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ABSTRACT

The generic term fuzzy quantifier is -employed in this paper
to denote the collection of quantifiers in natural languages whose
representative elements are: several, most, much, not many, very
many, not very many, few, guile a few. large number, small
number, close to five, approzimately ten, frequently, etc. In our
approach, such quentifiers are treated as fuzzy numbers which
may be manipulated through the use of fuzzy arithmetic and, more
generally, fuzzy logic. '

A concept which plays an essential role in the treatment of
fuzzy quantifiers is that of the cardinality of a fuzzy set. Through
the use of this concept, the meaning of a proposition containing
one or more fuzzy quantifiers may be represented as a system of
elastic constraints whose domain is a collection of fuzzy relations
in a relational database. This représentation. then, provides a
basis for inference from premises which contain fuzzy quantifiers. -
For example, from the propositions “Most U's are As"” and “Most
A's are B's," it follows that “ Most® U's are B's,” where maost® is the

fuzzy product of the fuzzy proportion rmest with itself.
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The computational approach to fuzzy gquantifiers which is
described in this paper may be viewed as a derivative of fuzzy logic
and test-score semantics. In this semantics, the meaning of a
semantic entity is represented as a procedure which tests, scores
and eggregates the elastic constraints which are induced by the

entity in question.

1. lN'l‘RODUCl'ION

During the past two decades, the work of Montague and others (Montague
(1974), Partee (1976), Dowty (1981)) has contributed much to our understanding
of the proper treatment of the quantifiers all, some :and agny when they occur
singly or m combination in a proposition in a natu;'al lai:\guage. |

Recently, Barwise and Cooper and others (B.arwise and Cooper (1981),
Peterson (1979)) have described metheds for dealing with so-called generalized
quantifiers exemplified by most, many, etc. In a different approach which we
have described in a series of papers starting in 1975 (Zadeh (1975a, 1975b, 1977,
1978a, 1978b, 1981a)), the quantifiers in questior — as well as other quantifiers
with imprecise meaning such as few, several, not very many, etc. — are treated
as fuzzy numbers and hence are referred to as fuzzy quantifiers . As an illus-
tration, e fuzzy quantifier such as most in the proposition ‘Most big men are
kind" is interpreted as a fuzzily defined proportion of the fuzzy set of kind men
in the fuzzy set of big men. Then, the concept of the cardinality® of a fuzzy set
is employed to compute the proportion in question and find the degree to which

it is compatible with the meaning of most.

¢ [nformally, the cardinality of a fuzzy set F is a real or fuzzy number which serves as a count
gme number of elements "in" F. A more precise definition of cardinality will be given in
ction 2. .
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We shall employ the class labels "fuzzy quantifiers of the first kind" and
“fuzzy quantifiers of the second kind" to refer to absolute and relative counts,
respectively, with the understanding that a particular quantifier, e.g., many,
may be employed in either sense, depending on the context. Common examples
of quantifiers of the first kind are: several, few, many, not very many, approzi-
mately five, close to ten, much larger than ten, a large number, etc., while
those of the second kind are: most, many, o large ﬁuctzan. often, orce in a
while, much of, etc. Where needed, ratios of fuzzy quantifiers of the second kind
will be referred to as fuzzy gquantifiers of the third kind. Examples of
quantifiers of this type are the likelihood ratios and certainty factors which are
encountered in the analysis of evidence, hypothesis testing and exp~ert systems.
(Shortliffe (1976), Duda and Hart (1976), Barr and Feigenbaum (1982).)

An important aspect of fuzzy guantifiers is that their occurrence in human
discourse is, for the most part, implicit rather than explicit. For example, when
we assert that "Basketball players are very tall,” what we usually mean is that
“Almost all basketball players are very tall.” Likewise, the proposition, “Lynne is
never late,” would normally be interpreted as “Lynne is late very rarely.” Simi-
larly, by "Overeating causes obesity,” one meay mean that "Most of those who
overeat are obese,” while “Heavy smoking causes lung cancer,” might be inter-
preted as "The incidence of lung cancer among heavy smokers is much higher

than among nonsmokers."

An interesting observation that relates to this issue is that property inheri-
tance — which is exploited extensively in knowledge representation systems and
high-level Al languages (Barr and Feigenbaum (1982)) — is a brittle property with
respect to the replacement of the nonfuzzy quantifier all with the fuzzy

quantifier almost all .* What this means is that if in the inference rule**

® The brittleness dpwpert.yinhﬂ'itme is of relevance to nonmanotenic logic, default rea-

soning and exception handling.
*° The symbol & stands for "denotes” or "is defined to be.”




péauA'smB's
glallB'sare C's
rallA'sare C's

the quantifier all in p and q is replaced by almost all, then the quantifier all in 7
should be replaced by nons-to-all. Thus, a slight change in the quantifier ell in
the premises may result in a large change in the quantifier all in the conclu-
sion.*

Another point which should be noted relates to the .close connection
between fuzzy quantifiers and fuzzy probabilities. Specifically, it can be shown
(Zadeh (1975a, 1981b)) that a proposition of the form p 4Q A’ are B's, where @
is a fuzzy quantifier (e.g., p 4 most doctors are not very tall), implies that the
conditional probability of the event B given the event A4 is a fuzzy probability
which is equal to @ What can be shown, in fact, is thet most statements involv-
ing fuzzy probabilities may be replaced by semantically equivalent statements
involving fuzzy quantifiers. This connection between fuzzy quantifiers and fuzzy
probabilities plays an important role in expert systems and fuzzy temporal

logic, but we shall not dwell on it in the present paper.

As was stated earlier, the main idea underlying our approach to fuzzy
quaentifiers is that the natural way of dealing with such quantifiers is to treat
them as fuzzy numbers. However, this does not imply that the concept of a
fuzzy quantifier is coextensive with that of a fuzzy number. Thus, in the proposi-
tion “Vickie is several years younger than Mary,” the fuzzy number several does

® An example which relates to this phenomenon is: What is rare is expensive. A cheap apart-

ment in Paris is rare. Therefore, a cheap apartment in Paris is expensive. This example was

mlu ested to the author in a different connection by Professor 0. Botta of the University of
on.
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not play the role of a fuzzy quantifier, whereas in "Vickie has several good
friends,” it does. More generally, we shall view a fuzzy quantifier as a fuzzy
number which provides a fuzzy characterization of the absolute or relative car-
dinality of one or more fuzzy or nonfuzzy sets. For example, in "Vickie has
several credit cards,” several is a fuzzy characterization of the cardinality of the
nonfuzzy set of Vickie's credit cards; in “Vickie has several good friends,”
ssveral is a fuzzy characterization of the cardinality of the fuzzy set of Vickie's
good friends; and .in "Most big men are kind,” most is a fuzzy characteriz_atibn of
the relative cardinality of the fuzzy set of kind men in the fuzzy set of big men.
There are propositions, however, in which the question of whether or not a con-

stituent fuzzy number is a fuzzy quantifier does not have a clear cut answer.

A simple example may be of help at this point in providing an idea of how
fuzzy quantifiers may be treated as fuzzy numbers. Specifically, consider the

propositions
p A80% of students are single
BOZ% of single students
r AQ of students are single and male

in which r represents the answer to the question "What percentage of students

are single males?" given the premises expressed by p and g.

Clearly, the answer is: 80Z x B0% = 487, and, more generally, we can assert

that:

plQ,0f A'sare B's (1.1)

ql@eof (AendB)s are C's

rdQ, @:0f A's are (Band(C)'s
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where @, and @, are numerical percentages, and 4, B and C are labels of non-

fuzzy sets or, equivalently, names of their defining properties.

Now suppose that @, and @, are fuzzy quantifiers of the second kind, as in

the following example:
p Amost students are single

g Aa little more thon o half of single students are male

r A 2Q of students are single and male

where the question mark indicates that the value of @ is to be inferred from p

and q.

By interpreting the fuzzy quantifiers mo#t. a little more a then half, and @
as fuzzy numbers ;rhich characterize, respectively, the proportions of single stu-
dents among students, males among single students and single males among
students, we can show that @ may be expressed as the product, in fuzzy arith-
metic (see Appendix), of the fuzzy numbers most and a little more than a half.

Thus, in symbols,
Q = most ®a little more than a half (1.2)
and, more generally, for fuzzy @'s, A's, Bs and C's, we can assert the syllogism:
pAQ,of Asare B's (1.3)

q8Q;0f (AandB)'s are C's

rAQ,®Q; 0f As are (Band(C)'s,

which will be referred to as the intersection/product syllogism. A pictorial

representation of (1.2) is shown in Fig. 1.
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The point of this example is that the syllogism (or the inference schema)
expressed by (1.1) generalizes simply and naturally to fuzzy quantifiers when
they are treated as fuzzy numbers. Furthermore, through the use of linguistic
approzimation (Zadeh (1975b), Mamdani and Gaines (1981)) — which is analo-
gous to rounding to an integer in ordinary arithmetic — the expression for @ may
be approximated to by a fuzzy quantifier which is an element of a specified
context-free language. For example, in the case of (1.2), such a quantifier may
be expressed as about a half, or more or less close fo a half, etc., depending on
how the fuzzy numbers most, a little more than a half, and close to a half are

defined through their respective possibility distributions (see Appendix).

In our discussion so far, we have tacitly assumed that a fuzzy quantifier is a
fuzzy number of type 1, i.e., a fuzzy set whose membership function takes values
in the unit interval. More generally, however, a fuzzy quantifier may be a fuzzy
set of type 2 (or higher), in which case we shall refer to it as an ultrafuzey
quantifier . The membership functions of such quantifiers take values in the
space of fuzzy sets of type 1, which implies thet the compatibility of an
ultrafuzzy quantifier with a real number is a fuzzy number of type 1. For exam-
ple, the fuzzy quantifier not so many would be regarded as an ultrafuzzy
quantifier if the compatibility of not so many with 5, say, would be specified in a
particular context as rather h.igﬁ. where rather high is interpreted as a fuzzy

number in the unit interval.

