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ABSTRACT

Higher- and mixed-order n-port circuit elements were introduced recently to

provide a logically complete formulation for nonlinear circuit theory. In this

paper, higher-order mutators are defined and used to synthesize these elements.

The class of all higher-order mutators is shown to form a group under cascade

interconnections. Each mutator is realized using only linear capacitors, linear

inductors and linear controlled sources. An upper bound on each type of element

needed to realize a mutator is also given. Each higher- or mixed-order n-port

element is realized by cascading appropriate mutators across each port of a non

linear n-port resistor. Our main theorem shows that any higher- or mixed-order

nonlinear n-port element with a constitutive relation defined on a compact set

can be realized using linear capacitors, inductors and controlled sources and

2-terminal nonlinear resistors.
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I. INTRODUCTION

Higher- and mixed-order circuit elements are unconventional circuit elements

introduced recently for several reasons [1]:(1) There are many nonlinear device

phenomena which cannot be modelled using only conventional circuit elements.

(2) Nonlinear circuit models containing only conventional circuit elements could

exhibit impasse points, thereby implying that the model is non-physical and

inadequate for computer simulation. (3) No nonlinear higher-order 2-terminal

element can be synthesized using only conventional and/or other higher-order

2-terminal elements. Hence, each element has an independent identity. (4) A

logically consistent foundation of nonlinear circuit synthesis can not be built

using only conventional circuit elements.

Our objective in this paper is to introduce higher-order mutators as the

building block for higher- and mixed-order circuit elements. We will present

a unifying procedure for realizing any higher- or mixed-order n-port element.

Moreover, we will derive an upper bound on the number of basic circuit elements

needed in the synthesis.

Our study of higher- and mixed-order elements begins with two-terminal

elements. Let v be the voltage across the terminals of the element and i be

the current flowing through the element.1 For z=vor iand k=0,1,2,...,
we define

z(k)(t) _d^zit)
(t) dtk o.D

and

z(-k)(t) .z(-k)(Q) + \ z(-k+l)(t)dt {,2)

where z^~ '(0) is an arbitrary constant.

Definition 1.1 A two-terminal element E defined by a constitutive relation

involving at most two dynamically independent variables [1] v^a' and i^'
where a,8=0, ±1, ±2,...) is called av^- i^g' element or an algebraic higher-

We shall adopt the standard associated reference direction throughout; i.e.
current always flows from the positive terminal of the element to the negative
terminal.
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order element. It is represented by the symbol in Figure 1.

The notion of a higher- or mixed-order element introduced in the above

definition can be extended to the case of (n+1)-terminal or n-port elements.

In the following, we consider an n-port N whose port voltages and currents are

denoted by v=(vr v2,...,vn)T and i=(i.,, i2,...,i'n)T, respectively.
Definition 1.2: Let N be an algebraic n-port characterized by the relation

h(S, n>0, where (£,n) € IRnxFn denotes a pair of dynamically independent
variables [1]. N is called a higher-order algebraic n-port element if the

following are satisfied simultaneously:

(i) For j=l,2,...,n, (£.., nj) =(v-j^, 1jC3j)X and
(ii) a-j =ag = ... =an and B-j a B2 = ••• = &n'

Otherwise, N is "called a mixed-order algebraic n-pbrt element.

The purpose of this paper is to study the problem of synthesizing the

elements introduced in Definitions 1.1 and T.2 above. We shall use the term

"higher-order elements" loosely to include both higher- and mixed-order ele

ments, unless otherwise stated. In sections 2 and 3, we are concerned with

synthesizing a new class of linear algebraic 2-ports — the higher-order muta

tors. The results presented in these two sections will be used in section 4,

which deals with the general problem of synthesizing a higher- or mixed-

order n-port element.

2. HIGHER-ORDER MUTATORS

Before we proceed with a general method for synthesizing any higher-

or mixed-order n-port element, we need to introduce a" new class of linear

algebraic 2-ports, known as higher-order mutators.

