Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



STATE SPACE THEORY OF NONLINEAR TWO-TERMINAL
HIGHER-ORDER ELEMENTS

by
Leon 0. Chua and Ellen W. Szeto

Memorandum No. UCB/ERL M82/18
12 March 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



STATE SPACE THEORY OF NONLINEAR TWO-TERMINAL
HIGHER-ORDER ELEMENTS'

Leon 0. Chua and Ellen W. Sze'co;r'r

Abstract

Higher-order elements have been introduced to provide a logically complete
formulatton for nonlinear circuit theory. A distinctive feature of higher-order
elements is that they possess internal dynamics that are more complicated than
those of conventional circuit elements (namely, the resistor, inductor, capacitor
and memristor). In this paper. we shall provide a state space formulation for
studving two-terminal higher-order elements. State-space properties such as local
controllability, input-observability, passivity and losslessness will be investigated
in great detail.
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1. Introduction

Higher-order elements] have been introduced in [1] to provide a logically
complete formulation for nonlinear circuit theory. 1In [2], it has been shown that
these elements can be synthesized using only linear reactances, linear controlled
sources and nonlinear two-terminal resistors. The synthesis method indicates that
a distinctive feature of higher-order elements is that they possess internal
dynamics that are more complicated than those of conventional circuit elements. 1In
this paper, we shall provide an analysis of the state-space properties of two-terminal

higher-order elements.

It is our intention to treat each section in the paper as independent. In
section 2, we shall show that each two-terminal higher-order element can be described
by a state representation which satisfies the usual state-space axioms (see, for
example, [3]). Section 3 treats the problems of local-controllability and input-
observability. It is advisable to skim through sections 2 and 3 before moving onto
sections 4 and 5, which deal with passivity and losslessness, respectively, of
two-terminal higher-order elements. At the time of writing of this paper, we feel
that it would require a major effort to extend our present results to the case of
n-port elements.

2. State Representations of Two-Terminal Higher-Order Elements

Our interest in the state (dynamical) representations of higher-order elements
was originally motivated by studying the passivity and losslessness properties of
these elements in the setting of [3] and [4]. It turns out that because of the
complicated internal dynamics of higher-order elements (abbr., h.o.e.'s), their
state representations are of a highly specific form which enables us to draw
interesting conclusions concerning their state space properties. Before stating our
results, it is necessary to introduce the following concepts:

Definition 2.1 [3]
A state representation S for an n-port is a quintuplet {U, U, =, E, R} where:
(i) Uc R" is the set of admissihle input values,
(i1) U= {u]u : R, + U} is the set of admissible input waveforms,
(iii) £ € R™ is the state space,
(iv) E is the state equation2
X = fx,u)
where f(+,+) : £ x U+ R™, and

IThroughout this paper, we shall use the term "higher-order elements” to include both
higher- and mixed-order elements as introduced in [1].

2The only difference between our definition and that in [3] is that we have excluded
the "output equation" from E. 7.



(v) R is a pair of readout maps:
V:ZxU=>R"is the port voltage readout map,
I:2xU=+R"is the port current readout map. n

Definition 2.2 [3]
The power input function p:Z x U » R" is defined by

n
p(xsu) = jZ] V;(6y) I5(xy). m
The state representation S is assumed to satisfy all the state space axioms
as stated in [3]. In particular, we would 1ike to remind the reader that the following
have to be satisfied before we are able to apply the theory of [3,4] for passivity
and losslessness in the later sections:

Standing Assumptions:

(A1) For every Xg € I and every u(+) € U, there exists a unique solution
x(¢) : RY + I of the differential equation x = f(x,u) such that x(0) = Xg-

(A2) For every {u(+), x(<)} described in (A1), the port voltage and port current
of the n-port are, respectively,
v(t) = v(x(t),u(t)) and
i(t) = I(x(t),u(t)).

(A3) For every pair {u(+), x(+)} as described in (A2), the function t + p(x(t), u(t))
is locally L' [31.

(A4) The set of admissible input waveforms U is translation invariant and closed under
concatenation, and all functions in U are measurable [5].

3

Definition 2.3

P(H2+) is defined to be the set of all piecewise continuous functions
g :[to,t]] + R (where [to,t]] denotes any finite interval in R ) with a finite
number of discontinuities. "

In the following, we shall concern ourselves only with a 2-terminal h.o.e.
described explicitly by

V(a) = f(i(B)) (2-])

f(xu) if x(t) : R > I is absolutely

3¢ is a solution to the differential equation X =
h T> 0, and satisfies x = f(x,u) for

continuous on every bounded interval [0,T] wit
almost all t.



Dual results can be derived for the representation

1(3) = g(v(a)) 4 (2.2)

by interchanging the roles of v(a) and 1(3). Depending on the integral values

of a and B, the h.o.e. of equation (2.1) can have different state representations.
The state representations S = {U, U, I, E, R} for the case a > 0 are listed in
tables la and 1b; and those for o < 0 can be found in table lc.

For the case a < 0, we need to consider the following equivalent representation
for the h.o.e. of equation (2.1):

_ dla'
Y f(z) 2=i(B)

é?(i(s), 1(3*]), coe, i(B-a)) . (2.3)

Note that the function f in equation (2.1) has to be at least |a| times differentiable
for the existence of the representation in equation (2.3). We say that these two
representations are "equivalent" in the sense that every (i(B), v(“)) satisfying the
constitutive relation of (2.1) gives rise to (i(B), i(B+]), eee, i B-a , V) which
satisfies (2.3). Conversely, we can pass from (2.3) to (2.1) by integrating the
former equation |a| times, and taking the initial conditions v('1)(0), TN v(“)(o)
into account. We wish to bring up this point here because the role of these initial
conditions is of particular importance when we consider passivity and losslessness
in the later sections of this paper. It may be of interest to note that
representation (2.3) is precisely what is needed in considering the state representation
of a charge controlled memristor in [6].

From Table 1, we see that there are certain cases in which the "input space"
U consists of unusual, or rather, unconventional "inputs," namely i(k), for A > 1.
It is to be noted that such a choice is chosen purely for mathematical convenience,
and that it does not affect the validity of our state representations. The different
choice of U for each case enables us to prove that the state representations listed
in Tables 1 satisfy assumption (A1), i.e. existence and uniqueness of solutions.

Theorem 2.1.

Consider the 2-terminal higher-order element described by equation (2.1) and
the corresponding state representations listed in Table 1. Assuming that U,  and f
satisfy the conditions given in the tables, then the standing assumptions (Al)-(A4)
(stated previously) are satisfied. "
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For the case o > 0, all that is required for existence and uniqueness of
solutions is for the function f to take on finite values almost everywhere in R.
This is a much weaker condition than the usual continuity assumptions needed in
proving existence and uniqueness of solutions to state equations [7]. We shall see
shortly that the continuity restrictions on f can be relaxed because of the highly
specific form of the state equations for h.o.e.'s. The result of this theorem
enables us to consider passivity and losslessness in the (state-space) framework
of [3,4] in our later sections.

Before proving the theorem, we need the following result:

Lemma 2.1
Consider the set of equations

- N
X (t) = p(t)
xz(t) x](t) &

(2.4)

im(t) Xp-1(t)
\ v
4

where p(t) is integrable’ over any finite interval in R,. There exists a
unique solution x(t) to equation (2.4). n

Proof of Lemma 2.1
Since p(t) is integrable over any finite interval in R,,

t
x (t) =jt plr)dr + x;(ty) (2.5)
0

is absolutely continuous on the interval [to,t] and il(r) = p(t) almost everywhere

(a.e.) on [to,t] [6]. Since x](t) is absolutely continuous, it is also integrable
on [to,t] [5], so we have

t
xp(t) = Jto X (1)dt + x,(tg)

where x,(t) is absolutely continuous and iz(r) = x;(1) a.e. on [ty,t].
Using similar arguments, we can show that for k = 2,3, *+-,m,

t
x (t) = Jto X (04T + X (8g)

4By "integrable," we mean Lebesgue-integrable [5]
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where xk(r) is absolutely continuous on [t ,t] and x (t) = X . ](r) a.e. on

[to,t] Therefore there exists a solution (cf footnote 3) to equation (2.4).
For the uniqueness part of the proof, we assume that the solution obtained

by the above process is not unique, i.e. there exist x(t) and x(t) satisfying

equation (2.4), with

xk(to) = §k(t0), for all k = 1,2, ««,m.

Define ek(t) = xk(t) - §k(t) for each k. From equation (2.5),

e](t) =0 a.e. on [to,t],
which means that

e, (t)] = 0.

S1ncex](t) is integrable over any finite interval (t »t] in R, so is

(2.6)

e](t), and since e](t) is absolutely continuous on [to,t]] (because x](t) and x1(t) are

both absolutely continuous), we get [8]

e](t) t . t
[T el = | &mar| <[ 1ymer=0.
e](to) t0 to
Therefore
e, (1)
E(t) A |1 dey = eg(t) - ey () = 0
1\ -je](to 1 1 1'%

for all T € [to,t], i.e.,

e;(t) = e;(tg) = 0, or

x1(1) = X;(1) = 0 for all t € [ty,t] .
A similar argument can be used to show that

X (1) = X (1) for all T € [tg,t]

It follows from (2.7a) and (2.7b) that x = x on every finite interval [to,t] and

therefore the solution is unique.

Partial Proof of Theorem 2.1

(2.7a)

(2.7b)

=4

We shall show that under the conditions listed in Tables la-c, each assumption

for the state representation is satisfied.
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(A2) It is obvious from the tables that R consists of the port voltage and
current readout maps.

(A4) Since a1l LP and 1ocally LP functions from R, > R are translation invariant
and closed under concatenation [3], the result follows immediately from
Tables la-c.

(A1) The proof for these parts involves a case by case study of the various values

%gg) of a and B as given in Table 1. We shall consider only two of these cases
here, which should be illustrative of the general strategy used in proving

the theorem. The proof for the other cases can be found in Appendix A.

a=0,8<1 (i.e., case @ (i) in Table 1a)

- Existence and uniqueness of a solution to the state equation E follows from
Lemma 2.1.

