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Abstract

Higher-order elements have been introduced to provide a logically complete

formulatfon for nonlinear circuit theory. A distinctive feature of higher-order

elements is that they possess internal dynamics that are more complicated than

those of conventional circuit elements (namely, the resistor, inductor, capacitor

and memristor). In this paper, we shall provide a state space formulation for

studvinq two-terminal higher-order elements. State-space properties such as local

controllability, input-observability, passivity and losslessness will be investigated

in great detail.
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1. Introduction

Higher-order elements have been introduced in [1] to provide a logically

complete formulation for nonlinear circuit theory. In [2], it has been shown that

these elements can be synthesized using only linear reactances, linear controlled

sources and nonlinear two-terminal resistors. The synthesis method indicates that

a distinctive feature of higher-order elements is that they possess internal

dynamics that are more complicated than those of conventional circuit elements. In

this paper, we shall provide an analysis of the state-space properties of two-terminal

higher-order elements.

It is our intention to treat each section in the paper as independent. In

section 2, we shall show that each two-terminal higher-order element can be described

by a state representation which satisfies the usual state-space axioms (see, for

example, [3]). Section 3 treats the problems of local-controllability and input-

observability. It is advisable to skim through sections 2 and 3 before moving onto

sections 4 and 5, which deal with passivity and losslessness, respectively, of

two-terminal higher-order elements. At the time of writing of this paper, we feel

that it would require a major effort to extend our present results to the case of

n-port elements.

2. State Representations of Two-Terminal Higher-Order Elements

Our interest in the state (dynamical) representations of higher-order elements

was originally motivated by studying the passivity and losslessness properties of

these elements in the setting of [3] and [4]. It turns out that because of the

complicated internal dynamics of higher-order elements (abbr., h.o.e.'s), their

state representations are of a highly specific form which enables us to draw

interesting conclusions concerning their state space properties. Before stating our

results, it is necessary to introduce the following concepts:

Definition 2.1 [3]

A state representation S for an n-port is a quintuplet {U, U, S, E, R} where:

(i) U c IR is the set of admissible input values,

(ii) U= {u|u : IR+ -*• U} is the set of admissible input waveforms,
(iii) Z c lRm is the state space,
(iv) E is the state equation

x = f(x,u)

where f (•, •) : £ x U-»» IRm, and

Throughout this paper, we shall use the term "higher-order elements" to include both
higher- and mixed-order elements as introduced in [1].
2
The only difference between our definition and that in [3] is that we have excluded

the "output equation" from E.



(v) R is a pair of readout maps:

V:Z xU -*• lRn is the port voltage readout map,
I:Z x u ->• IRn is the port current readout map.

Definition 2.2 [3]

The power input function p:ZxU-*IRnis defined by
n

p(x,u) = I V.(x,y) I,(x,y).
j=l J J

The state representation S is assumed to satisfy all the state space axioms

as stated in [3]. In particular, we would like to remind the reader that the following
have to be satisfied before we are able to apply the theory of [3,4] for passivity

and losslessness in the later sections:

Standing Assumptions:

(Al) For every xQ e zand every u(*) eu, there exists aunique solution3
x(-) :IR •* Zof the differential equation x=f(x,u) such that x(0) =xQ.

(A2) For every {u(-h x(-)> described in (Al), the port voltage and port current
of the n-port are, respectively,

v(t) = V(x(t),u(t)) and
1(t) = I(x(t),u(t)).

(A3) For every pair {u(»)» x(«)> as described in (A2), the function t -»• p(x(t), u(t))
is locally L1 [3].

(A4) The set of admissible input waveforms U is translation invariant and closed under

concatenation, and all functions in U are measurable [5],

Definition 2.3

P(1R+) is defined to be the set of all piecewise continuous functions
g • [tg.^] -»• IR (where [t0,tj] denotes any finite interval in 1R+) with a finite
number of discontinuities. n

In the following, we shall concern ourselves only with a 2-terminal h.o.e.

described explicitly by

vW =f{1(3)j (2J)

3 • 1
x is a sol

continuous
almost all t.

ution to the differential equation x = f (x,u ) if x(t) : IR./* Z is absolutely
on every bounded interval [0,T] with T> 0, and satisfies x = f(x,u) for
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Dual results can be derived for the representation

i(3) =g(v(a)) (2.2)

by interchanging the roles of v^ and V&'. Depending on the integral values
of a and 6, the h.o.e. of equation (2.1) can have different state representations.

The state representations S = {U, U, Z, E, R} for the case a > 0 are listed in

tables la and lb; and those for a < 0 can be found in table 1c.

For the case a < 0, we need to consider the following equivalent representation

for the h.o.e. of equation (2.1):

Af(i(e), 1(6+1), -.. T(e"a)) . (2.3)

Note that the function f in equation (2.1) has to be at least |a| times differentiable

for the existence of the representation in equation (2.3). We say that these two

representations are "equivalent" in the sense that every (i^'9 v^) satisfying the
constitutive relation of (2.1) gives rise to (V^K i » •••* i^"a\ v) which
satisfies (2.3). Conversely, we can pass from (2.3) to (2.1) by integrating the

former equation |a| times, and taking the initial conditions v^ '(0), •••, v'a'(0)
into account. We wish to bring up this point here because the role of these initial

conditions is of particular importance when we consider passivity and losslessness

in the later sections of this paper. It may be of interest to note that

representation (2.3) is precisely what is needed in considering the state representation

of a charge controlled memristor in [6].

From Table 1, we see that there are certain cases in which the "input space"

U consists of unusual, or rather, unconventional "inputs," namely V ', for X >. 1.

It is to be noted that such a choice is chosen purely for mathematical convenience,

and that it does not affect the validity of our state representations. The different

choice of U for each case enables us to prove that the state representations listed

in Tables 1 satisfy assumption (Al), i.e. existence and uniqueness of solutions.

Theorem 2.1.

Consider the 2-terminal higher-order element described by equation (2.1) and

the corresponding state representations listed in Table 1. Assuming that U, Z and f

satisfy the conditions given in the tables, then the standing assumptions (A1)-(A4)

(stated previously) are satisfied. n



For the case a >^ 0, all that is required for existence and uniqueness of

solutions is for the function f to take on finite values almost everywhere in IR .

This is a much weaker condition than the usual continuity assumptions needed in

proving existence and uniqueness of solutions to state equations [7]. We shall see

shortly that the continuity restrictions on f can be relaxed because of the highly

specific form of the state equations for h.o.e.'s. The result of this theorem

enables us to consider passivity and losslessness in the (state-space) framework

of [3,4] in our later sections.

Before proving the theorem, we need the following result:

Lemma 2.1

Consider the set of equations

r
^(t) =p(t)
x2(t) = Xl(t)

•

xm(t) = xm ,(t)
nr ' m-1x '

v. J

where p(t) is integrable over any finite interval in IR+. There exists a
unique solution x(t) to equation (2.4).

Proof of Lemma 2.1

Since p(t) is integrable over any finite interval in 1R+,

ftXjft) = P(x)dT + X^tg)

(2.4)

(2.5)

is absolutely continuous on the interval [tg,t] and x,(t) = p(t) almost everywhere
(a.e.) on [tQ,t] [5]. Since x-j(t) is absolutely continuous, it is also integrable
on [tQ,t] [5], so we have

ftx2(t) = x^xjdx +x2(tQ) ,

where x2(t) is absolutely continuous and x2(x) = x-|(t) a.e. on [tQ,t],
Using similar arguments, we can show that for k = 2,3, •••,m9

yt) = ^^(rjdr^tt,,).

By "integrable," we mean Lebesgue-integrable [5]
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where x^t) is absolutely continuous on [tQ,t] and x (x) =x, ,(t)* a.e. on
[t0»t]. Therefore there exists a solution (cf footnote 3) to equation (2.4).

For the uniqueness part of the proof, we assume that the solution obtained

by the above process is not unique, i.e. there exist x(t) and x(t) satisfying
equation (2.4), with

W s \(t())> for a11 k =T'2' "#»m-

Define ek(t) =xk(t) - ^(t) for each k. From equation (2.5),

e^t) =0 a.e. on [tQ,t],

which means that

|e1(t)| =0 . (2.6)

Sincex^t) is integrable over any finite interval [tQ,t] in 1R+, so is
e-j(t); and since e-j(t) is absolutely continuous on [t0,t,] (because x,(t) and x,(t) are
both absolutely continuous), we get [8]

fel(t)
el<V

Therefore

E^x) A

de,

re^x)

ei(t0)

for all x € [tQ,t], i.e.,

e^x) =e^tg) =0, or

x«,(x) =x^x) =0 for all x e [tQ,t] .

A similar argument can be used to show that

xk(x) = xk(x) for all xe [tQ,t]

rt
e,(x)dx <f \^M\ dx = 0 .

de1 =e^x) - e^tg) =0

(2.7a)

(2.7b)

It follows from (2.7a) and (2.7b) that x=xon every finite interval [tQ,t] and
therefore the solution is unique. °

Partial Proof of Theorem 2.1

We shall show that under the conditions listed in Tables la-c, each assumption

for the state representation is satisfied.
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(A2) It is obvious from the tables that R consists of the port voltage and

current readout maps.

(A4) Since all L^ and locally L^ functions from IR+ -> IR are translation invariant
and closed under concatenation [3], the result follows immediately from

Tables la-c.

(Al) The proof for these parts involves a case by case study of the various values
anrl

>A3x of a and 6 as given in Table 1. We shall consider only two of these cases
here, which should be illustrative of the general strategy used in proving

the theorem. The proof for the other cases can be found in Appendix A.

a = 0, $ *< 1 (i.e., case (D(i) in Table la)

- Existence and uniqueness of a solution to the state equation E follows from

Lemma 2.1.

- -From the existence part of the proof of Lemma 2.1, xigi(t) is continuous, and
hence Lebesgue-measurable on any finite interval I in 1R+ [5]. By hypothesis, f
is Borel measurable, which implies that f(xigi(t)) is Lebesgue measurable on
I [12]. Since |f| is integrable on I by hypothesis, v(t) = f(x|e|(t)) is also
integrable on I, and is therefore L,0C(IR+->-lR) [8]. Since i(t) =u(t) e Lloc(IR+->3R)
in this case, we have, for the power input function (cf Definition 2.2)

p(t) =i(t) v(t) eL]QC(IR+-lR)
by Holder's Inequality [5]. So (A3) is satisfied.

B = a < -1 (i,e., case © in Table lc)

- Existence and uniqueness of a solution to E follows from Lemma 2.1.

