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ABSTRACT

The generic term fuzzy quantifier is employed in this paper

to denote the collection of quantifiers in natural languages whose

representative elements are: several, most, much, not many, very

many, not very many, few, quite a few, large number, small

number, close to five, approximately ten, frequently, etc. In our

approach, such quantifiers are treated as fuzzy numbers which

may be manipulated through the use of fuzzy arithmetic and, more

generally, fuzzy logic.

A concept which plays an essential role in the treatment of

fuzzy quantifiers is that of the cardinality of a fuzzy set. Through

the use of this concept, the meaning of a proposition containing

one or more fuzzy quantifiers may be represented as a system of

elastic constraints whose domain is a collection of fuzzy relations

in a relational database. This representation, then, provides a

basis for inference from premises which contain fuzzy quantifiers.

For example, from the propositions "Host Vs are Afc" and "Most

A* are B's," it follows that " Most8 It's are B's," where most2 is the

fuzzy product of the fuzzy proportion most with itself.
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The computational approach to fuzzy quantifiers which is

described in this paper may be viewed as a derivative of fuzzy logic

and test-score semantics. In this semantics, the meaning of a

semantic entity is represented as a procedure which tests, scores

and aggregates the elastic constraints which are induced by the

entity in question.

1. INTRODUCTION*

During the past two decades, the work of Montague and others (Montague

(1974), Partee (1976), Dowty (1981)) has contributed much to our understanding

of the proper treatment of the quantifiers all, some and any when they occur

singly or in combination in a proposition in a natural language.

Recently, Barwise and Cooper and others (Barwise and Cooper (1981),

Peterson (1979)) have describedmethods for dealing with so-called generalized

quantifiers exemplified by most, many, etc. In a different approach which we

have described in a series of papers starting in 1975 (Zadeh (1975a, 1975b. 1977,

1978a, 1978b, 1981a)). the quantifiers in question - as well as other quantifiers

with imprecise meaning suchas few, several, notvery many, etc. —are treated

as fuzzy numbers and hence are referred to as fuzzy quantifiers . As an illus

tration, a fuzzy quantifier such as most in the proposition "Most big men are

kind" is interpreted as a fuzzily defined proportion of the fuzzy set of kind men

in the fuzzy set of big men. Then, the concept of the cardinality* of a fuzzy set

is employed to compute the proportion in question and find the degree to which

it is compatible with the meaning of most.

♦ ftrfArrrmTly, tfrg cardinality offt fmzy setFis areal or fuzzy number which serves asacount
of the number of elements"in" F. A more precise definition of cardinality will be givenin
Sections.
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We shall employ the class labels "fuzzy quantifiers of the first kind" and

"fuzzy quantifiers of the second kind" to refer to absolute and relative counts,

respectively, with the understanding that a particular quantifier, e.g.. many,

may be employed in either sense, depending on the context. Common examples

of quantifiers of the first kind are: several, few, many, notvery many, approxi

mately five, close to ten, much larger than ten, a large number, etc., while

those of the second kind are: most, many, a large fraction, often, once in a

while, muchof, etc. Where needed, ratios of fuzzy quantifiers of the secondkind

will be referred to as fuzzy quantifiers of the third kind. Examples of

quantifiers of this type are the likelihood ratios and certainty factors which are

encountered in the analysis of evidence, hypothesis testing and expert systems.

(Shortliffe (1976), Duda and Hart (1978), Barr and Feigenbaum (1982).)

An important aspect of fuzzy quantifiers is that their occurrence in human

discourse is. for the most part, implicit rather than explicit. For example, when

we assert that "Basketball players are very tall," what we usually mean is that

"Almost all basketball players are very tall." likewise, the proposition. "Lynne is

never late," would normally be interpreted as"Lynne is late veryrarely." Simi

larly, by "Overeating causes obesity," one may mean that "Most of those who

overeat are obese." while "Heavy smoking causes lung cancer." might be inter

preted as "The incidence of lung cancer among heavy smokers is much higher

than among nonsmokers."

An interesting observation that relates to this issue is that property inheri

tance - which is exploited extensively in knowledge representation systems and

high-level Al languages (Barr and Feigenbaum (1982)) - isabrittle property with

respect to the replacement of the nonfuzzy quantifier all with the fuzzy

quantifier almost all.9 Whatthis means is that if in the inference rule**

• Diebrittleness of property inheritance is ofrelevance to nonmonotonic fade, defaulti«a-
•oningand exceptionHandling. ««««*«.*w
••Thesymbol § stands for "denotes** or"isdefined tobe."
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p kail A's are B's

q ball B's are C's

rkallA'sareC's

the quantifier all in p and q is replaced by almost all, then the quantifier all in r

should be replaced by none-to-all. Thus, a slight change in the quantifier all in

the premises may result in a large change in the quantifier all in the conclu

sion.*

Another point which should be noted relates to the close connection

between fuzzy quantifiers and fuzzy probabilities. Specifically, it can be shown

(Zadeh (1975a. 1981b)) that a proposition of the form p &Q A"s are B's, where Q

is a fuzzy quantifier (e.g., p &most doctors are not very tall), implies that the

conditional probability of the event B given the event A is a fuzzy probability

which is equal to Q. What can be shown, in fact, is that most statements involv

ing fuzzy probabilities may be replaced by semantically equivalent statements

involving fuzzy quantifiers. This connection between fuzzy quantifiers and fuzzy

probabilities plays an important role in expert systems and fuzzy temporal

logic, but we shall not dwell on it in the present paper.

As was stated earlier, the main idea underlying our approach to fuzzy

quantifiers is that the natural way of dealing with such quantifiers is to treat

them as fuzzy numbers. However, this does not imply that the concept of a

fuzzy quantifier is coextensive withthat of a fuzzy number. Thus, in the proposi

tion "Vickie is severalyears younger than Mary," the fuzzy number several does

• An example which relates to this phenomenon is: What is rare is expensive. Acheap apart
ment in Perisis rare. Therefore, a cheap apartmentin Paris is expensive. Thisexample was
suggested to the author in a different connection by Professor 0. Botta ofthe University of
Ijvon.
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not play the role of a fuzzy quantifier, whereas in "Vickie has several good

friends," it does. More generally, we shall view a fuzzy quantifier as a fuzzy

number which provides a fuzzy characterization of the absolute or relative car

dinality of one or more fuzzy or nonfuzzy sets. For example, in "Vickie has

several credit cards," several is a fuzzy characterization of the cardinality of the

nonfuzzy set of Vickie's credit cards; in "Vickie has several good friends,"

several is a fuzzy characterization of the cardinality of the fuzzy set of Vickie's

good friends; and in "Most big men are kind," most is a fuzzy characterization of

the relative cardinality of the fuzzy set of kind men in the fuzzy set of big men.

There are propositions, however, in which the question of whether or not a con

stituent fuzzy number is a fuzzy quantifier does not have a clear cut answer.

A simple example may be of help at this point in providing an idea of how

fuzzy quantifiers may be treated as fuzzy numbers. Specifically, consider the

propositions

p 480% of students are single

q A60% of single students are male

r 4 <? of students are single and male

in which r represents the answer to the question "What percentage of students

are single males?" given the premises expressed by p and g.

Clearly, the answer is: 80% x 60% = 48%, and, more generally, we can assert

that:

p&Qiof A's are B's (1.1)

q 4gg of (A on&B)'s are C's

r^QiQz of A's are (BondC)'s
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where Qt and Qz are numerical percentages, and A B and C are labels of non

fuzzy sets or, equivalentiy, names of their defining properties.

Now suppose that Qx and Q2 are fuzzy quantifiers of the second kind, as in

the following example:

p kmost students are single

q Aa little more than a half of single students are male

r &?Q of students are single and male

where the question mark indicates that the value of Qis to be inferred from p

and q.

By interpreting the fuzzy quantifiers most, aUttle more a than half, and Q

as fuzzy numbers which characterize, respectively, the proportions of single stu

dents among students, males among single students and single males among

students, we can show that Qmay be expressed as the product, in fuzzy arith

metic (see Appendix), of the fuzzy numbers most and a little more than a half.

Thus, in symbols,

Q=most ®a little more than ahalf (1*2)

and. more generally, for fuzzy Q's, A's, B's and C's, we can assert the syllogism:

p kQi °f As are B*s (I-3)

g Agg of (AandB)'s are C's

r&Qx®QzOf As are (BandC)'s,

which will be referred to as the intersection/product syllogism. A pictorial

representation of (1.2) is shown in Fig. 1.
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The point of this example is that the syllogism (or the inference schema)

expressed by (1.1) generalizes simply and naturally to fuzzy quantifiers when

they are treated as fuzzy numbers. Furthermore, through the use of linguistic

approximation (Zadeh (1975b), Mamdani and Gaines (1981)) - which is analo

gous to rounding to an integer in ordinary arithmetic —the expression for Qmay

be approximated to by a fuzzy quantifier which is an element of a specified

context-free language. For example, in the case of (1.2), such a quantifier may

be expressed as about a half, or more or less close to a half, etc., depending on

how the fuzzy numbers most, a little more than a half, and close to a half are

defined through their respective possibility distributions (see Appendix).

In our discussion so far, we have tacitly assumed that a fuzzy quantifier is a

fuzzy number of type 1, Le., a fuzzy set whose membership function takes values

in the unit interval. More generally, however, a fuzzy quantifier may be a fuzzy

set of type 2 (or higher), in which case we shall refer to it as an ultrafuzzy

quantifier . The membership functions of such quantifiers take values in the

space of fuzzy sets of type 1, which implies that the compatibility of an

ultrafuzzy quantifier with a real number is a fuzzy number of type 1. For exam

ple, the fuzzy quantifier not so many would be regarded as an ultrafuzzy

quantifier if the compatibility of not so many with 5, say, would be specified in a

particular context as rather high, where rather high is interpreted as a fuzzy

number in the unit interval.

