

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SOME COMBINATORIAL ASPECTS OF NETWORK RELIABILITY

by

Rubin Johnson

Memorandum No. UCB/ERL M82/14

16 March 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Some Combinatorial Aspects of Network Reliability

By

Rubin Johnson

A.B. (Harvard University) 1977
M.S. (University of California) 1978

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Engineering Science

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved:
\ Chairtnan * f\ Date

Some Combinatorial Aspects

of

Network Reliability

Copyright ©1982

by

Rubin Johnson

Some Combinatorial Aspects of Network Reliability

Doctor of Philosophy

Sponsor:

National Science Foundation

Rubin Johnson

Operations Research

Richard M. Karp

Chairman of Committee

Abstract

Let G " (V,E) be an undirected graph with perfectly reliable vertices and unreliable

edges whose failures are independent. The network reliability problem considered here is to

find Rk[G), the probability that a specified set of k vertices is connected with edges that are

working.

Background concepts from graph theory, computational complexity, and combinatorics are

reviewed. The literature of network reliability is surveyed with a focus on works related to the

analysis of probabilistic networks.

Reduction techniques useful in solving network reliability problems are presented.

Efficient algorithms are given for parallel edges reductions, degree two vertex reductions, bicon-

nected component reductions, and special cases of these reductions. The Wheatstone bridge

reduction is described more generally and in more detail than appears elsewhere. A different

interpretation of the triconnected component reduction is given as well as a new theorem that

states necessary and sufficient conditions for being able to perform this reduction.

2

A classification scheme for network reliability backtrack algorithms is offered. Five classes

of algorithms, differing in the reduction techniques they perform, are described. Results

presented about counting trees, counting acyclic orientations, and the Crapo 0 invariant are

used in analyzing the complexity of these algorithms. For three classes of algorithms, new char

acterizations and proofs of optimal edge selection strategies are given. The complexity of

optimal algorithms from the other two classes described is bounded.

Computational experience with programs implementing algorithms from four of the five

classes is described.

To my mother and father

Acknowledgements

My gratitude goes to Richard Karp for listening and for his patience and example. I would

like to thank Richard Barlow for his comments and for his role in maintaining an active com

munity of interest in reliability at Berkeley. I thank Eugene Lawler and Roger Glassey for their

suggestions and comments during various stages of this research.

Thanks go to A. Satyanarayana for insightful remarks and active research. I thank Jane

Hagstrom for interesting and helpful discussions. I thank Mark Chang for long creative conver

sations that greatly influenced my thinking. Thanks go to Kevin Wood for his careful reading,

suggestions for better algorithms, generally useful comments, and sometimes useful commas.

Avinash Agrawal deserves thanks for his comments and suggestions for presenting the algo

rithm for biconnected component reductions.

Thanks go to Bernard Mont-Reynaud for his advice and encouragement when I was writ

ing my first programs for network reliability. Special thanks go to Christos Papadimitriou for his

encouragement and for introducing me to graph theory and combinatorics.

I would also like to thank Joerg Boysen for his advice on troff; Steve Jacobson for his

graphics program that was used for the Chapter Four figures; and Toni Belcher and Diane Jones

for their advice and help with all of the graphics.

Finally, I would like to acknowledge my family and friends and the National Science

Foundation, without whose support all of this would have been far more difficult. (Grant

Number MCS-8105217).

11

Table of Contents

Dedication i

Acknowledgements ii

Table of Contents iii

List of Figures v

Chapter One : Introduction to Network Reliability 1

1. Graph Theory Fundamentals 2

2. Graph Invariants : Factoring Theorems and Counting 4

3. Computational Complexity 7

4. A Survey of Network Reliability 10

5. Remarks 15

6. Figure 16

Chapter Two : Reduction Techniques 17

1. Parallel Edges Reductions 19

2. Biconnected Component Reductions 20

3. Degree Two Vertex Reductions 22

4. Wheatstone Bridge Reductions 25

5. Triconnected Component Reductions 30

6. Remarks 36

Ill

7. Figures

Chapter Three : Algorithms and Complexity

1. Backtrack Algorithms with Bridge Reductions

2'. Backtrack Algorithms with Parallel Edges Reductions

3. Backtrack Algorithms with Degree Two Vertex Reductions 54

4. Backtrack Algorithms with Wheatstone Bridge Reductions 61

5. Backtrack Algorithms with Triconnected Component Reductions . 63

6. Remarks

7. Figures

Chapter Four :Computational Experience

1. Data Structures

2. Edge Selection Strategies

3. Discussion of Results

4. Suggestions for Better Programs 76

77
5. Remarks

6. Figures .

Bibliography .

IV

37

44

46

50

64

65

69

69

70

72

79

91

List of Figures

Figure 1.1 A Binary Search Structure

Figure 2.1 The Parallel Edges Reduction

Figure 2.2 The Biconnected Components Reduction

Figure 2.3 Relevant Bridge Edges

Figure 2.4a The Degree Two Vertex Reduction

Figure 2.4b Degree Two Vertex Reductions

Figure 2.5a The Wheatstone Bridge Reduction

Figure 2.5b Effects of Contraction

Figure 2.5c Effects of Deletion

Figure 3.1 Ordered List of fcrtrees and Associated Search Structure

Figure 3.2 Coded Enumeration of fcrtrees

Figure 3.3 Irreducible Chains and Branching

Figure 3.4 Non-Lexicographic Rule is Optimal

Figure 4.1 Network Data Structure

Figure 4.2 Five Vertex Complete Graph Computations

Figure 4.3 Six Vertex Complete Graph Computations

Figure 4.4 Seven Vertex Complete Graph Computations

Figure 4.5 Eight Vertex Complete Graph Computations

Figure 4.6 Ten Vertex Complete Graph Computations

Figure 4.7 Eight Vertex Cubic Graph Computations

Figure 4.8 Ten Vertex Cubic Graph Computations

Figure 4.9 Sixteen Vertex Cubic Graph Computations

Figure 4.10 Six Vertex Quartic Graph Computations

Figure 4.11 Eight Vertex Quartic Graph Computations

Figure 4.12 A "Practical" Example

Vi

Chapter One: An Introduction to Network Reliability

The network reliability problem considered here is to find the probability that aset of ver

tices in a network is connected. This first chapter presents various definitions and results from

graph theory and computational complexity that are necessary background for the later chapters.

The graph theory is necessary to understand the network model and to know the meaning of

various combinatorial objects such as spanning trees and acyclic orientations. Results from com

putational complexity are necessary in understanding the intrinsic difficulty of some network

reliability problems as well as in understanding how one quantifies the amount of work that an

algorithm (a step-by-step procedure) performs in the solution of a problem. Results presented

in this chapter about counting trees and acyclic orientations and the Crapo 0 invariant are later

used in analyzing the complexity of backtrack algorithms for network reliability problems. The

first chapter concludes with a survey of the literature of network reliability with a focus on

works concerning the analysis of probabilistic networks.

The second chapter describes in detail various reduction techniques useful in the solution

of network reliability problems. Efficient algorithms are given that perform parallel edges reduc

tions, degree two vertex reductions, biconnected component reductions, and important special

cases of these reductions. The Wheatstone bridge reduction is described more generally and in

more detail than appears elsewhere. A different interpretation of the triconnected component

reduction is given as well as a new theorem that states necessary and sufficient conditions for

being able to perform this reduction.

Chapter Three offers a new classification scheme for network reliability backtrack algo

rithms and shows how classical combinatorial theory can be applied in the analysis of the com

plexity of these algorithms. It is shown that the essential aspects of these algorithms lie in the

reductions performed and the edge selection strategy employed. For three classes of algorithms,

new characterizations and proofs of optimal edge selection strategies are given. It is shown that

various combinatorial objects may be associated with each of these classes of algorithms thereby

producing new proofs of algorithmic complexity and motivating algorithms to enumerate these

objects. Two more classes of algorithms are presented along with some bounds on their com

plexity and thoughts about their optimal edgeselection strategies.

Computer programs were implemented and tested for four classes of algorithms that were

described in Chapter Three. Data structures, edge selection strategies, and computational

experience are described in Chapter Four. This last chapter gives one an idea of some practical

limitations of backtrack algorithms and suggests how one could better implement a program for

network reliability problems.

1. Graph Theory Fundamentals

The reader is referred to Christofides[19751 and Harary [19691 for a more complete expo

sition on the fundamentals of graph theory if it is necessary to supplement the brief review of

terms that follows.

A graph G-(K,£) is a structure consisting of a finite set V of elements called vertices

and a set £ of edges. It will be assumed throughout that n - \V\and m - |£|. Let the vertices

be labeled 1, •••,/». Each edge represents an ordered or unordered pair of vertices. If the pair

of vertices («, v) of the edge e — («,v) is unordered then the edge e is called undirected; oth

erwise, e is a directed edge whose tail is u and whose head is vertex v. Undirected graphs are

those without directed edges. A network is distinguished from a graph in that additional infor

mation is specified about its vertices (also called terminals) and/or edges. The networks of con

cern in network reliability are often called probabilistic or stochastic networks because probabilis

tic information is supplied about the vertices and edges of the graph.

Graphs may be represented by drawings in which points or circles depict vertices andlines

depict edges. Directed edges are represented by lines with arrows that point from tail to head.

An edge e - («, v) is said to be incident with vertices u and v. Vertices incident with the same

edge are said to be adjacent. The degree of a vertex is the number of edges that are incident

with it. The in-degree of a vertex is the number of edges directed toward a vertex; the out-

degree is the number of edges directed out from a vertex. Vertices with in-degree zero are

called sources while vertices with out-degree zero are sinks. The term pendant is used to

describe a vertex of degree one or the edge incident on such a vertex.

Edges with the same vertex pair (u,v) are said to be in parallel. Replacing such edges

with a single edge (u,v) is called a parallel edges reduction. Two edges (u,w) and (h\v)

incident on the same degree two vertex are said to be in series; replacing them with a single

edge (u, v) is called a series reduction.

A path between vertex s and vertex t is a set of edges of the form (s,vi), (vi,v2),

• • • ,(v,,r). If the vertices j, vh v2, • •• ,f are distinct then the path is called simple. If s-/,

the path is a cycle. Two vertices x and y are connected if there is an (jr,.y)-path. A set of ver

tices is said to be connected if there is a path between any two vertices in the set; similarly, a

graph is said to be connected if there is a path between every pair of vertices in the graph. A

subgraph of G is a graph Gs - (K„£,)such that K,G Kand £5££. A maximally connected

subgraph is called a component. Maximally connected means that the vertices of the component

are connected and that all edges between vertices belonging to the component are in the edge

set of the component. A tree is a connected subgraph without cycles. The term spanning

describes a tree or subgraph in which all vertices of the graph are connected.

A component is separable if it is possible to separate it into more than one component by

removal of a single vertex. A vertex whose removal creates components is called a cut vertex.

An edge whose removal disconnects the graph (creates components) is called a bridge. A set of

edges whose removal disconnects the graph is a cutset. A nonseparable component is called

biconnected; at least two vertices must be removed before it is disconnected. If the removal of

two vertices, neither of which is a cut vertex, can disconnect a component, those two vertices

are called a separation pair. Triconnected components have no separation pair.

In defining paths and cycles, the directions of edges were ignored. Directed paths are

those in which it is possible to sequentially traverse the edges of the path from tail to head. A

directed graph without any directed cycles is called an acyclic digraph. If one orients every edge

of an undirected graph without forming any directed cycles, one has created an acyclic orienta

tion.

2. Graph Invariants: Factoring Theorems and Counting

A graph invariant of G is a number associated with the graph which has the same value

for any graph isomorphic to G. Two graphs are said to be isomorphic if there is a one-to-one

correspondence between their vertices and their edges such that the incidence relationship is

preserved. The number of spanning trees in a graph is anexample of such an invariant.

Let X(G) be some real function of the graph G - (V,E). It will be said that a factoring

theorem holds for X(G) if X(G) - c(e)X(Gme) + die)X(G-e) where c and rfare real func

tions, G*e means that edge e has been contracted so that its two endpoints are now a single

vertex, and G-e means that e has been deleted from G. It has been shown by Moore and

Shannon [1956] and Moskowitz[1958] that a factoring theorem holds for network reliability, that

is,

R[G] - peR[G*e] + qeR[G-e].

R[G] is the probability that G has the desired connectivity properties (e.g. the existence of a

path of working edges in the two terminal problem or the existence of a spanning tree of work

ing edges in the all terminal problem). This factoring theorem motivates the backtrack algo

rithms that will be discussed and suggests that graph invariants for which similar theorems hold

might help in determining the complexity of these algorithms.

Let r(G) be the number of spanning trees of G. There are a number of interesting facts

about this invariant. For complete graphs on n vertices, the number of trees is r(K„) - n"~2.

(A complete graph, Km is one in which all n vertices are adjacent.) For arbitrary graphs one

may calculate the number of spanning trees in time proportional to n3 using KirchofTs matrix-

tree theorem; it is only necessary to find the determinant of a matrix. Lastly, a factoring

theorem t(G) - r{G*e) + r(G-e) holds. Leggett[19681 calls this factoring theorem

Feussner's Rule and cites a 1902 German source.

Let <x(G) be the number of unique source acyclic orientations of G. These are those acy

clic orientations where some designated vertex is the only vertex with in-degree zero.

Satyanarayana and Procesi-Ciampi[1981] prove:

a) a (G) is independent of which vertex is the unique source;

b) a(G) is invariant under parallel edges reductions;

c) a(G) - 1 if G is a tree;

d) «(<?) - 0 if (7 is not connected or is empty; and

e) a(G) - a(G*e) + a(G-e).

See also Stanley[1973] and Greene[1977]. Stanley[1977] shows that o(G) is equal to the abso

lute value of the chromatic polynomial evaluated at negative unity.

The following definitions are needed before introducing the next invariant A matroid M

—(£,/) is a structure in which £ is a finite set of elements and / is a family of subsets of £,

such that

1) 0€ / and all proper subsets of a set I in / are also in /; and

2) if l9 and /p+i are sets in / containing p and p+1 elements respectively, then there

exists an element e € /p+i-/p such that Ip+e 6 /.

The rank of A Q E is the cardinality of the largest subset of A that belongs to /. Sets belonging

to / are called independent. These definitions are from Lawler[1976]. Also see Walsh[1976].

Graphs are matroids; £ is the set of edges and acyclic subgraphs are independent sets.

Crapo[1967] defined an invariant for graphs (and all other finite matroids). The invariant

is

0(G)-(-l)'«?> £(-l)Wr(jc)
xQG

where r is the matroid rank function. Also true is that:

a) p(G) is invariant under parallel edges reductions;

b) /3(G) is invariant under series edges reductions;

c) 0(G) - 1 if G is a single edge;

d) 0(G) - 0 iff G is not biconnected or is empty; and

e)/3(G)-0(G%e)+j8(G-e).

Further results are given by Greene[1977]. Associate with each edge e - (ayb) of G the

hyperplane Ht: xa - xb in R". Let H represent this set of m hyperplanes. Perturb one of

these hyperplanes (by letting Xa - xb + e) to form H*. Also let Niu) be the number of

unique source acyclic orientations rooted at u and N(v,w) be the number of source-sink acyclic

orientations with v the source and w the sink where (v,w) c E. Greene shows:

a) N(u) is the same for all u c V;

b) N(vyw) -/3(G)/ora//(v,w) € £;

c) a(G) - number of regions into which R" is partitioned by H; and

d) /3(G) - number of bounded regions into which R" is partitioned by //*.

Graph invariants may be defined with respect to a subset of the vertices of G. Such a spe

cial subset of vertices will be denoted with K and will be assumed to contain k vertices. Such

invariants have particular meaning for the it-terminal reliability problem which is to find the

probability that a specified set K of k vertices is connected. The domination, Z>k(G), is one of

these invariants. Domination theory has been important in analyzing network reliability algo

rithms (see Satyanarayana[1980], Satyanarayana and Hagstrorn[1980a,b], Satyanarayana and

Prabhakar[1978], Chang[19811, and Barlow[1982]).

This presentation of the domination follows Satyanarayana and Chang[1981]. In k-

terminal network reliability, a minimal success set is a tree that connects all vertices in K such

that all pendant vertices in this tree are also in K. This structure is also called a it-tree. If the

union of a set of it-trees contains all edges in the graph then that set of it-trees is called a

formation. If the cardinality of the set of trees is even, it is an even formation; otherwise, it is

an odd formation. The domination of a graph G with respect to a set of vertices K is denoted

DK(G) and is equal to the absolute value of the difference between the number of even and

odd formations of G. A factoring theorem is shown to hold and results are given referring to

invariance under various reductions. Some of these results may be summarized as:

a) DK(G) - DK(G*e) + DK(G-e);

b) Dy(G) - a(G);

c) D£(G) < DK(G) if KQK; and

d) d(G) - minlMG) - /3(G).
KQG

3. Computational Complexity

A problem, according to Garey and Johnson [1978], is a general question to be answered

along with a description of the parameters of the question and a statement of what properties

the solution is required to satisfy. An instance of a problem is one particular set of values for

these parameters. Algorithms are general step-by-step procedures for solving a problem. Analyz

ing how much time and space is required by algorithms to solve problems is the essence of

computational complexity.

The amount of time or space that an algorithm requires to solve a given problem is called

the time complexity or the space complexity and is usually expressed as a function of the size

of the problem. The size of the problem usually relates to the amount of space required to

specify the problem. In general, one is concerned only with the fastest growing term of the

function that relates running time to problem size. If this function is a polynomial, the algo

rithm is termed good or efficient. If this function cannot be bounded by some polynomial

function of the problem size then the algorithm is exponential.

Throughout this dissertation, the time complexity will be expressed using the notation

OM (for order x). This means that the number of computational steps that must be performed

is bounded by some number that is proportional to x. Moreover, the analysis will generally

refer to the worst-case complexity, the number of steps that need be performed while solving

the hardest problem instance of a given size.

As an example, consider the amount if work that it takes to sort arandomly arranged list

7

of the integers 1, • • ♦,« using a bucket sort algorithm. The algorithm first creates ndifferent

locations (buckets). It then examines each item and places it in the appropriate bucket. This

algorithm is said to be 0[n] or linear since it takes time proportional to n which is the length

of the list and the size of the problem.

At the foundation of computational complexity theory are models of computation. These

models define an elementary computational step and how information is encoded. Most models

assume that steps are performed sequentially, one at a time, and that the next step to be per

formed is determined by the previous steps and the input data. The model of computation

being used here assumes that arithmetic operations and comparisons are elementary steps and

that binary encoding is used. The complexity of algorithms using this model are polynomially

related to the complexity results with other reasonable models like Turing and RAM models.

The interested reader is referred to Aho, Hopcroft, and Ullman[1974].

An algorithm (or procedure or routine) that calls itself is called recursive. Complexity

analysis for recursive routines can be performed by determining how many steps are executed

in the routine ignoring the recursive calls and then determining the total number of calls that

are made to the routine while it solves the problem. If a routine calls itself either twice or not

at all then one can represent the behavior of the routine as a binary search structure. See Figure

1.1. Reserving the terms vertex and edge for graphs, the points and lines of the search structure

will be referred to as nodes and branches, respectively.