- Since v^a' = f(v '), and f is at least |a| times differentiable, we can write

v-ftfW. i(3+1), -, 1<*-«>) , (2.8)

where f - '?' fAi^) hAi^K i(3+2), .... i^-J+D).
j»l J J

<Jf (l(«) = <Uf(z)
J dzJ

and h. = J{K(a) x n (1 1 )}
J a i=l

for j = 1,2, ..«, la

with K(a) a constant dependent on a and a denoting the set of all permutations such

j
that I e. = lot! -

1-1 1
-7-



We can rewrite equation (2.8) as

v=fl(1«»), 1<*-«> +'?' f (1<B)) h(i(W), ...,^^-J+l), (2.9)
j=2 J J

By hypothesis, feC'"'"1, therefore f, is continuous for j=1,2, -..,|a|-l and
fii is piecewise continuous. Since we are considering the case a = 6 <_ -1, we can
further decompose equation (2.9) as follows:

v(t) -fl(iW)[i] +f|3|(i^)[i^)]161 +'t1 fj(lW) hj(i^2),...,i^+1)) .
A(t) + B(t) + "^(t) (2J0)

From the proof of Lemma 2.1 and the state equations for this case, i^^t),
i y(t), •••, iVP;(t) are all continuous on any finite interval I in F+. Therefore

hj(t) is also continuous in that interval for each j= 2,3, •••,|3|. Hence C(t) in
equation (2.9) is continuous in I and

C(t) €L"0C(]R+h.3R) . (2.11)

Similarly, it can be shown that

A(t) ^L^dR^IR) (2.12)
(Q)

Since iVPy(t) is continuous in I and fi-i G P(IR+) (cf definition 2.3),
f|0|(1 (t)) Gp(^+)- This, and the continuity of i^3+1'(t) in I implies that the
term B(t) in (2.10)e P(IR+) and therefore,

B(t) eL^dRj . (2.13)

Since u<= L*0C(K+)» equations (2.11)-(2.13) give that p(t) =i(t) v(t) e l]0C(IR+-*-IR ).
a

3. Input-Observability and Local-Control!ability

(I)INPUT-OBSERVABILITY

Definition 3.1 [3]

Given a state representation S, an input-trajectory pair is a pair of functions

u(.) e u and x : IR -»» Z such that x(«) is a solution of x = f(x,u). n

Definition 3.2 [4]

A state representation Sis input-observable if the following condition holds

-8-



for any two input-trajectory pairs {u-|(')> Xj(#)K {u2(*)» x2(*)} with acommon
initial state x-j(O) = X2(0):

For all f > 0,

If {V(X](t), u^t)), Ifx^t), u^t))} =(V(x2(t), u2(t)), I(x2(t), u2(t))}

for all t e [0,t'),

then u^t) = u2(t) for all te [0,t'). n

Input-observability means that every admissible pair (v,i) [3] with a given

initial state is associated with a unique input waveform u(«). Assuming the solutions

to the state equation are unique, the state representation S is input-observable

if every admissible pair {v(«), i(«)} with a given initial state xQ is associated
with a unique input-trajectory pair {u(«), x(«)}. This concept was introduced in

reference [4] to formulate a complete theory for losslessness of nonlinear networks

in a state space setting. Before we can apply that theory to study losslessness

for h.o.e.'s, we need to check if all the state representations for h.o.e.'s are

input-observable. The following result provides an answer:

Theorem 3.1

The state representations listed in Tables la-c for the 2-terminal h.o.e.

described by equation (2.1) are all input observable. n

Proof

(i) For the cases (a > 0, 8 < 0) and (8 < a < -1), the input u is the current i,
so the condition for input-observability given in definition 3.2 is trivially
satisfied,

(ii) For (8 > 0) and (a < 8 < -1), the state representation is of the form
r

X-j = u

x2 = X

^

XA = XA-1

v. J

(3.1)

where u=rX' for some X>1, and uel]qc(IR +-»-lR). Consider two input-trajectory
pairs {ijX)(-), x^-)} and (i^(-), x2(«)}. For j=1or 2, we have shown in the
proof of Theorem 2.1 that ij*"1', ijX"2^» •••» 1j°'(t) are absolutely continuous
on every finite interval in 1R+. For all t' > 0, suppose

-9-



i-,(t) = i2(t) for all t e [0,t') (3.2)

For any t e [0,t'), by definition of the derivative [8]

\\\t) - lim sup -J ^3
J s-K) L0<h<s n J

/- i.(t+h)-i,(t)"N
= lim I inf -J r—J I

s-K) V.0<h<s J

Since the interval [0,t') can be expressed as a finite union of closed intervals
oo

[0,f) = u [o, f -|4 ,
k=l K

for any t € [0, t') and for 0<h<' g*' there exists Nt <« such that
Nt

t + h € U [0, f • ~] A Jf C [0, t') (3.3)
k=l K z

Naturally, we also have

t € Jt C[0, f) (3.4)

Equations (3.2)-(3.4) imply that for all te[0, f),

f IJt+hHWt)^ f i2(t+h)-i2(t)
lim< sup —! r ) = lim< sup r
s->0 L 0<h<s n J s-K) L 0<h<s n

(similarly, equality holds for the lim inf)

and therefore,

lj])(t) =i^(t) for all te [0, t«) (3.5)

If X = 1, we are done because equations (3.2) and (3.5) give the input-observability

of the state representation (3.1). If X > 2, we can repeat the above argument to

get the following: for all t6[0, t1),

i,(1)(t) =41}(t) =*i\(2)(t) =i<2)(t) -•- =*i{X)(t) =i<A)(t)

i.e. u^t) =u2(t)

Therefore the state representation is input-observable by Definition 3.2. n

-10-



(II) LOCAL CONTROLLABILITY

Given a circuit with state representation S, (global) control ability means that

it is possible to go from any initial state in the state space Z to any other state

in Z via some appropriate input applied over some finite time interval. A formal

definition of this concept can be found in [3,9].

For linear systems, there exist well-known criteria for controllability [9,10].

Unfortunately, for nonlinear systems, it is difficult to derive the corresponding

criteria for this property, which is global in nature. Most of the results in the

current literature deals with a local version of this concept [9]. Roughly speaking,

the system is locally controllable about a point xQ in Z if it is possible to travel
a "short" distance along the state trajectory for a considerably "short" period of

time to reach points that are "close to" xQ. The following definitions are adapted
from [9]:

Definition 3.3

Given a state representation S, let xQ, x1 e z. The state x1 is reachable from
x0 if there exists a finite T > 0 and an input-trajectory pair (cf. Definition 3.1)

{u(-), x(-)}|[0,T] from xQ to x]. n
Definition 3.4

The state representation S is locally controllable at xQez if for any state x
in aneighborhood fi(xQ) of xQ, x is reachable from xQ, and.xQ js reachable from x.
S is locally controllable if it is so at every xQ € Z. n

The above definition deals only with the existence of controls or inputs that

can provide for state transitions in a local neighborhood about some point in the

state space. It does not account for the amount of energy needed for the

transitions. The following definition, adapted from [11], imposes the condition

that the amount of energy required for each local transition be "sufficiently small."

Definition 3.5

S is locally continuously controllable at xQ if it is locally controllable
at x0 (in the sense of Definition 3.3) with the additional assumption that

•t

p(t)dt

*0
< pDx-xJ (3.6)

5
More precisely, this type of local controllability is referred to in [9] as "weak

local controllability." For the sake of brevity, we have chosen to adopt the
present terminology. Note that for linear systems, controllability is equivalent
to local controllability.

Again, this notion is being introduced as "local controllability" in reference [11].
-11-



where p(t) is just the power input function introduced in Definition 2.2,
p:IR+ + IR+ is acontinuous function satisfying p(0) =0, tQ denotes the initial
time for the transition from xQ to x (or from xto xQ), and tdenotes the final
time. The state representation S is locally continuously controllable if it is so
at every state xQ e z. n

We are interested in the local (continuous) controllability properties of
h.o.e.'s because this concept will prove useful when we explore the subject of

the existence of storage functions for these elements [12].

Theorem 3.2

Assume that for the h.o.e. v*°' = f(ve'), the function f satisfies the
conditions given in Tables 2a-c for different values of a and 8. Under these

conditions, all the state representations for this h.o.e. as given in Tables la-c

are locally controllable in the sense of Definition 3.4. n

We have imposed the C restriction on f in the cases mentioned because of

technical details, which would become obvious in the following proof. We suspect

that such a smoothness condition can be relaxed, especially for the case of h.o.e.'s,

but not without a major effort in re-formulating the existing theory of local

controllability in [9].

Partial Proof of Theorem 3.2

Referring to Tables 2:

- For all cases, except for ® (ii), (iv) and © (ii), the state equations are
of the form

0

1 0

0 1

0

xl
•

x2
M>

•

•

•

•

LXnJ o
^

o

0 1 o

pi ~i~
0x2

+
0

• •

• .

• •

•

x„ 0
L n_

J

or x = Ax + Bu

It is easy to verify that the matrix

q =[b Jab-a2b • .... \ An_1B]

-12-



has rank n. Therefore, the state representation S satisfies the controllability
rank condition given in reference [9], and is therefore locally controllable. In

fact, it is also controllable because the two concepts are equivalent in the case
of linear systems.

- Consider case © (iii) for (a > 1, 8 = 0), where the state representation is
given by ' A f(u)

/ /N—

V
.

•

•

X
a_

0

1 0

0 1

0

Q '010
for x = Ax + f(u)

^

o 1

a

f(u)
0

(3.7a)

(3.7b)

Using the terminology in reference [9], the subset of the vector fields generated

by each constant control (or input) u is given by

F° = {Ax + f(u), u= constant e u}

So the Lie algebra containing F is generated by the vector fields

{Ax, f(u)}

Let F denote the smallest subalgebra which contains F . By computing the Jacobi

brackets, we get

[f(u) ?(u)] = 0

0

f(u)

[Ax, f(u)] = 0

0

0

[Ax,[Ax, fu]] = f(u)
0

-13-



and so on. So the Lie algebra F is spanned by the linear vector fields Ax

and the (constant) vectors

f(u)

f(u)

0

f(u)

Provided that f(u) f 0 for every constant value of admissible u, F has dimension

a, and therefore satisfies the controllability rank condition given in reference

[9]. By Theorem 2.2 in [9], the state representation of equations (3.7) is

locally controllable.