Definition 2.1: A type 1or type 2 (o^, B-j) - (a2"'» B2) mutator, or higher-order
mutator (abbr., h.o.m.) is a linear two-port with constitutive relations:

Type 1 Type 2

v/*!5 =v2(a2}1 Vl(al> =-i2(e2>
(2.1)

1/*1>.-12<*2> i/^v^,

It is represented by the symbol in Figure 2.
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Assuming zero initial conditions, the frequency domain representation of a
h.o.m. is given by:

Type 1 Type 2

Vs) S * ' 0

.62"B1
V2(s)

-I2(s)

,82"al

ao-B-t

V2(s)

-I2(s)

(2.2)

where V.,(s), I.-(s) (j = 1,2) denote the (one-sided) Laplace Transform of v:>
ww J

i., respectively.
w

From equation (2.2) we can see that the h.o.m. is just a special case of

a Generalized Impedance Converter (GIC) [2], which is a common building block

used in the realizations of active filters. (Of course, for nonzero initial

conditions, the above frequency domain representations are invalid, just as

they are for the GIC). For example, the frequency-dependent negative resis

tance (FDNR) is now a commercially available component which can be synthesized

by an appropriate interconnection of GIC's [2]. Motivated by this observation,

we shall show that just as GIC's can be used to realize the FDNR (which is a

linear higher-order element), higher-order mutators can be used to realize any
3

nonlinear higher-order element.

Higher-order mutators exhibit two important properties which enable us to

use them in synthesizing higher-order elements:

1. Mutation property: Just as its name suggests, the higher-order mutator can

transform a 2-terminal element associated with the variables (v^a2', ve2') to
one whose constitutive relation is between the variables (v'al', i'6l'). More
precisely, if we terminate port 2 of a type 1 h.o.m. by a higher-order element

characterized by h(*/a2', V*Z') =0, the resulting 1-port is equivalent to a
higher order element characterized by h(v'ar, i^r) =0. Similarly, termina
ting port 2of atype 2 h.o.m. by an element described by h(v^Vf 1^2^) =0
results in a higher-order element at port 1characterized by h(i^l^, v^al^) =0.
Note that a type 2 mutator transforms (a2, 32) to (a-j, B-j), and the roles of

Throughout this paper, we shall use the term "nonlinear" to denote linear or
strictly not linear, unless otherwise specified.
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the voltages and currents are also interchanged. It may be illuminating to view
this mutation property through the diagram in Figure 3.

As a result of the mutation property, any 2-terminal higher-order element
characterized by h(v(a), i(3)) =0can- be constructed by connecting anonlinear
resistor described by h(v,i) = 0 (or h(i,v) = 0) across port 2 of a type 1
(or type 2) (a,B) - (0,0) h.o.m. Hence the problem of synthesizing any 2-term
inal higher-order element is reduced to that of synthesizing a type 1 or 2
(a,B) - (0,0) h.o.m., and a nonlinear 2-terminal resistor. Since there exist
many well-known techniques for the synthesis of nonlinear resistors [3-5], we
shall initially concern ourselves only with the problem of synthesizing a h.o.m.

2. Closure Property:

Definition 2.2: Ports j and k associated with an algebraic n-port N, or with

two algebraic n-ports N-j and N2 are said to be compatible if the respective port
variables (v^j5, l^ty) and (vk(ak}, i^M) satisfy: a, =ak and ^=Bk-4

A straightforward application of the definition of a higher-order mutator

will show that a compatible interconnection of two higher-order mutators always
results in another higher-order mutator where the port variables associated with

the unconnected ports remain unchanged. In particular, denoting the operation

of a compatible interconnection by the symbol "+", we have 5:

(a) [type 1(c^ ^-(c^)] +[type 1(a2,B1)-(a3,B3)] =type 1(a1,B1)-(a3,B3)

(b) [type 1(apB^-tog.Bg)] +[type 2(a2,B2)-(a3,B3)] =type 2 {a} ,B1)-(a3,33)

(c) [type 2(a1,B1)-(a2,B2)] + [type 1(a2,B2)-(a3,B3)] =type 2 {a},B1)-(a3,B3)

(d) [type 2(a1,B1)-(a2-,B2)] +[type 2(a2,B2)-(a3,B3)] =type 1(a1,B1)(o3,B3)

As we shall see shortly, the closure property results in a considerable

simplification of our synthesis problem. Although incompatible interconnections

between two algebraic 2-ports would normally produce a dynamic 2-port, the

following result shows a desirable property shared by all mutators:

4Note that this definition holds trivially for the case j = k€ (l,2,...,n).