Each node in the search structure represents a call on the routine. Branches indicate that

new recursive calls are made. Nodes without descendants are called leaves and represent those

occasions in which the routine made no recursive calls. It is an easy fact that the number of

leaves in a binary search structure is exactly one more than the number of nodes that are not

leaves, that is, the number of leaves represents half the number of calls made to the routine

throughout the execution of the algorithm. If one can bound the amount of work performed at

each node of the search structure, then one can determine the complexity by counting the

number of leaves. In Chapter Three, this type of analysis will be used extensively.

Problems in which it is possible to decide in polynomial time (time proportional to some

polynomial function of the size of the answer or problem) whether or not an answer is correct

are said to be in the class NP. Any problem in this class could be solved easily by algorithms

based on models of computation that include oracles that can guess correct solutions to the

problem. After the guess, it would only be necessary to verify that the answer was correct.

Cook showed that every problem in NP could be reduced to the satisfiability problem. This

problem, SAT, is to decide whether or not it is possible to assign values to a set of true-false

variables such that a set of clauses containing these variables and their complements will each

have at least one variable set to true. Cook's work showed that SAT is as hard as any problem

in NP (Garey and Johnson[1978]).

The theory was extended when Karp[1972] showed that SAT could be reduced to a

number of other problems in NP. The class of NP problems all as hard as SAT are known as

the NP-complete problems. If there exists an efficient algorithm for any one of these problems,

then there exist good algorithms for them all. Unfortunately, no good algorithms are known for

any of these problems and it is widely felt that no polynomial time algorithm can solve these

problems, that is, these problems are felt to be inherently intractable.

Technically, the class NP refers only to decision problems-problems that require a yes-

or-no answer. The term is used more loosely here since it can be shown that most search or

optimization problems can be solved using asequence of decision problems. Asearch problem

is one in which one wishes to see an example of some type of object or to know that no such

objects exists. In the optimization problem, one wishes to find the "best" of a certain type of

object. The term NP-hard refers to those problems at least as hard as the NP-complete prob

lems; if there is agood algorithm for an NP-hard problem then there are good algorithms for

all NP problems although the reverse need not hold.

Enumeration problems are those in which one wishes to know how many objects of acer

tain type there are. One should not confuse these enumeration problems with those of

enumerating or listing all such objects; enumeration problems are solved by counting algo-

rithms while listing problems are solved by enumeration algorithms. The matrix-tree theorem

discussed earlier is an efficient algorithmic solution to the enumeration problem of counting the

spanning trees in a graph. Many other enumeration problems (such as counting the number of

(s, f)-paths) seem far more difficult. Valiant[1977a] posed a set of problems which are among

the most difficult of enumeration problems. This class, called the #P-complete (number-P-

complete) problems, includes the problem of counting the number of ways to assign values to

true-false variables such that a set of clauses containing these variables and their complements

will have at least one variable set to true in each clause. The #P-complete problems are NP-

hard.

4. A Survey of Network Reliability

The literature of network reliability is surveyed from the 1950's to the present. Attention

is focused on those works that are related to the reliability analysis of probabilistic networks.

Computer science, especially the theory of NP-completeness, seems to have had a profound

influence upon the field.

In the early 1950's, Von Neumann[1952] lectured on "Probabilistic Logics and the Syn

thesis of Reliable Organisms from Unreliable Components." These lectures appear to contain

the earliest technical formulations of the principle that it is possible to make the whole better

than its parts. His ideas were developed modeling computing systems such as biological neural

systems, automata (machines that implement logic functions), or the newly developing large

scale computing machines. Studying the operations of systems where components continually

failed (and failed routinely) was part of wondering about biological systems and of pondering

how electronic brains should be built.

Inspired by the work of Von Neumann, Moore and Shannon [1956] wrote a paper to give

mathematical and theoretical insight into the problem of building reliable relay circuits. These

authors were able to prove stronger results for relay circuits than Von Neumann could prove

for computing systems. Moore and Shannon showed that with redundancy it is possible to build

relay circuits arbitrarily more reliable than their components.

10

The Moore and Shannon paper seems to be the beginning of the network reliability litera

ture. Their model was time independent. Components were assumed to fail independently with

a constant failure probability. They were concerned with the probability of the system function

ing at an instant in time. They introduced the factoring theorem for network reliability although

they did not explore its use for the analysis problem. Moore and Shannon also expressed the

reliability as a polynomial which is important in bounding the reliability of networks. Trying to

find the coefficients of such polynomials is one combinatorial aspect of network reliability prob

lems.

Von Neumann and Moore and Shannon were most concerned with the synthesis problem;

they wished to design reliable systems. Moskowitz[1958] was concerned with the analysis prob

lem; he wished to determine the reliability of the systems designed. He makes it clear that

graph theory is imporunt for network reliability problems and explores more fully the use of

the factoring theorem.

During the 1950*s, the study of reliability became more important for reasons including

bigger computers, guided missiles, and the space program. Birnbaum, Esary, and

Saunders[1961] began refining reliability theory by formalizing notions presented earlier (i.e.

series components, parallel components, structure functions) and introducing new ones such as

coherence. Winograd and Cowan[1963] showed that the reliability of systems that compute is

conceptually different from the reliability of systems that connect (i.e. communication or tran

sportation systems). This distinction helps to distinguish network reliability as a special case of

multi-component system reliability. Birnbaum and Esary [1965] presented more results applica

ble to network reliability that are discussed in the next chapter.

During the middle 1960's, the difficulty of network reliability problems was becoming

apparent. It was being discovered that things were harder than was hoped or predicted. Wing

and Demetriou[1964] briefly discussed the horrors of state enumeration before describing a

Monte Carlo estimation technique for the two terminal problem. Kermans[1967] also noted

that substantial computational difficulties were associated with the exact, analysis of large net-

11

works although his paper was mostly concerned with questions of network synthesis.

Interestingly enough, Kel'mans discussed a factoring theorem for spanning trees. Span

ning trees were also discussed by Leggett[1968] who showed that synthesizing the most reliable

network with a fixed number of vertices and a fixed number of edges (all with the same failure

probability) is equivalent to synthesizing a network with the maximum number of spanning

trees so long as the failure probability is small enough. Combinatorial properties of a reliability

polynomial were used in proving this result.

Other work in network reliability was based on deterministic criteria. Network elements

were assumed to be subject to destruction by intelligent adversaries. Research was directed at

designing networks that were most survivable or invulnerable to such attacks. The criterion for

vulnerability or survivability was generally a graph theoretic measure such as the edge connec

tivity (the minimum number of edges whose removal disconnects the graph) or the diameter

(the maximum length of any shortest path) or even a composite of such measures. Steiglitz,

Weiner, and Kleitman[1969] discussed designing a network of minimum cost such that the

number of node disjoint paths between vertex pairs satisfy minimality constraints. Wilkov[1972]

and Frank and Frisch[1970a] are useful survey papers with ample bibliographies for network

reliability problems with deterministic criteria.

By the early 1970's, network analysis had developed as a distinct discipline (see Frank and

Frisch(1970b]). The networks of concern were typically large scale networks that connected

things-usually to allow the flow of information, oil, or some other commodity. Network relia

bility models with probabilistic criteria often seemed more reasonable for many of these net

works which were more likely to fail due to random natural forces than to a calculated attack.

Misra[19701 suggested the recursive use of series and parallel reductions for two terminal

network reliability analysis problems with a probabilistic criterion. Hansler[1972] also suggested

that reductions should be done to decrease the computational burden. Hansler, McAuliffe, and

Wilkov[1974] gave a method of enumerating cutsets to find reliability and showed that it is

often more effective than enumerating the success sets. Murchland and Shier [1973] proposed

13

an algorithm based on the factoring theorem and series and parallel reductions. Their algorithm,

which is similar to the decomposition algorithm of Moskowitz, is applied to both the two termi

nal and the all terminal problems. Fratta and Montanari[1973] proposed Boolean algebra

methods for finding reliability. Most of these authors gave some consideration to the computa

tional difficulties associated with their schemes.

It should be noted that the use of terms such as "fast" and "efficient" in some of the

papers discussed and in other (mostly older) papers does not correspond to the current usage in

the operations research and computer science literature. Now, an efficient algorithm is one that

does its work in time proportional to some polynomial function of the problem size. (Fast has

no formal definition but usually connotes that an algorithm does not take much real time.) New

concepts and language, which developed as the study of computational complexity continued,

helped researchers in network reliability express their concerns about the computational

demands of their algorithms more precisely.

In his dissertation, Rosenthal [1974] showed that solving network reliability problems

could be very demanding; finding the probability that at least one set of working edges connects

a set of k vertices is at least as hard as solving an NP-complete problem. NP-hardness is an

indication to the researcher that an efficient algorithm for the general problem is unlikely. Far

from being a signal to surrender, it is an invitation to find those classes of problems amenable

to polynomial time solution. The works of Wood and Satyanarayana (Wood[1980] and

Satyanarayana and Wood[1982]) are two examples of finding classes of problem instances solv

able with efficient algorithms. Buzacott and Chang[1980] showed that the all terminal problem

with equiprobable edge failures admits to an efficient solution. Combinatorial research indicat

ing that 0 evaluated for certain classes of graphs (i.e. wheels) is a polynomial function of the

size of the graph (Crapo[1967]) can be used to show that there exist efficient algorithms to

solve reliability problems for networks with underlying graphs of those classes.

Rosenthal [1975] introduced the new ideas of NP-completeness and computational com

plexity into the mainstream of the (network) reliability literature. His paper, A Computer

Scientist Looks at Reliability Computations, was presented at the 1975 Berkeley conference on

Reliability and Fault Tree Analysis and appears in a book of the same name published in the

aftermath of the conference.

Buzacott[1976] presented an exponential algorithm for the all terminal problem that also

requires an exponential amount of space. The algorithm takes a dynamic programming

approach, solving small subproblems and using the results to solve larger and larger problems

until the whole problem is solved. Such approachs are also called composition methods. Buzacott

and Chang [1979] and Buzacott[1980] develop these methods further.

Ball and Van Slyke[1977] discussed backtrack methods for network reliability. In full

recognition of the inherent intractability of network reliability problems, they suggested that

backtrack algorithms are a solution although useless for large problems. Ball [1977] discussed

backtrack algorithms with reductions as well as the fact that the all terminal and two terminal

problems were both open questions (NP-hard or not?) during 1977. Rosenthal[1977] discussed

decomposition techniques. Rosenthal and Frisque[1977] explored reliability preserving transfor

mations of the underlying network that would make reliability calculations easier. These works

seem to be efforts to improve the state-of-the-art and not necessarily to find efficient algo

rithms. Satya and Prabhakar[1978] presented an improvement on the inclusion-exclusion

approach to reliability analysis (see Barlow and Proschan[1975]) by showing how to avoid can

celling terms in the inclusion-exclusion reliability expression. Each term in this expression is

plus or minus the probability of the intersection of events. Cancelling terms occur because the

same event is often the intersection of many different combinations of events. Satyanarayana

and Prabhakar were able to show that each event need be generated only once and that the

domination could be used to decide the net contribution of all terms that would have been

associated with this event in the usual inclusion-exclusion expression.

After aseminar given by Satyanarayana at Berkeley in 1979, Karp suggested another parti

tion obtained by grouping together certain events of the inclusion-exclusion partition. Each

event corresponds to the union of subgraphs with the desired connectivity properties. By group-

14

15

ing together subgraphs with the same depth first search tree, it is possible to determine their

correct contributions more quickly and without having to compute the domination. When this

idea is applied to the all terminal problem, each depth first search tree corresponds to a span

ning tree. Generating these trees is achieved by using backtrack algorithms. The development

of these ideas is the subject of chapters two and three.

The dual to finding efficient algorithms is showing that a class of problem instances are as

hard to solve as an NP-complete problem. After Rosenthal's result, Valiant [1977b] showed that

the two terminal problem was NP-hard by showing that an associated enumeration problem was

#P-complete. Ball and Provan[1981b] showed that the all terminal problem is NP-hard. Jer-

rum[1981] independently showed that the all terminal problem is NP-hard by showing how a

solution to the reliability problem can be used to find a solution to a #P-complete problem.

Even finding approximate solutions is NP-hard for the it-terminal (Rosenthal [1974]) and the

two terminal and all terminal problems (Ball and Provan[1981b]).

5. Remarks

As it should, research continues even if a problem is shown to be NP-hard or to admit to

a polynomial time solution. If an efficient algorithm is discovered, one may try to improve it

and/or try to find the best algorithms either with respect to some measure of computational

complexity (i.e. best case) or for some class of problem instances. If the problem is NP-hard,

one must search for easy cases or be willing to accept less than the exact answer. In network

reliability, significant avenues for research include investigating new methods of bounding the

reliability, new ways of obtaining approximate solutions, and efficient ways of generating esti

mates.

16

Figure 1.1 A Binary Search Structure

Chapter Two : Reduction Techniques

Let G- (K,£) be an undirected network with perfectly reliable vertices and unreliable

edges. Let p, - Probledge e, is working] where 0<a <1. Let *, - Probl edge «, is failed]
where 0 < *, < 1. Assume that edge failures are independent. The ^-terminal network relia

bility problem considered here is to calculate Rk[G) - Problthere exists a path of working

edges between every pair of vertices in aset Kof kvertices]. Vertices belonging to set Kwill

be called tf-vertices. R[G) will be used more loosely as the probability that all tf-vertices in a

graph are connected.

Backtrack algorithms are useful in solving network reliability problems. The reductions

(reliability preserving network transformations) discussed in this chapter are important com

ponents of these backtrack algorithms. The motivation for these backtracking algorithms is that

the probability of an event is equal to the sum of the probabilities of the events of its partition.

(A partition is amutually exclusive and collectively exhaustive set of events.) More formally, if

t - tx u t2 u ••• u tiwhere r<n tj •0 fora111*jthenProblrl"Probl r'] +
Probl T2]+...+ Probl Tt]. For the network reliability problem, the partition is created by a

complementary branching scheme whereby edges are included (contracted) and excluded

(deleted) until the set of included edges has the desired connectivity properties or the edges

excluded make the desired event impossible. The branching scheme may be represented as a

binary search structure.

Each node in the search structure represents aunique collection ofexcluded and included

edges. (Note that the terms node and branch will be used in describing the search structure

while the terms vertex, edge, and tree will be reserved for the description of the network and

its subgraphs.) The term good leaf is used to designate aterminal node in the search structure

18

in which the set of events represented by the node imply that the network has the desired con

nectivity properties. The term deadend is used to designate a terminal node in the search struc

ture in which the set of events represented by that node make it impossible to obtain the

desired connectivity properties. Complementary branching schemes with termination conditions

as described above insure that the good leaves of the search structure are a mutually exclusive

and collectively exhaustive set of events whose union is the event that the k vertices of K are

connected by a set of working edges.

Complementary branching schemes are the basis of the algorithms to be described. These

algorithms represent an analytic approach to the network reliability problem. No attempt is

made to simulate the network; rather it is attempted to continue to divide the problem into

subproblems by branching. Reductions are used to transform these subproblems to smaller

problems. By branching and reductions, it is possible to enumerate, recursively, a partition of

events whose probabilities are easy to calculate.

Reductions play an important role in solving the network reliability problem. A reduction

is any transformation that does not change the reliability of a network. A simple reduction is any

transformation that gives a single new network and a weight w such that the product of this

weight and the reliability of this new network is equal to the reliability of the original network.

A complex reduction is any transformation that gives a set of networks whose reliabilities may

be somehow combined to give the reliability of the original network. Useful reductions allow

one to find the reliability of a graph by solving one or more smaller problems which collectively

take less work to solve than solving the original graph without performing reductions. Reduc

tions will be called generally useful if they seem useful for large classes of graphs although they

may not be useful for all graphs. Various types of reductions include parallel edges reductions,

biconnected component reductions, and triconnected component reductions. Two special cases

of the triconnected component reduction are the degree two vertex reduction and the Wheat

stone bridge reduction. Reductions that can be implemented easily and efficiently will be

referred to as quick reductions.

19

A reduction may lead to the creation of an edge e that works with probability p and fails

with probability q where p+ q * 1. Such an edge is called defective. One could interpret p

and q as probabilities conditioned on an uncertain event. The following lemma shows that it is

possible to form a new network without defective edges whose reliability differs by a multipli

cative factor that is easily determined.

Lemma 2.1 Given network G - (K,£) with a defective edge e that works with probability p

and fails with probability q, there exists a network G' with weight w' where edge e is replaced

by a single non-defective edge e' such that

Rk[G] - wRk[G '].

Proof. By the factoring theorem for network reliability,

R[G] - pR[G'e) + qR[G-el

To get G ' replace e of G with e' where

Let w'- p+q. Another application of the factoring theorem yields the desired result. •

1. Parallel Edges Reductions

An important well-known type of reduction is the parallel edges reduction. Parallel edges

reductions are quick, simple, and useful.

The effect of the parallel edges reduction is illustrated with the following example. See

Figure 2.1. Suppose that edges et - (x,y) for / - 1, • • •,/. By definition these / edges are in

parallel. They may be replaced by a single edge em - (x,y) with

The graph with e„ will have M fewer edges but the same reliability as the graph with the /

parallel edges.

It is important to see that each of the parallel edges performs the same structural function

in that adding any or all of these parallel edges to the set of working edges causes exactly the

20

same set of vertices to be connected. For example, if vertex x is adjacent to an edge of the

working set and the vertex y is not, then choosing any of the / parallel edges would cause ver

tex y to join the set of vertices connected by working edges.

This reduction may be performed on the entire network by sorting edges at each vertex.

The following algorithm is due to Satyanarayana and Wood [1982]. The algorithm will be

denoted PER(G) (for Parallel Edges Reduction) and will use the routine periu) which finds

parallel edges incident with the vertex u. Two /i-dimensional arrays x and y are used.

periu)

for every edge e - (w, v) incident with vertex u

do if ix[v] - u)

then perform reduction on parallel edges e and ylv]

else set xlv] - « and .ytv] - e.

PER(G)

1. Set x - Oand j>«0.

2. For every vertex u € G do periu).

Since periu) is called only once for each vertex and in all calls to this routine an edge is

examined at most twice, PER((7) takes no more than 0[m+n) time to find and reduce all

parallel edges in G.

2. Biconnected Component Reductions

The biconnected component reduction is acomplex reduction. Recall that a biconnected

component is a connected subgraph with no cut vertices. A biconnected component is also

known as a Woe*. A block is connected to the rest of the graph by vertices known as cut ver

tices or articulation points. Removal of any cut vertex disconnects the graph. Many authors

including Ballll977], Chang[1981], Hagstromll980], Murchland and Shier[1973],
Rosenthal[1974], Satyanarayana[1978], and Moore and Shannon[1956] have recognized that the

structure of biconnected components might aid in network reliability analysis.

21

The reliability of a graph is closely related to the product of the reliabilities of its blocks.