Although the rule of inference expressed by (1.3) remains valid for

ultrafuzzy quantifiers if $ is interpreted as the product of ultrafuzzy numbers

(see Fig. 2), we shall restrict our attention in the present paper to fuzzy

quantifiers of type 1, with the understanding that most of the inference schemas

derived on this assumption can readily be generalized to fuzzy quantifiers of

higher type.
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As will be seen in the sequel, a convenient framework for the treatment of

fuzzy quantifiers as fuzzy numbers is provided by a recently developed

meaning-representation system for natural languages termed test-score seman

tics (Zadeh (1981a)). Test-score semantics represents a break with the tradi

tional approaches to semantics in that it is based on the premise that almost

everything that relates to natural languages is a matter of degree. The accep

tance of this premise necessitates an abandonment of bivalent logical systems

as a basis for the analysis of natural languages and suggests the adoption of

fuzzy logic (Zadeh (1975a, 1977), Bellman and Zadeh (1977)) as the basic con

ceptual framework for the representation of meaning, knowledge and strength

of belief.

viewed from the perspective of test-score semantics, a semantic entity

such as a proposition, predicate, predicate-modifier, quantifier, qualifier, com

mand, question, etc., may be regarded as a system of elastic constraints whose

domain is a collection of fuzzy relations in a database — a database which

describes a state of affairs (Carnap (1952)) or a possible world (Lambert and van

Fraassen (1970)) or, more generally, a set of objects or derived objects in a

universe of discourse. The meaning of a semantic entity, then, is represented as

a test which when applied to the database yields a collection of partial test

scores. Upon aggregation, these test scores lead to an overall vector test score,

t, whose components are numbers in the unit interval, with r serving as a meas

ure of the compatibility of the semantic entity with the database. In this

respect, test-score semantics subsumes both truth-conditional and possible-

world semantics as limiting cases in which the partial and overall test scores are

restricted to (pass, fail) or, equivalently, (true, false) or (1,0).

In more specific terms, the process of meaning representation in test-score

semantics involves three distinct phases. In Phase I, an explanatory database
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frame or EDF, for short, is constructed. EDF consists of a collection of rela

tional frames, i.e„ names of relations, names of attributes and attribute

domains, whose meaning is assumed to be known. In consequence of this

assumption, the choice of EDF is not unique and is strongly influenced by the

knowledge profile of the addressee of the representation process as well as by

the desideratum of explanatory effectiveness. For example, in the case of the

proposition p &Over the past few years Nick earned far more than most of his

close friends, the EDF might consist of the following relations*: INCOME [Name;

Amount; Year], which lists the income of each individual identified by his/her

name as a function of the variable Year; FRIEND [Name; ft], where fi is the

degree to which Name is a friend of Nick; FEW [Number; u], where fi is the

degree to which Number is compatible with the fuzzy quantifier FEW; MOST

[Proportion; fi], in which fi is the degree to which Proportion is compatible with

the fuzzy quantifier MOST; and FAR.MORE [Income 1; McomeB; a], where u is the

degree to which Income 1 fits the fuzzy predicate FAR.MORE in relation to

Incomes. Each of these relations is interpreted as an elastic constraint on the

variables which are associated with it.

In Phase 2, a test procedure is constructed which acts on relations in the

explanatory database and yields the test scores which represent the degrees to

which the elastic constraints induced by the constituents of the semantic entity

are satisfied. For example, in the case of p, the test procedure would yield the

test scores for the constraints induced by the relations FRIEND, FEW, MOST

and FAR.MORE.

In Phase 3, the partial test scores are aggregated into an overall test score,

T , which, in general, is a vector which serves as a measure of the compatibility

* Generally, we follow the practice of writing the names of fuzzy subsets and fuzzy relations
in uppercase symbols.
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of the semantic entity with an instantiation of EDF. As was stated earlier, the

components of this vector are numbers in the unit interval, or, more generally,

possibility/probability distributions over this interval. In particular, in the case

of a proposition, p, for which the overall test score is a scalar, r may be inter

preted - in the spirit of truth-conditional semantics - as the degree of truth of

the proposition with respect to the explanatory database ED (i.e., an instantia

tion of EDF). Equivalently. r may be interpreted as the possibility of ED given p,

in which case we may say that p induces a possibility distribution. More con

cretely, we shall say that p translates into a possibility assignment equation

(Zadeh 1978a)):

*-%, X*)*?. (1.4)

where Fis a fuzzy subset of a universe of discourse U, Xx A^ are variables

which are explicit or implicit inp, and II^ ^ is their joint possibility distri

bution. For example, in the case of the propositionp 4 Danielle is tall, we have

DanieUe is tall -TiHw(ghiiamiMlu, = TALL , (1.5)

where TALL is a fuzzy subset of the real-line, Height(Danielle) is a variable which

is implicit in p, and RffnghUDaniuu*) *s the possibility distribution of the variable

Height (Danielle). Equation (1.5) implies that

Poss [Height (Danielle) =u j=utall fa ).

where u is a specified value of the variable Height (DanieUe) , uTALL(u) is the

grade of membership of u in the fuzzy set TALL, and Poss\X = u\ should be read

as "the possibility that X is u." In effect, (1.5) signifies that the proposition

"Danielle is tall," may be interpreted as an elastic constraint on the variable

Height(Danielle), with the elasticity of the constraint characterized by the
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unary relation TALL which is defined as a fuzzy subset of the real line.

The same basic idea may be applied to propositions containing one or more

fuzzy quantifiers. As a simple illustration, let us consider the proposition

p 4 Vickie has several credit cards,

in which several is regarded as a fuzzy quantifier which induces an elastic con

straint on the number of credit cards possessed by Vickie. In this case, X may

be taken to be the count of Vickie's cards, and the possibility assignment equa

tion becomes

Vickie hasseveral credit cards -♦nCbttlrf(Cbnto(Wcfct,)) =SEVERAL, (1.8)

in which SEVERAL plays the role of a specified fuzzy subset of the integers 1, 2,

.... 10. Thus, if the integer 4, say, is assumed to be compatible with the meaning

of several to the degree 0.8, then (1.6) implies that, given p and the definition of

several, the possibility that Vickie has four credit cards is expressed by

Pass \ Count (Cards ( Vickie ))=4)=0.8

In the above example, the class of Vickie's credit cards is a nonfuzzy set and

hence there is no problem in counting their number. By contrast, in the propo

sition

p 4 Vickie has several close friends

the class of close friends is a fuzzy set and thus we must first resolve the ques

tion of how to count the number of elements in a fuzzy set or, equivalently, how

to determine its cardinality. This issue is addressed in the following section.
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2. CARDINALITY OF FUZZY SETS

In the case of a crisp (nonfuzzy) subset, A, of a universe of discourse, U, the

proposition "u is an element of A," is either true or false, and hence there is just

one way in which the cardinality of A, i.e.t the count of elements of A, may be

defined. However, even though the count may be defined uniquely, there may be

some uncertainty about its value if there is an uncertainty regarding the

membership status of points of U in A.

By contrast, in the case of a fuzzy subset, F, of U, the proposition "u is an

element of F," is generally true to degree, with the result that the concept of

cardinality admits of a variety of definitions. Among them, some associate with

a fuzzy set F a real number, in which case the cardinality of a fuzzy set is non

fuzzy. Others associate with F a fuzzy number, since it may be argued that the

cardinality of a fuzzy set should be a fuzzy number. A brief discussion of these

viewpomts is presented in the following. For simplicity, we shall restrict our

attention to finite universes of discourse, in which case a fuzzy subset, F, of U=

\ult . . . ,Un I may be expressed symbolically as

<F = /u1/u1+...+/zn/un

or, more simply, as

<F = Ai1u1+...+/xnt£n.

in which the term m/Ui, i = 1,..., n, signifies that /^ is the grade of membership

of Ux in F, and the plus sign represents the union.*

• For the most part we shall rely on the context to disambiguate the meaning of +.
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Nonfuzzy Cardinality

A simple way of extending the concept of cardinality to fuzzy sets is to form

the sigma-count (DeLuca and Termini (1972), Zadeh (1972)), which is the arith

metic sum of the grades of membership in F. Thus

EOmnf(.F)42iA*t. i=l n, (2.1)

with the understanding that the sum may be rounded, if need be, to the nearest

integer. Furthermore, one may stipulate that the terms whose grade of

membership falls below a specified threshold be excluded from the summation.

The purpose of such an exclusion is to avoid a situation in which a large number

of terms with low grades of membership become count-equivalent to a small

number of terms with high membership.

As a simple illustration of the concept of sigma-count, assume that the

fuzzy set of close friends of Teresa is expressed as

F = 1/ Enrique + O.Q/Ramon + 0.7/Elie + 0.9/ Sergei + 0.8/ Ron.

In this case,

ECbvnt(F)=l +0.8 +0.7 +0.9 +0.8

=4.2 .

A sigma-count may be weighted, in the sense that if ty=(tu1, . . . ,tun) is an

n-tuple of nonnegative real numbers, then the weighted sigma-count of F with

respect to wis defined by

£Count (Fiw) 4 ZiWifii, i=1 n.
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This definition implies that SCount (F;w) may be interpreted as the sigma-count

of a fuzzy multiset* 'F in which the grade of membership and the multiplicity of

i^, i =l n, are, respectively, /^ and wit The concept of a weighted sigma-

count is closely related to that of the measure of a fuzzy set (Zadeh (1968), Kle-

ment (I981abc)).

Whether weighted or not, the sigma-count of a fuzzy set is a real number.

As was stated earlier, it may be argued that the cardinality of a fuzzy set should

be a fuzzy number. If one accepts this argument, then a natural way of defining

fuzzy cardinality is the following (Zadeh (1977)).

Fuzzy Cardinality**

In this case, the point of departure is a stratified representation of F in

terms of its level sets (Zadeh (1971)). i.e..

F = 2aaFa,

in which the a-level-sets Fa are nonfuzzy sets defined by

Fa 4 \u lMF(u>ai. o <asl,

and

t**rab*-) = *fJLr(u)t utU.