Properties (a) - (d) are reminiscent of the closure under addition of odd and
even numbers. In this case, a type 1 higher-order mutator corresponds to an even
number and a type 2 higher-order mutator corresponds to an odd number.
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Theorem 1

The class ef all higher-order mutators introduced in Definition 2.1 forms

a group under cascade interconnections with zero initial conditions. n

Proof

Since we are considering zero initial conditions, it is more convenient

to work in the frequency domain. From equation (2.2), we can see that higher-

order mutators of both types have a transmission representation. Hence if Mft
and M„ are h.o.m.'s with transmission matrices A and B respectively, the

transmission matrix resulting from cascading MA and Mg (denoted MA C Mg) is
simply the product of AB [6]. It now becomes easy to verify the following.

1. For j= 1, 2, let Ml denote atype j (a«j,B])-(<*£,B£) Juo.m. and M!j denote
a type j (af,Bp-(ag,Bg) h.o.m.

a) M\ CM!j results in aType 1(o|+a}', B-j+Bf) -(a2+a£, Bg+B^) n-°-m.
b) U\ CM£ results in aType 2(aj+o^, B^) -(a£+B2, B2+a£) h.o.m.

c) M£ C Mf results in aType 2 (a\+&], B]+ctp -(a^, B2+B2) h.o.m.

d) M£ C M£ results in aType 1(aj+B^ Bj+af) -(a£+B2, B2+a2) h.o.m.

Hence the class of all mutators is closed under the operation "C."

2. Since matrix multiplication is associative, it follows that the operation

of cascading mutators is also associative.

3. The inverse of a (a, ,B-j)-(a2,B2) h.o.m. of either type under the operation
"C" is clearly the (-a-, ,-B-|)-(-a2,-B2) h.o.m. of the same type.

4. The identity element under the operation "C" is a type 1 (0,0)-(0,0) h.o.m.

It follows from facts 1-4 above that under zero initial conditions, the class of

all h.o.m.'s described by equation (2.2) forms a group under the operation "C". n

3. SYNIHESIS UF A TYPE 1 (a,B) - (0,0) H.O.M. *

There are several reasons why we are considering the problem of synthe

sizing a type 1 (a,B) - (0,0) h.o.m. instead of the more general one of syn

thesizing a (a,, B-i) - (a2,B2) h.o.m:
1. Our main interest lies in the synthesis of higher-order elements. As we have

shown earlier, because of the mutation property of higher-order mutators, all

that is required in this synthesis is a type 1 or type 2 (a,B) - (0-0) h.o.m.

and a nonlinear resistor.

-6-



2. By the closure property, any type 2 (a,B) - (0,0) h.o.m. can be constructed

by cascading a type I (a,B) - (0,0) h.o.m. with a type 2 (0,0) - (0,0) h.o.m.

The latter is simply a gyrator [2], which is a readily available circuit element.

Also by the closure property, the (a-pB-j) - (a2,B2) h.o.m. of either type can be

constructed by cascading a(a]9^) -(0,0) h.o.m. and a(0,0) -(a2,B2) h.o.m.6
of the same type.

3. The type 1(c^-c^, ^z) -(0,0) h.o.m. can be considered as a"minimal
realization" of atype 1(ct^B,) -(a2,B2) h.o.m. By a"minimal realization",
we mean a realization in the sense that the zero initial-state responses, and
therefore, the frequency responses are the same. We do not claim that the re
sponses due to nonzero initial states are the same; but in many circuit appli
cations, it is conventional to ignore the transient response, since it is of
major relevance only in unstable circuits.