Although the rule of inference expressed by (1.3) remains valid for
ultrafuzzy quantifiers if ® is interpreted as the product of ultrafuzzy numbers
(see Fig. 2), we shall restrict our attention in the present paper to fuzzy
quantifiers of type 1, with the understanding that most of the inference schemas

derived on this assumption can readily be generalized to fuzzy quantifiers of

higher type.
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As will be seen in the sequel, a convenient framework for the treatment of
fuzzy quantifiers as fuzzy numbers is provided by a recently developed
meaning-representation system for natural languages termed fest-score seman-
tics (Zadeh (1981a)). Test-score semantics represents a break with the tradi-
tional approaches to semantics in that it is based on the premise that almost
everything that relates to natural languages is a matter of degree. The accep-
tance of this premise necessitates an abandonment of bivalent logical systems
as a basis for the analysis of natural languages and suggests the adoption of
fuzzy logic (Zadeh (1975a, 1977), Bellman and Zadeh (1977)) as the basic con-

ceptual framework for the representation of meaning, knowledge and strength

of belief.

Viewed from the perspective of test-score semantics, a semantic entity
such as a proposition, predicate, predicate-modifier, quantifier, qualifier, com-
mand, question, etc., may be regarded as a system of elastic constraints whose
domain is a collection of fuzzy relations in a database — a database which
describes a state of affairs {(Carnap (1952)) or a possible world (Lambert and van
Fraassen (1970)) or, more generally, a set of objects or derived objects in a
universe of discourse. The meaning of a semantic entity, then, is represented as
a test which when applied to the database yields a collection of partial test
scores. Upon aggregation, these test scores lead to an overall vector test score,
7, whose components are numbers in the unit interval, with T serving as a meas-
ure of the compatibility of the semantic entity with the database. In this
respect, test-score semantics subsumes both truth-conditional and possible-
world semantics as limiting cases in which the partial and overall test scores are

restricted to {pass, fail] or, equivalently, {true, false} or {1,0}.

In more specific terms, the process of meaning representation in test-score

semantics involves three distinct phases. In Phase 1, an ezplanafory database



frams or EDF, for short, is constructed. EDF consists of a collection of rela-
tional frames, i.e., names of relations, names of attributes and attribute
domains, whose meaning is assumed to be known. In consequence of this
assumption, the choice of EDF is not unique and is strongly influenced by the
knowledge profile of the addressee of the representation process as well as by
the desideratum of explanatory effectiveness. For example, in the case of the
proposition p & Over the past few years Nick earned far more than most of his
close friends, the EDF might consist of the following relations®: IJNCOME [Name;
Amount; Year], which lists the income of each individual identified by his/her
name as a function of the variable Year; FRIEND [Name; u), where u is the
degree to which Name is a friend of Nick; FEW [Number; u), where u is the
degree to which Number is compatible with the fuzzy quantifier FEW; MOST
[Proportion; u), in which 4 is the degree to which Proportion is compatible with
the fuzzy quantifier HOST; and FAR.MORE [Income 1; Income2; ], where u is the
degree to which /ncomel fits the fuzzy predicate FAR.MORE in relation to
Income?2. Each of these relations is interpreted as an elastic constraint on the

variables which are associated with it.

In Phase 2, a test procedure is constructed which acts on relations in the
explanatory database and yields the test scores which represent the degrees to
which the elastic constraints induced by the constituents of the semantic entity
are satisfled. For example, in the case of p, the test procedure would yield the
test scores for the constraints induced by the relations FRIEND, FEW, MOST
and FAR.MORE.

In Phase 3, the partial test scores are aggregated into an overall test score,

T . which, in general, is a vector which serves as a measure of the compatibility

* Generally, we follow the practice of writing the names of fuzzy subsets and fuzzy re];sﬁbns
in uppercase symbols.
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of the semantic entity with an instantiation of EDF. As was stated earlier, the
components of this vector are numbers in the unit interval, or, more generally,
possibility /probability distributions over this interval. In particular, in the case
of a proposition, p, for which the overall test score is a scalar, T may be inter-
preted — in the spirit of truth-conditional semantics — as the degree of truth of
the proposition with respect to the explanatory database ED (i.e., an instantia-
tion of EDF). Equivalently, T may be interpreted as the possibility of ED given p,
in which case we may say that p induces a possibility distribution. More con-
cretely, we shall say that p translates into a possibility assignment equation
(Zadeh 1978a)):

P -'n(xx,_,,,x“)=F. (1.4)

where F is a fuzzy subset of a universe of discourse U, X,, . .. ,Xn, are variables

which are explicit or implicit in p, and Ty, x,) is their joint possibility distri-

.....

bution. For example, in the case of the proposition p 4 Danielle is tall, we have

Danielle is tall *Hg.‘,u(m“u.)= TALL ' (1.5)

where TALL is a fuzzy subset of the real-line, Height{Danielle) is a variable which
is implicit in p, and ngw(pa,“u.) is the possibility distribution of the variable

Height (Danielle). Equation (1.5) implies that
Poss { Height (Danielle ) =u | = pupy (u ),

where u is a specified value of the variable Height(Daniells) , ury;(u) is the
grade of membership of u in the fuzzy set TALL, and Poss{X = uj should be read
as “the possibility that X is ».” In eflect, (1.5) signifies that the proposition
‘Danielle is tall,” may be interpreted as an elastic constraint on the variable

Height (Danielle), with the elasticity of the constraint characterized by the
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unary relation TALL which is defined as a fuzzy subset of the real line.

The same basic idea may be applied to propositions containing one or more

fuzzy quantifiers. As a simple illustration, let us consider the proposition

p A Vickie has several credit cards,

in which several is regarded as a fuzzy quantifier which induces an elastic con-
straint on the number of credit cards possessed by Vickie. In this case, X may

be taken to be the count of Vickie's cards, and the possibility assignment eque-

tion becomes

Vickie has several credit cards -+Ilouune (ards (Merie)) = SEVERAL, (1.8)

in which SEVERAL plays the role of a specified fuzzy subset of the integers 1, 2,
... 10. Thus, if the integer 4, say, is assumed to be compatible with the meaning
of several to the degree 0.8, then (1.8) implies that, given p and the definition of

several, the possibility that Vickie has four credit cards is expressed by

Poss {Count (Cards ( Vickie ))=4]=0.8

In the above example, the class of Vickie's credit cards is a nonfuzzy set and

hence there is no problem in counting their number. By contrast, in the propo-

sition
p 4 Vickie has several close friends

the class of close friends is a fuzzy set and thus we must first resolve the ques-
tion of how to count the number of elements in a fuzzy set or, equivalently, how

to determine its cardinality. This issue is addressed in the following section.
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2. CARDINALITY OF FUZZY SETS

In the case of a crisp (nonfuzzy) subset, 4, of a universe of discourse, U, the
proposition "u is an element of A," is either true or false, and hence there is just
one way in which the cardinality of 4, i.e., the count of elements of 4, may be
defined. However, even though the count may be defined uniquely, there may be
some uncertainty about its value if there is an uncertainty rega.i-ding the

membership status of points of Uin A.

By contrast, in the case of a fuzzy subset, F, of U, the proposition "u is an
element of F," is generally true to degree, with the result that the concept of
cardinality admits of a variety of definitions. Among them, some associate with
a fuzzy set F a real number, in which case the cardinality of a fuzzy set is non-
fuzzy. Others associate with F a fuzzy number, since it may be argued that the
cardinality of a fuzzy set should be a fuzzy number. A brief discussion of these
viewpoints is presented in the following. For simplicity, we shall restrict our
attention to finite universes of discourse, in which case a fuzzy subset, ¥, of U=

fu,,...,u, | may be expressed symbolically as
F=p/ut..tun/ uy
or, more simply, as
F =g+t pin iy,

in which the term &/ v, i = 1,..., n, signifies that y; is the grade of membership

of ¥ in F, and the plus sign represents the union.*

¢® For the most part we shall rely on the context to disambiguate the meaning of +.

-
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Nonfuzzy Cardinality
A simple way of extending the concept of cardinality to fuzzy sets is to form
the sigma-count (DeLuca and Termini (1972), Zadeh (1972)), which is the arith-

metic sum of the grades of membership in F. Thus

SCount (F)AZ ., i=l...n, ‘ (2.1)

with the understanding that the sum may be rounded, if need be, to the nearest
integer. Furthermore, one may stipulate that the terms whose grade of
membership falls below a specified threshold be excluded from the summation.
The purpose of such an exclusion is to avoid a situation in which a large number
of terms with low grades of membership become count-equivalent to a small

number of terms with high membership.

As a simple illustration of the concept of sigma-count, assume that the

fuzzy set of close friends of Teresa is expressed as
F = 1/ Enrigue + 0.8/ Ramon + 0.7/ Elie + 0.9/ Sergei + 0.8/ Ron.
In this case,
ZCount(F)=1 +0.8 +0.7 +0.9 +0.8

=4.2

A sigma-count may be weighted, in the sense that if w=(w,,...,wy)is an
n-tuple of nonnegative real numbers, then the weighted sigma-count of F with

raspect to w is defined by

LCount(Fiw) A Swp, i=1,...,n.
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This definition implies that £ Count (F;w) may be interpreted as the sigma-count
of a fuzzy multiset* 'F in which the grade of membership and the multiplicity of
w, i=1,...,n, are, respectively, g and w;. The concept of a weighted sigma-
count is closely related to that of the measure of a fuzzy set (Zadeh (1988), Kle-
ment (1981abc)).

Whether weighted or not, the sigma-count of a fuzzy set is a real number.
As was stated earlier, it may be argued that the cardinality of a fuzzy set should
be a fuzzy number. If one accepts this argument, then a natural way of defining

fuzzy cardinalit'y.is the following (Zadeh (1977)).