- ‘From the existence part of the proof of Lemma 2.1, x 8 (t) is continuous, and
hence Lebesgue-measurable on any finite interval I in R_ [5]. By hypothesis, f
is Borel measurable, which implies that f(x 8 (t)) is Lebesgue measurable on
I [12]. Since |f| is integrable on]I by hypothesis, v(t) = f(x,sl(t)) is also
integrable on I, and is therefore L]OC(R++R) [8]. Since i(t) = u(t) € L]OC(R++R)
in this case, we have, for the power input function (cf Definition 2.2) '

p(t) = i(t) v(t) € L] (R ,R)
by Holder's Inequality [5]. So (A3) is satisfied.
B=a<-1 (i.e., case @ in Table Ic)

- Existence and uniqueness of a solution to E follows from Lemma 2.1.
- Since v(a) = f(i(B)), and f is at least |a| times differentiable, we can write

v = }(1(3)’ i(B+]), .ee, i(B-a)) , (2.8)

where ;-‘ = I%I f(’I(B)) h-(‘i(B-H), 1'(B+2)’ e, 1(B‘a'j+]))’
j:'.] J J
.(B) = dj i = see
fj(1 ) = E;j-f(z) L1 (8) for j = 1,2, sla] s

i (B+8y)
and h; = YK(o) x T (i )}
o i=1

with K(o) a constant dependent on ¢ and o denoting the set of all permutations such

i
that § o, = |a.
i=1 !



We can rewrite equation (2.8) as

v = f](i(B)) j(8-a) 4 F%l fj(i(s)) hj(1(6+]), cee,i(Brani*l)) (2.9)
J=

By hypothesis, f € C'al-l, therefore fj is continuous for j = 1,2, +++,|a|-1 and
f|a| is piecewise continuous. Since we are considering the case o = B < -1, we can
further decompose equation (2.9) as follows:

|8]-1

~—

B
— - ,
= A(t) + B(t) + c(t) (2.10)

£ 18y by (1(892) 5 (04

&

From the proof of Lemma 2.1 and the state equations for this case, i(’])(t),
i('z)(t), see, i(B)(t) are all continuous on any finite interval I in R+. Therefore
hj(t) is also continuous in that interval for each j = 2,3, +++,|B|. Hence C(t) in
equation (2.9) is continuous in I and

C(t) € L]oc(]R++R) . (2.11)
Similarly, it can be shown that
A(t) € Ly, .(R,~R) (2.12)

Since i(e)(t) is continuous in I and le[ € P(R,) (cf definition 2.3),
le (i(B)(t)) € P(R,). This, and the continuity of 1(8+])(t) in T implies that the
term B(t) in (2.10)€ P(R,) and therefore,

B(t) € L (R,) . (2.13)

Since u € leoc(m+)’ equations (2.11)-(2.13) give that p(t) = i(t) v(t) € L}OC(R{*]R)'

3. Input-Observability and Local-Controllability
(I)INPUT-OBSERVABILITY
Definition 3.1 [3]
Given a state representation S, an input-trajectory pair is a pair of functions
u(*) €U and x: R* > £ such that x(+) is a solution of x = f(x,u). o

Definition 3.2 [4]
A state representation S is input-observable if the following condition holds
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for any two input-trajectory pairs {u](-), x](~)}, {“2(')’ xz(-)} with a common
initial state x7(0) = x,(0):

For all t' >0,

If {V(xy(t), up(t)}s T{xq(t)s ug(E))} = {V(xo(t), up(t))s I(xp(t), un(t))}

for all t € [0,t'),
then u](t) = uz(t) for all t € [0,t'). o

Input-observability means that every admissible pair (v,i) [3] with a given
initial state is associated with a unique input waveform u(-). Assuming the solutions
to the state equation are unique, the state representation S is input-observable
if every admissible pair {v(+), i(+)} with a given initial state g is associated
with a unique input-trajectory pair {u(-), x(+)}. This concept was introduced in
reference [4] to formulate a complete theory for losslessness of nonlinear networks
in a state space setting. Before we can apply that theory to study losslessness
for h.o.e.'s, we need to check if all the state representations for h.o.e.'s are
input-observable. The following result provides an answer:

Theorem 3.1
The state representations listed in Tables la-c for the 2-terminal h.o.e.
described by equation (2.1) are all input observable. n

Proof

(i) For the cases (¢ >0, 8 <0) and (8 < < -1), the input u is the current i,
so the condition for input-observability given in definition 3.2 is trivially
satisfied.

(ii) For (B > 0) and (o < B < -1), the state representation is of the form

r N
0

!
xX <
-—

*2 (3.1)

X

x
>
]
—

A
see Il e I}
~

. /
where u = i(k) for some A > 1, and u € L}OC(B2++BR). Consider two input-trajectory
pairs {i%k)(-), x](o)} and {iél)(-), xz(-)}. For j = 1 or 2, we have shown in the
proof of Theorem 2.1 that i§x']), 1§A-2)’ see, i§0)(t) are absolutely continuous

on every finite interval in R,. For all t' > 0, suppose
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i](t) = iz(t) for all t € [0,t') (3.2)

For any t € [0,t'), by definition of the derivative [8]

j:(t+h)-i.(t)
1(1)(t) = Vim { sup - B J :}
J s»0 \_O<h<s
i (t+h)-1;(t)
= lim { inf - : J
s=0 | O<h<s

Since the interval [0,t') can be expressed as a finite union of closed intervals
(=] t'
fo,t') = v [o, t'- k'_] R
k=1

for any t € [0, t') and for 0 < h < 13%551 there exists N, < = such that
N

t
t+he U [0, t' -£740, clo, t) (3.3)
k=1
Naturally, we also have
tedJ, c[o, t') (3.4)

Equations (3.2)-(3.4) imply that for all t € [0, t'),

i](t+h)-i](t) 12(t+h)-12(t)
1im sup h :} = Tlim sup h
s»0 \L O<h<s s+0 \_O<h<s

(similarly, equality holds for the 1im inf)
and therefore,

iPNﬂ=igNn for all t € [0, t') (3.5)

If A =1, we are done because equations (3.2) and (3.5) give the input-observability
of the state representation (3.1). If A > 2, we can repeat the above argument to
get the following: for all t € [0, t'),

(1) £) = (1) £) = -(2) t) = '(2)(1:) o eee = '()‘)(t) - '(A)(t)
B (t) 1o (t) L] (t) 1s & 12 ’

i.e. u]Z;5k=u2(t)

Therefore the state representation is input-observable by Definition 3.2. H
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(IT) LOCAL CONTROLLABILITY

Given a circuit with state representation S, (global) controlability means that
it is possible to go from any initial state in the state space I to any other state
in I via some appropriate input applied over some finite time interval. A formal
definition of this concept can be found in [3,9].

For linear systems, there exist well-known criteria for controllability [9,10].
Unfortunately, for nonlinear systems, it is difficult to derive the corresponding
criteria for this property, which is global in nature. Most of the results in the
current Titerature deals with a local version of this concept [9]. Roughly speaking,
the system is locally controllable about a point Xo in £ if it is possible to travel
a "short" distance along the state trajectory for a considerably "short" period of
time to reach points that are "close to" XQ+ The following definitions are adapted
from [9]:

Definition 3.3
Given a state representation S, let Xgs X; € I. The state Xy is reachable from
g if there exists a finite T > 0 and an input-trajectory pair (c.f. Definition 3.1)

{u(-), x(-)}|[0,T] from Xg to xy. "
Definition 3.4°

The state representation S is locally controllable at xoez if for any state x
in a neighborhood Q(xo) of Xgs X is reachable from Xqs and.x0 is reachable from x.
S is Jocally controllable if it is so at every X € z. n

The above definition deals only with the existence of controls or inputs that
can provide for state transitions in a local neighborhood about some point in the
state space. It does not account for the amount of energy needed for the
transitions. The following definition, adapted from [11], imposes the condition
that the amount of energy required for each local transition be “"sufficiently small."

Definition 3.56

S is locally continuously controllable at X0 if it is locally controlilable
at Xq (in the sense of Definition 3.3) with the additional assumption that

Ijzo p(t)dt

< plix-xgl (3.6)

5More precisely, this type of local controllability is referred to in [9] as "weak
Tocal controllability." For the sake of brevity, we have chosen to adopt the
present terminology. Note that for linear systems, controllability is equivalent
to local controllability.

®again, this notion is being introduced as "local controllability" in reference [11].
-11-



where p(t) is just the power input function introduced in Definition 2.2,
o:R,+ R, is a continuous function satisfying p(0) = 0, to denotes the initial
time for the transition from Xg to x (or from x to xo), and t denotes the final

time. The state representation S is locally continuously controllable if it is so
at every state X0 € zI. o

We are interested in the local (continuous) controllability properties of
h.o.e.'s because this concept will prove useful when we explore the subject of

the existence of storage functions for these elements [12].

Theorem 3.2

Assume that for the h.o.e. v(a) = f(i(s)), the function f satisfies the
conditions given in Tables 2a-c for different values of a and 8. Under these
conditions, all the state representations for this h.o.e. as given in Tables la-c
are locally controllable in the sense of Definition 3.4. n

We have imposed the C” restriction on f in the cases mentioned because of
technical details, which would become obvious in the following proof. We suspect
that such a smoothness condition can be relaxed, especially for the case of h.o.e.'s,
but not without a major effort in re-formulating the existing theory of local
controllability in [9].

Partial Proof of Theorem 3.2
Referring to Tables 2:
- For all cases, except for (D (ii), (iv) and @ (ii), the state equations are
of the form

s To o I [V
X1_] 10 o X9 + 0|y
. 01 - . .
RIABRR "0 1.0_.fq_ _Od
b ~— —
A B

or X = Ax + Bu

It is easy to verify that the matrix

Q=[B:AB:A%B : +eee 3 A™1p]



has rank n. Therefore, the state representation S satisfies the controllability
rank condition given in reference [9], and is therefore locally controllable. 1In

fact, it is also controllable because the two concepts are equivalent in the case
of Tinear systems.

- Consider case O (iii) for (a > 1, B = 0), where the state representation is
given by - A f(u)

e

4 N
1 [ o o 1™ F(u)
=y Y07 I (3.7a)
ia 01 . . Xo, 0
o .. .
__<;> 01 0
for x = Ax + f(u) (3.7b)

Using the terminology in reference [9], the subset of the vector fields generated
by each constant control (or input) u is given by

FO = {Ax + F(u), u = constant € U}
So the Lie algebra containing F0 is generated by the vector fields
{Ax, F(u)}

Let F denote the smallest subalgebra which contains FO. By computing the Jacobi
brackets, we get

[F(u) Fu)I =0

—

[Ax, f(u)] =

]

-"
O O OooO?O

S

[Ax,[Ax, fu]] =

.b
O e O -~
c
A
v
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and so on. So the Lie algebra F is spanned by the linear vector fields Ax
and the (constant) vectors

Cf(u) I 0 T 0
0 f(u) 0
S PR
: : o

L0 L 0 ] I—f(u)—

Provided that f(u) # 0 for every constant value of admissible u, F has dimension
a, and therefore satisfies the controllability rank condition given in reference
[9]. By Theorem 2.2 in [9], the state representation of equations (3.7) is
locally controllable.