Our first result deals with the synthesis of a type 1 (a,B) - (0,0) h.o.m.
Starting with any type 1(a\B') - (0,0) h.o.m., it is possible to obtain a
(a'+ 1,B') -(0,0) h.o.m. of the same type by appropriate interconnections with
atype 1(0,0) - (1,0) h.o.m. (which we shall denote by the symbol "A" for
brevity). It is also possible to obtain a(a'.B'+D - (0,0) h.o.m. of the same
type by appropriate interconnections with atype 1(0,0) -(0,-1) h.o.m. (denoted
by the symbol "B"). A. straightforward calculation shows that the connections
specified as follows will vield the above result:

rport 2of a""!
with port 1 of a type 1

>(a',B')-(0,0) h.o.m. \Connecting (
port 1 of A

port 2 of B

port 1 of B
will result in a

r(a'-l,B')-(0,0) h.o.nO
(a'+l,B')-(0,0) h.o.m.

(a',B'+D-(0,0) h.o.m.

.(a',B'-D-(0,0) h.o.m.

Hence, we can start with a type 1 (0,0) - (0,0) h.o.m. and keep increasing

or decreasing the orders of v and/or i at port 1 until we end up with the de

sired type 1 (a,B) - (0,0) h.o.m.. This leads to the following lemma:

Lemma

A type 1 (a,B) - (0,0) h.o.m. can be synthesized with

6It is obvious that the synthesis of the (0,0)
from that of the (a,B) - (0,0) h.o.m..
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n,c 4 |a| +|B| linear reactances and at most 3n,c linear controlled
sources.

Proof

A type 1 (0,0) - (1,0) h.o.m. can be synthesized by either of the circuits

given in Figure 4a. Each circuit in Figure 4b is a realization of the type 1

(0,0) - (0,-1) h.o.m. Finally, a type 1 (0,0) - (0,0) h.o.m. simply consists

of two short circuits, as shown in Figure 4c. Following the scheme discussed

previously, we note that for each order of v or i that is added or subtracted,

we would require one linear (1H) inductor and/or (IF) capicitor, and three

linear controlled sources. Therefore a total of n,c linear reactances and 3n,c
linear controlled sources are required for synthesizing the type 1 (a,B) - (0,0)

h.o.m., as prescribed by the theorem. n
As an example, the circuit in Figure 5a realizes a type 1 (-1,-2) - (0,0)

h.o.m. by cascading two type 1 (0,0) - (0,-1) h.o.m.'s in Figure 4b with a type

1 (0,0) - (1,0) h.o.m. in Figure 4a. Similarly, the circuit in Figure 5b
realizes a type 1 (2,2) - (0,0) h.o.m. by appropriate interconnections of the
circuits in Figures 4a and b.

A careful examination of the circuits synthesized by the above procedure

shows that it is possible to reduce the number of linear controlled sources used

in the synthesis. By extracting the linear reactances in the circuits of Figures
4a and b as extra ports and considering the hybrid representations [6] of the
resulting 3-ports, we can use an inductive argument based on the previous lemma
to deduce the following:

Theorem 2

A type 1 or type 2 (ct,B) - (0,0) h.o.m. can be synthesized with

nLC lal + 1^1 linear reactances

and (nLC + 2) linear controlled sources. «

As an illustration of this theorem, note that the type 1 (-1,-2) - (0,0)

h.o.m. of Figure 5a which was realized using nine linear controlled sources

The term "linear reactances" refers to IF capacitors and/or 1H inductors in
this context.

„8-



can now be realized using only five linear controlled sources, as shown in
Figure 6.

The proof (by induction) of this theorem is tedious and complicated, and
is therefore omitted. The basic idea used in the proof suggests a relatively
simple and perhaps more intuitive way of synthesizing any (a,B) - (0,0) h.o.m.
We shall illustrate this idea with an example:

Consider a type 1 (a,B) - (0,0) h.o.m., where a,B > 0. It is easy to
verify that the circuit in Figure 7 is indeed a realization of this particular
h.o.m. The interesting features worth noting are:

1. Each internal section of the 2-port realizes one step of differentiation.

2. The circuit consists of two independent portions, one for realizing each

equation in the definition of the h.o.m.