- For cases © (iv) and © (ii), corresponding to (a >. 1, 8 £ -1) and (a >, 1,

8 > 1), respectively, the proof is very similar to the one above, and is given

in Appendix B. «

Unfortunately, we have not yet devised a means of testing for local

continuous controllability of these h.o.e.'s. We conjecture that under sufficient

smoothness assumptions, every state representation for h.o.e.'s is locally

continuously controllable if the associated linearized representation has this

property. It is also possible that under very weak conditions, the state

representations of h.o.e.'s will always be locally continuously controllable,

as is illustrated in the following example:

Example 3.1

Consider the h.o.e. described by

„(-!)= f(i(-2)),

where fee1.
This element has a state representation

X-j = u

x2 = x1

i = u

v = f^xgjxp where f-j(x2) A^- f(x2)

Consider the transition from the state Xq =

-14-
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lies in a small neighborhood Q(xq) of xQ. Suppose we apply a constant input over
a small time interval:

u(t) = a, t€ [0,^]

The desired boundary conditions at both ends of the transition can be met if we had

chosen

. _ o X2TX20
1 " xn+x10

and

a =
xll"x10 x21"x20

lxn+xioi

(Note that we can always make a(xQ) small enough to ensure that x,-, +x1Q ? 0)
Now as t-j and a both tend to zero, x, tends to xQ.

By definition of the power input function, ,.*

tl tl tl <J^-n
p(t)dt =[ l(t) v(t)dt =f af,(x,,(t))(xin+at)dt

Jo JO Jq

where x2(t) =x2Q +x1Q(t) +j at2

By assumption, f is C , therefore f1 is continuous. The integrand in equation (3.9)
has constant sign on te [o, tj] if Oxq-x^I is small enough. Also by continuity
of f-j, there exists a constant M> 0 such that

lfl (x2(t)) I <M for all t e [o, ^]

This gives

'1
P(t)dt <|a|M |x10t1 +^at2| =|a| |x21-x20

Substituting the expression for a from equation (3.8) we get
E

'1
P(t)dt

(

- 2|x11+x10| lxirxlollx21"x20 ,2

Since the expression E on the right side of the above inequality satisfies E = 0

for Xq = Xj, and E>0 otherwise, and it varies continuously with Hxq-x,II, we
can conclude that this h.o.e. satisfies condition (3.6) in Definition 3.5.
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Therefore, the h.o.e. in this example is locally continuously controllable.

A similar result can probably be obtained for other h.o.e.'s, using the same

technique. It is still unclear as to whether a general analysis can be obtained;

meanwhile, we can only satisfy ourselves with a case-by-case analysis.

4. Passivity of 2-Terminal H.O.E.'s

Traditionally, an electrical network is called "passive" if it absorbs energy,

i.e., it never delivers any energy to the outside world. From a synthesis viewpoint,

this means that a passive network can be built without any energy, except possibly

for energy losses during the fabrication process. With this notion of passivity,

an interconnection of passive circuit elements always results in a passive network,

which is also stable in the sense of Lyapunov [13].

It has been shown in [3] that this traditional definition can lead to an

anomalous classification of passive nonlinear n-ports. There, a state space theory

of passivity has been introduced, whereby, a passive n-port is one that is capable

of delivering only a finite amount of energy to the external world. One can

therefore interpret a passive n-port as one that can be built using only a finite

amount of energy. Using this definition, an interconnection of passive elements
results in a passive n-port which is not necessarily stable (in the sense of

Lyapunov).

Other publications (see for example, [14]) have adopted an input-output approach,

retaining the traditional definition and stability properties of a passive network

and referring to the passivity of [3] as "weak passivity." Such an approach

considers a fixed initial state and treats passivity as a property of one instance

of the network, instead of the overall network.

Despite all the work that has been done on the subject of passivity, it still

remains unclear as to which definition is most suitable for the general class of

electrical networks. Recently, an attempt has been made to unify all existing

definitions. In [15] an electrical circuit (or a "device") is modelled via a

singal space and a parameter space. A definition has been proposed for a "frame"

of the circuit, i.e., the circuit operating under a specific set of "parameter

settings." Where a state description exists for the circuit, the parameter space

can include the set of all initial states. The frame of the circuit is passive if

only a finite amount of energy can be extracted from it; and the overall circuit

is passive if all its frames of interest are passive. When a state representation

is possible, this notion of passivity is identical to that in [3].

In the following, we have chosen the definition in [3] as the basis for our

study of the passivity of h.o.e.'s. As in Section 2, we shall concern ourselves
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only with 2-terminal h.o.e.'s having an explicit representation vw =f(i^').
It is important to note that our choice of a definition for passivity is simply

a matter of convenience — in Theorem 2.1, we have shown that under very mild

conditions on the function f, the state representations of h.o.e.'s always satisfy

the state space axioms in [3]; and we have also adopted the same set of notations

for our state space descriptions as in [3]. Our subsequent results would still

remain valid, had we chosen another definition. The reason for this is simple:

we are going to show that a large class of 2-terminal h.o.e.'s is active by the

definition in [3], because they can deliver an infinite amount of energy to the

outside world. Since the amount of energy delivered is dependent solely on the

admissible voltage and current waveforms, necessarily, the same class of h.o.e.'s

is active by all other definitions. Whenever relevant, we shall discuss the impact

of [15] on the classification of passive or active h.o.e.'s.

We now owe it to the reader to state our definition of passivity, which is

adapted from [3]:

Definition 4.1

Let S denote the state representation of a 2-terminal h.o.e. and let Z denote

the state space of such a representation. We define the available energy

EA:Z- IR+ U{«} by

E.(x) =sup {-[ i(t) v(t)dt}
X-*

T>0

where the notation sup indicates that the supremum is taken over all T ^ 0 and
x-»-

T>0

all admissible pairs {v(«), i(*)} with the fixed initial state x.

Definition 4.2

The h.o.e. is passive iff

EA(x) < +» for all xe z.
Otherwise, the element is said to be active.

(I) MAIN RESULTS

We are now ready to state the results in this section. There are basically

three main theorems: Theorem 4.1 takes the well-known result that a negative

resistor, inductor or capacitor is active, and extends it to a much larger class

of elements. Theorem 4.2 shows, in essence, that almost independently of the
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properties of f(«), the condition |8-a| > 2 implies activity. (Note, though,

that some of the cases where |8-a| < 2 are also covered by Theorem 4.2). Finally,

we discuss the linear case in great detail, since in that case, it is possible

to state explicit necessary and sufficient conditions for passivity.

Most of the results in this section are statements about when a h.o.e. is

not passive. Equivalently, we are establishing a set of necessary conditions for

passivity. The problem of finding conditions which are both necessary and sufficient

(and also explicit in the sense that they involve the element constitutive relations

directly) remains open, except of course, in some special cases.

Theorem 4.1

Assume:

(i) There exists a£]R such that af(a) < 0 and

(ii) (a = 0, 8 > 0) or (a > 0, 8 = 0).

The element described by v^a' = f(i^) is active under these assumptions.
n

For this result to hold, the function f has to take on values in the 2nd

or 4th quadrant. We know that a current-controlled resistor (with (a,8) = (0,0)

is passive if, and only if its v-i characteristic passes through the origin and

lies only in the 1st and 3rd quadrants. This agrees with the result of the theorem.

Proof

(i) We refer to Table lb for the state representation for the case a = 0,

8 > 1.

By hypothesis, there exists a e IR such that if we denote b A f(a), then sgn(b)

= -sgn(a) with a t 0, b f 0.

Choose initial state Xq = 0.
Let u(t) =i^(t) =a Vt >0

Then i(t) = x6(t) =~- ,t >0

v(t) = f(a) = b ,t > 0

te
p(t) = i(t) v(t) = ab ±r ,t > 0

Therefore,

E-(xq) = sup {-
admissible u

T>0

rT
p(t)dt}> sup {-

0 T>0

-18-
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So the element is active.

(ii) For a > 1, 8=0, the state representation is given in Table la.

Let i(t) = a Vt >0, where a is in assumption (1) in the theorem and xQ =0.
The proof proceeds as in (i) above.

(iii) For a = 0, 8=0, the state representation is given in Table la.

Pick i(t) = a, t > 0, where a is as given in assumption (1), and some arbitrary

Xq. It is easy to verify that for any XqGS, ^a(xq) = +00* and so the element is
active. *

Theorem 4.2

Assume:

(i) The state representation S = {U, li, Z, E, R}and the function f satisfy

the respective conditions given in Tables la-c, and

(ii) furthermore, f satisfies the conditions given in Table 3 for different

values of a and 8.

Under these assumptions, the 2-terminal h.o.e. described by v^a' = f(i*^') is
active. a

Remarks

The essential content of this theorem is that |B-ct| > 2 implies activity,

regardless of f, which is not too surprising when one considers the linear case.

The remaining assumptions of the theorem may look complicated, but they actually

boil down to excluding pathological cases (except perhaps in cases © and (D ,

where the assumptions needed to validate the proof are a bit stronger than one

would have expected). Note, however, that some parts of the theorem statement

— specifically cases © , © and © ,allow the possibility of |8-a| < 1, so
the results are not simply an extension of "intuitively obvious" linear circuit

properties. In particular, the following needs to be pointed out (cf. Table 3):

Case © : For (a >. 1, 8 > 1)> so long as the function f is Borel-measurable and
If I is integrable over every finite interval in IR, the h.o.e. described

(a) (&)by vv ' = f(iVP') is always active. An obvious corollary to this is

that the linear h.o.e. v^ = ki^ with a,8 >. 1 can never be passive,
no matter what value k takes on.

Cases © and ® : The results here for (a > 1, 8=0) and (a = 0, 61 1), only
work for functions that are not linear. We shall see later, when we

consider the linear case that passivity implies linearity in these cases.
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This is a truly interesting result because it is the first known

instance (in state space theory) of elements which are passive when

linear, and which for any deviation, no matter how small, from

linearity, become active.

Case © : Applied to the linear case, this result for (a > 1, 8 = -1) states
that, the element v*a' = kV ' with a > 1 can never be passive. Note
that |8-a| >, 2 in this case and the result here will appear as a

consequence of Theorem 4.3, to be presented later.

Case ® : In this case (a > 0, 6 < -2), almost all h.o.e.'s of practical interests
are active. Examples of f where the theorem is inapplicable are:

a) f(z) =0 Vz e IR , which is a trivial case, and

b) f :IR -*• IR has a discontinuity at every point, e.g.

fl, z is rational

^z' ~\j), z is irrational .

To prove activity in Theorem 4.2, we work in the state space Z for the

particular element: we find an input waveform u6(J and an initial condition xQ € z
such that

fT fT
,dt} = +~ ,EA(xn) =sup {-[ ivdt} >sup {- iv <

rt u y_-* in T^n in u uXq-»- j0 T>0
T>0

where (iu»vu) denote the admissible current-voltage pair due to the particular input
u that we have picked.

We have proved the theorem using the three input-types of Figure 1: a pulse,

a piecewise-constant cyclic waveform with period T and a step. Unfortunately, it

is impossible to combine our proofs according to the type of input used because of

the variety in the state representations of these h.o.e.'s. We shall next give

detailed proofs of two cases which involve a pulse input and a cyclic input

respectively. (A step input has already been introduced in the proof of Theorem 4.1).

