently, the default value for the variable n is 4. The

pages of the swapped-out process are written to secondary storage if neces

sary, removed from the loop and returned to the free list Processes that

are swapped out are assigned priorities to return to the runnable set based

on their size (smaller jobs have higher priority) and the amount of time they

have been swapped out (priority increases as time goes by). Sufficient time

delay is built into the swapping algorithm to ensure that useful work gets

done between swaps. Since in a reasonably-configured system swapping a

process out is a rare event, we do not swap in the resident set a process had

at the time it is swapped out. In our environment, the long period of inac

tivity of the process that caused the swap out is usually a good indicator of a

locality transition through the invocation of a new function (for example, a

new input line to the command interpreter from a terminal). In such cases,

the overlap between the old resident set and the new is minimal. However,

chances are that the process will still And some of its pages in the free page

pool, and can simply reclaim them by referencing them.

6.6. Comparison with the Swap-Based System

After two months of production use and a reasonable amount of tuning,

we decided to compare the performance of the system running with and

without the virtual-memory changes. A script-driven experiment was

designed for a stand-alone configuration consisting of 1 megabyte of main

memory, two disk arms on two different controllers, each with a peak

transfer rate of 1 megabyte per second and a 40 millisecond average access

time. For the comparison we used the version of the swap-based system that

was the base for the paging extensions. The page size in use in the paging

!
u

Ti B 12 T5
Load (terminals)

(a)

ccomp

12 . swap
page

10

8

6

•

1

yy

2

H 6 12 16
Load (terminals)

(c)

typeset

swap

i| 8 12 16
Load (terminals)

(b)

.•"N tri vial

1 » -swap

U —--page
0> .

m 6
o
o
rH

w 5 -

a>

a
u 1J

13
o

.H
y

9*

o c *^-"
— "•"*

u

il 8 12 16
Load (terminals)

(d)

Figure 8.6.3. Average completion times
(a) lisp, (b) typeset, (c) ccomp. (d) trivial.

134 135

version of the system was 512 bytes.

The basic unit of work generated by the script was made up of four ter

minal sessions executed concurrently. The terminals are identified by the

major task that the perform:

lisp A LISP compilation of a portion of the LISP compiler, followed by a

"dumplisp" using the lisp interpreter to create a new binary vtrsiou

of the compiler.

ccomp An editor session followed by the compilation and loading of several

small C programs that support the line-printer spooler.

typeset An editor session followed by the typesetting of a mathem itical

paper and production of output for a raster plotter.

trivial Repeated execution of a trivial command (printing the dale) avery

few seconds.

Staggered multiple initiations of from one to four of these work units

were used to create increasing levels of load on the system. Figure 6.0.11

gives the average completion times for each type of session under th? two

systems. For the nontrivial sessions, completion times were very similar

under the two systems, with the paging version of the system running fin all

but one case) faster. The interesting observation is that the swap-based sys

tem departed from linear degradation more rapidly, i.e.. for a smaller

number of active terminals. This trend is most noticeable in the response

time for the trivial sessions.

Figure 6.6.4 gives system-wide measurements collected during the same

experiments whose results were given in Figure 6.G.3. These measurer.leuts

show the same trend for both the time when the last script completed c<ei.u-

tion and the average completion times for individual sessions, with the

<-\
total

(0
average

% 11 % 8
O
o
4)

10 7

• swap
page /c

o
a

g 12

page

o
o

H 10
/ /»

o
o

b 6 / /
/ /

4) / / 0)

w 0

c
O

U i
4)

f-1
P.

8 3O J

/ /
* 8
c
O A.

•H 0

/ /
//

//
//

4)

& 1
/ s

• /s

//
/ s

O
U

// o Ss

<s

J

A?

1 8 12 16 4 8 12 16
Load (terminals) Load (terminals)

(a) (b)

(0
page //

c 210
o
o / /
* 200

/ /
/ /

e 160
•H

•P

E 120

4->

W

£ 80

/ /

'///
//

//
• '/
//

r/

1 8 12 16
Load (terminals)

(c)

1 8 12 16
Load (terminals)

(d)

figure 6.6.4. System-wide measurements (a) total completion time,
(b) average completion time, (c) system time, (d) page traffic.

136
137

paging systemslightly faster and degrading more linearly than the swap sys

tem within the measured range. Under heavy load, system overhead was uni

formly greater under the paging system, constituting 26percent of the CPU

utilization as compared to 20percent under the swap system. User-CPU util

ization under this load was. however, uniformly greater for the paging sys

tem, averaging 48 percent, while the swap-based system averaged only 42

percent.

Finally, the total page traffic generated under the two systems was

measured. The measurement accounts for both paging and swapping traffic

under the paging system, as well as transfer of all system information (con

trol blocks and page tables) under both systems. Although the paging sys

tem resulted in far fewer total pages transferred, the number of transactions

required to accomplish this was much greater since most transfers under

the paging systemwere due to paging activity rather than swapping activity.

In this version of the paging system, all paging input/output activity dealt

with single 512 byte pages.

8.7. Performance Enhancements and Comparisons with Hybrid Paging

After measuring the system and seeing that the performance was com

parable with that of the swap system, we determined that there was a major

bottleneck in the system due to the small page and file block size- 512

bytes. Measurements of typical system programs which processed files one

character at a time showed that the fastest such programs produced and

consumed data at a rate of about 80 512-byte pages per second. The file sys

tem in use on VMUNIX at that time, however, could produce about 40 blocks

persecond on average, resulting ina factor oftwo mismatch between typical

program speed and average file system throughput

138

The file block size was increased from 512 to 1024 bytes and physically

adjacent pages were grouped in pairs producing the current 1024-byte

"pages". All future references to "pages" imply this new size, unless noted

otherwise. With the new page and file block size, total system throughput on

the script-driven benchmarks discussed above improved significantly, with

the completion time dropping an average of 30 percent. user-CPU utilization

rising nearly 20 percent and system overhead dropping below that of the

swap-based system.

