

Copyright © 1981, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CIFPLOT: PLOTTING SOFTWARE FOR IC LAYOUTS

by

Daniel T. Fitzpatrick

Memorandum No. UCB/ERL M81/96

29 December 1981

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CffPLQT: Plotting Software for IC Layouts

Daniel T. FUzpatrick

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This report describes the usage and implementation of
ClPPLOT. a program to plot integrated circuit designs described in
CIF 2.0, the Caltech Intermediate Form.

December 29, 1981

Sponsored by Defense Advance Research Projects Agency (DoD) ARPA Order No. 3603 Moni
tored by Naval ElectronicSystem Command under Contract No. N00039-78-G-0013-0004

ClFPLOT: Plotting Software for IC Layouts

Daniel T. Fiizpatrick

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

In recent years there has been much interest among the academic and

research communities in Very Large Scale Integration(VLSl). It is presently pos
sible to build entire processors on a single integrated circuit chip. There are

tremendous benefits to being able to design entire systems on a chip. In order

to build these systems, though, designers need the help of several computer

tools. This report describes one such tool, ClFPLOT, a program that reads the lay

out description of a circuit and produces a plot on one of many different output
devices. In addition to being able to produce checkplots, ClFPLOT can reformat

the layout description and is used as a front end to a program that extracts the

underlying circuit from the layout

ClFPLOT accepts layout descriptions in the Caltech Intermediate Form(ciF).
Qf has become the accepted standard interchange language of most universi

ties and several companies. Designs specified in CIF are regularly fabricated in

fast turnaround facilities as Multi-Project Chips(lIPC).

CIF is a general geometric language especially well suited for describing

integrated circuits. Symbols can be created from primitive shapes, such as

polygons and rectangles, and from other symbols. This allows for a simple yet

powerful calling hierarchy.*

The generality of CIF, though, makes it hard to implement. Often the com

plexities of CIF are ignored and left unimplemented. Vlsi design involves a huge
number of shapes, making the designs very complex. Simple approaches to deal

with these designs often fail because of the enormous amount of data that must

* See [Hon&Sequin] for a complete description of OF.

-2-

be manipulated. Programs to manipulate this data can become intolerably slow.

ClFPLOT was designed to be a useful tool for a large class of users. As such,
many of the problems faced byVLSI tools had to be addressed. In the design of
ClFPLOT several goals were established. The first goal was to accept anyvalid CIF
description. This includes the ability to interpret the full CIF language, and to
handle general geometry, including non-orthogonal features and self-
intersecting polygons. This allows it to accept designs from any system that
produces OF. Thus, ClFPLOT is not locked into any particular design style or sys
tem.

The second goal was to check the CIF description carefully for syntactic or
semantic errors. Designers have missed important HPC deadlines due to syntac
tic errors in their CIF that should have been caught by their design tools. By
careful checking, this problem can be avoided. Of course, this checking is not
much good unless it provides the user with help in fixing the errors. Asystem
that, after reading a 10,000 line CIF file, prints "syntax error" and nothing more,
is not much help. When an error is discovered. ClFPLOT should assist the user in
locating the error.

In order to meet the needs of a many users, the third goal was to make the
system flexible. Different users have different ideas about how a plot should
look. The system should provide large number of user options, which specify
what should and should not be plotted, set the size of the plot, select the area of
interest, and specify the plotting device. Also since not all designs are done in
NHOS. the system should be extensible to other technologies.

The final goal was efficiency. It was recognized that the goal of efficiency
might conflict with the other goals of generality and flexibility. As such,
efficiency was considered of secondary importance to the other goals. Yet, due
to the large number of objects that must be handled, and the continuing trend
to larger and more complex designs, efficiency could notbe ignored.

Throughout the design of ClFPLOT these goals have been kept in mind. The
interpreter and plotter have been written with a minimum amount of depen
dence on each other. As a result the interpreter can be used by other programs
that need to read CIF. The plotter can be used by interpreters for other
languages. The plotting routines have been used by SnFPL0T[Kohn], a program

-3-

that interprets STIF[Se*quin].

This report is divided into three parts. The first part describes the use and

operation of ClFPLOT. It is intended to serve as the user's manual for ClFPLOT.

Part two describes ClFPLOT's implementation. The final part discusses experi

ence with the program and discusses some possible improvements to ClFPLOT.

-4

Part I: Usage

1. Introduction

ClFPLOT is a program that interprets Caltech Intermediate Form (CIF), and
produces a plot. ClFPLOT also provides a front end to a circuit extraction pro

gram, and the ClFPLOT interpreter is capable of reformatting CIF files. CIF is a

low-level graphics language designed for describing integrated circuit layouts.

Although CIF is suitable for other graphics applications we will assume

throughout this report that it is being used for integrated circuit design. In

addition to interpreting the full CIF 2.0 language, ClFPLOT recognizes a number of

local extensions. Local extensions can sometimes cause incompatibility with

other programs that interpret CIF. ClFPLOT. though, can be made to produce a

file of standard CIF that is equivalent to the source file with local extensions. So

if you use local extensions you still will be able to transport your circuit descrip

tion to other installations by having ClFPLOT produce a standard CIF file.

There are several potential sources of CIF files. CIF files can be generated by

a graphics editor, such as CAESAR[Ousterhout] or Klc[Keller]. ACIF file may be
the interpreted form of a higher level descriptive language. ClF files can also be

created directly, either using a program such as MKCIF[Krause] or straight from
a text editor. Once you have a CIF file, plotting it is a straightforward process.

The calling convention of ClFPLOT is similar to that of many other UNK pro

grams. ClFPLOT is called from the command line with the name of the CIF file to
be interpreted. If more than one file is used, a list of files may be given on the

command line. By convention each CIF file should end with \cif, but this conven

tion is not enforced. As an example, suppose 'lib.cif contains CIF descriptions of

commonly used cells such as I/O pads, super buffers, clock drivers, etc. and

that 'sorter.cif contains a CIF description of a sorter using symbols found in

'lib.cif. The command line to plot this circuit looks like this:

cifpiot lib.cif sorter.cif

This causes ClFPLOT to first read the files 'lib.cif and then 'sorter.cif. The CIF

End command should be only in 'sorter.cif since ClFPLOT ignores all text follow

ing the End command. If there are no errors, ClFPLOT will print out the window
size, and an estimate of the size of the plot. It will then stop and ask you if you

- 5 - Usage

want a plot. You can then check to see that the size of the plot seems reason

able. If it is, type *y*. It will then proceed to produce a plot on the default out

put device (Currently the Varian-Benson plotter). A typical session might look

like this:

% cifplot lib.cif sorter.cif
Window-5700 174000 -76500 168900
Scale: 1 micron is 0.004075 inches
The plot will be 0.610833 feet
Do you want a plot? y

ClFPLOT recognizes a number of command line options that allow you to change

the default settings. These options need to be specified before the list of CIF

files. For instance, to send output to the Versatec instead of the Varian use the

-W option. The command line should then look like this:

cifplot -W lib.cif sorter.cif

Other options that affect the scale or looks of the plot may also be specified on

the command line. These are discussed in more detail later.

ClFPLOT does extensive error checking on the input CIF file. This helps verify-

that the CIF files are syntactically correct and will be accepted by the fabrication

site without problems. "When an error is found, ClFPLOT tries to pinpoint the

problem so the user can quickly fix the mistake. As an example consider the fol

lowing CIF file.

(sample CIF file)
LND;B10 20 0 0;
L NP; W 2 0 0 0 10 20 10;
C15MX;
L CB; R 20 10 10;

This file has several syntactic and semantic errors. For instance, the comment

on line 1 does not end with a semi-colon, and on line 4 there is a call to symbol

15 but symbol 15 is never defined. Running ClFPLOT on this file causes the follow

ing messages to be printed:

- 6 - Usage

% cifplot errors,cif
1 (sample CIF file.)
I ~—error: Comments must end with a semi-colon
4 C 15 MX;
4 ~ Error: Symbol 15 Undefined
5 L CB; R 20 10 10;
5 . Error: Unknown Layer

line 6 error: No End Statement
Plotting Suppressed

Error messages are discussed in more detail later.