The rest of the proof follows the same line of argument, and can be found in

Appendix C. Table 4 includes a summary of the input types and the corresponding

current waveforms, as well as the restrictions on f, a and 8 that will guarantee

the activity of h.o.e.'s.
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Proof of part @ (a > 0, 8£ -2) of Theorem 4.2 (pulse input)

(I) For a > 1, 8 £ -2, the state representation is given in Table la.

By assumption (i) in the theorem, there exists a G IR such that b = f(a) t 0.

Let

1.5

i(t) =
, t G [0, e] A 1(e)

where K A -sgn(b) and e > 0 is small.

Choose the initial state

x0 = (0, 0, •••, 0, a, 0, •«., 0, b)

withx0|B|=aandx0(a+|3|) = b.
It follows that for t G i(e),

x,3|(t) [••
V.

8| -1.5

Hen-
a +

|8|-1.5

J

A(£)

By hypothesis, f is continuous in a small neighborhood of a.

|8| >. 2, this means that there exists e* > 0 such that
Supposing

A(e) CA(e*), for all e G (0, e*).

Since A(e*) is obviously compact, f must attain a maximum and a minimum value

in that interval. Denote them by fg(e*) and f-j(e*) respectively, i.e., we
now have

f(X|g|(t)) e [f^e*), f2(e*)] for all t€I(e).
This implies that

f,(e*)v(t) =xlolxJt) e[-L^ta+ bj '2
jB|+cr • - ai

for all t e 1(e), and e 6 (0, e*]

There are two cases to consider now:

a!
ta + b]

1.5(i) b > 0, in which case i(t) = -1/e ' , for t G 1(e). Then considering

p(t) = i(t) v(t), we obtain, for t G 1(e) and e G (0, e*)

0 <
f} (e*) £a.0.5+^.£

/e

f2(e*)
-p(t)dt < -±-r—

He) a!

-21-
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For any a > 1, as e tends to 0,

sup -p(t)dt = +« .
eG(0,e*] JI(e)

Therefore

En(x0) > sup {-p(t)dt} = +«>,
e (0,e*]

and so the element is active for |8| > 2 and a > 1.

(ii) For b > 0, a similar argument shows that for e G (0,e*] and t G l(e),

"f2(e*> a-0.5 b . f __ ."f2<e*> _a-0.5 b
0 < —^-i— e1* u'" - — < -

SI
a!

p(t)dt < —^n— el
1(e) " a! /Z

Activity then follows as in (i) above.

(II) For a = 0, 8 £ -2, the state representation is also given in Table la.

The current here is the same as in part (i), except that we choose an initial

state

x0 = (0, 0, •••, 0, a).

By continuity arguments, we can show that for |B| ^.2,

v(t) =f(x|6|(t)) G[f^e*), f2(e*)], for tG l(e),
where e* > 0 is chosen such that

sgn f-j(e) = sgn fg(e) = sgn f(a), for all eG (0, e*].

Therefore, for sgn f(a) = +1,

Ve*) f f,(e*)

/Z
p(t)dt <

Ke)

He) " ^

p(t)dt} = +«>, and the element is active.

For sgn f(a) = -1, a similar conclusion follows.

Before we proceed with the proof of case © of Theorem 4.2, we need the
following result:

Lemma 4.1

Consider the following state equation:
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r
x, = u

x2 = xl

^
xn = xn-l ' wnere n - ^

If the input satisfies

u(x)dx = 0 for some T > 0,
J0

then there exist xQ1, xQ2, •••, xQ/ ^ such that

x(T) = x(0) A x0 = (xQ1, •-., xQn)

for anjf value of the last component x .

(4.1)

(4.2)

(4.3)

We shall include the proof of this lemma here because this result is essential

in the next section, when we consider losslessness.

Proof of Lemma 4.1

Rewrite equation (4.1) as

x = Ax + Bu

where

A =

0

1 0

0 1

0

O

O

0 1 o

B =

1-f

0

The solution to this equation can be given explicitly by

rt

x(t) = e Xq +
JO

eA(t-T)Bu(x)dT .

In order that condition (4.2)in the lemma is satisfied, we need

JT eA(T-TWT)dT =[I -eAt]xQ

-23-
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For the particular A for equation (4.1a),

'. O
At t2/2 t

t2/2

t 1

so equation (4.4) becomes

0

(T-t)
rT

l(T-x)2 u(x)dx =

and eA<T-T> B-

-T

•T2/2 -T

•T2/2 •

For (4.5) to have a solution, we need

rT

0
u(x)dx = 0

Then we have to solve

II

" (T-x)

2(T-x)
p(x)dx = - T /2 T O

T2/2

1

(T-x)

l(T-x)2

^)3

O

-T 0

w01

'O(n-l)

k01

c02

(4.5)

(4.5a)

Since the matrix on the right of the above equation is nonsingular for all T > 0,

we can always find a solution (xq-,, xq2, ••• xQ/ ,>). This implies that there
always exists a solution xQ = (xQ1, ••«, xQn) such that x(T) = x(0) A xQ for aniv_
value of the last component x0n, provided that T >0 and u satisfies condition
(4.2).
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Proof of case © (a = 0, 8 > 1) of Theorem 4.2 (cyclic input)
From Table lb, the state representation for this case is of the form of

equation (4.1), with n = 8» and the readout maps are

i = [0 0 .«. 0 l]x

C

v = f(u)

Let u(t) be periodic with period T given by

u(t) =

'a t e [o, tj], t1 >0

b te[trT]

(4.6)

where T = (1 - -j^t-j, and the values a, b satisfy assumption (i) in the statement of
the theorem.

It is easy to verify that the above input satisfies equation (4.2) and so, by

Lemma 4.1, we can always find an initial condition such that

x(T) =x(0) = (xQ1, xQ2, .-., xQg)

for any value of x^.
With this choice of input, v(t) is given by

f(a) , t G [0, t^
v(t) =

f(b) , t G [tr T)

Since

0

f(u(t)}dt =f(a) - $IM ,

assumption (ii) in the theorem guarantees that

fT
f(u(t))dt t 0 .

in

(4.7)

Using the matrices A, B from equation (4.1a) and C from equation (4.6), we can write

the current i(t) explicitly as

i(t) =CeAtxn +f CeA(t'T)Bu(x)dx
u JO

which can in turn be evaluated as
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1(t)-j,^*"*Oj T8JfTT (t-T)3"1 U(x)dx

° x08 + g(t) + h(t-x) u(x)dx ,

where g(t) is a polynomial whose coefficients depend on the solution to equation

(4.5a): (xQ1, xQ2, •••, Xq/^x) and h(t-x) A /g.-jN; (t-x) is a polynomial

independent of the initial condition xQ.
From equations (4.7) and (4.8),

p(t)dt = -
J0

i(t) v(t)dt

(4.8)

fT
= -x

08 J

rT fTft
f(u(t))dt - g(t) f(u(t))dt - f(u(t))h(t-x)u(x)dxdt (4.9)

J0 J0J0

The last two integrals on the right side of equation (4.9) give only a finite

contribution, independent of xog, since T >0 is finite. Therefore since
f(u(t)) f 0, we can always choose xQg such that

p(t)dt = c > 0, where c is a constant.

For this choice of x0g, and the solution (xQ1, xQ2, •••, x0/g_,%) to equation (4.5a),
we can repeat the above for N cycles to get

rNT
En(xn) 1 sup{- p(t)dt} = sup{Nc} = +~ .
M u N JO N

Hence the element is active in this case. n

In Theorem 4.2, we have derived the sufficient conditions for activity for

the general class of 2-terminal h.o.e.'s. Since most of these conditions are not

at all restrictive, a large class of h.o.e.'s can never be passive. This situation

is depicted in Figure 2. The shaded portions on the circuit element array [3]

contain those elements which are always active, so long as f satisfies certain

mild conditions. The remaining elements, in the unshaded portion (with a < 0,
8 £ 0 and |8-a[ £ 1) are thus the only possible candidates for passivity.

This class includes the four known basic circuit elements: the resistor,

inductor, capacitor and memristor. It is to be noted that cases 2

and 10 in Figure 2 applies only to nonlinear ( i.e., strictly not

linear h.o.e. 's). We shall show later in Theorem 4.4 that for
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(a,6) =(1,0) or (0,1), the linear h.o.e. v^ =Ki^' can be passive, provided
that K > 0. We have not yet been able to identify a passive nonlinear (i.e.,

strictly not linear) element, other than the four basic circuit elements. Therefore,

we conjecture that the only passive nonlinear elements are the four basic circuit

elements. We shall now proceed to show that in the linear case, there exist certain

h.o.e.'s which can be passive.

(II LINEAR CASE

In this subsection, we concentrate on the linear 2-terminal h.o.e. described by

v(o) B^(8)^ K€jr, . (4/I0)

We are going to show that for a subclass of these linear elements, it is possible

to derive a necessary and sufficient condition for passivity.

Let PL denote the class of linear h.o.e.'s of equation (4.10) satisfying

(i) a £ 0, or

(ii) a>18>1and v(a"j)(0) =Ki(3"j)(0), j=2, 3, •••, ex.

Theorem 4.3

Any h.o.e. belonging to the class P, is passive if, and only if
(i) |8-a| £ 1 and

(ii) K > 0 (with K > 0 only when a = 1). n

Remark

Although Theorem 4.3 considers a relatively small subclass of the linear h.o.e.'s,*

it is nevertheless all that we really need to consider, since most of the h.o.e.'s

not belonging in P, have been shown to be active in Theorem 4.2. In fact, the only

important linear h.o.e.'s which are covered by neither Theorem 4.2 nor Theorem 4.3

are those in cases (2) and @ of Figure 2. These cases will be considered later,
in Theorem 4.4.

We would also like to stress that in Theorem 4.3, for the case a >_ 1, we are

only considering those h.o.e.'s with constrained initial conditions. In the

terminology of [15], if we consider the linear h.o.e. of equation (4.10) to be a

"device," then each of h.o.e.'s included in the class P, is only a different
"frame" of some device -- the overall device may be active, but it may possess

certain "frames" which are passive. From the synthesis viewpoint, this appears

to be a most reasonable classification of passive or active linear h.o.e.'s.

Consider, for example, the h.o.e. v^ '= Kv^ ' constrained to satisfy v(0) = Ki(0).
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This is equivalent to a linear resistor v = Ki, which is passive for K > 0. The

very same element with unconstrained initial conditions is very different from a

linear resistor -- it has to be built using linear reactive elements and

controlled sources, as shown in Figure 3, (where the linear IF capacitors can have

arbitrary initial conditions).

As the following proof will indicate, the necessary and sufficient conditions

for the passivity of those h.o.e.'s in PL form in fact the "positive real criterion,
so commonly encountered in classical network synthesis. This should not be too

surprising, since the basic linear circuit elements (the resistor, inductor and

capacitor) are all members of P..