Benchmarks of paging intensive synthetic programs run on VMS and

VMUNIX showed, however, that VMUNIX could not supply memory to heavily

paging programs at a rate comparable to that of VMS [KasSOa]. Simple test

programs that sequentially or randomly (with varying degrees of random

ness) accessed virtual memory were run on both systems and ran much fas

ter on the VMS system which clusters pages both for input and output. The

problem, here, was similar to the problem with the file system: inadequate

blocking. Transferring only 1024 bytes of data after incurring a 25-30 mil

liseconds delay while waiting for a moving-head storage device kept the

bandwidth low.

To remedy the situation, a simple form of pre-paging was implemented

[Smi78a, Lau79a]. Upon a page fault, the faulting page as well as the next

several virtually (and physically) adjacent pages were read in as a single

operation. Similarly, upon a page out decision, the set of modified pages

would be searched to construct clusters of virtually (but also physically)

adjacent pages that would be written back to disk in a single operation. Both

the input and output cluster sizes are variables that can be varied while the

system is in operation. This drastically improved system performance on the

139

simple test programs due to their sequential nature and the fact that they

always dirtied pages by writing into them.

There remained, however, a performance gap between our system and

VMS whose cause eluded us at the time. The problem was discovered to be

the placement of pre-paged data. Such data was placed in the clock loop,

but marked as being not referenced, so it would be moved to the free page

pool in a single revolution of the clock if it remained unreferenced by the

program. For programs similar to Kashtan's test programs, which have a

very high data rate but do not use all the prefetched data, this resulted in an

excessive load on the clock algorithm.

This flaw in the pre-paging algorithm was corrected by placing the pre-

paged pages at the bottom of the free page pool list rather than in the clock

loop. Recall that the system free page pool, which is implemented as a

queue, is fairly long. Since page frames are allocated from the head of this

queue, on a busy system, pages near the bottom may survive (i.e.. remain

reclaimable) for a few seconds before being re-used. Since the pages were

pre-paged because they were adjacent to a recently referenced page, it is

desirable to retain them only for a short while if they are not referenced.

The modified pre-paging placement policy more closely reflected this intent.

A new system call was added to notify the system that a process would

be exhibiting anomalous behavior. This call caused the reference bit simula

tion to be turned off resulting in approximately random page replacement

(since the physical ordering of page frames in the free page pool from where

they are allocated is destined to be random after a period of operation of the

system) for these processes. Currently, the USP system issues such a call

before entering the garbage collection phase.

140

After these changes, the performance of the two systems on the test

programs became comparable. In practice, however, the VMUNIX page

replacement algorithm has the advantage that it does not give processes

fixed partitions and therefore tends to avoid unnecessary processor over

head (a different form of thrashing [Den6Ba] that is unique to our environ

ment) in a way that a fixed partition scheme cannot do.

6.8. Conclusions

The VAX-11/780 computer provided the initial motivation for the study

of virtual storage management without reference bits. The preliminary stu

dies of the problem were used to guide the selection of the algorithms to be

employed in the actual implementation described. This system extended our

understanding of the problem through measurements under real workloads.

Some of the major observations we have to make about our experience fol

low.

A page replacement algorithm that is to function in a machine lacking

reference bits must use a minimum of reference information because such

information is expensive to gather. The global clock paging algorithm

appears to satisfy this condition.

System performance under extreme paging load can be as good using

the global clock algorithm as it is using a hybrid paging technique. In prac

tice, the ability of the clock algorithm to vary the memory partitions dynam

ically increases memory utilization significantly over a scheme which allo

cates fixed partitions.

The global clock page replacement algorithm is limited in its ability to

supply pages on a machine with no reference bits. This is normally not a

problem under a time-sharing load, but can be when high data rate programs

141

Paging can result in performance enhancement over swapping in addi

tion to the obvious increase in functionality.

6.9. References

[Bob72a]D. G. Bobrow, J. D. Burchfiel. D. L. Murphy, and R. S. Tomlinson.

"TENEX. a Paged Time Sharing System for the PDP-10." Cbmm. ACM

15(3) pp. 135-143 (March 1972).

[Cnu76a]W. W. Chu and H. Opderbeck, "Program Behavior and the Page Fault

Frequency Replacement Algorithm," Computer 9 pp. 29-38

(November 1976).

[Cof73a] E. G. Coffman and P.J. Denning. Operating Systems Theory,

Prentice-Hall, Enlewood Cliff, New Jersey (1973).

[Cor68a] F. J. Corbato, "A Paging Experiment with the Multics System." Pro

ject MAC Memo MAC-M-3B4 Mass. Inst of Tech. (July 1988). Pub

lished in In Honor of P. M. Morse ed. Ingard MIT Press 1969. pp. 217-

228

[Den68a] Peter J. Denning, "Thrashing: It's Causes and Prevention," Proc.

Fall Joint Comptr. Cbnf. pp. 915-922 (1988).

[Den76a]P. J. Denning, K. C. Kahn. J. Leroudier, D. Potier, and R. Suri.

"Optimal Multiprogramming," Acta Informatica 7(2) pp. 197-216

(1976).

[Den77a] Peter J. Denning and Kevin Kahn. "An L=S Criterion for Optimal

Multi-Programming," Proc. Int. Symp. on Computer Performance

Modeling Measurement and Evaluation, pp. 219-229 . Cambridge.

Mass. (August 1977).

142

[Eas79a] M. Easton and P. A. Franaszek, "Use Bit Scanning in Replacement

Decisions." IEEE Trans. Comptrs. C-28pp. 133-141 (February

1979).

[KasBOa] D. L Kashtan. "UNIX and VMS: Some Performance Comparisons,"

SRI International Internal Report (1980).

[Lau79a] E. Lau, "Performance Improvement of Virtual Memory Systems by

Restructuring and Prefetching." Ph.D. Th., Univ. California Berke

ley. California (1979).

[Laz79a] Edward D. Lazowska. "The Benchmarking. Tuning and Analytical

Modeling of VAX/VMS." Proceedings of the Conference on Simula

tion, Measurement and Modeling of Computer Systems, Boulder,

Colorado, pp. 57-64 (August 1979).