3. A dual synthesis can be obtained by replacing each capacitor with an inductor

and each linear controlled voltage source with a linear controlled current source.

4. There exist other possible solutions by using a mixture of linear capacitors

with voltage sources and linear inductors with current sources.

Since integration can be achieved by interchanging currents and voltages

in an obvious way in the above, a similar reasoning will yield circuit solutions

for any (a,B) - (0,0) h.o.m. (i.e. a,B not necessarily constrained to be non-

negative as in the example of Figure 7.) Because such a synthesis would require

one linear controlled source to be associated with each linear reactance and

each of the two ports, it follows that a total of (nLC + 2) linear controlled
sources are required.

For large values of |a| and |B|, this number is considerably less than
that given in the lemma. We wish to point out that in Theorem 1 and its pre
ceding lemma, we are merely trying to show the existence of a realization for

the type 1 (a,B) - (0,0) h.o.m. using only linear circuit elements. There is

no reason to believe that the proposed method gives the unique synthesis of the

higher-order mutator. We can consider the results in this section as providing
an upper bound for the number of linear circuit elements required in the synthesis
of the higher-order mutator under consideration.

4. SYNTHESIS OF HIGHER AND MIXED ORDER N-PORT ELEMENTS

Recalling the mutation property of higher-order mutators (see Figure 3),
the following can easily be deduced from Theorem 1:

-9-



Corollary to Theorem 2

A 2-terminal higher-order element characterized by h(v^ ,v ') =0 can
be synthesized using only

n,c 4 |a| + |B| linear reactances
(n, c+ 2) linear controlled sources and a 2-terminal nonlinear resistor
characterized by h(v,i) = 0. *

Figure 8 contains an example of this corollary. It realizes a higher-

order element described by i' ' = g(v' ') by cascading a 2-terminal resistor
having the same constitutive relation with a type 1 (2,2) - (0,0) h.o.m..

We can now turn our attention to the synthesis of algebraic higher- or

mixed-order n-port elements:

Theorem 3

Every higher- or mixed-order algebraic n-port element characterized by

h(S,n) = 0 (cf definition 1.2) can be synthesized using only higher-order mutators
and a nonlinear n-port resistor.

Proof

Denote by Ran n-port resistor characterized by h(v,i) =0. Let the jth
component of (5,n) be (£., n.) =(v.(aj\ 1 <Bj>) or (i,(3j}, v4(aj)).

th JJJJ JJ
Connect the jUM port of R to port 2 of a (a., B,) - (0,0) h.o.m. By the muta
tion property of h.o.m.'s the resulting n-port is characterized by h(C,n) = 0. n

In the following, let

and nMi/^.i^) i^n)).

Theorem 4 (Main Result)

Let A denote a compact subset of Kn and g: A^Kn be a C1 function.
Every higher- or mixed-order n-port element characterized by £ = f(n) [or,
dually, n = f(0] can be synthesized using at most

n

ni c= £ lail + l^iI linear reactances,
a J=1

nLC 3'nLC + n) linear controlled sources, and

nR = n(2h +-n + 1) 2-terminal nonlinear resistors.
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Proof

From the proof of Theorem 3, we already know that n,c linear reactances
and3nLC linear controlled sources are required to synthesize the higher-order
mutators used in the general synthesis of the n-port enelment. It remains to

show that a total of nR 2-terminal resistors and 3n- linear controlled sources
are needed to synthesize an n-port resistor characterized by v = f(i) or

i = f(v). The proof of this is constructive and follows from an improvement
of Kolmogorov's Theorem as introduced in [7], We shall only consider the case

of a voltage-controlled n-port resistor described by i = f(v), where f

satisfies the hypothesis of the theorem. A similar proof can be derived for

the dual case.