- For cases D (iv) and @ (ii), corresponding to {(a > 1, B8 < -1) and (a > 1,
B > 1), respectively, the proof is very similar to the one above, and is given
in Appendix B. ' "

Unfortunately, we have not yet devised a means of testing for local
continuous controllability of these h.o.e.'s. We conjecture that under sufficient
smoothness assumptions, every state representation for h.o.e.'s is locally
continuously controllable if the associated 1inearized representation has this
property. It is also possible that under very weak conditions, the state

representations of h.o.e.'s will always be locally continuously controllable,
as is illustrated in the following example:

Example 3.1
Consider the h.o.e. described by

vi=1) . f(i('z)),

where f € C].
This element has a state representation
Xy = Xy
i=u
vV =

f](xz)x], where fl(xz) A H%E f(xz)

X X
Consider the transition from the state Xq = [ ]0:[ to Xy = l: T :], where Xy
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1ies in a small neighborhood Q(xo) of Xq- Suppose we apply a constant input over
a small time interval: '

u(t) =a, te [o,t]]

The desired boundary conditions at both ends of the transition can be met if we had
chosen

£ = g 217720
T 7 Xyt
and
4= ["n"‘lo} ["2}"‘20] (3.8)
2 Tty |
(Note that we can always make Q(xo) small enough to ensure that Xjq * %10 # 0)
Now as t and a both tend to zero, X tends to Xg-
By definition of the power input function, %4 ()
1
jo p(t)dt = [ () v(t)at = | af (xy(t)) (rygratlat (3.9)
0 0

- 1..2
where xz(t) = Xog * xlo(t) tzat

By assumption, f is C], therefore f] is continuous. The integrand in equation (3.9)
has constant sign on t € [0, t]] if on-x]ﬂ is small enough. Also by continuity
of fi, there exists a constant M > 0 such that

[f1{x,(t)) | <M for all t € [0, t,]

This gives
t
] (t)dt| < |a|M |xqaty + l-atzl = |alM |Xpy=Xon]
0 " = 109 7 734 217%20
Substituting the expression for a from equation (3.8) we get
E
JO PN < FTxwxigT I¥117%10! IXa1 %50

Since the expression E on the right side of the above inequality satisfies E = 0
for Xg = X1s and E > 0 otherwise, and it varies continuously with ﬂxo-x1ﬂ, we
can conclude that this h.o.e. satisfies condition (3.6) in Definition 3.5.
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Therefore, the h.o.e. in this example is locally continuously controllable.

A similar result can probably be obtained for other h.o.e.'s, using the same
technique. It is still unclear as to whether a general analysis can be obtained;
meanwhile, we can only satisfy ourselves with a case-by-case analysis.

4. Passivity of 2-Terminal H.0.E.'s

Traditionally, an electrical network is called “"passive" if it absorbs energy,
i.e., it never delivers any energy to the outside world. From a synthesis viewpoint,
this means that a passive network can be built without any energy, except possibly
for energy losses during the fabrication process. With this notion of passivity,
an interconnection of passive circuit elements always results in a passive network,
which is also stable in the sense of Lyapunov [13].

It has been shown in [3] that this traditional definition can lead to an
anomalous classification of passive nonlinear n-ports. There, a state space theory
of passivity has been introduced, whereby, a passive n-port is one that is capable
of delivering only a finite amount of energy to the external world. One can
therefore interpret a passive n-port as one that can be built using only a finite

amount of energy. Using this definition, an interconnection of passive elements
results in a passive n-port which is not necessarily stable (in the sense of
Lyapunov).

Other publications (see for example, [14]) have adopted an input-output approach,
retaining the traditional definition and stability properties of a passive network
and referring to the passivity of [3] as "weak passivity." Such an approach
considers a fixed initial state and treats passivity as a property of one instance
of the network, instead of the overall network.

Despite all the work that has been done on the subject of passivity, it still
remains unclear as to which definition is most suitable for the general class of
electrical networks. Recently, an attempt has been made to unify all existing
definitions. In [15] an electrical circuit (or a "device") is modelled via a
singal space and a parameter space. A definition has been proposed for a "frame"
of the circuit, i.e., the circuit operating under a specific set of "parameter
settings." Where a state description exists for the circuit, the parameter space
can include the set of all initial states. The frame of the circuit is passive if
only a finite amount of energy can be extracted from it; and the overall circuit
is passive if all its frames of interest are passive. When a state representation
is possible, this notion of passivity is identical to that in [3].

In the following, we have chosen the definition in [3] as the basis for our
study of the passivity of h.o.e.'s. As in Section 2, we shall concern ourselves
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only with 2-terminal h.o.e.'s having an explicit representation v(a) = f(i(B)).
It is important to note that our choice of a definition for passivity is simply
a matter of convenience -- in Theorem 2.1, we have shown that under very mild
conditions on the function f, the state representations of h.o.e.'s always satisfy
the state space axioms in [3]; and we have also adopted the same set of notations
for our state space descriptions as in [3]. Our subsequént results would still
remain valid, had we chosen another definition. The reason for this is simple:
we are going to show that a large class of 2-terminal h.o.e.'s is active by the
definition in [3], because they can deliver an infinite amount of energy to the
outside world. Since the amount of energy delivered is dependent solely on the
admissible voltage and current waveforms, necessarily, the same class of h.o.e.'s
is active by all other definitions. Whenever relevant, we shall discuss the impact
of [15] on the classification of passive or active h.o.e.'s.

We now owe it to the reader to state our definition of passivity, which is
adapted from [3]:

Definition 4.1
Let S denote the state representation of a 2-terminal h.o.e. and let I denote

the state space of such a representation. We define the availahle energy
Ep:Z+ RTU (=} by

-
E(x) = sup {-j i(t) v(t)dt}
x> 0

>0
where the notation sup indicates that the supremum is taken over all T > 0 and
T30
all admissible pairs {v(e), i(+)} with the fixed initial state x. =

Definition 4.2
The h.o.e. is passive iff

Ep(x) < += for all x € z.
Otherwise, the element is said to be active. H

(I) MAIN RESULTS

We are now ready to state the results in this section. There are basically
three main theorems: Theorem 4.1 takes the well-known result that a negative
resistor, inductor or capacitor is active, and extends it to a much larger class
of elements. Theorem 4.2 shows, in essence, that almost independently of the
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properties of f(+), the condition |B-a| > 2 implies activity. (Note, though,
that some of the cases where |B-a| < 2 are also covered by Theorem 4.2). Finally,
we discuss the linear case in great detail, since in that case, it is possible
to state explicit necessary and sufficient conditions for passivity.

Most of the results in this section are statements about when a h.o.e. is
not passive. Equivalently, we are establishing a set of necessary conditions for
passivity. The problem of finding conditions which are both necessary and sufficient
(and also explicit in the sense that they involve the element constitutive relations
directly) remains open, except of course, in some special cases.

Theorem 4.1
Assume:
(i) There exists a € R such that af(a) < 0 and
(ii) (a =0, 8>0)or (¢ >0, 8 =0).

The element described by v(a) = f(i(e)) is active under these assumptions.
For this result to hold, the function f has to take on values in the 2nd
or 4th quadrant. We know that a current-controlled resistor (with («,8) = (0,0)

js passive if, and only if its v-i characteristic passes through the origin and
lies only in the 1st and 3rd quadrants. This agrees with the result of the theorem.

Proof

(i) We refer to Table 1b for the state representation for the case o = 0,
B >1.

By hypothesis, there exists a € R such that if we denote b A f(a), then sgn(b)
= -sgn(a) with a # 0, b # 0.

Choose initial state Xg = 0.

Let u(t) = i(s)(t) = a yt >0

Then i(t) = xg(t) = 35~ .t >0
v(t) = f(a)

b , £t >0

. £
p(t) = i(t) v(t) = ab 2T st >0

Therefore,

T T B g+l

t T

Ep(xq) = sup {-I p(t)dt}> sup {-J ab Zr dt} = sup{-ab } = 4w

A0 admissible u 0 T>0 0 B >0 (B+T)T
>0
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So the element is active.
(i) Fora > 1, B = 0, the state representation is given in Table 1la.

Let i(t) = a ¥t > 0, where a is in assumption (1) in the theorem and Xg = 0.
The proof proceeds as in (i) above.
(iii) For a = 0, B = 0, the state representation is given in Table la.
Pick i(t) = a, t > 0, where a is as given in assumption (1), and some arbitrary
Xg* It is easy to verify that for any Xg €z, EA(xo) = 4+, and so the element is
active. n

.Theorem 4.2

Assume:

(i) The state representation S = {U, U, I, E, R} and the function f satisfy
the respective conditions given in Tables la-c, and

(i) furthermore, f satisfies the conditions given in Table 3 for different
values of o and B.

Under these assumptions, the 2-terminal h.o.e. described by v(“) = f(i(B)) is
active. n

Remarks
The essential content of this theorem is that |B-a| > 2 implies activity,

regardless of f, which is not too surprising when one considers the linear case.
The remaining assumptions of the theorem may look complicated, but they actually
boil down to excluding pathological cases (except perhaps in. cases @ and 9,
where the assumptions needed to validate the proof are a bit stronger than one
would have expected). Note, however, that some parts of the theorem statement
-- specifically cases D, @ and {0, allow the possibility of |B-a| < 1, so
the results are not simply an extension of "intuitively obvious" linear circuit
properties. In particular, the following needs to be pointed out (cf. Table 3):

Case @: For (a > 1, B > 1), so long as the function f is Borel-measurable and
|f| is integrable over every finite interval in R, the h.o.e. described
by v(“) = f(i(s)) is always active. An obvious corollary to this is
that the linear h.o.e. v(a) = ki(B) with a,8 > 1 can never be passive,
no matter what value k takes on.

Cases @ and @ : The results here for (o >1, 8 =0) and (o = 0, B > 1), only
work for functions that are not linear. We shall see later, when we
consider the linear case that passivity implies linearity in these cases.
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This is a truly interesting result because it is the first known
instance (in state space theory) of elements which are passive when
linear, and which for any deviation, no matter how small, from
linearity, become active.

Case Q: Applied to the linear case, this result for (@ >1, B =-1) states
that, the element v(a) = ki(']) with o > 1 can never be passive. Note
that |B-a| > 2 in this case and the result here will appear as a
consequence of Theorem 4.3, to be presented later.

Case @: In this case (o >0, B <-2), almost all h.o.e.'s of practical interests
are active. Examples of f where the theorem is inapplicable are:

a) f(z) =0 ¥z € R, which is a trivial case, and
b) f:R - R has a discontinuity at every point, e.g.