If k - M, then Rk[G] - HR[Bi\ where B, is the ith block of Gand R[B(] is the probability
/-i

that all vertices of block / are connected with working edges. See Figure 2.2. When k & M,

the relationship is more complicated and depends on the location of the tf-vertices. These com

plications are handled recursively in the algorithm BCD(G) that is described below. By continu

ing to focus attention on blocks with only one cut vertex, one need not be concerned about K-

vertices in neighboring blocks.

It is important to note that if a block contains none of the specified k vertices and has no

edges as elements of some simple path that connects any pair of these specified vertices, then

that block may be ignored in the reliability calculations. Such a block is said to be irrelevant.

BCD iG)

1. Find all blocks of G.

2. Set w - 1.0.

3. If there is only one block B then returniwRk[B]).

4. Find a block with one articulation point v.

a) If this block contains no ^-vertices then remove it and go to step 3.

b) If this block contains a Jf-vertex then

1) let v be a K-vertex,

2) set w - wR IB],

3) remove the block, and

4) go to step 3.

It is possible to find all the blocks in Olm+n] time using algorithms based on depth first

search. Therefore, this is a quick reduction although hard reliability problems remain to be

solved in each block. The reduction is generally useful in that the work necessary to solve the

problem becomes proportional to the sum of the work to solve the subproblems as opposed to

being proportional to the product of the work required to solve the subproblems. However, it is

22

not possible to guarantee that there will be more than one block. It is possible to save no work

at the expense of finding only one block.

An important special case of the biconnected component reduction is the bridge reduc

tion. Unlike the general biconnected component reduction, the bridge reduction is simple. If a

bridge is a member of every simple path between two /f-vertices then the bridge must be

included in the set of working edges. Excluding such a bridge would lead to a deadend. See

Figure 2.3. Implementing the bridge reduction may be done efficiently, requiring effort propor

tional to the number of edges and vertices of the graph. One may think of the bridge reduction

as including all bridges in the working set without branching.

The degree one vertex reduction or the pendant reduction is a particularly easy case of a

bridge reduction. If the degree one vertex is not a tf-vertex, the vertex and the adjacent edge

may simply be removed and ignored. If the degree one vertex is a ^-vertex, the adjacent edge

is removed and the weight associated with the network must be multiplied by the working pro

bability of the edge removed. The following two algorithms, DOR(G) and doriv), show one

possible way to implement degree one vertex reductions.

doriv)

if v is a pendant incident with edge e then

1) if v€K then w - wpe;

2) remove edge e - iv,u); and

3) dor(u).

DOR(G)

1. For every vertex v€G do doriv).

3. Degree Two Vertex Reductions

The degree two vertex reduction is a useful reduction in which a degree two vertex and

the two edges adjacent to it are replaced by a single edge. Many authors have described these

reductions which are usually called series reductions or series edges reductions. This section

23

describes two degree two vertex reductions and a situation in which such areduction cannot be

performed.

Suppose vertex v has degree two and is adjacent to edges e\ - (v,vi) and e2- iv>vi)-

One wishes to replace edges e\ and e2 with the single edge <? - (vi,v2). See Figure 2.4a.

Different situations dictate what calculations should be performed to determine the working and

failure probabilities of the edge e or if the reduction can be performed at all. The situation

depends on which vertices of v,vh and v2 are in the set K.

Case 1. Vertex v is not a K-vertex.

If v is not of K then the network can operate even if both ex and e2 fail. Moreover, neither of

these edges can be on any path of working edges connecting two tf-vertices unless both are

working. It is possible to replace ehe2, and v with the single edge e - (v!,v2) that works with

the probability p - p\p2 and fails with probability q - p\q2 + p2q\ + q\q*

Case 2. Vertex v is a ^-vertex. Vertices v\ and v2 are both tf-vertices.

At least one of the edges e\ and e2 must work else vertex v will be disconnected and the net

work will fail. Only if both edges work will these edges aid in connecting the rest of the net

work. It is possible to replace ex, e2, and v with the single edge e - (vhv2) that works with

probability p - p\p2 and fails with probability q - p\q2 + p2q\. Such an edge may be defective.

Case 3. Vertex v is a tf-vertex. Vertices vi and v2 are not both tf-vertices.

No reduction is possible.

A proper understanding of the degree two reduction in /:-terminal network reliability may

be obtained by an analysis of the four states associated with the working and failing of the

edges e\ and e2 in the three cases described above. See Figure 2.4b.

This reduction may be performed in time proportional to the number of vertices and is

quick and simple. There exist efficient algorithms that perform parallel edges reductions and

degree two vertex reductions. The following is a sketch of DTR(G), an Ol/i2] algorithm that

performs degree two vertex reductions and reduces any resulting parallel edges. It uses

PER(G), periu), and dtrizj) which is a routine that examines vertex z to perform a degree

two vertex reduction. This routine dtr also performs any resulting parallel edges reduction and

causes a neighboring vertex of z to be examined if a new degree two vertex may have been

created.

dtrizj)

If ((degreeiz) - 2) and (case 1 or case 2)) then

1) remove the two incident edges ix,z) and iy,z);

2) add edge e — ix,y) appropriately updating the weight w and finding pe and qe\

3) perix); and

4) if a parallel edges reduction can be performed then

if ix ** j) then dtrix,y) else dtriy,x).

DTR(G)

1. PER(G)

2. For all vertices z - 1, • • • ,n do dtriz,z-\).

First perform all parallel edges reductions. This takes no more than Ol/r+m] time. In

0[n] time, construct a list of the degree two vertices. Each vertex on the list can be examined

in constant time to determine if a degree two vertex reduction is possible. If a reduction can be

performed, a vertex and an edge need be removed and a pair of parallel edges may be created.

If z, a degree two vertex adjacent to vertices x and y, is reduced then the only place parallel

edges may occur is between x and y. (As the algorithm is described, it takes Oin] time to find

this edge although it may be possible to perform this reduction in constant time.) If there are

no parallel edges, the examinations should proceed, otherwise either x or y or both may be eli

gible for inclusion on the list of vertices to be examined.

The list should be implemented as a stack with the vertex most recently added to the

stack being the first one examined. Note that when examining vertices that have been added to

the list only one adjacent vertex need be considered for inclusion in the list; the other neighbor

24

will have already been considered. Thus the net effect of an examination and all subsequent

examinations it induces, does not increase the length of the list. Examined vertices should be

removed from the list. Examinations should continue until the list is empty.

Algorithms implementing the above can perform all parallel edges and degree two vertex

reductions in Oln2] time. The cumulative number of degree two vertices examined will be 0[n)

and the search for parallel edges at each vertex is Oln] so the result is obtained. Additional

research might be directed at finding more efficient methods for performing these reductions,

especially on sparse graphs.

4. Wheatstone Bridge Reductions

The subgraph configuration known as the Wheatstone bridge can sometimes be replaced

by a single edge in a reliability preserving network transformation. This reduction is noted

implicitly in many works in which authors write of triconnected component decompositions. It

is mentioned explicitly by Murchland and Shier[1973] although they did not include the formu

las. No one seems to have applied this reduction to Ar-terminal network reliability; neither does

it seem that any authors have analyzed the effects this reduction has on algorithmic complexity

as is done in the next chapter.

A Wheatstone bridge may be described as a subgraph W- (VW,EW) with Vw - [1,2,3,4\

and Ew- [a,btc,d,e\ where a - (1,3), b - (1,4), c - (2,4), d- (2,3), and e - (3,4) where

vertices 3 and 4 are of degree exactly 3. See Figure 2.5a.

The important characteristic of the Wheatstone bridge is that there are two vertices

(necessarily of degree three) that will be adjacent only to each other and two other vertices. In

the case of W, vertices 3 and 4 are adjacent only to themselves and vertices 1 and 2. There are

no restrictions on how many edges may be adjacent to vertices 1 and 2. Another observation is

that the Wheatstone bridge is the only configuration possible for a triconnected component with

four vertices (including the two vertices of the separation pair associated with the component).

There are different kinds of Wheatstone bridges in Ar-terminal network reliability prob-

25

lems; they differ in the location of the ^-vertices. The transformation to a single edge is possi

ble if and only if either both separation pair vertices are tf-vertices or neither of the interior

vertices of the Wheatstone bridge is a Af-vertex. In all other cases, the transformation does not

preserve network reliability as non-redundant information about the location of tf-vertices is

lost. The inability to perform these reductions is related to the inability to perform degree two

vertex reductions on a Zf-vertex adjacent to one or more vertices not belonging to K.

The following theorem shows how to replace aWheatstone bridge with a single edge in a

reliability preserving network u-ansformation. The formulas for calculating the working and

failure probabilities of this edge are presented.

Theorem 2.2 If W is a Wheatstone bridge that is reducible then R[G] - RlG - Ew+ w]

where edge w - (1,2) with

Pw - PePwe + QePwd and qw - peqW(. + qtq*4

where

P»c " ^cl^cJ

and

qW{ - pWelq*c2 +pWc2Q»cl +^tMiif {l4i H * " 0)
with

Pwcl - Pa + QaPb* QwcX " Qa<lb<>

Pwc2 - Pd+ QdPc and q„c2 - qeqd

and where

P»*" *n*to + *»ifl"A + *wi*vi
and

^-«"rfi*"to

with

Pwdl " PaP*

qWjn - PaQd + Atfa + (?«$</ if 3€JO

26

Pwd2 " PbPc*

and

1wa - PbQc +PcQb + (Mc «f 4€ AT).

Proof. When edge e is contracted in G, two parallel edges reductions and one degree two ver

tex reduction transform the Wheatstone bridge Winto asingle edge wc with pWg and qW{ as in

the theorem statement. Let Gc be the name of the network obtained after these reductions are

applied to G*e. See Figure 2.5b.

When the edge e is deleted from G, two degree two vertex reductions and one parallel

edges reduction transform the Wheatstone bridge Winto asingle edge wd with p„d and q„d as

in the theorem statement. Let Gd be the network obtained after these reductions are applied

to G-e. See Figure 2.5c.

The reductions used in obtaining Ge and Gd insure that RlG'e) - R[GC) and

R[G-e] - R[Gdl Using this fact and the factoring theorem again, one can obtain

R[G] - peR[Ge] + qeR[Gd)

- pe(PwR[Gcmwc) + qwRlGc-wc])

+ qe(PwdRiGdmwd) +qwJt[G<-wJ).

Now observe that

<?cX- Gd*wd- GmEw

and

Ge- we - GtTWd - G-Ew>

Rewriting and combining terms yields

RIG] - ipepWe +qep„)R[G*Ew\ +(M*t +M*;*[<?-£*].
Observe now that GmEw- Gmw and G-Ew- G-w where w is the single edge replacing the

Wheatstone bridge W.

Clearly, W may be replaced by w with

Pw - PePwt +OePwd and g„ - &qWc +«e«Wrf

27

while preserving network reliability. D

In general, edge w will be defective with pw + qw < 1.

One may find Wheatstone bridges by identifying those triconnected components with

exactly five edges. Recall that a triconnected component may be separated from the rest of the

graph by the removal of two vertices. Updating the triconnected component decomposition of

the original network makes it possible to identify new Wheatstone bridges without having to do

very many decompositions. Although this decomposition may be done in time proportional to

m+n, the constant of proportionality is high enough to discourage doing it often.

Another way to find Wheatstone bridges is to examine all pairs of vertices corresponding

to edges incident on vertices of degree three. If both vertices are of degree three, one can

check their edge lists to see if they have two vertices in common. At worst, this is an 0[n]

computation. Further research might be directed at finding better ways to identify Wheatstone

bridge subgraphs.

It is possible to perform all parallel edges, degree two vertex, and Wheatstone bridge

reductions in 0[n2] time. First perform ail parallel edges and degree two vertex reductions. This

can be done in Of/i2] time. It is now necessary only to show that all Wheatstone bridge reduc

tions and reductions that they induce can be resolved in Oln2] time.

Create a list of all pairs of degree three vertices by culling the list of edges incident on

degree three vertices. The length of this list is at worst 0[n]. Each vertex pair is examined in

turn with a constant time procedure. If the vertices are not the interior vertices of a Wheatstone

bridge, the pair is removed from the list and the next pair examined. If a Wheatstone bridge

with separation pair vertices u and v is discovered, both vertices and five edges are replaced by

a single edge e—iu,v). All pairs of vertices on the list containing one of the removed vertices

will never belong to a Wheatstone bridge and will be removed when they are examined. If

parallel edges are created by the reduction, it will be a pair of edges between vertices u and v.

A list of degree two vertices requiring examination will be started with vertices u and v as its

first two members. Any degree two reduction will lead to the removal of at least one vertex and

28

29

one edge. Such a reduction may also lead to a parallel edges reduction and perhaps a single

degree two vertex being added to the list of vertices to be examined. After all possible degree

two vertex and parallel edges reductions have been performed, at most one new vertex pair can

be added to the list of degree three vertex pairs to be examined.

The following analysis will show that algorithms that implement the above ideas run in

Oln2] time. Even when additions to the list of pairs of vertices are considered, the total number

of pairs ever on the list is Oln]. There is a constant amount of time associated with the exami

nation of each pair and doing a Wheatstone bridge reduction. A constant amount of time is

associated with examining each degree two vertex. The list of degree two vertices never has

more than two vertices since a new vertex isn't added until a vertex and an edge have been

removed. There are at most Oln) lists whose cumulative membership is also Oln]. The total

work associated with parallel edges reductions is 0[n2] since the Oln] routine peri) is used on

each of the Oln] times that a parallel edge may be created after a Wheatstone bridge or a

degree two reduction. Therefore such an algorithm will perform all of these three reductions in

Oln2] time. Described below is such an algorithm.

wbriu, v)

1) Reduce the Wheatstone bridge with separation pair iu,v).

2) Add the edge iu,v).

3) periu); dtriu,v). If reductions were done and a new bridge formed then wbriu,v).

(Note that u or v might have been relabeled.)

WBR(G)

1. PER(G)

2. DTR(G)

3. Until there are no more pairs of degree three vertices adjacent to each other and ver

tices u and v do wbriu, v).

Note that this reduction is a special case of a triconnected component reduction. Similar

analysis yields a similar reduction for triconnected components with five vertices, two of which

30

belong to a separation pair. More work is necessary to determine exactly how these reductions

affect algorithmic complexity.

5. Triconnected Component Reductions

The triconnected component reduction is a quick reduction. As described here, it is also a

complex reduction. A triconnected component may be isolated from the rest of the graph by

the removal of two vertices, neither of which is a cut vertex. Such a pair of vertices is known as

a separation pair.

The idea of using triconnected component decomposition in the analysis of network relia

bility problems has attracted the attention of numerous authors: Birnbaum and Esary[1965],

Rosenthal[1974], Ball[1977], and Hagstrom[1981]. This section will survey past use of tricon

nected components in network reliability analysis as well as present a different view of this idea.

Implications of this reduction to the complexity of algorithms are discussed in Chapter 3.

Ball notes that Birnbaum and Esary consider replacing an entire triconnected component

(with separation pair vertices u and v) by a single edge iu,v) in the two terminal network relia

bility problem. One would then set the working probability of this edge to the two terminal

iu,v) network reliability of the triconnected component. Neither Birnbaum and Esary nor Ball

specified the use of this decomposition for the /:-terminal network reliability problem.

Rosenthal describes triconnected component decomposition as one of the simpler cases of

replacing subgraphs with what he calls hyperedges; it is a case of using a single edge with three

states (working, failed, network fails) to replace a subgraph that can be separated from the rest

of the graph by the removal of one or two vertices. Rosenthal presents an algorithm for the k-

terminal network reliability problem that recursively uses biconnected component reduction,

simple reductions (series-parallel), and what may be called triconnected component decomposi

tion.

Hagstrom uses the Hopcroft-Tarjan triconnected component decomposition tree to

represent a graph uniquely factored into its triconnected components. She then shows how one

can solve the two terminal network reliability problem (as well as some others) by solving sub-

problems for each triconnected component and then using the decomposition tree to properly

combine these various results to obtain the solution to the original problem. Hagstrom also

points out that the concept of a triconnected component in a network is a specialization of the

concept of a module in a binary coherent system.

A number of graph theoretic lemmas, a conditioning argument, and an observation will be

used to motivate a technique of unconnected component decomposition for the all terminal net

work reliability problem. It will be assumed that the network under consideration is a block

whose solution is called for in a biconnected component decomposition. Further it will be

assumed that the network will have been preprocessed with parallel edges reductions and degree

two vertex reductions. For this reason, the network may be assumed to be biconnected,

without parallel edges, and without vertices of degree less than three.

Let a, b be a pair of vertices in a simple biconnected graph G. Suppose that the edges of

G are divided into equivalence classes £|, £2, •, £c such that two edges which lie on a

common path not containing any vertex of a, b except as endpoints are in the same class. The

classes £, are called separation classes of G with respect to a, b. If there are at least two

separation classes then a, b is called a separation pair unless there are exactly two separation

classes and one class is a single edge. The above definitions are from Hopcroft and Tar-

jan[1973] and are specialized to the case where G has no parallel edges.

A triconnected decomposition partitions the edges of a graph into equivalence classes. The

next lemma and its corollary help characterize these classes.

Lemma 2.3 If G is simple, biconnected, and with all vertices of degree at least three then no

separation class E, with separation pair a, b will have two, three, or four edges.

Proof. If |£(| - 2 then either the two edges are in series or parallel, contrary to assumption.

If |£/| - 3 then there must be exactly one vertex in ViE,)-a-b where ViE,) is the set

of vertices incident with some edge of £,. If there were more than one then some vertex would

31

have degree less than three. With only three vertices there is still no configuration of three

edges that allows them all to be in the same equivalence class and not form parallel edges.

If |£,| - 4 then there must be at least four vertices in ViEf). Since there is no way for

both non-separation pair vertices to have degree three without creating parallel edges or violat

ing the equivalence relation, this case is also impossible.

Therefore, either |£,| - 1 or l£,| > 5. a

Corollary 2.4 If |£(| - 1 then the edge connects the separation pair vertices.

The next three lemmas show that the effects of branching and performing parallel edges

and degree two vertex reductions are local to the triconnected component in which these opera

tions are performed.

Lemma 2.5 Let |£,l ^ 5 and |£,| ^ 5. After deleting or contracting e€Eh Ej will still be a

separation class with the same set of edges.

Proof. The common paths that determine membership in £, use neither edge e nor more than

one of its vertices so these paths will not be affected by deleting or contracting e. D

Lemma 2.6 Let P be a set of parallel edges in G and let E, be a separation class with I£,1^5. If

Pf)Ei— ts then after performing parallel reductions on P, Et will still be a separation class

with the same set of edges £,.

Proof. None of the paths within E, will be affected, a

Lemma 2.7 Let v be a degree two vertex of G not adjacent to any edge of £,. After performing

a degree two reduction on v, Et will still be a separation class with the same set of edges.

Proof. The reduction will not affect any path of Et. Q

The following theorem lays the foundation for triconnected component decomposition. It

32

3?

shows how one can find the combined reliabilities of a set of similar networks by solving a reli

ability problem on only one of these similar networks.