Fuzzy Cardinality**

In this case, the point of departure is a stratified representation of Fin

terms of its level sets (Zadeh (1971)), i.e.,
F=3,0F,,
in which the a-level-sets F, are nonfuzzy sets defined by
FaAu|pr(u)=al, o<asi,
and

para(n) = aup(u), uel

*A fuzzy multiset, 'F , may be represented as 'F = I/ myXyy , in which my is the
multiplicity of Uy and [ is the grade of membership of %y in the fuzzy set F=Su/ w.
The multiplicity, M4, is a nonnegative real number which is usually, but not necessarily, an
integer. Thus, a fuzzy multiset may have identical clements, or elements which differ only in
their grade of membership.

e¢ Although it is perhaps a more natural extension of the concept of cardinality than the
sigma-count, fuzzy cardinality is a more complex concept and is more difficult to manipu-
late. The exposition of fuzzy cardinality in this section may be omitted on first reading.

s



-15-

In terms of this representation, there are three fuzzy counts, FCounts, that
may be associated with F. First, the FGCount is defined as the conjunctive fuzzy

integer® (Zadeh (1981a))
FGCount (F) = 1/0+Z,a/ Count (Fz), a>0 .
Second, the FLCount is defined as
FLCount(F) = (FGCount (F'))' ©1

where * denotes the complement and ©1 means that 1 is subtracted from the
fuzzy number FGCount(F). And finally, the FECount(F) is defined as the inter-
section of FGCount(F) and FLCount(F), i.e.,

FECount (F) = FGCount(F) N FLCount (F).

Equivalently - and more precisely - we may define the counts in question via

the membership function of F, i.e.,

HFBouns (7 (1) & sup,fa| Count (Fo)=i), 1=0,1,....n. (2.2)
Hrroune(P)(i) & supata| Count (Fg) = n—i) (=.3)
KrEount (7Y(E) & recsunt (7Y (1) AL PLOWRe (1) (2)s (2.4)

where A stands for min in infix position.

As a simple illustration, consider the fuzzy set expressed as
F = 0.8/u;+0.9/ua+1/%g+0.7/u+0.3/ ug. (2.5)

In this case,

*it should be noted that the membership function of a conjunctive fuzzy number is not a
possibility distribution.



18-

Fy, =ug
Fog=uz+ug
Fpo=upt+ugtu,
Fog=u +ugt+ugtu,
Fog=u +ug+ugt+utus,
whicﬂ implies that, in stratified form, .F’ may be expressed as
F = 1(ug)+0.9(ug+ug) +0.7(ug+ug+u ) +0.6(u  +up+ug+u,) +0.3(u  +upgtug i +us).
and hence that
FGCount (F)=1/0+1/1+0.9/ 2+0.7/ 3+0.8/ 4+0.3/5
FLCount(F)=0.1/2+0.3/3+0.4/ 4+0.7/5+1/68+ - - - ©1
=0.1/1+0.3/2+0.4/3+0.7/ 4+1/5+ - - *
FECount(F)=0.1/1+0.3/2+0.4/ 3+0.8/ 4+0.3/5
while, by comparison,
ZCount (F)=0.6+0.9+1.04+0.74+0.3

=3.5.

A useful interpretation of the defining relations (2.2), (2.3) and (2.4) may be

stated as follows:
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(8) wpeoun: (i) is the truth value of the proposition "F contains at least i ele-
ments."”

(b) Mrroouns (i) if the truth value of the proposition “F contains at most i ele-

ments."”

(c) MFE@une (1) is the truth value of the proposition "F contains i and only i ele-

ments.”

From (a), it follows that FGCount(F) may readily be obtained from F by first
sortixig Fin the order of decreasing grades of membership and then replacing v

with i and adding the term 1/0. For example, for F defined by (2.5), we have

Fi=1/ug+0.9/ua+0.7/ 1, +0.68/u,+0.3/ ug (2.8)

NFi =1/1+0.9/72+0.7/3+0.8/4+0.3/5

and

FGCount(F) = 1/0+1/1+0.9/ 2+0.7/ 3+0.8/ 4+0.3/ 5,

where Fi denotes F sorted in descending order, and NF¢ is F4 with ith u
replaced by i An immediate consequence of this relation between ZCount (F)

and FGCount (F) is the identity
ZCount (F) = T ipecount (1) =1,

which shows that, as a real number, ECbunt(F) may be regarded as a "sum-

mary” of the fuzzy number FGCount (F).
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Relative Count

A type of count which plays an important role in meaning representation is
that of relative count (or relative cardinality) (Zadeh (1975b)). Specifically, if
F and G are fuzzy sets, i.hen the relative sigma-count of F in1 G is defined as the
ratio:

T Count (FNG)
LCount(G) '

LCount(F/ G) = (2.7)

which represents the pmpm:'t:ion~ of elements of F which are in G, with the inter-

section /NG defined by
wp () = up(u)Aue). (2.8)
The corresponding definition for the FGCount is

Count (Fa\Ga)
Count(Gg) '

FGCount (F/ G) = Za0/ (2.9)

where the F, and G, represent the a - sets of F and G, respectively. It should be
noted that the right-hand member of (2.9) should be treated as a fuzzy multiset,
which implies that terms of the form «,/ u and ap/u should not be combined

into a single term (&, V ap)/u, as they would be in the case of a fuzzy set.

The ZCount and FCounts of fuzzy sets have a number of basic properties of
which only a few will be stated here. Specifically, if F'and G are fuzzy sets, then

from the identity

aVb +anNd =a+d

which holds for any real numbers, it follows at once that

£Count (F N G) + ECount (FUG) = T Count (F) + TCount(G) (2.10)
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since
brac(u) = up(u) Apglu),  uelU
and

kpyo(u) = pr(u)Vue(u).

Thus.'if F and Gere disjoint (i.e., FN\G = ¥ ), then
£ Count (F\JG) = T Count (F) + L Count(G) (2.11)
and, more generally,
$Count (F)V ECount (G)<ECount (F | G)<E Count (F)+ZCount (G) (2.12)
and
(2 Count (F)+Z Count (G)~Count (U))sZ Count (F N G)s (2.13)
L Count (F)NI Count (G).
These inequalities follow at on\ce from (2.10) and
L Count (F N G)<Z Count (F)

~ ZCount (FNG)<Z Count (G)

L Count (F\JG)<sZ Count(U).

In the case of FCounts and, more specifically, the FGCount, the identity
corresponding to (2.10) reads (Zadeh (1981ab), Dubois (1981)),

FGCount (F N G) ® FGCount(F\JG) = FGCount (F) ® FGCount (G), (2.14)
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where @ denotes the addition of fuzzy numbers, which is defined by (see Appen-
dix)

paes(u) = sup, (ug(w)App(u—v), u, ve(—o,=), (2.15)

where 4 and B are fuzzy numbers, and u, and up are their respective member-

ship functions.

A basic identity which holds for relative counts may be expressed as:

T Count (F\G) = T Count (G)E Count (F/ G) (2.18)

for sigma-counts, and as

FGCount (FNG) = FCount(G) ® FGCount(F/ G) (2.17)

for FGCounts, where ® denotes the multiplication of fuzzy numbers, which is

defined by (see Appendix)

pags () = sup, (a@)W () v ve(-=). v20 . (2.18)

An inequality involving relative sigma-counts which is of relevance to the

analysis of evidence in expert systems is the following:
T Count (F/ G)+ZCount(-F/ G)=1 (2.19)
=1 if Gis nonfuzzy,
where -~ F denotes the complement of F, i.e.,
wpr(n) =1=ppu), uel . (2.20)

Note that (2.19) implies that if the relative sigma-count I Count (F/ G) is

identified with the conditional probability Prob (F7 G) (Zadeh (198 1b)), then
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Prob(-F/ G)= 1-Praob (F/G)
rather than

Prob(-F/ G) = 1-Prob(F/ G),

which holds if Gis nonfuzzy.

The inequality in question follows at once from

Bi(1=up(uy)) A pelw)
Bopc(w)

LCount(-F/G) =

Bi(1-pp(ug))uelyy)
e ()

Sepr(ug)pelny)
DTN ()

=1 -

_ Sopp(w) N pelw)

=1
Sipe(y)

since

Sipr(w) N pelu) .

TCount(F/G) = TN

(2.21)

(2.22)

(2.23)

This concludes our brief exposition of some of the basic aspects of the con-

cept of cardinality of fuzzy sets. As was stated earlier, the concept of cardinal-

ity plays an essential role in representing the meaning of fuzzy quantifiers. In

the following sections, this connection will be made more concrete and a basis

for inference from propositions containing fuzzy quantifiers will be established.
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3. FUZZY QUANTIFIERS AND CARDINALITY OF FUZZY SETS

As was stated earlier, a fuzzy quantifier may be viewed as a fuzzy character-
ization of absolute or relative cardinality. Thus, in the proposition
pAQAs are B's , where Q is a fuzzy quantifier and 4 and B are labels of fuzzy or
nonfuzzy sets, @ may be interpreted as a fuzzy characterization of the relative

cardinality of Bin A. The fuzzy set 4 will be referred to as the base set.

When both A and B are nonfuzzy sets, the relative cardinality of Bin Ais a
real number and @ is its possibility distribution. The same is true if 4 and/or B
are fuzzy sets and the sigma-count is employed to define the relative cardinal-
ity. The situation becomes more complicated, however, if an FCount is
employed for this purpose, since Q. then, is the possibility distribution of a con-

junctive fuzzy number.