1, z is rational
f(z) = 0, z is irrational .

To prove activity in Theorem 4.2, we work in the state space I for the
particular element: we find an input waveform u € U and an initial condition X0 €X
such that

T T
Ey(xq) = sup {-J ivdt} > sup {-J ivdt} = 4,
A0 Xg* 0 T>0 g Uu

>0

where (iu,vu) denote the admissible current-voltage pair due to the particular input
u that we have picked.

We have proved the theorem using the three input-types of Figure 1: a pulse,
a piecewise-constant cyclic waveform with period T and a step. Unfortunately, it
is impossible to combine our proofs according to the type of input used because of
the variety in the state representations of these h.o.e.'s. We shall next give
detailed proofs of two cases which involve a pulse input and a cyclic input
respectively. (A step input has already been introduced in the proof of Theorem 4.1).
The rest of the proof follows the same line of argument, and can be found in
Appendix C. Table 4 includes a summary of the input types and the corresponding
current waveforms, as well as the restrictions on f, a and B that will guarantee
the activity of h.o.e.'s.
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Proof of part @ (o > 0, B < -2) of Theorem 4.2 (pulse input)

(I) For a >1, B < -2, the state representation is given in Table la.
By assumption (i) in the theorem, there exists a € R such that b = f(a) # 0.
Let

E1.5

K/ ,» t € [0, e] A I(e)
i(t) =

0 s
where K A -sgn(b) and € > 0 is small.
Choose the initial state
xo = (0, 0, see, 0, a, 0, *°+, 0, b)
with XDIB!= a and xO(a+|B|) = b,
It follows that for t € I(e),

I8l -1.5 c|8]-1.5
xlBl(t)E a-—I—-I—B! ,a+———|———IB!
“ Y]
Ae)

By hypothesis, f is continuous in a small neighborhood of a. Supposing
|8 > 2, this means that there exists e* > 0 such that

Ale) C a(e*), for all ¢ € (0, e*).

Since A(e*) is obviously compact, f must attain a maximum and a minimum value
in that interval. Denote them by f,(e*) and fi(e*) respectively, i.e., we
now have

f(xlel(t)) € [f](S*), fz(e*)] for all t € I(g).
This implies that

f1(e*) f,(e*)
.l tOL + b, Za' ta + b]

v(t) = XIB|+°‘(t) € [ ol

for all t € I(e), and ¢ € (0, e*]
There are two cases to consider now:
(i) b >0, in which case i(t) = -I/e]‘s, for t € I(¢). Then considering
p(t) = i(t) v(t), we obtain, for t € I(¢) and ¢ € (0, e*)
fae*) f,(e*)
1 £0-0.5 +_b_<J | -p(t)dt < Za' =05 . b
I(e )

ol Ve Ve

0 <
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For any a > 1, as € tends to O,

-p(t)dt = .
c€(0,6%] J1[<e) plrlde = s

Therefore

Ealxg) > sup _ {-p(t)dt} = +=,
e (0,e*

and so the element is active for |B| > 2 and o > 1.

(ii) For b > 0, a similar argument shows that for ¢ € (0,e*] and t € I(e),

-f,(e*)
0 < 2’ €0L-0.5 _b

al /E
Activity then follows as in (i) above.

2le") a05 b
- al JE

(II) For a =0, B < -2, the state representation is also given in Table la.

The current here is the same as in part (i), except that we choose an initial
state

Xg = (0, 0, <+, 0, a).

By continuity arguments, we can show that for |8| > 2,

v(t) = f[xlsl(t)) € [fi(e*), fy(e*)], for t € I(e),

where €* > 0 is chosen such that

sgn f](e) = sgn fo(e) = sgn f(a), for all e € (0, e*].

Therefore, for sgn f(a) = +1,

fl(e*) fz(e*)
<= | et <
Ve I(e) 5
and EA(XO)-3 sup {-J p(t)dt} = +o, and the element is active.
e€(0,e*] I(e)
For sgn f(a) = -1, a similar conclusion follows. "

Before we proceed with the proof of case G:) of Theorem 4.2, we need the

following result:

Lemma 4.1

Consider the following state equation:
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u ~
X2=X-l

[ . ' (4.1)

e

= X R
\ n n"]

where n > 1

If the input satisfies
T
J u(t)dt = 0 for some T > 0, (4.2)
0

then there exist X01> X020 *** X0(n-1) such that

x(T) = x(0) A Xg = (x01, soe, x0n) ' (4.3)
for any value of the last component X" "

We shall include the proof of this lemma here because this result is essential
in the next section, when we consider losslessness.

Proof of Lemma 4.1
Rewrite equation (4.1) as

X = Ax + Bu (4.1a)

where

- 0 .
) 10 C;) ) 0
A= 01" . B = .
o -.° . .

_Q 01 0 | | 0]

The solution to this equation can be given explicitly by

t
x(t) = eAtx0 + I eA(t'T)Bu(r)dt .

0
In order that condition (4.2)in the lemma is satisfied, we need

:
jo AT Tpu(r)ar = [1 - Py, (4.4)
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For the particular A for equation (4.1a),

"1 0
t 1 * <;>
Ao 2y
t272

-t 1

so equation (4.4) becomes

-0
. (T-1)
J %{T¥T)2

L]
e —

u(t)dt

0

and e

For (4.5) to have a solution, we need

T
J u(t)dr = 0
0

Then we have to solve

C (T-1) 7]
IT %‘(T-T)Z

L .

Since the matrix on the right of the above equation is nonsingular for all T > 0,
we can always find a solution (x0], Xgps °°° XO(n-l ). This implies that there
always exists a solution Xg = (xo], XN x0n) such that x(T) = x(0) A Xg for any
value of the Tast component Xon? provided that T > 0 and u satisfies condition

(4.2).

p(t)dt

T 0
T/2 T . <;>
"2 0 o

A(T-1) B =

-24-
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Proof of case ﬁﬁ» (0 = 0, B >1) of Theorem 4.2 (cyclic input)

From Table 1b, the state representation for this case is of the form of
equation (4.1), with n = B, and the readout maps are

v = f(u)

Let u(t) be periodic with period T given by

a tef[o, t]], t, > 0

u(t) =
b tG[t-l, T]

(4.6)

where T = (1 - %)t], and the values a, b satisfy assumption (i) in the statement of

the theorem.

It is easy to verify that the above input satisfies equation (4.2) and so, by

Lemma 4.1, we can always find an initial condition such that

X(T) = X(O) = (x0]9 ons % XOB)

for any value of XOB'
With this choice of input, v(t) is given by

f(a) , telo, t;)

v(t) =
f(b) , telt, T
Since
T
kf@ﬁnﬁ=fh)-ﬂ¥&,

assumption (ii) in the theorem guarantees that

:
Lf@ﬂﬂﬁfo.

(4.7)

Using the matrices A, B from equation (4.1a) and C from equation (4.6), we can write

the current i(t) explicitly as

t
i(t) =¢C eAtx0 + J C eA(t'T)Bu(t)dr
0

which can in turn be evaluated as
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- B 1 B b 8-1
i(t) jgl =57 t JXOj + JO DT (t-1) u(t)dr

t
Xog * g(t) + JO h(t-t) u(t)dr , (4.8)

where g(t) is a polynomial whose coefficients depend on the solution to equation
. see - ] - B-] 3 7
(4.5a): (XOI’ Xg2° s xO(B-])) and h(t-t) A 1T (t-1) is a polynomial

independent of the initial condition Xg-
From equations (4.7) and (4.8),

T T
-J p(t)dt = -J i(t) v(t)dt
0 0
] T T Tt
= jo F(u(t))dt - jo g(t) F(u(t))dt - JOJO £(u(t))h(t-r)u(r)drdt (4.9)

The Tast two integrals on the right side of equation (4.9) give only a finite
contribution, independent of Xog? since T > 0 is finite. Therefore since
f(u(t)} # 0, we can always choose Xgg Such that

T
-J p(t)dt = ¢ > 0, where ¢ is a constant.
0

For this choice of Xgg» and the solution (xg7s Xgo» ***s xO(B-])) to equation (4.5a),
we can repeat the above for N cycles to get

NT
E (xq) > sup{- p(t)dt} = sup{Nc} = += .
A0
N 0 N
Hence the element is active in this case. x

In Theorem 4.2, we have derived the sufficient conditions for activity for
the general class of 2-terminal h.o.e.'s. Since most of these conditions are not
at all restrictive, a large class of h.o.e.'s can never be passive. This situation
is depicted in Figure 2. The shaded portions on the circuit element array [3]
contain those elements which are always active, so long as f satisfies certain
mild conditions. The remaining elements, in the unshaded portion (with o < O,

B <0 and |B-af < 1) are thus the only possible candidates for passivity.-_
This class includes the four known basic circuit elements: the resistor,
inductor, capacitor and memristor. It is to be noted that cases 2

and 10 in Figure 2 applies only to nonlinear ( i.e., strictly not

linear h.o.e. 's). We shall show later in Theorem 4.4 that for
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(a,8) = (1,0) or (0,1), the linear h.o.e. v(a) = Ki(B) can be passive, provided

that K > 0. We have not yet been able to identify a passive nonlinear (i.e.,
strictly not linear) element, other than the four basic circuit elements. Therefore,
we conjecture that the only passive nonlinear elements are the four basic circuit
elements. We shall now proceed to show that in the linear case, there exist certain
h.o.e.'s which can be passive.

(IT LINEAR CASE
In this subsection, we concentrate on the linear 2-terminal h.o.e. described by

v s ki B) veR.. (4.10)

We are going to show that for a subclass of these linear elements, it is possible
to derive a necessary and sufficient condition for passivity.
Let PL denote the class of linear h.o.e.'s of equation (4.10) satisfying

(i) «<0,0r _ .
(11) o«>18>1and v®3)(0) = ki), j =2, 3, v o

Theorem 4.3
Any h.o.e. belonging to the class PL is passive if, and only if
(i) [B-a] < 1 and
(ii) K > 0 (with K > 0 only when o = 1). | m

Remark

Although Theorem 4.3 considers a relatively small subclass of the linear h.o.e.s;,
it is nevertheless all that we really need to consider, since most of the h.o.e.'s
not belonging in PL have been shown to be active in Theorem 4.2. In fact, the only
important linear h.o.e.'s which are covered by neither Theorem 4.2 nor Theorem 4.3
are those in cases (:) and QE) of Figure 2. These cases will be considered later,
in Theorem 4.4.