ClFPLOT recognizes the full CIF language. This includes even CIF constructs

such as Delete Definition and symbol renaming. (Note: although these con
structs are recognized, it must be emphasized that they are not recommended

and should be avoided. These constructs are a frequent source of errors and are

usually not implemented by other programs that accept CIF.) Care has been
taken to avoid placing restrictions on the circuits ClFPLOT can handle. Geometric

shapes can be placed at arbitrary angles. Polygons may be defined with an arbi

trary number of vertices. Polygons may even be self-intersecting, thus allowing

polygons with holes in their center. CIF files may be of arbitrary length, with no

practical limits on the number of primitives, symbol definitions, or the depth of

the calling hierarchy. The only limiting factor is the virtual memory size of the

VAX. This has caused no practical limitation on circuits accepted by ClFPLOT.

2. Command line Options

ClFPLOT attempts to be as flexible as possible in letting you choose how your

plot should appear. Most often the default settings should be adequate but occa

sionally you will want to call upon different options. These options allow you to

choose which device you want to plot on, the layers you want plotted, the window

size for your plot, and various other things. You may specify as many options on

the command line as you like. All option specifiers are preceded by a dash(*-').
When conflicting options are specified the last option is always used. Consider

the following command line.

cifplot -Y -b "Sample circuit" -V-s 50Qx circuit,cif

The -W option, which selects the Versatec plotter, is followed by the -V option,

which selects the Varian plotter, therefore the plot is sent to the Varian. The -W

option is ignored. This is useful since the user may want to use the 'alias*

- 7 - Usage

feature of the CSH[Unix] to set default options for ClFPLOT. These default options
can be overridden by adding the correct options to the end of the line. The fol
lowing sections explain the command line options of ClFPLOT.

2.1. Selecting Devices

Normally, plots are sent to the Varian. ClFPLOT can be made to send the plot
to another device. The -W option sends output to the Versatec. Rather than

sending the plot directly to the Versatec, ClFPLOT stores the bit pattern in a tem
porary file. Once all the bits have been computed, this temporary file is sent to
the plotter. This results in a nice crisp plot It also avoids tying up the plotter
while computing what the plot looks like. Unfortunately, storing the bit pattern
in a file uses up a lot of clisk space. Plotting on the 3 foot wide Versatec requires
approximately 2 megabytes per foot of plot. No compaction is done on this
dump file. Before starting ClFPLOT on a large plot, you should make sure there is
enough disk space for your plot. (It is possible to break big plots into smaller
pieces by using the windowing command discussed later.)

ClFPLOT also knows about a few other display devices. The -Ga option

displays the circuit on an AED 512 graphics terminal. The -Gh option displays
the circuit on a HP 2648 graphics terminal. For both these options, -Gaand -Gh,
ClFPLOT must be run on a terminal of the specified type. The -K option produces

a file in UNIX plot(5) format. This file can be used for making pen plots. ClFPLOT
also has the ability to make crude plots on a standard alphanumeric CRT screen.

This is the -T option. Of course, this can only be used for small plots.

2.2. Windowing

Often a picture of the whole circuit is not necessary or even desirable. For
instance, suppose that you have a CIF description of a chip, and you wish to see

only part of the chip. If you are not interested in much of the chip, such as the
I/O pads, and other peripheral circuitry, you can specify a window of that part of
the chip that interests you, and thus not waste time or paper generating a plot

of the other circuitry.

This can be done by setting a window of the plot. The window is that part of

the plot you wish to see. By default the window is the entire plot. The -w option
is used to set the window. The form of this option is

- 8 - Usage

cifplot -w xmin xmax ymin ymax file.cif

where values of xmin, xmax, ymin, and ymax are in user denned units. (Default

is CIF units. See sections 2.4 and 5.1.)

For historic compatibility ClFPLOT plots with the Y-axis running across the

page and the X-axis advances in the direction that the paper advances. Knowing

this is important when trying to set the desired window.

2.3. Scaling

By default the scale is set such that the window of the plot fills the whole

page. Thus the bigger the circuit, the smaller the scale. Sometimes, even on a

three foot wide Versatec, the details of the circuit are too small to be easily

seen. The -s option can be used to set the scale to any desired value and make

the details of the circuit more readable. The -s option must be followed by a

floating point number that is the desired scale in inches per micron. For exam

ple, the following command line sets the scale so that 1 micron is one-twentieth

of an inch.

cifplot -s 0.05 circuit,cif

If the scale is set such that the plot will no longer fit on a singe page, several

pages will be made. These pages can be laid side-by-side to achieve the effect of

a larger plot.

The scale can also be specified in millimeters per micron or in terms of

magnification. To set the scale in millimeters per micron, follow the scale
number immediately by an 'm\ To set the scale in terms of magnification, fol

low the number immediately with a *x*. The following command line sets the

scale to a magnification of 250.

cifplot -s 250x circuit.cif

Care is required when setting the scale since a large value could produce a ridi

culously large plot.

- 9 - Usage

2.4. Units

By default ClFPLOT uses CIF units for coordinates and measures of size.
Often, the user would prefer to think in another system of units, such as

microns, mils, or lambda. ClFPLOT allows the user to specify a basic unit of meas

urement. By following the -u option with a number, the basic unit becomes that
many CIF units. For instance, to make the basic unit 1 micron the command line

looks like this:

cifplot -u 100 circuit, cif

The window will now be reported in microns. Also you can specify the window

size and grid size on the command line in microns. (See sections 2.2 and 2.9.)
The grid will be drawn in micron coordinates. Following the standard command
line convention, the units option affects only those options that follow it. (Also
see section 5.1.)

2.5. Making Layers Invisible

Often it is desirable to make a plot without all of the layers displayed. For

instance, if a designer wants to check that each contact in his design is covered
by metal, he could just plot the metal and contact layers but not the poly or
diffusion layers. The 4 option lets you specify a list of layers you want made
invisible. Each layer is specified by its CIF name. For the above situation the

command line looks as follows:

cifplot 4 NP.ND.NI.NG.NB circuiLcif

This command makes invisible the poly, diffusion, implant, overglass, and buried

contact layer. Note that there are no spaces in the list of layers and layer

names are separated by commas.

In addition to making layers invisible, this command can be used to make

other features invisible. Along with layer names, this command recognizes

several other names: bbox. alltext, text, symbolname, pointname and outline.

Since each of these names contain only lower case characters there is no prob

lem with a conflict with a layer CIF name. (Note that ClFPLOT relies on the distinc

tion between upper and lower case for the layer command. The string 'nm* will
not match the layer name 'NM\ and the string 'Text' will not match the keyword

. io - Usage

•text'.) The keyword bbox makes the bounding boxes of symbols invisible. The
keyword aUtext makes all text invisible. The keyword text causes text that
comes from CIF text extension command '2' not to be drawn. (Text extension
command '2' is discussed in section 3.5.) The keyword symbolname suppresses

putting the symbol name in the upper left hand corner of the bounding box of
each instance of a symbol. The keyword pointname suppresses point names
from being drawn. Point names come from the CIF extension command 94 dis
cussed in section 3.6. The keyword outline suppresses the thin outline drawn
around each layer. The keywords alltext symbolname, and pointname can be
abbreviated by at sn. and pa respectively.

2.6. Multiple Copies

Large plots can take a lot of time to produce. Once all the work to make a
single plot has been done it is not much extra work to make several copies of
the plot. This can be done with the -c option. This option should be followed by
the number of copies wanted. For instance, the following command line makes 5
copies.

cifplot -c 5 circuit.cif

2.7. Rotate

As mentioned above, plots are made with the Y-axis running across the page
and the X-axis advancing as the paper advances. This is counter to the way that
many people think. To make the plot so that the X-axis runs across the page
and Y decreases as the paper advances use the -r option. This essentially
rotates the plot 90 degrees counter clockwise.

2.B. Depth

Too much detail can often hide important features in a circuit. If, for
instance, your circuit is a CPU. then a picture of the placement of registers may
convey more information than apicture of all the transistors. The -d option tells
CIFPLOT to only plot the circuit down n levels of call, where n is an integer that is
specified on the command line. To plot with only the top two levels of calls plot
ted, the command line looks as follows:

-11 - Usage

cifplot -d 2 circuit,cif

The calls not plotted are replaced with their bounding box and the name of the

symbol.