Theorem 2.8 Suppose t networks Gh G2, • • •, G, are isomorphic to the simple network

(7-(K,£). Associated with each network is a weight wh The / networks differ only in these

weights and the probabilities of edge e\.

Let pu - Proble, works in <?,-] and qu - Probl ej fails in G,\.

By assumption pu - pj and q0 - qj for j&l. Then

£*,**«?,) - RkiGt+i)
i

where (7,+j - (V,E) with

Pt+ij - pj and q,+ij - qj for y^l,

and A+i.i - Jw^i, and $,+u - £w,-f/i.

Proof. Note that Gmex - (?,*ei and G-ej - <?,-<?! for all / and condition.

w,RkiGi) - wipnRkiGi*ei) + w^i/MG,-*!)

2>,**((7,) " P.+i.iRkiG'eJ + ?,+M**(<?-ei) - **(G,+i)D

The basic principles of this technique of triconnected component decomposition are most

easily explained for the network reliability problems where all vertices are Af-vertices. For now,

attention will be restricted to the all terminal case.

Consider the execution of a backtrack algorithm that uses both parallel edges and degree

two vertex reductions. Further suppose that the graph has been partitioned into its separation

classes and that branching is limited to edges that were elements of £, (I£,1^5) with separation

pair vertices a,b. So long as one does not select edges that are bridges with respect to P(£,),

one will create a search structure whose leaves represent graphs in which E, is replaced by a

single edge. These leaves represent a partition of the success events of the network. Some

linear combination of the reliabilities of the graphs represented by the graphs at these leaves is

3<!

the reliability of the original network. The probability of reaching agiven leaf is the appropriate

weight to be assigned to these networks that differ in one edge.

Application of Theorem 2.8 is now possible. The subproblems associated with the leaves
of the search structure developed by branching on edges of the same triconnected component

may be solved together. This is an example of what Changll981] calls backtrack fusion; sub-
problems associated with different nodes of the search structure are fused. This process of
fusion may be continued on the various triconnected components one at atime and in any

order.

Unfortunately, in the fc-terminal network reliability problem, it may not always be possi-
ble to reduce all triconnected components to asingle edge. The difficulties with performing the
reduction are generalizations of the cases in which it is not possible to perform degree two ver

tex reductions and Wheatstone bridge reductions. These difficulties must be discussed in refer
ence to particular classes of algorithms. It is assumed here that the algorithms posed for the
solution of the fc-terminal reliability problem are backtrack algorithms that alternately include
and exclude edges in order to create apartition of events whose probabilities are easily deduced.
The algorithms may employ techniques of parallel edges reductions and degree two vertex
reductions. The following theorem gives necessary and sufficient conditions for performing the
triconnected component decomposition when using these algorithms.

Theorem 2.9 Let Tbe atriconnected component of Gwith separation pair vertices uand v. It
is possible to replace Twith asingle edge ,- («, v) in anetwork reliability preserving transfer-
mation where p, - P(T) and q, - Q(T) iff

(i) both u and v are AT-vertices, or

(ii)no vertex in (V(T)-u-v) isa K-vertex.

Proof. If (i) is true, p, - RKn rl7l and q, - RKn rlr*(u,v)l.

If (ii) is true, p,- RuJT] and q, - 1 - A-

The difficult part of the proof lies in showing that if both (i) and (ii) are false, then it is

impossible to find functions PiT) and QiT) such that one may perform a network reliability

preserving transformation replacing 7* by the edge / - iu,v). Call this transformed graph G.

If both (i) and (ii) are false then one or more (but not all) interior vertices of T are K-

vertices and at least one of u and v is not a Af-vertex. Without loss of generality, suppose u is

not a AT-vertex.

Consider all possible sequences of branching exclusively among the edges of 7" until T is

empty and such that no AT-vertex of T is ever disconnected. The leaves of such a search struc

ture will represent one of three graphs: G\ - G*t where the composite vertex of u and v is a

AT-vertex; C?2- G—t where u is not a K-vertex and v is; and G3- G— t where u is a AT-

vertex. By unifying the subproblems at these leaves one gets

(1) RklG) - wxiT)RlGx) + w2iT)RlG2) + w3<r>J?[<?J

where w,(7") is the weight assigned to each graph. Each weight should be the sum of the proba

bilities associated with leaves representing the particular graph. Assume that each w,(7")>0.

This assumption may be assured by initially contracting all edges in T that never fail and delet

ing all edges in T that never work.

When replacing T by the single edge /, it is necessary to choose between G2 and G3. One

has the choice of

(2) RklG) - PiT)RlGx] + Q2iT)RlG2)

or

(3) RklG) - PiT)RlGx) + Q3iT)RlG&

The facts that RlG\] > RlG2] and RlG\] > RlGd are two things that,can be said about

the reliability of these three graphs. However, since it is possible that RlG\] > 0 and

RlG2] - RIG3] - 0, it must be that PiT) - ^(D.

Unfortunately, it is also possible that RlG2] > RlGj] - 0 or RlGj > RlG2] - 0. Both

cases lead to a contradiction of (1) with (2) or (3).

35

36

Hence it has been shown that, in general, T cannot be replaced by a single edge t with

p," PiT) and q, - QiT) in a reliability preserving transformation. D

There are lots of questions about the use of this technique. Should it be used recursively?

When is it worthwhile to do a triconnected component decomposition? Is is useful? These and

similar questions are addressed in the next chapter where backtrack algorithms that use this and

other reduction techniques are analyzed.

6. Remarks

Without reductions, backtrack algorithms for network reliability problems would be little

more than naive state enumerators. Although the reductions described here have improved

these algorithms considerably, they cannot stop the combinatorial explosion in the backtrack

search structure generated when applying the algorithms to arbitrary networks.

37

Before

After

'm

O Oy

Figure 2.1 The Parallel Edges Reduction

38

CK

R[G] - Rp*] •*[<*]•* EM

Figure 2.2 The Biconnected Components Reduction

Figure 2.3 Relevant Bridge Edges

Before

O

Case 1.

Case 2.

Case 3.

'1
o

V

e1 e2

e2

e works

After

O
'2 1

Figure 2.4a The Degree Two Vertex Reduction

-O

el e2 © (^ e fails

•l e2

e"T ?2 '

^ A

0*K
•""•• W

e1 e2 • e works @CK

e1 e2 | • £ e fails

e"l e2)

«1 r2

a

network fails

o w •\gj

e1 e2 • e works

e1 «2 • @ e fails

•l e2 O A e fails

q e^ network fails

Figure 2.4b Degree Two Vertex Reductions

40

41

W

Figure 2.5a The Wheatstone Bridge Reduction

42

After contracting edge e

After Parallel Edges Reductions

After Degree Two Vertex Reduction

Figure 2.5b Effects of Contraction

43

After deleting edge e

After Degree Two Vertex Reductions

After Parallel Edges Reduction

Figure 2.5c Effects of Deletion

Chapter Three : Algorithms and Complexity

Let G - iV,E) be an undirected network with perfectly reliable vertices and unreliable

edges. Let p(— Prob[edge e, is working] and q{ — Prob[edge e, is failed). Assume that edge

failures are independent. The network reliability problem considered here is to calculate RklG)

=» Prob[there exists a path of working edges between every pair of a set K of k vertices]. Five

classes of backtrack algorithms for this problem are presented along with a discussion of their

algorithmic complexity.

Complementary branching schemes are the basis of the backtrack algorithms described in

this chapter. These algorithms rind analytic solutions to network reliability problems. By branch

ing and performing reductions, each algorithm enumerates a partition of events whose probabil

ities are easy to calculate. These algorithms differ from naive state enumeration in that they

recognize if the graph is connected or if it cannot be connected before a state is completely

specified. The reductions used and the strategies for selecting edges on which to branch are

what differentiates these classes of algorithms.

Algorithms of the first class, Al, differ from blind branching in that they do not branch

on bridge edges. This is achieved by performing bridge reductions. A modification to a particu

lar algorithm of this class allows one to enumerate all the spanning trees of a graph.

Algorithms of class A2 perform parallel edges reductions. It is shown that slightly

modified A2 algorithms may be used to enumerate the spanning trees of a graph in a coded

form. Other arguments show that the number of leaves generated by these algorithms is equal

to the number of single source acyclic orientations of the graph which equals the number of

regions created by a certain arrangement of hyperplanes. Satyanarayana and Chang 11981] show

that the number of leaves generated is equal to the domination, a graph invariant. It is also

44

45

possible to enumerate these acyclic orientations using slightly modified A2 algorithms.

All algorithms of A3 perform parallel edges reductions and degree two vertex reductions

while attempting to select edges for branching so as not to form separable graphs. The number

of leaves generated by these algorithms is equal to the minimum number of source-sink acyclic

orientations of the graph which is equal to the Crapo beta invariant evaluated on the associated

graphic matroid. This is the same number as the number of bounded regions in a certain

arrangement of hyperplanes (see Zaslavsky[1977]) which is also the same number as the

minimum domination as described in Chang[1981]. For any given graph, it is possible to give a

problem instance and an edge selection strategy that will allow the enumeration of the source-

sink acyclic orientations.

In addition to performing all the reductions of A3, algorithms of A4 also perform the

Wheatstone bridge reduction. Bounds for the number of leaves generated are presented as well

as ideas about optimal edge selection strategies.

Less is known about A5 algorithms which incorporate general triconnected component

reductions into A3 algorithms. Ideas about edge selection strategies and the frequency and

method of finding triconnected components are discussed in relation to algorithmic complexity.

None of the ideas embodied by any of these algorithms is novel in itself. Algorithms of

classes Al and A2 have been described by others (i.e. Murchland[1975] and Ball[1977])

although most other researchers were concerned mostly with the all terminal problem or the

two terminal problem and not the ^-terminal reliability problem.

Although all types of degree two vertex reductions have been described before, until

recently no one author seems to have discussed them in their full generality. The characteriza

tion of the optimal edge selection strategy when these reductions are performed is new. The

complexity analysis of class A3 algorithms which use this strategy is also new. An independent

proof of this result using domination theory is in Chang[1981]. No one else seems to have

noticed the relation between the complexity of these algorithms and the Crapo beta invariant.

46

The Wheatstone bridge reduction of the A4 algorithms is mentioned by Murchland and

Shier[1973] but it does not seem that anyone developed the idea further. The bounds for the

complexity of A4 algorithms are new. No one has described optimal edge selection strategies

for algorithms that include Wheatstone bridge reductions or triconnected component reduc

tions. The speculations presented here about the prospects of A5 algorithms diverge from the

views of other researchers.

These backtrack algorithms enumerate a partition of events. It is sometimes possible to

associate combinatorial objects with these events. In this chapter, it will be shown that trees,

acyclic orientations, and regions in arrangements of hyperplanes may be associated with the

leaves generated by algorithms of classes Al, A2, and A3. Moreover, it is often possible to

transform enumeration algorithms into reliability algorithms and vice-versa if one knows what

combinatorial objects may be associated with the events of the partition used in the reliability

analysis.

1. Backtrack Algorithms with Bridge Reductions

Let Al be a class of backtrack algorithms for the ^-terminal network reliability problem.

The distinguishing characteristic of this class of algorithms is that no edge that is a bridge with

respect to the set of AT-vertices is ever deleted. This may be accomplished by not selecting such

edges for branching or by performing bridge reductions. RELl describes algorithms of this

class.

RELKG,»v)

1. Remove all irrelevant edges.

2. Perform bridge reductions. If B is the set of bridges contracted, set w- njj/v

3. If G is a vertex then return(w).

4. Select an edge e such that G*e and G-e are connected.

5. Return(RELl(G#e,wpe) + RELl(G-e,>m^)).

The first call should be RELl (G,1.0). Steps 1 and 2 may be done in Olm+n) time using

a variant of a biconnected component decomposition algorithm. Recall that an irrelevant edge is

one that lies on no simple path between AT-vertices. In step 2, it is necessary to update w by

multiplying it by the probability that all bridge edges are working. One can easily modify this

algorithm so that bridges are not actually contracted in step 2. If this is done, it is necessary to

modify step 3 to check if G is a tree and to returniw Problthe tree consists of all working

edges]). The edge selection strategy requires no additional labor as any non-bridge edge will

satisfy the conditions of step 4. A more strenuous condition would be to require that both Gme

and G-e are coherent (have no irrelevant edges).

Of interest for complexity analysis is L\AiG) - the number of leaves generated by some

algorithm AeA\ when calculating RklG]. First consider the problem of counting the leaves

generated when solving the all terminal network reliability problem. Recall from the first

chapter that riG) is the number of spanning trees of G.

Theorem 3.1 L\AiG) - riG) for all At Al when solving the all terminal network reliability

problem.

Proof. Use induction on the number of edges. The inductive hypothesis is that the theorem

holds for all graphs with |£j < m. This is certainly true if m «- 1 or G is a tree.

Note that the only irrelevant edges possible in the all terminal problem are self loops. The

number of spanning trees is invariant to the removal of self loops because no self loop appears

in a tree. The number of spanning trees is also invariant to the reduction (contraction) of

bridges since every bridge is in every spanning tree.

Consider some graph G with m+\ edges. If G has self loops or bridges, then the removal

of a loop or the reduction of a bridge will yield a graph with m edges and the same number of

trees and give the desired result. If there are no bridges or self loops, an edge will be selected

and two subproblems created. The number of leaves will then be the sum of the leaves gen

erated by these subproblems, that is,

47

48

L\AiG) - LlAiGme) + Il^G-e).
Since neither Gme nor G-e has more than m edges, the inductive hypothesis may be used to

give

riGme) - L\AiG*e) and riG-e) - L\AiG-e).

Recall from Chapter 1 that a factoring theorem which states riG) - riG*e) + riG-e) holds

for riG) and the result is obtained. D

This theorem does not answer the more general question of how algorithms of this class

perform for it-terminal problems. Since the removal of irrelevant edges can not increase the

number of trees, it is easy to establish that the number of trees represents an upper bound on

the number of leaves generated by any algorithm of the class Al for arbitrary fc-terminal net

work reliability problems.

One might expect that the number of leaves generated for the /:-terminal problem need

not exceed rkiG) - the number of it-trees of the graph G. This is not so, primarily because

rkiG) * rkiGme) +rkiG-e). A it-tree is a tree, all of whose pendant vertices are AT-

vertices, that connects all vertices in AT. Such a tree is a minimal success set. Closely related is

what will be called a itrtree. For some total ordering imposed upon the edges of G, a /crtree is

an acyclic subgraph that connects all the vertices in K but contains no lexicographically smaller

subgraph that also connects all the vertices of K. (Lexicographic ordering is analagous to alpha

betic ordering; however, rather than using the alphabet one uses some other ordering of basic

elements (i.e. edges) to sort objects composed of those elements.) The number of leaves gen

erated by an Al algorithm for a ^-terminal problem need not exceed tA/(G) - the number of

itrtrees of Gwhere this number depends on the ordering imposed on the edges.

Let the vertices of G be labeled 1,2, • • • ,k,k+\, • • • ,n where the first k vertices are the

X-vertices. Let the medges of Gbe sorted lexicographically by their vertex pairs. Let each kr

tree be represented by alexicographically ordered list ofedges. If the rkf trees are listed lexico

graphically it is possible to construct a binary search structure where each leaf represents a

different tree. This same binary search structure may be used to calculate network reliability.

49

These ideas can be developed further to show that it is possible to find the reliability from the

list of fcrtrees without sorting the trees or constructing a binary search structure.

One constructs this search structure as follows. Divide the list of trees into two parts such

that the lexicographic smallest edge that is not in every tree, is in all trees of one part of the list

and is in no tree of the other part of the list. This splitting of the list corresponds to a binary

branch in the search structure with one part of the list corresponding to the lexicographically

smallest non-bridge edge being included (contracted) and the other part of the list correspond

ing to that same edge being deleted. One applies this procedure recursively, treating each part

as a list to be split in two until each list consists of one tree. When this has been achieved, the

binary search structure that has an associated branch for every splitting of a list will have a leaf

that corresponds to a different Jtrtree. For an example, see Figure 3.1.

Every arc of the search structure corresponds to some edge working or failing and may be

labeled with the probability of that event. Each node may be labeled with the probability that all

pertinent bridge edges work. Here pertinent bridge edges are those lexicographically smaller

than the edge represented by the arcs leaving the node. Each leaf may be labeled with the pro

duct of the arc and node probabilities on the path to that leaf. Each leaf represents the event

that the set of working and failed edges is such that the fcrtree corresponding to the leaf is the

lexicographical smallest itrtree all of whose edges are working. The leaf label represents the

probability of this event.

It is possible to generate the binary search structure described above by using a lexico

graphic edge selection rule in a backtrack algorithm. One simply selects the lexicographical

non-bridge edge for branching. After the contraction of some edge («, v) it is necessary to rela

bel the new composite vertex with the minimum of u and v and to change the ordering of the

edges accordingly. Branching according to this scheme corresponds to the splitting scheme

described previously. The arcs and nodes of this search structure may be labeled with the pro

babilities of the appropriate events and the reliability calculated as the structure is generated.

Thus, the following results have been established.

50

Lemma 3.2 There exists an algorithm A c Al that can solve RklC] while generating exactly

Tk.iG) leaves.D

Lemma 3.3 There exists an algorithm A € Al that solves RklG] whose leaves are in 1-1

correspondence with the *rtrees of G.D

It should be noted that for many backtrack algorithms, one may label nodes and arcs

appropriately and sum the leaf probabilities to obtain the reliability. This may be done only

when the backtrack algorithm generates a partition of the success sets. Moreover, note that the

reliability calculation requires work proportional to the size of the search structure and therefore

is no more complex than the generation of the structure. Hence, one may adapt Gabow's span

ning tree enumeration algorithm to solve the all terminal problem in Olnr) time.

Enumeration of the itrtrees of G is possible by modifying reliability algorithms of the

class Al. An enumeration algorithm may be specified as follows. The initial call should be

ENUM1(G,0).

ENUM1 (G,S)

1. Remove all irrelevant edges.

2. Perform bridge reductions. B is the setof bridges contracted. Let S - S \J B.

3. If G is a vertex then output(5) and return.

4. Use the lexicographic edge selection rule. Let e be the edge selected.

5. ENUM1(GV,SU <?); ENUM1(G-<?,S).

2. Backtrack Algorithms with Parallel Edges Reductions

Let A2 be a class of backtrack algorithms for the ^-terminal network reliability problem.

The important feature of this class ofalgorithms is that each set of parallel edges is reduced to

a single edge in a reliability preserving network transformation. The sketch that follows

describes these algorithms.

51

REL2(G,w)

1. Remove irrelevant edges.

2. Perform parallel edges reductions.

3. Perform bridge reductions. If B is the set of bridges contracted, set w- w\[pe.
e*B

4. If G is a vertex then return (w).

5. Select an edge e such that G*e and G-e are connected.

6. Return(REL2(G*e,/?eH0 + KEL2i G-e,qew)).

REL2 differs from RELl in that REL2 performs parallel edges reductions. Of interest is

L2AiG) - the number of leaves in the search structure generated by algorithm A e A2 when

solving for RklG). Again, the number of leaves generated when solving the all terminal prob

lem will be considered first. Recall that aiG) is the number of single source acyclic orientations

of G.