We would also 1ike to stress that in Theorem 4.3, for the case a > 1, we are
only considering those h.o.e.'s with constrained initial conditions. In the
terminology of [15], if we consider the linear h.o.e. of equation (4.10) to be a
"device," then each of h.o.e.'s included in the class PL is only a different
"frame" of some device -- the overall device may be active, but it may possess
certain "frames" which are passive. From the synthesis viewpoint, this appears
to be a most reasonable classification of passive or active linear h.o.e.'s.
Consider, for example, the h.o.e. v(]) = Kv(]) constrained to satisfy v(0) = Ki(0).
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This is equivalent to a linear resistor v = Ki, which is passive for K > 0. The
very same element with unconstrained initial conditions is very different from a
linear resistor -- it has to be built using linear reactive elements and
controlled sources, as shown in Figure 3, (where the linear 1F capacitors can have
arbitrary initial conditions).

As the following proof will indicate, the necessary and sufficient conditions
for the passivity of those h.o.e.'s in PL form in fact the "positive real criterion,”
so commonly encountered in classical network synthesis. This should not be too

surprising, since the basic 1inear circuit elements (the resistor, inductor and
capacitor) are all members of PpL-

Proof qf Theorem 4.3
a) We first note that except for o = 1, every h.o.e. in PL has an equivalent

representation:7
v = ki(B-2) (4.11)
Next, we show that equation (4.11) has a completely controllable [10] state
representation whenever g-o # 0:
A B
. T )
X] 0 O Xp ] 1
. Xo 1T ° . Xo 0
X = - = o . ) + |+ |u (4.12)
. . hd . 0 . . . °
Mool | Q7077 O Xjga) | O]
L

D
- - D% g
Le1=)[0 80iid R]x+[0]e- <o
[0 00000 oo [5]vs tewroo
Since [BAB:A%B S+ « . EA’B'QI°1B] has rank |B-a|, (4.12) is completely controllable

[15]. By Theorem 8 in [8], the state representation (4.12) is passive iff the
transfer function matrix

7 . . . . . . .
Equation (4.11) is equivalent to the original representation (4.10) in the sense
that both representations posses the same set of admissible voltage-current pairs.
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H(s) = C(sI-A)"'B + D

is positive real.
A simple calculation shows that for (4.12),

— ] -
[y B-a < 0
< -K/SB‘G._
H(s) =\ -
B-a
1/8 , B-a > 0
L K

In either case, H(s) is positive real if, and only if K > 0 and |B-a] < 1.

For B-a = 0, representation (4.11) just describes a linear resistor, which is known
to be passive iff K > 0.
b) For a =1, the only h.o.e. that is not active by Theorem 4.2 is when B = 0.
It is easy to show that the transfer function for the h.o.e, v(]) = Ki is
H(s) = K/s.
For K = 0, the element is just a constant voltage source, which is active.
H(s) is positive real only if K > 1. Therefore using Theorem 8 in [3], this
h.o.e. is passive iff K > 1. n

The following result applies to a small subclass of unconstrained h.o.e.'s
v(“) = f(i(B)) and shows that linearity (with nonnegative slope) of the constitutive
relation is necessary for passivity.

Theorem 4.4
The only passive elements of the form v = f(i(B)) with 8 > 1 or v(a) = (i)
with o > 1 are the Tinear elements:

ki, k>0

v

and
Dok, k>0 "

The proof of this theorem is quite complicated and can be found in Appendix D.
A summary of the above results can be found in Figure 5. The linear h.o.e.'s in
region PLI are passive provided that K > 0. Those in PL2 are passive whenever
K> 0 only if they are constrained to zero initial conditions. The two crosses in
the circuit element array indicate those elements which are passive if, and only
if K> 0.
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(III) CONCLUSIONS

So far, we have derived the sufficient conditions for activity for a nonlinear
2-terminal h.o.e. described explicitly by v(a) = f(i(B)). We have also obtained
the necessary and sufficient conditions for passivity for a subclass of h.o.e.'s.
We feel, at this point, that we should be able to generalize some of our present
results to the case of a 2-terminal h.o.e. with an implicit representation

hv(®), 18y = ¢

In this case, we might run into certain difficulties in applying the theory in [3]
because of the following:

(i) Using the Implicit Function Theorem [16], we might be able to find a local
state representation for the h.o.e. However, the theory in [3] requires the
existence of a global state representation. If the local state representation can
be extended to a global one, i.e., if the implicit function in v(“) and i(B) can be
transformed into an explicit function, then we would have no problems. Unfortunately,
this may not be possible in general.

(ii) A global state representation may exist, which does not necessarily agree
with the local representation given by the Implicit Function Theorem. In this
case, we may find ourselves dealing with an element which is passive (or active)
with respect to some choices of the state space, but not with respect to other
choices. The problem here is that the definition in [3] is coordinate-dependent.

(iii) We can use the Global Implicit Function Theorem [17] to transform the
implicit representation to an explicit one. However, any form of global implicit
function Theorem would impose too stringent a set of conditions on the original
(implicit) function, which is undesirable.

We suspect that the above problems may be circumvented if we were to adopt
the definition of passivity given in [15]. In fact, the work in [15] was motivated
by studying h.o.e.'s. But we need to point out that it would be by no means a
trivial extension of our present work to the context of passivity as given in

[15].

5. Losslessness of H.0.E.'s

Unlike passivity, the current literature does not provide an adequate definition
for losslessness of nonlinear circuits and systems that unifies the input-output
and state-space viewponts. Intuitively, an electrical system or circuit is
"lossless" if it is incapable of delivering energy to, or absorbing energy from
the external world.
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Throughout this section, we shall adopt the state space approach to study
the losslessness of h.o.e.'s. Basically, we treat losslessness as the path-
independence of the energy consumed while traversing any two points in the state
space. The following definitions are adapted from [4]:

Definition 5.1
The energy consumed by the input-trajectory pair {u(-), x(~)}|[t], tz] is the
quantity

t
[ pexte), uie at,
4
where p(-,+) is just the power input function in Definition 2.2. o

Definition 5.2

A state representation S is defined to be lossless if the following condition
holds for every pair of states X3 Xp in the state space I: For any two input-
trajectory pairs {u1('), x1(-)}|[0, T]], {“2(°)’ xz(-)}l[o, TZ] from x, to x,,
the energy consumed by {u](-), x](°)}l[0, T]] equals the energy consumed by
{ug(+)s x5(<)}{[0, To]. n

Definition 5.3
A 2-terminal h.o.e. is lossless if there exists for this h.o.e. a totally
observable [9] state representation S which is lossless by Definition 5.2. n

The concept of "total observability" introduced in the above definition is
equivalent to that of "complete observability" [10] plus "input-observability"
(as introduced in Definition 3.2). In order to prove that a h.o.e. is lossless
by directly applying Definition 5.3, we need to find a state representation for
the h.o.e. that is both completely observable and input-observable. However, it
is simpler to prove that a h.o.e. is not lossless. According to Lemma 3.3 in [4],
if a 2-terminal h.o.e. is lossless, then every input-observable state representation
for the element is lossless. Hence, to show that a h.o.e. is not lossless, it
suffices to find only one input-observable state representation that is not
lossless. This is the approach that we shall take in arriving at the first
theorem of this section.

(I) MAIN RESULTS
Just as in the case of passivity, we shall introduce three main theorems
in this section. Theorem 5.1 is analogous to Theorem 4.1 in that we shall show
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that a Targe class of h.o.e.'s can never be Tossless. But unlike its counterpart
in passivity, Theorem 5.1 does not cover all the cases in the circuit-element-
array. The reason for this is because it is extremely hard to find input waveforms
that will drive the state-space trajectory from one specific point to another.
(This is actually a problem in global nonlinear controllability, and to the best
of our knowledge, such a concept has not been well-formulated in the current
literature.) Theorem 5.2 states a sufficient condition for losslessness of the
state representations for a very specific class of h.o.e.'s -- namely, those lying
on the -45° line a+B = -1. There is no analogy to this result in our passivity
theory. We then proceed to study the linear case in detail and state, in

Theorem 5.3, a necessary and sufficient condition for losslessness for a subclass
of Tinear h.o.e.'s.

Theorem 5.1
Assume:
(i) The state representations S = {U, U, £, E, R} and the function f satisfy
the respective conditions given in Tables la-c and
(i1) furthermore, f satisfies the conditions given in Table 5 for different
values of a and B.

Under these assumptions, the 2-terminal h.o.e. described by v(a) = f(i(s)) is not
lossless. "

Remarks

For case @D, i.e., o >1 and B > 1, almost any function satisfying the
conditions in Table 3 are active by Theorem 4.2. Note also that this includes the
class of all linear elements described by v(a) = Ki(B), and all nonlinear elements
vle) o f(i(B)) for which f is an odd function.

For case @, i.e., o > 1 and B = 0, the criteria for non-losslessness and
activity are identical; hence we can conclude that all active h.o.e.'s falling
in this category are not lossless, and vice-versa. We also note that in this
case, for almost all functions f that are not linear, the h.o.e. can never be
lossless.

The restrictions on f in case @, i.e., a = 0, B < -2 can be satisfied by
a large class of functions. In particular, the linear h.o.e. v = Ki(s), for any
even, negative value of B is not lossless. Also, in comparison with Theorem 4.2,
almost all h.o.e.'s that are not lossless in this category are active.
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The above observations may lead us to believe that only passive h.o.e.'s
are lossless. However, as will be apparent in Theorems 5.2 and 5.3, this is not
always the case. In fact, it is worthwhile to point out here that traditionally,
losslessness has been considered only for the case of passive elements. One novel
feature in the definition proposed in [4] is that it allows for the consideration
of losslessness even for active circuit elements or circuits in general.

Proof of Theorem 5.1

By Theorem 3.2, all the state representations in Tables la-c are input-
observable. So by Lemma 3.3 in [4], to prove that a certain h.o.e. is not lossless,
we need only to prove that its corresponding state representation (as given in
Table 1) is not lossless. We shall now proceed to prove only cases @ and @ in
Theorem 5.1. The proof for case () dwells on similar ideas and can be found in
Appendix E.

For a > 1, B = 0, the state representation can be found in Table la. Following the
same arguments as in case @ of Theorem 4.2, and using Lemma 4.1, we can always
find a T-periodic input u(t) and initial condition Xg such that

(i) xp = x(0) = x(1), = x(27T),

0

(i1) [0 p(x(t), u(t))dt
2T

(1) IO p(x(t), u(t))dt

c #0, and

i

2¢c

These conditions ensure that the h.o.e. is not lossless since the energy consumed
in one period of the input is different from those consumed in two periods, even
though the initial state and final states are the same in both cases. x

Before proving case 3, we need the following result:

Lemma 5.1
Consider the state equations

S
Xo = X

2: 1 (5.1)
Xn = Xp

Let u(-) € U be an odd T-periodic function,
i.e. u(T-t) = u(t) for all t € [0,T].
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Then the following hold for all t € [0, T]:
a) For j =1,2, ¢++, n-1,

xj(T-t) = xj(t) . for j odd
and xj(T-t) = -xj(t) and Xs50 = 0, for j even.
b) xn(T-t) = xn(t), for j odd
and xn(T-t) - Xy - xn(t), for j even. ]

The proof of this lemma can be found in Appendix E. What we need to complete the
proof of Theorem 5.1 is the following:

Corollary to Lemma 5.1
Consider the state equation (5.1) of Lemma 5.1. Let the input be given by
"K ’ te[O,])

u(t) = (5.2)
K, te€[i, 2)

with K > 0.