2.9. Grid

Even with a checkplot in hand it is often hard to determine the coordinates

of certain features. The -g option draws a grid over the plot with the coordinates

displayed near the edges. The -g option must always be followed by an integer

that sets the spacing between grid lines in user denned units. (Default is CIF
units. See sections 2.4 and 5.1.) To draw a grid line every 10000 CIF units (100

microns) the command line looks as follows:

cifplot -g 10000 circuit,cif

If you follow the -g option with too small a value there is the possibility that the

plot will be completely covered with grid lines.

2.10. Approximations

By default, roundflashes are approximated by octagons. Many times the

octagon approximation will be inadequate. The -a option allows you to specify

how to approximate roundflashes. This option is followed by an integer that

specifies the number of sides to give a roundflash.

2.11. Banner

On top of each plot ClFPLOT places the user's login name, the date and time

the plot was created, the bounding box of the plot in CIF units, and the scale of

the plot. Often it is useful to have other information. The 4> option lets you

specify what else should appear on the banner. A quoted string follows the -b

and this string is placed at the top of the plot. For example, suppose the file

*circuit.cif was a CIF description of a four by four multiplier. The following com

mand line places the string '4 by 4 multiplier* at the top of the plot.

-12 - Usage

cifplot 4> "4 by 4 multiplier" circuitc if

2.12. listings

The -L option makes ClFPLOT print the CIF file on the terminal screen as it

reads it. This option is helpful for debugging syntax errors in hand coded CIF,

but it is usually unnecessary.

2.13. Comments

ClFPLOT is quite fussy about comments. They must be syntactically correct,

or an error message will be issued. Many other programs that read CIF files are

not as finicky about comments as ClFPLOT. As a result many CIF files that are

accepted without complaint by other CIF parsers are syntactically incorrect due

to errors caused by comments. It is, of course, possible to change these CIF files

so that they are syntactically correct, but this is a tedious job. The -Coption will

cause ClFPLOT to treat comments as it they were blanks, removing most com

ment related complaints.

Your circuit should be developed without this option because other pro

grams may in fact be as fussy as ClFPLOT about comments. If you have been lax
about the syntax of comments in your CIF description, it may happen that when

it is sent for mask fabrication your file may be rejected for comment related

errors. Therefore this option should be used only as a stop-gap measure.

2.14. Non-Interactive

After reading the CIF files, ClFPLOT will stop and display an estimate of the
size of the plot and ask for confirmation before proceeding to produce a plot.

This prevents paper and compute cycles from being wasted by mistakenly
specified plot parameters. However, you can suppress this feature with the 4
option. Calling ClFPLOT with this option causes it to make a plot without asking
for confirmation. The window and plot size information will still be printed but it

will immediately start the plotting phase. This is mostly useful for running

ClFPLOT in the background.

-13 - Usage

2.15. Standard CIF

The -e option causes ClFPLOT to accept only legal CIF 2.0 files. User exten
sions produce warnings and are ignored. This is useful when sending plots to
other places that may not accept the local extensions that ClFPLOT does. Also it
is useful in receiving CIF files that use extension commands in a different manner

than ClFPLOT.

2.16. Denning New Layers and Stipple Patterns

The definition of CIF 2.0 allows for more than the standard layers. For tech

nologies other than NHOS new layer names should be used. It is, of course,
impossible to foresee all the possible new layers. ClFPLOT, therefore, allows you
to set up your own layer and corresponding stipple patterns.

To define your own layers, it is necessary to create a file with the layer
names and stipple patterns. Layer names are a sequence of up to 4 uppercase

letters and digits. Each layer specifier consists of the layer name in double
quotes followed by 8 integers. Each integer specifies 32 bits. Hence, the 8
integers specify a 32 by 8 bit pattern. Ones are black, zeroes are white. The
integers may be decimal, octal, or hex. Hex numbers start with 'Ox', octal
numbers start with just *0\ You may have as many specifiers as you wish in a
file. The following command line makes ClFPLOT read the stipple file 'new.pat*.

cifplot -P new.pat circuit,cif

This mechanizism also allows you to change the default stipple pattern of

predefined layers. If you redefine the stipple patterns for a layer that ClFPLOT
already knows about, your stipple patterns are used. The following is an exam
ple of what your stipple file might look like:

,,56,,,0x00000000, 0x03030303, 0x48484848, 0x03030303,
0x00000000, 0x30303030, 0x84848484, 0x30303030,

"P0LYM,0x08080808, 0x04040404. 0x02020202, 0x01010101.
0x08080808, 0x04040404, 0x02020202, 0x01010101.

"NM",0x22222222, 0x00000000, 0x88888888, 0x00000000,
0x22222222. 0x00000000. 0x88888888. 0x00000000.

"DARIC'.OxFFFFFFFF. OxFFFFFFFF. OxFFFFFFFF. OxFFFFFFFF.
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF

-14 - Usage

2.17. Structured Output files

After parsing a CIF file, ClFPLOT can be made to output an equivalent CIF file

that is easy to parse and completely complies with standard CIF 2.0. Important

local extensions have been converted into legal CIF 2.0. Include and Array com

mands have been expanded into equivalent CIF constructs.* This allows easy tran

sportation to other CIF programs that do not recognize the same extensions. The

command line looks something like this:

cifplot -O outfile circuit,cif

The file 'circuit.cif may contain any legal CIF description including the local

extensions discussed in section 3. It is parsed and a file 'outfile' is created. The

file 'outfile' will contain a CIF description in a highly structured form. This

description does not use many of the features of CIF, especially those features

that make files difficult to parse.

2.18. Text Fonts

By default all text is printed using 6 point Roman print. You may, however,

specify any text font by including on the command line a -F followed 'by the file

containing the font description. (See vfont(5) in the UNIX programmer's manual

for the form of font files). To change the text font to 10 point italics the com

mand line looks as follows:

cifplot -¥ 1.10 circuitxif

The specified file must be in the directory '/usr/lib/vfont'. (See section 5.1 to

specify a different font directory.)

2.19. Circuit Extraction

ClFPLOT serves as a front end to a circuit extraction program. A circuit

extractor reads a layout description and produces a description of the circuit in

terms of transistors. To call the circuit extractor type:

* Text and pawyiTig commands do NOT comply with standard CIF and are left as extensions.
These commands, however, are not necessary for the correct fabrication of a chip and no
harm is done by leaving these commands as extensions.

. 15 - Usage

cifplot -X out file, cif

The circuit extractor will create two files, out.sun and out.nodes. The file
out.nodes is a list of nodes in the circuit. A node is any electrically connected
part of the circuit. See section 6.3 on how to get aplot with node numbers. The
file out.sim. is a list of the transistors in the circuit.

2.20. Debugging Options

There are two options that are useful mostly for debugging ClFPLOT. The -n
option causes ClFPLOT to carry out the computations necessary to produce a
plot, but no plot is actually produced. The -D option causes ClFPLOT to dump a
core image whenever it terminates abnormally. This option may be followed by
a number between 0 and 9. which causes various information about internal
structures to be printed out The higher the number, the greater the amount of
information printed.

3. Local Extensions to CIF

In the definition of CIF 2.0 provisions were made for local extensions. This
section describes the extensions recognized by ClFPLOT. Although these exten
sion numbers have been chosen to conform with recommended extension
numbers it is important to realize that this section discusses extensions only
meaningful to ClFPLOT. Other programs that recognize CIF may not recognize
these extensions or may even interpret them differently. Use of the extensions
therefore make CIF files non-transportable. *

In standard CIF all lower case characters are treated as blanks. In the
extension commands, however, lower case characters are not treated like
blanks. Therefore, you may not use lower case letters indiscriminately in exten
sion commands. The following few sections describe the extensions recognized

by ClFPLOT.

• There isan option toCIFH0T that will produce atransportable file. See section 2.17 for de
tails.