Theorem 3.4 L2AiG) - aiG) for all A € A2 when solving the all terminal network reliability

problem.

Proof. Use induction on the number of edges. The inductive hypothesis is that the theorem

holds for all graphs with |£l < m. This is certainly true if I£| - 1or G is a tree.

Now consider what happens if G has m+1 edges. Note that there will be no irrelevant

edges. If a bridge or a parallel edges reduction is possible then the invariance of a to such

reductions (Satyanarayana and Procesi«Ciampi[1981], Stanley[1977]) and the fact that the

reduced graph has at least one fewer edge gives the desired result. If no reduction is possible,

an edge will be selected and two subproblems will be created. The number of leaves generated

is clearly the sum of the leaves generated in each of these subproblems, that is,

L2AiG) - L2AiG*e) + L2AiG-e). Since neither G*e nor G-e has more than medges, the

inductive hypothesis may be applied to give

aiG*e) - L2AiGme) and aiG-e) - L2AiG-e).
Combining these equations with the acyclic orientation factoring theorem of Chapter 1yields

£2

aiG) - aiGme) + aiG-e) - L2AiGme) + L2AiG-e) - L2AiG).

This proves the theorem. •

It is easy to show that there must exist edges that satisfy the requirements of step 5. All

edges that are not bridges are eligible. If all edges of G were bridges then G would be a tree

and L2AiG) - a(G) - 1. This edge selection criterion eliminates the possibility of creating

disconnected graphs which become deadends in the search structure. If a disconnected graph

were to be created then aiG) would underestimate the complexity of the algorithm because it

takes work to discover that the graph is disconnected although a for a disconnected graph is

zero.

The combinatorial object associated with A2 algorithms is the unique source acyclic orien

tation. Let akiG) be the number of acyclic orientations with the same source and whose source

and sinks are all AT-vertices. Recall from Chapter 1 that this number is independent of which

K-vertex is chosen to be the unique source. Let Ak — [Ak,Ak, • • • ,Ak*} represent the set of

acyclic orientations of G whose source is vertex 1 and all of whose sinks are AT-vertices.

Associate with each Alk a permutation of a subset of the vertex labels, />*. These permuta

tions may be described constructively as follows. Mark vertex 1 and let it be the first element of

the permutation. Greedily choose the lowest labeled unmarked vertex adjacent to a marked ver

tex by way of an oriented edge. Mark this vertex and append it to P*. Continue this procedure

until all AT-vertices have been marked. These permutations represent the lexicographic minimal

ordering of vertex labels consistent with the partial ordering imposed by the orientations of the

edges. Note that these permutations may be of different lengths and that the last vertex will

always be a AT-vertex. A feasible permutation is one that may be derived from some acyclic

orientation using the greedy method just described.

In the last section, it was shown that an ordered list of the Arrtrees could be used to find

RklG]. In this section, the relationship between enumeration algorithms and network reliability

analysis will be furthered by showing how to find RklG) from any list of Ak, the acyclic orien

tations of G.

53

At least one acyclic orientation must be associated with any set of edges that contains a

it-tree. One may partition the set of successful events by the lexicographic minimum feasible

permuution that may be associated with the working edges of some successful event. Let F'k

be the event that P^ is feasible and F'k be its complement. Then

RklG] - ProblFi) +ProblFxk /$+•••+ ProblFkl •••Fkk'1 /£1
or

RklG) - X Pr<>blPk is the lexicographic minimal feasible permutation].

Given an acyclic orientation, it is an easy matter to construct the associated permutation

and calculate the probability that it is the lexicographic minimal feasible permutation. Let P'k

- ivhv2, -•-,v/). Then ProblPj is the lexicographic minimal feasible permutation] - II

(Prob [there exists an edge from at least one of [vx,v2, •• •,v,} to vj+x] Prob [there is no edge

from {vi,v2, •••,vj] to any v< v>+l, v€ V-[vh •••,vj]). One may compute this probability in

Oln2] time. Therefore, the following has been shown.

Lemma 3.5 Given a list of all ak acyclic orientations with the same AT-vertex as the source and

only AT-vertices as sinks, it is possible to find RklG) in Oln2ak] additional time.n

An enumeration of the itrtrees of G in acoded form may be obtained in a manner analo

gous to computing the reliability. Each permutation represents aset of frrtrees. wben consider

ing the event that there exists at one edge from one of (vi,v2, •••,v;} to vJ+x, one lists each

such edge. The coded form enumeration is realized by listing each such set of edges. One

derives the individual itrtrees by taking all trees where one chooses exactly one edge from each

of these sets. See Figure 3.2.

It is possible to enumerate the acyclic orientations in Ak using abacktrack algorithm. This

can be done by listing the acyclic orientations lexicographically and demonstrating that one can

find an underlying binary structure orby using an algorithm like the following.

ENUM2(G,S)

54

1. Remove all irrelevant edges.

2. Perform parallel edges reductions.

3. If the edge (1,«) is the only edge from vertex 1, then contract this edge and let S -

concatenate (S, u).

4. If G is a vertex then outputiS) and return.

5. Select the lexicographic minimal edge e-(l,v).

6. ENUM2 (G^concatenate(S,v)); ENUM2(G-e,S).

The first call should be ENUM2(G,1). The function concatenate adds the second argu

ment to the end of the first. The output is alist of permutations of vertex labels. To derive the

acyclic orientations, one simply orients the edges in amanner consistent with the total ordering

imposed by the permutation.

Using the fact that the number of permutations beginning with the same label is less than

or equal to <«-l>! or that akiG) < in-\)\, one obtains the result that A2 algorithms generate

no more than (n-D! leaves. A stronger result is that

akiG) < aiG) < in-\)\
which implies that it-terminal problems are never harder than all terminal problems on the

same network when algorithms of this class are used (Procesi-CiampiU98U). Others have

presented similar results for the all terminal network reliability problem. Murchland and
Shier[1973] developed an algorithm that generates asearch structure by including and excluding

edges as is done here. He also discussed series-parallel reductions. Later, Buzacott[1976]
showed that algorithm of Murchland and Shier has <«-l>! leaves when acertain edge selection

strategy is used. Ball [1977,1979] has developed an algorithm with the same complexity that

implicitly performs parallel edges reductions.

3. Backtrack Algorithms with Degree Two Vertex Reductions

The following sketch describes A3, aclass of backtrack algorithms for the /c-terminal net

work reliability problem. Algorithms in this class perform degree two vertex reductions as well
as parallel edges reductions. It is assumed that graphs input to these algorithms are simple (no

55

parallel edges) and biconnected.

REL3(G,w)

1. Perform parallel edges reductions and degree two vertex reductions. Update w.

2. If G is an edge / then return ipfw).

3. Select an edge e such that both Gme andG-e are biconnected.

4. Return(REL3(G#e,/?eH0 + REL3(G-e,<7,w)).

The reductions in step 1 may be performed in Oln2] time. Step 2 may be performed in

constant time. In the all terminal problem, step 3 may be performed in 0[m+n] time using a

variant of a triconnected component decomposition algorithm or in Oln] time using a lexico

graphic edge selection rule. The 0[m+/i] method gives all possible edges for branching and

allows the option of using this information to help select edges at future nodes of the search

structure with little additional work. In the it-terminal case, one must modify step 3 to include

the phrase "if possible." It may not be possible to select an edge that meets these conditions. It

may be that every edge is adjacent to an irreducible degree two vertex in which case the dele

tion of any edge creates a separable graph. If it is possible to meet the conditions of step 3, it

should be possible to find the edge in Olm+n] time.

Of interest is 13AiG) - the number of leaves in the search structure generated by algo

rithm A e A3 when solving for RklG]. It is necessary to distinguish the all terminal problem

and the it-terminal problem in analyzing this class of algorithms. The first part of the following

discussion is devoted to the all terminal case. Note that the existence of a degree two vertex

that cannot be reduced is possible only in the fc-terminal problem and not in the all terminal

problem.

The All Terminal Network Reliability Problem for A3 Algorithms

Theorem 3.6. L3AiG) -piG) for all A e A3 when solving the all terminal problem.

Proof. Use induction on the number of edges. The inductive hypothesis is that the theorem

56

holds for all graphs with |£| < m. This is certainly true if |£l ™1.

Now consider what happens if G has m+1 edges. If a parallel edges reduction or a degree

two vertex reduction is possible then the invariance of /3 to such reductions and the fact that

the reduced graph has at least one fewer edge gives the desired result. If no reduction is possi

ble, and edge will be selected and two subproblems created. The number of leaves generated is

the sum of the leaves generated by these subproblems, that is,

UAiG) - UAiG*e) + UAiG-e).

Since neither G*e nor G-e has more than m edges, the inductive hypothesis may be used to

give

piG*e) - L3AiG*e) and/3(G-e) - UAiG-e).

Recall from Chapter 1 that a factoring theorem which states /3(G) - piG*e) + pi G-e) holds

for /3(G). Combining these equations yields

/3(G) - fiiG'e) + piG-e) - UAiGme) + L3AiG-e) - UAiG).

This proves the theorem, a

Note that /3(G) may grossly underestimate the number of leaves generated if the edges

selected do not satisfy the conditions of step 3. This is because if the edge selected does not

satisfy those conditions a separable graph will be created. A finite amount of work is necessary

to resolve the separable graph although /3 will be zero. A proof that proper edges exist and a

characterization of those edges is presented next.

Showing that it is possible to select proper edges for algorithms of the class A3 is done

using results from the triconnected decomposition of graphs as discussed by Hopcroft and Tar-

jan[1973]. A number of definitions and lemmas are presented to show that there exist edges e

such that both G*e and G—e are biconnected.

Let a,b be a pair of vertices in a simple biconnected graph G. Suppose that the edges of

G are divided into equivalence classes Ex, E2, • • •, Ee such that two edges which lie on a

common path not containing any vertex of a,b except as endpoints are in the same class. The

classes £, are called separation classes of G with respect to a,b. If there are at least two

57

separation classes then a,b is called a separation pair unless there are exactly two separation

classes and one class is a single edge.

A graph is triconnected if and only if it is biconnected and has no separation pair.

.A graph may be split with respect to a separation pair into two split graphs G1 and G2

such that £« - U Eh E2 - £ - £l, l£ll > \E2\, Gx - (ViEl),El [J ia,b)), and

G2- iViE2),E2[Jia,b)) where ia,b) is a virtual edge. The way in which G1 is chosen

insures that \El\ > 2.

Lemma 3.7 If G - iV,E) is simple and biconnected with all vertices having degree at least

three then at least one of the two split graphs has at least five edges.

Proof. By constraining \EX\ > |£2I > 1 and recalling the conditions for a vertex pair to be a

separation pair it is easy to see that If1! > 2.

If |£l| - 2 then IViEx) I - 1 and this single vertex will have degree two which is contrary

to assumption. It is therefore necesssary that IViEx)\ > 1. If IViEx)\ > 2 then |£ll > 5if all

vertices have degree at least three and G is simple. •

When G has been split until no more splits are possible, each split graph is called a split

component. Lemma 3.7 may be applied inductively to obtain the result that at least one split

graph has at least five edges. Virtual edges are considered part of each split component. A split

component is either a triconnected graph, atriangle, or a triple bond (three parallel edges).

Lemma 3.8 If G is simple and biconnected with each vertex having degree at least three then

there will exist a split component with at least five edges.

Proof. At each splitting there will always be at least one split graph with at least five edges that

will also be simple and biconnected with all vertices having degree at least three. When no

more splitting is possible such a split graph will become a split component. D

Lemma 3.9 If G (VyE) is triconnected then both Gme and G-e are biconnected for all edges

58

e € £.

Proof. G is triconnected iff there exist three disjoint paths for all iu, v) vertex pairs. Since the

contraction of any edge e can at most join two of these paths, two disjoint u, v paths will

remain. Deleting any edge e will destroy at most one path which also leaves at least two dis

joint u,v paths. This proves the claim since any graph with at least two disjoint paths between

any vertex pair is biconnected. a

Theorem 3.10 If G - iV,E) is simple and biconnected with all vertices having degree at least

three then there exist edges e 6 £ such that both G*e and G-e are biconnected. Moreover, if

e is an edge (not a virtual edge) from a split component with at least five edges then both G*e

and G-e will be biconnected.

Proof. The proof will be based on showing that edges belonging to split components with at

least five edges satisfy the theorem. The existence of such edges has already been proven in

Lemma 3.8. It is necessary to show that there exist two disjoint paths for all iu,v) vertex pairs

in both G*e and G-e.

If neither u nor v belongs to the split component to which e belongs then there will be

two disjoint u, v paths in both G*e and G-e. There must exist two disjoint u, v paths in G

because G is biconnected. If neither path involves the split component to which e belongs then

the same two paths may be used in both G*e and G-e. If either of these paths uses the split

component note that it must contain both vertices of the separation pair. The fact that the paths

are disjoint implies that at most one of the paths will use edges in the split component to which

e belongs. Clearly a path will remain between the vertices of the separation pair after both con

traction and deletion of e guaranteeing that there will be two disjoint u, v paths.

If only one of u and v (say u) belongs to the split component to which e belongs, use the

fact that there always exists a path containing any given three vertices in a biconnected graph.

Let {a,b] be a separation pair such that u and v are in different equivalence classes with

respect to [u,v]. After both contraction and deletion, the split component to which e and

vertex u belong will be biconnected and there will be a path with a and b as endpoints that

contains u. Some other path containing v with a and b as endpoints will exist in G, G*e, and

G-e. Combining these two paths insures that there will be two disjoint u,v paths.

If both u and v belong to the split component that contains e, recall that this component

is triconnected and use Lemma 3.9. D

An algorithm of the class A3 may be used to enumerate all source-sink acyclic orienta

tions of the graph as follows. Label the source vertex 1 and label the sink vertex n. Call

ENUM3(G,{1)).

ENUM3(G,5)

1. Perform parallel edges reductions.

2. If vertex 1 is of degree two and is adjacent to vertices u and vwith u< v then perform

the degree two vertex reduction, relabel u to 1, and let 5 •• concatenate(S,u).

3. If G is a single edge i\,w) then output(concatenate(S,nO) and return.

4. Select the lexicographic minimal edge e-(l,x).

5. ENUM3(G%?,concatenate(S,jr)); ENUM3(G-e,S).

The output will be permutations. One derives the acyclic orientations by orienting the

edges in a manner that is consistent with the total ordering of the permutation.

The it-Terminal Network Reliability Problem for A3 Algorithms

The analysis of A3 algorithms applied to it-terminal problems is more difficult than the

analysis of the all terminal case. Because it is not always possible to perform degree two vertex

reductions, there is no equivalence between 0(G) and the number of leaves generated. This is

easily seen by considering the case of the Wheatstone bridge wherein the degree two vertices

are the AT-vertices in a two terminal reliability problem. Although /8(G) - 1, class A3 algo

rithms must generate two leaves in finding the solution.

59

60

The lemmas of the first part of this discussion do not apply because there can be degree

two vertices. An irreducible biconnected network may be composed of triconnected components

all of which have two or three edges in which case it may not be possible to branch without

creating separable graphs. For these reasons, the analysis done in the all terminal case no longer

is valid.

Simple biconnected graphs in which all possible degree two vertex reductions have been

performed cannot have triconnected components with exactly four edges. If such agraph has no

triconnected components with five or more edges, there are unification (backtrack fusion) tech

niques that aid in solving the problem. Observe that these graphs are composed of chains of

two or three edges. The endpoints of these chains are separation pair vertices and the interior

vertices are irreducible degree two AT-vertices. Some of these structures may be reduced using

techniques described by Satyanarayana and Wood [1982]. There may also be single edges join

ing separation pair vertices.

If the graph consists only of two edge chains, consider a set of / two edge chains between

vertex / and vertex J, aseparation pair of non-AT-vertices. Let the interior vertices be labeled 1

through /. The entire set of edges may be reduced to one or less edges with three possible

designations of vertices / and J: either / is a AT-vertex or J is a AT-vertex or both are. This

result is obtained by considering the effects ofbranching on edges of the form e-(/,/x).

If one contracts e then / becomes a AT-vertex adjacent to j via the edge ilx,j). If e is

deleted then vertex j becomes a AT-vertex after abridge (pendant) reduction of the edge U„j).

If edges (/,l),(/,2), •••,(/,/) all are contracted then / becomes a AT-vertex adjacent to the

non-AT-vertex j after parallel edges reductions. If edges 0,1),(/,2), •• •,(/,/) all are deleted

then j becomes a AT-vertex not adjacent to /. In all other cases (some edge ii,lx) is deleted and

some edge ii,ly) is contracted), both iand j will be AT-vertices. If this happens it will be possi

ble to perform all degree two vertex reductions. (See Theorem 2.9.) An additional parallel

edges reduction leaves agraph with asingle edge between the two AT-vertices i and j. This is

represented by the search structure in Figure 3.3.

At each leaf there is at most one edge ii,j) as well as the probability of reaching that leaf.

One may unify problems with the same topology by taking the sum of the edges' working (fail

ing) probabilities weighted by the probability of reaching the leaf that represents the graph that

contains the edge. To obtain the three graphs (with the correct edge probabilities) for the three

cases requires Oln2] work.

If s is the number of separation pair vertices, then one need consider at most 2s different

cases of each vertex being a AT-vertex or not. For each case, one chooses the appropriate edge

between every separation pair and solves for the reliability. Summing the reliability over all

cases gives the reliability of the original network.

The overhead in implementing the above unification techniques is likely to outweigh any

actual computational savings. If one does not implement such a scheme, the amount of work

done by the algorithm is bounded below by piG) and bounded above by akiG). The lower

bound is achieved in the all terminal problem and in the two terminal problem where the two

vertices are either adjacent or members of the same separation pair.

4. Backtrack Algorithms with Wheatstone Bridge Reductions

REL4 describes A4, a class of algorithms for the it-terminal network reliability problem.

Algorithms in this class perform Wheatstone bridge reductions as well as parallel edges reduc

tions and degree two vertex reductions. It is assumed that graphs input to these algorithms are

simple and biconnected.

REL4(G,w)

1. Perform parallel edges reductions, degree two vertex reductions, and Wheatstone

bridge reductions updating w appropriately.

2. If G is a single edge / then returnOv/?/).

3. Select an edge e such that both G*e and G-e are biconnected.

4. Return(REL4(G0e,Pew) + REL4(G-e,j,H>)).

The reductions in step 1 are interrelated and cannot be done independently. A

61

62

Wheatstone bridge reduction may lead to the creation of parallel edges and/or degree two ver

tices which may allow additional reductions. Additional research is needed to find the best way

to do all these reductions although it is possible to perform these reductions in Oln2] time. Step

2 may be performed in constant time. In the all terminal problem, step 3 may be performed in

Olm+n] time using a variant of a triconnected component decomposition algorithm or in Oln]

time using a lexicographic edge selection rule. The Olm+n] method may be preferable since it

gives information helpful in the location and creation of Wheatstone bridges. In the ^-terminal

case, one must modify step 3 to include the phrase "if possible." If it is possible to meet the

conditions of step 3, it should be possible to find the edge in Olm+n] time.