Then it is possible to find initial conditions ’bj for j = 1,2, <++,n, such that
for even values of n, xn(t) is odd-symmetric about the t = 1 axis and xn(t) =0
only at t = 0, 1 and 2. "

This result follows directly from Lemma 5.1.

For a = 0, B < -2, the state representation is given in Table la.

Choose an input as given in the Corollary to Lemma 5.1 (with K to be determined

later) and fix the initial condition x olgl = 0. By the corollary, we can choose

initial conditions x;, J =1, -+, |B]-1 such that

a) x(0) = x(2) and

b) xn(t) is odd symmetric about the axis t = 1 and is zero only at t =0, 1, 2,
for t € [0, 2)

From the proof of Lemma 4.1, x is a linear function of the input, and with our

choice of X0n * xn(t) takes on the form
/'

18l
K ] Cjt » t€[0,1)
(ty={
Xn ﬁ IBI ~ 3
kK 1 Ce-1)? ,te 1,2
_
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where Cj and Cj are constants dependent only on the initial conditions X03 for
j=1,2, «»+, |8]-1. By the continuity assumption, there exists &', 0 < &' <8
such that

sgn f(z) = sgn f(0) ¥z € [-§6'/2, 6'/2] (5.3)

AA'

We can always choose K = K* # 0 such that
xn(t) €A yte][o, 2) (5.4)

Denote the intervals [0, 1] and [1, 2] by I, and I,, respectively. Equations (5.3)
and (5.4) imply that

sgn{f(xn(t)) = sgn{f(0)}, ¥t €1, and I, (5.5)
Condition (b) and the injectiveness of f within A' give that for every t] € I]
and tz € 12,

san{f(x,(t;)) - £(0)} = -sgn{f(x (t,))-F(0)} (5.6)
Equation (5.5) implies that

sgn{J f(x,(t))dt} = sgn{J f(x,(t)}dt} (5.7)

L )

Equations (5.6), (5.7) and assumption (ii) in the theorem results in

jI £(x, (£))dt # j F(x, (£))dt (5.8)

1 I
Noting that f(xn(t)) = v(t), we finally obtain

2
j p(t)dt = -k j v(t)dt + K* J v(t)dt = K*[j v(t)dt - j v(t)dt]
0 I] IZ 12 I]

= C # 0 by equation (5.8)

By condition (b) and repeating the input for one more cycle, we also get
4
J p(t)dt = 2c.
0

Therefore, different amounts of energy are consumed along two different admissible
paths in the state space with the same endpoints. Hence the h.o.e. cannot be lossless.
=4
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Theorem 5.2
Assume
(i) ot = -1
(ii) For o, B satisfying (i) above, the function f satisfies the corresponding
restrictions in Table 1a or Table lc.

Under these assumptions, the corresponding state representations for the 2-terminal
h.o.e. v(a) = f(i(s)) (as given in Table la or c) is lossless. o

Remarks

Notice that the charge-controlled capacitor [with (a,B) = (0, -1)] and the
current-controlled inductor [with (a,B8) = (-1,0)] both fall under the considerations
of this theorem. In particular, a (positive or negative) linear capacitor or
inductor belongs to this category. It is important to point out that the result of
the theorem does not imply that the h.o.e.'s satisfying assumptions (i) and (i1)
are lossless. According to Definition 5.3, to show losslessness of the h.o.e., we
have to find a totally-observable lossless state representation for the element. In
section 3, we have only shown that the state representations listed in Tables la-c are
input-observable. Whether or not they are totally observable (i.e., input-observable
and completely obserable) is still an open question because to the best of our
knowledge, there does not exist any means of testing for complete-observability
of nonlinear circuits and systems. A1l we can say at this point is that whether
or not the state representation is completely observable depends largely on the
behavior of the function f. In the case where f is linear, we shall see shortly
that the complete-observability issue does not pose any problems.

Proof of Theorem 5.2
The basic idea behind the proof is to show that the energy consumed during
the time interval [t], t2] is dependent only on the initial state x(t])'and the
final state x(t,).
a) For o =0, 8 = -1, the state representation can be found in case @ (i) of
Table 1a:

X] = i

v f(xl)

The energy consumed during the interval [t], t2] is
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By comparison with the corresponding state representation, this amount of energy
can be found to be dependent only on the initial state x(t]) and the final state
x(tz). Hence the representation is lossless. "

(IT) LINEAR CASE

The Tinear h.o.e. v(“) = Ki(s), K€ R, is being considered in this subcase.
Theorem 5.3 below parallels Theorem 4.3 in the sense that the same subclass, PL’
of Tinear elements are being considered; but unlike the case for passivity, a much

weaker condition than the "positive real criterion" is used in deriving the necessary
and sufficient conditions for losslessness. This results in a larger subclass of

lossless elements in PL than the corresponding subclass of passive elements.

Theorem 5.3
Any h.o.e. belonging to class PL is lossless if, and only if

(i) K=0or
(i) IB-aI is odd. "
Remarks

The conclusion of this theorem is in agreement with case @ of Theorem 5.2.
However, case (D in Theorem 5.2 states that all linear h.o.e.'s with a > 1 and
B > 1 can never be lossless. We must, once again, draw the distinction between
unconstrained h.o.e.'s and constrained h.o.e.'s. The present result for losslessness
holds only for those constrained h.o.e.'s satisfying v(a'j)(o) = Ki(B'J)(O)
for j =2, 3, <+, |al. This is not surprising because, as pointed out in [3],
h.o.e.'s in this category whose initial conditions are such constrained, and
satisfying condition (ii) in Theorem 5.3 are precisely those which behave 1ike
inductors or capacitors, and should therefore be lossless. Another distinguishing
feature of this result is that even negative linear capacitors and inductors are
classified as lossless elements. Since these element are active, they have not
even been considered in classical circuit theory in the context of losslessness.
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Figure 5 shows the linear lossless elements. Except for those h.o.e.'s in the
first quadrant which have to satisfy constrained initial conditions all other
h.o.e.'s are unconstrained. '

Proof of Theorem 5.3

a) For K = 0, we have, for elements belonging to class PL, either i = Q or v = 0.
The h.o.e. is obviously lossless in this case.

b) Suppose K # 0.

Then using the same techniques as in the proof of Theorem 4.3, we can show that
h.o.e.'s belonging to class PL have a completely controllable state representation
with transfer function

1 B-a
- 1/S
H(s) = . , or K/S .
[K/SB‘“] [ K }

Applying Theorem (5.1) in [9], it is quite clear that H(jw) = - H(-jw) if, and only
if [B-a| is odd. H

(III) Conclusions

Even though losslessness in the linear case has been covered quite thoroughly
in this section, the nonlinear case is still incomplete. This is inevitable,
because unless the subject of nonlinear controllability and observability has been
further investigated, we have no means of testing the lossless properties of the
rest of these h.o.e.'s ., One way to circumvent the problem is to find a definition
for losslessness that is based solely on the behavior of the admissible (v,i)
pairs, thus rendering losslessness as a property that is independent of state
representations.

By comparing the results in this section and the previous one, we can see
that, at least in the linear case, the number of lossless h.o.e.'s far exceeds
that of passive h.o.e.'s (cf. Figures 4 and 5). Thus, even though the present
definition does have its limitations, it nevertheless enables us to consider a
much broader class of lossless elements that is allowed by previous definitions.
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APPENDICES

(A) Completion of Proof of Theorem 2.1
Fora>1, 8 =0 (i.e., case (1) (ii) in Table 1a)

- Since u € P(R_), u(t) is measurable on any finite interval I in R,. Since f
is Borel measurable, it follows that f{u(t)) is integrable in I [5]. Existence
and uniqueness of a solution follows from Lemma 2.1.

- From the proof of Lemma 2.1, v(t) = x (r) is absolutely continuous in I and so
v(t) € L?oc(RpR). It follows from u € L}OC(R +R ) and Holder's inequality
that p(t) = i(t) v(t) = u(t) Xy, (t) € L-IOC(R +R).

For a =0, 8 =0 (i.e., (O (iii) in Table 1a)

- existence and uniqueness of a solution to the state equation is redundant in
this case.

- By reasonings similar to case (1) (ii) above,
v(t) = f(u(t)) €Ll (RR) .

i(t) = u(t)€P(R,) implies that (t) € L, (R, »R). Therefore, p(t) €L] (R ~R)
by Hélder's Inequality.

Fora>1, 8 <-1 () (iv) in Table 1a)

- Consider the first |8| equations. Existence and uniqueness of a solution
(x], ’XIBI) follows from Lemma 2.1.
Since XIB is continuous, f( XIBI(t )E L1oc(R +R ) and is therefore integrable.
By lemma 3.1 again, there exists a unique solution ( xl6|+1’ ) to the
last o equations. So we have a unique solution x = (x1,x2, ) to the state
equation E.

- From the proof of Lemma 2.1, v(t) = x 8 +a(t) is bounded and measurable over any
finite interval I. Since u(t) = i(t) is integrable,

.,Xlelm
.,Xlslm

p(t) = v(t) i(t) €] (R R) [8].

Fora =0, 8 >1 (i.e., case (2) (i) in Table 1b)

- Existence and uniqueness of a solution to E follows from Lemma 3.1.

- v(t) = f{u(t)) € L}OC(R++R) as in case () (ii) above. i(t) = x 8 (t) is
bounded and integrable in I by the proof of Lemma 2.1. It follows, therefore,
that p(t) € L] .(R,»R) [8].
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(B).

Completion of Proof of Theorem 3.2

For o« > 1, B < -1 (i.e., case (D (iv) in Table 2a), the state representation can

be written as

(B.1)

Adopting the same notations as in the main text, by computing the Jacobi brackets,
we can verify that the subalgebra F is spanned by the vectors:

8]

N

.

C O I O ¢ e O

]

|
o

e Ol O ¢t O —

—
o
|

300 o

¢ O D e D

.

|
o
-

-4
where f](x|3|) =3 f(z) z=x|8

=

—

Assuming that f](x|8|) # 0 for all admissible values of x 8

la| + B and therefore satisfies the controllability rank condition in [2].