-16 - . Usage

3.1. Arrays

Circuits are often made up of a cell repeated several times and located with

regular spacing to form a rectangular array. A common example of this is a

memory circuit. A single memory cell is designed and then laid out several

times. In standard CIF the simplest way to do this is to make several calls to the

memory cell, with each call appropriately transformed. ClFPLOT recognizes an

array command, which can build an array of cells. The array command has the

form:

OASymbolNumber xrcount y-count x-displacement y-displacement

This specifies an x-count by y^iount array of symbol SymbolNumber with x-

displacement and y-displacement specifying the offsets in the x and y direction,

respectively. This construct only allows rectangular arrays, but generally these

are all that is desired. Most regular patterns in integrated circuits are rec

tangular. If the array is enclosed in a definition it can then be translated, mir

rored, and rotated just like any other symbol.

3.2. Include Files

Most designers rely on a common set of standard cells, such as I/O pads,
clock drivers, etc. If these cells are kept in a library file then you can use the

include command which will cause ClFPLOT to read the library file as though it

was actually part of the designer's original CIF file. The form of the include com

mand is:

01 filename;

Also the form

0 filename;

is permitted to maintain consistency with other CIF programs. Once this com

mand is encountered, ClFPLOT starts reading from the specified file, interpreting

the commands as though they were in the original file. Upon reaching the end of

the file, ClFPLOT resumes reading from the original file. Include files may be

nested. Nesting, however, is limited to a depth of six.

-17 - Usage

3.3. Vectors

Often it is useful to place line drawings in a plot. ClFPLOT recognizes a vec

tor command which causes a line to be drawn between specified points. The

form of the command is:

WxOyOxl yl... xNyN\

A thin line is drawn between the points.

3.4. Printing Messages

This command causes a message to be printed on the terminal (or wherever

error messages are sent.) The command has the form:

1 message;

This is useful in giving you an idea of how far ClFPLOT has parsed.

3.5. Text on Plot

Text can be placed on the plot with the following command:

2 "text' transform;

The text is then printed out using the specified transformation to specify where

the lower left hand corner of the text is to appear. The command

2C "text" transform;

will cause the text to appear with its bounding box centered about the transfor

mation point. The permitted transformations are all those allowed for symbol

calls (rotate, translate, mirror). As in calls, the order is important. Almost

always you will want to do the rotating, and mirroring before translating. Actu

ally, rotating and mirroring are fairly useless since text always appears horizon

tally; translations only apply to the point around which the text is to appear.

- is - Usage

3.6. Names

Often it is desirable to attach names to CIF objects. Analysis tools such as

circuit extractors and design rule checkers can use the names to relate infor

mation back to the designer in terms that the designer is familiar with, rather

than as meaningless numbers. Names differ from text in that they are, in a

sense, part of the circuit. When plotting, however, names can be treated the

same as text.

A symbol may be named by including in the symbol definition the com

mand:

9 name;

This is useful if ClFPLOT is not to draw all the details of a plot but just the bound

ing box of symbols. In this case the symbol name appears in the center of the

bounding box. Giving an already named symbol another name produces a warn

ing. The names will appear concatenated. Normally the symbol name appears

at the top of the symbol.

You can also name a point anywhere on your circuit. The command to

name a point can be in either one of the following forms:

94 name x y\

94 name x y layer;

On the plot the name will appear below and to the right of the point. Names may
not contain spaces and should not be numbers. The second form of this com

mand allows a name to be attached to a point on a particular layer. layer must

be a CIF layer name. The layer name for plots makes no difference except that if

a layer is made invisible so will be the corresponding point names.

4. Error Messages

There are several different types of errors that can occur when running

ClFPLOT. One type concerns specification errors (i.e. command line errors). This
occurs when you call ClFPLOT incorrectly, for instance, by referring to a non

existent file as the CEF source file, or by using a non-existent flag. When this hap

pens, a message is printed out and the program terminates.

-19 - Usage

Another type of error is CIF syntax errors and questionable semantic con

structs found in your CIF file. This type of error can fall into three different

classes: warnings, recoverable errors, and fatal errors. When possible, ClFPLOT
will print out the line on which the error was discovered and an indication of
where on the line the error occurred. The error message is preceded by the

word •warning*, 'error* or 'Error*. Messages preceded by 'error* are recoverable

errors which, though incorrect, ClFPLOT can deal with. Messages preceded by

'Error* are fatal errors which cause ClFPLOT to quit without plotting anything

after it has finished reading your file. Warnings indicate constructions that,

while legal in CIF, are almost always errors or simplybad practice (such as sym

bol renaming).

Another type of error that might occur is a runtime or internal error.

Internal errors indicate bugs in ClFPLOT and should be brought to the attention of

the program maintainer. Runtime errors occur when something that ClFPLOT
depends upon does not work properly. For instance, if ClFPLOT is plotting and

someone turns off the plotter then a runtime error will occur.

5. Miscellany

This section goes over details which, though important, do not belong in any

particular section.

5.1. CADRC Files

As part of its initialization procedure, ClFPLOT reads two files, if they exist. These
files are *~cad/.cadrc* and the '.cadre* file in the users home directory. From
these files ClFPLOT can set default values for several parameters. The '.cadre'

files are ASCII text files that can contain several command lines. Each command

line begins with a keyword that identifies the command type. If ClFPLOT does not

recognize the keyword, the command line is ignored. By convention, there is no
distinction made between upper and lower case letters in the keyword- The next

few paragraphs discuss some features of the '.cadre' file.

You may find that there are certain options in ClFPLOT that you always

specify. For example, you may always suppress symbol names and always plot

on the Versatec. Before parsing the command line ClFPLOT looks for a line in the

'.cadre* file with the keyword 'cifplot*. When seeing this, it will parse the rest of

- 20 - Usage

the line for command line options. For the above example the '.cadre' line looks

as follows:

cifplot -1 symbolname -W

Do not try to put CIF files on this line, since they will be ignored.

As discussed in section 2.4 it is possible to set the default unit size on the

command line. This may also be set in the '.cadre' file by including a line of the

form:

unit number

The default unit is set to number. Setting units on the command line overrides

the units set in the '.cadre' file. This is useful for lambda based designs in that

it allows the user to specify a default size for lambda, but if he gets a CEF file

where lambda is a different size, he can switch the units on the command line.

By default, the maximum length of a plot is 8 feet. This may changed by

including in the '.cadre' file a line of the form:

maxlength length

length is the new maximum length in feet.

Normally, when looking for font files (these are the files that specify how

text is to look) ClFPLOT looks in the directory '/usr/lib/vfont'. Ifyou wish'ClFPLOT
to look elsewhere for font files you must include in the '.cadre' file a line of the

form:

fontdir dimame

dxrname is the name of the directory to look for font files.

ClFPLOT creates its temporary files in '/usr/tmp'. You may want it to create

the temporary files elsewhere. To do this enter a line in the '.cadre' file of the

form:

- 21 - Usage

tmpdir dirname

ClFPLOT will then create its temporary files in dirname.

ClFPLOT has been set up so that it knows about the Varian and Versatec

plotters. If another device becomes available or if one of these plotters is
replaced, it may be necessary to change the specification of the devices.

Entries in the '.cadre* file to do this have the form:

Device DevCh xmax ymax resolution DumpProg

DevCh specifies the device. 'V for Varian, 'W* for Versatec, and *U* for user dev

ice. The command line options for these are -V, -W, and -U, respectively, xmax
and ymax are the maximum number of dots in the x and y directions. The field
resolution is the resolution in dots per inch. DumpProg is the program that will

dump the file onto the device.

5.2. Installing CIFPLOT on Other Machines

ClFPLOT depends on the availability of a number of files and auxiliary pro

grams in order to run. For instance, it requires a font file in order to be able to
plot text, it requires a program to dump its raster file onto the plotter. These
dependencies can make the program hard to move from one machine to
another. It is desirable to be able to transport just the program's binary and

not the sources, in order to save disk space and not have to worry about non-

compatible sources. To achieve this machine independence, ClFPLOT requires
that there exist a pseudo-user called 'cad*. This allows ClFPLOT to refer to files
and programs in *~cad'. Within the *~cad* directory ClFPLOT expects to find the
file '.cadre* for initialization. It also expects to find the subdirectories 'lib' and

misc\ In '^cad/lib are auxiliary programs such as the programs to dump the

raster file to the screen, or to drive graphics terminals. In '~cad/misc* are mis

cellaneous files, such as the log file discussed in the next section. Experience

has shown that after setting up the initial '.cadre* file, the program's binary is

easily transportable to other systems.