♦A fuzzy multiset, 'F , may be represented as 'F = 2^/^X1^ , in which m* is the
multiplicity ofl^ and fM is the grade of membership ofui inthe fuzzy set .r=£</*</U\.
The multiplicity, frii, is anonnegative real number which isusually, butnot necessarily, an
integer. Thus, a fuzzy multiset may have identical elements, or elements which differ only in
their grade of membership.
•♦ Although it is perhaps a more natural extension of the concept of cardinality than tnc
sigma-count, fuzzy cardinality is a more complex concept and is more difficult to manipu
late. The exposition of fuzzy cardinality inthis section may beomitted on first reading.
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In terms of this representation, there are three fuzzy counts, FCounts, that

may be associated with F. First, the FGCount is defined as the conjunctive fuzzy

integer* (Zadeh (19Bla))

FGCount (F) = 1/ 0+2«a/ Count (Fa), a > 0 .

Second, the FLCount is defined as

FLCount(F) = (FGCount (F))' 01

where * denotes the complement and 01 means that 1 is subtracted from the

fuzzy number FGCount(F). And finally, the FECount(F) is defined as the inter

section of FGCount(F) and FLCount(F), i.e.,

FECount(F) = FGCount (F)f\FLCount (F).

Equivalently —and more precisely - we may define the counts in question via

the membership function of F, Le.,

MFBawuind) ksvpaM Cbunt(Fa)*il i=0. 1 n, (2.2)

M*LCbun«(n(i) 4suptt(a| Count(Fa) ^ n-ij (2.3)

V>FBCbwUiF)(i) 4MFCCbtm«(^(i)AMraCb«nt(JP)(i). (2.4)

where A stands for min in infix position.

As a simple illustration, consider the fuzzy set expressed as

F = 0.8/u,+0.9/u8+l/u3+0.7/u4+0.3/u8. (2.5)

In this case,

•It should be noted that the membership function of a conjunctive fuzzy number is not a
possibility distribution.
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Fx =u3

•^0.9 ~u 2+1*3

Eo.j^U2+U3+U4

^o^u 1+1*2+^3+114

^0.3=** 1+U8+U3+U4+U5,

which implies that, in stratified form, F may be expressed as

^=l(«3)+0.9(uz+lt3)+0.7(tt2+W3+U4)+0.6(u1+ll8+W3+U4)+0.3(u1+U8+U3+U4+U5),

and hence that

FGCount (F)= 1/ 0+1/1+0.9/ 2+0.7/ 3+0.6/ 4+0.3/ 5

FLCount(F)=0.1/2+0.3/ 3+0.4/ 4+0.7/5+1/6+ • • •01

=0.1/1+0.3/2+0.4/3+0.7/4+1/5+ • • •

FECount (F)=0.1/ 1+0.3/ 2+0.4/ 3+0.6/ 4+0.3/ 5

while, by comparison,

ECbitn^/OsO.e+O.g+l.O+O^+O.S

=3.5.

A useful interpretation of the defining relations (2.2), (2.3) and (2.4) may be

stated as follows:
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(a) /AFGQnmtd) is the truth value of the proposition "F contains at least i ele

ments."

(b) ^FLCount(i) if the truth value of the proposition "F contains at most i ele

ments."

(c) fiFEQ>xxnt(i) is the truth value of the proposition "F contains i and only i ele

ments."

From (a), it follows that FGCount(F) may readily be obtained from Fby first

sorting F in the order of decreasing grades of membership and then replacing v*

with i and adding the term 1/0. For example, for F defined by (2.5), we have

Fi = 1/U3+0.9/U2+0.7/U4+0.6/UJ+0.3/U5 (2.6)

NFi = 1/1+0.9/2+0.7/3+0.6/4+0.3/5

and

FGCount(F) = 1/0+1/1+0.9/2+0.7/3+0.6/4+0.3/5,

where Fi denotes F sorted in descending order, and NFi is Fi with iih u

replaced by 1 An immediate consequence of this relation between HCount(F)

and FGCount(F) is the identity

ZCount(F) = £iM«o»un<00-l.

which shows that, as a real number, HCount (F) may be regarded as a "sum

mary" of the fuzzy number FGCount (F).
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Relative Count

Atype ofcount which plays an important role in meaning representation is

that ofrelative count (or relative cardinality) (Zadeh (1975b)). Specifically, if

Fand Gare fuzzy sets, then the relative sigma-count ofFin Gis defined as the

ratio:

% 2Count(FnG) , ?v
Mount(F/ G) = 2Count{G) . <2-7)

which represents the proportion of elements of Fwhich are in G, with the inter

section Ff\G defined by

uFnG(u) =uf(u)/^jlg(u). (2-B)

The corresponding definition for the FGCount is

Count(Far\Ga) ( Qv
FGCountiF/ G) =Sfla/ q,^^) • t2'9'

where the Fa and G« represent the a-sets of Fand G. respectively. It should be
noted that the right-hand member of (2.9) should be treated as a fuzzy multiset,

which implies that terms of the form ax/u and a*/u should not be combined
into asingle term (ax V az)/u, as they would be in the case of afuzzy set.

The ZCount and FCounts of fuzzy sets have anumber of basic properties of

which only afew will be stated here. Specifically, if Fand Gare fuzzy sets, then

from the identity t

oVb +txA6 = a+o

which holds for any real numbers, it follows at once that

*Count{FnG) +ZCount(F\jG) =2Count(F) +ZCount(G) (2.10)
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since

uFnG(u) =fiF(u) A/xc(u) . usU

and

Thus, if Fand Gare disjoint (i.e., Ff}G = tf ), then

ECbunr(FuG) =2Cbune(/T) +2Cbimf(G) (2.11)

and, more generally,

SCoimf(F)v2Cbunf(G)^ECounf(Fu^)^2Cbixnf(F)+SCbunf(C) (2.12)

and

(2Cbun* tF)+2Cbunf (G)-Coim* (C7))*2 Count (Fn G)ss (2.13)

2 Count (F)A2 Cbunt ( G).

These inequalities follow at once from (2.10) and

2 Cbunf (F n G)^2Cbunf (F)

2 Count (F O G)^2Count (G)

2 Cbunf (F \J G)^2Counf (CO-

In the case of FCounts and, more specifically, the FGCount, the identity

corresponding to (2.10) reads (Zadeh (1981ab), Dubois (1981)),

FGCount(Ff\G) ©FGCount(F\jG) =FGCount(F) ®FGCount(G). (2.14)
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where © denotes the addition of fuzzy numbers, which is defined by (see Appen

dix)

VavbM =supvQjLA(v)/\tiB(u-v), u,ve(—.-). (2.15)

where Aand B are fuzzy numbers, and fiA and t*B are their respective member

ship functions.

Abasic identitywhich holds for relative counts maybe expressed as:

* 2Count(/'nC) =SCount (G)2Count (F/ G) (2.16)

for sigma-counts, and as

FGCount (FdG) =FCount (G) ®FGCount (F/ G) (2.17)

for FGCounts, where 8 denotes the multipUcation of fuzzy numbers, which is

defined by (see Appendix)

uA9B(u) =«*.tai(v)/W;r». «.«<—.->- v*° • (2-18)

An inequality involving relative sigma-counts which is of relevance to the

analysis of evidence in expert systems is the following:

ZCount(F/ G)+20mnt(-/7 G)*l <2,19)

=1 if G is nonfuzzy,

where - F denotes the complement of F, te.,

m-j>(*) =i-M*). «•* • (2-20)

Note that (2.19) implies that if the relative sigma-count ZCbunt(F/ G) is
identified with the conditional probability Prob (F/ G) (Zadeh (1981b)). then
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Prob(-F/ G) fe 1-Prob (F/ G) (2.21)

rather than

Prob{->F/G) - l-Prob(F/G), (2.22)

which holds if G is nonfuzzy.

The inequality in question follows at once from

E^(^G)Sfeg^ (2.23)

&i(l-Mr(iifH/tofo)

£<Mf(ut)M<?(ui)
*1-

Ssl -

2iMc(^i)

2<McK)

smce

lo^iyo).^^

This concludes our brief exposition of some of the basic aspects of the con

cept of cardinality of fuzzy sets. As was stated earlier, the concept of cardinal

ity plays an essential role in representing the meaning of fuzzy quantifiers. In

the following sections, this connection will be made more concrete and a basis

for inference from propositions containing fuzzy quantifiers will be established.
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3. FUZZTQUANTOTERSAND CARDINALITY OF FUZET SETS

As was stated earlier, a fuzzy quantifier may be viewed as a fuzzy character

ization of absolute or relative cardinaUty. Thus, in the proposition

p4QAs are B's . where Qis a fuzzy quantifier and Aand Bare labels of fuzzy or

nonfuzzy sets. Qmay be interpreted as a fuzzy characterization of the relative

cardinaUty of BinA. The fuzzy setAwiU be referred to as the base set.

When both Aand Bare nonfuzzy sets, the relative cardinality of B in Ais a

real number and Qis its possibiUty distribution. The same is true if Aand/or B

are fuzzy sets and the sigma-count is employed to define the relative cardinal

ity. The situation becomes more compUcated. however, if an FCount is
employed for this purpose, since Q, then, is the possibUity distribution of acon

junctive fuzzy number.

To encompass these cases, we shall assume that the foUowing propositions

are semanticaUy equivalent (Zadeh (1978b)):

27iere are QA's «» Count (A) is Q C3-1)

QAs are Bs «♦ Prop(B/A) is Q, (3-2)

where the more specific term Proportion or Prop, for short, is used in place of

Count in (3.2) to underscore that Prop(B/A) is the relative cardinaUty of Bin A
with the understanding that both Count in (3.1) and Prop in (3.2) may be fuzzy

or nonfuzzy counts. In the sequel, we shall assume for simpUcity that, except
where stated to the contrary, both absolute and relative cardinalities are

defined via the sigma-count.