,» F has dimension
Hence

the state representation is locally controllable in this case.

For o >1, 8 >1 (i.e., case @ (ii) in Table 2b),

The state equation is
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for any value of the last component X00."
By writing out explicitly what v(t) and i(t) are, it can be shown that

:
- bf(a
-jo pt)dt = -xg, t;[a - 283 4+ m

where M € R gives only a finite contribution to the above integral. By assumption
(i1) in the Theorem, af(b) # bf(a), so it is always possible to choose Xgq SUCh that

T
-[0 p(t)dt = ¢ > 0.

Repeating this for N cycles, we get

NT
EA(xo) > sup{ —J p(t)dt} = sup{NC} = +=,
N 0 N

so the element is active. ]

@ ai],e=-]
The state representation is given in Table la.
(i) Pick

. e P, te(o, el le)
) =0, t&1(e)

withe >0and 1 <p< (1 + T%T)’ where k is the integer as stated in the theorem.
Choose an initial condition

Xg = (0, +++, 0, VO)’ with Vo < 0.

Then it is possible to deduce by assumption (i) that for t € I(g),

k A, s
v(t) f'jzo TE?%TT e IPEIYe 4 Vo

and hence

k A. . .
1-(j+1)p 1-p
-p(t)dt > TT—Al—y— gl fat - Ve (C.1)
JI(e) jgo Jto+1)! 0

Since a > 1 and (1-p) < 0, the first term in (C.1) tends to zero as ¢ - 0 and the
second term tends to infinity, we have
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EA(XO) > sup{ -J ivdt} = 4o,
e>0 I(e)

and the element is active.

(ii) To prove activity using assumption (ii), we simply repeat the above arguments,
choosing a negative pulse as inputs i.e.

. e P, tel(e), e>0 :
i(t) = 0 , t E I(e) . "

@ af_']s Bga-Z

The state representation for this case can be found in Table 1Ic.

Let a = (ao, PP aldl) and b satisfy the assumptions in the theorem.
Pick

k/e'*S, te(o, el a Ie)

i(t) =9 » t & I(e)

where K A -sgn(b) and € > 0.
Choose the initial condition

XO = (0, ooo’ 0, ao’ a]’ ooc, alal)

Under these condtions, for t € I(e) and g = 0, 1, <+¢, |a,

K tlB'ﬂ‘Q'
15 [g-a-qf!

j(B-a=q)(¢) - + hg(t) + ag,
where hq(t) is a polynomial with coefficients dependent on g s 00, 2
degree less than or equal to q.

By the compactness of I(g), we can show that (i(B'a),_---, 1(8)) lies in some
compact interval, say, A(e) in BQIQ . Then, using the locally continuity of f about
a and the fact that |g-a| > 2, and bearing in mind that v(t) = ?(i(B'a)(t),
~-~,i(6)(t)), we can repeat the same argument as in case @ (see main text) to show
that EA(xo) = o, for our particular choice of Xg- =2

q-1 and

Before proceeding with the proof of cases ® - , we need the following
result:
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Lemma C.1 -

Assume:
(1) v(a) = f(i(B)), where o < -1 and B > a
(2) feclel

(3) Ja€R 2F:R +~ R is locally C|°‘I about a.
Under these assumptions, for 1 < k < |a|, we have

(B+]),i(6))

vt g (B B 4 (g 1, (1(B)) (BH1) G (BRKT) g (s (BH-2) L
where f.(z) A djf.z (@)
J dzd  |z=i
k-1 . s
and 9 * R + R satisfies
(i) g € clol-k=1 4ng
(ii) g 1is locally Clal'k in all its arguments. n

This lemma can be proved by induction on k. The proof is algebraically
complicated but straightforward and is therefore omitted. The following corollary
will be useful in our subsequent proofs:

Corollary
Under the same assumptions as in the lemma,

V= fT(i(B)) i(B'G) + (Ja]-1) fz(i(B)) 1(3+]) 1(B’d‘]) + g(i(B-a°2), cen, 1(3+1)’ 1(5))’

where g is locally C0 and therefore takes on finite values provided its arguments

are confined to a small enough region in H%k']. =

® ax<p-2,8c<-1

The state representation for this case can be found in Table Ic.
since £ € ¢l we can write

vV = f](i(B))i(B-a) + (Ial_])fz(i(s))i(3+])i(B‘a‘]) + g(i(B’G°2), -°°,i(B+]), i(B))

(c.2)
et u(t) =¢ '3, t e [0, €] A I(e), with ¢ > 0. Choose the initial condition
xo = (09 0, +--, 0, aO’ 0, ¢+, 0, a])s
i.e., X0(g-q) = @ and &)lu = a;, where ag A -sgn{f;(a;)} and a; is as given in the

assumption of the theorem. Under these conditions, for t € I(e),
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i(t) = xg_o(t) = gy & 0 57 + ap,

i(B)(¢) =W1‘_!,3-1.5 ¢lo +T§]Wa0 18l 4 a

and

(B+1). (B-a-1) _ 1 -3 1 -1.5 _|B
j(B+1); (B-o-1) _ ~T-TIT © glol 4 ST-TTT 20 € ¢18l (C.3)
Combining (C.2) and (C.3), for t € I(c),

1.5 lsl

-3
1.5 B-a £ lof
t 7+ agl + (lof-1) foreryrt (Isl T

p(t) = f]e°]'5[-(————r8_L re

I EWITE I TCRTR N (c-4)

where f 4 fl(i(B)(t)) and f2 é,fz(i(e)(t)). Since f is locally Clo‘l about ay,
for j =1, 2, *++, |o, fj is locally C0 about ays and therefore has a maximum

fjmax and a minimum fJ|n1n about some eo-neighborhood of aj. So we have
fy < max{| Jmaxl IJmml}éfj

For t € I(e), it can be deduced that

i(B*P) . Ky *+ A (est)

where
a; ., p=0orp= g
K. = .
p 0 , otherwise

and Ap(s,t) 5_ieq for some constant A > 0 and g > O.

Therefore, as e -~ 0,
¥t €I1(e), t >~ 0, A(e) > 0 and 1(8)

Using the corollary to Lemma C.1, for small enough €9 » dM(e) such that
j9(1B0-2), oo, 1 (B*) 5By < me), ve € (0, g (c.5)

Combining equations (C.3)-(C.5) we have
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p(t) 5.?][K]EB‘Q‘2 + 306-0.5] + ;z[KZEB-Za-3.5 + K3a0€|a|-2]

+ ?ZaO[K4e|°‘|'2 + K5a§e|5|“°'5] + M[K]eB‘“'°°5 + agel, (C.6)

where M A max {M(e)} and Kj(j =1, +++,5) are constants dependent on the values
O<e<e
-0

of o and B. Assuming (B-o) > 2 and |a| > 3, as € + 0, i(B)(t) ~ay and all the
terms on the right side of inequality (C.6) tend to zero, except for

f1(a)) (205 + kye(B-2)-2) - (c.7)
Since we have chosen ay = -sgn{f](a])}, we can combine (C.6) and (C.7) to get
EA(xo) = +w, and hence the element is active. "

@ B=0,a<-2

The state representation for this case can be found in Table 1c.
Pick the input

1.5

u(t) = ke "7, t €(0, €] A I(e), € >0

where K A a f](a) and a satisfies the assumption in the theorem.
Choose the initial condition

Xo = (0’ 03 ey 03 a)a

1.€., x0|a| = a.

Using arguments similar to the previous case, it can be shown that EA(xo) = 4o,

B>1, a<-2
The state representation for this case is in Table 1¢. The input to use is

-1.5

u(t) = ¢ » t€1I(e), e >0;

and the initial condition is

XO = (O’ see, 0, 319 0, -+, 0, ao):

1.€., Xg, = @ and X0(g-a) = 20° where a; A -sgn{fl(a])} and a; is as given in
the assumption of the theorem. The proof for this case is similar to that of
case ® and is omitted. _50- H



@ (X:-],Bil =

The state representation for this case is given in Table 1c. Pick an initial
condition

Xq = (by 0, -, 0, a)

where b is as given in the assumption of the theorem, and a < 0. Let the input be

u(t) = e 1S forte (0, e]AI(e), e>0
Then
x](t) =e 15t +p
and v(t) = fy(e75¢ + b)e® (c.7)

Since a < 0, it is always possible to choose an € > 0 such that .

1 g8-0.5 . 1 B

i(t) = TE:TYSO + ET-b t +ac<o0 (c.8)
Then, for any € € (0, eo],
i(t) <0 ¥t € lI(e) (c.9)

-1.5

and v(t) > Me (by assumption in the theorem).

Equations (C.7)-(C.9) imply that for all t € I(e),

v(t) i(t) < TBT]lT' Me~3tBT o b weTT 58 4 ane”1 -3

Therefore,
M B-1 bM B-0.5 -0.5
p(t)dt < €+ € + aMe

JI(E) B+2)! (B+T)1T
As € ~ 0, the above expression -~ +», since aM < 0.
So E,(x1) >  sup {-J p()dt} = 4o

A0 56(0,80) I(g) . "
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(D) Proof of Theorem 4.4
The following two lemmas are required for the proof.
Lemma D.1
Assume:
(i) a=0and B >1
(i1) f(0) #0

Under these assumptions, the h.o.e. v = f(i(B)) is active. n

Proof
Let i(t) = -sgn f(0)

Then v(t) = f(0)
So i(t) v(t) = -f(0) sgn{f(0)} < 0, and activity follows.

Lemma D.2
Assume:
(i) a>1andB =0
(ii) Ja#023af(a) <0

The h.o.e. v(a) = f(i) is active under these assumptions. R

Proof
If Ja >af(a) <0, activity follows by Theorem 4.1
If a# 0 >3af(a) = 0, then, necessarily, f(a) = 0.

Let i(t) = a
Then v{®(t) = f(a) = 0.
By an appropriate choice of initial conditions, we get
v(t) = -sgn a,
so i(t) v(t) = -a sgn a < 0, and activity follows.
Proof of Theorem 4.4
(I) Consider the case o = 0, 8 > 1:
By part 613 of Theorem 4.2, this element is active

if Ja,b € R such that: (i) ab < 0 and
(i1) bf(a) # af(b)

Assume (i) and (ii) are not both satisfied. This implies that for all a,b € R

ab>0 or bf(a) = af(b) (D.1)

By considering the values b = + 1 in (D.1) and applying Lemma D.1 to rule out
the case where f(0) # 0, we can deduce that
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fa) = kay, (0.2)

for some value K € R and for all a € R. Hence any function satisfying condition
(D.2) cannot be active. This implies that the only passive h.o.e.'s witha =0
and B > 1 are the linear h.o.e.'s of the form

v=ki®, g>1and ke R (D.3)
By Theorem 4.3, the only passive h.o.e. described by equation (D.3) is the element
v =il with k > 0.