- 22 - Usage

5.3. Log Files

Each time ClFPLOT is run, an entry in the file '~cad/misc/log* is made. This

file is used to gather statistics about ClFPLOT and is useful for finding bugs. This
file can also be used to find out the status of jobs you have recently run. Often it

is necessary to run big jobs overnight. When you come back in the morning, you

can tell by looking at this file if your job ran to completion or for some reason

failed. Since over time this file can get rather large you probably do not want to

look at the entire file. The UNK command 'tail* is useful here because it only

prints out the last few lines.

6. Examples of Use

This section gives some hints for using ClFPLOT in circuit layout. Often you

will want to call ClFPLOT with a fairly long list of options. A good way to do this is

to call ClFPLOT through a shell script. Suppose you usually do not want bounding
boxes about symbols, or symbol names at the top of each symbol but you do
want a grid every 10000 CIF units. You can create a file called 'Plot' that con

tains the following:

shell script to call cifplot with desired options
cifplot -1 bbox,symbolName -g 10000 ($argv)

This script can be used to call ClFPLOT with the desired options. Any other
options can be placed on the command line to 'Plot* and these will be inter
preted by ClFPLOT. If you want to send output to the Versatec the command line
would now look like this:

Plot -W circuit,cif

Setting the scale of all your plots to some fixed value is a good idea since it
helps give an idea about the sizes of the actual circuit. For lambda based design
rules as described in [Mead k Conway] it is recommended that the scale be set
so that it is at least 0.04 inches per lambda. So for a 2 micron lambda the scale

should be set to at least 0.02, or 500x. At this scale all features and overlaps are

clearly visible.

- 23 - Usage

6.1. Visual Design Rule Checking

In order for a chip to have any reasonable chance of being correctly fabri
cated it must satisfy certain design rules. If there is no program to automati
cally check the design rules then this must be done by visual inspection. The
job of design rule checking can be made easier if checkplots are made with only
a few layers visible and the stipple patterns are set so the design flaws are easy
to spot. To check minimum width and minimum separation rules, the layer
being checked should be plotted by itself, with the layer plotted in solid black.
To do this you can define a file called *black.stp* that contains the following stip
ple definition:

"NM" Oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxffffffff Oxffffffff Oxffffffff Oxffffffff

"NP" Oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxffffffff Oxffffffff Oxffffffff Oxffffffff.

"ND" Oxffffffff Oxffffffff Oxffffffff Oxffffffff
Oxffffffff Oxffffffff Oxffffffff Oxffffffff

To check the metal layer call ClFPLOT as follows:

cifplot -P black.stp 4 ND.NP.NC.NB.NI.NG,aUtext -s 500x outreg.cif

The resulting plot is shown in figure I-l. It is important that the 4 option follows
the -P option since the 4» option will redefine the layer names and make them
visible. (This is consistent with the feature that allows you to override previously
set command line options.)

It is useful to check interactions between layers. For instance, cuts must
be covered by metal and either poly or diffusion. This can be checked by mak
ing a plot with only metal and cut visible, and making another with just poly,
diffusion, and cut visible. To get these plots type

cifplot 4 NB.NI.NG.NP.ND -s0.04 -b"Metal and Cut" file.cif
cifplot 4 NB.NI.NG.NM -s 0.04 4> "Poly. Diffusion, and Cut" file.cif

Figure 1-2 is a plot with just the poly, diffusion, and cut layers shown. With a lit
tle practice it becomes easy to spot design rule violations inplots.

-24- USAGE

f1tz:Mon Jun 8 23:08:37 1981
cifplot* Window: -400 15000 -5200 10800 Scale: 1 micron 1s 0.019685 Inches (500x)

Fig. I-l. Plot with just metal layer. (Stipples set to black.)

6.2. Designing for other Technologies

By default ClFPLOT recognizes layer names for only NHOS technology. It is

possible to adapt ClFPLOT to other technologies beside NMOS. It is necessary to

define new layer names and design your own stipple patterns for each new layer.

A general set of mask level names and of more abstract conceptual CIF layers

used by the designer to specify the desired features in silicon rather than

artifacts (mask geometries) necessary to produce them has been proposed in

[Se'quin 81]. A corresponding set of stipple patterns can be found in the file

'^cad/misc/cmos.stp'.

6.3. Rotting irith Node Numbers

The circuit extractor (i.e. ClFPLOT invoked with the -Xoption) creates a file of

node numbers in CIF format A plot with these node numbers is useful in simulat

ing the circuit. The command to make such a plot is the following:

fltz'.Mon Oun 8
cifplot* Window:
Poly, Diffusion,

-25 Usage

22:48:23 1981
0 18000 -30000 20
and Cut

Scale: 1 micron Is 0.01968S Inches (500x)

Jig. 1-2. FIFO cell with just poly, diffusion, and cut plotted.

cifplot circuiLnodes circuit,cif

The scale should be set to at least 250x so that node numbers don't start writing
over each other. Figure 1-3 shows a plot with node numbers.

-26- USAGB

f Jtx:Mon Oun 8 22:22:26 1981 .9«ae99 i^k-- <«»«*>cifplot* Window: 0 15200 -264001^-- Scal^ 1 mUron^^^

Rg. 1-3. Eight bit shift register with node numbers.

-27-

Part II: Implementation

1. Introduction

ClFPLOT can be divided into five major parts; the controller, the parser, the

interpreter, the plotting routines, and the utility routines. The utility routines
include storage allocation, error reporting, and so on. These routines are fairly

simple and will be discussed only briefly.

fciFfile j

Interpreter ^^structiiresy

Fig n-1. Flow of Control

Figure II-1 is a diagram of the flow of control of ClFPLOT. The controller is
the main guide of the program. The controller calls the parser and the plotting

routines. Included in the controller are the initialization routines and command

line interpreter.

The parser includes the routines that read and scan the input. It parses the
input, reporting any syntax errors, and calls upon the appropriate interpreter
routines for each CIF command. It also handles the context switches necessary

for the include command and multiple file input. The actual parser is written in

YACC[Johnson], a general purpose parser generator.

The interpreter is responsible for setting up data structures, computing the
bounding boxes of each object, and reporting semantic errors (recursive calls,
zero width wires, etc.). The bulk of the code is in the interpreter since it must

- 28 - Implementation

set up the data structures in a highly efficient form for plotting.

The responsibilities of the plotting routines include mamtaining object lists

in sorted order, breaking objects into more primitive objects, and finally the

translation from geometric objects to bit maps. The next few sections examine

each of these modules in detail.

It is useful at this point to review the structure of CIF. CIF 2.0 is a simple

graphics language. Geometric primitives include boxes, roundflashes, wires, and

polygons. Very few restrictions are put on these geometric primitives; boxes

can be specified at arbitrary angles of rotation, polygons can have an arbitrary

number of sides, and can even be self-intersecting. Each primitive element

must have an associated layer. The layer command sets the current layer.

Denning primitive elements before any layer has been set is an error. These

geometric primitives may be used to make up CIF symbols. Each symbol

definition specifies a symbol number, which is used as the symbol's name. A

symbol call specifies a symbol number and a transformation to apply to the

symbol. The transformation can include translation, mirroring about the X or

Y-axis, and a rotation through an arbitrary angle. Symbols may contain calls to

other symbols. However, a symbol definition can not be contained in another

symbol (i.e. Symbol definitions do not nest). Geometric primitives and calls not

included in a symbol definition are called top level elements.

Within a symbol there may be calls to symbols not yet defined. This is

called forward referencing. Once a symbol is called at the top level, however, all

forward referencing must have been resolved within that symbol, and any sym

bol in the calling chain. In order for a symbol to become instantiated, it must

be called, either directly or indirectly, from the top level. Symbols may not be

called recursively.

In order to avoid symbol numbering conflicts when combining CIF files

together, there is a 'Delete Definition' command. The 'Delete Definition' com

mand specifies a number that causes symbols with that number or greater to

become undefined. This command allows a CIF description to define symbols and

make top level calls to the symbols, and then delete all the previously defined
symbols. Now symbols can again be defined without worrying about the old sym

bol numbers. This command may not appear in a symbol definition.