[01i74a] N. A. Oliver, "Experimental Data on Page Replacement Algorithm."

Proc. NCC. pp. 179-184(1974).

[Smi78a]Alan Jay Smith. "Sequential Program Prefetching in Memory

Hierarchies." Computer 11(12) pp. 7-21 (December 1978).

[Smi80a]A. J. Smith. "Multiprogramming and Memory Contention,"

Software- Practice and Experience 10 pp. 531-552 (July 1980).

[Smi81a]A. J. Smith. "Internal Scheduling and Memory Contention." IEEE

Trans. Software Eng. SE-7pp. 135-146 (January 1981).

[TurBla] R Turner and H. Levy, "Segmented FIFO Page Replacement" Per

formance Eval. Rev. 10(3) pp. 48-51 (Fall 1981). Proceeding of

ACM/SIGMETRICS Coference on Measurement and Modeling of Com

puter Systems, Las Vegas, Nevada

CHAPTER 7

MEMORY MANAGEMENT AS INVENTORY CONTROL

7.1. Introduction

Almost all virtual-memory management systems maintain a pool of free

pages that are available for immediate allocation upon demand. In systems

that employ variable-size partition local policies, this free page pool contains

the balance or the available pages after allocating to each process admitted

to memory its working set In such systems, the size of the free page pool

activates the process activalion/deactivation mechanism. If the processes'

working sets expand so as to consume the entire free page pool, one of them

must be selected for deactivation. A process is considered for activation

only if the free page pool is large enough to contain its working set. Under

these conditions. Simon [Sim79a] has shown that the fraction of available

memory is approximately given by

At

/+(£+1)/2

where N is the multiprogramming level and C is the coefficient of variation

of the working set size of a program over time.

We are concerned with virtual-memory management systems that apply

a replacement policy globally to the entire memory. Here, the free page

pool does not arise naturally but must be maintained explicitly. Under nor

mal operation, the sum of the processes' resident sets would be allowed to

expand to fill the available memory. Any further expansion cause:; the

replacement policy to select one page amongst the whole memory to satisfy

143

144

the new request As we saw in the previous chapter, however, requests for

memory are often nonuniform and there are instances when a large number

of pages are required in rapid succession. The system should maintain a set

of pages that are available immediately for allocation. This way. each

request for memory will not cause activation of the replacement policy. The

VMUNIX system described in the previous chapter does this. The memory

manager tries to maintain some pages in the free page pool by initiating the

clock replacement algorithm at varying rates depending on memory

demand. This policy is described by three parameters: (i) the free page pool

size at which the replacement algorithm starts to run. (ii) the rate of the

clock scan at this point, and (iii) the maximum scan rate allowed before pro

cess deactivation is considered.

In this chapter, we present some preliminary results of our efforts to

formalize the decisions made in the management of free page pools. Results

from classical inventory theory are used to show how the problem at hand

can be viewed within this framework. Although we will use the VMUNIX

environment as an example of the application, the formulation is general

enough to encompass other systems.

7.2. The Stock Room Problem

Consider the following problem: A stock room contains an inventory of a

certain commodity that is for sale. There is a certain demand for the com

modity, that may be characterized by the number of items requested per

period, where the period is a fixed interval of time. There are also costs

associated with maintaining the inventory at a certain level, ordering more

items, and receiving requests that cannot be met due to depleted stock. At

the beginning of each period we are faced with the choice of ordering

145

additional items, if any. to minimize our total expected operating cost.

We formally define the single period model corresponding to this inven

tory problem [Ros70a]. Purchasing z units of the item incurs the cost

. . I K+cz . z>0
C<*> =10 .z=0

where K>0. Note that c is the cost of each unit and K is the fixed setup cost

for the transaction. We assume that an order is filled immediately. For each

unit of the maximum level attained by the inventory during a period, we pay

h dollars as a holding cost. Each unit of unmet demand is assumed to gen

erate a penalty cost p. The planning horizon is assumed to be infinite.

Therefore, there is no time in the future when the program stops and we are

left with unsold inventory. Given that the per-period demands are indepen

dent and identically distributed with probability density g($). and the initial

inventory level is x, we are interested in determining the amount of addi

tional inventory to be ordered at the beginning of each period that will

minimize the total expected cost.

Assume that the inventory level at the beginning of a period is x and we

ordery-x additional items to bring it up toy. The expected costs incurred

during the period can be expressed as

t{holding cost] - h y

Ijpenalty cost] =pf(i-y)g (()d(
v

since the maximum level of the inventory during a period is y. Let

L(y) = E[holding cost]+E[penalty cost]. The total expected cost of ordering

up to y is then given by

146

K+c (y-x)+L(y) if y>x

L(x) if y-x.

An argument based on the convexity of the function cy+L(y) can be used to

show that the optimal policy is of the class (S.s) [Sca60a] that operates as

follows:

if x <s. order up to S

if xfes, do not order.

S is the value of y that minimizes cy+L(y) and s is the smallest value of y

for which

cy+Uy) = K+cS+L(S). (7.2.1)

By setting the first derivative of cy+L(y) to zero and solving for S. we obtain

s =s-»(P-c-fe)
V

*

where G(x) = fg($)d$ is the distribution of the per-period demand. Having
o

obtained S, we can (in principle) determine s by solving equation 7.2.1. Note

that, if A"=0. i.e., there is no setup cost for ordering, then S=s and the

optimal policy is particularly simple. Observe that. if p^c+n, then 5=0 and

no items are stocked.

7.3. Modeling the Demand Process

Demand is perhaps the most important and difficult aspect of inventory

modeling. The stochastic processes that characterize demand, even for the

simplest situations, are analytically intractable. Let the random variable A\

denote the quantity of items demanded during period i and let JQ denote the

interval of time between the jflh and (J+l)st demand paints. In the continu-

147

ous case, the assumption made in the previous section that the Nt's are

independent and identically distributed is equivalent to assuming that the

Xj's are independent and exponentially distributed, and that the quantity

demanded at a given point is either fixed or is identically and independently

distributed. In other words, we are assuming the demand process to be a

Poisson process. This is a restrictive assumption and n section 7.4 we

present empirical data to validate it.

