Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPRESSION AND THE DETERMINISTIC TIME HIERARCHY

by

Faith E. Fich and Shafi Goldwasser

Memorandum No. UCB/ERL M82/4
1 February 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Compression and the Deterministic Titne Hierarchy

Faith E. Fich and Shafi Goldwasser
Computer Science Division
University of California
Berkeley, California 94720

1. Introduction

Throughout this ﬁaper. the model of computation being used is the one tape
deterministic Turing machine. The symbol 7; will be used to denote the i + 1st Turing
machine in the standard enumeration of all one tape Turing machines where i, viewed
as a string, is actually the description of T;. When we are interested in a Turing
machine which computes a specific function f we will use the symbol 7. If T is a Tur-
ing machine then #7[z] denotes the number of steps the Turing machine performs on
input z. The notation |z | is used to represent the length of the number z when writ-

ten in'binary with no leading zeros. In particular, |0| = 0.

In 1968, Hartmanis [3] proved a now well known theorem (Theorem 10) con-

"cerning complexity classes defined by time bounded one tape Turing machines. We
prove a theorem (Theorem 9) similar to Hartmanis's theorem in which "infinitely often”

is replaced to "almost everywhere".- Suppose fa(n) is fully time constructible

(Definition 8) and fa(n) = &(n)f,(n)|f(n)| infinitely often, where £(n) is any un-

bounded function of n. Then Hartmanis asserts there are languages that can be com-

puted in O(fa(n)) steps, but take more than f,(n) steps for infinitely many n. We as-

sert there are languages that can be computed in O(f3(n)) steps, but take more than

f1{n) steps to compute for almost all n. Moreover, our f, and f, satisfy conditions

surprisingly similar to Hartmanis's f, and f,.

2
We obtain our result by developing a new version of the compression theorem
for one tape Turing machines, and then applying it to fully time constructible func-

tions.

In 1980, Rabin [9] proved the existence of arbitrarily cornplek 0-1 valued re-
cursive functions. Later, Blum [2] proved the compression theorem which sets upper
and lower bounds on the number of steps to compute certain of these functions. We
give a new characterization of the functions that can be used as lower bounds in the
compression theorem, in applications to the time complexity of one tape Turing
machines. Our class of lower Sound functions include not only honest functions
(Definition 2) but also functions that are honest up to a polynomial (Definition 4). In

addition we improve the upper bound given by the compression theorem for one tape

Turing machines.

Similar results were obtained independently by Seiferas, Fischer and Meyer in

[12]. Other related results pertaining to space complexity can be found in [8] and [10].
2. Expansion of the Compression Theorem

Let g(z) be any unbounded nondecreasing function of z such that (z) < z for
all z = 0. Furthermore suppose there is a Turing machine which computes £(z) that
takes at most O(z) steps on input z. Intuitively, think of &(z) as a slowly growing, easy
to compute function of z, e.g. &(z) = |z| — 1. Let P(;zl.w) =w|w|e(w) + we(v)|e(w)}

+e(v)v.

Theorem 1 . For every recursive function f there exists a 0-1 valued function g such
that:

1) if T; computes g then #7;[z] > f (z) almost everywhere

and 2) there exists a Turing machine 79 which computes g such that
#79[z] = O(P(Iz .1 () + #1¢[z]).

Proof: The idea is to construct g in stages such that at stage z the value of glz)is
determined. This value of g(z) depends only on those previous stages j for which
0<j=e(lz]), F(G)<e(lz]), and #T'[j]<e(|z|). During stage z, only the firs!

e(|z|) + 1 machines, Ty, . . ., T¢(|2)), are examined.

Given a recursive function f consider the following procedure which succes-
sively defines the value of g(z) forz = 0,1,2, - - -

forz «0,1,2, - - do
begin
compute f (z)
fori « Otoe(|z]) do
run T;[z] for f(z) steps
select the least i such that

1) #Ti[z] = f (=)
2) T; was not cancelled during the computation of g (5)
for any j such that 0 < j < &(|z]),
FG)<e(lz]), and #77[5] = (| z|).
if there is such an i
1if Iy[z]=0

then let g(z) « { 0if T,[z] # 0 //thereby cancelling machine T; //

elselet g(z) « 0
end

Claim 1 . No Turing machine T; gets cancelled infinitely often.

