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ABSTRACT

Virtual storage management requires a policy to replace data in pri-
mary storage with incoming data from secondary storage, To be eflective,
such a policy must select for replacement data that is not going to be
needed in the near future. Having no knowledge about future demands for

data, the replacement policy must enticipate them based on past demands.

In most implementations of virtual storage systems, past demand for
data is recorded in o reference bit associated with that data. These bits cen
then be examined and/or altered by the replacement policy. This thesis
extends the virtual storage concept to within each storage hierarchy level.
The analysis of such hierarchical replacement policies confirm their suitabil-
ity for managing storage hierarchies that lack reference bits.

Our preliminary studies are concerned with resulta thal can be used in
the evaluation of virtual storage systems in general. This includes the
development of a program that is capable of synthesizing certain referencing

behaviors in a virtual storage.

Then, a class of hybrid replacement policies that employ different algo-
rithms for the management of data in two logical partitions of primary
storage is introduced and analyzed. It is shown that under certain conditions



these hybrid policies incur little additional cost and perform as if reference
bits were available. Trace-driven simulations are conducted to validate the
findings of the analyti? studies. These indicate that the conditions under
which the hybrid policies exhibit good performance are rarely satisfied in an

actual system.

As alternatives, the Clock and Sampled Working Set replacement poli-
cles are developed for this environment and shown to perform more robustly

with respect to most variations encountered in a typical system.

Based on this work the global Clock elgorithm is adopted as the page
replacement policy in a virtual storage extension made to the UNIX operating
system. The system runs on the VAX-11/780 computer, which lacks refer-

ence bits.

Formal models based on inventory control theory are finally developed

to optimize certain policy parameters adopted in the implementation.
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CHAPTER 1

VIRTUAL STORES

1.1. Introduction

Since its introduction with the Atlas computer [Fot81a,Kil62a], the vir-
tual memory concept has been extensively studicd and implemented in vari-
ous forms [Den70a). The primary motivation in the design of these systems
is to achieve a cost-speed tradeoff across a hierarchy of storage levels. Here,
we constrain our studies to the classical two-level hierarchy where the first
level is fast-but-expensive main memory (also called primary, physical or
real memory), and the second level is a slow-but-cheap secondary memory
(also called backing store). Informally, a virtual memory system tries to
create a memory hierarchy (Lthe virtual memory) that has the speed charac-

teristics of the first level but the cost and size characleristics of the second

level and is transparent to user programs. Thus, from the user's point of

view, Lhe system appears Lo support a one-level address space. This greatly
.simpliﬂes the programming task as then users can wrile programs as if they

were to be run in a very large one-level memory.

1.2. Virtual Memory Management

The dynamic relocation capabil'ities of the host system determine the
form of the virtual memory mechanism that can be implemented on it.
These capabilities allow the logical addresses thal are generated by the pro-
gram to be mapped into physical addresses at the time of execulion. In a

purely sagmented virtual memory, the logical address space of the program

is divided into smaller logical segments of arbitrary size [Den70a). A seg-
ment is any logical unit of the program with an associated name. In this
scheme, an item is referenced by naming the segment containing it along
with its location within the segment. The mapping of logical addresses Lo
physical addresses is done through the segment Lable for the program. Scg-
mentation is a natural choice for managing logical address spaces bul resulls
in inefficient use of main memory due to fragmentation. Allernatively. Lhe
entire logical address space of the program can be divided into equal-sized
blocks called pages. Similarly, the main memory consists of page frames
thal are the same size as pages. The resulting virtual memory technique,
called paging, maps the logical address space of a program to the main
memory through the page table. Each logical address implicitly names a
page and an offset within the page. Paging, then, solves the fragmentation
problem of segmentation (except in the very last page of the program) but is
unsuitable for managing the logical address space since it treats the entire
program as one segment. The two techniques can be combined in what is
called paged segmentation Lo employ paging within the several segments of
the program.

The virtual memory system we will deal with is a paging system. Since
the logical address space of a program can be much larger than the size of
main memory, there must be provisions for executing programs Lhal are
partially loaded. A reference by the program to a page not currently in main
memory causes a page fault. These evenls initiate the transfer of infurma-

tion between the levels of the memory hierarchy.

As with all finite-capacity, shared-resource management problems, Lhe

implementation of paging involves various policies. Specifically, the policies



relevant to the management of the main memory resource in a paging

environment are:

(i) The fetch poticy: Determines when and how much information to

transfer from secondary storage to main memory.

(ii)  The replacement policy: Selects the page(s) to be removed from main
memory so that their page frame(s) can be used to hold incoming

information.

(ili) The placement policy: Determines where in main memory to place the
incoming information. In the paging systems we will consider, there
are usually no alternatives for this decision since the page frame for

the incoming page is that just selected by the replacement policy.

The class of paging schemes we consider employ demand felch policies.
In a demand fetch policy, the page containing the requested information is
brought into main memory at the time of Lthe page fault and not earlier. The
allernative of prepaging [Smi78a, lau79a), whereby information is
transferred to main memory before it is needed, will be discussed in Chapter

6.

For Lhe effective operation of a computer system with virtual memory, it
is desirable to minimize the rate at which programs reference missing infor-
malion since the speed ratio of the memory levels is large. Conseguently,
the performance measure we will use to judge the effectiveness of various
algorithms is based on the page faull rate. The page fault rate observed in a
system is heavily dependent on the nature of the programs that are execut-
ing and, to a lesser extent, on the particular page replacement policy
employed [Bel86a, Fra74a, Smi78a]. We comment on each of these factors
below.

1.2.1. Program Behavior

If virtual memory- systems ever come close to achieving their goal of
having a two-level hierarchy exhibit the speed of the faster level, it is only
because programs do not generate page reference strings thal are random.
The success of virtual memories relies enlirely on the property of reference
strings that is known as locality of reference [Spi72a, Den72a). Informally,
this property states that Lhe pages referenced by a program in a short inter-
val of time constitute a small subset of ils pages, called spatial locality, and
that this set of pages varies slowly in time; the latter aspect of the properly

is called temporal locality.

It is certainly possible to improve the performance of a virtual memory
system by altering the programs that run on it so that l.hgy generate well-
behaved page reference strings. This Lechnique is called program restruc-
turing and has been studied extensively [Hat71a, Fer74a, Fer76a, Lau79a].
Our work will not extend to this method of performance enhancemeni-- we

will assume that the programs to be executed on the system are unalterable.

1.2.2. Page Replacement Policies
The world of replacement policies or algorithms (we use the two terms
interchangeably) can be partitioned inlo two classes: unrealizable and realiz-

able algorithms.

1.2.2.1. Unrealizable Algorithms
Unrealizable algorithms, also called look-ahead algorithms, are those
algorithms thal require knowledge of future elements of the reference string

and cannot therefore be implemented in real time. The MIN algorithm

[Bel66a] for fixed partitions and its variable partition counterparl, Lhe VMIN
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algorithm {Pri78a] are examples of unrealizable algorithms. Upon a page
fault, the MIN replacement algorithm removes from main memory the page
that will not be referenced for the longest period of time into the future; the
VMIN algorithm replaces a page that will nol be referenced sooner than 7 vir-
tual time units, where 7 is the parameter of the algorithm. The Generalized
Optimum poticy (GOPT) [Den78a] extends the VMIN algorithm to variable size
segments rather than fixed size pages, whereas the DMIN algorithm [BudB1a]
minimizes the product of the memory space occupied by the program and
the real time delays encountered due to faults. Although unrealizable in
practice, these algorithms define the theoretical minimum number of page
taults necessary for a given reference string in a fixed and variable memory
partition, respectively. Thus, they serve as .useful benchmarks or lower

bounds.

1.2.2.2. Realizable Algorithms

The Least Recently Used (LRU) [Mal70a] and the Working Set (WS)
(DenBBa] algorithms are realizable counterparts of MIN and VMIN respec-
tively. These algorithms can be implemented in real time since LRU operates
by replacing the page that has not been referenced for the longest period of
time in the past, while WS retains in memory exactly those pages that have

been referenced in the preceding T time units.

Other realizable algorithms include First-In-First-Out (FIFO) which
removes from main memory the oldest page, and Random (RAND) which
removes a page selected at random over all the pages in main memory
[Cof?73a, Kin71a). Note that while MIN, LRU, FIFO and RAND operate in a fixed
partition of memory, VMIN and WS result in a variable partition whose mean

size depends on Lhe setling of the algorithm parameter 7.

Although realizable, 'the pure LRU and WS algorithms are rarely imple-
mented in practice due to their high implementation cost in hardware
and/or software. The LRU algorithm requires an ordering to be maintained of
all the pages according to their recency of usage. Since this list must be
updated at each memory reference, it must be implehented in hardware in
order to keep overhead at acceptable levels. Oliver [Oli74a] describes such
an implementation on the CDC Star computer system. The WS algorithm. on
the other hand, requires recording the Lime of Lhe last reference lo each
page, and updating the working set after each reference. Again, any eflicient

implementation must rely on a greal deal of hardware support.

The majority of the practical implementations that constitute Lhe class
of realizable algorithms are approximations of pure LRU or of pure WS. Their
exact form is often dictated by the type of support provided in the hardware.
Examples of these algorithms include the CLOCK [Cor68a, Eas78a), the Sam-
pled Working Set (SWS) [Fog74a, Pri74a] and the Page Fault Frequency {(PFF)
algorithms [Chu76a). The hardware support that all of these algorithms base
their decisions on is a reference bit associaled with each page frame. A
reference lo a page results in the corresponding reference bil being turned
on. This bit, in turn, can be examined and reset by the replacement algo-

rithm.

In this disserlation, we extend the virtual memory concept Lo wilhin
each memory hierarchy level. Each level is thought of as containing a two-
level hierarchy within it. This hierarchy is not a physical one as in the
primary-secondary memory case, but rather an artificial one arising from
the employment of two different replacement algorithms. Given two repdace-

ment algorithms, one of which has good performance bul high implementa-



tion cost and the other poor performance but low implementation cost, we
propose schemes that result in an overall algorilhm having the performance
characteristics of the first and the cost characteristics of the second. The
ulility of these hierarchical paging stralegies in a hierarchical storage sys-

tem lacking page reference bits is obvious.

1.3. Evaluation Techniques

In our studies, performance evaluation of a virtual memory system con-
sists of obtaining expressions or numerical values for the page fault rate gen-
erated by the execulion of a program as a function of Lthe amount of main
memory allocated to it. To accomplish this, we resort to analylic methods
based on stochastic models of various system components (including pro-
grams) and trace-driven simulations. To keep the complexity of the studies
within reasonable limits, we study the execution of each program in isolation
(i.e.. uniprogramming environment) although we comment on the implica-

tions of their interactions in a multiprogramming system.

1.3.1. Stochastic Models

Digital computer systems along with the programs they execute are
finite state machines. As such, their operalion is entirely deterministic
(given deterministic programs). By choosing to observe them at suitable
ﬂxed.-lenglh time intervals, we can also describe the operation of the com-
mon input/output devices as transitions between a flnite number of states.
The stale space of the composile system {cpu, programs and input/output
devices), while finite, is extremely large. Consequently, any analytic study of
Lthe syslem having this deterministic vitw becomes intractable even for the

simplest of systems.

To model computer systems analytically, one often cénstructs a sto-
chastic model of one or more of the components. For example, the opera-
tion of a disk device can be assumed to result in a random delay correspond-
ing Lo the service request that is drawn from a given probability distribulion.
Similarly, the execution of a program can be modeled as a sequence of pro-
cessor activity intervals and input/output activity intervals, where the
lengths of the intervals are random variables with appropriate distributions.
In both of these examples, we were able to model the particular system com-
ponent in a very simple way that is able to hide the many internal states that

are of no interest to us.

In this dissertation, we make extensive use of stochastic models for the
analysis of system performance. Certain results from elementary probabil-
ity theory and general stochastic process theory (with renewal and Markov
processes as special cases) will be used withoul proof. Refernnces
[Fel68a, Ros72a, Ros70a] can be consulted for an in depth treatment of that

material.

1.8.2. Trace-Driven Simulation

Rather than building a stochastic model for an event, we can use dala
that was collected from an instance of the process that generated the events.
The collection of such data, called a trace, can be input to a simulator
represenling the remaining portions of the system. In our studies, the
results obtained using stochastic models are validated through trace-driven
simulations, where the trace dala represents the execution of a program by

the sequence of memory addresses it generated.



1.4. Summary and Concluding Remarks

The next two chapters are concerned with the development of the
appropriate tools to be used in virtual storage performance evaluation stu-
dies. In the next chapter, the problem of generating memory reference
strings that are to be used instead of real programi address traces with a
generator based on the Least-Recently-Used Stack Model (LRUSM) of pro-
gram behavior is considered. A method Lo transform the stack distance pro-
bability mass function that drives the generator is proposed which results in
memory reference strings that are a fraction of the original string lenglh
while preserving most of ils essential performance characteristics. The
reduced string can be processed in the same way as the original string for
virtual memory studies that deal with memory sizes greater than k, the

parameter of the transformation.

In Chapter 3 we apply the results of the previous chapter to the problem
of constructing synthetic programs that can be used for performance studies
of systems which support virtual memory. Due to its significant gﬂect on the
performance of such systems, the usual characterization of program
behavior is extended to include the memory referencing pattern. The results
of Chapter 2 are applied to this problem and we outline how to construct a
synthetic program that is able to reproduce a given lifetime curve. The sta-

.tistical and practical limitations of this method are also discussed. Results
obtained from an actual .implement.ation of the proposed program indicate
that it is able to conform to a given lifetime function as it executes in varying

amounts of memory.

The central theme of Chapter 4 is the development and analysis of page

replacement algorithms in a virtual memory environment where hardware

10

collection of page reference information is lacking. This study was motivated
by the existence of such an environment in the VAX-11/780 computer sys-
tem. We introduce a class of page replacement algorithms for the VAX that
partition the main memory into two logically disjoint regions and eraploy
different policies for their manégement. Software is used to collect page
reference information. The memory-management scheme implemented by
VMS, the vendor-supplied operating system for the hgrdware, is shown to be a
member of this broader class of hybrid policies for which we derive expres-
sions for the relevant performance indices based on the Independent Refer-

ence Model (IRM) of program behavior.

Due to the complexity of the expressions derived in Chapter 4, the cost
incurred by using software to detect references to pages in order t.o over-
come the deficiencies in the hardware cannot be dealt with analytically.
Furthermore, the computational complexity of the results which have been
obtained makes the analysis of program models that are realistic in size
prohibitive. Chapter 5 extends our analysis of the hybrid policies by per-
forming trace-driven simulation studies. From these, we find the conclusions
derived from unrealistically small analytic models to be also applicable Lo
the real programs we experimented with. Furthermore, the hybrid policies
are found to lack robustness with respect to our performance measure: in a
multiprogramming environment. As alternatives, we considered the clock

and the sampled working set policies in our simulations.

Based on its relative performance and ease of implementation, we chose
the global clock policy as the page replacement algorithm for the virtual
memory extensions to the UNIX operating system for the VAX-11/780 com-

puter system. Chapter 6 describes this effort, which involved converting a
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swap-based system to one employing paging. Measurement resulls cornpar-

ing Lhe two live systems under identical workloads are presented.

The problem of optimal free memory pool size is considered in Chapter
7. We are able to formalize lh(;. problem by using results from inventory con-
trol theory. In our model, the free memory pool appears as a stock room
containing a certain commodity with a stochastic demand process. Optimum
policies for the model are those that minimize the long run operating costs
for holding the inventory at a cerlain level, ordering additional items, and
loosing orders due to depleted inventory. By a mapping of these costs and
aclions to the free memory pool management problem, we can obtain simple
policies that have been shown lo be optimal in the sense described above.
Traces of memory demand from the system described in Chapler 8 are stu-
died o test the assumptions made aboul the demand process. Requesls for
memory are seen to exhibit serial correlation contrary to the model assurnp-
tion. Although not incorporated into the model at this point, such properlies

of the demand process can be exploited by using forecasting techniques.

Chapter B concludes the thesis by summarizing the major findings und

indicating avenues for future research.
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CHAPTER 2
]

EFFICIENT GENERATION OF MEMORY REFERENCE STRINGS

2.1. Introduction

Trace-driven simulation is a frequently used method for studying the
performance of various aspects of storage hierarchies, ranging from cache
buffers to file systems [Bel88a, Lau79a, Mat70a, Smittia]. Aithough we limit
our discussion to the classical primary memory-secondary memory level of
the hierarchy in a paging environment, the ideas and results we will present
are naturally applicable Lo the others levels. The trace data used in these
studies consists of a record of all the memory accesses (data and instruc-
tions) generated during an interval in the execution of a program. One of the
drawbacks of this approach is that the selected programs have to be inter-
pretively executed in order to obtain the desired address traces, unless the
system being used has appropriate tracing facilities. Furthermore, siinula-
tion. studies dealing with realistically long trace data (at least a few million
references) are very costly both in space and time. To reduce these costs,
trace-driven simulation studies can work with a reduced version of the origi-
nal trace. A scheme to obtain such a reduced trace was first proposcd by
Coffman and Randell [Cof71a] for studies employing the class of stack poli-
cies [Mat70a). The method was recently applied to working set environments
by Alanko et al [AlaB0a]. In both schemes, the reduced trace is constructed
by recording the events corresponding to the enfry and ezit of pages from
the set of memory resident pages as the original trace is processed by the

particular management policy with a given control parameter. Due Lo Lhe
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inclusion property of stack policies [Mat70a] and of the working set policy
[Fra78a] with respect Lo their parameters, studies employing values of policy
parameters greater than those used for the reduction can be carried out on

the reduced trace with exact results.

Smith [Smi77a] hés studied two other trace reduction methods Lhat are
approximate in nature. The first of his methods, the Stack Delelion Method
with parameter k, removes from the original trace data all references lo
pages that are elements of the set of the k most recently used pages. In
other words, this scheme is identical to the one proposed by Coffman and
Randell for the Least Recently Used (LRU) policy except for the fact that the
exit events corresponding to pages leaving the top k elements of the stack
are omitted in the reduced trace. The second method studied by Smith, Lhe
Snapshot or Reference Set method [Pri74a, Lau79a) with sample interval 7,
removes from the original trace data all references that are re-references to
pages within a given sample interval of length T. The claim thal these
compression techniques preserve the essential performance characteristics
of the original reference string has been verified empirically when they are
processed by a wide variety of paging algorithms: [Smi77a].

An alternative approach to reducing the space cost of such studies is to
use a model of program behavior such as the fadependent Reference Model
(IRM) [Aho71a, Bas76a,Spi72a] or the Least-Recently-Used Stack Model
{LRUSM) [Rau77a, Spi76a] in conjunction with a random number source, thus
obtaining a generative model [Spi77a). Since most such models require a
small fixed number (usually proportional to the number of pages conlained
in the program) of parameters to identify them, memory reference strings of

arbilrary length can be generated one reference: at a Lime with essentially no

a
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space cost. Note that, from the operational viewpoint of the simulator, the

trace-driven and the generator-drivel; methods are identical.

In addition to their ability to generate reference strings of arbitrary
length, probabilistic models of program memory reference behavior are
compact, often analytically tractable, and can 'be modified to represent
diverse behaviors Lhrough an appropriate perturbation of their parameters
[Spi76a). The goal of this chapter, however, is not to advocate the global sub-
stitution of actual address traces with probabilistic models. We are simply
interested in an efficient method for generating through the LRUSM memory
reference strings that can be used in studies where the predictive capabili-
ties of this particular model are deemed to be of sufficient accuracy.
Further discussion of the nature of these studies, along with a formal
description of the LRUSM, follows in the next section. Section 2.3 defines the
transformation method and investigates its implications on the string length,
the steady-state fault rate, and the mean memory occupancy. Section 2.4
presents a comparison of our proposed transformation method with the
Stack Deletion Method. Finally, in section 2.5 we discuss a novel application
of the developed method to the design of synthetic programs that are to

exercise virtual memory systems.

2.2, The LRU Stack Model

2.2.1. The Descriptive Model

The model of program behavior that our study will be based upon is the
LRUSM. In this model, the n pages that constitute the program's virtual

address space are envisioned to be ordered in a stack according to their
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recency of usage. The page referenced at time ¢, 7, is the one currently
occupying stack position d;. We assume that the page references occur at
equidistant time points and that the interval between references is taken to
be the unit of time. The sequence of stack positions {d;} is called the dis-
tance string. The LRUSM assumes the d;’s to be independent and identically
distributed samples from the population (1,2,3.....n) with the stationary pro-
babilities Prid;=j}=4;. The probability mass function (pmf) D=(5,.82.....6,).

where f:d.=l and §;>0 for all i, uniquely defines the LRUSM. An instance of
=1

the LRUSM corresponding to a particular program execution is realized upon
providing point estimates for the n parameters of D.! Each generated refer-
ence causes the stack to be updated by placing the referenced page, r;, at
the top (stack position 1) and all pages in stack positions 1 through d; -1 to
be shifted down one position so as to preserve the LRU ordering [Mat70a].
The set of pages occupying stack positions below d; remain unaflected. In
terms of this description of the LRUSM, the Stack Deletion Method of trace
data compression with parameter k can be characterized as removing from
a given trace all references that are to stack positions less than or equal to

k.

Properties of the LRUSM'based on analytic and experimental studies
have been extensively reported in the literature
[Lew71a, Lew?3a, Rau77a, Smi78a, Spi76a). Although it is able to model Lhe
steady-state page fault rate and the mean memory occupancy characteris-
tics of real programs under a variety of paging algorithms with reasonable
accuracy [Raf76a, Smi76a, Spi72a)] (prediction errors in one study [Spi72a]

averaged about 10% for the mean working set size and about 30% for the page

Actually, only (n—1) of these parameters are independ
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fault rate), the LRUSM has several known shortcomings at a more micros-
copic level of program behavior. In particular, the assumptions of indepen-
dent and identically distributed stack distances in the LRUSM have been for-
mally shown to be inadequate for particular address traces [Lew73a, Lew71al.
The inter-fault times, which are independent, identically and geometrically
distributed with a constant parameter as a consequence of Lhis lack of serial
correlation in the distance string for the LRUSM, have been empirically
observed Lo be correlated and to have highly skewed distribulions with long
tails {Lew73a,Lew?1a). Finally, the property of the LRUSM (independent of
the stack distance pmf) that results in a reference string where each page of
the program is accessed with the same frequency (in the limit as the length
of the string tends to infinily) is nol representative of real programs
[Bas?8a, Lau78a,Cof73a). In light of these shortcomings, the use of the
LRUSM as a micromodel in a two-level model of program behavior is more
appropriate [DenB0a). As an example, the second level, or macromaodel,
could represent phase transitions and consist of a semi-Markov chain

[Kah76a).