- 29 - Implementation

It is also considered legal, though bad practice, to redefine symbols. If

symbol n has been defined and later another symbol definition uses n, any call

now made to n refers to the new symbol definition.

QF has a free format syntax. In general, as long as there is enough syntax

to disambiguate a command it is legal. Lower case letters are treated as blanks.

Any upper case letter may occur almost anywhere within a command.* For

example, the command for a box located at the origin with length 10 and width 4

is the following:

B 10 4 0 0;

But this can also be expressed as any of the following:

Box with Length = 10 Width = 4. Located @0,0;
BOX 10.4,0.0;
BIRD10CAT4X0ZZZ0;
the quick brown fox etc ... B10+4&0/0;

In addition to standard CIF a number of local extension commands are

recognized. These were added to increase the usefulness of CIF as an IC design

language. These extension commands include text on plot commands, symbolic

names, and arrays.

One of the major goals of ClFPLOT was to have it recognize full CIF 2.0. Great

care was taken to implement full CIF, even when some of the CIF features did not

seem to be worth the implementation effort. By implementing full CIF. an esti

mate of the cost of the various features was obtained. We are now better

equipped to examine which features are truly useful, and which are unneces

sary. This may prove valuable in the design of the next version of CIF and other

IC specification languages.

2. The Parser

The parser is divided into three conceptual levels. The bottom layer, called

the reader, reads characters from the CIF file and stores them in a line buffer.

This layer gets the next CIF file upon reaching the end of the current file. It also

can be called upon to process the include files, where it does the necessary

•This is a generalization. See [Honit Se'quin] for the exact syntax.

- 30 - Implementation

stacking operations. Upon reaching the end of the included file, reading begins

in the interrupted file where it left off. Above this layer, all the other routines

simply see a stream of characters, totally unaware of what files they came from.

The next layer is the scanner. The scanner accepts the stream of charac

ters from the input layer, and looks for lexical tokens to send to the parser.

Unfortunately, because of the definition of CIF, there are not many lexical tokens

it can look for. When several white space characters or lower case letters

appear together, the scanner can compress these to a single blank. When it

finds a left parenthesis, it looks for the matching right parenthesis, counting the

nesting levels as it goes. It then sends a single comment token to the parser.

Other than these two compressions there is not much more it can do. Parsing

time could be reduced if the scanner could recognize integers. ClF, however,

does not distinguish between identifiers and integers. A layer name can be any

sequence of up to four uppercase letters or digits. The strings "POLY", "15", and

"56G" are all valid layer names. The scanner, therefore, leaves the job of con

verting strings of digits to integers up to the parser.

The final layer is the actual parser. The parser was written with

YACC[Johnson], a parser generator. Much of the parser was a straightforward

translation from the formal syntax of CIF 2.0 given in [Hon &Sequin] to the YACC
description. The CIF definition given in [Hon & Se*quin] was extended to include
extension commands. (See appendix B for the formal definition of the extension

commands.) In standard CIF, lower case letters are equivalent to blank spaces.

In the extension commands, however, lower case letters can not be treated as

blanks. In order for the include command to work properly, lower case letters

must be processed since the UNIX operating system distinguishes between case

in file names. Further, names become more readable if upper and lower case

letters are permitted.

Passing all lower case letters to the parser could potentially slow it down

when reading standard CIF commands since it would have to interpret each lower

case letter encountered. Instead, lower case letters are usually treated as

blanks in the scanner. Whenever the parser enters an extension command, it

sets a flag. When this flag is set the scanner sends all lower case characters to

the parser.

-31- Ihplementation

The YACC[Johnson] parser generator is used for parsing the CIF file. The

translation from the formal definition of CIF syntax to the YACC description was a

straightforward process. The parser had to be augmented with error reporting

and recovery routines. By far the most time spent in writting the YACC parser

was spent writing the error handling code.

3. The Interpreter

The main responsibility of the interpreter is to set up the data structures

needed by the plotting routines. It is called by the parser to interpret the CIF

being read. The interpreter, in addition to storing the data for later use, must

do several consistency checks on the data such as checking for recursive sym

bol calls, and checking that symbols are defined before they are used. After all

the CIF has been read the interpreter computes the bounding box of the circuit.

type

level

xmin

xmax

ymin

ymax

•

•

•

s*\ type

level

xmin

xmax

ymin

ymax

•

•

•

s* type

level

xmin

xmax

ymin

ymax

Fig. II-2. Command Data Structures

s*

3.1. Data Structures

Each CIF object is translated into a structure called a 'Command'. This

structure varies according to the type of object it holds. The beginning of the

structure is always the same, however. The first field is an integer that indicates

the type of command (Definition, Polygon, Wire, etc.) The next fleld is a pointer

to another structure of type 'Command'. This allows us to string Commands

-32- Implementation

together in a list. The next field is called 'level'. It indicated what layer the

geometric primitive is to be plotted on. The next four fields specify the bound

ing box of the command. The bounding box indicates the niinimum and max

imum range of the geometric primitives in the 'Command'.

After these fields the remainder of the structure depends on its type. A

polygon, for instance, just has a pointer to a list of points that are the vertices of

the polygon. A wire has both a list of points and the wire's width. Most of the

geometric primitives contain just the information necessary to describe them

selves.

Two of the more important types are 'calls' and 'symbols'. A call contains

the call's transform, the identifying number of the symbol it calls, and a pointer

to that symbol. A symbol contains a pointer to a list of 'Commands' that make

up the symbol, a pointer to a list containing the numbers of the symbol that call

it, the symbol's status, and the symbol's name.

Symbol

Backtrace List

Fig. 11-3. Data Structure for Symbol Command

- 33 - Implementation

Each CIF object may or may not be part of a symbol definition. If it is not

then it is considered called at the top level. For uniformity, though, ClFPLOT

treats these objects as though they were part of a special symboL This allows all

objects to be placed into symbols. Whenever a 'Definition Start' command is

encountered a new symbol 'Command' is created and placed into the symbol

table. All further commands are put onto the list pointed to by the new symbol

'Command'. This continues until a 'Definition Finish' command is encountered.

This causes further commands to be placed on the special list of top level sym

bol.

a 1.1. Symbol Table

Once a symbol has been defined it is necessary to store the symbol in the

symbol table. The symbol table is a hash table of pointers to a list of Symbol-
Headers. Access to the symbol table is controlled by two functions,

StoreSymbol(x) and HndSymbol(n). StoreSymbolfx) places the symbol header
x into the proper symbol list in the hash table. FmdSymbolfn) returns a pointer
to the symbol header for symbol n.

3.1.2. Call Transformations

With each CIF 'Call' command there is an optional transformation field. The

transformation field can specify rotations, mirrors, and translations to be per

formed on the called symbol. These transformations can all be represented as a

single 3 by 3 matrix. (See [Newman &Sproull] for details.) Each call therefore
maintains a pointer to a 3 by 3 matrix that represents the transformation to be

applied to the symbol.

a 1.3. Layers

ClFPLOT recognizes the standard NHOS layers defined in [Mead &Conway]. In
addition ClFPLOT lets the user define his own layers. Layers are stored in a struc

ture called an 'LCell'. A 'LCell' contains a link to the next 'LCell', the layer name

(such as 'NM' or *NP'). the stipple pattern to use for this layer, the layer
number, and a flag to indicate whether or not the layer is visible. For each CIF
layer, all the standard layers and any user specified layer, a new 'LCell' is added
to the layer list. To find if a layer is denned this list must be searched. This list

34 Implementation

Rg. D-4. Symbol Table

never gets very long and experience has shown that not much time is spent

searching it.

3.2. Forward References and Recursion Detection

ClF requires that symbols be defined before they are used. (That is, they

must be defined before there is a direct or indirect call to them from the top

level.) The order in which the symbols are defined is unimportant. In order to

deal with forward references ClFPLOT does not try to establish links for call com

mands until a symbol is used. Checking for recursion, which is illegal in CIF, is

also not done until a symbol becomes used. If a symbol is recursive but never

used, no error is detected.