Proof: Suppose T; is cancelled for the first time at stage z. Let Yy be the smallesl
value such that &(|y|)=max{z, f(z), #7'[2]}. Now, for all z=2y, &z|)=z,
e(lz]|)= f(z), and &(|z|) = #T7[2]. Hence during the computation of g(z) the pro-

grams knows that 7; has been cancelled, and thus does not cancel T; again.

Qaim 2 . If T; computes g then #7;[z] > f(z) almost everywhere.

4
Proof: Suppose that T; computes g but #7;[z] < f(z) infinitely often.- Since T, never
gets cancelled, for all z such thati < &(|z|) and #7Ti[z] < f (z), there must exist a Tur-
ing machine T}, ﬁm k <1, that gets cancelled. There are an infinite number of such
z's. Therefore there exists a Turing machine 7}, with & <1, that gets cancelled
infinitely often. This contradicts Claim 1.

The following program computes g(z) quickly. Here CANCELLED is a list con-
taining quadruples (k,i, f(i), #77[i]) indicating that during STAGE() (i.e.
STAGE(i,f (i).#T/[i])) Turing machine 7 is cancelled. For each nonnegative integer
i, there will be at most one quadruple whose second component is i. The quadruples
are kept sorted in increasing order of their second components.

function PSKz)
begin
CANCELLED « ¢
fori « Otoz(|z|) do //perform those stages i for which i, f (i),
and #77[i] are sufficiently small//

begin

run T/ [i] for (|z|) steps

if #77[i]<¢(|z|) and 7 (i) < (| z|)

then perform STAGE(i.f (i).#T7[i])

end
run T/ [z] until it halts // to compute f(z) //
PSIKz) « STAGE(z.f (z).0) // #T/[z] is not needed in STAGE (z)

and computing it would take too much time //

end

function STAGE(i,y,2) // when this function is invoked y = f (i)
and, except wheni = z,z = #77[i].//
begin
fork « Otog(|i|) do
begin
if there is no quadruple (&, 7, f (§), #7/[5]) in CANCELLED such that
gg,s:' se(lil), FG) s e(]2]), and T[] < £(]i])]
in

run Tp[i] for y steps
if T,[1] balts in this time

then

then begin // eancel Turing machine T}, //
if i # z then append (i,y,2.k) to CANCELLED
if Tg{i] =0

then return(1)

else return(0)
end
. - end
end
return(0) // in this case no machine that
affects g (z) will be cancelled
during the ith stage //
end
Claim 3 . There is a one tape Turing machine 79 which implements the program G

such that #79[z] = O(P(|z|.f (z)) + #T/[z]).
Proof: Consider the time taken to compute g (z) by this algorithm.

STAGE(i) is computed for i = z and for alli < &(|z|) such that f (i) < &(|2|)
and #T/[i] < (| z|).

For ‘all quadruples (k,i, f(i),#7/[i]) in CANCELLED, i=¢e(|z]|).
T@)=e(lzl). k =z(|i|)<=e(le(lz])]). and #T/[i]< e(]z|). Thus the length of each
such quadruple is O(|z(|z|)]). At most one quadruple is added to CANCELLED at each
stage and at most £(|z|) + 2 stages are performed. Hence the total length of CAN-
CELLED is O((|z)| e(lz])]).

Determining if there is a quadruple in CANCELLED whose first component is k&
and whose other components are at most £(|i]|) can be done in O(length of CAN“
CELLED) steps. Similarly, to append a new quadruple to CANCELLED takes O(length of
CANCELLED) time.

The simulation of the one tape Turing machine T;[i] for f (i) steps can be ac-
complished on one tape in time f{i)(|k| + |[f(i)|) by carrying both a timer and the
description of 7, along with the tape head. The description of T}, the initial value,

J (i), of the timer, and the input i must be copied to set up the initial configuration for

the simulation. This takes time O(|k| + |f(i)| + |i]).
By assurhption the cost of computing £(]%]) is O(|i]).