2.2.2. The Gencrative Model

Constructing a generative model based on the LRUSM simply involves
generating the distance string {d;} as independent samples from the pcpula-
tion (1,23,...,n) according to D and obtaining the reference string {7}
through the required stack manipulations. The stack distance pmf D in said
to drive the generator. The d;’s can be obtained by transforming a sequence
of uniform pseudo random numbers through a Lechnique such as Lhe aliasing

scheme of Walker [Wal77a).
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One possible approach to reducing the time cost of a generator-driven
simulator is the following. The generator is allowed Lo run unaltered as
described above. The resulting reference string is processed by the Stack
Deletion Method of Smith with parameter k thus resulting in a compressed
version of the generated string. This compressed string is then used as Lhe
actual input to the simulation study. What we seek is a method for combining
the generation and compression functions whereby we obtain the

compressed string directly as the oulpul of the generation process.

2.2.3. Model Use

In light of the deficiencies listed in section 2.2.1, the use of the LRUSM in
a particular study has to be justified, no matter how efficient the generation
process. These accuracy and validity concerns are universal to all modeling
efforts and must be resolved prior to model use. Typically, selected predic-
tions of an instance of the model are compared to measured results in order
to determine Lheir accuraey. This step should then be repeated for several
other instances of the model to establish a domain of validity. Model use can
then proceed and obtain further predictions from yet different rmodel
instances with attention paid to keeping Lhe model within the above domain
[Spi77a).

As shown by the published resulls regarding the accuracy of the LRUSM
as a predictor of the page faull rate and mean memory occupancy
[Raf76a, Smi76a, Spi72a), its use is natural for studies interested in lhese
measures where real program trace data is unavailable. It is also conceivable
to use LRUSM generated traces to develop and Lest simulalors Lhat will even-

tually run using real trace dala in an effort Lo minimize the cosl of program

“ '
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development. Perhaps the most common application of model generated
traces, however, is found in those studies interested in the relative rather
than absolute performances of various management schemes and/or algo-
rithms and dalg structures used to process trace data (as an example, refer
to the study by Olken [01kB0a), which compares three different data struc-
tures for obtaining LRU fault rate statistics for extremely large disk caches,
where lhe file access string is generated through the LRUSM). Finally, for
certain measures of interest in a given environment, the LRUSM is analyti-
cally intractable. In such cases one naturally resorts to simulation based on
the LRUSM. The analysis by Rau [Rau79a) of the effective bandwidth of an
interleaved memory system, where the program memory module reference

behavior is modeled through the LRUSM, is a case in point.

2.3. The Transformation Method

In this section we will develop a method (called the transformation
method) for modifying the stack distance pmf of an LRUSM, and will formally
show thal the resulting string preserves the steady-state page fault rate of
the original string while being only a fraction of its length. In section 2.3.2,
the implications of this transformation on the mean memory occupancy

statistic are investigated.

2.3.1. Fault Rate Characteristics

Our strategy in developing the melhod will be as follows. We will review
some of the basic properties of the LRUSM and eventually derive an expres-
sion for a confidence interval of the steady-state page fault rate. We will

repeal these sleps also for an incompletely specifiled LRUSM obtained from

the original model through a transformation of the stack distance pmf. The
requirement thal a statistic based on this new LRUSM result in a confldence
interval of the same width at the same confidence level as Lhe original LRUSM

will then be used to completely definc the transformation.

Let D, = (6,.05.....6,) be Lhe driving stack distance pmf for the original

generator, hereafter referred to as GEN1. For D, . we define the curnulative
probabilities as A; = i:di.
=1

The page faults due to the reference string generated by GEN1 in a fixed
memory partition of m pages managed by the LRU poliecy conslitute a

discrete lime renewal process. In particular, the inter-fault time distribu-

tion is geometric with parameter A, = 2 8,=(1-4,,) [Spi76a].
i

=m ¢l

Let the random variable N,(t,;m) denote the number of faults generated
until some arbitrary time ¢, in a fixed size memory of m pages. By renewal

theory [Ros70al, the steady-state fault rate is given by

Jim ﬁi:‘:—l"—)a (1-8,) = Am. (2.3.1.1)

Equation (2.3.1.1) holds with probabilily 1.

For ¢,<= , however, applying Chebyshev's inequality for the rrandom variable

Ny(t;;m)/t, we have

oty 2.3.1.4
Z, m <s]>1— & {2.0.1.2)

Pr[l”l(‘lim) -A

for any £>0 and where 0%(t,) = Var(N,(tim)/ t,).

For fixed ¢, and m, the random variable N (t;;m) has & binoraial distribution
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with parameters (1-4;) and t, because il simply counts the number of
successes in £; Bernoulli trials with'a constant probability of success. Thus,

the variance ¢%(t,) is given by

o®(ty) = Var(N\(tyim)/ 1)) = (B (1-8,))/ ¢ty (2.3.1.3)
Note that Ny(tim) -e, N(tim) +¢|is alevel (1 - of(ty) ) confidence
‘I ll tg

interval of length 2¢ for A,.

Now consider a second generator, called GEN2, that is driven by the fol-

lowing transformed stack distance pmf:

l)g = (6'1.6'2.....6'g .R&g ﬂ.de $2e-- ..R‘n)
where k is the fixed parameter of the transformation and R is an arbitrary
posilive constant.

Note that the transformation of §; {l<i<k) is lefl unspecified; the only con-

slraint it has to salisfy is
‘ﬁ '« = 1-R(1-4,) (2.3.1.4)
. =
so that D, is indeed a pmf.
As before, let the random variable Ng(t;;m) denote the number of faults
resulting from GEN2 by some arbitrary time f, under the same cir-

cumstances as wilth GEN1 (i.e., fixed memory partition of m pages managed

by the LRU policy).

Nole that, for GEN2 with k<m, the slalistic Ny(tym)/ Kt; is an unbiased

estimale of A,,. Furthermore,

Var (Nx(tzm)/ Rtp) = (1-8,)(1-R(1-8,,))/ Rt (2.3.1.5)

since Np(tzim) is binomially distributed with parameters R(1-A,,) and £,. As
for GEN1, the level of a confldence interval of length 2¢ for A,, in terms of

this new statistic is given by

Pr{ Ne(fmz;m) - |< t}> - V”(”z(‘:;m”m*)_ (2.3.1.6)

The motivation for the transformalion method becomes evident. if we make
the following observation: for some given t,, there exist values of R and ¢,
with t,<t; such that N,(tim)/Rt, is as good a stalistic for A, as

N\(t);m)/¢t,. We formalize this statement in the following proposition:

Proposition : For some given memory size m. time ¢,, and transformation
parameter k<m, lhe smallest possible time £; for which Lhe stalistic
Nz(Lzm)/ Rty achieves the same confidence as N,(t,;m)/ ¢, for Lthe steady-

state fault rate A, is obtained by a D, where R=R ° = 1/(1-4,).

Proof : Equating the right hand sides of equations (2.3.1.2) und (2.3.1.6)
corresponding to the confldence levels due Lo GEN1 and GEN2 respeclively
for a given &, and substituting equations (2.3.1.3) and (2.3.1.5) for Lhe two

variances, we oblain

_Am(l"Am) = l_(l—Am)(I"‘?(l"Am))

1
tztl Cthz

(2.3.1.7)

" ;
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Simplifying and solving for ¢, yields
i
t,(1-R(1-A,))
s — .3.1.8
te RA, (2 31 )

Thus, the minimization of g as a function of R can be formulated as the fol-

lowing optimization problem:

minimize tg = t,{(1-R(1-8))/ Rbp,

" 1

subject to 0= R < T

where the constraints simply ensure that D, is a valid pmf. Note that for
given £, and m, £, is a strictly decreasing function of posilive R. Therefore,
the minimum ¢, value is that imposed by the upper bound on R. That is, the

1

optimum value of R is givenby R = R* = ey

Evaluating tp at R = R® yields
. Am—Ak
tg = (——)t,.
2 ( Am ) 1

Note that

tg< D
2 R* .
with the equality holding only when m=n. This observation leads us Lo the
conclusion that the length of the string generated by GEN2 need only be at
most 1/ R°th the length of that due to GEN1 to achieve the same confidence

for A, for all memory sizes greater than k.

Recalling the form of D> and eguation (2.3. 1.4), the slack distance pmf

transformation implied by'the optimal value of R is of Lhe form

26

D= (0.0.. .-.O.R.Jg *..R‘dk @ .,.R’d,, ).
Given Dy, the operation of GEN? is identical to that of GEN1 except thal now
the d;’s are generated as independent random variables with the frequencies

specified by D,.

We make the following observations about the transformation method:

(1) The transformation preserves the long-run relative occurrences of stack

depths greater than k, i.e., §;/8; = 8¢/ ¢'; for all i and j>k.

(2) GEN2 produces no references to stack depths less than or equal to k,
while it references depths greater than k with increased probabilities.
This result shows the analogy between the above scheme of generating
memory references and the Stack Deletion Method of compressing exist-

ing memory reference trace data.

(3) The optimal value of R, R*, may be interpreted as the expected number
of references unlil the first reference to a stack depth greater than k.
This confirms our earlier observation that GEN2 suppresses the refer-

ences to the top k& pages of the stack.

2.3.2. Mean Memory Occupancy Characterislics

In the previous section, we have shown that the proposed melhod
preserves the page fault rale characteristics of the original string in an
environment managed by a particular fixed partition policy (namely LRU).
Due to its strong interaction with the process scheduling mechanism and
significant impact on overall system performance. mean memory occupancy
in a variable partition environment is another important properly associaled

with a reference string. As an example of a variable partition policy, we will
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consider the behavior of the output of GEN2 when processed by the working

set algorithm [Den68al. i

Let (1) denote the steady-state working set size with parameter (win-
dow size) 7. Recalling the definitions of the LRUSM and of the working set pol-
icy, the steady-state working set size distribution can be expressed through

the recursive relationship

Prio{7)=i} = APrio(r-1)=i} + (1-4,_,)Prie(r-1)=i-1} (2.3.2.1)

where Prio(1)=1} = 1 [Spi77a).
As applied to the LRUSM that drives GEN2, equation (2.3.2.1) becomes

Prio(r)=i} = & Prio(r'-1)=i} + (l;A‘i_,)PrQo(f—l)ﬂ—ll (2.3.2.2)

where the transformed cumulative stack distance probabilities are given by

b = oy = B RS,

i= FE )
=R'( Y8, - 34)
J=1 j=t
A -4,

= R'(8-A) = -
and we replace the original window size by

7= T7/R" =(1-8,)7;

note that 7 is scaled down by a factor of R’ since each reference generated

by GEN2 advances the clock by R* ticks rather than by one.? If the §;’s are

2As we have defined it, R°, being the mean of 8 random variable, is a real number. Concep-
tually, there is no rcason why the clock of the simulator t be ad d by, this noninjegral
amount. However, for studies that require R° to be integer, we candefine R® = | 1/(1-8,) | G.e..

we can Lruncate it Lo an integer), in which case the probability measure 1-R*(1-4;) us given by

20

nonzero for all i>k, equation (2.3.2.2), which is valid only for i>k, has the

closed form solution [Spi77a]

O ot |
(1=8% ) (1 =Nk 42)...(1-8 ) i: LM
=k 4l I‘l (A',—A',)
'ﬁ;‘ , k<isn
Priw(r)=i] = | o . isk.

Having the distribution of w(7) at hand, the mean, ©(), can be oblained trivi-

ally.

n=20

skewness=2.0
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Figure 2.3.2.1 Mean working set size of sample program
vs. window size for various values of the transformation parameter k.

equation (2.3.1.4) will have Lo be assigned (in an arbitrary manner) to the first k steck positions.
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Ideally, one would like Lo show analytically that, for small k and large T
(nole that these are the normal opérating conditions for the method), the
first moment of the above distribution approaches the mean working set size
of the original string. However, due to the complexity of the expressions
involved, only numerical results have been oblained. Figure 2.3.2.1 presents
the mean working set size of a sample program whose LRUSM parameters
were oblained through Zipf's Law with skewness 2.0° [Knu73a]. The figure
shows that the transformation preserves with good approximation the first
moment of the working set size distribution even for large k, particularly
when the window size T is large. Recall that setting k =0 resuilts in the null
transformation and reduces GEN2 to GEN1. For the example at hand, the
relatively large errors encountered for small values of 7 are simply due to
the scaling that is performed on the window size (which happens to be
=7/ 15.15 when k =6).

In an effort to identify the region of validity with respect to k&, we plot
the percentage error of &(7) and the reduction ratio (t2/t,) as functions of
k in Figure 2.3.2.2. For Lhe particular value of T being used, the error in o(7)
is very close to zero for all k<7. These values of k are such that the following

inequalily is satisfied:
r=(01-8)rzn, (2.3.2.4)

where n is the number of pages in the program. This condilion paralleis the
one requiring memory sizes greater than k to be used in the study of fault
rale stalistics under LRU management. Figure 2.3.2.2 also shows thal & sub-
stantial reduction ratio in string length is obtained for this set of transforma-

Lion parameter values.

Iaccording Lo Zipt's Law with skewness 2.0, the stack distance pmf is §;=¢c/ i%0, where € isa
normalizing constant.
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Figure 2.3.2.2 Percentage error and reduction ralio for
sample program as a function of the transformation parameler.

The above results for the mean working set size are directly applicable
to the steady-stale fault rate observed under working-set memory manage-
ment, since one can express the faull rate as the first difference? of the

mean working set size [Spi?7a]

A7) = &(7)-o(r-1).

Because GEN2 consistently underestimates the mean working sel size, ils
predictions at 7 and 7—1 can be expressed as o{1)-e(v) and &(r-1)—e(r-1)

respectively, where e(7) and e(r—1) are the corresponding error lerms and

4This is the discrete time analog of the first derivative
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o{7) and o(7—1) are the true mean working set values. We observe that for
similar window sizes, the errors in the mean working set predictions of GEN2
are also similar, i.e., e(T)¥e(7~1), so that these error terms approximately
cancel each other out in the fault rate estimate A{7). In other words,
although the curves in Figure 2.3.2.1 display large absolute errors in the
mean working set size for certain values of T and k, their slopes at any given

value of the window size are very close.

2.4. Comparison with the Stack Deletion Method

In the previous section we have seen that the Stack Deletion Method and
the proposed Llransformation method are very similar to each other. We
note, however, that the page names associated with the references in the
strings resulling from the compression of the GEN1 output by the Stack Dele-
tion Method and in that produced by GEN2 are not the same. This can be
explained by observing that, while the transformation method generates no
references to stack depths less than or equal to k, the Stack Deletion Method

processes all of the references in the original string (in this case, that. pro-

Parameter k_|| WATFIV FFT APL
2 4.54 5.08 5.26

3 7.04 11.64 9.55

4 9.80 24.80 13.16

5 13.00 33.76 17.85

8 25.38 73.34 | 43.48

12 38.17 1768.22 | 88.50

Table 2.4.1° Ratio of GEN1 string length to GEN2 string length (¢,/¢3)

SGenerated from data presented by Lau [Lau?9].

az

duced by GEN1), thus causing stack updates at each reference. In other
words, the two methods produce resulls that have similar distance strings

(the d;°s) but different reference strings (the r’s).

The reduction in string length due to both methods is given by
1/(1-A,). Table 2.4.1 shows the length reductions obtained when we apply
the transformation method with various values of the parameter k to the
LRUSM of three sample programs. More data about the traces from which
the LRUSM for the three programs were obtained are presented by Smith
[Smi76b, Smi77a).

2.5. Applications

The application of the transformation method to generator-driven simur
lation studies within the framework discussed in section 2.2.3 is immediate.
The simulators being driven by GEN2 process the references jusl. as before,
but increment the clock by the quantity R* instead of by 1 at each refer-
ence. Choosing a value of k to use as the transformation paramelter involves
a tradeoff between the simulation speed-up desired and the range of validity
of the results. Working-set management studies should be restricted to the
set of window size values that salisfy inequality (2.3.2.4), while LRU replace-

ment studies are applicable only for memory sizes greater than k.

Although we have emphasized generator-driven simulation studies as the
main application area, the method can also be used in the construction cf
synthetic program design for virtual-memory environments. Recall Lhat a
synthetic program [BucB9a) is a paramelerized piece of code that consumes

conlrolled amounls of system resources. In a virtual-memory environmenl,

”w N
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programs consume resources (CPU cycles, disk 1/0 bandwidth, etc.) nol. only
explicilly, but also implicitly (ClSU eycles, main memory, and paging 1/0
bandwidth) because of the automatic memory management functions. One
of the simplest ways to characlerize the behavior of a program in a virtual
memory environment is to specify its lifetime function [Be169a). This func-
tion gives the mean number of instructions executed by the program
between conseculive page faulls when it is allocated m page frames of
memoryS. Suppose we extend the classical synthetic program requirements
by specifying a lifetime function it has to conform to. Ve proceed by deter-
mining the parameters of the LRUSM corresponding to the given lifetime
function 7. The synthetic program is simply an implementation of the refer-
ence string generation algorithm that is based on the above-constructed
LRUSM. However, the execution of this synthetic program (observed at the
memory reference level) results in a string of the form
g1g2e- 3@ T 1.9 1G9 20§ QT 2s. - The @ references (all to a small sel of pages
containing the code and data for the synthetic program) between each of the
desired references (the r;’s) are due to random number generation, stack
updating and other functions that. Lthe program has to perform. To be able to
run the synthetic program in real time, these @ references are clearly
undesirable and will be termed overhead references. Suppose that we apgly
our- transformation method wilth parameter k Lo the LRUSM buill into the
program, wilh k& being the smallest integer for which R *2Q. Now, the Q over-
head references appear to be part of the desired reference string, and the

synthetlic program reproduces the paging behavior specified by the input

® In an extended definition of the lifetime funclion, the memory allocated Lo the progrum
can vary over lime and we lel M represent its mean value. In our case however, we are con-
cerned with LRU replacement with a fixed partition of M puges.

7 Under LRU management, Lhere exists a one-to-one correspondence between an LRUSGM and
a nondecreasing lifetime function.
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lifetime function within the applicability of the transformalion method with
parameter k in real time. Further details of the Lopic along with an actual

implementation are discussed in the next chapter.

2.8. Conclusions .

We have presented a method for the efficient generation of memory
reference strings based on the LRU stack model of program behavior. The
claim thal the shorter output of the modified generalor preserves the page
fault rate characteristics of the original string (i.e., that produced by the
unmodified generator) when processed by the LRU policy was shown analyti-
cally for memory sizes greater than k. The range of applicability under the
working sel memory-management policy is not as sharply defined. However,
some necessary conditions that need lo be satisfied for the fault rale and
mean memory occupancy resulls to be valid were also presented.

The method provides a generator that is extremely economical both in
space and in Llime and can be used, whenever the LRUSM has been judged an
adequate model of the characteristics that are of interest to the particular

study, as a source of memory references for any simulator that relies on

trace data as input. Another interesling application of the metlhod to Lhe

construction of synthelic programs for virtual-memory environments has

-also been briefly discussed.
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CHAPTER 3

CONSTRUCTING SYNTHETIC PROGRAMS FOR VIRTUAL MEMORY

9.1. Introduction

The concepts of synthetic program and virtual memory (throughout this
thesis, we consider a poged implementation of virtual memory) have been
with us for many years [Buc89a,Den70a]. As introduced by Buchholz, a syn-
thetic program is a highly parametric program that is able to mimic a wide
range of behaviors as measured by the amount of system resources con-
sumed, for instance, CPU cycles and 1/0 bandwidth. While performing no
useful task, the behavior of a synthetic program can be tailored to match
that of any one of the actual programs that constitute a given system's work-

load.

Workload models are important constituents of system models such as
queueing networks of simulators, but can also be used, when in executable
form, to drive actual systems [Fer72a). In particular, synthetic workloads
consisting of synthetic programs may be used in empirical performance stu-
dies (see [Sre74a] for an example). Performance evaluation studies of the
tuning; upgrading and competitive system procurement type that use exe-
cutable program models such as synthetic programs need to have access to
the actual system. In return, they provide grealer credibility than analytic
model or simulation-based studies since they employ the real systeni
(hardware, operating sy:tem, compiler-generated code, etc.). Compared to
benchmarking, the use of synthelic programs has the additional advantages

of Lransportability and flexibility. For an extended discussion of these and
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relaled topics refer to chapters 5 and 6 of [Fer78a].

One of the most important factors affecting the performance of a
virtual-memory system is the manner in which programs running on it
access their address spaces. Thus, synthetic programs that are constructed
to be used for performance evaluation studies of such systems must be able
to reproduce this behavior in a controllable manner. Compared lo olher
aspects of program behavior (such as CPU time required, 1/0 activity gen-
erated, ete.), reproducing the memory referencing pattern is a far more
difficult task. Fortunately, the problem has received wide attention and
there exist models of varying complexity and accuracy for program memory
referencing behavior [Lew73a, Spi72a, Spi76a, Spi77a, Raf76a). To be eflective
in performance studies of virtual-memory systems, a synthelic program
must incorporate one of these models. That way, ils memory referencing
behavior can be varied in a controllable manner by modifying the model’s

parameters.

In a recent study comparinngur paging subsystem for UNIX!, and VMS®
(the two operating systems that exist for the VAX-1 1/780 computer system),
Kashtan used three synthetic programs that had different memory referenc-
ing patterns [KasB80a). While these programs, which advance through their
address spaces (i) sequentially, (ii) in uniformly distributed random incre-
ments, and (iii) in random increments normally distributed aboul Lhe
current page with a given standard deviation, may adequately rnodel pro-
grams for a parlicular application, namely, image understanding (in
Kashtan's case), they lack the ability to capture the behavior of a bt:()ader

class of programs that exhibit varying degrees of spalial and temporal

1 UNIX is & Trademark of Bell Laboratories.
€ YMS and VAX arc Trademarks of Digital Equipment Corporation.
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localily [Spi72a]. Furthermore, Kashtan's approach does not deal in a satis-
factory manner with the problem of bverhead references resulting from that
amount of computation the synthetic program has to perform in order to
generate the next desired reference according to Lhe three palterns

described above.

In the following sections of this chapter, we discuss the suitabilily of the
Least-Recently-Used Stack Model (LRUSM) of program behavior to be incor-
porated in a synthetic program and propose certain modifications to the
approach described above that allows us to deal effectively with the “over-
head references’ problem. The stalistical and practical limitations of our

approach are discussed in the light of a prototype implementation.

3.2. The Model

Consider the page reference string 7,Ta....T{-p.Ti.Tier... that is
observed as a result of the execution of a given program. Each member r; of
the string is an element of the set of page names, {1,2,....,n}], where n is the
size of the program’s address space. Requiring that an instance of our modet
corresponding to the given program generate a page reference string identi-
cal to the observed string would be overdemanding and for most practical
purposes, useless. Instead, we will be satisfled if the model is able to repro-
duce certain funclions which are defined over the string. Namely, we will be
inler;sst.ed in reproducing 8{A4,a) and M(A.a). which correspond Lo the mean
time interval between consecutive page faults and the mean memory occu-
pancy, respectively, that result when the string is processed by the page
replacement algorithm A with parameter a. The choice of these Lwo meas-
ures follows directly from the observation that lwo of the more important

resources in a virtual-memory system are paging 1/0 bandwidlh and physical
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memory.