To encompass these cases, we shall assume that the following propositions

are semantically equivalent (Zadeh (1878b)):
There are Q A's » Count(A)is @ (3.1)
Q A's are B's » Prop(B/ A) is @, (3.2)

where the more specific term Proportion or Prop, for short, is used in place of
Count in (3.2) to underscore that Prop(B/A) is the relative cardinality of Bin A
with the understanding that both Count in (3.1) and Prop in (3.2) may be fuzzy
or nonfuzzy counts. In the sequel, we shall assume for simplicity that, except
where stated to the contrary, both absolute and relative cardinalities are

defined via the sigma-count.

The right-hand members of (3.1) and (3.2) may be translated into possibility

assignment equations (see (1.1)). Thus we have

Count (A) is Q- nawu) =@ | (3.3)

["Al
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and
Prap(B/A)is @ » llpopa/ay) = @ (3.4)

in which Ilgun¢s) and Iprop(s/4) represent the possibility distributions of
Count (A) and Prop(B/ A), respectively. Furthermore, in view of (3.1) and (3.2),

we have

There are Q A's - gune(a) = @ (3.5)
@ As are B's » npn,(s/“) =Q (3.8)

These translation rules in combination with the results established in Sec-
tion 2, provide a basis for deriving a variety of syllogisms for propositions con-

taining fuzzy quantifiers, an instance of which is the intersection /product syllo-
gism described by (1.3), namely,

@ A'sare B's (3.7)

Q (Aand B)'s are C's

Q®Q2 A's are (Band C)'s
in which @,, @2, 4, B and C are assumed to be fuzzy, as in
most tall men are fat (3.8)
many tall and fat men are bald

most ® many tall men are fat and bdald,

To establish the validity of syllogisms of this form, we shall rely, in the
main, on the semantic entailment principle (Zadeh (1977), (1978b)), and on a

special case of this principle which will be referred to as ‘the quantifier
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eztension principle.

Stated in brief, the semantic entailment principle asserts that a proposition

P entails proposition g, which we shall expressasp -+ g or

& ’

q
if and only if the possibility distribution which is induced by p, n’(x,, X)) 1S
contained in the possibility distribution induced by g. %y, ... x) (see (1.4)).

Thus, stated in terms of the possibility distribution functions of I[IP and II¥, we
have

3‘ ifandonly if Py, .. x)s™(x,....x,) (3.9)

for all points in the domain of n? and n9.

Informally, (3.9) means that p entails g if and only if g is less specific than
p. For example, the proposition p A Diana is 28 years old, entails the proposi-
tion g 4 Diana is in her late twenties, because p is less specific than g, which in

turn is a consequence of the containment of the nonfuzzy set “28"” in the fuzzy )

set "late twenties.”

It should be noted that, in the context of test-score semantics, the inequal-
ity of possibilities in (3.9) may be expressed as a corresponding inequality of
overall test scores. Thus, if 7 and 77 are the overall test scores associated with

p and g, respectively, then
f}’- if and only if ° < 79, (3.10)

with the understanding that the tests yielding 7P and 77 are applied to the same

explanatory database and that the inequality holds for all instantiations of EDF.
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In our applications of the entailment principle, we shall be concerned, for
the most part, with an entailment relation between a collection of propositions
Py .. ..p, and a proposition g which is entailed by the collection. Under the
assumption that the propositions which constitute the premises are noninterac-

tive (Zadeh (1978b)), the statement of the entailment principle (3.9) becomes:

p; ifandonlyif @A AT sn? (3.11)

Pn_
g

where 7%, ...,7", n? , are the possibility distribution functions induced by

P1 - . . +Pn.q. respectively, and likewise for (3.10).

We are now in a position to formulate an important special case of the
entailment principle which will be referred to as the quantifier extenson princi-
ple. This principle may also be viewed as an inference rule which is related to

the transformational rule of inference described in Zadeh {1980).

Specifically, assume that each of the propositions p;,....ps is a fuzzy
characterization of an absolute or relative cardinality which may be expressed
asp; 4G is @ .i=1,...,n,in which (; is a count and & is a fuzzy quantifier,

e.g..
p ASCount(B/ A)is @

or, more concretely,
p: Amost A's are B's.

Now, in general, a syllogism involving fuzzy quantifiers has the form of a
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collection of premises of the form p Agis@.i=1,...,n, followed by a con-
clusion of the same form, i.e., ¢ A C is @ , where Cis a count that is related to
G.....C, . and @ is the fuzzy quantifier which is related to &, . ... @, - The
quantifier extension pr{nciple makes these.relations explicit, as represented in

the following inference schema:

C,is @, (3.12)

C i Q.
where @ is given by

i C=g(Cp....G) then Q=g(Qu ... . G).

in which g is a function which expresses the relation between C and the £, and
the meaning of @ = g(@,. .. .. @,) is deflned by the extension principle (see
Appendix). A somewhat more general version of the quantifier extension princi-

ple which can also be readily deduced from the extension principle is the follow-
ing:

C,is @, (3.13)

C is Q.
where Qis given by

I 7(Ch... . G)SC=g(Cr....G) then £(Qn ... . @)SQ@=g(Qn ... Q)



-27-

As in (3.12), the meaning of the inequalities which bound Q is defined by the
extension principle. In more concrete terms, these inequalities imply that Qis a

fuzzy interval which may be expressed as

Q = (2 f(Ql' e ey Qn))n(sg(QI' [N | Qﬂ))' (3'14)

where the fuzzy s-number = f(@;, ....@) and the fuzzy z-number
< g(Qy. . ... @) (see Appendix) should be read as "at least 7(@y, ....,@)"and
“at most g(@,. ..., @) ." respectively, and are the compositions® of the binary

relations = and < with f (@y....@) and g(@y....@,). In terms of (3.14), then, the

relation between C and Q may be expressed as:
If 1(Cr.... . G)sCs=sg(Cy....Co) then (3.15)

@=(=r(Qn . ... &NN(=g(Qu ... . &))

An important special case of (3.12) and (3.15) is one where f and g are arith-

metic or boolean expressions, as in
C=C Ca+ Cy
and
Ci+Ce—-1sCsC NG,
For these cases, the quantifier extension principle yields

Q=0:190:©Qs

and

¢ The composition, RoS, of a binarg relation R with & unary relation 8 is defined by
bros(¥) = Vy(up(v u)Aus(u)) .ueU.weV, where g, s, and [p,s are the
membership functions of R, S and RoS, respectively, and \Vy denctes the supremum over U.
Where no confusion can result, the symbol o may be suppressed.



-28-

R= (@18 @01))N=s(R:0Q2) ,
where @, @,. @; and @3 are fuzzy numbers, and ® , ® and & are the product, sum
and min in fuzzy arithmetic.*

We are now in a position to apply the quantifier extension principle to the
derivation of the intersection/product syllogism expressed by (3.7).

Specifically, we note that

Q, As are B's » Prop(B/A)is @ (3.18)
Q2(A and B)'s are C's » Prop(C/ANB)is @2 (3.17)
and
Q@ As are(B and C)'s » Prop(BNC/A)is Q, (3.18)
where |
_ LCount(BNA)
. Prop(B/ A) = T Count (A) (3.19)
_ Zoount(ANBNC)
Prop(C/ANB) = SCount (AN E) (3.20)
_ ZCount(ANB NC)
Prop(BNC/A) = S Count (2) (3.21)

From (3.19), (3.20) and (3.21), it follows that the relative counts
Cy A Prop(B/A) , C2 A Prop(C/ ANB) and C A Prop(B NC/ A) satisty the iden-
tity

® Where typographical convenience is a significant consideration, a fuzzy version of an arith-
metic operation * may be expressed mare simply as (*).
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Prop(BNC/ A) = Prop(B/ A) Prop(C/ ANB) (3.22)
and hence
C=CCe . (3.23)

On the other hand, from (3.18), (3.17) and (3.18), we see that £,,Q; and @ ere
the respective possibility distributions of C,,Cs and C . Consequently, from the
quantifier extension principle applied to arithmetic expressions, it follows that
the fuzzy quantifier @ is the fuzzy product of the fuzzy quantifiers @, and @, .

i.e.,

Q=0:12Q: ., | (3.24)

which is what we wanted to establish.

As a corollary of (3.7), we can deduce at once the following syllogism:
Q,Asare B's (3.25)

Qo (A and B)s are C's

(=(Q,® @) As are C's,

where the quantifier (= (@,® @p)) . which represents the composition of the
binary relation = with the unary relation @,® @; . should be read as

at least(Q, ® @;) . This syllogism is a consequence of (3.7) by virtue of the ine-
quality

SCount (B NC) < LCount(C), (3.28)

which holds for all fuzzy or nonfuzzy B and C. For, if we rewrite (3.7) in terms of

proportions,
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Prop(B/A)is @, (3.27)

Prop(C/ANB)is @,

Prop(BNC/A)is (@1 © @),

then from (3.28) it follows that

Prop(BNC/ A)is (@, ® Qe)=> Prop(C/A)is (=(,® @)).  (3.28)

Thus, based on (3.28), the syllogism (3.7) and its corollary (3.25) may be

represented compactly in the form:
Q. As are B's (3.29)

Qx(ANB)s are C's

(Q,; ® @;) A's are (B and C)'s

(= (Q,® @2)) As are C's.

As an additional illustration of the quantifier extension principle, consider

the inequality established in Section 2, namely,
OV(ZCount (4) + LCount (B)-Count(U))s TCount (AN B) (3.30)

< ZCount (4) N T Count(B).