The edge selection strategy specified in step 3 does not give sufficient conditions for gen

erating an optimal search structure even in the all terminal case. This is easily demonstrated by

showing that the lexicographic selection rule is not optimal. See Figure 3.4. Even less is known

about optimal edge selection rules for the ^-terminal problem.

Bounds are found for the number of leaves generated by A4 algorithms applied to all ter

minal problems. These bounds are derived by using a particular edge selection strategy when

solving the all terminal problem on complete graphs. By performing a suitable sequence of

deletions from Kn to obtain G and considering the search structure that develops one can show

that LAAiG) < UAiKn).

Theorem 3.11 There exists an algorithm A* A4 such that L4AiG) < tj- in-2)\ for the all

terminal problem.

Proof. Using a lexicographic edge selection rule, degree two vertex reductions, and parallel

edges reductions, one can solve a complete graph on n vertices by generating a search structure

with exactly (ff~2)! nodes that represent the graph K* Using the edge selection strategy as
4!

per Figure 3.4, each K6 may be solved generating 11 leaves. •

5. Backtrack Algorithms with Triconnected Component Reductions

Let A5 be a class of algorithms for the it-terminal network reliability problem that incor

porates triconnected component reductions into the framework of A3 algorithms. These algo

rithms generalize A4 algorithms in that all triconnected components, not just Wheatstone

bridges, are considered for reduction. Predictably, the description of this class of algorithms by

REL5 differs little from REL4.

REL5 (G,w)

1. Perform parallel edges reductions, degree two vertex reductions, and triconnected com

ponent reductions updating w appropriately.

2. If G is a single edge / then returniwpf).

3. Select an edge e such that both G*e and G-e are biconnected.

4. Retum(REL5(G*e,pew) + KELSiG-e,qew)).

The reductions in step 1 are interrelated and cannot be done independently. A tricon

nected component reduction may lead to the creation of parallel edges and/or degree two ver

tices which may allow additional reductions. Additional research is needed to find the best way

to do all these reductions and to determine if all methods produce a unique irreducible graph.

Step 2 may be performed in constant time. In the all terminal problem, step 3 may be per

formed in Olm+n] time using a variant of a triconnected component decomposition algorithm

or in 0[n] time using a lexicographic edge selection rule. In the ^-terminal case, one must

modify step 3 to include the phrase "if possible." If it is possible to meet the conditions of step

3, it should be possible to find the edge in Olm+n] time.

Since the optimal edge selection strategy is not known, it is not possible to determine the

number of leaves generated by algorithms of this class although its worst case bound is certainly

no worse than that of A4 algorithms. Neither is it known what combinatorial objects can be

associated with the leaves generated by these algorithms. It is not obvious that one should

select edges in such a way as to create additional triconnected components although it is clear

that these reductions should be performed if reducible triconnected components exist.

6?
I speculate that it is best to use edge selection rules that tend to create dense graphs or

degree two vertices rather than to try to create additional large triconnected components. If the

graph is fairly dense initially, I further speculate that it is best to use some edge selection rule

(i.e. lexicographic) that minimizes the number of triconnected components with five or more

edges.

6. Remarks

Five classes of backtrack algorithms were presented along with some analyses of their

complexity. The classification scheme was posed to help highlight the essential differences

among these algorithms. In the next chapter computational experience with algorithms from

these classes is described.

The Graph The k |-trees

ad aef aegh bde

bdf bdgh bef begh

cdeh cdg cefg cefh

cegh

The Search Structure

cefh cegh

Figure 3.1 Ordered List of *y-trees and Associated Search Structure

65

CK

abdf
abfg
acdf

acfg

The Graph

denotes parallel edges

The Search Structure

The kj -trees

abe ace abdf abfg

acdf acfg adf adeg

bee bcdf bcfg bdef

bdeg bdfg

bdfg

Figure 3.2 Coded Enumeration of /(/-trees

66

67

Irreducible Chains

Branching

3 Cases

Figure 3.3 Irreducible Chains and Branching

4

1 leaf

« «•

* ♦

Figure 3.4 Non-Lexicographic Rule is Optimal

68

3 leaves

2 leaves

3 leaves

2 leaves

69

Chapter Four: Computational Experience

This chapter describes computational experience gained with an experimental program

developed for solving it-terminal network reliability problems. The data structures used to

implement the algorithms are described. Different edge selection strategies that were imple

mented are described. Examples with answers, run times, and various statistics about the

program's operation are given. These examples are used to highlight certain insights gained

about the operation of the various algorithms when applied to different kinds of networks.

Suggestions for improved implementations are offered.

1. Data Structures

The network data structure was implemented as a set of doubly linked edge lists (one for

each vertex) wherein each undirected edge is represented as a pair of antiparallel directed

edges. Each edge appears on two edge lists. For any such directed edge the field link contains

the address of the associated antiparallel edge. The head and tail vertices of each edge are

stored in the arrays head and tail. The addresses of the previous edge and the next edge are

stored as prev and next. These five arrays ilink, head, tail, prev, and next) contain the informa

tion necessary to describe the graph and are indexed by gadr (graph address).

Associated with each edge of the graph is an edge label ielbl). The same edge label is

associated with each edge of an antiparallel edge pair. This label is used to index the array p

which contains the working probability of each edge. The arrays elbl and gadr allow one to find

the edge label associated with a graph address and vice versa.

More information is associated with the network data structure. It is assumed that graph

addresses 1, •• •,n of head are reserved to be the heads of the edge lists for each vertex.

70

Graph address 0 heads the list of unused memory locations. By convention, if the next and prev

associated with the head of each list are equal to the address of the list head, then the list is

empty. In headli] is the degree of vertex /. In tailli] is the index of the lowest labeled vertex

to which vertex / is connected by working edges. Vertices become connected after edges are

contracted or after certain reductions. For /> n these arrays store the vertices associated with

an edge as was described. See Figure 4.1.

Other useful information includes the number of AT-vertices, the number of vertices, the

number of edges, and the weight associated with each graph. It is important to note that the

vertices labeled 1 to lATl are the AT-vertices. Most of these variables were global and continually

available to all routines. Global variables were also used to store the internal statistics collected.

They are described in the section where the computational results are discussed.

2. Edge Selection Strategies

The optimal edge selection strategies often dictated that one perform complicated graph

algorithms to find a good edge on which to branch. Practical considerations ruled out time con

suming edge selections at every call of the routine. Efforts were made to find fast edge selection

strategies that were optimal or nearly so.

The edge selection rules that were implemented are as follows.

1. An edge adjacent to the vertex labeled 1 was chosen. The edge chosen is simply the

first one on the edge list of vertex 1. If the edges are originally entered in lexicographic

order then this rule is the lexicographic edge selection rule. In the two terminal case, it

is almost always non-optimal since the first edge it contracts (edge (1,2)) creates

irrelevant edges. The labeling scheme and reductions assure that vertex 1 will always

be a non-isolated AT-vertex so there will always be an edge adjacent to the vertex

labeled 1. This rule takes constant time.

2. The first edge on the list of a random AT-vertex is chosen. This rule takes constant

time.

3. The first edge on the edge list of the lowest labeled vertex of maximum degree is

chosen. This rule requires Oln] time.

4. The first edge on the edge list of the lowest labeled vertex of minimum degree is

chosen. This rule tends to create a degree two vertex. If that vertex is irreducible, this

rule will change such a vertex to a pendant. This rule requires Oln] time.

5. This is an interactive edge selection rule with prompting. At each call of the routine, a

list of the edges is printed and the user of the program is requested to select an edge.

6. The first edge on the edge list of the lowest labeled AT-vertex of maximum degree is

chosen. This rule differs from ESR3 in that it does not concern itself with non-AT-

vertices. Unlike ESR3, at least one of the vertices of the edge selected will be in K.

This rule requires 0[it] time.

7. The first edge on the edge list of the lowest labeled AT-vertex of minimum degree is

chosen. This rule requires Oik] time.

8. An edge of the form (l,w) is chosen where u is maximized. Since AT-vertices have the

lowest labels, this rule tends not to cause all AT-vertices to be coalesced early in the

branching process. This rule avoids the problem of creating irrelevant components early

in the search structure as is done by ESR1. This rule requires Oln] time.

9. This rule selects an edge (1,m) where u is the lowest labeled vertex adjacent to vertex

1. This is an Oln] lexicographic edge selection rule. This rule requires Oln] time.

10. This rule allows the user to select the edges chosen although there is no prompting.

This rule is useful after having used ESR5. One can select those same edges and still be

able to have the run statistics printed without seeing an edge list at every call of the

procedure.

11. An edge («,v) is selected where u is the lowest labeled AT-vertex of maximum degree

and v is the lowest labeled vertex of maximum degree on the edge list of u. This edge

selection rule requires Oln] time.

"7

72

12. An edge iu,v) is selected where u is the lowest labeled AT-vertex of minimum degree

and v is the lowest labeled vertex of minimum degree on the edge list of u. This edge

selection rule requires Oln] time. It is felt that this rule would tend to create more

degree two vertices than ESR11.

3. Discussion of Results

Implementations of algorithms of classes Al, A2, A3, and A4 were used to solve prob

lems whose underlying graphs were complete graphs, cubic graphs, quartic graphs, and others.

At the end of the chapter is a set of figures containing examples of problems solved. Each

figure includes a description of the network analyzed and a set of problem instances that were

solved. The solution of each instance required a run of some algorithm. A run is characterized

by three parameters: the class of algorithm run (AC); the number of vertices in AT ik: the ver

tices 1, •••, it are in AT); and the edge selection rule used (esr). The output from each run

includes the answer to the reliability question imrplk]) as well as internal statistics generated

by the program and the amount of computer time used to solve each instance.

The various statistics collected were used to help verify algorithm correctness and to mon

itor and compare the performances of different algorithms. These statistics were output under

various columns. The column titled "mrpl/cl" contains the multi-terminal network reliability

probability for the it vertices of concern. The next two columns, calls and leaves, record the

number of calls to the main recursive routine and the number of good leaves generated in the

solution of the problem instance. There are deadends in the search structure if the number of

leaves is as few as half the number of calls. The column cpusec indicates the number of seconds

the central processing unit of the computer used in a run. These times are to the nearest -^

second and do not include the small amount of time used to input the data. The last four

columns contain information describing the number of times each of the various reductions was

successfully performed. Counted are the number of degree one vertex reductions(dors), parallel

edges reductions(pers), degree two vertex reductions(dtrs), and. Wheatstone bridge

7-3

reductions (wbrs).

Complete graphs were chosen as one class of graphs to analyze because of the possibility

of verifying that the right number of leaves was generated. For complete graphs it is known

that piKn) - in-2)\, aiKn) - (n-1)!, and riK„) - a""2. If an optimal edge selection stra

tegy is used, a correct algorithm should generate a number of leaves equal to the appropriate

graph invariant.

Some cubic and quartic graphs were analyzed as representatives of sparse graphs. By

counting the number of trees it was possible to determine the best possible performance to

expect from an Al algorithm for the all terminal problem. It was not clear how close the other

algorithms were to optimum or to determine a priori how many leaves to expect since the best

ways to calculate aiG) or piG) involve work proportional to solving the related reliability

problem.

Comparing the number of leaves generated by Al algorithms and the number of trees of

the graph was easily done. For the complete graphs AT6 (Figure 4.3) and Kj (Figure 4.4), it was

shown that the number of leaves equaled the number of trees. For other graphs (i.e. Figure

4.7), the matrix tree theorem was used to find the number of trees and again it was seen that

the number of trees was,equal to the number of leaves generated, irrespective of the edge

selection strategy. One can also see that the number of leaves generated while solving k-

terminal problems is less than the number of leaves generated while solving the all terminal

problem on the same network. Small examples done by hand demonstrate that the number of

leaves generated is the number of itrtrees; it is harder to count the number of these trees in

larger networks. Algorithms from this class were not run on most of the larger problems

because Al algorithms are very slow.

Runs of A2 algorithms also corresponded to theoretical results. Complete graphs were

solved with in-\)\ leaves. It was shown that it is possible to generate as few as ik-\)in-2)\

leaves when solving it-terminal problems on complete graphs(see Chang [1981]). For small

graphs, it could be seen that these algorithms generated a number of leaves equal to the

74

number of acyclic orientations with all sinks in K.

The degree two vertex reduction is what distiguishes class A3 algorithms from those of

class Al and A2. This reduction significantly decreases the amount of computer time used in

solving various problem insunces. The reasons for this are twofold: first, fewer calls are made

and fewer leaves are generated when using this reduction and secondly, it is no longer neces

sary to use the time consuming routine that finds bridges since no bridges are created when

using the optimal edge selection strategy for A3 algorithms. For both complete graphs and the

two classes of sparse graphs examined, A3 algorithms were faster than A2 algorithms by multi

plicative factors ranging from n to In. See Figures 4.4, 4.7, 4.8, 4.10, and 4.11.

For A3 algorithms, it is shown that it is possible to solve the all terminal or the two termi

nal problem on a complete graph, K„, while generating as few as in-2)\ leaves. In the runs

done, this result was not always obtained because the edge selection rules implemented were

not always optimal. See Figure 4.2. One also notices that the number of leaves generated while

solving problems on the same graph tend to increase as the absolute value of the difference

between the number of AT-vertices and the number of vertices not in K decreases. See Figure

4.9. Theorem 2.9 suggests that this should be true. When the vertices are neither mostly in K

nor mostly not in K, one is least likely to be able to perform triconnected component reduc

tions of which degree two vertex reductions are a special case.

Exhaustive case analysis on all graphs smaller than K6 was used to determine the best

edge selection strategy for A4 algorithms on small graphs. One can see that it is not possible to

generate fewer than eleven leaves while solving the all terminal problem although 11 is achiev

able. The strategies that generate this minimal search structure seemed to defy easy characteri

zation that would have allowed a fast edge selection rule to be written. For most of the runs, a

suboptimal strategy that solved a AT6 in twelve leaves was used. For this reason, the A4 algo

rithms applied to complete graphs generated j in-2)\ leaves (and not -^ in-2)\ leaves)

while solving the all terminal problem. See Figure 4.6. (Figure 4.3 contains arun in which a K6

was solved while generating only 11 leaves using ESR10.) In general, A4. algorithms took about

75

half as much time as A3 algorithms solving the same problem.

The optimal edge selection strategy for A4 algorithms is not yet known although it seems

clear that it should be more restrictive than the optimal strategy for A3 algorithms. The A3

strategy is to select edges that belong to triconnected components with at least five edges. Not

selecting such edges seems to increase the size of the A4 search structure although one could

follow this rule and not produce the minimal search structure. Empirical evidence seems to

indicate a number of properties of good edge selection rules for A4 algorithms. As is evidenced

by the consistently good performance of edge selection rule 8 (ESR8), it seems likely that one

should try to create graphs with vertices either mostly in K or mostly not in K. ESR8 tends to

do this by branching on edges of the form i\,u) where u is maximized. Since AT-vertices have

the lowest labels each contraction decreases the number of vertices not in K (unless all were in

K already) while each deletion helps make u a reducible degree two vertex. It might be even

better to try and select edges adjacent to no AT-vertex.

Other edge selection rules that were tested included selecting edges between vertices of

large degree (ESR11) and selecting edges between vertices of small degree (ESR12). See Fig

ures 4.7, 4.8, and 4.10. It was thought that selecting edges between vertices of large degree

would tend to create dense graphs and graphs likely to have large triconnected components. The

other strategy seemed more likely to create degree two vertices and less likely to create larger

triconnected components. Comparing runs that used these different strategies supports the

speculation that it is better to try to select edges in such a way as to create reducible degree two

vertices than to try to select edges so as to create Wheatstone bridges or larger triconnected

components.

After noting that this program requires roughly six minutes of computer time to solve a

complete graph on ten vertices and fractions of a second to solve graphs smaller and sparser,

little attention should be paid to the times. No claim is made that the most efficient program

has been implemented. More attention should be paid to the internal statistics generated than

to the times.

76

4. Suggestions for Better Programs

The backtrack algorithms described in the previous chapter offer little hope to those who

wish analytic solutions to reliability problems on large or dense networks. This is clear from the

complexity analyses of Chapter Three and the computational experience described in this

chapter. Although one should not be too optimistic about prospects for good (or even drasti

cally better) algorithms and programs, it is possible to implement programs much like the one

described that are more likely to be able to handle problems on large and dense networks.

More flexibility would go a long way in improving this kind of backtrack program. Such

flexibility is achieved by a modular design and is useful to the researcher. Independent modules

allows for ease in testing ideas and routines. This is helpful in proving program correctness and

in checking the performance of different routines and algorithms on various types of graphs. If

one is designing a program to solve practical problems, it is necessary to do more than just use

routines with the best asymptotic worst case bounds; one must also consider heuristics and try

to find those routines that tend to perform best.

Changes in the implementation of the reduction techniques could cause the program to

run faster. Efficient routines must be used to implement each reduction. Data structures should

be (re)designed to make frequently performed operations easy. For example, it might be

worthwhile to maintain a list of three neighboring vertices for each vertex so that it will be

easier to search for Wheatstone bridges. It may be necessary to first solve a large number of

problems in order to determine which operations are used most frequently. It was found that

some computational effort could be saved by not invoking the Wheatstone bridge reduction

routine unless the network had six or fewer vertices since with most edge selection rules such

reductions are extremely rare if the graph has more than six vertices.

The idea of implementing adaptive algorithms to perform reductions can be extended. If

the degree two vertex reduction routine knew which edge selection strategy was used, then it

might be possible to perform this reduction in constant time since some strategies prevent all

but one vertex from ever being degree two. Making routines adaptive should help in the

solution of larger problems.

More versatile edge selection strategies would be useful in both research and in solving

larger problems. It should be possible to select edges based on functions depending on the

degrees of both vertices, the characteristics of the network, and even perhaps the working pro

bability of the edge. One should be able to vary the rule as a function of the network's charac

teristics. Although such a strategy would be complicated, it would allow more experimentation

and perhaps suggest what types of rules work best with various kinds of graphs. Ultimately,

such experimentation would lead to the creation of heuristics that allow one to solve problems

more effectively.

Although only one program was used to generate the results presented, other programs

were implemented. One of these early programs used very simple data structures and per

formed only parallel edges reductions. The lack of overhead allowed this small program to out

perform the more sophisticated one for small graphs iK^ and smaller). It should be possible to

extend the range of the program by incorporating the simple version of the reliability algorithm

into the more sophisticated version and invoking the simpler routine when the problem or sub-

problem to be solved is small.

If one expects a program to be useful for arbitrary problems, it would be wise to modify

the program so that it can either find approximate solutions or provide bounds. Pruning the

search structure in various ways allows one to give approximate solutions and bounds although

great care and work would have to be invested to determine how good the bounds or approxi

mations might be. Such techniques will be necessary when the best edge selection rules, reduc

tion techniques, and intelligent programming fail to stop the exponential growth of the search

structure.