From [7], it follows that each component function

ik = fk(vrv2,...,vn)

can be expressed in the form

n 2n

\ =Xk {I I (X\(v +eq) +q)} ,k =1, 2, .,,, n, (4.1)
K K p=l q=0 K p

where Xk and ty. are real-valued functions dependent only on f^, and X and e
are constants. The synthesis of the n-port resistor is based on equation (4.1),

and is shown in Figure 9. For each (p,q,k), the nonlinear resistor Rn is

described by

1J.q =XVV £q) +q (4'2)
Note from Figure 9 that

In = I i „ (4.3)
P q=0 p'q

The nonlinear resistor Rk is characterized by

Vk =Xk(Ik) . (4.4)

It is easy to verify that the total number of 2-terminal nonlinear resistors

required is

2
nR = n(pq)+n = n(2n + n+ 1)

and the number of linear controlled sources required is 3n. n

-11-



We do not claim that Theorem 4 gives the minimum number of elements used

in the synthesis of a higher- or mixed-order n-port element. It merely provides

an upper bound on the number of elements required. For example, the 2-port

mixed-order element

I^-Mv^.vj-1))
l("3) =q (V0) VH>) (4'5)i3 g2u1 , v2 ) ,

where g = (g,, g«) satisfies the hypothesis of Theorem 4 can be synthesized

by the circuit in Figure 10. In this circuit, 22 nonlinear 2-terminal resistors

and only 5 linear controlled sources are used in realizing the 2-port resistor

R. The nonlinear 2-terminal resistors have the characteristics:

Rpq: ipq =*VV Eq) +P
Rk: Vk = Xk(Ik)

where *l>. and X. are the functions of one variable used in the decomposition

of the original functions g. of the 2-port resistor:

11 = gl(V v2}

12« 92^.^) <4-7>

5. CONCLUDING REMARKS

So far, we have shown that it is possible to synthesize any algebraic
higher- or mixed-order n-port element using only linear reactances and con
trolled sources, and 2-terminal nonlinear resistors. Based on our above re

sults, it would be an interesting and challenging problem to find a synthesis
of these elements using only operational amplifiers (op amps) and 2-terminal
elements (namely, linear reactances and nonlinear resistors) as basic building
blocks. By analogy with known results for active circuit synthesis, it may be possible

to obtain a bound on the number of op amps needed that is comparable to the
bound for the linear controlled sources given in theorem 1.

As far as a direct op amp realization is concerned, we have successfully
built two circuits which function like 2-terminal higher-order elements, The

-12-



first is the circuit shown in Figure 11, which is a realization of the FDNR

(cf. section 2), described by i =rmr ', with m>0. The circuit shown in Figure
12 is a realization of the 2-terminal higher-order element characterized by
•(2) (2)
i = g(vv '). From laboratory measurements, when the nonlinear resistor R is a diode,
the resulting one-port mimicks (within a reasonable range of operational fre
quencies) the h.o.e. described by i^ =I$(ev /vT -1), i.e. the i^vs v^
characteristic is identical to that of the diode characteristic.
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FIGURE CAPTIONS

A 2-terminal higher order element.

A (op B-]) - (a2, B2) h.o.m. of type 1 or 2.
Mutation property of the h.o.m.

2 possible realizations for the type 1 (0,0) - (1,0) h.o.m.

2 possible realizations for the type 1 (0,0) - (0,-1) h.o.m.

A type 1 (0,0) - (0,0) h.o.m.

A type 1 (2,2) - (0,0) h.o.m.

A type (-1,-2) - (0,0) h.o.m. realized with fewer linear controlled

sources.

A type 1 (ayB) - (0,0) h.o.m. with a,B > 0.
(2) (2)

A realization of the 2-terminal higher-order-element:iv ' = g(vv ')

Synthesis of the n-port resistor i = g(v) based on equation (4.1).

A realization of the mixed order 2-port element of equation (4.5).

A realization of the FDNR.
(2) (2)

A realization of the 2-terminal higher-order element iv ' =f(vv ')
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Fig. 7

Vj=l,2 a

Vk=l,2 $
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