Let Q.Q, and @, be the fuzzy quantifiers which characterize C AZCount(ANB)

C, AT Count (4), and C; A ECount (B), respectively. Then

09(Q,® @01)s @ 0,0, (3.31)
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where, as stated earlier, ®, ® ® and @ are the operations of sum, product, min
and max in fuzzy arithmetic. Consequently, as a special case of (3.31), we can

assert that in the inference schema

most students are single (3.32)

many students are male

Q students are single and male
Q is a fuzzy interval given by
Q@ = (= (0®( most ® many © 1))) N(s( most ® many)) . (3.33)

In more general terms, the inference schema of (3.32) may be stated as the

conjunction schema:
QA'sare B's
QeA'sare C's
Q A's are (B andC)'s
where

Q = (=(00(Q, ® g:©1))) N(=(21 6 Q2))

Monotonicity

In the theory of generalized quantifiers (Barwise and Cooper (1981)), a gen-
eralized quantifier @ is said to be monotonic if a true proposition of the form
P Q Q As are B's, where A and B are nonfuzzy sets, remains true when B is

replaced by any superset (or any subset) of B. In this sense, most is a
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monotonic generalized quantifier under the assumption that B is replaced by a

superset of B.

In the case of fuzzy quantifiers of the first or second kinds, a similar but
more general definition which is valid for fuzzy sets may be formulated in terms
of the membership function or, equivalently, the possibility distribution function

of @ . More specifically:

A fuzzy quantifier @ is monotone nondecreasing (nonincreasing) if and only
if the membership function of @ , ug, is monotone nondecreasing (nonincreas-

ing) over the domain of Q. From this definition, it follows at once that
@ is monotone nondecreasing <> =@ = @ (3.34)

Q is monotone nonincreasing < Q = Q, . (3.35)

where, as stated earlier, = Q and < @ should be read as "at least @ ” and "at

most @, " respectively. Furthermore, from (2.7) it follows that, if BCC, then
Q is monotone nondecreasing <> (3.38)
Prop(B/A)is @ => Prop(C/A)is @
and
@ is monotone nonincreasing <> (3.37)
Prop(C/A)is @ => Prop(B/A)is @

If Q is a fuzzy quantifier of the second kind, the antonym of Q. ant@, is
defined by (Zadeh (1978b))

tento(u) = po(1—u), wel0,1]. (3.38)
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Thus, if few is interpreted as the antonym of most, we have

prey(uw) = pgosr(1-u)., uel0.1] (3.39)

A graphic illustration of (3.39) is shown in Fig. 3.
An immediate consequence of (3.38) is the following:

If Qis monotone nondecreasing (e.g., most), then its antonym (e.g., few)is

monotone nonincreasing.

We are now in a position to derive additional syllogisms for fuzzily-quantified
propositions and, inter alia, establish the validity of the example given in the

abstract, namely,
most U's are A's (3.40)
0 t U ]

most? Us are B's,

where by U'’s we mean the elements of the universe of discourse U, and most is

assumed to be monotone nondecreasing.

Specifically, by identifying 4 in (3.25) with U in (3.40), B in (3.25) with 4in
(3.40), Cin (3.25) with B in (3.40), and noting that

UNA = A,
we obtain as a special case of (3.25) the inference schema
most U's are A's (3.41)

most As are B'S

20{(m mos ‘s are B'
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most? U's are B's ,

where most? denotes most ® most. More generally, for any monotone nonde-

creasing fuzzy quantifiers @, and @,, we can assert that

@, Us are A's (3.42)

@z A's are B's

(@,® Q) Us are Bs.

If one starts with a rule of inference in predicate calculus, a natural ques-
tion which arises is: How does the rule in question generalize to fuzzy
quantifiers? An elementary example of an answer to a question of this kind is
the following inference schema:

Q,Asare B's
(=Q;) As are B's if Q=@ .

(3.43)

which is a generalization of the basic rule:

(Vze Péz’z
Az) P(z)’
where P is a predicate. In (3.43), the inequality @; s @, signifies that, as a fuzzy

number, @, is less than or equal to the fuzzy number @, (see Fig. 4).

To establish the validity of (3.43), we start with the inference rule

Q, As are B's
Q2 As are B's

if @,CQa (3.44)

which is an immediate consequence of the entailment principle (3.9), since the
conclusion in (3.44) is less specific than the premise. Then, (3.43) follows at

once from (3.44) and the containment relation
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Q1S @2=> @(=@,) (3.45)

which, in words, means that, if a fuzzy number @, is less than or equal to @,
then, as a fuzzy set, @, is contained in the fuzzy set which corresponds to the

fuzzy number "at least @, "

In inferring from fuzzily-quantified propositions with negations, it is useful
to have rules which concern the semantic equivalence or semantic entailment of

such propositions. In what follows, we shall derive a few basic rules of this type.

The first rule, which applies to fuzzy quantifiers of the first kind, and to

fuzzy quantifiers of the second kind when the base set, 4, is nonfuzzy, is the fol-

lowing:
Q As are B's o (antQ) A's are not B's, (3.48)

where antQ denotes the antonym of @ (see (3.38)). For example,

most men are tall » (ant mast) men are not tall, (3.47)

and
most men are tall » few men are not tall

if few is interpreted as the antonym of most.

To establish (3.48), we note that, in consequence of (3.6), we have
@ As are B's » Hgmw/‘) = Q. (3.48)

The possibility assignment equation in (3.48) implies that the test score, 7y ,

associated with the proposition "@ A's are B's," is given by

71 = pg (TCount(B/ 4)) . (3.49)



-38-
where ug is the membership function of @

Similarly, the test score associated with the proposition
"(antQ) A's are not B's," is given by

T2 = Uoneq(ECount (~B/ A)) . (3.50)

Thus, to demonstrate that the two propositions are semantically equivalent, it

will suffice to eshow that 7, = Te.

To this end, we note that

S count (AN(-B))

ZCount(-B/4) = T Count (A)

(3.51)

_ S () A (1o ()
Zopa(u)

and, if A is nonfuzzy, the right-hand member of (3.51) may be written as:

i1y (1&;3‘:‘2:)"3 (w)) = 1 — SCount(B/ A).

(3.52)

Now, from the definition of the antonym (3.38), it follows that

phanto{1 = ZCount (B/ A)) = puq (S Count(B/ A)). (3.53)

and hence that 7; = Tg , which is what we hed to establish.

In the more general case where 4 is fuzzy, the semantic equivalence (3.48)

does not hold. Instead, the following semantic entailment may be asserted:

If @is monotone nonincreasing, then

Q A's are B's
(antQ) A's are not B's’ (3.54)
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To validate (3.54), we note that in Section 2 we have established the inequality

(see (2.18))

1 - ZCount(-B/ A) < ECount(B/ A). (3.55)

Now, if @ is monotone nonincreasing, then on application of ug to both sides of

(3.55) the inequality is reversed, yielding
po(l = ZCount(-B/ A)) = pg(ECount (B/ A))
or, equivalently,

thonte (ECount(-~B/ A)) = po(Z Count (B74A)) . (3.58)

which establishes that the consequence in (3.54) is less specific than the prem-

jse and thus, by the entailment principle, is entailed by the premise.

In general, an application of the entailment principle for the purpose of
demonstrating the validity of an inference rule reduces the computation of a
fuzzy quantifier to the solution of a variational problem or, in discrete cases, to
the solution of a nonlinear program. As an illustration, we shall consider the fol-

lowing inference schema

Q, As are B's
nQ As are (very B)'s

(3.57)

where ?Q is the quantifier to be computed; the base set A is nonfuzzy and the
modifler very is an intensifler whose effect is assumed to be defined by (Zadeh

(1972))

very B= %8 , (3.58)
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where the left exponent 2 signifies that the membership function of 25 is the
square of that of B.* Since 4 is nonfuzzy, we can assume, without loss of general-

ity, that A= U.

With this assumption, the translation of the premise in (3.57) is given by
Ql Us are B's -+ ngm(gl n= Ql (3.59)
while that of the consequent is

QUsare *Bs I, ep, ;=@ - (3.60)

Let w,, . .. ,un be the grades of membership of the points u,, .. . ,un in B.
Then, (3.59) and (3.80) imply that the overall test scores for the premise and the

consequent are, respectively,
T1 = phg %&m) (3.81)
Te = pe( ;,—E‘m’) . (3.62)

where N = ZCount(U).

The problem we are faced with at this point is the following. The premise,

@, Us are Bs, deflnes via (3.81) a fuzzy set, P, in the unit cube

c¥ = 4u,,....,uy} such that the grade of membership of the point
@={(us ....un) in P, is 7. The mapping C¥ - [0,1] which is defined by the
sigma-count

ECount (very B/ U) = $Euu® (3.63)

* In carlier papers, the meanings of B® and 28 were interchanged.
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induces the fuzzy set, Q, in [0,1] whose membership function, ug, is what we wish
to determine. For this purpose, we can invoke the extension principle, which
reduces the determination of ug to the solution of the following nonlinear pro-

gram:

uo(v) = max(ug(Eun)).  vel0a] (3.64)

subject to the constraint
v = =St
N

As shown in Zadeh (1977), this nonlinear program has an explicit solution

given by
uol) = uo (V7). wel0.1],
which implies that
=0°=¢,2 4, (3.85)

We are thus led to the inference schema

Q,A'sare B's (3.86)
@2 A's are (very B)'s )
and, more generally, for any positive m and nonfuzzy 4,
@, As are Bs
: 3.87
Q™ As are (™B)'s ( )
and
@, As are ™PB's
: (3.88)

Q,."-"A's are B's
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where
B ) = o™, vel0.1] (3.69)
Be, M ™ (W) = ug,(v™), (8.70)
and
pmy(e) = (up(u))™,  uel. (3.71)

As a simple example, assume that the premise in (3.88) is the proposition
"Most men over sixty are bald.” Then, the inference schema represented by
(3.88) yields the syllogism:

most men over siziy are bald
most? men over sizty are very bald

(3.72)

It should be noted that an inference schema may be formed by a composi-
tion of two or more other inference schemas. For example, by combining (3.48)

and (3.88), we are led to the following schema:

Q, As are (not very B)'s

3.73
(ant @,)°°% As are B's (3.73)

in which the base set A is assumed to be nonfuzzy. Thus, the syllogism
most Frenchmen are not very tall (3.74)

{ant most )°® Frenchmen are tall

may be viewed as an instance of this schema (see Fig. 5).