5. Remarks

The computer used was a Digital Equipment Corporation VAX 11/780 with a floating

point accelerator. The programs were written in the language C using double precision (64 bits)

77

78

arithmetic operations. Those interested in the actual program should contact the author.

•.?

krad tail ilbl link Mxt prav

• o
1 3
8 4

3 4
4 4
5 3
6 8
7 1
8 3
9 1
10 4

11 1
18 3
13 8
14 4

15 8
16 5
1? 8
18 4

19 3
80 S
81 3
88 S
83 4
84 t

e e e 84 0

l 0 e 10 6
8 0 • 16 7

3 e e 80 9

4 • • 88 11
5 e 6 83 17

1 l 7 1 8
8 l 6 8 18
1 8 9 6 10
3 8 8 3 13
1 3 11 8 1

4 3 10 4 15
8 4 13 7 14

3 4 18 9 18
8 S 15 18 16
4 S 14 11 19
8 6 17 14 8
S 6 16 5 81
3 7 19 13 80
4 7 18 15 88
3 8 81 18 3

5 8 80 17 83
4 9 83 19 4

s 9 88 81 5

• • 85 • 84

ladaxad by gadr

e.8

0*000000
0.100000
0*800000
0.300000
0.500000
0.600000
0.700000
0.800090

8 0.800000
9 9.900000
10 0.000000
11 0.000000
18 6.000000
13 0.000000
14 0.000000
15 0.000000
16 9.000000
17 0.000000
18 0.000000
19 0.000000
80 0•000000
81 0.000000
88 0.000000
83 0.000000
84 0.000000

gadr

1.000000
0.900000
0.800000
0.760000
0.500000
0.400000
0.300000
0.800000
0.500999
0.100000
1.000000
1.000000
1.000000
1.600000
1.000000
1.000000
1.000000
1.000000
1.000000
1•999999
1.000000
1.000999
1.000000
1.000000
1.000000

10
6
8
10
18
14
16
18
80
88
11
18
13
14
15
16
17
18
19
80
81
88
83
84
84

indexed by «lb\

Figure 4.1 Network Data Structure

79

Hvlti-Tereinal Network «eliability
The network has 5 vertices
and 10 edge* •* tollo«»»
edge head tail PC«orkin|3

t
8
3
4
5
6
7
8
9
10

8
3
4
5
3
4
5
4

5
5

0.850
0.850
0.850
0.850
0.25O
0.85O
0.250
0.850
0.850
0.250

AC kear erpCkD calla leavea cpuaec dora pera dtra wbrs

3 5
3 2
3 8
3 8
3 8
3 8

0.157692
0.421415
0.481415
0.421415
0.421415
0.421415

. 0.481415
8 0.481415
9 0.421415
U 0.421415
12 0.421415
8 0.481415
8 0.481415
8 0.481415
8 0.481415

11
13
13
11
13
11
13
13
19
11
13
13
13
13
13

6
7
7
6
7
6
7
7
10
6
7
7
7
7
7

0.317
0.167
0.817
0.133
0.167
0.183
0.133
0.150
0.867
0.150
0.117
0.167
0.150
0.800
4.167

6
7
6
6
7
6
7
7
7
6
7
6
7
6
6

81
81
81
81
81
81
81
81
81
82
81
81
81
88
88

10
9
10
10
9
10
9
9
9
18
9
19
9

11
11

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 4.2 Five Vertex Complete Graph Computations

80

B
u
l
t
i
-
T
e
r
e
i
n
a
l
N
e
t
w
o
r
k
R
e
l
i
a
b
i
l
i
t
y

T
h
e

n
e
t
w
o
r
k

h
a
a

6
v
e
r
t
l
c
e
a

a
n
d

1
5
e
d
g
e
a
a
a

followed
edge

head
tail

PCworkinsl
*

m
0
.
2
5
0

183456789
1
0

1
1
1
8

1
3

1
4

.
1
5

183451111888433

0
.
3
0
0

0
.3

5
0

0
.4

0
0

0
.4

5
0

0
.5

0
0

0
.5

5
0

0
.6

0
0

0
.6

5
6

0
.7

0
0

0
.7

5
0

0
.8

0
0

0
.8

5
0

0
.9

0
0

0
.9

5
0

A
C

k
e
a
r

»pCk3
cat

la
leavea

cpuaec
dora

pera
dtra

wbra

846684668888888
3

8
3

8
3

8
3

4
3

4
3

6
4

8
4

8
4

4
4

4
4

6
4

6

8
0
.
9
6
6
6
5
5

8
0
.
9
6
0
5
4
9

8
0
.
9
5
8
2
1
9

1
1

9
.
9
5
8
2
1
9

9
0
.
9
6
6
6
5
5

9
0
.
9
6
6
5
4
9

1
0
.
9
5
8
8
1
9

1
8

0
.
9
5
8
8
1
9

1
9
.
9
6
6
6
5
5

8
0
.
9
6
6
6
5
5

3
0
.
9
6
6
6
5
5

4
6
.
9
6
6
6
5
5

6
0
.
9
6
6
6
5
5

7
0
.
9
6
6
6
5
5

8
0
.
9
6
6
6
5
5

9
0
.
9
6
6
6
5
5

1
1

0
.
9
6
6
6
5
5

1
8

0
.
9
6
6
6
5
5

8
0
.
9
6
0
5
4
9

1
8

0
.
9
6
0
5
4
9

1
0
.
9
5
8
2
1
9

8
0
.
9
6
6
6
5
5

1
8

0
.
9
6
6
6
5
5

8
9
.
9
6
0
5
4
9

1
2

0
.
9
6
0
5
4
9

1
0

0
.
9
5
8
8
1
9

1
8

0
.
9
5
8
2
1
9

1
8
8
7

9
4
4

8
5
2
7

1
8
6
4

8
5
9
1

1
8
9
6

8
5
9
1

1
8
9
6

1
8
9

6
5

8
8
7

1
1
4

8
3
9

1
8
0

8
3
9

1
8
0

6
1

3
1

6
1

3
1

5
3

8
7

6
1

3
1

5
9

3
0

6
1

3
1

S
7

8
9

8
1

4
1

5
5

8
8

6
1

3
1

4
7

8
4

1
9
3

5
8

4
7

8
4

8
5

1
3

2
9

1
5

8
3

1
8

3
9

8
0

8
1

1
1

8
3

1
8

8
6

.3
1

7
3

4
.9

3
3

3
6

.3
8

3
3

5
.8

1
7

1
.9

3
3

3
.5

0
0

3
.1

5
0

3
.8

6
7

6
.6

1
7

0
.7

1
7

0
.8

3
3

0
.7

1
7

0
.6

8
3

0
.7

6
7

0
.4

0
O

0
.9

8
3

0
.7

1
7

0
.4

3
3

0
.4

1
7

0
.7

6
7

0
.3

6
7

6
.2

6
7

0
.8

6
7

0
.8

3
3

0
.3

1
7

0
.1

8
3

0
.8

1
7

8
7
6

6
5
0
1

0
7
7
4

0
9
7
7

0
6
5

9
4

1
5
8

1
5
4

8
0
6

1
6
6

8
0
6

1
6
0

8
9

9
4

8
8

9
8

8
4

9
6

8
9

9
4

3
0

1
8
6

8
9

9
4

2
9

9
4

8
9

9
4

8
8

1
0
7

8
9

9
4

8
4

9
4

6
0

1
4
4

8
4

9
4

1
3

4
6

1
3

4
6

1
8

4
6

8
8

6
3

1
1

4
8

1
8

4
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
6

0
4
1

0
4
7

0
3
6

0
4
6

0
3
6

0
3
6

0
3
6

0
5
7

0
3
6

0
4
1

0

6
3

0

4
1

0
4

1
8

4
1
8

5
1
8

7
1
8

4
1
8

5
1
8

Figure
4.3

Six
Vertex

Com
plete

Graph
Com

putations

8
1

N
w
l
t
i
-
T
e
r
e
l
n
a
l

N
e
t
w
o
r
k
R
e
l
i
a
b
i
l
i
t
y

T
h
e

n
e
t
w
o
r
k

h
a
a

7
v
e
r
t
l
c
e
a

a
n
d

8
1
e
d
g
e
a
a
a

f
o
l
l
o
w
a
*

edge
head

tall
PCworklngD

183456789
1
0

1
1
1
8

1
3

1
4

1
5

1
6

1
7

1
8

1
9

8
0

8
1

0
.
3
0
0

0
.
4
0
0

0
.
5
0
0

0
.
6
0
0

0
.
7
0
0

9
.
8
9
9

9
.
9
9
9

0
.
3
0
0

0
.
4
0
0

0
.
5
0
0

0
.
6
0
0

0
.
7
0
0

0
.
8
0
0

0
.
9
0
0

0
.
3
0
0

0
.
4
6
0

0
.
5
0
0

0
.
6
0
0

0
.
7
0
0

0
.
8
0
0

0
.
9
O
0

AC
k
ear

arpEkJ
cat

la
leaves

cpuaec
dora

pera
dtrs

wbra

1
8

7
0
.
9
8
8
6
1
2

6
7
3
7

3
3
6
9

8
8

1
0
.
9
8
8
6
1
2

6
5
1

3
2
6

3
8

8
0
.
9
8
8
6
1
2

2
9
1

1
4
6

4
8

1
8

0
.
9
8
8
6
1
2

1
3
1

6
6

1
7

4
9
.
9
7
3
6
2
6

3
3
6
1
3

1
6
8
0
7

8
7

1
9
.
9
7
3
6
2
5

1
4
3
9

7
8
0

3
7

1
0
.
9
7
3
6
2
5

2
3
9

1
8
0

4
7

1
6
.
9
7
3
6
2
5

1
1
9

6
0

4
7

1
1

6
.
9
7
3
6
2
5

1
4
9

7
5

4
7

1
2

6
.
9
7
3
6
2
5

1
1
9

6
0

3
8

9
0
.
9
8
8
6
1
2

4
1
1

8
6
6

3
3

9
0
.
9
8
8
3
1
4

6
5
9

3
3
0

3
4

9
0
.
9
7
5
9
1
9

7
9
1

3
9
6

3
5

9
0
.
9
7
4
2
5
3

8
0
7

4
0
4

3
6

9
0
.
9
7
4
0
3
6

6
6
7

3
3
4

3
7

9
0
.
9
7
3
6
2
5

8
3
9

1
2
0

1
0
9
.
5
6
7

9
.
8
3
3

8
.
1
5
6

1
.
1
6
7

4
8
9
.
1
6
0

8
4
.
7
5
0

8
.
4
3
3

1
.
8
5
0

1
.
3
3
3

1
.
1
6
7

8
.
8
1
7

4
.
6
8
3

5
.
4
3
3

5
.
7
0
0

4
.
7
0
0

1
.
9
6
7

7
S
8

3
8
6

1
4
6

6
6

4
1
7
3

1
8
3
7

1
8
0

6
0

7
5

6
0

1
4
6

8
9
9

4
2
7

4
8
7

4
8
0

1
2
0

0
4
8
5

4
8
5

8
4
50

9
7
5

4
8
5

8
4
5

3
1
1

8
4
5

4
8
5

7
4
7

8
7
9

9
1
7

8
4
4

4
8
5

00
1
8
0

8
000

8
0
6

8
6

1
8
7

8
6

1
8
0

8
8
8

3
4
2

3
5
6

3
3
1

8
0
6

000
6
0000

6
0

4
0

6
0000000

F
igure

4.4
Seven

V
ertex

C
om

plete
G

raph
C

om
putations

8
2

flaltl-Teralnal Network Reliability
The network haa 8 vertlcea
and 88 edgea aa follows*
edge head tall PCworklngl

1
8
3
4
5
6
7
8
9
10
11
18
13
14
15
16
17
18
19
26
81
88
83
84
85
86
87
88
k

8
8
8
8
8
8
8
8
8

1
1
1
1
1
1
1
8
8
8
8
8
8
3
3
3
3
3
4
4
4
4

5
5
5
6
6
7

8
3
4
5
6
7
8
3
4
5
6
7
8
4
5
6
7
8
5
6
7
8
6
7
8
7
8
8

•rpCkDAC

3
3
4
4
3
4
4
4
4

ear

6.500
0.400
0.400
0.300
0.300
0.300
0.200
0.200
0.209
9.299
9.199
0.100
0.200
0.200
0.300
0.300
0.300
0.400
0.400
0.400
0.400
0.500
0.500
0.600
0.600
0.600
0.700
9.899
calls

1753
8473
859
1933
1439
719
893
719
781

leavea cpuaec dora pera dtra wbrs

8 6.787963
9 0.787963

0.787963
6.787963
6.650525
0.650525
0.650525

18 0.650585
8 0.650585

6
9
9
9

11

877
1237
439
517
780
366
447
360
391

13.267
16.400
7.433
8.533
18.067
7.167
8.967
6.867
7.733

877
877
401
397
780
360
447
366
391

2931
8931
1455
1491
2931
1491
1880
1491
1633

1080 0
1080 0
870 325
120 360

1237 0
157 360
836 847
157 360
380 389

Figure 4.5 Eight Vertex Complete Graph Computations

83

,nultl-Terelnal Network Reliability
The network has 10 vertices

45 edges as follows*
head tail PCworkingl

0.40O

and
edge

1
8
3
4

. 5
6
7

8
9
10
11
18
13
14
15
16
17
18
19
80
81
88
83
84
85
86
87
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

AC k

2
3
4

5
6
7
8
9
10
3
4
5
6
7
8
9

10
4

5
6
7
8
9
10
5
6
7
8
9
10
6
7
8
9
10
7
8
9
19
8
9
19
9
19
19

erpCkSear

9.50O
0.600
0.500
0.400
0.300
0.400
0.590
9.699
9.699
9.799
9.600
0.500
0.400
0.300
0.200
0.200
0.300
0.400
0.500

0.700
0.800
0.80O
0.700
0.600
0.500
0.400
0.300
0.300
0.200
0.100
0.200
0.300
0.400
0.400
0.500
0.600
0.700
0.700
0.800
0.800
0.900
0.660
0.500
calls

40319
40319

leaves cpusec dors pers dtrs wbrs

9
19

18 9.979756
12 9.979447

20160
20160

391.417 20160 83756
380.533 20166 83756

8801 20160
8801 20160

Figure 4.6 Ten Vertex Complete Graph Computations

84

ft Rttlti-Tereinal Network Reliability
The network has 8 vertices
and 12 edges aa f©ltowai
edge head tail PCworklngS

1
2
3
4
5
6
7
8
9
16
11
12

5
6
8
3
4
7
5
6
5
8
7
8

0.1.
0.50O
0.400
0.600
0.100
0.800
0.700
0.400
0.500
0.800
0.300
0.100

AC k ear erpCk3 calla leavea

8 8
8 8

3 4
3 8
4 8
4 8
4 4
4 4
4 8
4 8

8 0.378830
8 0.216623
2 0.055568
11 6.855568
9 0.372830
9 0.816622
1 6.655568

12 6.655568
8 6.378830
12 0.372830
8 0.816623
12 6.216623
1 8.055568
8 6.378830
12 0.372830
8 0.216623
12 0.216623
11 0.055568
18 0.055568

659
767
767
767
141
825
865
265
31
35
33
55
21
19
19
19
19
11
11

336
384
384
384
71
113
133
133
16
18
17
88
11
16
18
10
10
6
6

9.756
10.717
11.483
11.400
2.067
3.317
3.750
3.767
0.233
0.267
6.283
0.433
0.817
0.817
0*800
0.200
0.2O0
0.117
0.117

ora pera dtra wbra

240 6 0 0

318 0 0 0

417 0 0 0

490 0 0 0

105 31 0 0

179 66 0 0

275 89 0 0

259 116 0 0

17 43 38 0

17 44 38 0

19 44 38 0

36 50 37 0

11 32 28 0

11 81 20 6

11 81 20 6

11 19 18 6

11 15 14 8

6 12 13 5

6 13 13 5

Figure 4.7 Eight Vertex Cubic Graph Computations

85

ft Naltl-Terelnal Network Reliability
The network haa 10 vertlcea
and IS edgea ••'•I*0***
edge head tall PCworJ*JjJ

1
8
3
4

5
6
7
8
9
16
11
18
13
14
15

1
1
1
8
8
2
3
3
4
4

5
5
6
7
9

3
4
7
6
8
10
8
9
5
9
6
10
7
8
10

0.300
0.400
0.300
0.400
0.500
0.300
0.400
0.400
0.500
0.500
0.600
0.606
0.700
9.699

AC k ear erpCk3 calla leavea

1 8
1 4
1 8
1 19
2 2
2 4
2 8
8 19
8 19
3 2
3 4
3 4
3 8
3 19
4 2
4 2
4 4
4 4
4 8
4 8
4 19
4 19

9.892398
9.134926
0.091596
0.082546
0.292308
0.134926
6.991596
0.088546

_ 0.082546
12 6.292308
8 0.134926
12 8.134926
1 0.091596
1 6.682546
8 6.898308
18 0.292308
8 0.134926
12 6.134926
11 6.691596
12 6.091596
11 0.082546
12 0.082546

767 384
1447 724
3669 1865
3689 1805
483 242
855 428
1127 564
1127 564
1127 564
97 49
169 55
129 65
125 63
51 86
51 86
49 85
71 36
79 46
73 37
39 80
29 15
29 15

cpusec dora pera dtra wbrs

11.883 441 0 0 0

23.533 903 0 0 0

54.217 2110 0 0 0

50.567 2217 0 0 0

7.367 363 100 0 0

12.433 712 219 0 0

14.956 1162 321 0 0

15.867 1212 321 0 0

16.233 1244 386 0 0

0.867 50 115 101 0

1.133 60 116 125 0

1.133 80 143 118 0

1.667 79 118 181 0

6.500 26 78 71 0

0.583 29 52 57 15

0.517 28 52 54 16

0.783 39 54 70 19

0.833 54 70 64 18

0.783 44 40 68 22

0.467 88 41 42 14

6.283 15 34 38 11

0.317 15 39 37 11

Figure 4.8 Ten Vertex Cubic Graph Computations

86

ft HulU-Teralaal Network Reliability
The network has 16 vertices

and 24 edges as follows*
edge head tail PCworklng3

1
8
3
4
5
6
7
8
9

16
11
12
13
14
15
16
17
18
19
86
81
82
23
24

1
2
3
4
5
6
7
1
9
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8

8
3
4
5
6
7
8
8

10
16
11
12
13
14
15
16

9
16
11
12
13
14
15
16

6.300
0.500
0.660
0.600
0.300
0.200
0.100
0.660
0*200
0.300
0.300
0.800
0.500
0.300
0.400
0.700
0.300
0.400
0.3OO
0.200
0.400
0.800
0.300
0.400