The right-hand members of (3.1) and (3.2) may be translated into possibiUty

assignment equations (see (1.1)). Thus we have

Count (A) is Q- TIq^u) ' Q (3'3)
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and

Prop (B/ A) is Q- Up^^/A) = Q, (3.4)

in which Ilcbwn*^) and Tlpnp{B/A) represent the possibility distributions of

Count (A) and Prop(B/A), respectively. Furthermore, in view of (3.1) and (3.2),

we have

There are QA's -» IlcbuniU) = Q (3-5)

QAs are B's + Up^^/A) = Q. (3.6)

These translation rules in combination with the results estabUshed in Sec

tion 2. provide a basis for deriving a variety of syUogisms for propositions con

taining fuzzy quantifiers, an instance of which is the intersection/product syllo

gism described by (1.3), namely,

Qx A's are B 's (3.7)

Q2 (A and B)'s are C 's

Q&Qz A's are (B and C)'s

in which Qlt Qz, At B and C are assumed to be fuzzy, as in

most tall men are fat (3.8)

many tall and fat men are bald

most ® many tall men are fat and bald.

To establish the validity of syUogisms of this form, we shall rely, in the

main, on the semantic entailment principle (Zadeh (1977), (1978b)), and on a

special case of this principle which wiU be referred to as the quantifier
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extension principle.

Stated in brief, the semantic entailment principle asserts that a proposition

p entails proposition g, which we shall express as p -* q or

g

if and only if the possibiUty distribution which is induced by p, TP{xt A^)» is

contained in the possibility distribution induced by g, 11*^ j^j (see (1.4)).

Thus, stated in terms of the possibiUty distribution functions of IP and II9, we

have

2- if and only if n*{Xl x*)***^ ^) (3.9)

for all points in the domain of irp and rr*.

InformaUy, (3.9) means that p entails g if and only if g is less specific than

p. For example, the proposition p 4 Diana is 28 years old, entails the proposi

tion g 4 Diana is in her late twenties, because p is less specific than g, which in

turn is a consequence of the containment of the nonfuzzy set "28" in the fuzzy

set "late twenties."

It should be noted that, in the context of test-score semantics, the inequal

ity of possibiUties in (3.9) may be expressed as a corresponding inequaUty of

overaU test scores. Thus, if 7* and r* are the overaU test scores associated with

p and g, respectively, then

£- if and only if i*St«. (3.10)
Q

with the understanding that the tests yielding rp and r* are appUed to the same

explanatory database and that the inequaUty holds for all instantiations of EDF.
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In our appUcations of the entailment principle, we shaU be concerned, for

the most part, with an entailment relation between a coUection of propositions

Pl Pn and a proposition g which is entailed by the coUection. Under the

assumption that the propositions which constitute the premises are noninterac-

tive (Zadeh (1978b)), the statement of the entailment principle (3.9) becomes:

px if and only if if1 A ••A if* £ rt* (3.11)

7

where if1 fr*\ w* . are the possibiUty distribution functions induced by

Pj Pn*°» respectively, and Ukewise for (3.10).

We are now in a position to formulate an important special case of the

entailment principle which wiU be referred to as the quantifier extenson princi

ple. This principle may also be viewed as an inference rule which is related to

the transformational rule of inference described in Zadeh (1980).

Specifically, assume that each of the propositions pi p» is a fuzzy

characterization of an absolute or relative cardinaUty which may be expressed

as p< 4 Q is <& , i = 1, . . . ,n, in which Q is a count and Q is a fuzzy quantifier,

e.g.

Pi&2Count(B/A)is Q

or, more concretely.

Pi 4 most A's are B's.

Now, in general, a syUogism involving fuzzy quantifiers has the form of a
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coUection of premises of the formpt 4 Q is Qi , i = 1 n, foUowed by a con

clusion of the same form, i.e., g 4 C is Q , where C is a count that is related to

Q q» , and Q is the fuzzy quantifier which is related to Qt Qn . The

quantifier extension principle makes these relations expUcit, as represented in

the foUowing inference schema:

Cxis Qx (3.12)

C is Q,

where Q is given by

// C = g{Cx O then Q=g(Qx $*).

inwhich g is a function which expresses the relation between C and the Q . and

the meaning of Q=g(Qlt . . . , $n) is defined by the extension principle (see

Appendix). Asomewhat more general version of the quantifier extension princi

ple which can also be readily deduced from the extension principle is the follow

ing:

Cx1a Qx (3-13)

C is Q,

where Q is given by

// f(Cx Cn) £ C*g(Cx O then f(Qx On) * Q* 9(Qi $>)•
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As in (3.12). the meaning ofthe inequalities which bound Qis defined by the

extension principle. In more concrete terms, these inequalities imply that Qis a

fuzzy interval which may be expressed as

q =C*/«?i Qn))n(*g(Qi Qn))> (3-14)

where the fuzzy s-number ^ / (Qx On) and the fuzzy z-number

ss g(Qx Qn) (see Appendix) should be read as "at least f(Qx, . . . , $») "and

"at most g(Qx Qn) ." respectively, and are the compositions* of the binary

relations fe and * with / (Qx,..,Qn) and g($i...,G»). In terms of (3.14). then, the

relation between C and Q. may be expressed as:

// f(Cx Cn)*C *g(Cx, ...,Cn) then (3.15)

$= (* / (Qi Qn))n(* 9(Qi On))-

An important special case of (3.12) and (3.15) is one where / and g are arith

metic or boolean expressions, as in

C = Cx C% + G3

and

Cx + Cz - 1 * C £ Cx A Cz .

For these cases, the quantifier extension principle yields

Q = Qi ® Qz © Sa

and

♦ The composition, RoS, of a binary relation R with a -unary relation S is defined by
t*Ros(v) = vi*(Mi?(v.u)AM5(u)) ,UtU,VtV9 where flRt fLS, and /i/fos •*• **
membership functions of R, S and RoS, respectively, and Vu denotes the supremum over U.
Where no confusion can result, the symbol o may be suppressed.
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Q = (&(QxQQzei))n*(Qi®Qz) .

where Q, Qx, Q2 and Q$ are fuzzy numbers, and ® , © and © are the product, sum

and min in fuzzy arithmetic*

We are now in a position to apply the quantifier extension principle to the

derivation of the intersection/product syllogism expressed by (3.7).

Specifically, we note that

Qx As are B's «♦ Prop{B/A) is Qx (3.16)

Qz {A and B)'s are C's » Prop{C/A(^B) is Q2 (3.17)

and

where

Q As are(B and C)'s «• Prop(BC\C/A) is Q, (3.18)

% 71Cbunt(B (}A) ,_ ._.Pr°p(B/A)= ZCQuntlA) (3.19)

«. tn,* *\ zcountUnBnO ,«2nxProp(C/AnB) = 2CQUnt{AnB) <3'20>

^. /» ~,^ HCount(AnBr\C)Prop(BnC/A) = xComU(A) (3.21)

From (3.19), (3.20) and (3.21), it foUows that the relative counts

Ci&Prop(B/A) . Cz&Prop(C/AC\B) and C&Prap(BC\C/A) satisfy the iden

tity

9Where typographical convenience is a significant consideration, a fuzzy version of an arith
metic operation * may be expressed more simply as (•).
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Prop{BnC/A) =Prop(B/A) Prop{C/Af\B). (3.22)

and hence

C = Cx C2 . (3-23)

On the other hand, from (3.16), (3.17) and (3.18), we see that QX,Q2 and Q are

the respective possibiUty distributions of CXtC2 and C . Consequently, from the

quantifier extension principle appUed to arithmetic expressions, it foUows that

the fuzzy quantifier Q is the fuzzy product of the fuzzy quantifiers Qx and Q2 *

i.e.,

Q=Qi®Qz . (3-24)

which is what we wanted to estabUsh.

As a coroUary of (3.7), we can deduce at once the foUowing syllogism:

Qx As are B's (3.25)

gg (A and B)'s are C's

(* (QXQ Q2)) A's are C's,

where the quantifier (^ (Qx $ Q2)) , which represents the composition of the

binary relation fe with the unary relation Qx $ Q2 , should be read as

at least (Qi® Q2) . This syUogism is a consequence of (3.7) by virtue of the ine

quality

ZCount{BC\C) * ZCount(C), (3.26)

which holds for all fuzzy or nonfuzzy B and C. For, if we rewrite (3.7) in terms of

proportions,
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Prop(B/A)is Qx (3.27)

Prop(C/AC)B)is Q2

Prop{Bf\C/A)is (QX®Q2),

then from (3.26) it foUows that

Prop(BC\C/A) is (Qx 3 g8)=> Prop(C/A) is (Jfc (Qx 8 Q2)). (3.28)

Thus, based on (3.28), the syUogism (3.7) and its coroUary (3.25) may be

represented compactly in the form:

Qx A's are Bs (3.29)

Q2JAf\B)'s are C's

(Q^ 8 gg) A's are {B and C)'s

(*(Qx®Q2))As are C's.

As an additional iUustration of the quantifier extension principle, consider

the inequaUty established in Section 2, namely,

0\/(2Count(A) +HCbunt(B)-Cbunt(U))& ZCount(AC\B) (3.30)

£ ZCount(A) A 2Cbim*(£).

Let Q,QX and Q2 be the fuzzy quantifiers which characterize CbECount(A(~)B),

Cx LZCount(A), and C2 &.ZCount{B), respectively. Then

OQ(Qx ©Q&l)* Q*Q\ ®Qz. (3-31)
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where. as stated earUer, e. 8. ®and ®are the operations of sum. product, min

and max in fuzzy arithmetic. Consequently, as a special case of (3.31). we can

assert that in the inference schema

most students are single (3.32)

many students are male

Q students are single and male

Q is a fuzzy interval given by

Q=(fe (0<S< most 0 many 6 1))) n(^( »«»* ®many)) . (3.33)

In more general terms, the inference schema of (3.32) maybe stated as the

conjunction schema:

Qx A's are B's

QvA's are C's

Q A's are (B andC)'s

where

Q = (2>(0® (Qx QQ2Q 1))) C\«Qi ® Qz))

Honotonicity

In the theory of generalized quantifiers (Barwise and Cooper (1981)), a gen

erated quantifier Q is said to be monotonic if a true proposition of the form

p 4 QAs are B's, where A and B are nonfuzzy sets, remains true when B is

replaced by any superset (or any subset) of B. In this sense, most is a
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monotonic generalized quantifier under the assumption that B is replaced by a

superset of B.