The cost of STAGE (i) consists of the cost of computing £(|4|), the cost of con-
trolling the for loop, the cost of appending a new quadruple to CANCELLED if a machine
is cancelled during STAGE(i), and for each iteration of the for loop, the cost of search-
ing CANCELLED and the time taken to simulate machine T[] for f (i) steps. Thus, in
total, the number of steps performed at STAGE(i) is
o(lil +e(lil)(li D] +e(lz])|e(|z])] -

ez ez)] + 2 @ + 7@ +]+ 7@ + 151 1)

k=0

= 0(e(li]) [e(lz D) Ie(lz)| + 7 @) e(|i])] + £ @) 7 @) + 121 D)

To test whether f(i) = e(|z|) and #7/[i] < (| z|) it suffices to run T/[i] for
e(|z|) steps. By carrying a timer along with the tape head, our one tape Turing
machine can perform the computation of 7/[i] for £(|z|) steps, in e(|z|)|e(|z|)]
steps. There is also an associated overhead of i} + |&(]z[)| to initialize the input and

the timer.

The cost of computing G(z) consists of the cost of computing f (z), the cost of
computing &(|z|), the cost of performing STAGE(z), and for each i, 0 s i < &(|z 1), the
cost of running T/[i] for &(|z|) steps and possibly the cost of performing STAGE(i).
Computing f (z) takes #T/[z] steps. By assumption, the cost of computing £(|z|] is
O(|z|) steps. |

Thus the total time taken by the Turing machine which implements PSI(z) is
#77[z1+ 0z | +e(lz]) [e(lzDle(z D + 7 ()| elz D] + | £ (@)]) + =]]+

7

B ez eCz)] + 141 + [s(1z)] + e(i]) ez D)z)] + 76l

=0

+7@Ir@1+141)D
=#T7[z]+ 0(f(z)e(|z IS ()] + 7 (z)e(lz) eIz])] + e(Iz])z])
=0(#77[z] + P(|z].f (z))).

Although our description might seem to indicate the need for multiple tapes,

careful inspection will reveal that only multiple tracks on one tape are required. []
Now we look at what happens when restrictions are placed on the function f-

Definition 2 . let @(v,w) be a total function. A function f:N - N is said to be
@—honest if it is recursive and there exists a Turing machine T/ which computes f

such that #77[z] = 0(Q(|z].f (z))).
This definition is closely related to a definition given in [8].
The following theorem is an immediate consequence of Theorem 1.

Theorem 3 . For every @-honest function f there exists a 0-1 valued function g such
that:
1) if T; computes g then #7;[z] > f (z) almost everywhere
and 2) there exists a Turing machine 79 which computes g such that
#T%[z] = 0(P(lz|, 1 (z)) + @(Iz].f (z))).

A similar result is also obtained for a larger class of functions.

Definition 4 . Let @(v.w) and R(v,w) be total functions. A total function f:N - N is
said to be @-honest mod R if there exists a @-honest function A such thal

R(|z|.J (z)) = h(z) = f(z) almost everywhere.

8

Clearly, if R{v,w)=w almost everywhere then every @-honest function is Q-

honest ‘rnod R. Also note that f is not Q-h.onest mod R if and only if for all @-honest
functions h either h(z) < 7 (z) infinitely often or h(z) > R(|z|.f (z)) infinitely often.

Let R(v,w) be a polynomial which is a nondecreasing function of its variables.

Theorem 5 . For all functions f which are @-honest mod R there exists a 0-1 valued
function g such that:
1) if T; computes g then #7;[z] > f (z) almost everywhere
and 2) there exists a Turing machine 79 which computes g such that
#7%[z] = 0(P(lz|, R(Iz|.f (=) + @(|z .7 (z))).

Proof: Since f is @-honest mod R, there exists a @-honest function h such that
R(|z|.f (z)) = h(z) = f(z) almost everywhere. By Theorem 3 there exists a 0-1 valued
function g such that:
1) if 7, computes g then #T;[z] > h(z) = f (z) almost everywhere
and 2) there exists a Turing machine T that computes g such that #79[z] =
Oo(P(lz|.h(z)) + @Iz |.7(z))) = O(P(Iz], R(|z].f (=) + &(|=|.7(z))). 0]

3. AConverse for the Compression Theorem

Lemma 6 . Let 7 be a Turing machine which halts on all inputs. Then the function
h(z) = #T[z] is a Q-honest function for all total functions @(v,w) such that

@(v,w) = w|w| almost everywhere.