Amongst the variety of models that have been proposed as prediclors of
program memory referencing behavior, the one we will incorporale in our
synthelic program is the LRUSM [Spi76a, Cof73a]. Properties of the’ LRUSM,
which is able Lo capture certain aspects of the ‘‘locality of referencing’
behavior., have been analylically and experimentally investigated
[Rau77a, Smi78a, Spi77a, Raf76a]. As stated in the previous chapter, the
LRUSM has been observed to be a reasonable predictor of Lthe two measures
that have been defined over the page reference string; the mean inter-faull
time and the mean memory occupancy [Spi76a, Raf76a].

We recall the notation introduced in chapter 2, where the d;’s are the
independent and identically ‘dist.ribuled stack distances having the commmon

probability mass function (pmf) D=(6,.62.....6,) and cumulative stack dis-

tance probabilities A; = 26,. Note that, since we are interested in long-run
j=t

statistics, the initial stack contents are immaterial.

3.2.1. Estimating the Model's Parameters

An instance of the LRUSM, corresponding to a given program, is realized
by estimating the n paramelers of the model. Although the stack distance
probabilities can be measured directly from a given page reference string,
we will choose Lo estimate them from the curve of mean inter-fault time vs.
mean memory occupancy. This so-called lifetime curve [Bel69a} is one of
the more natural ways of specifying referencing behavior in addition to being
one of Lthe measures we are directly intcrested in.

Figure 3.2.1.1 displays the lifetime curve of an n-page program which

references ils address space in a uniformly distributed random manner as
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‘.- LR

Mean lifetime 6(m)

Memory size m

Figure 3.2.1.1 Lifetime curves of two programs with
varying amounts of locality.

indicated by the dashed curve of the form 8(m)=c-n/(n-m). The solid
curve, on the other hand, represents a program which exhibits a more local
behavior. Unless otherwise noted, we let A=LRU and drop it from our nota-

tion of 8() and M().

Returning to the LRUSM, in a memory of m page frames that is managed
by the LRU policy, the events corresponding to page faults constitute a
discrele-time renewal process with a geometric inter-event time distribution
[Ros70a). The parameter of the inter-faull dislribution is simply given by
P =Prlpoge fault}=1-4, and the mean inter-fault time by 1/p. Recalling

the definition of the lifetime curve, for the memory size m, the quantity
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8(m) equals 1/p if the lifetime curve is obtained under an LRU replacement
policy (or some approximation of it). Thus, in general, we obtain the LRUSM

parameters through the set of equations?
Bp=1-1/8(m). 1smsn (3.2.1.1)

where we define 8{n) Lo be .

3.2.2. Generation of Reference Strings

Given an instance of Lhe LRUSM where the model parameters,
D=(6,.62.....6, ). have been obtained from a given program as oultlined in the
preceding section, we construct a generator of page reference strings based
on the LRUSM by sampling the stack distances, d;’s, from a population having
distribution D and then transforming them into page names through the
stack updating mechanism. Formally, the steps that need to be perform.ed

are outlined below:
GEN1 (Generator of page reference strings based on LRUSM).
GO: (Initializalion) Initialize the stack with an arbitrary content.

G1: (Random number generation). Generate a pseudo-random number uni-
formly distributed in the interval (0,1).

G2: (Transformation). Transform the uniform random variable lo another
integer random variable, dj, that is distributed according Lo D.

G3: (The aclual reference). The page 7;, currently occupying stack position

d;, becomes the next reference.

G4: (Stack updaling). Updale Lhe slack by placing the referenced page al

the top and pushing pages in positions 1 through d;—1 down one posi-

3 We assume that 8(m ) is expressed in “'memory references per inter-fault interval”.

(]



tion.

G5: (Loop). Go toGl.

Within the limitations due to statistical convergence (Lo be discussed
later) and those of the LRUSM, the reference string, T,,7273...., generated in
the above manner will in fact have as its lifetime curve the curve from which
the model parameters were derived. The incorporation of the above genera-
tor into a synthetic program would then appear to be a solution to the prob-
lem at hand. However, if the synthetic program is Lo generate the next page
to be referenced on the fly during execution, the amount of computation
that is required for the Lask has to be dealt with effectively. The following

sketch illustrates the problem:

r, re — desired

 9192..9¢"" '9192..9¢ — overhead ] observed

919299

The reference string r,rgrs... represents the desired string in that it
captures the behavioral properties of the original program from which the
instance of the LRUSM was derived. The generation of each one of the
desired page references requires carrying oul the steps outlined in G1-G4,
which in turn result in the memory references, ¢,9z...gg-19q¢. as a by-
product®. From the point of view of the memory management mechanisms of
the system on which the synthelic program is run, the observed memory

reference slring is Lthe combined string having the form

g192.--9e"19192--- Q" 2019 2..-9@T 3919 2. .

4 Due to the probabilistic nature of the generation pr , the ber of y refer-
e;xccs to bca issued to generate one desired relerence is a random variable, of which we ccasider
the meun, §.
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where the desired string has been diluted by a factor of @ due Lo the over-

head references.

Since each of the @ overhead references is to a small set of s pages that
contain the instructions and the data necessary to carry out steps G1-G4 of
the generation algorithm, for memory sizes greater than s we know that
page faults can only occur at references r\7zr3... resulting in an obsccved
lifetime ©'(m)=@Q-8{m), where 8(m) is lbe lifetime due to Lhe slring

T ToTs... alone.

3.2.3. The Transformation Method

Consider a reference string generator GEN2, thal is identical to GEN1
except that it is driven by the transformed stack distance pmf
D*=(0.,0.....0,R6; 1. Rby y2.....RS,). where k is the parameter of the transfor-
mation and R =1/(1-A,). In the previous chapter we have observed that, for
memory sizes greater than k, the expected number of page faulls due to a
string of length L generated by GEN1 (the originul generator) is identical to
the expecled number of page faults due to a string of length L/ R generated
by GEN2 (the transformed generator). Furthermore, for a reference string
generated by GENZ, if virtual time is advanced by R unils rather than by 1
unit between consecutive references, lhe (ransformation also preserves
{within the limils discussed in section 2.2.3) the fault rate and the mean
memory occupancy statistics with respect to the desired string produced by
GEN1. Here, we will show how the method can be put to use in order Lo deal
with the overhead references.

Since Lhe @ overhead references cause no page faults, their effecl on

the desired string is simply Lhe strelching of lhe lime scale by a factor of §.

If, by anticipating Lhis effecl in advance, we trensform Lhe slack distasnce
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pmf that is used to drive the generator with a parameter k& such that k is the
smallest integer for which R=1/(1-A;)= Q. in the observed string the @
overhead references will serve only to advance virtual time by @ unils
between the 7's, just as required by the transformation method. In other
words, rather than using the model paramelers that are derived from the
program directly, we use the transformed parameters, D’, in conjunction
with Lhe generator, thus generating a reference string with increased proba-
bility of faults such that, when diluted by the @ overhead references, the

observed statistics are nearly those of the original program.

Yet another view of the solution is the following. In terms of the cumula-

tive stack distance probabilities, the transformation can be expressed as

0 .
o _ ., msk
“m‘{ R(ba-N) im>k

from the definitions of A, and D°.

Now, inverting equation (3.2.1.1) and substituting for A,;, the above expres-

sion, we obtain

. - 1 -
Om) = 8 = TR = &)

n

Thus, the Lransformation method corresponds to using, in deriving the

LRUSM paramelers, the modified lifetime funclion
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rather than the original lifetime function 8(m). Now, when we combine the
efleclts of the transformation method and the @ overhead references on Lhe
lifetime function (see section 3.2.2), we realize that the obscrved lifelime
function, ©'(m), is in fact identical to the original for all memory sizes

greater than k. That is,

@(m) = Q8°(m) = A-8(m)) ¥8(m). m >k

since we have chosen k such Lhat R ~ Q. The validity of the approach is
clearly restricted to memory sizes greater than k, the transformalion

parameter.

8.3. Statistical Considerations

It was mentioned above that, for a given value of the mean memory
occupar;cy. one of the measures we are interested in, 8(m ), is Llhe mean of a
random variable. Thus, in reporting point estimates for it based on our
measurements, we need Lo be concerned with the length of the reference
string from which the estimate is oblained (equivalenlly. the dauralion of lhe
synthetic program's execution). In statistical terms, we are interested in the
minimum sample size (page fault count) that is required for the true mean,
8(m), to be contained within a confidence interval aboutl the observed mean,
&(m). From our previous discussion, in a memory of m page frames
managed by lthe LRU replacement policy, Lhe set of random variables

X1 X2X3... Xy corresponding Lo inter-page fault times are independent and
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identically distributed random variables having a geometric distribution with
mean E[X]=1/(1-4, ) and var:iance Var(X,)) = 0® = 8,/ (1-A,,)%.  Using
the fact that, for large samples (by the central limit theorem), the distribu-
tion of the sample estimate, 8(m ), about the true mean, 8(m), is approxi-
malely normal, an approximate confidence interval with confidence level

(1-a) is constructed as

8(m) + o¢(1- % a)/ VN, (3.3.1)

where ¢(a) is the ath quantile of the standard normal distribution. Thus, the
minimum sample size required for Lhe true mean to lie within an interval of
length L about the observed mean with probability 1—a is given by the ine-

quality

N=(20¢(1- % a)/ L)2 (3.3.2)

To relate the above sample size (page fault count) to the reference string
length, we make use of a result from renewal theory known as Wald's equa-
tion [Ros70a). Let S be an integer-valued random variable which
corresponds Lo the minimum page reference string length for which we

observe N page faults. In other words,

. S=minfs:/,+/2+...+[,=N]
where

_l L ifthe ith reference is a fault
t = | 0, otherwise.

Since the event {S=s} is independent of /,,y./y,2..... S may be viewed as a

stopping time for the sequence /,./5./3....J,- Then, by Wald's equation, we

have the following result:
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B[‘gl‘l = E[S}E[L]

As applied to our particular example, the expected minimum string length

required to contain N page faults is given by

E[s]= BLZ:"]/E["] = N/ (1-B)

where N satisfies inequality (3.3.2).

3.4. Synthetic Program Overview

In this section, we sketch the principle components of a program Lthat
fulfills the requirements discussed in Lhe preceding sections. The kernel of
the program consists of an implementation of the generation algorithm out-
lined in section 3.2.2. However, before the generation can proceed, Lhe input
to the program (a point-by-point or analytic representation of the lifelime
function) is used to derive the LRUSM parameters which are then
transformed as described in section 3.2.3 (note that these two steps can be
combined and the transformed parameters derived directly from the input).
Apart.from the data structures that are local to the generator's implemenla-
tion, the program declares another single dimensional array of a fundamen-
tal data type (such as an integer) which constitules the program's virtual
address space. Given the output of the generator (a page name), the pro-
gram accesses an element of this array that is known to be contained in the

desired page % Here, we assume lhal the host system page size and the

% The choice of a read or a wrife access Lo the desired puge is 8 nontrivial one, in that dirty
pages imply a write-back to secondary storage before reuse, thus uffecting overall system perfor-
mance. gllis decision can be randomized by busing it on some [unction of a pscudq-randum
number that is independent of the onc used Lo generate the stack distances. Assumptions such
as independent reads and writes where 90% of all references are reads and 10% arc wriles scem
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fundamental data type storage size are known, so that the mapping of the

array elements into pages can easilf be deduced.

Although the implementation of the generation algorithm is a very
straightforward task, it requires sublle coding and intelligent use of data
structures in order to keep @, the number of overhead references, to a
minimum. The smaller the value of @. the smaller the transformation
parameter k, and thus the greater the range of validity of the synthetic pro-

gram. Some of these issues are discussed in Lhe nexl section.

3.5. Praclical Considerations

As presented in section 3.2.2, the reference generation algorithm has
two expensive operations that contribute substantially Lo the overhead refer-
ences. These are (i) the generation of the stack distances with frequency
given by D° and (ii) mapping the stack distance Lo the page name and updat-
ing the stack to preserve LRU order. We will examine possible solutions to
these Lwo issues before presenling resulls from a sample implementation of

the synthetic program.

8.5.1. Efficient Generation of Stack Distances

In the LRUSM, stack distances are independent random variables with a
common general distribution. Ina digital computer, there exist methotls for
the efficient generation of pseudo-random numbers that are uniformly distri-
buted over some interval [Knu69a]. Given such a uniform random integer X,
we are interested in transforming it to another discrete random variable Y

that has an arbitrary distribution over this same interval. The clausical

appropriate.
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method of transforming Y through the cumulative probability function of X
has the drawback that it requires a search amongst the range of Y (Lhis can
be accomplished at best in O(log n ) steps, where n is the distinct number
of values that Y can assume) and consequenlfy is costly. Given two indepen-
dent uniform random variables X and U, where X is uniform over the range
of Y and U is uniform over (0,1), we statevwil.hout proof that it is possible o
construct an array of integers A(X) and an array of probabilities F(X) such

that the random variable defined as

v =[ X if UsF(X)

A(X) it U>F(X)
has a general distribution over Lhe range of X. The algorithm for determin-
ing the alias vector A(X) and the cutoff probabilities F(X) from the desired
distribution of Y is given in [Wal77a]. Since the construction of the A(X) and
F(X) arrays can precede the slring generation phase, we have reduced the
cost of the stack distance generation operation to constant time {indepen-
dent of n). Note that, since we generate a sequence of stack dislances, al
each reference we need only generate one pseudo-random number, X;, over
the set of possible stack depths and use the pair (X, X;-,/n) as the (X, U)
pair as required by the algorithm. This is possible since Lhe set of random
numbers ...X;_g.Xi-1.X¢.Xis1... produced by the generator are pair-wise

independent and X;-,/n is uniform over (0,1).

8.5.2. Stack Manipulation
Civen a stack distance generated as described above, the next step in
the generation algorithm requires thal the page occupying that stack posi-

tion be referenced and Lhe stack be updated to preserve the LRU ordering.
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The two operations that we have to perform on the stack data structure are
an index operation to map the staci( distance into a page name and an
update operation Lo move the referenced page to the top. Consider an array
data structure representation of Lthe stack. The index operation can be per-
formed in constant time, whereas the update operalion requires O(n) time,
where n is the program size in pages. A linked lisl representation of the
stack on the other hand requires O(n) time for the index operation and con-
stant time for the update. Since we are concerned wilh the maximum of the
cost of the two operations, these two data structures are equivalent for our

purposes. Consider a simple variation of Lhe linked list implementation of

the stack where we divide the n elements into I\ﬁ?l piles, each cont&ining

I\/vTI elements (except for the last pile) with sec.ondary pointers to the head
of each pile. Now, both of the operations of interest can be performed in
0(Vm) time. Such a two-level data structure was first suggested by Franta
and Maly [Fra77a)] as an efficient representation of the event queue in simu-
lations. Olken [OlkB80a] has studied the dual of our problem (the computa-
tion of LRU hil ratios) and has compared the linked list representation with a
binary tree® represenlation of the stack. Although the binary tree represen-
tation requires O(log n ) time for the two operations we are concerned wilh,
due t..o the complexity of the implementation, the simple two-level data
structure described above has smalter actual cost for moderate sizes of the

stack.

8 Aclually, the tree structure studied was an AVL tree rather than a perfect binary tree.

3.5.3. Sample Implementation

In an effort to gain insight into the magnitude of @ for a real implemen-
tation, the generator algorithm of section 3.2.2 incorporating lhe above
enhancements was coded in lhé C programming language and run on a VAX-
11/780 computer system under the Virtual Unix operating system (see
chapter 6 for further details of this system). To minimize the number of
input parameters, the LRUSM paramelers were derived direclly from Zipf's
Law with a skewness of 2.0 [Knu73a], i.e., by the equation §; = ¢/, where ¢
is a normalizing constant. In Figure 3.5.3.2 we plot the number of overhead
references, @, and the reduction ratio as a function of k, the transformation
parameter. The reduction ratio curve is the plot of the expression 1/ (1-4;).
whereas the overhead curve was derived experimentally by timing the execu-
tion of 100,000 genérat.ion operations and then converting the mean Lime
between desired references of this sample Lo the number of memory refer-

ences through the constant of proportionality
v = 1 usecond/memory reference.

Note that, actually, this number 7 is the mean of a random variable thal is
dependent on the instruction mix, cache hit ratio, and other archilectural
features. The figure indicates a nonconstant relationship belween k and @.
This is due to the shifting of Lhe stack distance pmf towards larger depths for
increasing k, thus resulling in deeper index and update operations on the
stack. Due to this unfortunate dependency of @ on k, we resort Lo graphical
methods for the solulion of @(k)~K(k)". For the sample program wilh 500

pages to which the figure refers, the value of k which satisfies this condition

? Since both Q(k) and R(k) arc discrete functions, the equality Q(k )=R(k) will rarely be
satisficd for an intcger value of k. In the case this equulity is not satisfied, we choose the smal-
lest k for which R(k)=@(k).



300

_ | | 1 | I | | 4
C n=500 pages -
. skewness=2.0 ]
v - i
o - 4
2 Z i
2200 B
S N .
& 5 -
A Overhead Q . S ]
0.6 _ —".’.__,_.._.--—' . -
- ]
SR, )
2100} -
g fi Reduction Ratio R ]
z F ]
0' l | | L ] | | ]

0O 10 20 30 40 50 60 70 80

Determination of & for Sample Implementation

Transformation Parameter #

Figure 3.6.3.2 Variation of the overhead and of the
reduction ratio as a funclion of the Lransformation parameter.

55

66

R
k_|| WATFIV APL FFT SAMPLE
2 4.54 5.26 5.08 "~ 4.15
3 7.04 9.35 11.64 8.684
4 9.80 13.15 | 24.80 9.62
5| 13.00 17.85 | 33.75 12.47
6| 16.39 25.64 | 47.55 15.38

8| 25.38 4348 | 73.34 21.40
10 || 33.44 66.67 | 84.29 27.70
12§ 38.17 88.50 | 178.22 34.28
14 || 46.30 | 107.30 | 205.59 41.17
16 | 55.256 | 125.63 | 213.14 48.29
18 || 58.82 | 154.68 | 243.26 65.96
20 | 63.98 | 180.84 | 368.05 63.92
24 || 70.72 | 287.36 | 369.89 81.08
28 (| 80.26 | 389.11 | 370.08 | 100.15

Table 3.5.9.1 String reduction ralios for three LRUSM
and the sample implementation with 100-page address space.
is seen to be about 54 pages (less than 117% of the address space of the pro-
gram).

To relate these values of @ to the transformation parameters that would
have to be used when modeling real programs (as opposed Lo the hypotheti-
cal program we have modeled through Zipl's Law), we report in Table 3.5.3.1
the string reduction ratios (R values) for various values of k of three LRUSMs
whose parameters were derived from three real programs called WATFIV,
APL, and FFT [Lau79a] along with those of the sample implementation scaled
down to a 100-page address space to make ils size comparable with Lhe oth-
ers. The three LRUSM, WATFIV, APL, and FFT, consist of 98, 114, and 62
pages, respectively. More dala about the traces from which the threc
LRUSMs were constructed can be found in [Smi?6b, Smi77a). Compared to
these models of real programs, our contrived LRUSM has reduction ralios
that are very similar to those of the WATIFIV model over the displayed range
of k. Note that, amongst the three real program models, WATFIV exhibits Lthe

least local behavior (i.e., has the least skewed stack distance pmil Lowards



57

the top as can be observed from Table 3.5.3.1) and consequently requires the
largest k for a given @ such that R¥Q. Based on Lhis observation, we claim
that the & value reported for the sample implementation is a rather pes-

simistic one.

The above-constructed synthetic program was run with k=54 in varying
amounts of memory under the Virtual Unix operating system. This was to
confirm that the program in fact conformed to the desired lifetime function
under real operating conditions. The desired and observed lifetimes for the
program are shown in Figure 3.5.3.3. The observed lifetime points were
obtained by timing the execution of the program and recording the number
of page faults generated and the mean memory allocated to the program
during the execution. As can be seen, the pregram indeed generated life-
times very close Lo the desired lifetimes over a wide range of mean memory
occupancies. The differences in the two curves can be attributed to several

causes:

(i) The page replacement algorithm under which the program was run is
not an implementation of the pure global LRU policy. The actual
replacement policy employed by the Virtual Unix operating system is
the global clock policy which is known to be only an approximation of
the pure LRU policy (further details of the Virtual Unix memory

management mechanisms will be discussed in chapter 6).

(ii) The amount of memory allocaled Lo the program varied during its exe-
cution and we have only reported Lthe mean. Since the desired lifetime
curve is concave up, lhe line representing the linear combination of

any two points on the curve will always fall above the curve.

Mean Lifetime €(m) (References)
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Desired and Observed Lifetimes for Sample Implementation
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showing desired and observed values for the lifetime.



59

(iii) For the points corresponding to large amounts of mean memory occu-
pancy. the number of page faults generated was very small (less than
100), resulting in a very large confidence interval at a reasonable

confidence level (see section 3.3).

3.6. Conclusions

We have discussed the construction of a synthetic program based on the
LRUSM that is suitable for performance studies of virtual memory systems.
A modification of the LRUSM that transforms the model parameters was
shown Lo allow the generation of memory references on the fly as the syn-
thelic program is run, at the cosl of restricting Lthe range of validity of the
results to memory sizes greater than k, the parameler of the transfurma-
tion. The study of an actual implementation of the generator has demon-
strated that, for models of programs which exhibit realistic amounts of tocal-
ity. this limitation of the transformation method is not unreasonable. The
incorporation of the total CPU time requirement into the synthetic program
can be effected simply by varying the length of the string generated (within
Lhe statistical convergence limits thal have been discussed in section 3.3).
As for the inclusion of explicit 1/0 requirements, this can be achieved simply
by interspersing the 1/0 requests amongst the references generated (at the

cost of further increasing @ and thus k).
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CHAPTER 4

HYBRID PAGE REPLACEMENT POLICIES - ANALYTIC STUDIES

4.1. Introduction

' Although it is well known that the LRU and WS page replacement algo-
rithms have performances (as measured by the number of page faults gen-
erated for a given mean memory occupancy) superior to both FIFO and
RAND [Kin71a, Ral78a], they are rarely implemented in practice due to their
high cost in hardware and/or software. The author is aware of only one
machine, the CDC Star-100 computer system [0li74a], which implements LRU
page replacement in hardware. However, hardware LRU management of
cache memories is more common, as in the 1BM 370/168 [Lip88a). The situa-

tion is quite similar for the implementation of the WS policy [Mor72a).

The vast majority of actual implementations of replacement algorithms
can be considered to be approximations of the pure LRU and pure WS algo-
rithms. Their exact form is often dictated by the type of support provided in
the host memory-management hardware. Examples of these approximations
include the clock [Cor68a,Eas79a), sampled working set (SWS)
[Fog74a, Pri74a), and page fault frequency (PFF) [Chu76a) replacement algo-
rithms. The single common hardware feature that all of these algorithms
base their decisions on is a reference bit associated with each page frame in
main memory. A reference to a page causes the hardware to turn on the
corresponding bit, which is then examined and reset by the replacement

algorithm.
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In this chapter, we address the problem of making page replacement
decisions in the absence of reference bits. Note that, if given no information
about page references between page faults, the two reasonable choices for a
replacement algorithm are FIFO and RAND. In the following sections, we
introduce a class of hybrid replacement policies that achieve performances
close to those of LRU and WS while having implementation costs comparable
to those of FIFO and RAND. The next section introduces the program model

on which our analysis will be based.