In the case of fuzzy quantifiers of the first or second kinds, a similar but

more general definition which is valid for fuzzy sets may be formulated in terms

of the membership function or, equivalently, the possibiUty distribution function

of Q . More specifically:

A fuzzy quantifier Qis monotone nondecreasing (nonincreasing) if and only

if the membership function of Q , u0% is monotone nondecreasing (nonincreas-

ing) over the domain of Q. From this definition, it foUows at once that

Qis monotone nondecreasing o ^ Q = Q (3.34)

Qis monotone nonincreasing o& Q = Q, (3.35)

where, as stated earUer, * Q and £ Q should be read as "at least Q " and "at

most Q, " respectively. Furthermore, from (2.7) it follows that, if BcC, then

Qis monotone nondecreasing <=> (3.36)

Prop(B/A) is $ => Prop(C/A) is Q
4

and

Q is monotone nonincreasing <s> (3.37)

Prop(C/A) is Q=> Prop(B/A) is Q.

If Q is a fuzzy quantifier of the second kind, the antonym of Q, antQ, is

defined by (Zadeh (1978b))

HvaoW = fJL0(l-u). ue[0.l]. (3.38)
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Thus, if few is interpreted as the antonym ofmost, we have

PfbvM =/Xifosr(l-^) . ue[0.1]. (3.39)

Agraphic Ulustration of (3.39) is shown in Fig. 3.

An immediate consequence of (3.38) is the foUowing:

If Qis monotone nondecreasing (e.g., most), then its antonym (e.g., few) is

monotone nonincreasing.

We are now in a position to derive additional syllogisms for fuzzUy-quantifled

propositions and, inter alia, establish the vaUdity of the example given in the

abstract, namely,

most Us are A's (3.40)

jpast A's are B's

most2 Us are &s,

where by Us we mean the elements of the universe of discourse U, and most is

assumed to be monotone nondecreasing.

Specifically, by identifying Ain (3.25) with Uin (3.40). B in (3.25) with Ain

(3.40). Cin (3.25) with B in (3.40), and noting that

UC\A = A.

we obtain as a special case of (3.25) the inference schema

most U's are A's (3.41)

fp.ast As are B 's

>0 (most 6o most} U'a are B 's
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most2 U's are B's ,

where most2 denotes most®most. More generally, for any monotone nonde

creasing fuzzy quantifiers Qx and Q2, we can assert that

Qx Us are As (3.42)

QzA's are Bs

(Qi 8 Q2) Us are Bs.

If one starts with a rule of inference in predicate calculus, a natural ques

tion which arises is: How does the rule in question generalize to fuzzy

quantifiers? An elementary example of an answer to a question of this kind is

the foUowing inference schema:

QxA's are Bs (3 43)
(2t^2) As are Bs *• *» •

which is a generaUzation of the basic rule:

(Bx)p(xy

where Pis a predicate. In (3.43). the inequaUty Q2 * Qi signifies that, as a fuzzy

number. Q2 is less than or equal to the fuzzy number Qx (see Fig. 4).

To estabUsh the validity of (3.43). we start with the inference rule

Q2As are Bs

which is an immediate consequence of the entailment principle (3.9). since the

conclusion in (3.44) is less specific than the premise. Then. (3.43) follows at

once from (3.44) and the containment relation
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QX*Q2=> Qzc(r*Qx) (3-45)

which, in words, means that, if a fuzzy number Qx is less than or equal to Q2,

then, as a fuzzy set, Q2 is contained in the fuzzy set which corresponds to the

fuzzy number "at least Qx, "

In inferring from fuzzUy-quantifled propositions with negations, it is useful

to have rules which concern the semantic equivalence or semantic entailment of

such propositions. In what foUows, we shall derive a few basic rules of this type.

The first rule, which applies to fuzzy quantifiers of the first kind, and to

fuzzy quantifiers of the second kind when the base set, A is nonfuzzy, is the fol

lowing:

QAs are Bs «» (antQ) As are not Bs, (3.48)

where antQ denotes the antonym of Q(see (3.38)). For example,

most men are tall «* (ant most) men are not tall, (3.47)

and

most men are tall * few men are not tall

if few is interpreted as the antonym of most.

To estabUsh (3.48), we note that, in consequence of (3.6), we have

QAs are B's -» TkcnntiB/A) = Q- (3-48>

The possibiUty assignment equation in (3.48) impUes that the test score, Ti ,

associated with the proposition "QA's are B's," is given by

Tx = iiQQ:Count(B/A)) . (3-49)
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where fiQ is the membership function of Q.

Similarly, the test score associated with the proposition

"(antQ) A's are not B's," is given by

Tz^tiamoCZCQunt^B/A)) . (3-50)

Thus, to demonstrate that the two propositions are semantical^ equivalent, it

wiU suffice to show that rx = t8.

To this end, we note that

% 2Cbunt(Ar\("B)) /3>51)
ZCount ^B/A) = ZCount{A)

2iuAut)/\(l-jJLBM)

and. ifAis nonfuzzy. the right-hand member of (3.51) may be written as:

&Mi(Ui)A(l-Mjft'i)) _1_xCount(B/A). (3.52)

Now. from the definition of the antonym (3.38). it follows that

fM^oil - ZCount(B/A)) =uq (Z Count (B/A)). (3.53)

and hence that rx =r2 . which iswhat we had to establish.

In the more general case where Ais fuzzy, the semantic equivalence (3.46)
does not hold. Instead, the foUowing semantic entailment may be asserted:

If Qis monotone nonincreasing, then

Q As are Bs (3.54)
(antQ) A's are not Bs'
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To vaUdate (3.54). we note that in Section 2we have estabUshed the inequaUty

(see (2.19))

1-KCount(-B/ A)*ZCount(B/ A). (3-55)

Now. if Qis monotone nonincreasing, then on application of fiQ to both sides of

(3.55) the inequaUty is reversed, yielding

uQ(l - ZCount(-BZA)) * fiQ(71Count(B/A))

or, equivalently,

li^Q(VCount(-B/A))*UQ®Count(B/A)) . (3.56)

which establishes that the consequence in (3.54) is less specific than the prem

ise and thus, by the entailment principle, is entailed bythe premise.

In general, an appUcation of the entailment principle for the purpose of

demonstrating the vaUdity of an inference rule reduces the computation of a

fuzzy quantifier to the solution of avariational problem or. in discrete cases, to

the solution of anonlinear program. As an Ulustration. we shall consider the fol

lowing inference schema

Qx A's are Bs ^ (3 57)
?Q A's are (very B)'s

where ?Q is the quantifier to be computed; the base set Ais nonfuzzy and the

modifier very is an intensifier whose effect is assumed to be defined by (Zadeh

(1972))

very B = 2B . (3-5B)
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where the left exponent 2 signifies that the membership function of 2B is the

square of that of B.* Since A is nonfuzzy, we can assume, without loss of general

ity, that A= U.

With this assumption, the translation of the premise in (3.57) is given by

Qx Us are Bs -* nrQmn< {B/ tJ) = Qx (3.59)

while that of the consequent is

QUs are *Bs - 1^,*,„ =9 • 0-80)

Let fj.x /^ be the grades of membership of the points ux u^ in B.

Then, (3.59) and (3.80) imply that the overall test scores for the premise and the

consequent are, respectively,

r% *HQjLjpuk) <3-61>

T2 =M(?(^iMi8) • (3-82>

where N = ECount(U).

The problem we are faced with at this point is the foUowing. The premise,

Qx Us are Bs, defines via (3.81) a fuzzy set, Px, in the unit cube

C* s \px nN\ such that the grade of membership of the point

^ s (jjlx iiN) in Px is Ti. The mapping C^ -» [0,1] which is defined by the

sigma-count

ZCount(very B/ U) =J*W . (3-83)

• In earlier paper*, the meanings ofB2 and 2B were interchanged.
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induces the fuzzy set, Q, in [0,1] whose membership function, u.q, is what we wish

to determine. For this purpose, we can invoke the extension principle, which

reduces the determination of fig to the solution of the foUowing nonlinear pro

gram:

HQ(v) =max^^j^W). vc[0,l] , (3.64)

subject to the constraint

v = j^i/M2

As shown in Zadeh (1977), this nonlinear program has an expUcit solution

given by

Hq(v) = /JLQi(y/v)t ve[0.l],

which impUes that

Q = Qx2=Qi*Qv (3.65)

We are thus led to the inference schema

Qx A's are B's

Qx2 A's are (very B)'s

and, more generally, for any positive m and nonfuzzy A

Qx A's are Bs

Qxm As are (mB)'s'

and

Qx A's are mBs

Qx m A's are Bs

(3.66)

(3.67)

(3.68)
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uQlm (v) =uQl(v m), vc[0,1] (3.89)

M911/m(*)=M<?1(i'm). <3'70>

Mm>) =(M*(*))m. uwU. (3.71)

As a simple example, assume that the premise in (3.66) is the proposition

"Most men over sixty are bald." Then, the inference schema represented by

(3.66) yields the syUogism:

most men oversixty are bald (3.72)
most2 men over sixty are very bald

It should be noted that an inference schema may be formed by a composi

tion of two or more other inference schemes. For example, by combining (3.46)

and (3.68), we are led to the foUowing schema:

Qx As are (not very B)'s (3.73)
(ant QX)0B As are Bs

in which the base set Ais assumed to be nonfuzzy. Thus, the syUogism

most Frenchmen are not very tall (3.74)
(ant most)os Frenchmen are tall

may beviewed as an instance ofthis schema (see Fig. 5).

In the foregoing discussion, we have attempted to show how the treatment

of fuzzy quantifiers as fuzzy numbers makes it possible to derive awide variety

of inference schema for fuzzUy-quantified propositions. These propositions were



-41-

assumed to have a simple structure like "Q As are B's," which made it unneces

sary to employ the full power of test-score semantics for representing their

meaning. We shall turn our attention to more complex propositions in the fol

lowing section and wiU' Ulustrate by examples the appUcation of test-score

semantics to the representation of meaning of various types of fuzzUy-quantified

semantic entities.