When a symbol is defined, it is given the status 'UNUSED'. Whenever a symbol

call occurs at the top level the procedure Examine is called with the symbol

that is referenced as a parameter. If the symbol is 'UNUSED' then its status is

- 35 - IMPLEMENTATION

changed to 'ACTIVE', and Examine is called on every command in that symbol.
Thus if there is a call in the symbol, the symbol referenced in that call is exam

ined. When Examine returns the symbol's status is changed to 'USED'. If Exam

ine is called on a symbol that has status 'ACnVE', then that symbol must be

called recursively. In this case Examine issues an error message and returns.

If the symbol does not exist an error message is issued to that effect.

Examine, after it has checked the status and taken the appropriate action,

sets a link from the call command to the symbol, then adds that call command

to the symbol's 'BackTrace' list. Examine is the only procedure that sets these
links and it is only called when the symbols are used. At this point, to be legal
OF, all the symbols must be defined. Therefore, there is no problem with for
ward references. After all this has been done Examine computes the bounding

boxes and returns.

3.2.1. Symbol Redefinition and 'Delete Definition' Commands

In CIF it is legal, although not considered good practice, to redefine symbol
names. Redefinition can cause a number of problems. The effect of redefining

one symbol name can ripple through the CIF program, changing the meaning of
several symbols, Consider the following CIF command sequence.

DS1;
(CIF text goes here);
DF;
DS2;
CI;
(Symbol #2 calls symbol #1);
DF;
C2; (Symbol #2 is called which calls the above Symbol #1);
DS1;
(Symbol #1 is redefined);
DF;
C2; (Call symbol #2 whichcalls the newsymbol #1);
E

Since symbol #2 calls symbol #1, and since symbol #1 has been redefined, the
second call to symbol #2 produces a different plot than the first call. For this
reason redefining a symbol causes all symbols that call it to change. The 'Delete
Definition* command can cause the similar problems whenever it leaves dangling

references.

- 36 - IMPLEMENTATION

In order to cope with these problems, ClFPLOT must keep track of all the

references to a symbol. Whenever symbol x is redefined, all symbols that previ

ously referred to symbol x must be changed. Further, all those symbols that
were changed cause all symbols that refer to them to be changed, and so on.

It is necessary for every symbol to have associated with it a list of symbols

that call it. Whenever a symbol is redeclared the list associated with the old

symbol is checked to see if it is empty. If not, an advisory message is issued and

the procedure CopyDelete is called on each symbol that references the

redefined symbol. CopyDelete makes a copy of the symbol that was passed to it

and marks the old symbol deleted. It then calls itself recursively on all the sym

bols that reference the just deleted symbol. This causes it to trace through all

the references, direct and indirect, to the redefined symbol.

The strategy for 'Delete Definition' is similar. Whenever a 'Delete Definition'

command is encountered all symbols to be deleted are removed from the sym

bol table, and placed on a list called 'RemovedSymbols'. All these symbols are

then marked deleted. CopyDelete is called on all the symbols that reference any

of the symbols in 'RemovedSymbols'. If CopyDelete encounters any symbol that

is not marked deleted, then there are dangling references and an advisory mes

sage is issued.

4. Plotting Routines

ClFPLOT tries to be as device independent as possible. Early versions of

ClFPLOT directly controlled the plotting devices. The protocols for opening, clos

ing, and controlling the plotter were coded into the program. This device depen

dence limited ClFPLOT's usefulness.

The current implementation of ClFPLOT knows about three types of devices:

raster plotters, vector plotters, and trapezoid plotters. The Versatec and Varian

plotters are examples of raster plotters. For these devices ClFPLOT must specify

for every pixel whether it is on or off. A pen plotter is an example of a vector

plotter. For these devices ClFPLOT must specify the endpoints of each line and

say what layer the line is on. Trapezoid plotters are devices that can display tra

pezoids, such as a raster graphics terminal. For these devices ClFPLOT must

specify the vertices of the trapezoid and say what layer the trapezoid is on.

- 37 - Implementation

ClFPLOT needs to know five things about the plotter: the plotter type (raster,

vector, or trapezoid), the number of pixels in the horizontal direction, the

number of pixels in the vertical direction, the resolution in pixels per inch, and

the program that can display the plot file on the plotter. The program that
displays the plot file on the plotter is called the display program. With this infor
mation, ClFPLOT creates a plot file for the output device and then calls the

display program. The display program is usually quite simple and frees ClFPLOT
from having to know about the details needed to drive the display device.

The next few sections will concentrate on plotting for raster plotters. Plot

ting for the other two types of devices is quite similar.

4.1. TwwtuMnMAting Symbols

Initially each command called at the top level is placed on the
'UnActiveLisf. (The 'UnActiveList' is actually implemented as a pseudo-hash

table, but it is easier to discuss it as a list.) The commands are sorted by

minimum x value of their bounding box in device coordinates. The first element

on the 'UnActiveLisf is taken off and is passed to the function Activate. The

basic job of Activate is to break objects down into more primitive objects.

If the element was a 'Call', then the called symbol and the call's transforma

tion are passed to the function Instantiate. Instantiate applies the specified
transformation to each object in the symbol. Each transformed object is sent to

the selector routine. The selector routine checks to see if the object is visible.

Usually all this involves is checking that the object is within the clipping window.
If it is visible, then it is sorted into the 'UnActiveLisf. (See figure II-5.) The
selector routine is described later. This method prevents the 'UnActiveLisf

from becoming too large by not instantiating symbols until they are actually
needed by the plotting routines. If symbols were kept fully instantiated, the
number of objects to keep track of could become overwhelming.

If Activate is called with an object that is a geometric primitive, such as a

box or polygon, it is broken down into edges. The edges are sent to the selector
routine to see if they are visible. For edges, the selector sees if they are hor
izontal. If they are, they are thrown away. If not, they are sorted into the

•UnActiveLisf.

UnActiveList

polygons
flashes
boxes^

BreakGeom

edges

Activate

wires

BreakWire

boxes flashes

Selector

38

«*<* ;> Clipper

calls

Instantiator

calls
wires

polygons
flashes
boxes

Implementation

Rg. n-5. Activation of Geometric Objects

Finally Activate may be called with an edge. An edge cannot be broken
down further. The edge is sent to the clipping procedure. It is clipped so that

all that remains is what belongs on the display. After being clipped the edge is
sent to the 'ReadyQueue* to be put on the 'ActiveLdsf. Actually, one 'Ready-
Queue' and one 'Activelisf is kept for each layer.

This process of taking the first object off the 'UnActiveLisf is repeated until
the 'UnActiveLisf is empty. Once the 'UnActiveLisf is empty, the CIF file has

been exhausted.

4.2. Selection

The selector routine determines where to send elements. If the element is

text then it is sent to the text clipping routine which puts it on a text list. If the
element is an edge then it is checked to see that it is horizontal. If it is it is
rejected, otherwise, it is sorted into the 'UnActiveList'.

- 39 - Implementation

Other objects, such as polygons, wires, or calls, are checked to see whether

any part of the bounding box lies within the display area. If not, it is rejected.

The object's layer is also checked to see if it is to be plotted. Again, if not, the

object is r ejected. Finally, it is checked to make sure that its depth in the cal

ling hierarchy is not greater than the user specified limit. If the element passes

all these tests, it is then sorted back into the 'UnActiveLisf.

4.3. Sorting

As mentioned earlier, the 'UnActiveLisf is not actually a list. The

'UnActiveLisf is a table, where each element of the table is a pointer to a list.

To enter an element into the 'UnActiveLisf, its niinimum x value in device coor

dinates is computed. This number taken modulo the table size to find the

appropriate list in the table. The element is then sorted onto this list. The ele

ment should be placed at the front of the list since this method of instantiating

symbols tends to give us objects near the current scan line, and objects that the

scan line has passed are not on the list.

4.4. Ready Queue

The 'Ready Queue' provides a buffer for edges between the 'UnActiveLisf

and the 'Activelisf. The 'Ready Queue's main function is to provide a clean

interface between the object instantiator and the scan line plotter. These two

functions could be run as separate processes communicating solely through this

queue.