In the foregoing discussion, we have attempted to show how the treatment
of fuzzy quantifiers as fuzzy numbers makes it possible to derive a wide variety

of inference schema for fuzzily-quantified propositions. These propositions were
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assumed to have a simple structure like "Q Az are B's,” which made it unneces-
sary to employ the full power of test-score semantics for representing their
meaning. We shall turn our attention to more complex propositions in the fol-
lowirig section and will’ illustrate by examples the application of test-score
semanties to the representation of meaning of various types of fuzzily-quantified

semantic entities.

4. Meaning Representation by Test-Score Semantics

As was stated in the Introduction, the process of meaning representation in
test-score semantics involves three distinct phases: Phase 1, in which an expla-
natory database frame, EDF, is constructed: Phase 1, in which the constraints
induced by the semantic entity are tested and scored; and Phase 1I, in which
the partial test scores are aggregated into an overall test score which is a real

number in the interval [0,1] or, more generally, a vector of such numbers.

In what follows, the process is illustrated by several examples in which
Phase ] and Phase II are merged into a single test which jvields the overall test
score. This test represents the meaning of the semantic entity and may be
viewed as a description of the process by which the meaning of the semantic

entity is composed from the meanings of the constituent relations in EDF.

In some cases, the test which represents the meaning of a given semantic
entity may be expressed in a higher level language of logical forms. The use of

such forms is illustrated in Examples 4 and 5.

When a semantic entity contains one or more fuzzy quantifiers, its meaning
‘is generally easier to represent through the use of T Counts than FCounts. How-
ever, there may be cases in which a £ZCount may be a less appropriate represen-
tation of cardinality than an FGCount or an FECount. This is particularly true of

cases in which the cardinality of a set is low, i.e., is a small fuzzy number like
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several, few, etc. Furthermore, what should be borne in mind is that a ¥ Count

is a summary of an FGCount and hence is intrinsically less informative.

In some of the following examples, we employ alternative counts for pur-
poses of comparison. In others, only one type of count, usually the ECount, is

used.

EXAMPLE 1.

SE A several balls most of which are large.

For this semantic entity, we shall assume that EDF comprises the following rela-
tions:
EDF § BALL {Identifier; Size] +

LARGE [Size; u] +

SEVERAL [ Number; u ] +

MOST [Proportion; u ] .

In this EDF, the first relation has n rows and is a list of the identifiers of
balls and their respective sizes; in LARGE, u is the degree to which a ball of size
Sige is large; in SEVERAL, pu is the degree to which Number ﬂts‘ the description
several; and in MOST. p is the degree to which Proportion fits the description
most.

The test which yields the compatibility of SE with £D and thus defines the
meaning of SE depends on the definition of fuzzy set cardinality. In particular,

using the sigma-count, the test procedure may be stated as follows:

1. Test the constraint induced by SEVERAL:
T, = , SEVERAL[Number =n],

which means theat the value of Number is set to n and the value of 4 is read,
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yielding the test score 7, for the constraint in question.

2. Find the size of each ball in BALL:
Size, = sue BALL[/dentifier = Identifier],

1i=1....n

3. Test the constraint induced by LARGE for each ball in BALL:
urp(i) = , LARGE[Size = Size].
4. Find the sigma-count of large balls in BALL:
S Count(LB) = Squrp(t).

5. Find the proportion of large balls in BALL:

PLB = i—z‘ﬂw(“)-

8. Test the constraint induced by MOST:
7g = , MOST[Proportion = PLB].
7. Aggregate the partial test scores:
T=T1 N\ T2

where T is the overall test score. The use of the min operator to aggregate
7, and T implies that we interpret the implicit conjunction in SE as the
cartesian product of the conjuncts.

The use of fuzzy cardinality affects the way in which 7p is computed.

Specifically, the employment of FGCount leads to:
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1o = sup(FGCount (LB) N\ nMOST),

which expressed in terms of the membership functions of FGCount (LB) and

MOST may be written as
T2 = sup; (rooount (18) (1) Aiuost i—))

The rest of the test procedure is unchanged.

EXAMPLE 2.
SE A several large balls

In this case, we assume that the EDF is the same as in Example 1, with MOST
deleted.

As is pointed out in Zadeh (1981a), the semantic entity in question may be
interpreted in different ways. In particular, using the so-called compartmental-
ized interpretation in which the constraints induced by SMALL and SEVERAL are
tested separately, the test procedure employing the FGCount may be stated as

follows:

1. Test the constraint induced by SEVERAL:
7,8 ,SEVERAL[Number =n] .
2. Find the size of the smallest ball:

SSB A sisemingy, (BALL)

in which the right-hand member signifies that the smallest entry in the
column Size of the relation BALL is read and assigned to the variable SSB

(Smallest Size Ball).
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3. Test the constraint induced by LARGE by finding the degree to which the

smallest ball is large:
72 4 LLARGE[Size =SSB].
4. Aggregate the test scores:
TET AT
EXAMPLE 3.
p A Hans has many acquaintances and a few close friends most of whom are highly intelligent.

Assume that the EDF comprises the following relations:

ACQUAINTANCE [Name1; Name 2; u ] +

FRIEND [Name1; NameZ2; u]+

INTELLIGENT [Name; ul+

MANY [ Number; ul+

FEW [ Number; u]+

MOST [ Proportion; u).
In ACQUAINTANCE, p is the degree to which Namel! is an acquaintance of
NameZ2; in FRIEND, u is the degree to which Name!? is a friend of Name2: in
INTELLIGENT, p is the degree to which Name is intelligent; #ANY and FEW are
fuzzy quantifiers of the first kind, and MOST is a fuzzy quantifier of the second
kind.

The test procedure may be stated as follows:
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1. Find the fuzzy set of Hans' acquaintances:
HA L yemer x“ACQUAINTANCE’[Name 2 = Hans],

which means that in each row in which Name2 is Hans, we read Name! and u and

form the fuzzy set HA.

2. Count the number of Hans’ acquaintances:
CHA A £ Count (HA).
3. TFind the test score for the constraint induced by MANY:
71 = 4 MANY[Namel = CHA).
4. Find the fuzzy set of friends of Hans:
FH & Nome1xu FRIEND[Name 2 = Hans ].
5. Intensify FH to account for close (Zadeh (1978b)):
CFH A *FH.
8. Determine the count of close friends of Hans:

CCFH A ZCount( %FH).

7. Find the test score for the constraint induced by FEW:

12 & FEW[Number = CCFH).
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Intensify INTELLIGENT to account for highly. (We assume that this is

accomplished by raising /NTELLIGENT to the third power.)

HIGHLY . INTELLIGENT = 3INTELLIGENT.

Find the fuzzy set of close friends of Hans who are highly intelligent:

CFH.HI & CFH (\ 3INTELLIGENT.

Determine the count of close friends of Hans who are highly intelligent:

CCFH.HI AECount(CFH (" SINTELLIGENT).

Find the proportion of those who are highly intelligent among the close

friends of Hans:

s ECount (CFH N SINTELLIGENT)
72 S Count (CFH)

Find the test score for the constraint induced by MOST:
73 & LMOST[Proportion = y].
Aggregate the partial test scores:
T = TATATs.

The test described above may be expressed more concisely as a logical

form which is semantically equivalent to p. The logical form may be expressed

as follows:

P » Count ( ygme1xy ACQUAINTANCE[Name 2 = Hans]) is MANY N

Count ( yame1xu *FRIEND[Name?2 = Hans]) is FEW N
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Prop( 3INTELLIGENT/ Nams1xu°FRIEND[Name?2 = Hans]) is MOST
where A denotes the conjunction.

EXAMPLE 4.

Consider the proposition

p A Over the past few years Nick earned far more than most of his close friends.

In this case, we shall assume that EDF consists of the following relations:

EDF & INCOME [Name; Amount; Year]+
FRIEND {Name; u]+
FEW [ Number; pl+
FAR.MORE [mcomel; Income2; u]+
MOST [ Proportion; p).

Using the sigma-count, the test procedure may be described as follows:

1. Find Nick's income in Year; , i = 1,2...., counting backward from present:
IN A pnount INCOME[Name = Nick; Year = Year(].
2. Test the constraint induced by FEW:
ui & LFEW[Year = Year}.
3. Compute Nick's total income during the past few years:
TIN = ZuIN;,

in which the yu; play the role of weighting coeflicients.
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Compute the total income of each Namey (other than Nick) during the past

several years:

TIName; = E;u/Namey,

where /Namey, is the income of Name, in Year.

Find the fuzzy set of individuals in relation to whom Nick earned far more.

The grade of membership of Name; in this set is given by:

uru(Name;) = WFAR.MORE[Income 1 = TIN: Income 2 = TIName,].

Find the fuzzy set of close friends of Nick by intensifying the relation
FRIEND:

CF = ®FRIEND,
which implies that
pcr(Nameyy = ( LJFRIEND[Name = Name;])®.
Using the sigma-count, count the number of close friends of Nick:

ECbunt(CF) = E,uzmgND(Name,).

Find the intersection of FM with CF. The grade of membership of Name; in

the intersection is given by

P’mncr(Nmej) = upy(Name;) A pcr(Namey).
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9. Compute the sigma-count of FM N CF:
T Count (FM NCF) = T;ury(Namey) N ucr(Namey).

10. Compute the proportion of individuals in FM who are in CF:

% Count (FH (CF)
P2 ~SCount (CF)

11. Test the constraint induced by MOST:

T = ,MOST[Proportion = p),

which expresses the overall test score and thus represents the desired

compatibility of p with the explanatory database.

For the proposition under consideration, the logical form has a more com-

plex structure than in Example 3. Specificelly, we have
Prop((Z;u3/ Namey) / erRIEND[Name2 = Nick]) is MOST
where
py = JFARMORE[Mcomel = TIN ;Income?2 = TIName;]
where Name; # Nick and
TIN = & urpy(i) smouns INCOME[Name = Nick:Year = Year,]
and

TIName; = T 4rey (1) amount INCOME[ Name = Namey; Year = Year]



-51-

EXAMPLE 5.

p A They like each other.