In VMUNIX, demand for pages from the free page pool occur due to two

types of events. A page fault always requests two 512-byte pages (since we

simulate 1024-byte pages), whereas a process creation always requests eight

512-byte pages for establishing the process context (these pages constitute

the so-called u. area and contain the kernel stack for the process, open file

descriptors, register contents, etc.). Since about 94% of all page requests

are of the first type (page faults), we will assume that each demand point

represents a request for two pages. Based on this additional assumption

about the stochastic process that generates the demand in our stock room

model, the per-period demand divided by two (since we always allocate pages

in pairs) is Poisson distributed:

Pr(A'i/2=n) =e-w (X*|W ,71=0.1.2.3..

where t is the length of the period and 1/ A is the mean interdemand time.

The memory allocation function of the VMUNIX system was instrumented

to produce a trace record for each explicit request for memory from the free

page pool. The trace record consisted of the amount requested as well as of

a time stamp with microsecond resolution. As the tracing took place upon

the arrival of a demand rather than at the delivery of the requested page

frames, it approximately captured the intrinsic global memory demand of

148

the workload and not the artifacts of the particular policies employed at the

time. There are. however, several peculiarities of the VMUNIX system that

had to be dealt with These peculiarities arose from the ability of the

processes to reclaim pages from the free page pool. Since this action

invokes a mechanism different from the normal memory request, it is not

recorded in our trace as being part of the memory demand. In the stuck

room problem, this situation is equivalent to the inventory being depleted

without demand. One can model such an environment as a stock room con

taining perishable items that become unusable at a certain rate. This would,

however, further complicate the expressions for the order quantity S and

the order point s.

Recall that in our system there are three sources of page reclaims:

(i) A page is removed from the loop and placed in the free page pool by the

clock algorithm and is subsequently referenced. This type also

includes the reclaiming of pages that were prefetched and placed in the

free page pool.

(ii) A page belongs to a process that was swapped out and is referenced by

that process after being swapped in.

(iii) The page belongs to a process that has completed and is referenced by

a future incarnation of the same program.

Under normal operating conditions, the last two sources of reclaims

account for a major percentage of all reclaims. To solve the problem of

unaccounted allocations from the free page pool, the mechanism that allows

reclaims of types (ii) and (iii) was turned off, causing a real page fault and

consequently generation of the trace record for such references. The

remaining source of reclaims represented only about 0% of all pages

149

allocated during the measurement period. Their effect on the demand pro

cess will be ignored. This type of reclaim, however, will be accounted for in

our definition of the holding cost for the pages.

7.4. Data Analysis

Using the above mechanism, the system was traced on August 18. 191)1

at 6:28pm for a period of 195-seconds. The time series representing the

number of pages requested during 100millisecond intervals for the duration

of the tracing period is displayed in Figure 7.4.1.

500 1000

Real Tine (100 «m unite)

1500

Figure 7.4.1. Number of pages requested within 100ms intervals
during a 19f> second period.

150

7.4.1. Test for Trend

Many of the statistical tests that we are going to perform on the data

are based on the assumption that the demand process is stationary. The

(S,s) class of inventory policies with constant 6' and s can only be optimal

when the stochastic process by which demand is generated has sufficient sta

tionary properties. Since the lack of stationarity can result in misleading

estimates of parameters, we must begin our data analysis with tests for

trend. In ease of nonstationarity of the data, it will have to be detrended

before the analysis can proceed. This is a costly process and we will try to

uvoid it by selecting a portion of our data that appears to be stationary. The

problem of applying forecasting techniques to the developed policy to deal

with nonstationary demand will be discussed in section 7.7.

Let W= 1/n 2j 7',. where n is the number of demand points within the
l=i

observation period and ']\ is the time of the ith demand. For a Poisson pro

cess with a constant rate, this statistic is. conditional on observing n events

in the fixed observation period t. asymptotically normally distributed with

mean t/2 and variance tz/(I2n) [Lew73a]. The normalized statistic

u= »-'/£.

is standard normal. This statistic was evaluated for various portions of the

trace data, and the null hypothesis U = l) was tested. Based on this approach,

the first 3395 points of the trace, representing 102 seconds of real time, were

selected for further analysis. This portion of the trace was judged to be

sufficiently stationary since the U statistic had a value 0.000 and the critical

values for a b% level two-sided test under the null hypothesis are i 190.

Visual inspection of Figure 7.4.1 indeed supports the lack of any obvious

151

trend during the first 100 seconds. Some of the other interesting charac

teristics of this subtrace are reported in Table 7.4.1.1.

For stochastic processes with variances greater than that of the Poisson

process, the U statistic can produce inflated results. An alternate method of

testing for trend involves a goodness of fit test based on the chi-square

statistic. This statistic is obtained by comparing the empirical event counts

within fixed length intervals with the uniform distribution [Bic77a].

7.4.2. Tests for Serial Independence

Recall that the assumption of independent and identically distributed

per-period demands in our inventory model implied a Poisson process for the

demand generation mechanism. This is equivalent to requiring the time

interval between demand points, i.e., the X^ random variables, to be indepen

dent and exponentially distributed.

For the sequence of stationary random variables Xx,Xz,Xa A^. the

estimated serial correlation coefficient of lag A: is defined as

number of demand points 3295

duration (real time) 102.5 seconds

total number of pages
requested 6924

mean number of pages
requested 67.4/second
number of page reclaims
(type (i) only) 791

mean time interval
between demand points 30.57 ms

coefficient of variation

of time between demands 2.57

minimum time between demands 357 ms
maximum time between demands 1823 ms

Table 7.4.1.1. Characteristics of demand truce data.

l.Of

0.5

llHflffllnn tlllnflntmflnfc^)u JY\jiuJft Ajfl.tJlll^r„fln,ir.fTf|jL.