4. Meaning Representation by Test-Score Semantics

As was stated in the Introduction, the process of meaning representation in

test-score semantics involves three distinct phases: Phase I. in which an expla

natory database frame. EDF. is constructed; Phase II, in which the constraints

induced by the semantic entity are tested and scored; and Phase III, in which

the partial test scores are aggregated into an overall test score which is a real

number in the interval [0,1] or, more generaUy, a vector of such numbers.

In what foUows, the process is Olustrated by several examples in which

Phase I and Phase II are merged into a single test which yields the overall test

score. This test represents the meaning of the semantic entity and may be

viewed as a description of the process by which the meaning of the semantic

entity is composed from the meanings of the constituent relations in EDF.

In some cases, the test which represents the meaning of a given semantic

entity may be expressed in a higher level language of logical forms. The use of

such forms is iUustrated in Examples 4 and 5.

When a semantic entity contains one or more fuzzy quantifiers, its meaning

is generaUy easier to represent through the use ofZCounts than FCounts. How

ever, there may be cases in which a ZCount may be a less appropriate represen

tation of cardinaUty than an FGCount or an FECount. This is particularly true of

cases in which the cardinaUty of a set is low, i.e., is a small fuzzy number like
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several, few, etc. Furthermore, what should be borne in mind is that a HCount

is a summary of an FGCount and hence is intrinsically less informative.

In some of the foUowing examples, we employ alternative counts for pur

poses of comparison. In others, only one type of count, usually the ECount, is

used.

EXAMPLE 1.

SE &several balls most of which are large.

For this semantic entity, we shall assume that EDFcomprises the foUowing rela

tions:

EDF 4 BALL [Identifier; Size] +

LARGE[Size; /jl ] +

SEVERAL [Number; u] +

MOST [Proportion; u ] .

In this EDF, the first relation has n rows and is a list of the identifiers of

balls and their respective sizes; in LARGE, fi is the degree to which a ball of size

Size is large; in SEVERAL, fi is the degree to which Number fits the description

several; and in MOST, fi is the degree to which Proportion fits the description

most.

The test which yields the compatibiUty of SE with ED and thus defines the

meaning of SE depends on the definition of fuzzy set cardinaUty. In particular,

using the sigma-count, the test procedure may be stated as foUows:

1. Test the constraint induced by SEVERAL:

Ti = pSEVERAL[Number =n],

which means that the value of Number is set to n and the value of fi is read,
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yielding the test score rx for the constraint in question.

2. Find the size of each ball in BALL:

Steet = sfBALL[Identifier =IdentifierJ,

i = 1 n.

3. Test the constraint induced by LARGE for each ball in BALL:

VLB(i) = pLARGE[Size = Steffi].

4. Find the sigma-count of large baUs in BALL:

2Cbunt(LB) = SiMi*(0-

5. Find the proportion of large balls in BALL:

PLB =^£iML»(*).

6. Test the constraint induced by MOST:

r2 = nMOST[Proportian =PLB].

7. Aggregate the partial test scores:

r = Ti A Tg,

where r is the overaU test score. The use of the min operator to aggregate

rx and r2 implies that we interpret the impUcit conjunction in SE as the

cartesian product of the conjuncts.

The use of fuzzy cardinaUty affects the way in which r2 is computed.

Specifically, the employment of FGCount leads to:
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r2 = supi(FGCbunt (LB) C\ nMOST),

which expressed in terms of the membership functions of FGCount (LB) and

MOST may be written as

T2 = SUPi (jAFGCvnt (I5)0OAMlfaSr( ~)) •

The rest of the test procedure is unchanged.

EXAMPLE 2.

SE 4 several large balls

In this case, we assume that the EDF is the same as in Example 1. with MOST

deleted.

As is pointed out in Zadeh (1981a), the semantic entity in question may be

interpretedin different ways. In particular, using the so-called compartmental

ized interpretation in which the constraints induced by SMALL and SEVERAL are

tested separately, the test procedure employing the FGCount may be stated as

follows:

1. Test the constraint induced by SEVERAL:

rx 4 pSEVERALlNumber =n] .

2. Find the size of the smallest ball:

SSB 4 siJum^Si3n(BALL) ,

in which the right-hand member signifies that the smallest entry in the

column Size of the relation BALL is read and assigned to the variable SSB

(Smallest Size Ball).
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3. Test the constraint induced by LARGE by finding the degree to which the

smaUest baU is large:

T2 4 pLARGE&ize =SSB].

4. Aggregate the test scores:

T = Tj A r2.

EXAMPLES.

p 4 Hans has many acquaintances and a few close friends most of whom are highly intelligent.

Assume that the EDF comprises the foUowing relations:

ACQUAINTANCE [Name 1; Name 8;u] +

FRIEND [Namel; Name2; /*]+

INTELLIGENT [Name; u]+

MANY[Number;u]+

FEW [Number; u]+

MOST [Proportion; p].

In ACQUAINTANCE, p is the degree to which Namel is an acquaintance of

Name3; in FRIEND, p is the degree to which Namel is a friend of Name2; in

INTELLIGENT, p is the degree to which Name is intelligent; MANYand FEW are

fuzzy quantifiers of the first kind, and MOST is a fuzzy quantifier of the second

kind.

The test procedure may be stated as foUows:
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1. Find the fuzzy set of Hans' acquaintances:

HA 4 Nam9X>tfAACQUAINTANCE[Name2 =Hans],

which means that in each row in which NameZ is Hans, we read Namel and p and

form the fuzzy set HA.

2. Count the number of Hans' acquaintances:

CHAkZCount(HA).

3. Fmd the test score for the constraint induced by MANY:

rx = pMANYlNamel =CHA].

4. Find the fuzzy set of friends of Hans:

FH 4 Nml7(tAFRIEND[Name2 = Hans].

5. Intensify FH to account for ctose (Zadeh (1978b)):

CFH 4 2FH.

6. Determine the count of close friends of Hans:

CCFH 4 ECount ( 2FH).

7. Find the test score for the constraint induced by FEW:

r2 4 pfEWtyumber = CCFH].
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8. Intensify INTELLIGENT to account for highly. (We assume that this is

accompUshed by raising INTELLIGENT to the third power.)

HIGHLY.INTELLIGENT = ^INTELLIGENT.

9. Find the fuzzy set of close friends of Hans who are highly intelUgent:

CFH.HI 4 CFH O "INTELLIGENT.

10. Determine the count of close friends of Hans who are highly intelUgent:

CCFH.HI &JlCbunt(CFH Cl INTELLIGENT).

11. Find the proportion of those who are highly intelligent among the close

friends of Hans:

2Count(CFH Q "INTELLIGENT)
7- ZCount(CFH) '

12. find the test score for the constraint induced by MOST:

Ta 4 fJiOST[Proportixm = y].

13. Aggregate the partial test scores:

T = TiATgATg.

The test described above may be expressed more concisely as a logical

form which is semanticaUy equivalent to p. The logical form may be expressed

as follows:

p * Count ( Namai** ACQUAINTANCE[Name 2 = Hans ]) is MANY A

Count(Nam9XXtA2FRIEND[Name2 = Hans]) is FEW A
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Prop( ^INTELLIGENT/ NamMi^2FRIEND[NameZ = Hans]) is MOST

where A denotes the conjunction.

EXAMPLE 4.

Consider the proposition

p 4 Ouer the past few years Nick earned far more than most of his close friends.

In this case, we shall assume that EDFconsists of the following relations:

EDF4 INCOME [Name; Amount; Year]+

FRIEND\Name; p]+

FEW [Number; /*]+

FAR.MORE [Income1; Income2;p]+

MOST [Proportion; p].

Using the sigma-count, the test procedure may be described as foUows:

1. Find Nick's income in Yean , i = 1.2 counting backward from present:

Mi 4 jtn^ntlNCOME^ame = Nick-, Year = Yeari],

2. Test the constraint induced by FEW:

Pi 4 ^EWtfear = reort].

3. Compute Nick's total income during the past few years:

TIN = EtMt/tfi.

in which the p± play the role of weighting coefficients.
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4. Compute the total income of each Names (other than Nick) during the past

several years:

TINamej = ZiPilName^

where IName^ is the income of Names in Year^

5. Find the fuzzy set of individuals in relation to whom Nick earned far more.

The grade of membership of Namej in this set is given by:

Mnv(JVamij) = pFAR.MORE[Income 1=TIN: Income* =TINamej.

8. Find the fuzzy set of close friends of Nick by intensifying the relation

FRIEND:

CF = *FRIEND.

which impUes that

pcF^amej) =( pFRIEND[Name =Names])2.

7. Using the sigma-count, count the number ofclose friends of Nick:

ZCbunt(CF) =2jP2FRiBND(Namej)-

8. Find the intersection of FM with CF. The grade of membership of Namej in

the intersection is given by

PFUncrWamej) =p^Name^) A pcF(Name$).
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9. Compute the sigma-count of FM f\ CF:

TlCbunt(FMnCF) =2jPFa(N*™>ej) A Pcr(Nom*i)'

10. Compute the proportion of individuals in FM who are in CF.

ZCbunt(FMf\CF)
p- HCount(CF)

11. Test the constraint induced by MOST:

T= fJHOST[Proportion =p],

which expresses the overall test score and thus represents the desired

compatibiUty of p with the explanatory database.

For the proposition under consideration, the logical form has a more com

plex structure than in Example 3. Specifically, we have

Prop(Cfypt/Name,) / 2FRIEND[Name2 =Nick]) is MOST

where

ps =^AR.MORE[Incomel~ TIN;Income2 =TIName^

where Name^ * Nick and

TIN =^PFEwWAmmmtMCOME[Name =NickiYear = Year^]

and

TIName, =̂ PrsfWj^u^MCOME^ame =Namef,Year =WorJ
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EXAHPLE5.

p 4 They like each other.

In this case there is an impUcit fuzzy quantifier in p which reflects the

understanding that not aU members of the group referred to as they must

necessarily like each other.

Since the fuzzy quantifier in p is impUcit. it may be interpreted in many

different ways. The test described below represents one such interpretation and

involves, in effect, the use of an FCount.