In this case there is an implicit fuzzy quantifier in p which reflects the
understanding that not all members of the group referred to as they must
necessarily like each other.

S.ince the fuzzy quantifier in p is implicit, it may be interpreted in many
different ways. The test described below represents one such interpretation and

involves, in effect, the use of an FCount.
Specifically, we associate with p the EDF

EDF & THEY[Name]+

LIKE [Name1; Name2; u]+

ALMOST.ALL [ Proportion; u),
in which THEY is the list of names of members of the group to which p refers:
LIKE is a fuzzy relation in which u is the degree to which Namel1 likes NameZ;
and ALMOST.ALL is a fuzzy quantifier in which 4 is the degree to which a numeri-

cal value of Propartion fits a subjective perception of the meaning of almost all.

Let puy be the degree to which Nav;w‘ likes Name; , i#j. If there are n
names in THEY, then there are (n® —n) uy's in LIKE with i #j. Denote the rela-

tion LIKE without its diagonal elements by L/KE®.

The test procedure which yields the overall test score T may be described

as follows:

1. Count the number of members in THEY:

n & Count (THEY)
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2. Compute the FGCount of LIKE™®:

C A FGCount (LIKE®).

Note that in view of (2.6), C may be obtained by sorting the u elements of

LIKE® in descending order, which yields L/IKE* . Thus,

FGCount (LIKE®*) = NLIKE®..

3. Compute the height (i.e., the maximum value) of the intersection of C and

the fuzzy number (n® — n) ALMOST.ALL:

T = sup(FGCount (LIKE*) N (n? — n)ALMOST.ALL)

The result, as shown in Figure 8, is the overall test score.

The last two examples in this Section illustrate the application of test-score
semantics to question-answering. The basic idea behind this application is the

following.

Suppose that the answer to a question, g, is to be deduced from a

knowledge base which consists of a collection of propositions:
KB =ipy,....pn} . (4.1)

Furthermore, assume that the p, are noninteractive and that each p; induces a
possibility distribution, IT*, which is characterized by its possibility distribution
function, n*, over a collection of base variables X = {X;,.. . .,Xm}. This implies

(a) thatp; , i =1, ...,n, translates into the possbility assignment equation



-53-

where F; is a f—u;zy subset of U, the cartesian product of the domains of

Xl' LI .&nn Le"

U=U;x:- xU, .,

in which U; is the domain of X; ; and (b) that the collection KB induces a com-

bined possibility distribution II whose possibility distribution function is given by
T(Xye. . Xg) = WXy )N T AT ) (4.2)

In test-score semantics, the translation of a question is a procedure which
expresses the answer to the question as a function of the explanatory database.
In terms of the framework described above, this means that the answer is

expressed as a function of (X;, ... ,X,). ie.,
ans(g)=f(Xy, ... . Xy

Thus, given the possibility distribution II over U and the function f, we can
obtain the possibility distribution of ans(g) by using the extension principle. In

more specific terms, this reduces to the solution of the nonlinear program:
Hana (g)(¥) = MaXy, .. )Xy, ... ) (@1 o cUm) (4.3)
subject to
vEfuy, ... um)

where u; denotes the generic value of X; and welU; , i=1,...,m. An example

of such a program which we have encountered earlier is provided by (3.684).

In many cases, the nonlinear program (4.3) has special features which

reduce it to a simpler problem which can be solved by elementary means. This
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is what happens in the following examples.
EXAMPLE 6.
p1 A There are about twenty graduate students in his class.

pe & There are a few more undergraduate students than graduate students
tn his class.

g 4 How many undergraduate students are there in his class?

Let C,, G, and D denote, respectively, the number of graduate students,
the number of undergraduate students, and the difference between the two

counts, so that
G=C +D
Applying the quantifier extension principle to this relation, we obtain

ans (g) = about 20 ® few ,

where ans (g), about 20 and few are fuzzy numbers which represent the possibil-
ity distributions of ¢, .C; and D, respectively. Using the addition rule for fuzzy
numbers (see Appendix), the membership function of ans (g) may be expressed

more explicitly as
Hane (@)(¥) = Supy (asoyrao(u) A ppgr(v = ©))

EXAMPLE 7.
pA Brian is much taller than most of his close friends
g4 How tall is Brian?

Following the approach described earlier, we shall (a) determine the possi-
bility distribution induced by p through the use of test-score semantics; (b)

express the answer to g as a function defined on the domain of the possibility
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distribution; and (¢) compute the possibility distribution of the answer.

To represent the meaning of p, we assume, as in Examples 4 and 5, that the

EDF comprises the following relations:

EDF & POPULATION [Name; Height] +
MUCH.TALLER [ Height 1; Haight2; u) +
MOST [ Proportion; u] .

For this £DF, the test procedure may be described as follows:

1. Determine the height of each Name;, i = 1, ... ,n,, in POPULATION:
HN; = pogne POPULATION[Name = Name(] .
and, in particular,

HB A gegn POPULATION[Name = Brian] .

2. Determine the degree to which Brian is much taller than Name, :
wupur(Name;) A wMUCH.TALLER[Height 1 = HB;Height2 = HN{] .

3. Form the fuzzy set of members of POPULATION in relation to whom Brian is

much taller:

BHT AZ,upyr(Name,) / Name, , Name; # Brian

4., Determine the fuzzy set of close friend of Brian by intensifying FRIEND :
CFB = *( ,xName1FRIEND[Name?2 = Brian])
which implies that

pcrp(Name,) = ( ,FRIEND[Name 1 = Name,: Name?2 = Brian])® . Name # Brian
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5. Find the proportion of BMT 'sin CFB s:

T Count (BMT / CFB) = 2‘“’”(1;?3{ i?&‘:’s‘”""‘“’
S MCFB 3

8. Find the test score for the constraint induced by the fuzzy quantifier most:
T = L MOST[Proportion = LCount(BMT/ CFB)] .

This test score represents the overall test score for the test which
represents the meaning of p. Expressed as a logical form, the test may be

represented more compactly as:

Prop(BMT/ ¥ uxName 1 FRIEND[Name?2 = Brian]) is MOST ,

where the fuzzy set BMT is defined in Steps 2 and 3.

To place in evidence the variables which are constrained by p, it is

expedient to rewrite the expression for 7 as follows:

Tipur(hp.hy) A prp®(Name,) )
Zupp®(Name,) |

T = Kyost

in which hp is the height of Brian; h; is the height of Name,; upg(Name;) is the
degree to which Name; is Brian's friend; uyr(hg.h;) is the degree to which Brian
is much taller than Name;; and pyssr is the membership function of the

quantifier most.

Now the variables X,,...,X, are those entries in the relations in the
explanatory database which are the arguments of T , with the value of 7

representing their joint possibility mx, x,)- In the example under considera-

tion, these variables are the values of Ay gHeight (Name;), i=1,....n ; the

values of ugyr(hg.hy) : the values of ugmp(Name;) :; and the values of
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yymT(Proportion) , where Proportion is the value of the argument of uyesr in
the expression for 7.

Since we are interested only in the height of Brian, it is convenient to let
X, A hp = Height (Brian). With this understanding, the possibility distribution

function of Height (Brian) given the values of Xg. . . . . X;m may be expressed as
Poss {Height (Brian) = ulXa, ... . Xnl =

[Etmlr(‘u ) A ppp®(Namey) |
HuosT Z.urp®(Name,) ]

where the range of the index i in 2, excludes Name; = Brian. Correspondingly,
the unconditional possibility distz:ibution function of Height (Brian) is given by
the projection of the possibility distribution n(x,...;.x,,,) on the domain of X.
The expression for the projection is given by the supremum of the possibility
distribution function of (X;,...,Xm) over all variables other than X, (Zadeh
(1978ab)). Thus

Poss {Height (Brian) = u} =

T puasr(e.hy) A prp(Name;) | _

SUP(x,, ... X HHOST T urp®(Name;) ]

EXAVWPLE 8.

p, A Most Frenchmen are not tall

Pe A Most Frenchmen are not shqrt

g & What is the average height of a Frenchman?

Because of the simplicity of p, and pg . the constraints induced by the
premises may be found directly. Specifically, using (3.46), p, and pp may be

replaced by the semantically equivalent premises
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p's A ant most Frenchmen are tall

p's A ant most Frenchmen are short.

To formulate the constraints induced by these premises, let hy,... Ry
denote the heights of frenchman,, ..., Frenchman, , respectively. Then, the

test scores associated with the constraints in question may be expressed as
71 = pant wost( i—ztﬂm.z(’k))
and
T2 = HANT HOST(:;_E#"SHURT("-L» -

where
panr mosr(u) = puosr(1—u) . wel0d]

and ugryy and usyorr are the membership functions of TALL and SHORT, respec-

tively. Correspondingly, the overall test score may be expressed as

T=Tl/\‘rg

Now, the average height of a Frenchman and hence the answer to the ques-

tion is given by

ans(g) = ;1;31”-1

Consequently, the possibility distribution of ans(g) is given by the solution of the

nonlinear program

frora(q)(R) = mEXn,, ... 2, (T)
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subject to

Alternatively, a simpler but less informative answer may be formulated by
forming the intersection of the possibility distributions of ans(q) which are
induced separately by p'; and p';. More specifically, let H.”(,)lp'1 , nau(q)l"g '
n'"(v)'P'x’\P‘a be the possibility distributions of ans(g) which are induced by p', ,
p's . and the conjunction of p'; and p'p respectively. Then, by using the

minimax inequality (Zadeh (1971)), it can readily be shown that
Hans(g)lp'y M Tons(q)ip'g 2 Mane (0)lp'y Ap'g

and hence we can invoke the entailment principle to validate the intersection in
question as the possibility distribution of ans(g). For the example under con-

sideration, the possibility distribution is readily found to be given by
Possfans(g) = h} = panr uosr(prazs (h)) A panr gosr(psuorr(h))

Concluding Remark

As was stated in the Introduction, the basic idea underlying our approach to
fuzzy quantifiers is that such quantifiers may be interpreted as fuzzy numbers -
a viewpoint which makes it possible to manipulate them through the use of fuzzy

arithmetic and, more generally, fuzzy logic.