4.2. The Independent Reference Model

The mathematical analysis of a replacement algorithm requires a model
of the programs on which the policy operates. For our purposes, an execu-
tion of a program consisting of n pages labeled {1,2,.....n} results in a page
reference string, 7,.7a.73.....T—1.T¢.Tt4ye.... Where 7, =i if page i is referenced
at time instant t (memory references are assumed to occur at equidistant
time points, and we define their distance to be the unit of time). We will
assume a particularly simple stochastic structure for the reference string,
known as the Independent Reference Model (IRM) tAho'?la]. As the name
implies, the string {r;i=1,2,...] is assumed to be a sequence of independent,

identically distributed random variables from the population f1.2.....n}

where Pr{r,=i)=f; for all t and 3'g,=1.
i=1

Modeling an actual program with the IRM involves obtaining simple point
estimates for the model parameters (g;’s) from an actual reference string
generated by the program. Rafii has proposed a different method for obtain-

ing estimates for the 8;’s which he called the A, fnversion Madel [Bas76a].
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The resulting model, although struclurally identical to the IRM, has much

better predictive capabilities for real programs.

4.3. Hybrid Policies

In a demand-paged virtual memory system, referencing a page that is
invalid - not in main memory -~ causes a trap, which is known as a page
Jault. We note that, even in the absence of reference bits, this address
translation mechanism can be put to use to detect references to pages that
are already in memory. All that is required is that we be able to distinguish
these faults from normal page faulls and refrain from initiating the 1/0
operation. This special state of a page will t.>e called the reclaimable stale
and will be identified by one additional bit in each page Lable entry. Since
this method of detecting references to pages comes at a cost (Lo be dis-
cussed later), we are interesled in replacement algorithms that collect refer-
ence information only for a subset of the pages that a program has in
memory. More formally, we have partitioned the sel of pages in memory into

two disjoint classes {valid} and {reclaimable |, such that
fmemory] = {valid]freclaimable} and, {validjjreclaimable] = ¢.

To keep Lhe cost of generating spurious faults to Lthe reclaimable pages at

reasonably low levels, we would like
| freclaimable}| <« | fvalid}|.

We make these statements more precise in the following sections. For rea-
sons which will become clear below, we shall refer Lo the set jvalid] au Lop,
denoted T. and the set {reclaimable] as boltom, denoted B. Having parti-

tioned the program's pages in memory into these two classes, we consider
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various policies for top-to-bottom and memory-to-secondary storage replace-
ments. Because we assume a single program to be executing for our investi-
gation, the analyses presented in the forthcoming sections consider local
management policies. Extensions of these policies to employ global replace-
ment schemes required for multiprogramming environments are discussed

in section 4.6 and in the next chapter.

The two reasonable choices for the management of T are FIFO and RAND,
since for those pages we have no reference information. On the other hand,
we can employ either the LRU or the WS algorithm for the management of B
since Lhe necessary information can be gathered at the limes of these
artificial page faults. This results in four possible combinations that make up
the hybrid class to be studied: using the obvious notation, these hybrid algo-

rithms are denoted by Hpro-1ry. Hranp-1ey. Hripo-ws. and Heanp—vs-

4.3.1. Fixed Partition Hybrids

Employment of the LRU policy for the management of B resulls in
hybrid algorithms that operate in a fixed size memory partition. However, in
a mulliprogramming environment, the use of a common bottom amongst all
the aclive processes results in a variable size partition for each even though
the tops are strictly local. We comment about such extensions in section 4.6
and restrict our study here Lo uniprogramming environments. For the fol-
lowing analysis, assume that T consists of k pages (i.e.. |T] = k), where k is
the parameter of the policy, whereas the fixed partition size is m pages (i.e.,

|{memory}] =m , k<sm=n).
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4.3.1.1. The FIFO-LRU llybrid Policy
Given a page reference, 7, at time ¢, the operalion of the Hgpp_1py(k)

policy is as follows:

H1: If 7, €T. no control state change takes place. This is because this type of

reference is transparent to our mechanism.

H2: (Reclaim) If 7, €B. then T+T+ri—i, where i is the FIFO page in T, and
BeB-—r;+i. Note that, in these expressions, **+" and “-" denote set

membership operations.

H3: (Page fault) If r,£{memory} then T«T+r;—i, where page 1 is as in H2,
and B-Bt+i—j where page j is Lhe one Lhat has been (approximately)

least recenlly used amongst all pages.

We cannot state that page j is exactly the LRU page because the ordering
amongsl the top is by time of entry and not recency of use. Consequently,
there may be pages in memory that have been referenced earlier than page
J if, for example, page j was referenced just prior to ils departure from T. A
more appropriate name lof the replacement policy employed in the bottom
is Least Recently Reclaimed. In section 4.4 we present numerical results
Lhat suggest that, under a wide range of circumstances, the page replaced by
these fixed partition hybrid policies from the bottom is very close to being

the LRU page.

If we envision the control state associated with the algorithm to consti-
tute a stack, the Hgpp_jpy policy can be regarded as a modificalion to the
pure LRU policy where references to the top k positions of the LRU stack
cause no control state change [Mat70a). Note that, for the degenerate case

k=1, the page replaced from memory lo secondary storage by the Hgpp_ 100
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policy is exactly the same page that would be replaced by the pure LRU pol-
icy. Furthermore, when k=m, lhe Hpgp-1py policy degenerales inlo the
pure FIFO policy. ‘

The performance index thal we will use to compare different policies is

the steady-state fault rate. For a replacement algorithm A, the steady-stale

fault rate is defined as:
F(4) = tim [Pr{r, {memory})].

In other words, F'(A) is the limiting probability with which a reference to a
page causes a page fault.!

We are now in a position to derive an expression for F(Hgmp_1eu(k)).
based on Lhe IRM. Note that the analysis Lechnique, including the notation Lo
be used, is similar to that used in [Cof73a}. Let 8=[7,.ja....75.3k +1s..-.5m ] be
an m-tuple (without repetitions) corresponding to the memory control stale
of the policy. The first k& entries of 8 contain the page names that constitute
T. whereas the remaining m—~k entries contain the names of the elements of
B. Define Lhe Markov chain {X;,t=0,1,...] so that X; =g if the memory control
stale at time ¢ is given by 8. Let Q={s] denote the state space of this Markov
chain. From the description of s, one may conclude that Q consists of Lthe set

of all permutations of m elements chosen from n items. Therefore,
1Ql = (2 )mt = nt/ (n-m.
The one-step transition probabilities denoted by
p(ag) = Pr(X,=s'| X,_,=s), t=1

can be determined easily based on the IRM parameters and on lhe

! Por the class of hybrid policies, this limit always exists under the IRM.
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algorithm's description. Specifically, for the Hppo-1ov.

izl & . if =8
(o) = By it g=[idrdzedicidierdml k<lsm
plas)=tpg, il #=[jjrie Im-2dm-) FEB

0 , otherwise
The three nonzero cases correspond to the Hl, H2, and H3 events of the
algorithm's description respectively. The above-defined chain is clearly
homogeneous, aperiodic, and positive recurrent [Ros70a). It can be ecasily
shown that for k<n -2, the chain is also irreducible. Thus, the limiting state

occupancy probabilities, i, exist and satisfy
m=nnP, . (4.3.1.1.1)

where P=[p(s.8)] is the one-step transition matrix. The limiting slate occu-
pancy probabilities, , which are the eigenvalues of P, have also to satisfy the

normalization condition })m, = 1. For a particular state 8=[41.ia g Fm b
=Q

the matrix equation (4.3.1.1.1) can be writlen as
Tig = "li ﬁi, +ﬁj|[ 2 "u,"' E "v‘] (4.3.1.1.2)
t=1 jrs k<ism

where u,=[jog...Im.3] and vi=[jz.53.....Js.Frdts1r--Jm ] Note that states uy
and v; have been constructed so thal a reference to page j, causes the algo-

rithm to make a transition to state s

lemma 4.3.1.1.1: For the Hpyrp-rgy policy with parameter k, the equilitrium

probability of state 8=[4,.jz.3a.....jm ] is given by
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where

G(k) = {n-m) d = 1!

©= GG, [l e a@="Esy

Proof: It suffices to show that the proposed solution satisfies equation
(4.3.1.1.2). First, note that, from its definition, the D;(-) function for the

states u; and v; can be wrillen as

m-{+2
Di(uy) = 1- ‘g‘, By, = Di(a)+py, i>1 (4.3.1.1.3)
and
Di(s) . ism-l+1
D) =) p ()4, . i>m-t+1 (43.1.1.4)
In Lerms of D;(8), equation (4.3.1.1.2) becomes
g = Mg (1=Dp -4 I(B))"'ﬁj.ljg."u,"'k“zzmﬂq ]
Substituting the proposed solution into the above equation, we have
8 ls, s
M Dt o) = By | X —per———+ L —m——
26y Bitwy)  + ¥ (k)" 1 Ditw)
= =2

Using equations (4.3.1.1.3) and (4.3.1.1.4) for B;(u;) and Di(v,). respectively,

and simplifying, we obtain
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. G(k)Dm-xr(s) _ Dy(s) .
ﬂﬂj. T{(Ds(s)ﬂ%,)
i=] =l
i,

2 m-is = *
K Em f‘['m(s) nnk O sy (4.3.1.1.5)
=2 izm-i+}

where we have used the fact that )} 8; = D,(s).
jkm

Putting the right hand side terms over a common denominator and

applying the transformations y =m ~k and z={ -k to the indices results in
mok+l

&)1 Bite)

S L S
{le

‘f‘!u(aw,.'lz: §| u(a)-ﬁ(u(s)+p,,)]

Ty

sSgsy] {sy-s+2 i=1

g(m()+p,,)

(4.3.1.1.8)

Through the identity

l'[(z.-n\): ]'[a+x- P [ﬁ(Z‘H\)- 1"[ z‘]
i=1 1sb<a] i=l iza-b 42

i=l

the right hand side of equation (4.3.1.1.6) reduces to unity and finally we find

that
Qles
Mg = " = = fig
G T] Dils)
i=2
as claimed.

That the normalizing condition 21r,= 1 is satisfled can be shown by an
=Q

aggregation argument where first 71, is summed over the (n—k)i/(n-m)
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states that have the same T (the first k elements of 8) and then these aggre-
gales are summed to cover tt{e‘ entire state space Q. The second sum can be
shown to be the normalization condition for the equilibrium probabilities of
the memory control states for a k-page memory managed by the pure FiFO
policy.

Having the above lemma at hand, the following theorem can easily be

proved:

Theorem 4.3.1.1.1: The steady-state fault rate generated by the Hgro-_1py
policy with parameter k and operating in a memory of m page frames is

given by

fle
F(Hpro-1ry(k)) = T, G(k)DE(8) i
=e Di(s)

i=)

where G{k) and D;(s) are as defined above.

Proof: Note that, given the current memory state g, Lhe probability of a page

fault is simply l-ﬁﬂ,‘ or Dy(s). Thus, conditioning on the state s, we can
=1
write

Pr(page fauit) = Z;Pr(page fault] X; =s)- Pr(X; =s).
=

In steady stale, we can replace the above probabilities with their limiting

values and obtain

F(Hppo.-1ry(k)) = §](1 —‘gﬁ;()'"-



73
ﬁﬁ 'Js
= R1o'(k)DE(s) oo (4.3.1.1.7)
= I’l

as desired.
]
Corollary 4.3.1.1.1: The steady-state fault rate for the pure LRU policy is

given by

ﬂﬁ;.
F(LRU) = 2 DE(s) =—|.
fio(s)

i=1

Praaof: For k=1, the Hppp- gy policy replaces the same page that the pure
LRU policy replaces. Thus, F(Hgp-1ry(1))=F(LRU). Substituting k=1 into

equation (4.3.1.1.7) we immediately have

ﬁﬁ:

F(LRU) = 2 oﬁ(s)—‘*‘——

ﬁpi(ﬂ)
since G(1)= %%?—Eﬁ,‘ =1

i=1
]
Corollary 4.3.1.1.2: The steady-state fault rate for the pure FIFO policy is

given by

F(FIFO) = 3 l am)pi) [18;, |

Proof: For k=m (i.e., B=¢), the Hppp_1py policy degenerates into the pure
FIFO policy. Therefore, F{Hppo-tpy(m))=F(FIIFO). The result follows trivi-

4

ally upon substituting k=m into equation (4.3.1.1.7).

4.3.1.2. The RAND-LRU Hybrid Policy

In this section, we consider the simple variant of the Hgpo-rgy policy
where the page to be moved from T to B at the time of a replacement is
selected at random, uniformly over the pages that currently constitute T.
More precisely, the algorithm is identica! to the Hgpo-Lry policy except that

the top-to-bottom replacement is performed according to the RAND policy.

We proceed with the analysis after a formulation identical to that in the
previous section. For this policy, however, the one-step transition probabili-

ties are

(
2 plc

iz) 7, ifg=8

By7k. i8=[j jijo..dn-riner--Tedndeer---Im)

_ where j£s and 1sh<k

plas) = Bi7k . i 8=[5ij 52 dn-rdner--Fedndeer - -Fi-rdisrJm)
where 1<sh<k and k<l<sm

0 . otherwise.

Note that all pages in the top are eligible for replacement with the same pro-
bability AIT It can easily be demonstra'led that the resulling Markov chain is
ergodic (for all k), and therefore m exists and is a solution to

n=uP, (4.3.1.2.1)

where again P=[p(sa,s')] is the one-step transition probability matrix. For

state 8=[7,.ja.js.....7m }. €quation (4.3.1.2.1) can be written as:
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y = n.‘f: By, + l 21:.,, : . }_‘, iy, (4.3.1.2.2)
=3 h=
where w=[jada. - dnedeere e db ez odmid ] and

Vi=[j2dae . Jndkerdnere - dede sz ofidvdien. . dm]  again, constructed to

resull in state s upon the referencing of page j,.

lemma 4.3.1.2.1: For the Hgup-rpy policy with parameter k, the equili-

brium probability of 8=[j,.j2.75.-.-.Jm] is given by

where G({k) and D(s) are as defined in Lemma (4.3.1.1.1).

Proof: To verify that the proposed solution (which, by the way, is identical to
the solution of the Hpgpp-Lgy equilibrium equation) satisfles equation
(4.3.1.2.2), we proceed as before and derive expressions for D;(u;) and ;(v,)

in terms of Di(s). Using the definitions, we oblain

Di(s)+f;, | 1cism-k+1
Di(wy) ={ Di(s)+p;,=B;,,, . m-k+i<ism-h+l  (4.3.1.2.3)
D(-l(s)+ﬁj| , i>m-h+1

and

Di(s) . ism-l+1
Di(3)+h5, | m-leicism—k+1
Di(w) = D(s)+By,~By,,,» m—k+1<i<-m-h+1

Di(s)rgy, - MR

(4.3.1.2.4)

Substituting the proposed solution into equation (4.3.1.2.2) yields
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G(k)Dm-xei(8) _ 1 i o B,
M= | e + )
gﬁ-ﬁ k A=1] jEs n ‘D (u,) E<iEm 1"[ D(v,)

We proceed by using equations (4.3.1.2.3) and (4.3.1.2.4) for D;(u;) and Di(v;)

in the above equation:

O)nsn® _ 1 4|5 8 . :
Qﬂﬁ L) it-m‘-Il“(D‘_l(s)i-ﬁh)

ﬁil
+
&<l‘m [‘[ n‘(s) ﬁ (D‘ l(s)"'ﬂh)

i=m-1

Bi + 2 ﬁh
"h"(a.(sm ) & @)

a-|—-

Notice that the above equation is identical to equation (4.3.1.1.5), which was
obtained during the proof of Lemma 4.3.1.1.1. Thus, we conclude that the

proposed 7, indeed salisfles equation (4.3.1.2.2),

Theorem 4.3.1.2.1: The steady-state faull rate for the Hgayp-1py policy wilh

parameler k is equal to that of the Hppy_ 5y policy, i.e.,
F(Hpanp-1ry(k)) = F(Hpipo-1ry(k))

Proaf: The proof trivially follows from lemma (4.3.1.2.1) by conditioning on
the states of the Markov chain.

Corollary 4.3.1.2.1: For programs whose behavior is perfectly represented
by the IRM, the FIFO and RAND policies result in identical steady-state fault

rates. That is,
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F(FIFO) = F(RAND) under IRM.

H
Proof: The proof Lrivially follows from Theorem (4.3.1.2.1) upon observing
that, for k=m, the Hgup-1ry policy degenerales into the pure RAND policy
and the Hp;sp- 1y policy degenerates into the pure FIFO policy.

-
Note that the above result has been obtained through a different method

by Gelenbe [Gel73a).

4.3.2. Variable Partition Hybrids

In this section we consider hybrid policies that use WS management for
B, thus resulling in variable size partitions. No.t.e, however, that the partition
size can never become less than k pages (the size of T), where k is a static
parameter of the policy. Recall thal the pure WS algorithm with parameter 7
retains a page in memory only if il has been referenced at least once during
the previous 7 time units [Den8Ba). In our case, since we have no informa-
tion about references to a page during its membership in T, we must
somehow estimate the last time it was referenced when it leaves T. We will

consider two different estimates for this information in our analysis.

4.3.2.1. The FIFO-WS Hybrid Policy
Given Lhe page reference 7, at inslant ¢, define the following terms:
(i) Anevent is said to occur if 1, £T.

(ii) A page fault is said to occur if r, £ jmemory].
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Obviously, all page faults are also events (since tmemory}=TB). Further-
more, with each page i €B. associate a time ¢ that is an estimale of the time
of last reference to thal page. We can now describe the operalion of the

Hpypo-ys policy with parameters k& and 7.
W1: (Null case) If r, €T. no action is Laken (actually, no action can be taken).

W2: (Event or fault) If 7, £T, then T«T+7;—i, where page i is the FIFO page in
T As before, “+" and “-" denote set operations. We provide our esti-
mate of the lime of last reference to page i as the current time: £;+1L.
Note that this is actually one instant when we know page i cannot have
been referenced since an event occurred and page i was in T. We com-
ment on this choice of last reference estimates in the following sections.
We update B by removing all pages with lasl reference time estimates

earlier Lthan the policy parameter 7; B-B+i-J, where I={jeBit;st —v|.

For the variable parlition hybrid policies, we are interested in obtaining
expressions for not only the steady-state fault rate, F(4). but also the mean
memory occupancy, M{A), which is the expecled number of pages that are in
memory in steady state.
We proceed with Lhe analysis after the following definitions and prelim-
inaries. Let /, be a random variable such that
1, if pageiisin memory
L= { 0. otherwise ’
Let the random variable ¥, denote the number of events that have occurred
since page i last left T. As before, 7, represents the page name correspond-
ing Lo the currenl reference. Note that, if T is examined in isolation, refer-

ences that cause events will always correspond Lo page faulls in a memory of
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k page frames that is managed by the pure FIVO policy. Consider a Markov
chain formulation of the FIFO policy; completely analogous to our formulation
in section 4.3.1.1' [Kin71a, Cof73a). Let Q be the state space consisting of the
states 8=[f,.j2Js.....jx ). representing all combinations of n items taken k at
a lime (note that, for the FIFO and RAND analysis, knowledge of the ordering
amongst the combinations is not necessary). For a given page i, partition
the slate space into two disjoint sets R; and P, such that R; contains all the
states that include page i and P, all other states. In other words, let R;cQbe
such that seR; iff i€s. Note that RjP=Q and Ry"\P=¢. Let =y denote the
steady-state probability that page i is an element of T. Then, from our pure
FIFO analysis, the steady-state occupancy probabilities for the states of a
memory of k page frames are known. The desired expression is obtained
simply by summing the limiting state occupancy probabilities over all those

states that contain page i. That is,
m = Pr(ieT) = Nm.= G'(k) Y, T16y-
“R wtR jes
lel p denote the steady-stale probability of an event given that page i is not
in the top. That is,
p= I‘nm Pr(r £T]|i£7).

Again from our Markov chain analysis of the pure FIFO policy, we obtain

Pr{r, £TifT) _ .gv:-‘l(l",g.ﬂ’)ﬂ.ﬂ" ]

P=UM —pGen) . GO (1-m)

Similarly, let ¢ denote the steady-stale probability of an event given that
page 1 is in the top. Through an argument analogous Lo the one used in the

derivation of p:
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l_
iy PRAETAET) -§«.l( Ze 1|
=00 " rien Gl

Lel I; be the steady-state probability that page i is referenced given lhal an
event has occurred and page 1 is not in T. An expression for [} is derived as

follows:

= !i_r:\ Pr(r;=i|r £TiLT).
but
Pr(r, =i, 7 £TiET)
Pr(r, £Ti£TD

_ PI'(T‘ =i .iz'l‘)
Pr{r £Ti£T)

_ Pr{r,=i]igT)Pr{ie£T)
T Pr(r £TIi£T) Pr{igT

= i
- l_’Rr,t‘;‘ligT)_ (4.3.2.1.1)

since, by the IRM assumption, pages are referenced independently of their

Pl'(T‘ =i |Tg£T.:i£T) =

position in memory. Now consider Pr(r;£T|i£T). This can be obtained by

conditioning on the states of our Markov chain formulation as

;ig.x Pr{r £T|igT) =Z;‘Pl(r¢£‘l’|i£'l‘.a)-l’r(s|i£'l‘)
[ 2

=3 p.(s)zﬁi). (4.3.2.1.2)

3

Finally, substituting equation (4.3.2.1.2) into (4.3.2.1.1) and invoking the

definition of I';:

g L I8
=P jes
- s-ﬂj B

<Py J jem

Ty = (1-m)Bi/ ), Dy(s)m, =
=P,

Given Lthe above background, we can prove the following:
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lemma 4.3.2.1.1: The steady-state probability that page i is in a memory

that is managed by the Hgjpp-ys polic;y with parameters k and 7 is given by

ﬁ'(1¢=1)=1r‘+(1-1r¢)'§:l RT3 ',:]’ p/(1-p) [(4.3.2.1.3)

=y
where
n = Pr(ieT) = Y nm,
<R
Iy = l.ingr(rx =i[i£T),
and

p= li{:\l’l‘(r‘ ET|iET).