Proof: h(z) can be computed by running T[z] until it halts, keeping count of the
numbér of steps which have been performed on a separate track. This counter is car-

ried along with the tape head so that each step of T[z] can be simulated in at most

9
O{ |h(z)|) steps. Thus h(z) can be computed in O(h(z)|h(z)|) = O(Q(lz|.h(z)))

steps. []

Theorem 7 . If f is not @-honest mod @ for all polynomial bounded functions @(v,w)
then for all polynomials P(v,w) and all Turing machines 7 which compute 0-1 valued
functions
either 1) #T[z] < 7 (z) inﬁnit;ely often
or 2) #T[z] > P(|z|.f (z)) infinitely oftén.

Proof: Suppose f is not @-honest mod @ for all polynomials @(v,w). Let P(v,w) be
any polynomial, let T be any Turing machine which computes a 0-1 valued function,
and let A(z) = #T[z]. Let @(v.w) = P(v.w) + w|w| = P(v,w) for all v,w. Since f is
not @Q-honest mod @ and A is @-honest it follows from Definition 4 that either

h{z) < f(z) infinitely often or h{z) > @(|z|.f (z)) = P(|z|.f (z)) infinitely often. []
4. Examples

The following example illustrates a recursive function f which is not @-honest

mod R for any polynomials @(v,w) and R(v,w).

Consider any language L Z P (i.e. there is no deterministic Turing mcahine
which recognizes L in polynomial time). Define
zifzel
f(z)o-[|zl ifz 2L
Suppose f is @-honest mod R for some polynomials @(v,w) and R{v.w).
Then by Theorem 5 there exist a polynomial Py, g{v.,w) and a 0-1 valued function g such
that:

1) if T; computes g then #T;[z] > 7 (z) almost everywhere

10
and 2) there exists a Turing machine 79 which computes g such that

#79[z] = 0(Por(lz].f (2))).

Let y be such that, for all z >y, #79[z] < Por(lz|.f (z)), #T7[z]> 1 (z).

and s(z) > Por(lz|.|z|). Suchay must exist.

Now #T9[z] < Pop(lz|.|z|) if and only if z € L for all z >y. If z € L, then
#T7[z] > f(z) =z > Par(lz]|.|z|). Conversely, suppose z € L. Then f(z) = |z| and
#79[z] < Por(lz|.f (z)) = Par(lz|.|z]).

Consider the following Turing machine T which recognizes L. For z <y use
table look-up to determine whether z € L. For z >y run 79[z] for PQ.R(IzI.lz])
steps. If T[z] halts in this time then z € L and T accepts; otherwise z € L and T% re-

jects. Clearly, #TE[z] < P(|z|.|z|) almost everywhere. Thus L € P which contradicts

our choice of L.

)

m el //‘
— €L
* -/' - —a— X

Figure 1. A function which is not Q-honest mod R.

11

Hence f is not @-honest mod R for any polynomials @(v,w) and R(v,w). The
same result would be true if

s(lz])ifz e L
f(z)"{r(lzl);fzzL

Where r(u) is a polynomial function of « and s(u) is a recursive function which is not

bounded by any polynomial function of w.

- el
— gL

Figure 2. A function which is not Q-honest but is Q-honest mod R.

Let ¢ > 1 be a constant. For any polynomial @{v,w)= |c|v and any polyno-
mial R(v,w) > w? there is a recursive function which is @-honest mod R but not @-

honest.

Consider any language L & P. Define

ez ifz €L
f(’)“{z-ifz ¢L

12

Let h(z) = cz. ‘Then R(lz|.f (z)) = f¥z) = h(z) = F (z) almost everywhere -
and the number of steps to compute h(z) = 0(|z|) = 0(@(|z|.h(z))). Hence f is @-

honest mod X.

Since @(|z|.f{(|z|)) is polynomial function of |z| and L €P it follows that
7 (z) cannot be @-honest.

5. Implications for the Deterministic Time Hierarchy
The following definition is from [8] and [3].

Definition 8 . A function f(n):N - N is said to be fully time constructible if there

exists a Turing machine T such that #T[z] = f(|z|) for all z = 0.

Most well known functions are fully time constructible. One consequence of a
function f being fully time constructible is that f (n)=n for all » = 0. Another is the

following theorem, mentioned in the introduction.