20 40 60 80 100

Lag

Figure 7.4.2.2. The first 100 serial correlation estimates
for the times between demand points.

l*\r^

ft =
n,~

-E <*-*)(*♦.-*>*

zrt^-x)2

152

where X = l/n^Xt. Tests based onp, are asymptotically most powerful for
»=i

testing that a process is Poisson (independent exponentially distributed

intervals between events) against the alternative that the intervals between

153

events have exponential distributions, but first-order serial dependence

[Lew73a].

When pi = 0. px is asymptotically normal with E$Pi]w 0 an(*

Var(pi)« (n—l)"1 under very general conditions. The first 100 serial correla

tion coefficient estimates for the time interval between demands for the

trace were calculated and are displayed in Figure 7.4.2.2. The point p0 = 1 is

shown to establish the scale. Before we comment on these results, a discus

sion of the physical process that generated the trace data is in order.

Recall that a demand for memory occurs upon a page fault (process

creation also generates demand for memory, but as we saw in section 7.3.

this accounts for a very small percentage of the total demand). In process

virtual time (time that advances only when the process is executing), the

time intervals between page faults have been observed to be serially corre

lated with highly skewed marginal distributions [Lew73a, Lew71a]. What we

observe in our trace, however, is the composition of many stochastic

processes, each corresponding to a particular program, as they interleave in

real time. In our multiprogramming environment, a page fault causes the

process to be blocked for the duration of the page transfer from secondary

store and resumes another process from the set of runnable processes. The

elapsed real time between the blocking (either due to a page fault or to

quantum expiration) and resumption of a process is a random variable that

is a function of many events. The global demand process is this complex

interleaving of processes and should have little resemblance to its com

ponents. In other words, the blocking due to page faults in the multipro

gramming environment has a randomizing effect on the individual page fault

patterns of the programs. This is precisely the source of our hope for

154

independence amongst the time intervals between demand points.

Our informal argument supporting serial independence is rejected by

the formal test based on the estimate of the first serial correlation

coefficient. We see that, for our 3295-point data, />, = 0.0687. Although this

estimate is not very different from zero, we must reject the hypothesis that

px = 0 at the 1% level (the upper critical point is 0.0452). This is a common

1.0

80 100

figure 7.4.2.3. The first 100 serial correlation coefficient
estimates for the number of pages requested within 100 millisecond
intervals for the trace data (1025 points).

155

problem in hypothesis testing when the sample population is very large,

resulting in a very small asymptotic variance. This observation is confirmed

by the fact that, ifwe repeat the above test using only the first 104 points of

the trace data (this represents a 4 second period where £/=0.08). we obtain

px - -0.029. and the null hypothesis isnot rejected even at the 5% level (the

critical points are ±0.196).

The nonzero value for p\ can be attributed to the following. In our sys

tem, there are two types of page faults that do not cause the process to

block. These are due to the expansion of the data and stack segments of the

process beyond their current sizes. Upon one of these faults, the process

simply receives a page initialized with zeros from the free page pool.

Processes executing many levels of nested procedure calls (perhaps recur

sively) will cause the stack segment to grow at a near constant rate since the

procedure activation frames are stored there. Alternatively, a process exe

cuting code to initialize a largearray will cause the data segmentto grow at

a constant rate. As the quantum size is large (16.7milliseconds), a sequence

ofsuch page faults can be generated during an execution interval The regu

lar nature of the time interval between such demands is probably the source

of the positive serial correlation of lag 1.

Having obtained inconclusive results about the hypothesis that the time

intervals between demand points are serially independent, we examine the

per-period demand patterns. Since the JT4's display nonzero serial depen

dence, we do not expect the Nt to be independent. Recall that the indepen

dence of the Hi implied a Poisson process as the demand generating process.

Indeed, Figure 7.4.2.3 displays large values for the serial correlation esti

mates for small lags (for example. pt = 0.3317).

156

7.4.3. Marginal Distributions

To complete our analysis of the data, wediscuss the estimated distribu

tions of the time intervals between demands and the per-period demands.

For random variable X, the survivor function. R(x), is defined as

R(x) = Pr(X>x) = l-F(x)

where F(x) is the distribution function of X. For convenience, it is cus

tomary to plot the logarithm ofR(x) as a function ofx. The estimate of this

function for the time intervals between demands is shown in Rgure 7.4.3.4.

Tfhe Poisson process assumption implies an exponential marginal distri

bution for the Xi's. Note that if the Xt's were samples from an exponential

distribution, then

R(x) = e"** .x&O

and

log(R(x))~-Xx

where 1/X is the mean. In other words, the log-survivor plot of an exponen

tial distribution is a straight line having a slope equal to the negative recipro

cal oil the mean. We see from Figure 7.4.3.4 that the empirical log-survivor

function ofXt has a slope smaller than the exponential counterpart for large

values of x. Based on the skewness of the data (the coefficient of variation is

2.57).. it is obvious that any reasonable test would conclude that the distribu

tion of times between demand points is not exponential. Guidedby the shape

ofthe empirical log-survivor curve, the distribution can probably be modeled

by a mixed exponential distribution that is a weighted sum ofn exponential

functions for some n&2. We will make no attempt at fitting distributions

here.

157

Interarrlval Cine (1 as units)

Figure7.4.3.4. Estimated log-survivorfunction for time
intervals between demand points for trace data The mean interval
is 30.57 milliseconds and the coefficient of variation is 2.57.
The dotted line is log(R(x)) = -x/30.57.

The time interval between demands has failed to satisfy both tests

(independence and exponential distributedness) for being Poisson. Not

surprisingly, the per-period demand process also exhibited serial depen

dence. To complete our data analysis, weexamine the marginal distribution

of the per-period demand, A\.

200

Nuabar of pages requested wltblo 100ns Intervals

figure 7.4.3.5. Estimated log-survivor function for the
number of pages requested during 100 millisecond intervals for
trace data. The mean is 6.74 pages requested per millisecond
and the coefficient of variation is 1.08. The dotted line is
the plot of log(R(x)) = -x/6.74.