Proof: Conditioning on the position of page i in memory, we obtain

Pr(/;=1) = Pr(/(=1|i€T) Prii€D)+Pr(/;=1|iT)-Pr(i£T)
= 1w+ (1-m) Pr{};=1]i£T) (4.3.2.1.4)

since pages in T are always in memory. What we have to do is derive an
expression for the probability that a page is still in memory given that it is
not in T. We proceed by conditioning on the number of events that have

occurred since page i last left T

Pr(i=1|igT) = ,ElPr(lﬁllizT.%:j)-Pl(ﬂ =j|i£T). (4.3.2.1.5)
=

Now, based on Lhe IRM assumption, given that page i is not in T, referencing

it at the instant of an event constitute independent Bernoulli trials [Fel6Ba)

with probability of success given by I';. Therefore, the number of events that

have occurred since page 1 last left the top has a geometric distribution with

parameter I'y. That is,

Pr{yi=j li£T) = [,(1-T ), j=1. (4.3.2.1.8)

u2

Relurning to equation (4.3.2.1.5), the probability that page i is in memory
given that it is not in the top and j events have occurred since it left Lhe Lop
can be expressed as
Pr(/;=1|i2T.9=j) = Pr(T |+ Tot...+ Ty<1)

where the 7;'s are Lhe inlerevent times given that page i is not in the top
and 7 is the policy parameter. Recall that with probability p a reference
causes an event given thalt i2T. Thus, with respect to events, memory refer-
ences constilute independent Bernoulli trials wilh probability of success p

under the given condition. Hence, the number of references between events

has a geometric distribution with parameter p. That is,

Pr(Ti=z) =p(1—p)*"', =z=1l.
Finally, the random variable T')+T,+...+7j, which is the sum of j indepen-
dent geometric random variables, has a negative binomial distribution with

paramelers p und j [Fel68a). In other words,

p,(r.n-zt",;r,s,):j(tl P -pld . z=j  (4.3.21.7)
1=y

Substituting equations (4.3.2.1.6) and (4.3.2.1.7) into equation (4.3.2.1.5), we
obtain
Pr(i=1liem) = 3 [R(-r)Y R hp 1-p) | (1.3.2.1.8)
i=J

=1

where the firsl. summation terminates at 7 since Pr(T,+ To+...+ T;=7)=0 for
all §>7 due to the fact that T;=1. Combining equations (4.3.2.1.8) and
(4.3.2.1.4), the desired result is obtained.
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Theorem 4.3.2.1.1: The steady-state fault rate for the Hppo-ys Policy with

parameters k and 7 is given by '

F(Hppo-vs) = 1'§‘ﬁtl’k"‘(l‘ﬂc)"i_:‘[P((I-T\)""g( l;:; pi(1-p)t-s I l .
where m;, I';, and p are as defined in Lemma 4.3.2.1.1.

Proof: In steady state, the probability of page 1 causing a fault is simply the
steady-state probability that it is not in memory and it is referenced. Thus,

condilioning on the page,
F(Hero-vs) = ¥ (1-Pr(k=1))-Bu.
=1

The result then follows trivially upon the substitution of equation (4.3.2.1.9)

into the above expression.

Theorem 4.3.2.1.2: The mean memory occupancy due to the Hgpo-ys Policy

with paramelers k and 7 is given by
M(Hpro-vs) = ‘g [mu-m-l); [ nu-mi-tg;‘,( L hpitp) ] l
where m;, [';, and p are as defined in Lemma 4.3.2.1.1.
Proaf: Conditioning on Lhe page,
MHpro-vs) = LPr(k=1)

The resull follows immediately from the substitulion of equation (4.3.2.1.3)

into Lhe above expression.
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F(Hppo-ws)sF(HWS) and
M(Hppo-ws)=M(HS).

Proof: (Informal) From the algorithm's description, note thatl the Hpyp-ys
policy with parameters k=1 and T operates identically Lo the pure WS policy
with the same parameter 7 except that repeated references to the same
page cause no memory state change. Therefore, we conclude that the
memory states generated by the Hgro-ys policy with k=1 are supersels of
those generated by the WS policy. This obviously results in an increased

mean memory occupancy and a reduced steady-state fault rate.

4.3.2.2. The RAND-WS Hybrid Policy

Here we consider a variation of the Hgpp-ys policy that operates exactly
as described in the previous section except that, at the limes of events, Lhe
page to leave the top is selected al random uniformly over the pages

currently in T.

Theorem 4.3.2.2.1: The steady-state prubability thal. page i is in a memory
managed by the Hganp-vs policy with parameters k and T is identical Lo that

of the Hgypp-ys policy wilh Lhe same parameters. That is,
Y
Pr(i=1) = "d(l—ﬂt)”i‘ RO-TY LG e ) |
= =’

where m;, I';, and p are exaclly as defined in Lemma 4.3.2.1.1.
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Proof: We proceed in a manner similar to the Hypg_gs analysis. Condition-
ing on the location of the page in men;ory.

Pr(1,=1) = Prf=1]ieT) PrlieT)+Pr(£,=1}i£T)- Pr{i £T).
From the Markov chain analysis of the RAND policy based on IRM, we know
that the equilibrium probabilities for the stales are the same as those for the
FIFO policy (this is the m =k special case of Lemma 4.3. 1.2.1). Furthermore;,

by Corollary 4.3.1.2.1, the steady-state fault rates for the RAND and FIFO poli-

cies are identical. Therefore,

Pr(f;=1) = my+(1-m ) Pr(/;=1|i£T)
as before.

Consider Pr(/;=1]i£T). From the algorithm's description, it is clear
that the probability of a page remaining in memory outside the top is
independent of the time it spent in the top and depends only on the
interevent time distribution and the probability of the page being referenced
given that it is not in the top. Since both of these properties are derived
from the Markov chain analysis of the RAND policy for the top, the expres-
sions must be identical to those of the FIFO case. Thus, the proof proceeds

just as that of Lemma 4.3.2.1.1.

Corollary 4.3.2.2.1: The steady-state faull rates and the mean memory occu-
pancies for the Hpuyp-ys policy are identical to those of the Hgppg.ys policy

with the same parameters.

Proof: Trivially follows since lthe expressions for Pr(/;=1) are the same for

both policies.
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4.3.2.3. Simple Variations

As we noted in section 4.3.2.1, the proposed estimate for the lime of last
reference to a page as it leaves T is clearly optimistic for the Hgro-rs policy.
We have no way of knowing Lhe exacl time of last reference to the page. For
the Hpup-ys policy, however, it is much more difficuit to make a stalement
aboul Lhe accuracy of this proposed estimate — Lhe page may, in fact, have
been last referenced one time instant before it was selected to leave T. The

relative merits of these Lwo cases are discussed in the next chapler.

As an alternative, we can mark a page as having been last referenced at
the instant that it entered the Lop rather than when it left it. This resulls in
a rather pessimistic estimate since the probability that the page reraains
unreferenced between the time of entry and exit from the top is very srnall.
Since pages cannot be removed from memory while they reside in the Lop,
regardless of how long they have been there, under this variation Llhe
Hppo-ys and Hpayp-¢s policies will have to be modified Lo remove from
memory a page that has been in Lhe Lop longer than the window 7 as soon as
it exits the top. To analyze this variant of the Hppo-vs policy, define the ran-
dom variable ¥, to be amount of lime page i remains.in the top. For the
Hpypo-ys policy, page i remains in the top for exactly k interevent limes
(due to the FIFO nature of the top) which aie independently and identically
distribuled as geometric random variables with parameter g. Hence the
random variable V; has a negative binomial distribution wilh parameters g
and k. Proceeding as in the proof of lemma (4.3.2.1.1), an expression for
Pr(/;=1]i£T) can be derived by conditioning first on the time spent in Lhe

Lop:
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Pr(i=114€T) = § Prif=1/i£ TV =2) Pr(%,=2)

= i}l’:(l‘=l|i£1'.\7(=t)'(::; Jg*(1-q)*""

zsk
- e o LR D ypi-pyt ”

The desired faull rate and mean memory occupancy can now be obtained by
substiluting Lhe above expression in equation (4.3.2.1.4). The analysis of the
Hpanp -ws policy under this variation can be carried out in a manner com-
pletely analogous to the above derivation. Note that, under this modification
of the estimate of the time of last reference to a page,

F(Hppo.-vs)# F(Hranp-vs)
and :

M(Hpro-vs)# M(Hpanp-vs)
excepl for the degenerate case k:=1.

Since both of the proposed estimates for the time of last reference to a
page are incorrecl, perhaps a more reasonable estimate is the arithmelic
average of the times of enlry to and exit from the top. We comment further
on these alternalives in the next chapter in light of our trace-driven simula-

tion results.

4.4. Numerical Results

Given the closed-form expression for F(Hgpp-1pu(k)) (recall that this is
same expression for F(Hgap-1ry(k)) in equalion (4.3. 1.1.6), we are
inLerested in its functional depemlency on the policy parameter k for various

values of m and of the IRM paramelers. However, due Lo the complexily of
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the expression, its form between the Lwo end points k=1 and k=m (which
correspond to pure LRU and FIFO/RAND, respectively) is difficult to study
analytically. We know that, for the IRM, the fault rate due to pure LRU is
always less than or equal to the FIFO/RAND fault rate for all m and rnodel
parameters [Kin71a). The shape of F(Hppo-Lgy(k)) between these two points

can be of three types:

(i) Straight line, meaning that F(Hpro-1py(k)) is a linear combination of
the LRU and FIFO/RAND fault rates. However, examination of the
expression rules out this possibility since it cannot be writlen as the

desired linear combination.

(i) Concave down. We would be disappointed if this were the case since
this result would contradict our desire of achieving fault rates close to
LRU at costs comparable to FIFO/RAND. In other words, to keep the
fault rate close to the LRU value, we would have to operate the policy
with a small k resulting in a large | B| and thus a large cost incurred

due to the reclaim events taking place from the bottom.

(iii) Concave up (convex). We would be happy since now we could operate
the policy with a large parameter and still relain the low LRU fault

rate as well as reducing |B| and thus the number of reclaim evenls.

To resolve this question, we resorl to oblaining numerical values for Lhe
expression for various instances of the program model. To minimize Lhe
number of parameters involved, the two instances of Lhe IRM we consider are
generated through the equations f;=ci and §;=c*, which are called the arith-

melic and the geometric model respeclively. In both cases, the constanl ¢ is

chosen such that ‘ﬂp,:x. In Figure 4.4.1, F(Hppo-Lro(k)) is plotled as a
=1

function of k for the fixed values n=8 and m=7. Note the strong convexity of
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Figure 4.4.1 Hgpp-1py faull rales for two sample programs as a
funclion of the policy parameler k.
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the two curves; particularly the one corresponding to the geometric IRM,
where fault rates are achieved that are practically identical to the pure LRU
fault rate even for top sizes of 5 pages (equivalently, bottom size of 2 pages).
Note that, although not indicated in Figure 4.4.1, for the case where f;=1/n
(uniform distribution of the IRM parameters), all demand algorilhm;s result
in the same fault rate of (n—m)/n. For this case, F(Hriro-1ry(k)) is obvi-
ously a constant, i.e., it does nol depend on k. Outside of this degenerale
case. Lhe strict convexity of F(Hmpo-Lru(k)) as a function k for all m and
IRM parameter values remains a conjecture. Next, compare the perfor-
mances of the hybrid policies as a funclion of the mean memory occupancy
for a fixed value of Lhe parameter k and two instances of the IRM (again, the
arithmetic and geometric models). In Figure 4.4.2 we have also included the
pure FIFO (or RAND), LRU, WS, and 4, results for comparison (informally, the
Ag policy replaces the page with the smallest probability of reference and
has been shown Lo be the optimal policy for the IRM [Aho71a} ). Note thal, for
the two hybrids, Hppp-ray and Hppo- ys With parameters k =4, the fault rates
rapidly approach those of LRU and WS, respectively, for memory sizes
greater Lhan the parameter value. For these cases, the relalive fault rates
due o Hgpo-rpy @nd Hppg_ys for equal k are of Lhe same magnitude as

those of the pure LRU and WS.
The above results have to be interpreted with caution for two reasons.

(i) They are based on a model of program behavior that is known to lack
many of Lthe properlies of real programs,

(ii) The numérical results presentled are for unrealistically small value:s of
the program size, n, and of Lhe memory size, m, due to Lhe factorial

growth of the complexity of Lhe expressions involved.
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program, the cost function C(-) is inappropriate for system throughput con-
siderations since the major part of the delay due to a page fault results from
the 1/0 operalion which can be overlapped with other CPU activity. On the
other hand, a reclaim operation is performed by the CPU and cannot be over-

lapped.

Due to the complexity of the expressions for the steady-state fault and
reclaim rates, an analytic minimization of the cost function defined with
respect to k cannot be carried out. Empirical studies of this cost have been
performed based on trace-driven simulations and are reported in the next

chapter.

4.8. Conclusions

We have introduced a class of hybrid algorithms that are suitable for
page replacement decisions in a virtual memory environment that lacks
hérdware reference bits. Expressions for the steady-state fault rates gen-
erated by these policies have been derived based on the Independent Refer-
ence Model of program behavior. Numerical results suggest that these algo-
rithms are capable of achieving faull rates close to those of the pure LRU and
WS policies while incurring costs comparable to those of the FIFO and RAND
policies. For example, for Lthe Hgp- gy policy applied to an eight-page pro-
gram that is an instance of the IIlM with geometric model parameters
operaling in a memory of 7 pages, we have obscrved that with a reclairmable
sel conlaining as few as 2 pages, faull rales are achieved Lhat are practically

the same as thal produced by the pure LRU policy.

In a multiprogramming environment, the fixed partition hybrids can be

extended in a natural way to operale as what may be considered Lo be FIFO-

94

Global LRU (GLRU) and RAND-Global LRU hybrids, thus resulting in variable
partitions for the individual programs. This can be accomplished simply by
maintaining a single fixed size bottom that contains the reclaimable pages ot
all the programs that are currently being multiprogrammed (the fops for
each of the programs, however, are still maintained separately). In such an
environment, the total number of page frames allocaled to a process at any
given point in time will be the size of ils lop plus a random variable that
represents the number of pages belonging to the given process amongst the
common bottom. Note that, under this extension, the study of the perfor-
mance of individual programs is severely complicated due to their interac-

Lions with the other programs running concurrently.

Afthough not studied analytically, we note that this extension adequately
models the memory management policy employed in the VMS operating sys-
tem for the VAX-11/780 computer system [DEC78a]. The implicalions of Lhis
extension on the selection of the optimal policy parameter will be com-

mented on in the next chapter based on simulation studies of real programs.
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CHAPTER 5

HYBRID PAGE REPLACEMENT POLICIES - EMPIRICAL STUDIES

6.1. Introduction

In the previous chapter we presented results about the performance of
the hybrid policies based on analytic methods. The utility of these resulls is

questionable for two reasons:

(i) They are based on an over-simplified model of program behavior— the
IRM. This model specifically excludes the possibility of locality, known to
be exhibited by real programs and to be a fundamental factor of virtual

storage performance.

(i) The numerical examples presented were obtained from unrealistically
small programs and memory sizes due Lo the combinatorial explosion of

the expressions for larger values of these sizes.

To resolve these issues in a clear-cut manner, we now turn to the study

of these hybrid policies (and several others) using trace-driven simulation.

As introduced in Chapter 2, trace-driven simulation mimics the opera-
tion of a syslem as it would behave in response Lo input data that is recorded
in l‘.he trace. For our purposes, Lthe trace data consists of an address record
for each memory access (both data and instruclion) generated by a program
during an interval of execution. Since the data originated from the execu-
tion of a real program, conclusions basced on studies using this data do not
require assumptions about the underlying model for the program. Further-

more, results for a range of operating conditions and memory sizes can usu-
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ally be obtained with equal ease.

Our simulators simply implement the various page replacement algo-
rithms as they would function in a uniprogramming environment; the
memory references generated by the executing program are read from the

address trace.

6.2. The Trace Data

The simulation studies described in this chapter are based on the trace
dala obtained from three programs. They were traced while running on an
IBM 360/91 system at the Stanford Linear Accelerator Center. These pro-
grams represent a range of applications and behaviors and are referred to by

the following names:

WATFIVThe execution of the WATFIV compiler compiling a small program.
The compiler size is 88 pages of 1024 bytes each; the trace lenyth is

10486862 references.

APL A plolting program running under an APL interpreter. The inter-
preter size is 114 pages of 512 bytes each; the trace length is 2670821

references.

FFT  An implementation of the Fast Fourier Transform. The program size

is 82 pages of 512 bytes each; Lhe lrace length is 2954767 references.

More data about the source and nature of these programs can be found
in [Smi76a).

Some of the difficulties encountered in using memory address lrace
data are discussed in Chapter 2. Often, such data is voluminous since tracing
one second of program execution time can easily produce over one million

references. Therefore, multiple simulation runs, representing different



-0006 r_'llllll"'llll"l"'l'lllllll'llll'l!lllll""mq
E VIA'sl‘oFlV ]
s = c3 3
99 F ™ pag 1 100
: :
.. 0005 =
operaling environments, over this data can be very expensive. ':. E ]
[ s ]
The compressed versions of the three address trace data, generated by ° . ]
o 0004} -
Lau [Lau79a)., were used in all of our simulalion studies. The reduction = : :
. -2 s ]
method used by Lau is a combination of the Stack Deletion and Snapshol 'é - ]
fa C ]
Methods as discussed in section 2.1. The method has two parameters, k& and .0003 3 .
T. and retains references to the LRU stack positions greater than k in addi- i .
tion to the initial references to pages within each sample interval of length 0002 :..u...ul.........l.........h...lu..l.“u,.u:
. A ’ 0 10 20 30 40 50
7. regardless of their position in the stack.
Top Size & (pages)
5.3. Fixed-Size Partilion Empirical Results (a)
.ooosnl'll'lll' LA AR AR A AR AR RARRRARAREREARRREEN) .00006 ANAALAS AL RARE AN R RARERZRARN RARRARERR] Ty
5.3.1. Hybrid Policies T APL | ' ! ' ] [ e ' ' e
. E m=50 pages ] [ m=50 pages
One of the main conclusions of the previous chapter was thal the - / 3
[ ] [
Hgpo-Lry or Hpanp-ray policy can achieve fault rales almost identical to 3’0005 F E ~ i
3 F ] ¢00005}-
those of the pure LRU fault rate even when the bottom consists of just a few ‘:’ : 1 E’ -
[ y r
pages. This conclusion was based on the numerical evaluation of the analytic %0004 - A .2 [
o [ ! ] I
expression obtained for the faultl rate for two rather small programs operat- - [ / ] [
3 - /] = A
ing in a small memory. Figure 5.3.1.1 shows that the same conclusions are 2 s ,’ 3‘00004 A
0003 ! .
also valid for the three programs available Lo us. All three resulls display rL__\ i
S R . z 3
strong convexily with a well-defined knee at approximalely k£ =40 pages. Note - " / ] ]
. RARD -LERV 4 o -
‘.hat lhis representﬂa bottom size Ol 10 pages or, equivalenl.ly. 20 PerCenl Of -Ooozo'nulnlilénnnnél(n)unnlé'olunnlaldnnnnéo .ooooao-llnlnnnilannnnélouulnnéldunul&l(n)nn“1{1;0
total memory. We also note that the Heypp-rpy and Hpanp-1ay policies result Top Size & (pages) Top Size & (pages)
in different fault rates for these programs. This confirms the fact that these (b) )
programs do not satisfy the IRM assumptions. No general conclusion about . “SU? 5-?_-1-1 :’{‘tllm-uiy and ”Rmt{-mg fault rates
as a function of the policy parameter k& for
the relative performances of Lthe Hppp-1py and Hpayp-rpy policies, however, (a) WATFIV, (b) APL and (c) FFT.

can be derived from Lhese results as each is uniformly superior in one

instance while bolh perform about the same in Lhe remaining instance.
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The operation of these hybrid policies requires setting the policy param- 10°

eler k Lo some value. If the cost of referencing a page Lhat is in the bottom

el

were negligible, Lhen setting k=1 would almost always produce optimum per-

formance wilh respect to the page fault rate (there are few points in the

Total cost ¥

10°
graphs of Figure 5.3.1.1 where the faull rate actually drops as k is increased
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beyond 1). However, since a finite cost is incurred each time a page in the i T S o
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bottom is referenced, the selection of the policy parameter should be guided o'l

by the desire to keep the fault rale close Lo the pure LRU value (i.e..

corresponding Lo k=1) while minimizing the size of the bottom. This minim-

izes the rate of reclaims. Intuitively, the policy should be operated with the

7 3
parameter set to a value close Lo the knee that occurs in all three faull. rate 10 LN AN B DML NN BELEN B 10

graphs. Formally, we define a performance measure, C(:), that is the

T
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weighted sum of the fault rate and the reclaim rate for a given value of the 1

policy parameter. For a page replacement algorithm A and a ratio of page 10° 10°

fault service time to page reclaiin service time given by a let

T |‘1u||
™7 T l-u‘

C(Am.k.a) = f(Am—k)ta-F(A.m.k)
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where m is the memory size, k is the policy parameter (or the Lop size) and ’

J (*) is the reclaim rate. We will comment on the suitability of this measure
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for system throughput considerations in section 5.4.2.
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policies for the three programs. All evalualions of Lhis weighled sum in this Memory size m (pages) Memory size m (95885)
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chapler have been carried out for a=100. This is done for brevily of presen-

Mgure 5.3.1.2 The weighted sum measure observed

under Hepo-Lry (linezs and Hganp-1py (points) for various policy
_ . . . arameler as a funclion of the rnemory size for (a) WATFIV,
a=1000 (i.e., spanning a range of three orders of magnitude). Furtherinore, b) APL and (c) FFT. Note thal the Lwo policies produce

identical results when k=1.

Lation, since all of our conclusions are also applicable to results lor a=10 and

measurements from an actual implemenlation lo be described in the next

chapter are in agreement with this choice of a. With respect to Lhis new
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measure, the Hppo_ray @nd Hpavp-1py policies perform similarly. Because

Hprp-1ay is easier to implement than the Hgavp-1ry policy! and has equal

el

performance, il will be the only representative of the fixed-partition hybrids

Total cost €

to be invesligated in the sequel.

Given a particular program, a and the memory size m, we have seen

thal there usually exists a value of the policy parameler k that minimizes

ot

the C() function. In an actual system, few, if any, of these values remain con-

stant over lime. As was mentioned in the previous chapter, an implementa-
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tion of the Hppp-1py policy in a mulliprogramming environment results in a

bottom that is globally shared by all active programs. While the tops for all
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of these programs are local and have a fixed size, the number of pages in this F
global bottomn associated with a particular program (i.e., the value of m for -
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this program) varies in a complicated manner based on the aclivities of the i
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other programs. Each program in the system has a different memory access

behavior and would consequently require a different value of k for optimal

bl

operalion even if m and a were fixed. These variations are illustrated in Fig-
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ure 5.3.1.3, where the weighted sum measure is shown as a function of the 50

1 o‘ L mmaIll Mo
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policy parameler for varying memory sizes and different programs. The

N
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value of k that minimizes this function is clearly seen Lo be semnsitive to the

amount of memory available to a given program as well as being sensilive Lo {1 . SNTUR WU ISPV S i — 10

PR FTT

Lt

ot

S

Lhe program itself for a fixed m. This undesirable property of the Hgpo-1ry
Top size A Top size &

(b) (c)

Figure 5.3.1.3 The weighted sum observed under Hgpp_1py
policy for varying amounts of memory as a funclion of the
policy parameter and programs (a) WATFIV, (b) APL and (c) FFT.

policy will be further commented on in the next section.