Specifically, we associate with p the EDF

EDF 4 THEY[Name]+

LIKE [Namel; Name2; p]+

ALMOST.ALL [Proportion; p],

in which THEY is the Ust of names of members of the group to which p refers:

LIKE is a fuzzy relation in which p is the degree to which Cornel likes Name2;
and ALMOST.ALL is a fuzzy quantifier in which p is the degree to which anumeri

cal value of Proportion fits asubjective perception of the meaning of almost all.

Let pq be the degree to which Name,, likes Mime, . i*j. If there are n
names in THEY, then there are (n2 - n) pjm in LIKE with i*J. Denote the rela

tion LIKE without its diagonal elements by LIKE*.

The test procedure which yields the overall test score t may be described

as follows:

1. Count the number of members in THEY:

nb Count (THEY) .
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2. Compute the FGCount of LIKE*:

C4 FGCount (LIKE*).

Note that in view of (2.6), C may be obtained by sorting the p elements of

LIKE* in descending order, which yields LIKE*I. Thus,

FGCount(UKE*) = NUKE*±.

3. Compute the height (Le., the maximum value) of the intersection of C and

the fuzzy number (n2 - n) ALMOST.ALL:

t = sup(FGCount(LIKE*) n (n2 - n)ALMOST.ALL)

The result, as shown in Figure 6, is the overall test score.

The last two examples in this Section Ulustrate the appUcation of test-score

semantics to question-answering. The basic idea behind this application is the

following.

Suppose that the answer to a question, g, is to be deduced from a

knowledge base which consists of a coUection of propositions:

KB = \px Pnl • C*-1)

Furthermore, assume that the p< are noninteractive and that each Pi induces a

possibUity distribution, IF. which is characterized by its possibUity distribution

function, n*. over a coUection of base variables X = \XX, Xm\. This impUes

(a) thatpt . i = 1 n. translates into the possbUity assignment equation

Pt-»nVt xm)sFi '
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where Fi is a fuzzy subset of U, the cartesian product of the domains of

jl j, . . t , Jijfi» i«e..

U=Uxx-.xUm .

in which £/< is the domain of Xi ; and (b) that the coUection KB induces a com

bined possibiUty distribution II whose possibUity distribution function is given by

*(*! JW =*Vi *»>A "• AtfVi *m) ' <4-2>

In test-score semantics, the translation of a question is a procedure which

expresses the answer to the question as a function of the explanatory database.

In terms of the framework described above, this means that the answer is

expressed as a function of (Xx Xm), i.e.,

ans(q)'f(Xx, . . . ,A^} .

Thus, given the possibiUty distribution II over U and the function /, we can

obtain the possibUity distribution of ans(q) by using the extension principle. In

more specific terms, this reduces to the solution of the nonlinear program:

Mw.(«)(v) =max(Wl tO*^ J^) (ui O (4.3)

subject to

v =/(ulf . . . ,um) ,

where u* denotes the generic value of Xi and ii{£{7< , i = 1 m. An example

of such a program which we have encountered earUer is provided by (3.64).

In many cases, the nonlinear program (4.3) has special features which

reduce it to a simpler problem which can be solved by elementary means. This
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is what happens in the foUowing examples.

EXAMPLE 6.

p x 4 There are about twenty graduate students in his class.

p2 4 77iere ore afew more undergraduate students than graduate students

in his class.

q 4 How many undergraduate students are there inhis class?

Let Cg, C* and D denote, respectively, the number of graduate students,

the number of undergraduate students, and the difference between the two

counts, so that

q, = Cg + D.

Applying the quantifier extension principle to this relation, we obtain

ans (q) = about 20 ® few ,

where ons (q), about 20 and few are fuzzy numbers which represent the possibil

ity distributions of C* ,C9 and D. respectively. Using the addition rule for fuzzy

numbers (see Appendix), the membership function of ons (q) may be expressed

more expUcitly as

Pn, {q)(v )=SUpu (pABOyTZQ(u)*t*FBv(v " «*)) .

EXAMPLE 7.

p4 Brian is much taller than most ofhis close friends

q&How tall is Brian?

FoUowing the approach described earUer. we shall (a) determine the possi

bUity distribution induced by p through the use of test-score semantics; (b)
express the answer to q as a function defined on the domain of the possibUity
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distribution; and (c) compute the possibiUty distribution of the answer.

To represent the meaning of p, we assume, as in Examples 4 and 5, that the

EDF comprises the foUowing relations:

EDF 4 POPULATION [Name; Height] +

MUCH.TALLER [Height 1; Height2; p] +

MOST [Proportion; p] .

For this EDF, the test procedure may be described as foUows:

1. Determine the height of each Nameit i = 1, . . . ,n„ in POPULATION:

*Mi = »igHtPOPULATION[Name = Name^ .

and, in particular,

HB 4 H9lgMPOPULATION[Name =Brian] .

2. Determine the degree to which Brian is much taller than Namei :

pBMT{Nam2i) 4 fJMUCH.TALLER[Heijght 1=HB,Height2 = HN%] .

3. Form the fuzzy set of members of POPULATION in relation to whom Brian is

much taller:

BMT 42</itfjfr(Mimet) / Namei , Namei * Brian .

4. Determine the fuzzy set of close friend of Brian by intensifying FRIEND :

CFB = 8( ^num»\FRIEND[Name2 = Brian])

which impUes that

pCFB(Namei) = ( JPRIEND[Name 1 = Name^. Name2 = Brian])2 . Namei * Brian
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5. Find the proportion of BMT 's in CFB 's:

ZamU(BMT/ CFB) =^BmiName,) A^(/fam.,)
Si Pcfb (Namei)

6. Find the test score for the constraint induced by the fuzzy quantifier most:

t = fJiOS^Proportion = 2 Count (BMT/ CFB)] .

This test score represents the overall test score for the test which

represents the meaning of p. Expressed as a logical form, the test may be

represented more compactly as:

Prop(BMT/ 2(^N9mmXFRIEND[Name2 = Brian]) is MOST .

where the fuzzy set BMT is defined in Steps 2 and 3.

To place in evidence the variables which are constrained by p, it is

expedient to rewrite the expression for r as foUows:

t = Pmost
%ipHT(hB*lk) A PFB2(^om^i)

ZippBZ(Namei)

in which hB is the height of Brian; hi is the height of Namei', pn(Namei) is the

degree to which Namei is Brian's friend; PmtO^b*^) ls ^ne degree to which Brian

is much taller than Namei', and Pmost ls tne membership function of the

quantifier most.

Now the variables Xx, . . . ,Xm are those entries in the relations in the

explanatory database which are the arguments of r , with the value of r

representing their joint possibUity tt(v y )• m the example under considera

tion, these variables are the values of A< &Height (Namei), i = 1 n ; the

values of Puri^-B *^h) '• the values of p^(Namei) ; and the values of
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MceriPrvportioTi) . where ft-oporHon is the value of the argument of MiKOT in
the expression for r .

Since we are interested only in the height of Brian, it is convenient to let

Xx*hB =Height (Brian). With this understanding, the possibiUty distribution
function of Height (Brian) given the values of X2 Xm may be expressed as

Poss [Height (Brian) =u\X2 Xm\ =

S<uirr(u./k) A ppB2(Namei) ]
PUOST EiMfB8(^ame<)

where the range of the index i in 2, excludes Namei =Brian. Correspondingly,

the unconditional possibUity distribution function of Height (Brian) is given by

the projection of the possibiUty distribution 11^ x*) on the domain of Xx.

The expression for the projection is given by the supremum of the possibUity

distribution function of (Xx Xm) over all variables other than Xx (Zadeh

(1978ab)). Thus

Poss\Height(Brian) = u \ =

£mr«r(tt.Ik) A PFs^Namej) )
suP{xz Jif^Mirasr SiMjPB2(JVamei)

EXAMPLE B.

px 4 Most Frenchmen are not tall

p2 4 Most Frenchmen are not short

q 4 What is the average height ofaFrenchman'}

Because of the simpUcity of px and p2 , the constraints induced by the

premises may be found directly. Specifically, using (3.46). px and p8 may be
replaced by the semanticaUy equivalent premises
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p\ 4 ant most Frenchmen are tall

p 'i 4 oni most Frenchmen are short.

To formulate the constraints induced by these premises, let hx, . . . ,hn

denote the heights of Frenchman x Frenchman* , respectively. Then, the

test scores associatedwith the constraints in question may be expressed as

Ti =pant HosT^^iVTAiiOk))

and

t2 =Pant host(T-EiMsffowfo)) •

where

Pantmost(*>) =AHfasr(l-^) . ue[0,l] .

and pTALL and pSH0ST are the membership functions of TALL and SHORT, respec

tively. Correspondingly, the overall test score may be expressed as

T = Tj A tb .

Now, the average height ofaFrenchman and hence the answer to the ques

tion is given by

ans(q) = —Etfy
n

Consequently, the possibUity distribution of ans(q) is given by the solution of the

nonlinear program

Pvm{q)(h) =ma*fct A*(T>
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subject to

h =-i-Si/i*
n

Alternatively, a simpler but less informative answer may be formulated by

forming the intersection of the possibUity distributions of ans(q) which are

induced separately by p\ and p'2. More specifically, let T^na^p^ • ^mxa{q)\p'2 •

^m»(«)lp'i Ap'B be the possibUity distributions ofons(q) which are induced byp\ ,

p'z , and the conjunction of p\ and p'8, respectively. Then, by using the

minimax inequaUty (Zadeh (1971)), it can readily be shown that

and hence we can invoke the entailment principle to validate the intersection in

question as the possibiUty distribution of ons(q). For the example under con

sideration, the possibiUty distribution is readily found to be given by

Poss\ons(q) = h\ = pantmostO^tallQ1)) a Pant most(pshortW) •

Concluding Remark

As was stated in the Introduction, the basic idea underlying our approach to

fuzzy quantifiers is that such quantifiers may be interpreted as fuzzy numbers —

a viewpoint which makes it possible to manipulate them through the use of fuzzy

arithmetic and, more generally, fuzzy logic.