158

Figure 7.4.3.5 illustrates the empirical log-survivor function of the

number of pages requested every 100 milliseconds. Again, on the same

graph we have plotted the log-survivor function of the exponential distribu

tion having the same mean as the empirical data. This time, however, we

observe a good fit of the empirical distribution by the exponential distribu-

159

lion. This isalso confirmed bythe estimated coefficient ofvariation, which is

very close to 1 as for the exponential distribution. Formal nonparametric
test based on Kolmogorov*s statistic [Bic77a], however, rejectthehypothesis

of exponential distribution. Compare the value 0.155 obtained for the Kolrno-
gorov statistic with the critical value 0.032 at the 1% level for asample size of
3295. As in the test for serial independence of the intervals between

demands, reducing the number ofpoints to the first 104 in the trace results

in the non-rejection of the exponential hypothesis even at the 5% level. The

critical value of 0.138 is significantly greater than the statistics value of

0.073.

We summarize the findings of our data analysis efforts as follows. The

time interval between demand points exhibits a distribution that is too

skewed to be exponential (the coefficient of variation is 2.57). The test for

serial independence of these times is inconclusive since the independence

hypothesis is either rejected or not rejected depending on the sample size.
The per-period demands generated within 100 millisecond intervals exhibit

substantial serial correlation but appear to be well fitted by an exponential

distribution (although formal tests reject or not reject this hypothesis

depending on the population size as well). These findings lead us to recon

sider our initial assumption ofa Poisson process for the demand generation

and consequently Poisson distributed per-period demands. However, due to

its analytic tractability and partial support by the data analysis, we will go

ahead and assume independent and exponentially distributed per-period

demands and solve the stock room problem for the parameters S (the order

quantity) and s (the order point) under this assumption.

160

7.5. Solution of Order Quantity and Order Point

Recall that in the general stock room formulation of the model, the

optimal policy is such that at the beginning of each period the inventory is

increased up to level S if it is below s and remains unchanged otherwise.

The order quantity. S, is the solution to

G(S) = ^=^-
P

and the order point s. is such that

(7.5.1)

cs+L(s) = K+cS+L(S) (7.5.2)

where G(x) is the distribution of the per-period demand and

L(y) - hy+p[($-y)g(()dt. If the per-period demand is exponentiallydistri-
v

buted with parameter X, i.e.. G(x) = e-x*. equation (7.5.1) can be inverted

easily and we obtain S = -uln(-) where u = 1/ X. Substituting for 5 and

g(x) in equation (7.5.2) we obtain

sc+hs-e-* = K' (7.5.3)

where IC =K+cS+L(S) =K-p(c+h)(ln(^^)+^-). For u close to zero.

eM a 1+u. Making this substitution in equation (7.5.3) (this will require

justification as we do not know the magnitude of Xs) and solving for s, we

obtain

K'+u
s »

c+A + 1

Note that as the cost coefficients c.h,p, and K are constants, the logarithms

can be computed a priori and the 5 and s values easily determined based on

161

7.6. Cost Coefficient Estimation

To complete the model specification, we will have to interpret the vari

ous costs of the stock room problem in our environment. We will begin with

the ordering cost.

In our environment, ordering more stock is equivalent to running the

page replacement algorithm to obtain pages. This algorithm is implemented

by a special process that is scheduled and run just as a user process, but at

a high priority. Our model assumed that the order placed at the beginning of

a period is fulfilled immediately. This does not reflect the behavior of our

system since there may be a significant time delay between the initiation of

the replacement algorithm (by waking up the process) and the delivery of

the page frames. The ordering cost structure of the model has a component.

K, that can account for the fixed overhead associated with context switching

but is not capable of accounting for the possible lost sales due to demands

during the lead time. The per-item cost. c. is interpreted as the average

amount of work (some suitable units will have to be used consistently

throughout these definitions) involved in selecting one page for replacement

once the process implementing the algorithm has started executing.

The penalty cost, p, associated with each unit of lost sale due to

depleted inventory is easily determined. The situation arises with a memory

request when the free page pool is empty. Since all memory requests must

be satisfied, i.e.. we cannot really lose sales, the page replacement algorithm

must be run just as for the normal ordering of pages. Now, however, we incur

the fixed transaction cost, K, in addition to the usual cost c, for each page

requested when the free page pool is empty. Therefore, the penalty cost per

page, p, is equivalent to K+c.

162

The holding or storage cost, h, per unit of maximum inventory is

perhaps the least obvious in our system. In the stock room problem, this

cost is usually interpreted as the amount of money spent to rent the floor

space that is used to contain the inventory. In our environment we should

ask ourselves what prevents us from placing all of the available memory in

the free page pool. The answer is the reclaiming of pages from the free page

pool. It is thus reasonable to define this cost as the reclaim rate times the

cost of a single reclaim operation (in units consistent with the other costs).

The larger the pool, the higher the reclaim rate and the associated processor

overhead. To obtain a value for this cost we make the following observations.

The global clock policy approximately behaves like the global LRU policy. If

we consider all of the pages in real memory to be ordered according to their

recency of usage (i.e., as the LRU stack), then all of the pages in the free

page pool will be less recently used than those in the loop. Furthermore, we

can assume that the pages in the free page pool are themselves ordered

according to recency of usage. In other words, the free page pool represents

the tail of the global LRU stack. Empirically, LRU stack position frequencies

fall off very rapidly after the first few positions and are nearly constant for

very large depths [Chu76a, Lau79a]. Note that a reclaim event is equivalent

to a reference to this tail portion of the LRU stack. Under these assump

tions, the reclaim rate increases linearly as the size of the free page pool

increases consistent with our model holding cost structure. A possible

scheme to determine a numerical value for h would be to observe the

reclaim rate for a given free page pool size and then normalize this value to a

unit length.

More general (and perhaps more realistic) functional dependencies of

the holding cost on the maximum inventory level can be used at the expense

163

ofcomplicating the solution ofthe model for S and s.