! [mplementing Random replacement for the top requires the gencralion of pseudo-random
integer in the range [1...k] while imp) ting repl L requires simply the mainte-
nance of a linked list of the pagesin top.
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5.3.2. The Clock Page Replacement Algorithm

As an allernative to the hybrid fixed-size partition policies, we investi-
gate the performance of the Clock page replacement algorithm with parame-
ter u, denoted as clock(y). This algorithm was first implemented and studied
as the page replacement policy for the Multics operating system [Cor68a]
and is generaly regarded as a practical approximation of the LRU algorithm.
In its more general form, as introduced and investigated in [Eas79a). the
algorithm has a parameter u and functions as follows. At the time of a page
fault, the pages of the program are examined sequentially (modulo m, the
partition size) until the first page that has nol been referenced during Lhe
time interval defined by the last p examinations is found. In other words,
each page [rame has a modulo u counter associated with it thal is resel to u
each time the page is referenced and decremented by one each time the
page is examined by the replacement algorithm. The page is selected for
replacement only if its counter contains a zero al the time of examination.
The special case u=1 is particularly simnple to implement since it requires
only one bil per page, usually called the reference bit, Lhat is set when the
page is referenced and reset when it is examined. The algorithm selecls for
replaceme.m. the first page encountered with the reference bit ofl. In our
environment where Lhere are no reference bits, we simulate them by moving
a page from Lhe re(.:laimable state to the valid state whenever we want Lo set

its reference bit and vice versa to reset it.

Contrary to what is suggested in [Cor6Ba), the performance of the
clock(y) policy does not approach that of the pure LRU asymptotically for all
reference strings as u tends to infinity (one can construct reference strings

for which clock(u) always replaces the most recently page regardless of how

Number of pages examined per allocation
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Figure 5.9.2.4 Overhead associated with the clock{u)
algorithm for (a) WATFIV, (b) APL and (c) FFT.
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large u is) [Eas79a). Empirically and analytically, increasing p beyond 1 10°

results in an insignificant improvement in performance but increases the

cost of implementation noticeably.

Total cost €

Define the overhead associated with the implementation of page replace- 10°

ment algorithm A, denoted as f)}{(4), Lo be equal to Lhe work done during the

selection of the page to be replaced. For the clock(u) policy, this is reason-

ably measured by Q) {(clock{u)) = (mean number of pages scanned per page !

10}
fault) * (number of page faults). Figure 5.3.2.4 plots this overhead normal- !

Memory size = (pages)

(a)

ized by the number of page faulls (i.e., the mean number of pages exarmined

per page fault) for the three programs for various values of u. Since the o
10

page fault rates were indistinguishable for all the values of yu, the clock(1)
policy is clearly superior to the others due to its uniformly low overhead.
Based on this observation, we will only consider the clock(1) policy in Lhe fol-
10°%

o
lowing and drop the parameter from our notation. Thus, “clock™ slands for 10

*clock(1)" unless otherwise noted.

The values of the weighled sum measure for the three programs under

Total cost €
Total cost ¢
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the clock and Hepp.- 1y policies are illustrated in Figure 5.3.2.5. As was also 107

evident in Figure 5.3.2.3, the relative ordering of the Hpjp_1py resulls for

various values of the policy parameter changes as the memory size and the 1 [ A

'y A A al A A ' A l 'l . 'y Iy
program vary. We note, however, thal the weighted sum associaled wilh Lhe IO; o 2'0 . 3'0 : 4'0 L 5'0 6l0 7'0 80 lOlo 2'0 310 4'0 50 60 7'0 80

clock policy is always close to the minimum value altainable by the Hppo-Lry Memory size = (pages) Memory size « (pages)

policy for the entire range of memory sizes (especially for large memory (b) (c)
sizes) and programs. In other words, with respect to this measure, the clock Migure 5.3.2.5 Hppo_1ay (lines) and clock (circles)

Lo . . o policy weighted sums as a functlion of the memory iize m
policy is much more robust Lo variations in the memory size, in Lthe program for (a) WATFIV, (b) APL and (c) FFT.
characleristics and, although not displayed (for brevity), n the value of a.

This is primarily due to the ability of Lhe clock algorithm Lo dynamically par-
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tition the available memory into the valid and reclaimable sets. ®
%
6.4. Variable-Size Partition Resulls 8
. 3
6.4.1. Hybrid Policies , -
Recall that variable-size partition hybrid policies result from the use of
the working set policy for the management of the bottom. These policies
have Lwo parameter: the top size k and the window size T. . |o:‘30- 1t -4'0' At '5'0‘ S ‘6‘0. At ‘70
Figure 5.4.1.6 compares the performance of the two variable-size parti- . Mean memory size m (pages)
tion hybrids with that of the fixed-size partition hybrid. For the three pro- ’ (a)
grams studied, the Hpypp_gs and Hpwp- ¢s policies have similar perfor- 10° lo.
VUL N a4 l L L B l L2 B B l LN L B
mances, with neither exhibiting uniform superiority. This is not surprising if ‘ s APllbo ]
[ o=
we recall our experience with the performance of the FIFO and RAND policies [ 4
in conjunction with the LRU bottom. Bolh of these policies, however, outper- , i ] 10°
[y | © ®
form the fixed-size partition hybrid, by more than an order of magnitude in - 4
3 o
some cases, for equal values of the parameter and of the mean memory size ] 10%- ©
in all three programs. Furthermore, these variable-size parlition hybrids , g C g 10*
. [ —
tend to have performances that are more uniform with respect to changes in i
the memory size than the fixed-size partition hybrid. Note that Figure R
8 L
6.4.1.8 (c) contains mean memory sizes that are less than the pararneter | Ly s
lo‘.l.‘l“.‘.‘l“l‘.‘l lo;onnnna|o|.-.4on.|n50 80
value for the case k=50. This results from the fact that our simulation stu- 30 40 - 50 60 70
dies assume an empty initial memory Lhat may take a long time to fill. Mean memory size = (pages) Mean memory size m (pages)
(c)
b
In section 4.3.2.3, we discussed alternatives to the estimate of the time (®)
ing i i i i 6.4.1.6 H -ry (lines), H, _vs and Hpanp -os
of last reference to a page during ils residency in the top. Our simulations ;:ﬁi‘::;etotal cost?g?s ;—"’rf"(wuon) of f{\?memory size m for
i i i i WATFIV, (b) APL and (c) FFT. The window size, T, -
so far have assigned the time of departure from the top as this estimate. w‘::)s v?arie q b(et) ween 1173(0)and 117300 references to obtain
i i i i iabl tilion resulls. Key: s, A
The proposed alternalives of the time of entry to the top and the arithmetic . :t::! ‘g’;::;r:s';:{ Hprro- vs with k=y10,80.50 r?tshpec'-ively
mean of the lime of entry and exit were also simulated. These results did not whereas <>, o, and @ represent Hpayp-vs Wi

k =10,30,50 respectively.
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show an appreciable difference in performance and are not presented for the

sake of brevily.

6.4.2. The Sampled Working Set Algorithm

The Sampled Working Set (SWS) algorithm has been proposed as a prac-
tical implementation of the pure Working Set algorithm [Fog74a,Pri74a). For
simplicity, we assume that the sample interval T is equal to the working éel.
window size 7. At the end of each sample interval the algorithm removes
from the working sel those pages that have gone unreferenced during this
interval. The reference bits of all the remaining pages are resel. At Lhe time
of a page fault, the page that is referenced is added lo the working sct.
Adapling this algorithm to an environment with no reference bils can be
accomplished through the same scheme thal we used with the clock algo-
rithm where resetting the reference bit of a page is equivalent to changing
ils state from valid to reclaimable, while setting the reference bit is

equivalent to changing its state from reclaimable to valid.

Given an n-page program modeled by the Independent Reference Model
with parameters (8,.82.....fn) operating under the SWS policy with sample

interval T, the rate at which pages are reclaimed is given by
7(ry = FPa-(-pom?
=
= -’—{n-2f)(l—ﬁ‘)’ + 2(1—&)2')-
T izl =1

Note that, during a sample interval, a page reclaim occurs if a page has be:n
referenced at leasl once during the last sample interval (thus it is an ele-
ment of Lhe working set at the beginning of the current inlerval) and is refer-

enced atb least once during the current interval. Since each of Lhese events
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occurs independently with probability (1—(1-8,)7), the number of page

reclaims within a sample interval is given by
n(m) = B (1-(1-6)"F
=n-3(201-8)7 - (1-8)°").

Obviously, the reclaim rate is f(T)=N(T)/ T.

The mean working set size, i(T), and the page faull rate, F(T), under
the SWS policy as obtained by Rafii [Raf76a] are:

1 a(-g)T - (1=
®(r) =n-75 .

and
F(T) = —;,—‘f:'((l-ﬂi)' - (1-B)T).

Figure 5.4.2.7 compares the weighled sum measure under the SWS pol-
icy with those of the cloc.k and Hpsp-ys policies. In all three programs, the
SWS has uniformly better performance, especially for smaller mean memory
occupancy values, than the clock policy with respect to this measure. While
having comparable performances, the SWS policy has over the Hgsp-gs pol-

icy the advantage of not requiring the specification of a top size.

Recal| that the overhead associated with an implementation of the clock
policy was defined as {}{clock )= (mean number of pages examined per page
fault) * (number of page faults). The equivalent measure for the SWS policy
can be expressed as (I(S#S)= (mean working set size) * (number of sample
intervals), assuming that the same unit of work is involved in performing the

same operations under the two different algiorithrns.
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This overhead measure for the three programs is displayed in Figure
5.4.2.8. The SWS algorithm incurs lower overhead uniformly for small values
of mean memory occupancy. This overhead measure, while appropriate for
an implementation where reference bils are available, is not capable of
accounting for the time cost associated with a page reclaim operalion in our
environment. An algorithm that achieves good performance, as measured by
our weighted sum function, may generate a very high page reclaim rate
resulling in an unreasonable amount of CPU cycles devoted to servicing
them.

A more appropriate measure of this overhead is the page reclaim rate
generated by an algorithm to achieve a certain page fault rate. The SWS and
clock algorithms are compared in this manner for Lhe three programs in Fig-
ure 5.4.2.9. Observe that the SWS algorithm in fact generates a uniformly
higher page reclaim rate than the clock algorithm. Lel f, denote the

number of instructions required to service a page reclaim. For the SWS algo-

-4
rithm, 1-"7,'—. where i0 is the mean working sul size and T is the sample

interval expressed in number of references, represents the mean fraction of
the CPU cycles devoted to servicing page reclaims. In the next chapter, we
report numerical results obtained from an implementation that show this
fraction approaching 1 for reasonable values of %@ and T under SWS. To
reduce this cost to levels comparable wilh Lhat of the clock algorithm, we
must increase the sample interval T of the SWS This reduces the frequency
of sampling. However, Figures 5.4.2.7 and 5.4.2.8 show that for large values
of 7 (thus large values of the mean memory occupancy), Lthe SWS algorithm
degenerates in performance and overhcad measures such that it becomes

indistinguishable from the clock algorithm.
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6.5. Conclusions

The observations of the previous chapter have been confirmed using
trace-driven simulations. The fixed-size partition hybrid policies perform
very well for a given program and memory size if the policy parameter is
selecled correctly. Under usual circumstances, the operating conditions of
the policy are rarely constant. This requires that the policy parameler be
modified to track these variations. The hybrid policies, however, have no
built-in mechanism for doing this. External mechanisms must be introduced

to vary the policy parameter based on certain heuristics.

The clock algorithm was observed to be much more robust with respect
to Lhe variations that affect the performance of the hybrid policies. The abil-
ity of Lhis algorithm to dynamically partition the memory into the valid and

reclaimable regions is at the root of its robustness.

The variable-size partition hybrid policies were observed to be uniformly
superior in performance to their fixed-size partition counterparts. The use
of FIFO or RAND replacement for the top had negligible influence on perfor-
mance as did the choice of the estimate of the time of last reference to a
page during its residency in the top. In addition to superior performance,
the use of the WS algorithm for the management of the bollomn results in
completely local policies with total isolation amongst processes. The
spec:lﬂcation of the fixed top size remains the major drawback of these poli-

cies.

A truly variable-sized partition local page replacement algorithm was
studied in the context of an environment lacking reference bits. The San-
pled Working Set algorithm appears Lo have performance comparable to

those of the variable-size partition hybrids and of the pure working set algo-
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rithm but does not have any of the problems associated with the fixed-size
tops. However, the SWS algorithm results in page reclaim rales lhal are
prohibitively high for reasonable values of the sample interval. Increasing
the sample interval and, consequently, decreasing the frequency of samples
reduces the fraction of CPU cycles spent servicing page reclaims. At the
same time, this results in performances for the SWS that are similar Lo those

for the clock algorithm. We further address this issue in the next chapter.
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CHAPTER 6

VMUNIX- DESIGN, IMPLEMENTATION AND MEASUREMENTS

6.1. Introduction

In the fall of 1978 the Computer Science Division of the University of Cal-
ifornia at Berkeley purchased a VAX-11/780 and arranged to run an early
version of UNIX for the VAX provided by Bell Laboratories under a coopera-
tive research agreement. The VAX was purchased because it is a 32-bit
machine with a large address space, and we had hopes of running UNIX,

which was successfully being used on other smaller machines.

Except for the machine-dependent sections of code, UNIX for the VAX
was quite similar to that for the PDP-11, which has a 16-bit address space and
no paging hardware. 1t made no use of the memory-management hardware
available on the VAX aside from simulating the PDP-11 segment registers with
VAX page table entries. The main-memory management schemes employed
by this first version of the system were identical to their PDP-11
counterparls-- processes were allocated contiguous blocks of real memory
on a first-fit basis and were swapped in their entirety. A subsequent version
of the system was capable of loading processes into noncontiguous real
memory locations, an allocation policy called scatter loading, and was able to
swap only portions of a process (partial swapping) as deemed necessary by
the memory contention. This became the basis for the paging system we
developed, called VMUNIX (for Virtual Memory UNIX), that is discussed in this

chapter.
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8.2. Search for a Replacement Policy

The VAX memory-management architecture supports paging within
three segments (two for user processes, one for the system). The interesting
aspect of Lhe architecture is the lack of page-referenced bits (also called use
bits). To remedy this situation, the dynamic address translation mechanism
of the VAX was used lo detect and record references to pages. With this
scheme, a page for which reference information is to be gathered is marked
as invalid although it remains in main memory. This state for a page is called
the reclaimable state. A reference generated to a location within this page
causes an address-translation-not-valid fault. However, the fault handler can
detect this special state of the page and thus refrains from initiating the
page transfer from secondary memory. In other words, the reclaimable
state for a page corresponds Lo a valid page with the reference bit off, if a
reference bit were available. Since this method of simulating page-
referenced bits through software has a nonnegligible cost. the relative per-
formances of some of the most popular replacement algorithms in this

environment are no longer known.

In VMS, the vendor-supplied operating system for the VAX, the solulion
to the replacement decision is simple [Tur81a). Each process is assigned a
fixed-size memory partition, called a resident set, that is managed according
to the FIFO policy. Pages thal are not members of any of these resident sels
are grouped together to constitute the giobal free list which functions as a
disk cache. Although there is some isolation between the paging behavior of
the various processes due lo the strictly local resident sets, the coupling
that is introduced through this global Iree list has significant performance

implications. Lazowska [Laz79a) reports that in measurements based on a
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real workload, system performance was significantly improved by increasing
the minimum size of the free list (a system generation parameter). An
unfortunate consequence of allocating fixed-size partitions to processes is
that a process has its pages taken away from its resident set (relatively small
in size compared to the total real memory available on the machine) and
placed in the free list to be subsequently reclaimed even though it may be

the only active process in the system.

In the last two chapters we have studied the class of hybrid page
replacement policies. This class includes the VMS algorithm described above,
called Segmented FIFO in [TurBla), as an instance where the resident set
management is according to the FIFO policy and the free list management is

approximalely Least-Recently-Used (LRU).

UNIX is particularly ill-suited for such a scheme for several reasons. The
UNIX system encourages the creation of a number of processes to accom-
plish most Lasks-- processes are cheap. As in most systems, these processes
are nonhomogeneous; they vary greatly in size and in the manner in which
they access their address space. Furthermore, in certain processes the page
reference behavior varies radically over time as the process enters different
phases of execution. The LISP system, which initiates garbage collection
after an interval of execution, is an example of such a process. Thus, in this
environment, it is unlikely that we will find a single system-wide value fcr the
fixed resident set size that will nearly optimize an objective function such as
the weighted sum of the page fault rate and the rate at which reclairaable
pages are referenced under the hybrid policy. In fact, even for a single: pro-
cess, the value of Lhe resident set size must vary in time in order to rack

diflerent phases of its execution and the varying amounts of real memory
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available to it. As described earlier, the total number of pages from the free
list belonging to a certain process is a dynamic quantity due to ils sensitivily
to the system-wide paging activity.

However, simulation studies based on actual program address lraces,
reported in the previous chapter, showed the clock page replacement algo-
rithm [Cor6B8a] to be much more robust with respect to the objective func-
lion defined above to variations in the amount of memory available to the
program, the relative costs of page faults and reclaims, and the nature of the

program itself than the fixed-partition VMS scheme.

We now introduce some terminology associated with the algorithm that
will be used in the remainder of this chapter. Recall that, under the simplest
form of this policy, all the pages allocated to a program are thought of as
ordered around the circumference of a circle, called the loop, according to
their physical page frame number. In addition, there is pointer, called the
hand, that is advanced circularly through them when page faults occur until
a replacement candidate is located. A page is chosen for replacement if it
has not been referenced during the time interval between two successive
passages of the hand through this page. The movement of the hand to per-

form these functions is called the scan operation.

Another major departure in the VMUNIX memory management from the
VMS design resulted from our decision to apply lhe clock page replacement
algorithm globally to all pages in the system rather than locally to the pages
of each process. Note that all of our studies in the previous chapters have
assumed a uniprogramming environment, whereas this modification results
in a variable-size memory parlition for each process. This was motivaled by

studies where global versions of fixed-partilion replacement policies had
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been found to have better performances than their local counterparts

[O1i74a, SmiB0a, SmiBla], and by the following considerations:

(i) The relative simplicity of the global clock policy and, consequently, the

ease of implementation.

(i) The projected workload for the system had no requirement of
guaranteed response Limes as in time-critical applications. Whereas a
local algorithm can allocate large amounts of memory to processes on

a selective basis, a global algorithm cannot.

(iii) 1 was unreasonable to expect users to specify the sizes of the fixed
program partitions since from the existing system they had little or no

information aboul the memory requirements of their programs.

(iv) Vilhout reference bits, the cost of implementing variable-partilion
local replacement .policies such as SWS or Page Fault Frequency
(Chu78a] was observed Lo be too high (see section 5.4.2 of the last

chapter). We comment further on this point in the following section.

(v} UNIX encourages the construclion of tasks consisting of two or more
processes communicating through pipes. which must be co-scheduled if
they are to execule efficiently. In most instances, the intensity of
activity, thus the memory demand, shifts over time from the left-most
process Lo the right-most process in the pipe while all of them remain
active. It is our belief that, in such an environment, dynamic partition-
ing of memory amongst Lhese processes in real time is more appropri-
ate than having local partitions (working sets) that are maintained in

process virtual lime.

Pages rTequested

125

6.3. Memory Demand and Clock Triggering

The clock page replacement policy as described in the previous chapler
is only engaged upon a page fault, al which Lime it selects a page to be
replaced. Given that the demand for memory exhibits nonuniform patterns
with occasional high spikes (see Figure 8.3.1), this strategy for the activation
of the replacement policy is clearly suboptimal.

Having incurred the cosl of page replacement policy activation, we

would like to select more than a single page to be replaced in order to anlici-

pate short-term demand for more memory. To this end, the system

4001

200}

100}~

Real time (seconds)

Figure 6.3.1. Number of page frames requested globally in one

second intervals during a 33 minute observation period. The dala was
obtained by tracing Lhe memory request events under the VMUNIX system
with the performance enhancements (section 8.7) turned ofl.
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maintains a free page pool containing all of the page frames that are
currenlly not in the loop. Our version of the clock policy is triggered when-
ever the size of this pool drops below a threshold. Then, the algorithm scans
a given number of pages per second of real time (a simplified version of this
algorithm is discused in [Eas79a] ). Currently, the default trigger point for
the free page pool size is sel at 1/4 of the real memory size and the default
minimum scan rate of the hand is approximately 100 pages per second. As
the free page pool size further drops below the Lhreshold, the scan rate of
the hand is increased linearly up to a given maximum value. The primary
factor that determines this maximum value is the time it takes Lo service a
page reclaim from the loop (i.e., the time to simulate the setting of a refer-
ence bit). Measurements based on Lhe current-system indicate that on the
average this acltion consumes approximately 250 microseconds of processor
tirne. The full distribution of the page reclaim service time is shown in Fig-
ure 6.3.2 (a). We nole in passing that the ratio of the mean page fault service
titne to Lhe mean page reclaim service time (a as defined in the previous
chapler) is approximately 200 based on the data of Figure 6.3.2. Our use of
a=100 for Lhe simulation studies in Chapter 5 is, therefore, fully justified.
Since the number of pages scanned by the clock algorithm provides an upper
bound on the number of pages thal can be reclaimed, the processor over-
head due to the simulation of reference bits can be controlled by limiting
this maximum scan rate. Currently, we allocate at most 10 percent cf the
available processor cycles to this function. This implies that the maximum
scan rale of the hand is limited to approximately 400 pages per second. Due
to the existence of the free page pool, however, short duration memory
demands far in excess of this value can be satisfied. The problem of formal-

izing some of these decisions along with Lhe selection of parameter values is

Frequency
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discussed in the next chapter.

The system maintains enough data to be able to reclaim any page from
the free page pool regardless of how it arrived there. In addition to being
replenished from the loop, the free page pool also receives pages of
processes that are swapped out or completed. In both cases, these pages
can be reclaimed by the process upon a subsequent swap in or a future
incarnation of the same code, provided that in the meantime the pages have

not been allocated for another purpose.

Given the cost to simulate the setting of a reference bit, our previous
remarks concerning the unsuitability of local variable partition page replace-
ment policies in the UNIX environment are justified. As an example, using
the Sampled Working Set policy with a window size of 100,000 instructions
(approximately 100 milliseconds on the VAX) operating with a program hav-
ing a 400-page working set would consume 50 percent of the processor cycles
just to simulate reference bits (assuming that the working set of the pro-
gram remained unchanged between two consecutive sample points and that

virtual time does not advance during the page reclaim service intervals).

The use of a modifled clock page replacement algorithm where the scan
rate is based on the available memory has several olher advantages as well.
The length of Lhe free page pool becomes a natural indicator of the amount
of r;iemory contention in the system. As we shall see, the inability of the sys-
tem to maintain some specifled amount of free memory is the basis for load
control, and causes process deactivation by swapping. Control of the scan-
ning rate allows the page write-back aclivity, that is initiated when dirly
pages are removed from the clock loop, to be spread more uniformly over

time, Lthereby easing the contention for the disks.
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6.4. Implementation; New System Facilities

The UNIX system memory-management facilities are particularly sim-
ple. Each user process has a read-only shared program area, a modifiable
data area, and a stack. An ezec system call overlays a process’' address
space with a particular program image from a file consisting of the shared
code and the initialized data. New processes are created by the fork system
call, which causes a process to clone itself. Usually, the command inter-
preter accomplishes its task by first creating a copy of itself to establish the
context for the command and Lhen causes this copy to overlay itself with the
file that is the image of the command. Except for shared program areas, no
other memory between processes can be shared. Access lo files and devices
is through read and write system calls; no segment-based or page-based

shared access to flle pages is available.