(IT) Consider the case o > 1 and B = 0:
By part @ of Theorem 4.2, the h.o.e. is active if ﬂa,b € R such that

(i) af(b) # bf(a) and
(ii) f(a) f(b) <0 .

Passivity would imply that the above two conditions are not satisfied
simultaneously. Also, by Theorem 4.1 and Lemma D.2, passivity further implies that
for all a # 0 € R, af(a) > 0.

From the above, we can see that for the h.o.e. to be passive, it must satisfy the
following:

Ya#0and b € R, af(b) = bf(a) or
f(a) f(b) >0 .

(D.4)

By considering the values of b = 0 and #1 in (D.4), it can be deduced that in this
case, passivity implies linearity. Therefore, the only possible candidate for
passivity for the case a > 1 and 8 = 0 is the linear element

v®) =k, Ke€R anda > 1 (D.5)

By Theorem 4.3, the only passive h.o.e. described by (D.5) is the following:
v = ki, with k> 0. .



(E) 1. Proof of case (D of Theorem 5.1
For o« > 1, B > 1, the state representation can be found in Table 1b.

We choose the input

2, te[o, t)
“”’iw&ﬂ={;,temp})

with a,b as given in the hypothesis of the theorem and T = (1 - %) t].
By Lemma 4.1, it is possible to find initial conditions ij’ =1, e, (B-1)
such that

 Xqj = xj(nT), n=1,2, ¢

and Xgg Can be chosen arbitrarily.
Under these conditions,

t
xglt) = 1(t) = x g+ o(t) + jo h(t-t) (t)de (E.1)

where g(t) is a polynomial whose coefficients depend only on the first (B-1)
components of Xg and h(t-t) A Tgéryr (t-1)3'1 is a polynomial independent of the
components of Xg-

Then
f(a), t € [0, t;)

%g47(t) = flu(t)) = {:f(b), t € [t, T)

It can easily be verified that
T
jf@una=o
0

using the definition of T and assumption (ii) in the theorem. We can therefore
apply Lemma 4.1 again to show that we can solve for R j= (B+1), e+, (B+a-1)
and choose x arbitrarily such that

0(gra)
X50 = xj(nT) forn=1, 2,
and j = (B+ 1), se+, (B+a-1)
Now
. t
V(E) = Xopa(6) = X g+ §(E) + jo h(t-t) (c)dr (E.2)

where §(t) is a polynomial whose coefficients depend only on ij for j = (B+1),
ees, (B+a-1), h(t-t) is as defined in equation (E.1) and G(T):Q fu(t)).

-54-



From equations (E.1) and (E.2), we can deduce that

.
Jo p(t)dt = XggXg, (q48)T * M*og * MoXg(pta) + My (E.3)

where My M, and M3 are just some finite constants. From (E.3), it is always
possible to pick X0g and xo(a+8)such that Jg p(t)dt = ¢ # 0.

This gives that
2T
J p(t)dt = 2¢
0

and hence the element is lossless by previous arguments. H

II. Proof of Lemma 5.1

a) By inductionon j = 1, 2, **+, n-1: Integrating the j-th state equations, we get
t

(i) If xj(t) has odd symmetry, i.e., xj(T-r) = -xj(r) ¥t, then xj+](T-t) = xj+](t),
i.e., xj+] has even symmetry.
(i) If xj(t) has even symmetry, then

t
Xj+-| (T-t) = xO,jH - IO Xj('l')d'l’, and
T
X547 (t) = Xg 547 + JO x;(T)dr.

This implies that

;
jo K4y (T8) = 2Kg juq = Ky (0).

Therefore

T T
JO Xj+] (T‘t)dt = 2Tx0,j+] - JO XJ+](t)dt .

Since both integrals in the above equation are zero, we have: 0.

Xj+1,0 ~
b) The proof for odd n is the same as in part a). For even n, xn_1(t) is an even
function and we have essentially the same proof, except that we cannot conclude

that xg, = 0. H
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ITII. Proof of Corollary to Lemma 5.1
First note that the following facts are true:

(i) xqj = 0 for even values of j = 2, 4, <+, (n-2) (by part (a) of Lemma 5.1)

(i1) X 5, €an be chosen arbitrarily such that for fixed values of ij’ j=1, oo, (n-1),

we have )

Xg & x(0) = x(2m), m =1, 2, eeee . (by Lemma 4.1).

Fact (ii) implies that without loss of generality, X gp can be chosen to be zero, so
we get from part b) of Lemma 5.1

xq(2-t) = -xn(t) for t € [0, 2)

Setting t = 0 and 1 in the above equation, we can arrive at the conclusion of the
corollary. n
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finite interval in R.

©)] (i) =0, 8<-1 (i) a>1,8=0 |(iii) a=0,B8 =0 |(iv) a>1, B < -]
] = R in all cases
u = L]y (R,2R) P(R,) P(R,) = Loe(RR)
>:(]=u >:(]=f(u) )'(]=0 >:<]=u
E * 'Y L]
X1 = *|g]-1 Xa = Xa-1 X8l ¢ :1&]-]
Xg|n = Fx|g)
X|g|+2 = *|g|+
X18]+a = X|8]+a-1
R i=u i=u i=u i=u
v = flxg)) V=X, v = f(u) VS X4
Assumptions
.onf f: R-R is Borel measurable [5] and |f| is integrable [5] over any

Table 1la:

a>0,8<0




@ (i)a=0,821 (i) a>1,821
U = R
u = P(R,) = L}OC(IR;*IR)
L cRrf c rf®
eu o (=1(8) o= (=)
E : :
*8 = Xg-1 X8 T %g-
Xge1 = F(u)
Xg+2 = *g41
Xg+o = *g+a-1
R i= xB i= XB
v = f(u) V= Xgyy
Ass. on
f f: R ~+R is Borel measurable and |f]| is

integrable over any finite interval in R.

Table 1b: o >0, B > 1




QD B=ax- @ B<ac- ® a<Bg<-l ® a<-1,82>0
U = R
u|= 12 (R,»R) =" (RoR) = (RR) =] (R~R)
loc'  + loc' "+ i loc' ™+ loc' ™+
peEl, =]
p| crl®l c rl8l crlel c pB
% = u % = u x, = u (=i(8%)) % = u(=18))
X2=X-| X2=X] X2=X] X2=X-l
Bl %y, = x X1 = X X = x X, =X
|8l — “[e]-1 18] ~ “18l-1 laf-18] ~ “af-18]-1 B-a  "B-a-1
“la| 7 Xla]-1
R i=u i=u i=xa|-|6| 1’=xB_a
v = f(x,u) v = f(x|8|_’a|, v = f(x,u) v=f(u,x],u-,x|a|)
..";|BI-]’
X8l
Ass. on la-1
f f e cl®™" throughout

Table lc: a < -1



® (i) a=0, 8 <~

(i1) a>1, 8=0]| (iii) a=0, 8 = 0] (iv)

Cti],sf_']

(-2}

Assumptions | T €C
on f

f€¢ and
f(u) # 0
Vu €U

fec

fec, and
d
&z f(2) X g #0

for any admissible
value of XIBI.

Table 2a. ¢ >0,8<0

@ (i)a=0,82>1

(ii) a>1,8>1

©

Assumptions f €E€C
on f

f € ¢~ and

f(u) 20 Yueu

Table 2b. o« >0, B > 1

DB=ac-1| @8

<a<-1 ® a<B<-1

® a<-1,82>0

Assumptions
on f

f € ¢ throughout

Table 2c. o < -1



a B f
©) > 1 >1 f: R+R
(i) af(b) # bf(a), and
@ z_] = 0 aasb € R SUCh that (ii) f(a) f(b) <0
@ >1 = -] i integer k and AJ. €ER for j =0, 1, ««+, k, such that
k i (i) vz € [0,») or
F@) < 2 A% (31) vz € (o, 0]
@ >0 |<-2 | (i) Ja€R>bAf(a)#0, and
(ii) f: R-> R is continuous in an e-neighborhood of a
® <-1 |<a2| (1) F RI*M R and Jae RI®M 55 4 Fa) # 0, and
(ii) ¥ is locally ¢ about a
® <8-2|<-1 | Ja; € R > f is locally c/*l about a; and £,(a;) # 0
@ <-2 |=0 Ja € R 3 f is locally C|°‘l about a and af,(a) # 0
<=2 |21 aa] € R 3 f is locally C|°‘| about a, and f](a]) #0
® =-1 [>1 3b >0, M >0 3 (z) > M, ¥z € [b,»)
@ =0 |>1 |Jaber=2

(i) ab < 0 and
(ii) bf(a) # af(b)

Table 3




Theorem 5.2 input u current . class of functions f (satisfying
waveform waveform the assumptions in Tables 1) to
which theorem can be applied
D a>1,8>1 uz0 i: / | ay f: R+R
@ ao>1,8=0 u=i: l Il II nonlinear functions only
@ a>1,8-=-1 I ’ f satisfies a polynomial bound
u=ri: .
almost all functions, except for
@ a>0,8z<-2 pathological cases
® a<-1,8<a2 £ is locally CIOLI about a point
©ac<-2,8z<-1 f is locally clol about some point
and has nonzero first-derivative
Qoacx-2,8=0 l | at that point
u: i:
@ a < '2’ B i]
@ a=-1,8>1 f1(z) <M ¥z € [b, «)
@ a =0, B> 1/ nonlinear functions only

Table 4




a B f
21 21 Ja,b € R such that
(i) ab < 0, and
(i) af(b) = bf(a) # 0
>1 =0 Ja,b € R such that '
(i) af(b) # bf(a), and
(ii) f(a) f(b) <O
=0 5’-2k 38 > 0 such that
and takes . e s s s s )
on only (i) f is injective and continuous in the

even values

interval [-8/2, §/2], and

(ii) f(x) # f(0) on a set of nonzero
measure ¥x € [-8/2, &/2].

Table 5




Fig.
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Figure Captions
Input waveforms used in proving Theorems 4.1 and 4.2.
ITlustration of the results of Theorem 4.2
Synthesis of the (unconstrained) linear h.o.e. v(]) = Ki(]).
Linear h.o.e.'s in regions PLI and PL2 have to satisfy K > 0 for passivity.
Those marked with crosses have to satisfy K = 0.

Lossless linear h.o.e.'s. (Those in the first quadrant and the positive
half-axes are constrained h.o.e.'s).
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