Proof of Theorem 4.3

a) We first note that except for a = 1, every h.o.e. in P. has an equivalent
7 L

representation:

v = Ki(3"a)

Next, we show that equation (4.11) has a completely controllable [10] state

representation whenever 8-a f 0:

x =

!B-a

r

0

1

0

O

O' o• i o

Y

0 0
0 K

8-a

D

B

~1~

Ix +pjlu , (8-a) <0

~[x +|jju , (8-a) >0

(4.11)

(4.12)

Since [B •AB •A2B ••••£A' 3—ot|—1 B-j has rank ^^ ^^ 1s completely controllable
[15]. By Theorem 8 in [8], the state representation (4.12) is passive iff the
transfer function matrix

Equation (4.11) is equivalent to the original representation (4.10) in the sense
that both representations posses the same set of admissible voltage-current pairs.
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H(s) =C(sI-A)-1B +D

is positive real.

A simple calculation shows that for (4.12),

rr-

H(s) = \

V.i-

1

K/S

1/S

K

6-a

8-a

8-a < 0

8-a > 0

In either case, H(s) is positive real if, and only if K >_ 0 and |8-a| £ 1.

For 8-a = 0, representation (4.11) just describes a linear resistor, which is known

to be passive iff K >_ 0.

b) For a = 1, the only h.o.e. that is not active by Theorem 4.2 is when 8 = 0.

It is easy to show that the transfer function for the h.o.e, v^ ' = Ki is
H(s) = K/s.

For K = 0, the element is just a constant voltage source, which is active.

H(s) is positive real only if K > 1. Therefore using Theorem 8 in [3], this

h.o.e. is passive iff K > 1. «

The following result applies to a small subclass of unconstrained h.o.e.'s

vW = f(-pe') and shows that linearity (with nonnegative slope) of the constitutive
relation is necessary for passivity.

Theorem 4.4

The only passive elements of the form v = f(v ') with 8 > 1 or v^ = f(i)
with a >. 1 are the linear elements:

(1)v = Ki K > 0

and

K > 0

The proof of this theorem is quite complicated and can be found in Appendix D.

A summary of the above results can be found in Figure 5. The linear h.o.e.'s in

region P, j are passive provided that K > 0. Those in P,2 are passive whenever
K >_ 0 only if they are constrained to zero initial conditions. The two crosses in

the circuit element array indicate those elements which are passive if, and only

if K > 0.
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(Ill) CONCLUSIONS

So far, we have derived the sufficient conditions for activity for a nonlinear

2-terminal h.o.e. described explicitly by v^a' = f(v '). We have also obtained
the necessary and sufficient conditions for passivity for a subclass of h.o.e.'s.

We feel, at this point, that we should be able to generalize some of our present

results to the case of a 2-terminal h.o.e. with an implicit representation

h(v(c0, i(3)} « Qm

In this case, we might run into certain difficulties in applying the theory in [3]

because of the following:

(i) Using the Implicit Function Theorem [16], we might be able to find a local

state representation for the h.o.e. However, the theory in [3] requires the

existence of a global state representation. If the local state representation can

be extended to a global one, i.e., if the implicit function in v*a' and V°' can be
transformed into an explicit function, then we would have no problems. Unfortunately,

this may not be possible in general.

(ii) A global state representation may exist, which does not necessarily agree

with the local representation given by the Implicit Function Theorem. In this

case, we may find ourselves dealing with an element which is passive (or active)

with respect to some choices of the state space, but not with respect to other

choices. The problem here is that the definition in [3] is coordinate-dependent.

(iii) We can use the Global Implicit Function Theorem [17] to transform the

implicit representation to an explicit one. However, any form of global implicit

function Theorem would impose too stringent a set of conditions on the original

(implicit) function, which is undesirable.

We suspect that the above problems may be circumvented if we were to adopt

the definition of passivity given in [15]. In fact, the work in [15] was motivated

by studying h.o.e.'s. But we need to point out that it would be by no means a

trivial extension of our present work to the context of passivity as given in

[15].

5. Losslessness of H.O.E.'s

Unlike passivity, the current literature does not provide an adequate definition

for losslessness of nonlinear circuits and systems that unifies the input-output

and state-space viewponts. Intuitively, an electrical system or circuit is

"lossless" if it is incapable of delivering energy to, or absorbing energy from

the external world.
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Throughout this section, we shall adopt the state space approach to study

the losslessness of h.o.e.'s. Basically, we treat losslessness as the path-

independence of the energy consumed while traversing any two points in the state

space. The following definitions are adapted from [4]:

Definition 5.1

The energy consumed by the input-trajectory pair {u(«), x(0}|[tj, t2] is the
quantity

p(x(t), u(t))dt,

1

where p(',») is just the power input function in Definition 2.2. n

Definition 5.2

A state representation S is defined to be lossless if the following condition

holds for every pair of states x , xb in the state space Z: For any two input-
trajectory pairs {u-jH, x^H-lICO, Tj], {u2(«), x2(«)}|[0, T2] from xfl to xfa,
the energy consumed by {u-j(-), x1(«)}|[0, T-j] equals the energy consumed by
{u2(-), x2(.)}|[0, T2]. «

Definition 5.3

A 2-terminal h.o.e. is lossless if there exists for this h.o.e. a totally

observable [9] state representation S which is lossless by Definition 5.2. n

The concept of "total observability" introduced in the above definition is

equivalent to that of "complete observability" [10] plus "input-observability"

(as introduced in Definition 3.2). In order to prove that a h.o.e. is lossless

by directly applying Definition 5.3, we need to find a state representation for

the h.o.e. that is both completely observable and input-observable. However, it

is simpler to prove that a h.o.e. is not lossless. According to Lemma 3.3 in [4],

if a 2-terminal h.o.e. is lossless, then every input-observable state representation

for the element is lossless. Hence, to show that a h.o.e. is not lossless, it

suffices to find only one input-observable state representation that is not

lossless. This is the approach that we shall take in arriving at the first

theorem of this section.

(I) MAIN RESULTS

Just as in the case of passivity, we shall introduce three main theorems

in this section. Theorem 5.1 is analogous to Theorem 4.1 in that we shall show
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that a large class of h.o.e.'s can never be lossless. But unlike its counterpart

in passivity, Theorem 5.1 does not cover all the cases in the circuit-element-

array. The reason for this is because it is extremely hard to find input waveforms

that will drive the state-space trajectory from one specific point to another.

(This is actually a problem in global nonlinear controllability, and to the best

of our knowledge, such a concept has not been well-formulated in the current

literature.) Theorem 5.2 states a sufficient condition for losslessness of the

state representations for a very specific class of h.o.e.'s — namely, those lying

on the -45° line a+8 = -1. There is no analogy to this result in our passivity

theory. We then proceed to study the linear case in detail and state, in

Theorem 5.3, a necessary and sufficient condition for losslessness for a subclass

of linear h.o.e.'s.

Theorem 5.1

Assume:

(i) The state representations S = {U, U, Z, E, R} and the function f satisfy

the respective conditions given in Tables la-c and

(ii) furthermore, f satisfies the conditions given in Table 5 for different

values of a and 8.

Under these assumptions, the 2-terminal h.o.e. described by v'a' =f(ve') is not
lossless. n

Remarks

For case ®, i.e., a > 1 and 8 >. 1, almost any function satisfying the
conditions in Table 3 are active by Theorem 4.2. Note also that this includes the

class of all linear elements described by v^ = Ki^s and all nonlinear elements
v(a) = f(.j(B)) for which f is an Qdd function#

For case ©, i.e., a >_ 1 and 8=0, the criteria for non-losslessness and
activity are identical; hence we can conclude that all active h.o.e.'s falling

in this category are not lossless, and vice-versa. We also note that in this

case, for almost all functions f that are not linear, the h.o.e. can never be

lossless.

The restrictions on f in case ®, i.e., a = 0, 6 £ -2 can be satisfied by
a large class of functions. In particular, the linear h.o.e. v = Ki^', for any
even, negative value of 8 is not lossless. Also, in comparison with Theorem 4.2,

almost all h.o.e.'s that are not lossless in this category are active.
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The above observations may lead us to believe that only passive h.o.e.'s

are lossless. However, as will be apparent in Theorems 5.2 and 5.3, this is not

always the case. In fact, it is worthwhile to point out here that traditionally,

losslessness has been considered only for the case of passive elements. One novel

feature in the definition proposed in [4] is that it allows for the consideration

of losslessness even for active circuit elements or circuits in general.

Proof of Theorem 5.1

By Theorem 3.2, all the state representations in Tables la-c are input-

observable. So by Lemma 3.3 in [4], to prove that a certain h.o.e. is not lossless,

we need only to prove that its corresponding state representation (as given in

Table 1) is not lossless. We shall now proceed to prove only cases @ and © in

Theorem 5.1. The proof for case © dwells on similar ideas and can be found in

Appendix E.

© For a > 1, 8=0, the state representation can be found in Table la. Following the

same arguments as in case © of Theorem 4.2, and using Lemma 4.1, we can always

find a T-periodic input u(t) and initial condition xQ such that
(i) xQ = x(0) = x(T), = x(2T),

fT
(ii) p(x(t), u(t))dt = c f 0, and

(iii)

JO
2T

•0

p(x(t), u(t))dt = 2c

These conditions ensure that the h.o.e. is not lossless since the energy consumed

in one period of the input is different from those consumed in two periods, even

though the initial state and final states are the same in both cases. n

Before proving case (D , we need the following result:

Lemma 5.1

Consider the state equations

r* "\
x, = u

x2 = x]

^xn = xn-l J

Let u(«) G (j be an odd T-periodic function,

i.e. u(T-t) = u(t) for all t G [0,T].
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Then the following hold for all t G [0, T]:

a) For j = 1,2, •••, n-1,

x.(T-t) = x-(t) , for j odd
J vl

and x.(T-t) = -x-(t) and x.Q =0 , for j even.

b) xp(T-t) = xn(t), for j odd

and xn(T-t) - xnQ - xn(t), for j even. «

The proof of this lemma can be found in Appendix E. What we need to complete the

proof of Theorem 5.1 is the following:

Corollary to Lemma 5.1

Consider the state equation (5.1) of Lemma 5.1. Let the input be given by

f-K , tG [0,1)
u(t) = < (5.2)

\^ K, tG [1, 2)

with K > 0.

Then it is possible to find initial conditions x^. for j = 1,2, •••,n, such that
for even values of n, xn(t) is odd-symmetric about the t = 1 axis and xn(t) =0
only at t = 0, 1 and 2. °

This result follows directly from Lemma 5.1.

© For a = 0, 8 £ -2, the state representation is given in Table la.