By applying test-score semantics to the translation of fuzzily-quantified pos-
sibilities, a method is provided for inference from knowledge bases which con-
tain such propositions — as most real-world knowledge bases do. The examples
presented in this Section are intended to illustrate the translation and inference

techniques which form the central part of our approach. There are many
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computational issues, however, which are not addressed by these examples. One
such issue is the solution of nonlinear programs to which the problem of infer-
ence is reduced by the application of the extension principle. What is needed for
this purpose are computai:ionally efficient techniques which are capable of tak-
ing advantage of the tolerance for imprecision which is intrinsic in inference

from natural language knowledge bases.
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APPENDIX

The Extension Principle

Let f be a function from U to V. The extension principle -- as its name
implies -- serves to extend the domain of deflnition of f from U to the set of

fuzzy subsets of U. In particular, if F'is a finite fuzzy subset of U expressed as

Fz=pu/u .. +ug/ uy

then f(F) is a finite fuzzy subset of Vdefined as
F(F)=f(u/ur+.tup/ uy) (A1)
= wy/ f (1) +etun/ f (un).

Furthermore, if U is the cartesian product of U,;,...,Uy, so that
u=(u!...,u¥), u'tl;,, and we know only the projections of F on

Ui, . .., Uy, whose membership functions are, respectively, ugs, . . . , upy, then
J(F) = Supm@eIN - - A um(uV)s £ @, ... u¥), (a2)

with the understanding that, in replacing up{ul,...,u¥) with
pr(w)A - - - A upy(u?), we are tacitly invoking the principle of marimal possi-
bility (Zadeh (1975b)). This principle asserts that in the absence of complete
information about a possibility distribution II, we should equate II to the maxi-

mal (i.e., least restrictive) possibility distribution which is consistent with the

partial information about IL

As a simple illustration of the extension principle, assume that U = {1, 2, ...,

10{; f is the operation of squaring; and SMALL is a fuzzy subset of U defined by

SMALL =1/1+1/2+0.8/3+0.8/4+0.4/5
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Then, it follows from (A2) that the right square of SMALL is given by

SMALL®A1/1+1/4 +0.8/9 + 0.8/18 + 0.4/25

On the other hand, the left square of SHALL is defined by

°SMALL A1/1+1/2 + 0.84/3 + 0.36/4 + 0.168/5

and, more generally, for a subset F of U and any real m, we have

bmp(u) & (p(u))™,  uel. (a3)

Fuazzy Numbers *

By a fuzzy number, we mean a number which is characterized by a possibil-
ity distribution or is a fuzzy subset of real numbers. Simple examples of fuzzy
numbers are fuzzy subsets of the real line labeled small, approzimately 8, very
close to 5, more or less large, much larger than 6, several, etc. In general, a
fuzzy number is either a convex or a concave fuzzy subset of the real line. A
special case of a fuzzy number is an interval. Viewed in this perspective, fuzzy
arithmetic may be viewed as a generalization of interval arithmetic (Moore

(1968)).

Fuzzy arithmetic is not intended to be used in situations in which a high
degree of precision is required. To take advantage of this assumption, it is
expedient to represent the possibility distribution associated with a fuzzy
number in a standardized form which involves a small number of parameters --

usually two — which can be adjusted to fit the given distribution. A system of

* A more detailed exposition of the properties of fuzzy numbers may be found in Dubeis and
Prade (1880).
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standardized possibility distributions which suits this purpose in most cases of

practical interest is the following (Zadeh (1975b)).

1. 7 -numbers. The possibility distribution of such numbers is bell-shaped
and piecewise-quadratic. The distribution is characterized by two parameters:
(a) the peak-point, i.e., the point at which = 1, and (b) the bandwidth, 8, which
is defined as the distance between the cross-over points, i.e., the points at which
m = 0.5. Thus, a fuzzy m -number, z, is expressed as (p. 8 ). where p is the peak-
point and 8 is the bandwidth; or, alternatively, as (p, #' ), where g' is the normal-
ized bandwidth, i.e., 8' = 8/p . As a function of u, ug(—w=,=), the values of m, (u)

are defined by the equations

mg(u) =0 for usp—p and u=p+p (A4)

lw

u—p+8)¢ for p—fsusp- %

R

=1 - -:T('u.—p)2 for p—%s'uSp+g-

=%(‘u.—p-ﬁ)’a for p+gﬁusp+ﬁ .

2. s-numbers. As its name implies, the possibility distribution of an s-
number has the shape of an s. Thus, the equations defining an s-number,

expressed as (p/ # ), are:

ne{u) =0 for usp-g (A5)

= ;22-(11. —p+B)? for p—fsu=p —;L
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=1 - %-('u.—;p)2 for p-—%susp

=1 foru=p ,

where g (the bandwidth) is the length of the transition interval from n, = 0 to n,
= 1 and p is the left peak-point, ie., the right end-point of the transition inter-

val.

3. z-numbers. A z-number is a mirror image of an s-number. Thus, the

defining equations for a z-number, expressed as { p\g ), are:

my(u) =0 forusp-g (A8)

= %(u —p+8)? for p—f<u<p- g—

=1 - %—(u-p)z for p—%-s'u.s'p+ﬁ

=0 foru=p+g .,

where p is the right peak-point and g is the bandwidth.

4. s/z-numbers. An s/z-number has a flat-top possibility distribution which
may be regarded as the intersection of the possibility distributions of an s-
number and a z-number, with the understanding that the left peak-point of the
s-number lies to the left of the right peak-point of the z-number. In some cases,
however, it is expedient to disregard the latter restrictions and allow an s/z-
‘ number to have a sharp peak rather than a flat top. An s/z-number is.

represented as an ordered pair (p, / £,:p2\f; ) in which the first element is an



-75-
s-number and the second element is a z-number.

5. z\s-numbers. The possibility distribution of a z-s number is the comple-
ment of that of an s/ z-number. Thus, whereas an s/z-number is a convex fuzzy
subset of the real line, a z\s-number is a concave fuzzy subset. Equivalently, the
possibility distribution of a z\s-number may be regarded as the union of the pos-
sibility distributions of a z-number and an s-number. A z\s-number is

represented as ( p,\8;ipz/ 82 ).

Arithmetic Operations on Fuzzy Numbers

Let * denote an arithmetic operation such as addition, subtraction, multi-
plication or division, and let z*y be the result of applying * to the fuzzy

numbers z and y.

By the use of the extension principle, it can readily be established that the
possibility distribution function of z*y may be expressed in terms of those of z

and y by the relation
gy (w) = Vy g (u) Ty (@)). (A7)
subject to the constraint

w=uw, uvwe(-xcx)

where V., denotes the supremum over u, v, and A g min.

As a special case of a general result established by Dubois and Prade
(Dubois & Prade (1980)) for so-called L-R numbers, it can readily be deduced
from (A7) that if z and y are numbers of the same type (e.g., m -numbers), then
so are z+y and z-y. Furthermore, the characterizing parameters of z+y and z-y
depend in a very simple and natural way on those of z and y. More specifically, if

z=(p, B)andy=(q, 7) then
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() + (@) = (B+a . B+7)
@/8) +(a/7)=(p+q / B+7)
®\8) + (g\7) = (P+g\ f+7)
(o B1: PN H(01/ 75 92NYD)
=(p1+9,/ Fr+e Pet32\11+72)

(p.8) - (g.7) =(p—q . B+7)

and similarly for other types of numbers.

In the case of multiplication, it is true only as an approximation that if z
and y are « -numbers then so is z X y. However, the relation between the peak-

points and normalized bandwidths which is stated below is exact:
®@.8)x(g.7) =@ xq.8 +7) (a8)

The operation of division, z/y, may be regarded as the composition of (a)
forming the reciprocal of ¥, and (b) multiplying the result by z. In general, the
operation 1/y does not preserve the type of ¥y and hence the same applies to

z/y. However, if y is a # -number whose peak point is much larger than 1 and
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whose normalized bandwidth is small, then 1/y is approximately a m -number

defined by '

(.8 2(l/p.(8/P") (A9)

and consequently
®.8)/(3.7) 2 (@/9.(8/p + 779 (A10)

As a Qimple example of operations on fuzzy numbers, suppose that x is a 7
-number (p, f ) and y is a number which is much larger than z. The question is:
What is the possibility distribution of y?

Assume that the relation y >> z is characterized by a conditional possibility
distribution Iy, |,)' (i.e., the conditional possibility distribution of y given z)

which for real values of z is expressed as an s-number

Ty 1s) = (g(2)7 %(2)) (A11)

whose peak-point and bandwidth depend on z.

On applying the extension principle to the composition of the binary rela-
tion >> as defined by (A11) with the unary relation z, it is readily found that y is

an s-number which is approximately characterized by
vy =(gp)/[a@)-9(-A)D. (A12)

In this way, then, the possibility distribution of ¥ may be expressed in terms of
the possibility distribution of z and the conditional possibility distribution of y

given z.
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Because of the reproducibility property of possibility distributions, the
computational effort involved in the manipulation of fuzzy numbers is generally
not much greater than that required in interval arithmetic. The bounds on the
results, however, are usually appreciably tighter because in the case of fuzzy
numbers the possibility distribution functions are allowed to take intermediate

values in the interval [0,1], and not just 0 or 1, as in the case of intervals.
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