This buffer is also useful in avoiding floating point round-off errors that

would normally causes edges to enter the 'Activelisf out of sort. Because an

objects bounding box is computed in CIF coordinates and the list is sorted in dev

ice coordinates, a problem arises when sorting edges onto the 'Activelisf. The

transformation converting a symbol's bounding box to device coordinates may

indicate that the minimum x value is n, yet the transformation for an edge in

that symbol may indicate that its minimum x value is n-1. This type of error

occurs infrequently, but can cause problems if it is ignored. The 'Ready Queue'
provides a simple solution to this problem. Each edge is checked to see if its

minimum x is greater than or equal to the mininium x of the last element of the

queue. If it is then the new edge is added to the end of the queue. If not, the

. 40 - Implementation

edge moves down the queue till it finds an edge with a minimum x less than or
equal to its own.

4.5. Maintaining the Active list

If an edge is to be added to the 'Activelisf for a particular layer, it is taken
from the queue and first placed into a separate list. All edges to be added to the
'Activelisf are sorted into this special list. This list is then merged with the
•Activelisf for that layer. This minimizes the number of scans of the 'ActiveList*
needed to insert new elements.

As new elements are entered, the point at which the next edge in the

ActiveList ends is recorded. When plotting reaches this point, the 'Activelisf is

scanned and any edges that are no longer visible are removed.

Edges are entered into the list sorted, and removed without disturbing the
ordering of the other edges. The only reason that the edges in the list could get
out of order is if edges were to cross. If this happens, the 'Activelisf must be
resorted. It is necessary to predict when edges will cross. Every time the

'ActiveList' is changed the point of the next intersection is calculated. A simple

bubble sort is used to reorder the edges. Since usually only one or two of the

elements are out of order a bubble sort is adequate.

4.6. Taking Advantage of Slow Scan Coherence in Drawing

It is not necessary to rescan the 'Activelisf for each new line that is drawn.

It is only necessary when a new edge is entered into the 'Activelisf, or an edge
has been removed, or edges cross. Otherwise, information from the previous

line is used to determine how the next-line will look. ClFPLOT takes advantage of

this coherence from one scan line to the next to avoid having to rescan the

'Activelisf, thereby speeding up the program.

Whenever a change is made to the 'Activelisf, it must be rescanned. This
scan finds the beginning and end points of each figure. It also finds the incre

mental change of the beginning and end points in the y-direction for each scan

line. Thus to draw the following scan lines it is only necessary to increment the
beginning and end points by the appropriate amount, and place them on the

next line. This can be done until the next change in the 'Activelisf.

- 41 - Implementation

Information telling about the next change is available at this point. It is the

minimum of the following three events: the next time an edge enters the

•Activelisf, the next time an edge is removed from the 'Activelisf, and the next

time two edges intersect.

-42

Part IE: Experience

ClFPLOT has been running for 18 months now. It is widely used by circuit
designers in many types of technologies. In general these designers tend to be
pleased with the program. The quality of its plots is quite high. The major prob
lem is its speed. ClFPLOT tends to require a lot ofCPU time. Below is a table com
paring the time and space requirements of ClFPLOT with VCIF, ClFPLOT's predeces

sor.

performance of cifplot vs. vcif

file

name

cifplot vcif

user

time

system
time

memory user

time

system
time

memory

sfifo

xfifo

cherry
rcherry
becker

logic

334.6

64.3

206.1

856.8

136.3

392.9

8.4

2.1

5.2

16.5

10.6

16.4

53+147k

52+127k

52+205k

53+214k

51+138k

52+282k

1352.1

303.4

712.4

1034.5

552.6

1125.8

17.7

4.2

7.1

7.1

9.3

27.9

26+134k

26+133k

26+196k

26+256k

26+109k

26+277k

Although ClFPLOT is about a factor of three faster than VCIF, it is slower than we
would like. As circuits get more complicated, the turnaround time gets worse.

Large plots can take more than two hours of CPU time.

There are a number of approaches to cutting down on the processing time
used. One way is to restrict the designs to a subset of CIF, such as allowing only
manhattan features. This allows several shortcuts to be taken in the program

and can dramatically improve the run time performance. Another approach
would allow lower qualityplots. ClFPLOT tries to represent the circuit as well as it
can, outlining the border of each layer.. While working on a circuit, a number of
scratch plots are made. These plots give the designer a feel for how the circuit
is progressing, and helps him make changes to the circuit. It is more important
to get these plots out quickly than to get a high quality plot. Higher quality
plots could be made at less frequent intervals when the looks of the plot
outweigh the turnaround time.

Almost all CIF is now generated by programs. This reduces the need for a
full CIF parser on ClFPLOT. Parsing full CIF is expensive in processor time and pro
gram size. Although it is important to have a program that does parse full CIF
and checks for errors, it is doubtful that it should be done every time a file is

- 43 - Experience

plotted. A program that just parses full CIF and does extensive error checking,

and then reformats the file in a simpler to parse CIF format would be quite valu

able.

The error reporting facilities of ClFPLOT are quite good. It is usually able to

pinpoint the problem very accurately. Since most CIF is now machine generated,

the error reporting facilities are somewhat overkill. A simpler scheme, which

just reports the offending line with an appropriate message, would be adequate.

Conclusion

Over the last 18 months ClFPLOT has become an essential tool for IC

designers at Berkeley. By accepting general geometry specification and by

allowing the user to select among many options, ClFPLOT has become accepted by

a large and varied design community. Several designers have customized

ClFPLOT to their individual needs by setting many of the options in their com

mand file. New processes can be accommodated by ClFPLOT, by setting up the

appropriate layer table. This has allowed CMOS designers to use ClFPLOT even

though there is no internal knowledge of any CMOS processing layers. The gen

erality of ClFPLOT, though, has caused it to use more processor time than we

would like.

Acknowledgements

I would like to thank Carlo Se*quin for the original idea, and for direction

and guidance throughout this project. 1 would like to thank Martin Newell of

Xerox PARC for many ideas used in the implementation. I would like to thank

Barbara Wood for carefully proofreading several drafts of this report. I would

also like to thank the many users of ClFPLOT for their valuable comments and

suggestions. Figure I-l is part of an ALU designed by Korbin Van Dyke and

myself, figure II-2 is a FIFO cell designed by Howard Landman, and figure II-3 is a

shift register designed by Jim Cherry of MIT. This work was funded by ARPA, whose

support is gratefully acknowledged.

-44-

References

[Hon &Sequin]
R. Hon, and C. H. Sdquin, "A Guide to LSI Implementation" Xerox PARC,
1980

[Johnson]
S. T. Johnson. "YACC: Yet Another Compiler Compiler" Bell Laboratories.
Murry Hill, New Jersey July 1978

[Keller]
K Keller "Tutorial for KlC 2 - A Graphics Editor for Integrated Circuits",
Available from author, March 1981.

[Kohn]
J. Kohn, "Implementation of STIF 1.1 and Interfacing to Plotting Rou
tines". Master's Report. U.C. Berkeley Dec 3, 1980

[Krause]
J. Krause, "CIF Interface", ERL Report, Dept EECS, U.C. Berkeley 1979

[Lesk &Schmidt]
M. E. Lesk and E. Schmidt. "Lex - A Lexical Analyzer Generator" Bell
Laboratories, Murry Hill, New Jersey 1978

[Mead &Conway]
C. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley,
1980

[Newell & Sequin]
M. E. Newell, and C. H. Se*quin, "Inside Story on Self-Intersecting
Polygons" LAMBDA Spring 1980

[Newman &Sproul]
W. M. Newman, and R. F. Sproul, Principles of Interactive Computer
Graphics, Second Edition, McGraw-Hill 1979

[Ousterhout]
J. Ousterhout "Editing VLSI Circuits with CAESAR", Available from author.
September 1981.

[Sequin]
C. H. Se*quin, "Standard Interchange Formats for Integrated Circuit
Design". Available from author, 1981.

[Se*quin]
C. H. Sequin, "Generalized IC LayoutRules and LayoutRepresentations",
in Digest ofVLSI 81, Edinburgh, August 1981.

[Se'quin &Newell]
C. H. Se'quin, and M. E. Newell, "Cutting Corners when constructing CIF
wires and Offset Boundaries Around Polygons", Available from author,
Spring 1980

	Copyright notice 1981
	ERL-81-96