Choose an input as given in the Corollary to Lemma 5.1 (with K to be determined

later) and fix the initial condition x oI«I = ^* ^ *^e coro^ary» we can choose
initial conditions Xq. , j = 1, •••, |8|-1 such that
a) x(0) = x(2) and

b) xn(t) is odd symmetric about the axis t = 1 and is zero only at t = 0, 1, 2,
for t G [0, 2)

From the proof of Lemma 4.1, x is a linear function of the input, and with our

choice of XQn, x (t) takes on the form

f lei

xn(t)=;
K I C*t* , tG [0, 1)

j=l J

III - iK I C.(t-l)J , tG 1,2
j=0 J
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where C- and C. are constants dependent only on the initial conditions xqj for
j = 1, 2, ..«, |B|-1. By the continuity assumption, there exists 6', 0 < 6' £6
such that

sgn f(z) = sgn f(0) Vz e [-672, 572]

* s. '

A A'

We can always choose K = K* t 0 such that

xn(t) G A' Vt G [o, 2)

(5.3)

(5.4)

Denote the intervals [0, 1] and [1, 2] by ^ and I2, respectively. Equations (5.3)
and (5.4) imply that

sgn{f(xn(t)) =sgn{f(0)}, Vt G ^ and I2

Condition (b) and the injectiveness of f within A' give that for every t, G i_
and t2 G i2,

sgn{f(xn(t1)) - f(0)} = -sgn{f(xn(t2))-f(0)}

Equation (5.5) implies that

sgn{ f(xn(t))dt} =sgn{ f(xn(t))dt}
*1 *2

Equations (5.6), (5.7) and assumption (ii) in the theorem results in

I.
f(xn(t))dt fJ f(xn(t))dt

1 x2

Noting that f(xn(t)) = v(t), we finally obtain

-2

Jo
p(t)dt = -K* v(t)dt +K* f v(t)dt =K*[f v(t)dt -[ v(t)dt]

Jll Jl2 Jl2 Jll

(5.5)

(5.6)

(5.7)

(5.8)

= C t 0 by equation (5.8)

By condition (b) and repeating the input for one more cycle, we also get

f4
p(t)dt = 2c.

0

Therefore, different amounts of energy are consumed along two different admissible

paths in the state space with the same endpoints. Hence the h.o.e. cannot be lossless
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Theorem 5.2

Assume

(i) a+8 = -1

(ii) For a, 8 satisfying (i) above, the function f satisfies the corresponding
restrictions in Table la or Table 1c.

Under these assumptions, the corresponding state representations for the 2-terminal

h.o.e. v^ = f(1^') (as given in Table la or c) is lossless. n

Remarks

Notice that the charge-controlled capacitor [with (a,8) = (0, -1)] and the

current-controlled inductor [with (a,8)' = (-1,0)] both fall under the considerations

of this theorem. In particular, a (positive or negative) linear capacitor or
inductor belongs to this category. It is important to point out that the result of
the theorem does not imply that the h.o.e.'s satisfying assumptions (i) and (ii)
are lossless. According to Definition 5.3, to show losslessness of the h.o.e., we
have to find a totally-observable lossless state representation for the element. In
section 3, we have only shown that the state representations listed in Tables la-c are
input-observable. Whether or not they are totally observable (i.e., input-observable
and completely obserable) is still an open question because to the best of our

knowledge, there does not exist any means of testing for complete-observability

of nonlinear circuits and systems. All we can say at this point is that whether

or not the state representation is completely observable depends largely on the

behavior of the function f. In the case where f is linear, we shall see shortly

that the complete-observability issue does not pose any problems.

Proof of Theorem 5.2

The basic idea behind the proof is to show that the energy consumed during

the time interval [tj, t2] is dependent only on the initial state x(t^) and the
final state x(t2).
a) For a = 0, 8 = -1, the state representation can be found in case © (i) of

Table la:

xl = 1

v= f(x})

The energy consumed during the interval [t,, t2] is
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II t i^"a"^(t )

p=i h V-a-n^
By comparison with the corresponding state representation, this amount of energy
can be found to be dependent only on the initial state x^) and the final state
x(t2). Hence the representation is lossless. n

(II) LINEAR CASE

The linear h.o.e. v(a' =Ki*e\ KSF, is being considered in this subcase.
Theorem 5.3 below parallels Theorem 4.3 in the sense that the same subclass, P.,

of linear elements are being considered; but unlike the case for passivity, a much
weaker condition than the "positive real criterion" is used in deriving the necessary
and sufficient conditions for losslessness. This results in a larger subclass of
lossless elements in PL than the corresponding subclass of passive elements.

Theorem 5.3

Any h.o.e. belonging to class P, is lossless if, and only if

(i) K = 0 or

(ii) |B-a| is odd. n

Remarks

The conclusion of this theorem is in agreement with case © of Theorem 5.2.

However, case © in Theorem 5.2 states that all linear h.o.e.'s with a > 1 and

8 > 1 can never be lossless. We must, once again, draw the distinction between

unconstrained h.o.e.'s and constrained h.o.e.'s. The present result for losslessness

holds only for those constrained h.o.e.'s satisfying v^a"J^(0) = Ki^"J'(0)
for j = 2, 3, .*.,|a|. This is not surprising because, as pointed out in [3],

h.o.e.'s in this category whose initial conditions are such constrained, and

satisfying condition (ii) in Theorem 5.3 are precisely those which behave like

inductors or capacitors, and should therefore be lossless. Another distinguishing

feature of this result is that even negative linear capacitors and inductors are

classified as lossless elements. Since these element are active, they have not

even been considered in classical circuit theory in the context of losslessness.
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Figure 5 shows the linear lossless elements. Except for those h.o.e.'s in the

first quadrant which have to satisfy constrained initial conditions all other
h.o.e.'s are unconstrained.

Proof of Theorem 5.3

a) For K = 0, we have, for elements belonging to class P., either i = 0 or v = 0.
The h.o.e. is obviously lossless in this case.

b) Suppose K t 0.

Then using the same techniques as in the proof of Theorem 4.3, we can show that

h.o.e.'s belonging to class PL have a completely controllable state representation
with transfer function

1

H(s) -
K/SB"a

1/S6"a
, or K/S

Applying Theorem (5.1) in [9], it is quite clear that H(ju>) = - H(-ju) if, and only
if |8-a| is odd. n

(III) Conclusions

Even though losslessness in the linear case has been covered quite thoroughly

in this section, the nonlinear case is still incomplete. This is inevitable,

because unless the subject of nonlinear controllability and observability has been

further investigated, we have no means of testing the lossless properties of the

rest of these h.o.e.'s . One way to circumvent the problem is to find a definition

for losslessness that is based solely on the behavior of the admissible (v,i)

pairs, thus rendering losslessness as a property that is independent of state

representations.

By comparing the results in this section and the previous one, we can see

that, at least in the linear case, the number of lossless h.o.e.'s far exceeds

that of passive h.o.e.'s (cf. Figures 4 and 5). Thus, even though the present

definition does have its limitations, it nevertheless enables us to consider a

much broader class of lossless elements that is allowed by previous definitions.
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APPENDICES

(A) Completion of Proof of Theorem 2.1

For a > 1, 8=0 (i.e., case (j) (ii) in Table la)

- Since uG P(R+), u(t) is measurable on any finite interval I in R+. Since f
is Borel measurable, it follows that f(u(t)) is integrable in I [5]. Existence
and uniqueness of a solution follows from Lemma 2.1.

- From the proof of Lemma 2.1, v(x) = x (x) is absolutely continuous in I and so
oo ^ 1v(t) GLloc(]R+->R). It follows from uGLJQC(]R+-»-IR ) and Holder's inequality

that p(t) =i(t) v(t) =u(t) xa(t) Gl]qc(K+-]R).
For a = 0, 8 = 0 (i.e., (V) (iii) in Table la)

- existence and uniqueness of a solution to the state equation is redundant in

this case.

- By reasonings similar to case 0 (ii) above,

v(t) =f(u(t)) €l]0C(K+*]R) •
i(t) =u(t)Gp(R+) implies that i(t) 6Lloc(F^R). Therefore, p(t) Gl]0C(R+-*E )
by Holder's Inequality.

For a > 1, 8 £ -1 (Q) (iv) in Table la)

- Consider the first |8| equations. Existence and uniqueness of a solution

(x-j,... ,xigi) follows from Lemma 2.1.
Since Xigi is continuous, f(xigi(t))G L-J (R++1R) and is therefore integrable.
By lemma 3.1 again, there exists a unique solution (xig|+1,...,xigi. )to the
last a equations. So we have a unique solution x= (x-. ,x2,... >x|el+ot^ to the state
equation E.

- From the proof of Lemma 2.1, v(t) = xigi+ft) is bounded and measurable over any
finite interval I. Since u(t) = i(t) is integrable,

P(t) =v(t) i(t) GLJ0C(F+^) [8].

For a = 0, 8 > 1 (i.e., case (2) (i) in Table lb)

- Existence and uniqueness of a solution to E follows from Lemma 3.1.

- v(t) =f(u(t)) Gl]0C(B++1R) as in case Q) (ii) above. i(t) =x. .(t) is
bounded and integrable in I by the proof of Lemma 2.1. It follows, therefore,

that p(t) Gl]0C(IR+-IO [8].
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(B). Completion of Proof of Theorem 3.2

For a > 1, 8 £ -1 (i.e., case © (iv) in Table 2a), the state representation can

be written as

*1

?|3|+1
x|8|+2

LxlelM

0 1

xl 0

•

•

•

•

•

•

x|e|-i
+

0

'hel* 0

x|6|+l
•

•

•

•

•

•

•

X|6|+a-l_ 0

(B.l)

Adopting the same notations as in the main text, by computing the Jacobi brackets,
we can verify that the subalgebra F is spanned by the vectors:

0• 1 " "0" "0"

0 1 0
•

0
•

•

• •

• • 0

0 0 1

0

>

0

,• • • ,

0

*

• • •

• • •

0 0 0

"

\.

where ^(x^) =± f(z)

f,{X|B|)
0

z=x

rlCx|B|>
0

0 Lfi(xlBl}J

Assuming that f-|(x.g.) t 0 for all admissible values of Xig|S Fhas dimension
|a| + 8 and therefore satisfies the controllability rank condition in [9], Hence
the state representation is locally controllable in this case.

For a > 1, 8 > 1 (i.e., case © (ii) in Table 2b),

The state equation is _43_
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for arv£ value of the last component xQ .
By writing out explicitly what v(t) and i(t) are, it can be shown that

/^••^V-tU^"-
where M G IR gives only a finite contribution to the above integral. By assumption

(ii) in the Theorem, af(b) f bf(a), so it is always possible to choose xQa such that
•T

p(t)dt = c > 0.
0

Repeating this for N cycles, we get

fNT
EA^xn' - sup{ " P(t)dt} = sup{NC} = +°°,

N J0 N

so the element is active. n

© a > 1, 8 = -1

The state representation is given in Table la.