7.7. Implementation Issues

The inventory model we proposed makes policy decisions only at regular

time intervals and is called periodic review. Alternatively, we can allow the

policy decisions to be made at any point in time, thereby obtaining the con
tinuous review model Note that the latter model requires knowledge of the

system state (the inventory level) at all points in time. It can be shown that
the continuous review policy results ina smaller expected cost (exclusive of

the cost of gathering state information) than the periodic review policy

[Bec61a]. For simplicity, we have assumed the periodic review model.

Based on the assumption that the per-period demands are independent

exponential random variables with parameter X. we have obtained expres

sions for S and s that are simple functions ofX. It is clear that the demand

process in our system is not stationary. The rate of demand varies greatly in
time depending on many factors. As the (S.s) policy with constant S and s
can only be optimal under stationarity. the implementation must be able to

track the variations in the demand andadjustS and s accordingly. Our sys

tem has a mechanism whereby the processor is interrupted every 16.7 mil

liseconds (1/60 seconds) to perform functions such as quantum updating,

priority updating, etc. These times are natural candidates for the incorpora

tion ofour proposed policy. Given the estimates ofc.h.p and K. the policy

calculates the order point and the order quantity based on the current

demand rate and places the order (if any) by initiating page replacement.

We note that any number of forecasting methods such as maximum likeli

hood, exponential smoothing or Bayes procedure canbeused in the updating

of the demand rate (equivalently X) [Gro74a].

164

Since the current system state is the size of the free page pool (con

tained in a variable) and the calculation of S and s involve trivial computa

tions, the implementation of the policy will introduce insignificant additional

overhead into the system.

7.8. Conclusions

The classical stock room problem was proposed as a suitable model for

the general problem of free page pool size determination in a virtual-memory

computer system. A specific instance of the problem was presented for the

VMUNIX environment. The model is able to capture most of the essential

characteristics of the problem but makes rather restrictive assumptions

about the stochastic nature of the demand process. Formal statistical tests

of empirical demand data supported the assumption of independently and

exponentially distributed demands within Axed intervals. Based on this

assumption, the model parameters were solved and shown to be simple func

tions of the distribution mean. We note in passing that there are inventory

models that admit demand processes having arbitrary interval and quantity

demanded distributions [Bec81a, Kao75a]. These models still require the

time intervals to be independent but. more importantly, the S and s calcula

tions are analytically intractable even for the simplest of distributions.

Resorting to numerical methods each time the policy parameter need recal

culation (every period, unless the demand process is judged to have been

stationary) is prohibitive in terms of implementation overhead.

A trace-driven simulation of the proposed policy, using the trace data

that was analyzed, will have to precede an actual implementation so that

more exact procedures for the determination of the cost coefficients can be

obtained and possible instability problems revealed.

165

7.9. References

[Bec61a] M. Beckmann. "An Inventory Model for Arbitrary Interval and Quan

tity Distribution ofDemand," Management Sci. Bpp.35-57 (1981).

[Bic77a] P. J. Bickel and K. A. Doksum. Mathematical Statistics: Basic Ideas

and Selected Topics, Holden-Day, San Francisco. California (1977).

[Chu76a]W. W. Chu and H. Opderbeck, "Program Behavior and the PageFault

Frequency Replacement Algorithm," Computer 9 pp. 29-38

(November 1978).

[Gro74a] D. Gross and R. J. Craig. "A Comparison of Maximum Likelihood,

Exponential Smoothing and Bayes Forecasting Procedures in Inven

tory Modelling." Int. J. Prod. Res. 12(5) pp. 607-622 (1974).

[Kao75a] E. P. C. Kao. "A Discrete Time Inventory Model withArbitrary Inter

val and Quantity Distributions of Demand." Operations Research

23(6) pp. 1131-1142 (November-December 1975).

[Lau79a] E. Lau. "Performance Improvement of Virtual Memory Systems by

Restructuring and Prefetching." Ph.D. Th.. Univ. California Berke

ley, California (1979).

[Lew?la]P. A. W. Lewis and P. C. Yue, "Statistical Analysis of Program Refer

ence Patterns in a Paging Environment," Proc. IEEE Int. Comptr.

Soc. Cbnf. pp. 133-134 . Boston. Mass. (September 1971).

[Lew73a] P. A. W. Lewis and G. S. Shedler. "Empirically Derived Micro Models

for Sequences of Page Exceptions." IBM J. Res. Develop. 17(2) pp.

88-100 (March 1973).

[Ros70a] S. M. Ross, Applied ProbabUUy Models wUh Optimization Applica

tions, Holden-Day, San Francisco (1970).

166

[ScaOOa] H. Scarf. "The Optimality of (S.s) Policies in the Dynamic Inventory

Problem." pp. 196-202 in Mathematical Methods in the Social Sci

ences, ed. K. J. Arrow. S. Karlin and P. Suppes. Stanford University

Press. Stanford. California (1960).

[Sim79a]R Simon. "The Modeling of Virtual Memory Systems," Ph.D. Th..

Purdue U. Department of Computer Science (May 1979).

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1. Summary

In this thesis we have presented a comprehensive study of the problem

of managing virtual storage systems that do not maintain page reference bits

in hardware. Our study began with the development of some tools needed to

evaluate virtual storage systems in general. The theoretical foundations of

the synthetic program of Chapter 3 were laid in Chapter 2 based on certain

observations about the LRU Stack Model of program behavior. The same

result which allowed us to generate memory reference strings from this

model in an efficient manner was exploited to realize a program that could

reproduce automatically a given paging behavior when run in an environment

that, implemented an LRU-like replacement policy. The form of the program

paging behavior specification is the lifetime curve. The synthetic program

thai, was developed was used in the performance enhancement efforts for the

VMUNIX system described in Chapter 8.