By applying test-score semantics to the translation of fuzzUy-quantified pos

sibilities, a method is provided for inference from knowledge bases which con

tain such propositions — as most real-world knowledge bases do. The examples

presented in this Section are intended to Ulustrate the translation and inference

techniques which form the central part of our approach. There are many
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computationai issues, however, which are not addressed by these examples. One

such issue is the solution of nonlinear programs to which the problem of infer

ence is reduced by the appUcation of the extension principle. What is needed for

this purpose are computationaUy efficient techniques which are capable of tak

ing advantage of the tolerance for imprecision which is intrinsic in inference

from natural language knowledge bases.
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APPENDDC

The Extension Principle

Let / be a function from U to V. The extension principle — as its name

impUes — serves to extend the domain of definition of / from U to the set of

fuzzy subsets of U. In particular, if F is a finite fuzzy subset of U expressed as

/, = /A1/tt1+...+/,lf»/Un

thenf(F) is a finite fuzzy subset of Vdefined as

f(F) = / W«i+-+M»/«») (Al)

= Mi//(ui)+-»+Mn//(tO-

Furthermore, if U is the cartesian product of Ui, . . . , Us* so that

u = (it1, . . . ,uN), u'eC/j, and we know only the projections of F on

U\ Ujt,whose membership functions are, respectively, fipj, . . . .fJLfff, then

f(F) = Zutol*1)* ' ' ' AMBrfu*)//^ u»), (A2)

with the understanding that, in replacing fJ>p(ul uN) vita

^5p(u!)A • • • A fim(uN), we are tacitly invoking the principle of maximal possi

bility (Zadeh (1975b)). This principle asserts that in the absence of complete

information about a possibUity distribution IX we should equate II to the maxi

mal (i.e., least restrictive) possibUity distribution which is consistent with the

partial information about EL

As a simple illustration of the extension principle, assume that £7= Jl, 2, ....

10); / is the operation of squaring: and SMALL is a fuzzy subset of U defined by

SMALL = 1/ 1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5 .
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Then, it foUows from (A2) that the right square of SMALL is given by

SMALL2 41/1 + 1/4 + 0.8/9 + 0.6/ 16 + 0.4/25 .

On the other hand, the left square of SMALL is defined by

2SMALL 41/1 + 1/2 + 0.64/3 + 0.36/4 + 0.16/5

and, more generally, for a subset Fof Uand any realm, we have

MmrM^(pLF(u))m, utU. (A3)

Fuzzy Numbers *

By a fuzzy number, we mean a number which is characterized by a possibil

ity distribution or is a fuzzy subset of real numbers. Simple examples of fuzzy

numbers are fuzzy subsets of the real line labeled small, approximately 8, very

close to 5, more or less large, much larger than 6, several, etc. In general, a

fuzzy number is either a convex or a concave fuzzy subset of the real line. A

special case of a fuzzy number is an interval Viewed in this perspective, fuzzy

arithmetic may be viewed as a generalization of interval arithmetic (Moore

(1966)).

Fuzzy arithmetic is not intended to be used in situations in which a high

degree of precision is required. To take advantage of this assumption, it is

expedient to represent the possibUity distribution associated with a fuzzy

number in a standardized form which involves a small number of parameters —

usually two - which can be adjusted to fit the given distribution. A system of

• Amore detailed exposition of the properties of fuzzy numbers maybe found in Dubois and
Prade (1880).
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standardized possibUity distributions which suits this purpose in most cases of

practical interest is the foUowing (Zadeh (1975b)).

1. it -numbers. The possibUity distribution of such numbers is beU-shaped

and piecewise-quadratic. The distribution is characterized by two parameters:

(a) the peak-point, i.e.. the point at which n = 1. and (b) the bandwidth, /?. which

is defined as the distance between the cross-over points, i.e., the points at which

rr = 0.5. Thus, a fuzzy n -number, x, is expressed as (p, 0 ), where p is the peak-

point and0 is the "bandwidth; or, alternatively, as (p, 0'), where /?' is the normal

ized bandwidth, Le., 0* = fi/p . As a function ofu, ue(—,«). the values ofn9(u)

are defined by the equations

n9(u) =0 for u*p-0 and u&p+p (A4)

Jg-(u-p+/9)8 for p-/fesu:sp-|-

=1- ^L(u-p)2 for p-|-su£p+|-

=JL(u-p-/&)z for p+|^u^p+/? .

2. s-numbers. As its name impUes, the possibiUty distribution of an s-

number has the shape of an s. Thus, the equations defining an s-number,

expressed as (p/ p ), are:

n9(u) =0 for usSp-0 (A5)

=--|-(u-p+0)z for p-/J^u^p-f-
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1- Tg<u-p)2 for p-^u^p

= 1 forit^p ,

where § (the bandwidth) is the length of the transition interval from rrz = 0 to n9

= 1 and p is the left peak-point, Le., the right end-point of the transition inter

val.

3. z-numbers. A z-number is a mirror image of an s-number. Thus, the

defining equations for a z-number, expressed as (p\fi ), are:

n9(u) = 0 toru&p-fi (A6)

Jg-(u-p+0)z for p-jfcsu-sp-|-

1- -g^u-p)8 for p-|^u^p+/S

=0 forufep+0 ,

where p is the right peak-point and 0 is the bandwidth.

4. s/z-numbers. An s/z-number has a flat-top possibiUty distribution which

may be regarded as the intersection of the possibiUty distributions of an s-

number and a z-number, with the understanding that the left peak-point of the

s-number Ues to the left of the right peak-point of the z-number. In some cases,

however, it is expedient to disregard the latter restrictions and allow an s/z-

number to have a sharp peak rather than a flat top. An s/z-number is

represented as an ordered pair (p1 / P\\Pz\§z ) in which the first element is an
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s-number and the second element is a z-number.

5. z\s-numbers. The possibUity distribution of a z-s number is the comple

ment of that of an s/z-number. Thus, whereas an s/z-number is a convex fuzzy

subset of the real line, a z\s-number is a concave fuzzy subset. Equivalently, the

possibUity distribution of a z\s-number may be regarded as the union of the pos

sibUity distributions of a z-number and an s-number. A z\s-number is

represented as (p{\p\\Pz^ Pz )•

Arithmetic Operations on Fuzzy Numbers

Let * denote an arithmetic operation such as addition, subtraction, multi

pUcation or division, and let x*y be the result of applying * to the fuzzy

numbers x and y.

By the use of the extension principle, it can readily be estabUshed that the

possibUity distribution function of x*y may be expressed in terms of those of x

and y by the relation

n9y(w) = VUtV(jr,(u) A nv(v)), (A7)

subject to the constraint

w = u*v , u,v,we(—«,«)

where Vww denotes the supremum over u, v, and A 4 min.

As a special case of a general result established by Dubois and Prade

(Dubois & Prade (1980)) for so-caUed L-R numbers, it can readUy be deduced

from (A7) that if x and y are numbers of the same type (e.g., n -numbers), then

so are x+y and x*y. Furthermore, the characterizing parameters of x+y and x-y

depend in a very simple and natural way on those of x and y. More specifically, if

* = (p. 0 ) and y = (q, y ), then
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(p./5) +(g.7) =(p+? ^+r)

(p//?) +(g/r) =(p+?/ P+7)

(p\/9) + (g\7) =(P+3\0+7)

(pi/fii ;P2\02)+(qi/7i; g2\72)

=G>i+gi/0i+/?e'. pb+92\7i+72)

(p,p)-(g.7) =(p-g •0+7)

and similarly for other types of numbers.

In the case of multipUcation. it is true only as an approximation that if x

and y are tr -numbers then so is x xy. However, the relation between the peak-
points and normalized bandwidths which is stated below is exact:

(p./?')x(g.7') =(pxg./?' +y). (AB)

The operation of division, x/y. may be regarded as the composition of (a)
forming the reciprocal of y. and (b) multiplying the result by x. In general, the
operation 1/y does not preserve the type of y and hence the same appUes to
x/y. However, if yis att -number whose peak point is much larger than 1and
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whose normalized bandwidth is smaU, then 1/y is approximately a n -number

defined by

l/(p,P)2(l/p,(P/p')) (A9)

and consequently

(p.?)/(g.7) - (p/g.(0'/p +7'/g')). (aio)

As a simple example of operations on fuzzy numbers, suppose that x is a tr

-number (p, 0 ) and y is a number which is much larger than x. The question is:

What is the possibUity distribution of y?

Assume that the relation y » x is characterized by a conditional possibiUty

distribution II(yl*) (i.e., the conditional possibUity distribution of y given x)

which for real values of x is expressed as an s-number

ty»l.)-(g(*)/7(«)) (A")

whose peak-point and bandwidth depend on x.

On applying the extension principle to the composition of the binary rela

tion » as defined by (All) with the unary relation x, it is readily found that y is

an s-number which is approximately characterized by

y = (g(p)/[g(p)-g(p-0)])- <A12>

In this way, then, the possibUity distribution of y may be expressed in terms of

the possibUity distribution of x and the conditional possibUity distribution of y

given x.
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Because of the reproducibiUty property of possibiUty distributions, the

computational effort involved in the manipulation of fuzzy numbers is generaUy

not much greater than that required in interval arithmetic. The bounds on the

results, however, are usually appreciably tighter because in the case of fuzzy

numbers the possibUity distribution functions are allowed to take intermediate

values in the interval [0,1], and not just 0 or 1, as in the case of intervals.



fuzzy numbers
(most)®(a little more

than a half)

most

a s be

a little more
than a half

v

Fig. 1. The intersection/product syllogism with fuzzy quantifiers.



ultrafuzzy numbers

Fig. 2. The intersection/product syllogism with ultrafuzzy

quantifiers.
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most

monotone nondecreasing

about a half

Fig. 3. The fuzzy quantifier few as an antonym of most.



> Q.

Fig. 4. The possibility distribution of Q2 and Q.,, with Q„ < Q .
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Fig. 5. The possibility distribution of the fuzzy quantifiers
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most, ant most and (ant most) .
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Fig. 6. Computation of the test score for "They like each other."
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