(i) Pick

/VP , t6(0, e] A 1(e)
1(t)=V0 , t*I(e)

with e >0and 1<p< (1 +-|^y), where k is the integer as stated in the theorem.
Choose an initial condition

x0 = (0, ..•, 0, Vq), with vQ < 0.

Then it is possible to deduce by assumption (i) that for t G I(e),

and hence

-p(t)dt > J _^l_eJ+«+l-(j+l)P .vel-P (C d

Since a > 1 and (1-p) < 0, the first term in (C.l) tends to zero as e -»- 0 and the

second term tends to infinity, we have
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E.(x0) > sup{ -
A U £>0

ivdt} = +°° ,
1(e)

and the element is active.

(ii) To prove activity using assumption (ii), we simply repeat the above arguments,

choosing a negative pulse as inputs i.e.

-e"P , tG 1(e), e >0
i(t) -^n *£ Ke) #

f-e'V ,t
a\0 ,t

© a £ -1, 8 £ a-2

The state representation for this case can be found in Table lc.

Let a = (aQ, a,, •••, a, i) and b satisfy the assumptions in the theorem.
Pick

ficA-1*5, tG(0, e] A1(e)
1(t) UU , t* 1(e)

where K A -sgn(b) and e > 0.

Choose the initial condition

x0 =(0, ..-, 0, aQ, ar .«., a|a|)
Under these condtions, for t G 1(e) and q = 0, 1, .«•, |a|,

,(8-a-q),tv . K t^'a'q} •hm .a
1 (t) -^T5 |B-a-q|! +hq(t) +V

where h (t) is a polynomial with coefficients dependent on an, a-., •••, a 1 and
degree less than or equal to q.

By the compactness of 1(e), we can show that (i^"01', •••, i^') lies in some
compact interval, say, A(e) in IR'01'. Then, using the locally continuity of f about
a and the fact that |8-a| >. 2, and bearing in mind that v(t) = f(i^"a^(t),
•••»i (t))f we can repeat the same argument as in case ® (see main text) to show

that E^(xq) = oo, for our particular choice of x«. n

Before proceeding with the proof of cases ®-@ , we need the following

result:
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Lemma C.l

Assume:

(1) v^ =f(i(6)), where a£ -1 and 8>a
(2) f.ecH"1
(3) 3a e K 3 F: IR •*- IR is locally c'a' about a.
Under these assumptions, for 1 £ k £ |a|, we have

v(a+k) =̂ ,(6),,^) +(k.1} f2(1(B), .(8+1) .(8+k-l) +g (1(e+k-2)t ...jtM).^

where f,(z) A^4^
3 = dzJ •(6) *z=iVP/

k-1and gk : ]R -»- IR satisfies

(i) gk ec^"^1 and
(ii) g is locally c'a' in all its arguments. °

This lemma can be proved by induction on k. The proof is algebraically

complicated but straightforward and is therefore omitted. The following corollary

will be useful in our subsequent proofs:

Corollary

Under the same assumptions as in the lemma,

v=f^lW) i(6-a) +(|aM) ^,.(6)) ,-(8+1) ,.(6-0-1) +g(i(6-a-2)> ..^ i(6+l)> .(e)),

where g is locally C and therefore takes on finite values provided its arguments
k-1

are confined to a small enough region in IR . °

® a £ 6-2, 6 £ -1

The state representation for this case can be found in Table lc.

Since fG c'a' , we can write

v-f^lWjitS-a) +(|ahl)f2(i(3))i(8+l)i(6-a-l) +g(1(B-a-2)f ...,i(B+Dj iM)
(C.2)

Let u(t) = e" * , t G [0, e] A 1(e), with e > 0. Choose the initial condition

x0 = (0, 0, ..«, 0, aQ, 0, .«., 0, a^,

i.e., XQ/g_ax =a and x,.= a-j, where aQ A -sgn{f^(a^)} and a, is as given in.the
assumption of the theorem. Under these conditions, for t G i(e),
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1&)(t\ - T-p-1-5 Ja| + 1 . t|3|+fl
1 W "TolTe t leTT 0 T

and

itB+D.tB-a-l) 1 -3 Jal , 1 e-1.5jB| fc 3)
1 n (|a|-l)! e t + (|8|-1)! a0 e t (C'3}

Combining (C.2) and (C.3), for t G i(e),

p<*>= V"1'5^^5 ^a +a0] +(|a|-i) ^(^ff^yrtl-l +̂ iFTjr)

(TFaTTr1*5 tB"a +a0) +19(#- —••), (C4)

where ^ Af^i^ft)) and f2 Af2(i^(t)). Since fis locally c'al about a],
for j= 1, 2, •••, |ot|, f. is locally C about a-j, and therefore has a maximum
fjmax and a minimum ^jmin about some e0-neighborhood of a^. So we have

For t G 1(e), it can be deduced that

i<6+e> =Kp +xp(e,t)
where

ra1 ,p=0 or p= |8|
P ~\0 , otherwise

and X (e,t) £ Xe^ for some constant X>0 and q > 0.

Therefore, as e ->• 0,

Vt G1(e), th. 0, X(e) -• 0and i^ •*• ar
Using the corollary to Lemma C.l, for small enough eQ, 3M(£) sucn tnat

|g(i(8-a-2', .-., i(8+1>, i^)| <M(e). Ve€(0, £()] (C.5)

Combining equations (C.3)-(C5) we have
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P(t) <'f^c*-a'Z +a0e-°-5] +f2[K2ee-2a-3-5 +K^M'2!

+VofV1"1"2 +K5aoelB'"°'5] +m/-a-°-5 +a0c], (C.6)

where MA max (M(e)} and K.(j = 1, ...,5) are constants dependent on the values
0<e£eQ J

of a and 8. Assuming (8-a) >2and |a| >3, as e •»• 0, i^'(t) ->• a1 and all the
terms on the right side of inequality (C.6) tend to zero, except for

f! (a,) (a0e-°-5 +K^'^'2) (C.7)

Since we have chosen aQ = -sgn{f-j (a^}, we can combine (C.6) and (C.7) to get

Ea(xq) = +~, and hence the element is active. a

© 8 = 0, a £-2

The state representation for this case can be found in Table lc.

Pick the input

u(t) = Ke"1,5, tG(0, e] A 1(e), e>0

where KAa f-j(a) and a satisfies the assumption in the theorem.
Choose the initial condition

x0 = (0, 0, «.., 0, a),

i*e" x0|a| = a'
Using arguments similar to the previous case, it can be shown that EA(xQ) = +«>.

n

® 8 > 1, a £ -2

The state representation for this case is in Table lc. The input to use is

u(t) = e"1,5, tG 1(e), e>0;

and the initial condition is

Xq = (0, ••., 0, ar 0, •••, 0, aQ),

i.e., xQa = a-j and xn, %= aQ, where aQ A -sgn{f, (a-j)} and a-j is as given in
the assumption of the theorem. The proof for this case is similar to that of

case © and is omitted. -~ n



(D a = -1, 8 > 1

The state representation for this case is given in Table lc. Pick an initial

condition

Xq = (b, 0, ••-, 0, a)

where b is as given in the assumption of the theorem, and a < 0. Let the input be

u(t) =e*1*5 for tG(0, e] A 1(e), e>0
Then

x^t) =e"1'5t +b
and v(t) =f^e'^t +bje"1*5
Since a< 0, it is always possible to choose an eQ >0 such that

i(t) = /q1t\ e,rww + oVbth' + a<01 J-0.5 . 1
Te+TTeo FT

Then, for any e G (0, eQ],

i(t) < 0 Vt G 1(e)

-1 5
and v(t) > Me" * (by assumption in the theorem).

Equations (C.7)-(C9) imply that for all t G i(e),

v(t) i(t) £^L^ Me"3t3+1 +gVbMe-1'5t3 +aMe-1<5
Therefore,

nftUt < M, P&-1 + bM, P3-0.5 . aM -0.5•1(e)P(t)dt £T3+27T e +T8+TTT£ +aMe
As e -> 0, the above expression •*• +°°, since aM < 0.

So Efl(xn) > sup {-
"AXA0 ee(0,eQ) J

p(t)dt} = +oo
Ke)
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(D) Proof of Theorem 4.4

The following two lemmas are required for the proof.

Lemma D.l

Assume:

(i) a = 0 and 8 > 1

(ii) f(0) t 0

Under these assumptions, the h.o.e. v= f(v ^) is active. °

Proof

Let i(t) = -sgn f(0)

Then v(t) = f(0)

So i(t) v(t) = -f(0) sgn{f(0)} < 0, and activity follows.

Lemma D.2

Assume:

(i) a > 1 and 8 = 0

(ii) ]a f 0 3a f(a) £0
(a)

The h.o.e. vv ' = f(i) is active under these assumptions. n

Proof

If ]a 3af(a) < 0, activity follows by Theorem 4.1
If a f 0 3af(a) = 0, then, necessarily, f(a) = 0.

Let i(t) = a

Then v^(t) =f(a) =0.
By an appropriate choice of initial conditions, we get

v(t) = -sgn a,

so i(t) v(t) = -a sgn a < 0, and activity follows.

Proof of Theorem 4.4

(I) Consider the case a = 0, 8 > 1:

By part © of Theorem 4.2, this element is active

if 3a»D G K sucn that: (i) ab < 0 and
(ii) bf(a) f af(b)

Assume (i) and (ii) are not both satisfied. This implies that for all a,b G ]R

ab> 0 or bf(a) = af(b) (D.l)

By considering the values b = + 1 in (D.l) and applying Lemma D.l to rule out

the case where f(0) f 0, we can deduce that
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f(a) = Ka, (D.2)

for some value K G IR and for all a G IR . Hence any function satisfying condition

(D.2) cannot be active. This implies that the only passive h.o.e.'s with a = 0

and 8 >. 1 are the linear h.o.e.'s of the form

v =Ki^, 8 >1 and KG IR (D.3)

By Theorem 4.3, the only passive h.o.e. described by equation (D.3) is the element

v= Ki^, with K>0.

(II) Consider the case a >. 1 and 8 = 0:

By part @ of Theorem 4.2, the h.o.e. is active if 3a»D e ^ sucn tnat

(i) af(b) f bf(a) and

(ii) f(a) f(b) < 0 .

Passivity would imply that the above two conditions are not satisfied

simultaneously. Also, by Theorem 4.1 and Lemma D.2, passivity further implies that

for all a f 0 G IR, af(a) > 0.

From the above, we can see that for the h.o.e. to be passive, it must satisfy the

following:

Va ^ 0 and bG IR, af(b) = bf(a) or /Q ^
f(a) f(b) > 0 .