AC k oar erpCk3 cat la leaves cpuaee dora pera dtra wbrs

2
2
2
2
16
8
16
16
2
2
3
3
4
4

5
6
7
8
9
10
11
12
13
14
15
16

8 0.328570
12 0.328570
12 0.328570
11 0.328570
1 0.004134
8 0.O17165
8 6.604134
12 0.004134

0.328570
0.388570
0.180407
0.180407
0.121166
6.121166
6.684071
0.044717
0.02O0S9
0.017165
0.010303
0.007371

_ 0.005873
9 0.005527
9 0.004866
9 6.604683
9 0.004297
9 0.004134

745
605
337
377
493
253
253
317
617
567
941

1121
1433
1809
2639
3661
4645
5623
6793
7289
6397
4959
3539
2331
1415
495

373
303
169
189
247
127
127
159
309
284
471
561
715
905
1320
1801
8323
2812
3397
3645
3196
2476
1767
1166
708
848

8.100
6.183
4.533
6.617
6.633
3.867
3.883
4.733
6.660
5.733
9.683
16.383
13.617
15.633
23.600
30.017
38.800
50.950
63.817
64.967
58.167
42.667
36.850
80.800
13.367
4.983

395
366
189
189
247
127
127
159
362
388
581
786
935
1309
1978
8802
3765
4763
5827
6320
5498
4166
2828
1718
933
248

1696
586
194
452
793
261
261
462
672
487.
936
872
1257
1285
1758
2308
2908
3355
4063
4341
3963
3236
2531
1965
1532
923

1158
672
354
672
771
359
359
566
763
687
1668
1623
1473
1416
1824
2280
2788
3268
4035
4323
3965
3281
2591
2001
1522
877

0
0

126
166

0
120
120
88
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 4.9 Sixteen Vertex Cubic Graph Computations

87

ft Hwlti-Terelnal Network Reliability
The network haa 6 vertlcea
and 12 edgea aa followsi
edge head tall PCworklngD
^12 0.499
2 13 9.199
3 15 9.200
4 16 0*300
5 2 4 0.400
6 2 5 0.500
?26 0.660
8 3 4 0.700
9 3 5 0.600

19 3 6 6.800
11 4 5 0.900
12 4 6 6.500

AC k t*r erpCO calls leaves cpusec dora pera dtra wbrs

12 9 0.656331 145 73 1.917 58 0 0 0
1 3 9 0.599095 287 144 3.658 114 0 0 0
1 4 9 0.589955 417 209 5.667 158 6 6 6
1 5 9 6.583808 497 249 6.267 182 6 0 J
2 2 9 0.650331 63 32 6.867 36 35 0 0
2 3 9 0 599095 109 55 1.433 69 63 0 0
2 4 9 6 589955 127 64 1.760 93 72 8 6
2 5 9 0.583208 127 64 1.617 164 72 0 0
3 2 8 0.656331 27 14 0.20O 14 44 23 0
3 3 8 0.599095 27 14 0.200 14 43 25 0
3 3 12 0.599095 37 19 0.233 21 49 26 8
3 4 8 0 589955 2S 13 9.200 13 42 24 0
3 5 8 0 583208 23 IS 0.167 12 41 23 6
3 6 10 572831 21 11 O-lfO " «i 23 J
4 2 8 0.658331 15 8 0.133 8 24 9 4
4 2 12 0.650331 15 8 6.100 7 19 5 5
4 3 8 0.599095 13 7 9.117 7 18 4 7
4 3 10:599995 19 19 0.133 10 22 f 7
4 4 8 0.589955 13 7 0.117 7 20 6 6
4 4 11 0.589955 15 8 0.133 8 22 10 |
4 5 8 0.583298 13 7 0.117 7 22 8 5
4 6 1 6.572831 15 8 0.117 8 29 14 3
4 6 12 6.572831 11 | 0.100 6 19 6 5
4 6 12 6.572831 11 | 0.083 6 19 6 5
4 6 12 6.572831 11 6 0.117 6 19 6 5

Figure 4.10 Six Vertex Quartic Graph Computations

88

ft Hulti-Terainal Network Reliability
The network haa 8 verticea
and 16 edgea aa followa*edge head tail PCw>ofklmg3

1
8
3
4
5
6
7
8
9
16
11
12
13
14
15
16

1
1
1
1
8
2
2
2
3
3
3
4
4
6
6
7

4
5
6
8
3
4
5
7
5
6
7
5
8
7
8
8

O.6O0
0*500
0.400
0.600
0.100
0.400
0.200
0.700
0.400
0.500
0.500
0.200
0.300
0.600
0.100

AC k ear erpCkl calla leavea cpuaec dors pera dtra wbrs

2 8 9 0.243053 851 426

3 8 9 0.243053 75 38

4 8 9 0.243053 45 23

2 2 8 0.585933 509 255

3 2 8 0.585933 111 56

4 2 8 0.585933 77 39

3 4 8 0.419775 117 59

3 4 12 0.419775 189 95

4 4 12 0.419775 85 43

4 8 12 0.243053 43 22

3 8 12 0.243053 75 38

4 8 11 0.243053 47 24

12.450
0.667
6.517
7.133
6.850
0.683
1.683
1.666
6.817
6.456
8.583
6.467

816
38
23
287
58
41
61
107
49
22
38
24

438
141
81

278
194
129
191
220
107
73
137
80

0
88
43
0

118
69
121
132
49
34
82
56

6
0
15
0
0
16
6
6

26
16
6
14

Figure 4.11 Eight Vertex Quartic Graph Computations

89

Haltl-Teralnal Network Reliability
The network haa 17 vertlcea

is follows*
PCworking}

0.400

and 27 edges
edge head tall

1
2
3
4
5
6
7
8
9
16
11
18
13
14
15
16
17
18
19
29
21
22
23
24
25
26
27
k

1
1
1
2
2
2
2
3
3
3
4
4
4
4
4
4

5
5
5
6
7
8
8
9
16
11
12

17
16
8
15
14
12
8
17
9
5
17
16
15
14
6
5
16
9
6
7
8
15
13
16
11
12
13

erpCk3

0.500
0.700
0.800
0.900
0.700
0.600
0.390
0.500
0.400
9.699

0.800
0.900
0.400
0.700
0.700
0.666
0.700
0.800
0.800
0.900
0.900
0.800
0.680
0.700
0.800
0.900
callsAC

leaves cpusec dors pera dtra wbra

4 2 9 0.849866
4 17 12 0.298481
4 17 11 0.298481

403 202
155 78
207 104

4.267
1.667
2.483

191
78
164

560
274
332

Figure 4.12 A "Practical" Example

409 90
109 77
310 57

90

Bibliography

A.V. Aho, J.E. Hopcroft, and J.D. Ullman

[1974] The Design and Analysis of Computer Algorithms, Addison-Wesley, Read
ing, MA.

Michael O. Ball

[1977] Network Reliability Analysis: Algorithms and Complexity, Ph. D. thesis,
Cornell University.

[1979] Computing Network Reliability, Operations Research 27 : 823-838.
[1980] Complexity of Network Reliability Computations, Networks 10 :153-165.

M.O. Ball and G.L. Nemhauser

[1979] Matroids and a Reliability Analysis Problem, Mathematics of Operations
Research 4: 132-143.

M.O. Ball and J.S. Provan

[1981a] The Complexity of Counting Cuts andofComputing the Probability that a Graph is
Connected, Working Paper 81-002, University of Maryland at College Park.

[1981b] Bounds on the Reliability Polynomial for Shellable Independence Systems, Work
ing Paper 81-013, University of Maryland at College Park.

[1981c] Calculating Bounds on Reachability and Connectedness in Stochastic Networks,
Working Paper 81-012, University of Maryland at College Park.

M.O. Ball and R. Van Slyke

[1977] Backtracking Algorithms for Network Reliability Analysis, Annals of Discrete
Mathematics 1:49-64.

Richard E. Barlow

[1982] Set Theoretic Signed Domination for Coherent Systems, University of California
at Berkeley.

R.E. Barlow and F. Proschan

[1975] Statistical Theory of Reliability and Life Testing, Holt, Rinehart, and Wins
ton, New York.

Z.W. Birnbaum and J.D. Esary

[1965] Modules of Coherent Binary Systems, SIAM Journal on Applied Mathematics
13:444-462.

91

92

Z.W. Birnbaum, J.D. Esary, and S.C. Saunders

[1961] Multi-component Systems and Structures and their Reliability, Technometrics 3 :
55-77.

R.C. Buck

[1943] Partition ofSpace, Amer. Math. Monthly 50 : 541-544.

J.A. Buzacott

[1976] A Recursive Algorithm for Finding the Probability that a Graph is Disconnected,
Working Paper 76-016, Department of Industrial Engineering, University of
Toronto.

[1980] A Recursive Algorithm for Finding Reliability Measures Related to the Connection
ofNodesin a Graph, Networks 10 : 311-327.

J.A. Buzacott and S.K. Chang

[1979] Partitions andPartitioning-Decomposition for Network Reliability Analysis, Work
ing Paper 79-017, Department of Industrial Engineering, University of
Toronto.

Mark Chang

[1981] A Graph Theoretic Appraisal of the Complexity of Network Reliability
Algorithms, Ph. D. thesis, University of California at Berkeley.

Nicos Christofides

[1975] GraphTheory: An Algorithmic Approach, Academic Press, New York.

Henry H. Crapo

[1967] A Higher InvariantforMatroids, Journal of Combinatorial Theory 2 : 406-417.

N.Deo

[1974] Graph Theory with Applications to Engineering and Computer Science,
Prentice-Hall.

L.R. Ford and D.R. Fulkerson

[1962] Flows in Networks, Princeton University Press, NJ.

Howard Frank

[1975] Computer Networks: Art to Science to Art, Networks 5 : 7-32.

H. Frank and Wushow Chou

[1972] Topological Optimization of Computer Networks, Proceedings of the IEEE 60,
no. 11 :1385-1397.

H. Frank and I.T. Frisch

[1970a] Analysis and Design ofSurvivable Networks, IEEE Transactions on Communi
cation Technology COM-18:501-519.

93

[1970b] Network Analysis, Scientific American 223, July : 94-103.

L. Fratta and U. Montanari

[1973] A Boolean Algebra Method for Computing Terminal Reliability in a Communica
tion Network, IEEE Transactions on Circuit Theory CT-20 : 203-211.

Harold N. Gabow

[1977a] Finding All Spanning Trees of Undirected and Directed Graphs, Working Paper
CU-CS-103-77, Department of Computer Science, University of Colorado at
Boulder.

[1977b] Two Algorithms for Generating Weighted Spanning Trees in Order, SIAM Jour
nal on Computing 6 : 139-150.

M.R. Garey and D.S. Johnson

[1979] Computers and Intractibility: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA.

Curtis Greene

[1977] Acyclic Orientations, Higher Combinatorics, ed. M. Aigner : 65-68.

Jane N. Hagstrom

[1980] Combinatoric Tools for Computing Network Reliability, Ph. D. thesis,
University of California at Berkeley.

Eberhard Hansler

[1972] A Fast Recursive Algorithm to Calculate the Reliability of a Communication Net
work, IEEE Transactions on Communication COM-20 : 637-640.

E. Hansler, G.K. McAulirTe, and R.S. Wilkov
[1974] Exact Calculation ofComputer Network Reliability, Networks 4 : 95-112.

F. Harary

[1969] Graph Theory, Addison-Wesley, Reading, MA.

F. Harary and E.M. Palmer

[1973] Graphical Enumeration, Academic Press, New York.

J.E. Hopcroft and R.E. Tarjan
[1973] Dividing a Graph into Triconnected Components, SIAM Journal on Computing

2: 135-158.

Mark Jerrum

[1981] On the Complexity of Evaluating Multivariate Polynomials, Ph. D. thesis,
University of Edinburgh.

Rubin Johnson

94

[1981a] Network Reliability and Permutation Partitioning, working paper.
[1981b] Network Reliability and Acyclic Orientations, working paper.
[1981c] The Wheatstone Bridge Reduction, working paper.

Richard M. Karp
[1972] Reduciblity Among Combinatorial Problems, Complexity ofComputer Computa

tions, eds. R.E. Miller and J.W. Thatcher, Plenum Press, New York : 85-103.
[1975] On the Complexity ofCombinatorial Problems, Networks 5 : 45-68.

A.K. Kel'mans

[1967] Connectivity ofProbabilistic Networks, Automation and Remote Control 3 :
444-460. Translated from Avtomatika i Telemekhanika 3 : 98-116.

A. Kershenbaum and R. Van Slyke

[1973] Recursive Analysis ofNetwork Analysis, Networks 3 : 81-94.

Donald E. Knuth

[1975] Estimating the Efficiency ofBacktrack Programs, Mathematics ofComputation
129: 121-136.

Eugene L. Lawler
[1976] Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and

Winston, New York.

J.D. Leggett
[1968] Synthesis of Reliable Communication Networks, Ph. D. thesis, University of

Pennsylvania.

J.D. Leggett and S.D. Bedrosian
[1969] Synthesis of Reliable Networks, IEEE Transactions on Circuit Theory, 384-

385.

G.J. Minty
[1965] ASimple Algorithm for Listing all the Trees ofa Graph, IEEE Transactions on

Circuit Theory CT-12:120.

K.B. Misra

[1970] An Algorithm for the Reliability Evaluation ofRedundant Networks, IEEE Tran
sactions on Reliability R-19:146-151.

E.F. Moore and C.E. Shannon
[1956] Reliable Circuits Using Less Reliable Relays, Journal ofthe Franklin Institute

262, no. 3 :191-208, no. 4 : 281-297.

Fred Moskowitz

[1958] The Analysis of Redundancy Networks, AIEE Transactions on Communica
tions and Electronics 77, Part I : 627-632.

J.D. Murchland

[1975] Fundamental Concepts and Relations for Reliability Analysis of Multi-state Sys
tems, Reliability and Fault Tree Analysis, eds. R.E. Barlow, J.B. Fussell, and
N.D. Singpurwalla, SIAM : 581-618.

J.D. Murchland and R.D. Shier

[1973] Calculating the Probability that an Undirected Graph is Disconnected, unpublished
working paper.

Rita Procesi-Ciampi
[1981] A Minimality Property for Acyclic Orientations, working paper, University of Cal

ifornia at Berkeley.

R.C. Read and R.E. Tarjan
[1975] Bounds on Backtrack Algorithms for Listing Cycles, Paths, and Spanning Trees,

Networks 5 :237-252.

Arnon Rosenthal

[1974] Computing Reliability of Complex Systems, Ph. D. thesis, University ofCal
ifornia at Berkeley.

[1975] A Computer Scientist looks at Reliability Computations, Reliability and Fault
Tree Analysis, eds. R.E. Barlow, J.B. Fussell, and N.D. Singpurwalla, SIAM :
133-152.

[1977] Computing the Reliability of Complex Networks, SIAM Journal of Applied
Mathematics 32:384-393.

A. Rosenthal and D. Frisque

[1977] Transformations for Simplifying Network Reliability Calculations, Networks 7 :
97-111.

A. Satyanarayana
[1980] Multi-terminal Network Reliability, Technical Report ORC80-11, University of

California at Berkeley.

A. Satyanarayana and M. Chang
[1981] Network Reliability and the Factoring Theorem, Technical Report ORC81-12,

Operations Research Center, University of California at Berkeley.

A. Satyanarayana, M. Chang, and Z. Khalil
[1981] Some Results on the Overall Reliability of Undirected Graphs, Technical Report

ORC81-2, Operations Research Center, University of California at Berkeley.

A. Satyanarayana and J.N. Hagstrom

95

[1980a] Combinatoric Properties of Directed Graphs Useful in Network Reliability, Techni
cal Report ORC80-8, Operations Research Center, University of California at
Berkeley, also in Networks 11: 357-366.

[1980b] A NewAlgorithm for the Reliability Analysis ofMulti-Terminal Networks, Techni
cal Report ORC80-11, Operations Research Center, University of California at
Berkeley, also in IEEE Transactions on Reliability R-30, no. 4 : 325-334.

A. Satyanarayana and A. Prabhakar

[1978] New Topological Formula andRapid Algorithm for Reliability Analysis ofComplex
Networks, IEEE Transactions on Reliability 27 : 82-100.

A. Satyanarayana and R. Procesi-Ciampi

[1981] On Some Acyclic Orientations ofa Graph, Technical Report ORC81-11, Opera
tions Research Center, University of California at Berkeley.

A. Satyanarayana and R. Kevin Wood

[1982] Pofygon-to-Chain Reductions andNetwork Reliability

Andrew S. Shogan

[1976] Sequential Bounding of the Reliability of a Stochastic Network, Operations
Research 24:1027-1044.

[1978] A Decomposition Algorithm for Network Reliability Analysis, Networks 8 : 231-
251.

Richard P. Stanley

[1973] Acyclic Orientations of Graphs, Discrete Mathematics 5 : 171-178.
[1977] Cohen-McCauley Complexes, Higher Combinatorics, ed. M. Aigner: 51-62.

Kenneth Steiglitz, Peter Weiner, and D.J. Kleitman

[1969] The Design ofMinimum-Cost Survivable Networks, IEEE Transactions on Cir
cuit Theory CT-16, no. 4 : 455-460.

R. Endre Tarjan

[1972] Depth-first Search and Linear Graph Algorithms, SIAM Journal on Computing
1: 146-160.

[1974] A Note on Finding the Bridges of a Graph, Information Processing Letters 2 :
160-161.

Leslie G. Valiant

[1977a] The Complexity of Computing the Permanent, Report no. CSR-14-77, Computer
Science Department, University of Edinburgh, Scotland, also in Theoretical
Computer Science 8 :189-201 [1979].

[1977b] The Complexity of Enumeration andReliability Problems, Report no. CSR-15-77,
Computer Science Department, University of Edinburgh, Scotland, also in
SIAM Journal on Computing 8 : 410-421 [1979].

R. Van Slyke and H. Frank

96

97

[1972] Network Reliability Analysis: Part I, Networks 1: 279-290.

R. Van Slyke, H. Frank, and A. Kershenbaum
[1975] Network Reliability Analysis: Part II, Reliability and Fault Tree Analysis, eds.

R.E. Barlow, J.B. Fussell, and N.D. Singpurwalla, SIAM : 619-650.

J. Von Neumann

[1952] Probabilistic Logics andthe Synthesis ofReliable Organismsfrom Unreliable Com
ponents, Automata Studies, [1956] eds. C.E. Shannon and J. McCarthy,
Princeton University Press : 43-98.

D.J.A. Walsh

[1976] Matroid Theory, Academic Press, London.

Robert S. Wilkov

[1972] Analysis and Design of Reliable Computer Networks, IEEE Transactions on
Communication COM-20:660-678.

O. Wing and P. Demetriou

[1964] Analysis of Probabilistic Networks, IEEE Transactions on Communication
Technology COM-12:34-40.

S. Winograd and J.D. Cowan

[1963] ReliableComputation in the Presence of Noise, The MIT Press, MA.

R. Kevin Wood

[1980] Efficient Calculation of the Reliability of Lifeline Networks Subject to Seismic Risk,
Technical Report ORC80-13, Operations Research Center, University of Cali
fornia at Berkeley.

Thomas Zaslavsky

[1975] Facing Up to Arrangements : Face-Count Formulas for Partitions of Space by
Hyperplanes, Memoirs of the American Mathematical Society 1, issue 1, no.
154 :1-102.

	Copyright notice 1982
	ERL-82-14