Consistent with our design goals, we wished to keep changes to the sys-
tem as simple as possible and orthogonal to the rest of the system’s design.
Then, further changes to the UNIX system would be less likely to invalidate

our eflorts.

The conversion of the swap-based system to a paged system began in the
late spring of 1979 and the first version of the paging system was put into
production use on a single machine in September of 1979. At that time, the
primitives for the swap-based UNIX system were still in use. Processes were
crealed using the fork system call which copied a process' address space
page by page Lo create the new address space. This newly-formed address
space was then overlaid with a new image through the ezxec system call.
These primitives, while simple Lo implement and relatively cheap (involving

memory-to-memory copying and file reading) in a swap-based system, werc
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very expensive under the new system, since programs could be partially

loaded in memory and could be much larger.

We found that a vast majority (over B0 percent) of all forks execuled in
the system were due to the command interpreter. Since these forks only
serve to establish the context for the new process, duplication of the enlire
address space was a wasted effort. Most of the sharp spikes in the global
memory demand pattern of Figure 6.3.1 could be attributed to processes
Jorking and/or execing. The nondemand nature of these requests for
memory (in the sense that they are an implementation artifact) overtaxed

the page replacement algorithm and had grave performance consequences.

A natural solution to the problem would have been to include a *copy-
on-write’ facility to implement a fork similar Lo that used in various PDP-10
operating systems (such as TENEX [Bob72a] ). In this scheme, th: two
processes would be allowed to share the same address space and the copying
at the page level would be deferred until the time of the first modificattwon of
a page by either process. However, this would have significantly incrcased
the number of modifications Lo UNIX and hience delayed the completion of a
workable and useful system. At the time, the desires of our user community
did not indicate that shared-memory primitives would be necessary in the

near future.

.A new primitive to replace most instances of the fork system call was
designed. This primitive, called virtual-fork, allows the original process to
'establish the system context for the new process but refrains from creating
Lhe address space until the subsequent exec system call that is issued by the
new process or until the completion of the new process. During this interval,

the system context of the original process is dormant. To put it another way,
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the new process is allowed to run within the address space of the original
process until it establishes its own address space through an exec system
call or through completion, at which point the original process, which was
dormant, regains its address space. Obviously, during this Lransition period
the new process must not modify the contenls of the address space that is
“on loan" to it. This mechanism allows a new process Lo be created withoul
any copying of address space and without requiring a mechanism like *copy-

on-write."

Note that there are instances of process creation where the virtuat-fork
system call is inappropriate. An example of such a case occurs when com-
mands are executed in the ‘‘background’. Then, the new process ‘is ini-
tiated, but the command interpreter does not wail for its completion and is
ready Lo accept a new command line. However, all other instances of the
fork system call could be (and were) replaced with the virtual-fork cali
without change to the calling program. It is quite easy to implement this
primitive on non-paged machines as well as on paged machines, and Lhere
are strong indications that the overhead of process creation in the swap-
based PDP-11 implementation of UNIX would be reduced if such a primitive

were implemented.

A new load format was also provided to reduce the implied overhead of
the exec call. Programs loaded using Lhis new format would have their pages
demand-loaded from the file system rather than pre-loaded as in the previ-
ous swap-based system. This reduced the overhead of process invocation,

and was soon made the default load format.



132

6.5. Limiting Page Traffic and Controlling Multiprogramming Load

In addition to the processor overhead considerations which limit the
scan rate of the clock replacement algorithm, there are global system con-
sideralions involved in limiting page traffic. Input-output activity generated
by page replacement should not delay too much of the input-output activity
generated by program request. UNIX typically runs on relatively small
machines that often have only two moving head disk drives used for all sys-
tem activity including paging., swapping and file system transfers. Special
paging devices are rare in such systems. It is not practical to design a sys-
tem that saturates one of these arms to maximize memory usage. lnput-
outpui. bandwidth is often as precious as memory residency. Thus, load con-
trol mechanisms such as the "“L=S" or the *50 percent” criterion
[Den76a, Den?7a] which assume the availability of a separate paging dcvice,
are inappropriate. We therefore decided to deactivate processes by swap-
ping them to secondary storage when demand for main memory exceeded

our ability to supply it.

Multiprogramming load contro! in our system is thus based on a desire
to limit paging overhead. When the system finds that it cannot maintain an
acceplable amount of free memory by consuming approximalely 10 pescent
of the available processor time to sample page utilization, it lowers memory
demand by removing a process from the set of runnable processes. The: pro-
cess Lo be swapped out is selected by choosing the oldest amongst the n larg-
esl resident processes. This policy represents a compromise between the
largest-first and the oldest-first policies [Chu76a, Cof73a). Neither of these
policies was found to be satisfactory in its pure form; the former prohibits a

large process from making any progress while Lhe lalter wastes effort by con-
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stantly swapping out small processes that do not contribute much Lo the
memory demand. Currently, the default value for the variable n is 4. The
pages of the swapped-out process are written Lo secondary storage if neces-
sary, removed from the loop and returned to the free list. Processes that
are swapped out are assigned priorities Lo return to the runnable set based
on their size (smaller jobs have higher priority) and the amount of time they
have been swapped out {priorily increases as time goes by). Sufficient time
delay is built into the swapping algorithm to ensure that useful work gels
done between swaps. Since in a reasonably-configured system swapping a
process out is a rare event, we do not swap in the resident set a process had
at the time it is swapped out. In our environment, the long period of inac-
tivity of the process that caused the swap out is usually a good indicator of a
locality transition through the invocation of a new function (for example, a
new input line to the command interpreter from a terminal). In such cases,
the overlap between the old resident set and the new is minimal. However,
chances are that the process will still find some of its pages in the [ree page

pool, and can simply reclaim them by referencing them.

8.6. Comparison with the Swap-Based System

After two months of production use and a reasonable amount of tuning,
we decided to compare the performance of the system running with and
without the virtual-memory changes. A script-driven experiment was
designed for a stand-alone configuration consisting of 1 megabyte of main
memory, two disk arms on two diflerent controllers, each with a peak
transfer rate of 1 megabyte per second and a 40 millisecond average access
time. For the comparison we used the version of the swap-based system that

was Lhe base for the paging extensions. The page size in use in the paging
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version of the system was 512 bytes.

The basic unit of work generated by the script was made up of four Ller-
minal sessions executed concurrently. The terminals are idenlified by the

major Lask Lthat Lhe perform:

lisp A LISP compilation of a portion of the LISP compiler, followed by a
“*dumplisp’’ using the lisp interpreter to create a new binary version

of the compiler.

ccomp An edilor session followed by the compilation and loading of several

small C programs that support the line-printer spooler.

typesct An edilor session followed by Lhe typeselling of a mathematical

paper and production of output for a raster plotter.

trivial Repeated execution of a trivial command {printing Lhe dale) zvery

few seconds.

Staggered multiple initiations of from one to four of these work units
were used Lo creale increasing levels of load on the system. Figure 6.6.3
gives the average completion times for each type of session under th: two
systems. For the nontrivial sessions, comnpletion times were very similar
under the Lwo systems, wilh the paging version of Lhe system running (in all
but one case) faster. The interesting observation is Lhal the swap-based sys-
tem departed from linear degradalion more rapidly, i.e., for a smaller
number of active terminals. This trend is most noliccable in Lhe response

time for the trivial sessions.

Figure 6.6.4 gives system-wide mcasurements collected during the sainc
experiments whose resulls were given in Figure 6.6.3. These imeasurceraents
show the same Lrend for both Lhe time when Lhe last scripl completed execu-

lion and the average completion Limes for individual sessions, with the
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Figure 6.8.4. System-wide measurements (a) total completion time,

(b) average complelion time, (c) system time, (d) page traflic.
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paging system slightly faster and degrading more linearly than the swap sys-
tem within the measured range. Under heavy load, system overhead was uni-
formly greater under the paging system, constituting 26 percent of the CPU
utilization as compared to 20 percent under the swap system. User-CPU ulil-

ization under this load was, however, uniformly greater for the paging sys-

tem, averaging 48 percent, while the swap-based system averaged only 42
percent.

Finally, the total page traffic generated under the two systems was
measured. The measurement accounts for both paging and swapping traflic
under the paging system, as well as transfer of all system informalion (con-
trol blocks and page tables) under both systems. Although the paging sys-
tem resulted in far fewer total pages transferred, the number of transaclions
required to accomplish this was much greater since most transfers under
the paging system were due to paging activity rather than swapping activity.
In this version of the paging system, all p;ging input/output activity dealt

with single 512 byte pages.

8.7. Performance Enhancements and Comparisons with Hybrid Paging

After measuring the system and seeing that the performance was com-
parable with that of the swap system, we determined that there was a major
bottleneck in the system due to the small page and file block size— 512
bytes. Measurements of typical system programs which processed files one
character at a time showed that the fastest such programs produced and
consumed data at a rate of about 80 512-byte pages per second. The file sys-
tem in use on VMUNIX at that time, however, could produce about 40 blocks
per second on average, resulting in a factor of two mismatch between typical

program speed and average file system throughput.
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The file block size was increased from 512 to 1024 bytes and physically
adjacent pages were grouped in pairs producing the current 1024-byte
“pages”. All future references to “pages’ imply this new size, unless noted
otherwise. With Lhe new page and file block size, total system throughput on
the script-driven benchmarks discussed above improved significantly, with
the completion time dropping an average of 30 percent, user-CPU utilization
rising nearly 20 percent and system overhead dropping below Lhat of the

swap-based system.

Benchmarks of paging intensive synthetic programs run on VMS and
VMUNIX showed, however, that VMUNIX could not supply memory to heavily
paging programs at a rate comparable to that of VMS [KasB0a]. Simple test
programs that sequentially or randomly (with varying degrees of random-
ness) accessed virtual memory were run on both systems and ran much fas-
ter on the VMS system which clusters pages both for input and output. The
problem, here, was similar to the problem with the file system: inadequate
blocking. Transferring only 1024 bytes of data after incurring a 25-30 mil-
liseconds delay while waiting for a moving-head storage device kept the

bandwidth low.

To remedy the situation, a simple form of pre-paging was implemented
[Smi78a, Lau79a). Upon a page fault, the faulting page as well as the next
sevéral virtually (and physically) adjacent pages were read in as a single
operation. Similarly, upon a page oul decision, the set of modified pages
would be searched to construct clusters of virtually (but also physically)
adjacent pages that would be written back to disk in a single operation. Both
the input and output cluster sizes are variables that can be varied while the

system is in operation. This drastically improved system performance on the
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simple test programs due to their sequential nature and the fact that they

always dirtied pages by writing into them.

There remained, however, a performance gap between our system and
VMS whose cause eluded us at the time. The problem was discovered to be
the placement of pre-paged data. Such dala was placed in the clock loop,
but marked as being not referenced, so it would be moved to the free page
pool in a single revolution of the clock if it remained unreferenced by the
program. For programs similar to Kashtan's test programs, which have a
very high data rate but do not use all the prefetched data, this resulted in an

excessive load on the clock algorithm.

This flaw in the pre-paging algorithm was corrected by placing the pre-
paged pages at the bottom of the free page poot list rather than in the clock
loop. Recall that the system free page pool, which is implemented as a
queue, is fairly long. Since page frames are allocated from the head of this
queue, on a busy system, pages near the bottom may survive (i.e., remain
reclaimable) for a few seconds before being re-used. Since the pages were
pre-paged because they were adjacent to a recently referenced page, it is
desirable to retain them only for a short while if they are nol referenced.

The modified pre-paging placement policy more closely reflected Lhis intent.

A new system call was added to notify the system that a process would
be exhibiting anomalous behavior. This call caused the reference bit simula-
tion to be turned off resulting in approximately random page replacement
(since the physical ordering of page frames in the free page pool from where
they are allocated is destined to be random after a period of operation of the
system) for these processes. Currently, the LISP system issues such a call

before entering Lhe garbage collection phase.
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After these changes, the performance of the two systems on the test
programs became comparable. In practice, however, the VMUNIX page
replacement algorithm has the advantage that it does not give processes
fixed partitions and therefore tends to avoid unnecessary processor over-
head (a different form of thrashing [Den8Ba] that is unique to our environ-

ment) in a way that a fixed partition scheme cannot do.

6.8. Conclusions

The VAX-11/780 computer provided the initial motivation for the study
of virtual storage management without reference bits. The preliminary stu-
dies of the problemn were used to guide the selection of the algorithms to be
employed in the actual implementation described. This system extended our
understanding of the problem through measurements under real workloads.
Some of the major observations we have to make about our experience fol-

low.

A page replacement algorithm that is to function in a machine lacking
reference bits must use a minimum of reference information because such
information is expensive to gather. The global clock paging algorithm

appears to satisfy this condition.

System performance under extreme paging load can be as good using
the global clock algorithm as il is using a hybrid paging technique. In prac-
tice, the ability of the clock algorithm to vary the memory partitions dynam-
ically increases memory utilization significantly over a scheme which allo-

cates fixed partitions.

The global clock page replacement algorilthm is limiled in its ability to
supply pages on a machine with no reference bits. This is normally not a

problem under a time-sharing load, but can be when high data rate programs
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are run.

Paging can resull. in performance enhancement over swapping in addi-

tion Lo the obvious increase in functionality.
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CHAPTER 7

MEMORY MANAGEMENT AS INVENTORY CONTROL

7.1. Introduction

Almost all virtual-memory managemenl systems maintain a pool of free
pages that are available for immediale allocation upon demand. In systems
that employ variable-size partition local policies, this free page pool cortains
the balance of the available pages alter allocaling to each process admilted
to memory its working set. In such systems, the size of the free page pool
aclivates Lhe process activation/deactivation mechanism. If the processes’
working sets expand so as Lo consume the entire free page pool, one of Lhem
must be selected for deactivation. A process is considered for activation
only if the free page pool is large enough to conlain its working set. Under
these conditions, Simon [Sim79a) has shown thatl the fraction of available

memory is approxirmately given by

N
N+(C2+1)/2

where N is the multiprograrnming level and C is the coefficient of variation

of Lthe working set size of a program over Lime.

We arc concerned with virtual-memory management systems Lhat apply
a replacement policy globally to the enlire memory. Here, the free page
pool does not arise naturally but must be rnaintained explicitly. Under nor-
mal operalion, Lhe sum of the processes® resident sels would be allowzd to
expand Lo (il Lhe available memory. Any furlher expansion causes the

replacement policy to selccl one page amoagst Lhe whole memory to salisly
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the new request. As we saw in the previous chapter, however, requests for
memory are often nonuniform and there are instances when a large number
of pages are required in rapid succession. The system should maintain a sel
of pages that are available immediately for allocation. This way, each
request for memory will not cause activation of the replacement policy. The
VMUNIX system described in the previous chapter does this. The memory
manager tries to maintain some pages in the free page pool by initiating the
clock replacement algorithm at varying rates depending on memory
demand. This policy is described by three parameters: (i) the free page pool
size at which the replacement algorithm starts to run, (ii) the rate of the
clock scan at this point, and (iii) the maximum scan rate allowed before pro-

cess deactivation is considered.

In this chapter, we present some preliminary results of our efforts to
formalize the decisions made in the management of free page pools. Resulls
from classical inventory theory are used to show how the problem at hand
can be viewed within this framework. Although we will use the VMUNIX
environment as an example of the application, the formulation is general

enough to encompass other systems.

7.2. The Stock Room Problem

Consider the following problem: A stock room contains an inventory of a
certain commodity Lhal is for sale. There is a cerlain demand for Lhe com-
modily, that may be characterized by Lhe number of ilems requested per
period, where the period is a fixed interval of time. There are also costs
associated with maintaining the invenlory at a certain level, ordering more
items, and receiving requests that cannol be met due Lo depleled stock. At

the beginning of each period we are faced wilh the choice of ordering
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additional items, if any, to minimize our total expected operating cost.
We formally define the single period model corresponding to this inven-
tory problem [Ros70a). Purchasing z units of the item incurs the cost

K+c-z ,2>0
)= 0 ,2=0

C(=z

where K>0. Note that c is the cost of each unit and KX is the fixed setup cost
for the transaction. We assume that an order is filled immediately. For each
unit of the maximum level attained by the inventory during a period, we pay
h dollars as a holding cost. Each unit of unmet demand is assumed to gen-
erate a penally cost p. The planning horizon is assumed to be infinite.
Therelore, there is no time in the future when the program stops and we are
lefl with unsold inventory. Given Lhal the per-period demands are indepen-
dent and identically distributed with probability density g(¢), and the initial
invenlory level is z, we are interested in determining the amount of addi-
tional inventory to be ordered at the beginning of each period that will

minimize the total expected cost.

Assume that the inventory level at the beginning of a period is z and we
order y—z addilional items to bring it up to y. The expected costs incurred

during the period can be expressed as

Eholding cost] = h-y
Hpenalty cost] = P](f‘y )g (¢)a¢
v

since the maximum level of the inventory during a period is y. Let
L(y) = Efholding cost]+E{penalty cost]. The total expected cost of ordering
up to y is then given by
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Kic-(y—z)+L(y) if y>x
L{z) if y==z.
An argument based on the convexity of the function cy +L(y) can be used Lo
show that Lhe optimal policy is of the class (S.s) [Sca60a] that operates as

follows:

if x<s, orderupto S

if z2s, do not order.

S is the value of y that minimizes cy +L(y) and s is the smallest value of y

for which
cy+L(y) = K+cS+L(S). {(7.2.1)

By selting the first derivative of cy +L(y) Lo zero and solving for S, we obtain

S = G"(P——-)-;_h

=
where G(z) = f g(€)d¢ is the distribution of the per-period demand. Having
. °

obtained S, we can (in principle) determine s by solving equation 7.2.1. Nole
that, if K=0, i.e.,, there is no setup cost for ordering, then S=s and the
optimal policy is particularly simple. Observe that, if p<c +h, then $=0 and

no items are stocked.

7-3. Modeling the Demand Process

Demand is perhaps the most important and difficult aspect of invenlory
modeling. The stochastic processes that characterize demand, even for the
simplest situations, are analytically intractable. Let the random variable N;
denote the quantity of items demanded during period i and let X; denote Lhe

interval of time between the jlh and (j +1)st demand points. In the continu-
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ous case, the assumption made in the previous section that the N;’s are
independent and identically distributed is equivalent to assuming that the
X;‘s are independent and exponentially distributed, and that the quantity
demanded at a given point is either fixed or is identically and independently
distribuled. In other words, we are assuming the demand process to be a
Poisson process. This is a restrictive assumption and n section 7.4 we

present empirical data to validate it.

In VMUNIX, demand for pages from the free page pool occur due to two
types of events. A page fault always requests two 512-byte pages (since we
simulate 1024-byte pages), whereas a process creation always requests eight
512-byte pages for establishing the process context (these pages conslitute
the so-called u. arsa and contain the kernel stack for the process, open ﬂle-
descriptors, register contents, etc.). Since about 94% of all page requests
are of the first type (page faulls), we will assume that each demand point
represents a request for two pages. Based on this additional assumption
about the stochastic process that generates the demand in our stock room
model, Lhe per-period demand divided by two (since we always allocate pages

in pairs) is Poisson distributed:

Pr(N;/R2=n)=e™M Q;“)f_ n=0,1,23,...

where ¢ is the length of the period and 1/ A is the mean interdemand Lime.

The memory allocation function of the VMUNIX system was instrumented
to produce a trace record for each explicit request for memory from the free
page pool. The trace record consisted of the amount requested as well as of
a lime stamp with microsecond resolution. As the tracing Look place upon
the arrival of a demand rather than at the delivery of the requesled page

frames, il approximately caplured the inlrinsic global memory demand of
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the workload and not the artifacts of the particular policies employed at the
time. There are, however, several peculiarilies of the VMUNIX system that
had to be dealt with. These peculiarilies arose from Lhe abilily of Lhe
processes Lo reclaim pages from the free page pool. Since Lhis action
invokes a mechanism different from the normal memory request, it is not
recorded in our trace as being part of the memory demand. In the stwck
room problem, this situation is equivalent Lo the inventory being depleled
without demand. One can model such an environment as a stock room con-
taining perishable items that become unusable at a certain rate. This would,
however, further complicate the expressions for the order quantity & and
the order point s.
Recall that in our system there are three sources of page reclaims:
(i) A page is removed from the loop and placed in the free page pool by the
clock algorithm and is subsequently referenced. This Llype also
includes the reclaiming of pages that were prefetched and placed in the

free page pool.

(ii) A page belongs to a process that was swapped out and is referenced by

that process after being swapped in.

(iii) The page belongs to a process that has completed and is referenced by

a future incarnation of the same program.

Under normal operating conditions, the last two sources of reclaims
account for a major percentage of all reclaims. To solve Lhe problem: of
unaccounted allocations from the free page pool, the mechanism that allows
reclaims of types (ii) and (iii) was turned ofl, causing a real page faull and
consequently generation of lhe trace record for such references. ‘fhe

remaining source of reclaims represented only about 8% of all pages
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allocaled during the measurement period. Their effect on the demand pro-
cess will be ignored. This type of reclaim, however, will be accounted for in

our definition of the holding cost for Lthe pages.

7.4. Data Analysis

Using the above mechanism, the system was traced on August 18, 1981
al 6:20pm for a period of 195-seconds. The lime series representing the
number of pages requested during 100 millisecond inlervals for the duratlion

of the tracing period is displayed in Figure 7.4.1.

20}

Real Time (100 ms units)

Figure 7.4.1. Number of pages requested within 100 ms intervals
during a 195 second period.
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7.4.1. Test for Trend

Many of the statistical tests that we are going to perform on the dala
are based on the assumplion thal the demand process is stationary. The
(S,s) class of invenlory policies with constanl § and s can only be oplimal
when Lhe stochastic process by which demand is generaled has suflicient sta-
tionary properties. Since the lack of stalionarily can resull in misleading
estimales of paramelers, we must begin our data analysis with tests for
trend. In case of nonstationarity of Lhe data, it will have Lo be detrended
before the analysis can proceed. 'This is a costly process and we will try Lo
avoid it by selecting a portion of our data that appears Lo be stationary. The
problem of applying forecasting techniques to the developed policy Lo deal

with nonslationary demand will be discussed in section 7.7.

Let W =1/n 7;. where n is the number of demand points within the
=1

observation period and 7; is the lime of the ith demand. For a Poisson pro-
cess with a constant rale, Lhis stalistic is, conditional on observing n events
in the fixed observation period £, asymplotically normally distributed with

mean ¢/ 2 and variance 2/ (12n) [Lew73a]. The normalized statistic

s W-t/2
t/12n

is standard normal. This statistic was evaluated for various portions of the
trace data, and the null hypolhesis /=0 was tested. Based on Lhis approach,
the first 3295 poinls of the trace, representing 102 seconds of real time, were
selected for further analysis. This portion of the trace was judged to be
sufficiently stationary since the U stalistic had a value 0.008 and the critical
values for a 5% level Lwo-sided Ltest under Lhe null hypothesis are +1.96.