By considering the values of b = 0 and +1 in (D.4), it can be deduced that in this

case, passivity implies linearity. Therefore, the only possible candidate for

passivity for the case a >_ 1 and 8 = 0 is the linear element

v^ =Ki, KG IR and a>1 (D.5)

By Theorem 4.3, the only passive h.o.e. described by (D.5) is the following:

v^ = Ki, with K>0. n
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(E) I. Proof of case (D of Theorem 5.1

For a .> 1, 8 >. 1, the state representation can be found in Table lb.

We choose the input

/ftx fa , t G [0, t,)
»<*>-i(B)<t>.{_btt6[tlf j,

with a,b as given in the hypothesis of the theorem and T = (1 - £•) t,.

By Lemma 4.1, it is possible to find initial conditions x.Q, j = 1, •••, (8-1)
such that

x0j =Xj(nT), n=1, 2, -..

and xg0 can be chosen arbitrarily.
Under these conditions,

ft
xfi(t) = i(t) = x0R+ g(t) +>gV W ~ »VW ~ * Qg h(t-T) (x)dx (E.l)

0

where g(t) is a polynomial whose coefficients depend only on the first (8-1)
1 8-1components of xQ and h(t-x) A /g_i\i (t-x)p is a polynomial independent of the

components of Xq.

Then

rf(a), t G [0, t,)
xg+1(t) -f(u(t)) -^f(b)§ t€[tl,T)

It can easily be verified that

fT
f(u(t))dt = 0

J0

using the definition of T and assumption (ii) in the theorem. We can therefore

apply Lemma 4.1 again to show that we can solve for xQj, j= (8+1), •••» (8+a-l)
and choose xfl, .arbitrarily such that

Xj0 = Xj(nT) for n= 1, 2,
and j = (8+ 1), •••, (8+a-l)

Now

v(t) =xo+e(t) =xQfc+a)+ g(t) +J h(t-x) (x)dT (E.2)

where g(t) is a polynomial whose coefficients depend only on x.. for j = (8+1)»

•.., (8+a-l), h(t-x) is as defined in equation (E.l) and u(x) A f(u(x)).
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From equations (E.l) and (E.2), we can deduce that

rT

qp(t)dt =*0BX0,(a+8)T +M1xO0 +M2x0(&,a) +^ (E.3)

where M-j, M2 and Mg are just some finite constants. From (E.3), it is always
possible to pick xQg and xQ/ +8jSuch that Jp(t)dt =ct 0.
This gives that

2T

p(t)dt = 2c
0

and hence the element is lossless by previous arguments. n

II. Proof of Lemma 5.1

a) By induction on j = 1, 2, •••, n-1: Integrating the j-th state equations, we get
•t

xj+1(T-t) = xQjj+1 - x,(T-x)dx .

(i) If Xj(t) has odd symmetry, i.e., Xj(T-x) =-Xj(x) Vx, then x.+1(T-t) =x.+1(t)
i.e., x.+, has even symmetry.

(ii) If x.(t) has even symmetry, then
j

rt

xj+1(T-t) =x0jj+1 -jo Xj(x)dx, and

xj+l(t) =xo,j+i +{0xj(T)dT-
This implies that

rT

xj+1(T-t) =2x0J+1 -xj+1(t).

Therefore

xj+1(T-t)dt=2Tx09J+1 - xj+1(t)dt .

Since both integrals in the above equation are zero, we have: x.+, Q = 0.

b) The proof for odd n is the same as in part a). For even n, x ,(t) is an even

function and we have essentially the same proof, except that we cannot conclude

that XQn = 0. n
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III. Proof of Corollary to Lemma 5.1

First note that the following facts are true:

(i) x = 0 for even values of j = 2, 4, •••, (n-2) (by part (a) of Lemma 5.1)

(ii) Xq can be chosen arbitrarily such that for fixed values of x.Q, j= 1, •••, (n-1),
we have

Xq A x(0) = x(2m), m = 1, 2, •••• . (by Lemma 4.1).

Fact (ii) implies that without loss of generality, XQncan be chosen to be zero, so
we get from part b) of Lemma 5.1

xn(2-t) = -xn(t) for tG [o, 2)

Setting t = 0 and 1 in the above equation, we can arrive at the conclusion of the

corollary. n
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© (1) a = 0, 8 <-l (i i) a > 1, 8 = 0 (iii) a = 0, 8 = 0 (iv) a >_ 1, 8 < -1

u = IR in all cases

u - L11oc<F+*,0 P(R+) P(R+) -h1oc<R+*F>
L cirIsI CIRa C IR cK|bK

E

X, = u

•

x2 = xl
•

•

•

•

X|3| = X|8|-l

x-, = f(u)
•

x2 = xl
•

•

•

x = x ,
a a-1

x, = 0 X, = u
•

x2 * xl
•

•

•

. *le| =x|6l-i
x|e|+i =n*\&\>
x|e|+2 = x|e|+i

•

•

•

•

x|8|+a = x|8|+a-l

R i = u

V-f(X|6|)
i = u

V = X
a

i = u

v = f(u)

i = u

V = X|6|+a

Assumptions
. on f f: IR+1R is Borel measurable [5] and |f | is integrable [5] over any

finite interval in IR.

Table la: a > 0, 6 < 0



© (i) a = 0, 8 > 1 (ii) a > 1, 6 > 1

U = IR

U = P(IR+) -l]oc(*+**>

I C IR8 CTR**

E

x, =u (=i(e))
•

X2 = xl
•

•

•

•

x8 = X8-l

X, - u (=i(6))
•

X2 = Xl
•

•

•

•

x8 = x8-l
*8+l = f(u)
x8+2 = x8+l

•

•

•

xB+a * xB+a-l

R

3
OQXM-IIII

•t->

1 =X6

Ass. on
f f: IR+IR is Borel measurable and |f| is

integrable over any finite interval in IR .

Table lb: a > 0, 8 > 1



® 8 = a < -1
—_ .

© 8 < a < -1 (D a < 8 < -1 ® a < -1, B > 0

U = IR

a -Lloc(R+*> = Lloc(*+^'
P € [1, »]

=L]oc(IR++IR> =l]oc(k+-r)

z crclel crI^I C IR !«( CK6"01

E

X, = u

•

x2 = xl
•

•

•

*|B| = X|8|-l

X-, = u

•

x2 = xl
•

•

•

J|6| "x|B|-l

x, =u (-1<*-«>)
•

x2 = xl
•

•

•

X|a|-|B| =X|a|-|B|-l
•

•

•

x|a| =x|a|-l

x =u(=1(6-a))
•

x2 = Xl
•

•

•

•

x8-a = X8-a-l

R
i = u

v = f(x,u)

i = u

V"?(X|B|-W
•"•X|B|-T
X|B[>

1=Xja|-I6|
v » f(x,u)

i - x0
«. 3-a

v=f(u,x1,«..,X|a|)

Ass. on
f f 6 el01!"1 throughout

Table lc: a < -1



© (1) a = 0, 8 < -1 (ii) a > 1, 6=0 (iii) a = 0, 8 :» 0 (iv) a > 1, 8 < -1

Assumptions fee00 f € C°° and
oo

f € C f e C°°, and
on f

f(u) t 0

Vu e u i

&w z-x * °ZX|3|
for any admissible

value of xigi.

Table 2a. a > 0, 8 < 0

© (i) a = 0, 6 > 1 (ii) a > 1, 8 > 1

Assumptions f 6 C°°
on f

fee00 and

f(u) t 0 Vu € u

© 6 = a < -1

Assumptions
on f

Table 2b. a > 0, 8 > 1

@ 8 < a < -1 © a < 8 < -1 ® a < -1, 8 > 0

f € C throughout

Table 2c. a < -1



a 6 f

© > 1 > 1 f: IR + IR

© >1 = 0
_ (i) af(b) ? bf(a), and]a,b6iR such that (11) f(a) f(b) <Q

© >1 = -1 ] integer k and A., e IR for j = 0, 1, •••, k, such that
kr 4 (i) Vz € [0,00) or

nz)-ilo^ (») Vz€(-co, o]

® > 0 £-2 (i) ]a e ir 3 b A f(a) f 0, and

(ii) f: 1R-*- 3R is continuous in an e-neighborhood of a

© <-l < a-2 (1) f: IR la'+1 - IR and 3a e IR 'al+1 3 bAf(a) f 0, and
(ii) f is locally C° about a

© < 6-2 1-1 ]a1 e k 3 f is locally C'a' about a1 and f-j^) f 0

© < -2 = 0 3a e IR 3 f is locally c'01' about aand af^a) f 0

© < -2 > 1 3a1 e IR 3 f is locally C'al about a1 and f-|(a.,) t 0

© = -1 > 1 3b >0, M>0 3 f} (z) >M, Vz G [b,«>)

© =0 > 1 3a,b € IR a.
(i) ab < 0 and

(ii) bf(a) ?6 af(b)

Table 3



Theorem 5.2 input
waveform

current .

waveform
class of functions f (satisfying
the assumptions in Tables 1) to
which theorem can be applied

© a > 1, 8 > 1 u e 0 *S any f: IR +IR

© a > 1, 6 = 0 - •'= JU1TL ... nonlinear functions only

© a > 1, 6 = -1
u = i:

•

f satisfies a polynomial bound

© a > 0, 6 < -2 almost all functions, except for
pathological cases

© a < -1, 6 < a-2 f is locally c'a' about a point

© a < -2, 8 < -1

© a < -2, 8 = 0

® a < -2, 6 < 1 -Jl f
f is locally c'a' about some point
and has nonzero first-derivative

at that point

© a = -1, 8 > 1 fjCz) <M Vz € [b, co)

® a =0, 8_>1 U:JUU1_ ,/- nonlinear functions only

Table 4



a 6 f

© > 1 > 1 3a,b e IR such that

(i) ab < 0, and

(ii) af(b) = bf(a) t 0

© > 1 = 0 3a,b G IR such that
(i) af(b) f bf(a), and

(ii) f(a) f(b) < 0

© = 0 < -2

and takes

on only
even values

36 >0 such that
(i) f is infective and continuous in the

interval [-6/2, 6/2], and

(ii) f(x) f f(0) on a set of nonzero

measure Vx e [-6/2, 6/2].

Table 5



Figure Captions

Fig. 1. Input waveforms used in proving Theorems 4.1 and 4.2.

Fig. 2. Illustration of the results of Theorem 4.2

Fig. 3. Synthesis of the (unconstrained) linear h.o.e. v^ - Kv .
Fig. 4. Linear h.o.e.'s in regions P.-j and P,2 nave t0 satisfy K > 0 for passivity,

Those marked with crosses have to satisfy K = 0.

Fig. 5. Lossless linear h.o.e.'s. (Those in the first quadrant and the positive

half-axes are constrained h.o.e.'s).
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