The main results of the thesis were developed in Chapters 4 and 5. In

Chapter 4. we introduced the hybrid class of page replacement algorithms as

a possible candidate for our environment. We obtained analytic expressions

for their performances in terms of the Independent Reference Model of pro-

grain behavior. From these results, it was evident that hybrid algorithms are

in fact suitable for selecting pages to be replaced in the absence of reference

bits under rather static conditions. Changes in the amount of memory allo

cated to the program, in the relative cost of a page fault and of a page

167

168

reclaim, in the characteristics of the program were amongst the variables

that caused the hybrid policy parameter to require modification in order to

maintain good performance. We pointed out that almost all of the above are

in fact variables with very complex functional dependencies in a multipro

gramming environment.

Chapter 5 extended the study of the hybrid policies through trace-

driven simulations in a uniprogramming environment These results

confirmed our earlier observations based on the analytic expressions. A new

performance measure based on the weighted sum of the page fault and the

page reclaim rates was introduced that could be used to compare different

algorithms in our environment With respect to this measure, the clock algo

rithm was observed to have a better behavior than the fixed partition

members of the hybrid class. Furthermore, the variable partition hybrid pol

icies exhibited performances uniformly superior to those of the clock and of

the fixed partition hybrid policies. This prompted the study of the Sampled

Working Set algorithm within our environment. We derived an expression for

the page reclaim rate under this algorithm, again based on the Independent

Reference Model Of program behavior. This algorithm, however, was

observed to achieve its good performance at the cost of incurring uniformly

higher page reclaim rates than those caused by the clock algorithm.

Although not simulated, implications of a multiprogramming environment on

our conclusions were discussed.

Chapter 6 reported on the design, implementation and measurement of

the VMUNIX operating system. This system was derived from the UNIX

operating system for the VAX-11/780 computer through the incorporation of

paging. Since the VAX memory management does not support page refer-

169

ence bits, all of the results from the previous chapters were influential in the

selection of the page replacement policy. Particularly, the high page reclaim

rate due to the SWS policy would have resulted in prohibitively high fractions

of the CPU cycles being used for handling the reclaim operations. In this

chapter, we also discussed some of the other factors in choosing the global

clock algorithm as the page replacement policy in the system. We observed

that the interaction of the page replacement policy with the load control

mechanism became increasingly important in our environment due to the

possible collapse of system performance while trying to service the page

reclaim rate generated by the multiprogramming load. Measurements

obtained from a real work load showed that the paging system performed

equally as well, if not better, as the swap system in addition to providing the

obvious functional extensions. Further performance enhancements were

achieved by an increase in the file and paging system block size and by the

implementation of a simple prepaging mechanism.

Chapter 7 attempted to formalize some of the decisions and of the

parameter selection procedures associated with the management of a global

resource. The instance of the problem considered was the management of

the free page pool in the VMUNIX system. We cast the problem as one of

inventory control under a stochastic demand, so that results of previous stu

dies could be used. To justify some of the simplifying assumptions made by

the model about the demand process, we conducted a series of statistical

tests on the trace data obtained from the VMUNIX system. Although only

partially supported by the data analysis, the model parameters were solved

under the assumption of independent exponential demands within fixed

length intervals. We presented the procedures for estimating the various

cost coefficients that are required for the model's specification and

170

concluded the chapter with a discussion of the implementation issues.

8.2. Conclusions and Topics for Future Research

Our study stopped short of extending the hybrid policies to remove the

fixed size top restriction. As the simulation studies of Chapter 5 indicated,

the variable size hybrid algorithms have very good performances conditional

on the correct selection of the fixed top size. It appears that this drawback

can be eliminated by dynamically varying the top size at the instants of page

reclaims. A reasonable heuristic could be the observed frequency of page

reclaims. Given a threshold (analogous to the parameter of the PFF algo

rithm), the top size could be increased by a small amount if the page reclaim

frequency is observed to be above this threshold. Conversely, the top size

could be reduced by a small amount if the observed frequency happens to be

less than the threshold. This version of the algorithm could be characterized

as the Hpff-ws-

Some of the policies adapted in the VMUNIX system require more formal

evaluation. Particularly, the decisions associated with the prepaging

mechanism (such as the number of pages to prepage and where to place

them) were resolved using intuitive arguments. The projected workload for

the VMUNIX system consists of application programs for VLSI design and

image understanding. It is suspected that these programs exhibit behaviors

that are sufficiently different from those that have been studied during the

page replacement policy selection phase. The design of algorithms to exploit

these special programs can only be based on a better understanding of their

behaviors through tracing their execution. It is unlikely that a new page

replacement algorithm will be discovered that delivers uniformly good per

formance under all operating conditions (e.g., the normal time-sharing load

171

as well as the dedicated use for the special programs mentioned). However,

it is conceivable that good heuristics can be developed to allow a variety of

replacement algorithms to be applied on a selective basis to different pro

grams and perhaps tothe same program atdifferent times. Aprimitive form

of this mechanism already exists as the system caU whichdeclares a process

as being "anomalous", thus requesting FIFO replacement. The difference

here is that a special behavior has to be signaled explicitly by the process

and is not recognized by the system.

Perhaps the most rewarding future studies are those related to the

material presented inChapter 7. This chapter describes an initial attempt at

formalizing the decisions associated with the free page pool management

mechanisms of the VMUNIX system. As such, the model for the action is

quite simple. The cost structures are restricted to linear forms and there is

no explicit time delay due to ordering more inventory. The most severe

simplifications, however, are those of the demand process. The independent

and identically distributed assumptions for the per-period demand can be

relaxed at the cost of rendering the model analytically intractable. However,

there may beefficient numerical methods to solve for the model parameters

even under the suitable generalization of independent and identically distri

buted intervals between demand points (i.e.. a renewal process as the source

of the demand). Any of these extensions should follow the evaluation of the

model in its current form using trace data obtained from the live system.

The current model, as simple as it is, might be found to produce costs

sufficiently close to the stochastic optimum that there is no incentive to

complicate it further. The criterion for introducing any new extension

should be the net gain after the implementation overhead has been taken

into account.

	Copyright notice 1981
	ERL-81-92