Visual inspection of Figure 7.4.1 wndeed supporls Lhe lack of any obvious
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trend during the first 100 seconds. Some of the other inleresting charac-

teristics of this subtrace are reported in Table 7.4.1.1.

For stochastic processes with variances greater than that of the Poisson
process, the U statistic car; produce inflated results. An alternate method of
testing for trend involves a goodness of fit test based on the chi-square
statistic. This statistic is obtained by comparing the empirical event counts

within fixed length intervals with the uniform distribution [Bic77a).

7.4.2. Tests for Serial Independence

Recall that the assumption of independent and identically distributed
per-period demands in our inventory model implied a Poisson process for the
demand generation mechanism. This is equivalent to requiring the time
interval between demand points, i.e., the X; random variables, to be indepen-

dent and exponentially distributed.

For the sequence of stationary random variables X),Xp.Xs.....X,, the

estimated serial correlation coefficient of lag k is defined as

number of demand points 3295
duration (real time) 102.5 seconds
total number of pages
. requested 8924
mean number of pages
requested 87.4/second
¢ number of page reclaims
(type (i) only) 791
mean time interval -
between demand points 30.57 ms
coeflicient of varialion
of time between demands 2.67
minimum time between demands 357 us
maximum time between demands 1823 ms

Table 7.4.1.1. Characlerislics of demand trace data.
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Figure 7.4.2.2. The first 100 serial correlation estimates
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where X = 1/1;2)(‘. Tests based on 3, are asymptolically most powerful for
i=1

testing that a process is Poisson (independent exponentially distributed

intervals between evenls) against Lhe alternalive thal the intervals belween
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events have exponential distributions, but first-order serial dependence
[Lew73a).

When p, =0, ﬁ, is asymptotically normal with E{g,]~0 and
Var () & (n ~1)! under very gener;ll conditions. The first 100 serial correla-
tion coefficient estimates for the time interval between demands for the
trace were calculated and are displayed in Figure 7.4.2.2. The point pg = 1 is
shown to establish the scale. Before we comment on these results, a discus-

sion of the physical process that generated the trace data is in order.

Recall that a demand for memory occurs upon a page fault (process
crealtion also generates demand for memory, but as we saw in seclion 7.3,
Lhis accounts for a very small percentage of the total demand). In process
virtual time (lime that advances only when the process is executing), the
time intervals between page faults have been observed to be serially corre-
lated with highly skewed marginal distributions [Lew73a, Lew71a). What we
observe in our trace, however, is the composition of many stochastic
processes, each corresponding to a particular program, as they interleave in
real time. In our multiprogramming environment, a page fault causes the
process to be blocked for the duration of the page transfer from secondary
store and resumes another process from the set of runnable processes. The
elapsed real time between the blocking (either due to a page fault or to
quantum expiration) and resumplion of a process is a random variabte that
is a funclion of many events. The global demand process is this complex
interleaving of processes and should have liltle resemblance to its com-
ponents. In other words, Lthe blocking due to page faults in the multipro-
gramming environment has a randomizing effect on the individual page fault

patterns of the programs. This is precisely the source of our hope for
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independence amongst the time intervals between demand points.

Our informal argument supporting serial independence is rejected by
the formal test based on the eslimate of the first serial correlation
coeflicient. We see that, for our 3285-point data, f)\. = 0.0887. Although this
estimate is not very different from zero, we must reject the hypothesis that

p1 = 0 at the 1% level (the upper critical point is 0.0452). This is a common

Serial correlation coefficient estimate

-0. | 1 L 1
0 20 40 60 80 100

Lag

Fgure 7.4.2.3. The first 100 serial correlition coeflicient
estimates for the number of pages requested within 100 millisecond
intervals for the trace dala (1025 points).
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problem in hypothesis testing when the sample population is very large,
resulting in a very small asymptotic variance. This observation is confirmed
by the fact that, if we repeat the above test using only the first 104 points of
the trace data (this represents a 4 second period where U=0.08), we oblain
'ﬁ, = —0.029. and the null hypothesis is not rejected even at the 5% level (the

critical points are +0.196).

The nonzero value for ;’5. can be attributed to the following. In our sys-
tem, there are two types of page faults that do not cause the process to
block. These are due to the expansion of the data and stack segments of the
process beyond their current sizes. Upon one of these faults, the process
simply receives a page initialized with zeros from the free page pool.
Processes executing many levels of nested procedure calls {perhaps recur-
sively) will cause the stack segment to grow at a near conslant rate since the
procedure activation frames are stored there. Alternatively, a process exe-
cuting code to initialize a large array will cause the data segment to grow at
a constant rate. As the quantum size is large (16.7 milliseconds), a sequence
of such page faults can be generated during an execution interval. The regu-
lar nature of the time interval between such demands is probably the source

of the positive serial correlation of lag 1.

Having obtained inconclusive results about the hypothesis that the time
intervals butween demand points are serially independent, we examine the
per-period demand patterns. Since the X;’s display nonzero serial depen-
dence, we do not expect the N; to be independent. Recall that the indepen-
dence of the N, implied a Poisson process as the demand generaling process.
Indeed, Figure 7.4.2.3 displays large values for the serial correlation esti-

mates for small lags (for example, 3. =0.3317).
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7.4.9. Marginal Distributions

To complete our analysis of the data, we discuss the estimated distribu-
tions of the time intervals between demands and the per-period demands.

For random variable X, the survivor function, R(z), is defined as
R(z) = Pr{X>z) = 1-F(z)

where F(z) is the distribution function of X. For convenience, it is cus-
tomary to plot the logarithm of R(x) as a function of z. The estimate of this

function for the time intervals between demands is shown in Figure 7.4.3.4.

The Poisson process assumplion implies an exponential marginal distri-
bution for the X;’s. Note that if the X;’s were samples [rom an exponential
distribution, then

R(z)=e™ 220

and
log(R(z)) = —\x

where 1/\ is the mean. In other words, the log-survivor plot of an exponern-
tial distribution is a straight line having a slope equal to the negative recipro-
cal off the mean. We see from Figure 7.4.3.4 that the empirical log-survivor
function of X; has a slope smaller than the exponential counterpart for large
values of z. Based on the skewness of the data (the coefficient of varialion is
2.57). it is obvious that any reasonable test would conclude that the distribu-
tion of Ltimes between demand points is not exponential. Guided by the shape
of the empirical log-survivor curve, the distribution can probably be modeled
by a mized ezponential distribulion that is a weighted sum of n exponential
funclions for some n=2. We will make no attempt at fitting distributions

here.
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1
) 100 150

Interarrival time (1 ws units)

Figure 7.4.3.4. Estimated log-survivor function for time .
inﬁ:.:vals between demand points for trace data. "lhe. mean interval
is 30.57 milliseconds and the coeflicient of variation is 2.57.

The dotted line is log (R(z)) = —x/ 30.57.

The time interval between demands has failed to satisfy both tests
{independence and exponential distributedness) for being Poisson. Not
surprisingly, the per-period demand process also exhibited serial depen-

dence. To complete our data analysis, we examine Lhe marginal distribution

of the per-period demand, Ny.

Log=survivor estimate
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Number of pages requested within 100ms intervals

Figure 7.4.3.5. Estimated log-survivor function for the

number of pages requested during 100 millisecond intervals for
trace dala. The mean is 6.74 pages requested per millisecond
and the coefficient of variation is 1.08. The dotted line is

the plot of log (R(z)) = —x/8.74.

Figure 7.4.3.5 illustrales the empirical log-survivor function of the
number of pages requested every 100 milliseconds. Again, on the same
graph we have plotted the log-survivor function of the exponential distribu-
tion having the same mean as the empirical data. This time, however, we

observe a good fit of the empirical distribulion by the exponential distribu-

50
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tion. This is also confirmed by the estimated coefficient of variation, which is
very close to 1 as for the exponential distribution. Formal nonparamelric
test based on Kolmogorov’s statistic [Bic77a), however, reject the hypothesis
of exponential distribution. Compare the value 0.155 obtained for the Kolmo-
gorov statistic with the critical value 0.032 at the 1% level for a sample size of
3295. As in the test for serial independence of Llhe intervals between
demands, reducing the number of points to the first 104 in the trace results
in the non-rejection of the exponential hypothesis even at the 5% level. The
critical value of 0.138 is significantly greater than the statistic’s value of

0.073.

We summarize the findings of our data analysis efforts as follows. The
time interval between demand points exhibits a distribution that is too
skewed to be exponential (the coefficient of varialion is 2.57). The test for
serial independence of these times is inconclusive since the independence
hypothesis is either rejected or not rejected depending on the sample size.
The per-period demands generated within 100 millisecond intervals exhibit
substantial serial correlation but appear to be well fitted by an exponential
distribution (although formal tests reject or not reject this hypolhesis
depending on the population size as well). These findings lead us to recon-
sider our initial assumption of a Poisson process for the demand generation
and consequently Poisson distributed per-period demands. However, due to
its analytic tractability and partial support by the data analysis, we will go
ahead and assume independent and exponentially distributed per-period
demands and solve the stock room problem for Lhe parameters S (the order

quantily) and s (the order point) under Lhis assumption.
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7.5. Solution of Order Quantily and Order Point

Recall that in the general stock room formulation of the model, lhe
optimal policy is such that at the beginning of each period the inventory is
increased up to level S if it is below s and remains unchanged olherwise.

The order quantity, S, is the solution to

G(S) = E’:’;h (1.6.1)
and the order point, s, is such that

es+L(s) = K+cS+L(S) (7.6.2)
where G(x) is the distribution of the per-pericd demand and

L(y) = hy+p [ (¢—y)g(£)d¢. If the per-period demand is exponentially distri-
v

buted with parameter A, i.e., G(x) = e ™*, equation (7.5.1) can be inverled
easily and we obtain § = —pln(cp#) where u = 1/A. Substituting for $ and

g(z) in equation (7.5.2) we obtain

scths—e™ = K’ (7.6.3)
where K = K+cS+L(S) = K—pu(c +h.)(ln(£;—h-)+ ;T) For u close to zero,

e% & 14u. Making this substitution in equation (7.5.3) (this will require
justification as we do not know the magnitude of As) and solving for s, we

obtain

K+u

AN
SN iRl

Note that as the cost coefficients ¢ .k, p, and K are constants, the logarithms
can be computed a priori and the S and s values easily determined bhased on

m



161

7.8. Cost Coefficient Estimation

To complete the model specification, we will have to interpret the vari-
ous costs of the stock room problem in our environment. We will begin with

the ordering cost.

In our environment, ordering more stock is equivalent to running the
page replacement algorithm to obtain pages. This algorithm is implemented
by a special process that is scheduled and run just as a user process, but at
a high priority. Our model assumed that the order placed at the beginning of
a period is fulfilled immediately. This does not reflect the behavior of our
system since there may be a significant time delay between the initiation of
the replacement algorithm (by waking up the process) and the delivery of
the page frames. The ordering cost structure of the model has a component,
K, that can account for the fixed overhead associated with context switching
but is not capable of accounting for the possible lost sales due to demands
during the lead time. The per-item cost, c, is inlerpreted as the average
amount of work (some suilable units will have to be used consistently
throughout these definitions) involved in selecting one page for replacement

once the process implementing the algorithm has started executing.

The penalty cost, p, associated with each unit of lost sale duc to
depleted inventory is easily determined. The situation arises with a memory
requést when the free page pool is empty. Since all memory requests must
be satisfled, i.e., we cannot really lose sales, the page replacement algorithm
must be run just as for the normal ordering of pages. Now, however, we incur
the fixed transaction cost, K, in addition to the usual cost ¢, for each page
requested when the free page pool is emply. Therefore, the penaity cost per

page, p, is equivalent to K+c.
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The holding or storage cost, A, per unit of maximum inventory is
perhaps the least obvious in our system. In the stock room problem, this
cost is usually interpreted as the amount of money spent to rent the ficor
space thal is used to contain the inventory. !n our environment, we should
ask ourselves what prevents us from placing all of the available rnemory in
the free page pool. The answer is the reclaiming of pages from the free page
pool. 1t is thus reasonable to define this cost as the reclaim rate times Lhe
cost of a single reclaim operation (in units consistent with the other costs).
The larger the pool, the higher the reclaim rate and the associated processor
overhead. To obtain a value for this cost we make the following observations.
The global clock policy approximately behaves like the global LRU policy. If
we consider all of the pages in real memory to be ordered according to their
recency of usage (i.e., as the LRU stack), then all of the pages in the free
page pool will be less recently used than those in the loop. Furthermore, we
can assume that the pages in the free page pool are themselves ordered
according to recency of usage. In other words, the free page pool represents
the tail of the global LRU stack. Empirically, LRU stack position frequencies
fall off very rapidly after the first few positions and are nearly constant for
very large depths [Chu76a, Lau79a]. Note that a reclaim event is equivalent
to a reference to this tail portion of the LRU stack. Under these assump-
tions, the reclaim rate increases linearly as the size of the free page pool
increases consistent with our model holding cost structure. A possible
scheme to determine a numerical value for A would be to observe Lhe
reclaim rate for a given free page pool size and then normalize this value Lo a

unit length.

More general (and perhaps more realistic) funclional dependencies of

the holding cost on the maximum invenlory level can be used al the expense
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of complicating the solution of the model for Sands.

7.7. Implementation lssues

The inventory model we proposed makes policy decisions only at regular
time intervals and is called periodic review. Alternatively, we can altow the
policy decisions to be made at any point in time, thereby obtaining the con-
tinuous review model. Note that the latter model requires knowledge of the
system state (the inventory level) at all points in time. It can be shown that
the conlinuous review policy results in a smaller expected cost (exclusive of
the cost of gathering state information) than the periodic review policy

(BecB1a). For simplicity, we have assumed the periodic review model.

Based on the assumption that the per-period demands are independent
exponential random variables with parameter A, we have obtained expres-
sions for S and s that are simple functions of A. 1t is clear that the demand
process in our system is not stationary. The rate of demand varies greatly in
time depending on many factors. As the (S,s) policy with constant S and s
can only be optimal under stationarity, the implementation must be able to
track the variations in the demand and adjust S and s accordingly. Our sys-
tem has a mechanism whereby the processor is interrupted every 18.7 mil-
liseconds (1/60 seconds) to perform functions such as quantum updating.
priority updating, etc. These times are natural candidates for the incorpora-
tion of our proposed policy. Given the estimates of c,h.p and K, the policy
calculates the order point and the order quantity based on the current
demand rate and places the order (if any) by initiating page replacement.
We note Lhat any number of forecasting methods such as maximum likeli-
hood, exponential smoothing or Bayes procedure can be used in the updating

of Lthe demand rate {equivalently A) [Gro74al).
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Since the current system state is the size of the free page pool (con-
tained in a variable) and the calculalion of S and s involve trivial computa-
tions, the implementation of the policy will introduce insignificant additional

overhead into the system.

7.8. Conclusions

The classical stock room problem was proposed as a suilable model for
the general problem of free page pool size determination in a virtual-memory
computer system. A specific instance of the problem was presented for Lhe
VMUNIX environment. The model is able to capture most of Lhe essenlial
characteristics of the problem but makes rather restrictive assumplions
about the stochastic nature of the demand process. Formal stalistical tesls
of empirical demand data supported the assumption of independently and
exponentially distributed demands within fixed intervals. Based on this
assumption, the model parameters were solved and shown to be simple func-
tions of the distribution mean. We nole in passing that there are inventory
models that admit demand processes having arbitrary interval and quantity
demanded distributions [Bec8la,Kao75a]. These models still require Lhe
time intervals to be independent but, more importantly, the S and s calcula-
tions are analylically intractable even for the simplest of distributions.
Resorting to numerical methods each time the policy parameter need recal-
culation (every period, unless the demand process is judged to have been

stationary) is prohibitive in terms of implementation overhead.

A trace-driven simulation of the proposed policy, using the trace data
that was analyzed, will have to precede an actual implementation so thatl
more exact procedures for the determination of the cost coeflicients can be

oblained and possible instability problems revealed.
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CHAPTER 8
SUMMARY AND CONCLUSIONS

8.1. Summary

In this thesis we have presented a comprehensive study of the problem
of managing virtual storage systems that do not maintain page reference bits
in hardware. Our study began with the development of some tools needed to
evaluate virtual storage systems in general. The theoretical foundations of
the synthetic program of Chapter 3 were laid in Chapter 2 based on certain
obscrvalions about the LRU Stack Model of program behavior. The same
result which allowed us to generate memory reference strings from this
model in an efficient manner was exploited to realize a program that could
reproduce automatically a given paging behavior when run in an environment
that. implemented an LRU-like replacement policy. The form of the program
paging behavior specification is the lifetime curve. The synthetic program
thal. was developed was used in the performance enhancement efforts for the

VMUNIX system described in Chapter 8.

The main results of the thesis were developed in Chapters 4 and 5. In
Chapter -4, we introduced the hybrid class of page replacement algorithms as
a pussible candidate for our environment. We obtained analytic expressions
for their performances in terms of the Independent Reference Model of pro-
gram behavior. From these reéults. it was evident that hybrid algorithms are
in fact suitable for selecting pages to be replaced in the absence of reference
bils under rather static conditions. Changes in the amount of memory allo-

cated Lo the program, in the relative cost of a page fault and of a page
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reclaim, in the characteristics of the program were amongst the variables
that caused the hybrid policy parameter to require modification in order to
maintain good performance. We pointed out that almost all of the above are
in fact variables with very complex functional dependencies in a mullipro-

gramming environment.

Chapter 5 extended the study of the hybrid policies through trace-
driven simulations in a uniprogramming environment. These resulls
confirmed our earlier observalions based on the analytic expressions. A new
performance measure based on the weighted sum of the page fault and the
page reclaim rates was introduced that could be used to compare different
algorithms in our environment. With respect to this measure, the clock algo-
rithm was observed to have a better behavior than the fixed parlition
members of the hybrid class. Furthermore, the variable partition hybrid pol-
icies exhibited performances uniformly superior to those of the clock and of
the fixed partition hybrid policies. This prompted the study of the Sampled
Working Set algorithm within our environment. We derived an expression for
the page reclaim rate under this algorithm, again based on the Independent
Reference Model of program behavior. This algorithm, however, was
observed to achieve its good performance at the cost of incurring uniformly
higher page reclaim rates than those caused by the clock algorithm.
Although not simulated, implications of a multiprogramming environment on

our conclusions were discussed.

Chapter 6 reported on the design, implementation and measurement of
the VMUNIX operating system. This syslem was derived from the UNIX
operating system for the VAX-11/780 computer through the incorporation of

paging. Since the VAX memory management does not supporl page refer-
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ence bits, all of the results from the previous chapters were influential in lhe
selection of the page replacement policy. Particularly, the high page reclaim
rate due to the SWS policy would have resulted in prohibitively high fractions
of the CPU cycles being used for handling the reclaim operations. In this
chapler, we also discussed some of the other factors in choosing the global
clock algorithm as the page replacement policy in the system. We observed
that the interaclion of the page replacement policy with the load control
mechanism became increasingly important in our environment due to lhe
possible collapse of system performance while trying to service the page
reclaim rate generated by the mulliprogramming load. Measurements
obtained from a real work load showed that the paging system performed
equally as well, if not better, as the swap system in addition to providing the
obvious functional extensions. Further performance enhancements were
achieved by an increase in the file and paging system block size and by the

implementation of a simple prepaging mechanism.

Chapter 7 attempted to formalize some of the decisions and of the
parameler selection procedures associated with the management of a global
resource. The instance of the problem considered was the managemenl. of
the free page pool in the VMUNIX system. We cast the problem as one of
inventory control under a stochastic demand, so that results of previous stu-
dies could be used. To justify some of the simplifying assumptions made by
the model about the demand process, we conducted a series of statistical
tesls on the trace data obtained from the VMUNIX system. Although only
partially supported by the data analysis, the model parameters 'were solved
under the assumption of independenl exponential demands within fixed
length intervals. We presented the procedures for estimating the various

cost coeflicients that are required for the model's specification uand

170
concluded the chapter with a discussion of the implementation issues.

8.2. Conclusions and Topics for Future Research

Our study stopped short of extending the hybrid policies to remove the
fixed size top restriction. As the simulation studies of Chapter 5 indicated,
the variable size hybrid algorithms have very good performances conditional
on the correct selection of the fixed top size. It appears that this drawback
can be eliminated by dynamically varying the top size at the instants of page
reclaims. A reasonable heuristic could be the observed frequency of page
reclaims. Given a threshold (analogous to the parameter of the PFF algo-
rithm), the top size could be increased by a small amount if the page reclaim
frequency is observed Lo be above Lhis threshold. Conversely, the top size
could be reduced by a small amount if the observed frequency happens Lo be

less than the threshold. This version of the algorithm could be characterized

as the Hp”_ ¥S-

Some of the policies adapted in the VMUNIX system require more formal
evaluation. Particularly, the decisions associated with the prepaging
mechanism (such as the number of pages to prepage and where lo place
them) were resolved using intuitive arguments. The projected workload for
the VMUNIX system consists of application programs for VLS] design and
image understanding. It is suspected that these programs exhibit behaviors
that are sufficiently different from those that have been studied during the
page replacement policy selection phase. The design of algorithms Lo exploit
these special programs can only be based on a better understanding of their
behaviors through tracing their execution. It is unlikely that a new page
replacement algorithm will be discovered thal delivers uniformly good per-

formance under all operating conditions (e.g., the normal time-sharing load
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as well as the dedicated use for the special programs mentioned). However,
it is conceivable that good heuristics can be developed to allow a variety of
replacement algorithms to be applied on a selective basis to different pro-
grams and perhaps to the same program at different times. A primitive form
of this mechanism already exists as the system call which declares a process
as being “anomalous”, thus requesting FIFO replacement. The difference
here is that a special behavior has to be signaled explicitly by the process

and is nol recognized by the system.

Perhaps the most rewarding future studies are those related to the
material presented in Chapter 7. This chapter describes an initial attempt at
formalizing the decisions associated with the free page pool management
mechanisms of the VMUNIX system. As such, the model for Lhe action is
quite simple. The cost structures are restricted to linear forms and there is
no explicit time delay due to ordering more inventory. The most severe
simplifications, however, are those of the demand process. The independent
and identically distributed assumptions for the per-period demand can be
relaxed at the cost of rendering the model analytically intractable. However,
there may be efficient numerical methods to solve for the model parameters
even under the suitable generalization of independent and identically distri-
buted intervals between demand points (i.e., a renewal process as the source
of the demand). Any of these extensions should follow the evaluation of the
model in its current form using trace dala obtained from the live system.
The current model, as simple as it is, might be found to produce costs
sufficiently close to the stochastic optimum that there is no incentive to
complicate it further. The criterion for introducing any new exleasion
should be the net gain after the implementation overhead has been Laken

into account.

~
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