Theorem 9 . Let f; be a fully time constructible function, and let &(z) be an un-
bounded nondecreasing function of z such that &(z) <z for z = 0 and which can be
computed in O(z) steps. For all total functions fp such that
rlz)=e(lz])f1{lz])lf(lz|)| almost everywhere, there exists a language L with
characteristic function g such that
1) for all Turing machines T; that compute g, #7;[z] > f1(]z|) almost everywhere
and 2) there exists a Turing Machine 79 that computes g such that
#9[z]=0(s(Iz])).

~ Proof: Let h(z) =f,(|z|). Then, by Lemma B, h is @-honest for @(v.w)=w|w].

13
From Theorem 3 it follows that there exists a 0-1 valued function g such that ’
1) for all Turing machines T; that compute g, #Ti[z] > h(z) = f.(lz|) ah;nost
everywhere
and 2) there exists a Turing Machine 79 that computes g such that #79[z] =
o e(lzDrz) | n(z)| + e(lzDh(z)le(lz)] + e(lz])iz! + h(z)|R(z)]).
But h(z) = f1(lz]) = |z| > &(|z|). Therefore $79[z]=0(e(lz])f (Iz)If:(Iz])]) =
o(f=(lz ().

3

sa\ost‘
/ #TS
A 3
g
R

Figure 3. An illustration of the relationship between f,, f2 aﬁd #7T9 in Theorem 9.
Now compare this with Hartmanis's theorem ([3], [8]).

Theorem 10 . Let f (n) be a fully time constructible function, and let £(n) be any
slow growing, unbounded function of n. Then for every total function f,(n) such that

J2(n)=e(n)f(n)| £ {n)| infinitely often there exists a language L with characteristic
function g such that

1) for all Turing machines T; that compute g, #7;[z] > 7 ,(|z|) infinitely often

14
ie. L @ DTIME(f (Iz)))

and 2) there exists a Turing machine 77 that computes g such that
#79[z] = 0(f2(lz|)) ie L € DTIME(f (| z|)).

Figure 4. An illustration of the relationship between f,, f2, and #7¥9 in Theorem 10.

~ The major difference between this theorem and previous one is that this
theorem only shows that all Turing machines which compute g must run slowly
infinitely often whereas Theorem 9 shows that all Turing machines which compute g
must run slowly almost everywhere. Notice that this corresponds to the difference in
the relationship between f, and f, in the two theorems,. i.e whether
f2(n)=ze(n)f(n)| f1(n)| infinitely often or almost everywhere. This is illutsrated in
figures 3 and 4.

Our theorém requires f, to be fully time constructible and f, to merely be
total, as compared to Hartmanis’s theorem, which requires fz to be fully time con-

structible and f, to be total. This is a consequence of the way the two theorems are

LN

15
total, as compared to Hartmanis's theorem, which requires f, to be fully time con-
structible and f, to be total. This is a consequence of the way the two theorems are .
proved. Hartmanis does a diagonalization over all Turing machines whiéh run "slower”
than f5. On the other hand, we perform a diagonalization over all Turing machines

which run “faster” than f,.

We do have to pay a small price for the improved result. The function ¢ in the
statement of our theorem is restricted to be something which is "easy to compute®

rather than being an arbitrary unbounded function.
Acknowledgements

We would like to thank Manuel Blum who suggested this problem to us and
gave us vast amounts of encouragement and ins.ight. This research was supported by a
Natu;al Science and Engineering Research Council of Canada Postgraduate Scholar-
ship, National Science Foundation Grant MCS79-15763, and National Science Foundation
Grant MCS79-03787.

Bibiliography

[1] Borodin, A., Computational Complezity and the Existence of Complezity Gaps, JACM
19:1, 1972, 158-174.

[2] Blum, Manuel, A Machine-Independent Theory of the Complexity of Recursive Func-
tions, JACM 14:2, 1967, 322-336.

[3] Hartmanis, J., Computational Complezity of One-Tape Turing Machine Computa:
tions, Functions, JACM 15:2, 1968, 325-339.

[4] Hartmanis, J., and Hoperoft, J. E., An Overview of the Theory of Computational Cam-
plezity, JACM 18:3, 1971, 444-475.

[5] Hartmanis, J., and Stearns, R. E., On the Computational Complezity of Agorithms,
Trans. Amer. Math. Soc.117, 1965, 285-308.

[8] Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and

	Copyright notice 1982
	ERL-82-4

