

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE WAVEFORM RELAXATION METHOD FOR TIME DOMAII

ANALYSIS OF LARGE SCALE INTEGRATED CIRCUITS:

THEORY AND APPLICATIONS

by

Ekachai Lelarasmee

Memorandum No. UCB/ERL M82/40

19 May 1982

THE WAVEFORM RELAXATION METHOD FOR TIME DOMAIN ANALYSIS OF

LARGE SCALE INTEGRATED CIRCUITS: THEORY AND APPLICATIONS

by

Ekachai Lelarasmee

Memorandum No. UCB/ERL M82/40

19 May 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

The Waveform Relaxation (WR) method is a new decomposition method for

solving a system of mixed implicit algebraic-differential equations over a given

time interval. This method essentially uses an iterative relaxation scheme such

as the Gauss-Seidel relaxation or the Gauss-Jacobi relaxation in which the ele

ments of the relaxation are waveforms of unknown variables. The decomposed

system obtained through the relaxation scheme is also a system of mixed impli

cit algebraic-differential equations but is much easier to solve than the original

system.

The application of this method in the area of time domain simulation of

integrated circuits is emphasized. Although the TO method has a theoretical

basis, it can be given a simple physical interpretation when applied to the

analysis of integrated circuits. In particular, the convergence conditions of the

method can be given either in terms of the numerical properties of the circuit

equations or in terms of the properties of the circuit components. This method

is shown to be a viable alternative to the conventional techniques for simulating

large scale integrated circuits since sufficient conditions for its convergence are

quite mild and are always satisfied by a large class ofpractical circuits.

The performance of the TO method when applied to a particular class of cir

cuits, i.e., MOS digital integrated circuits, are studied and evaluated via a proto

type simulator called RELAX. The repetivity and directionality of digital subcir-

euits as well as the digital nature of the signals are exploited in the simulator to

increase the speed of computation and to utilize the storage efficiently. Prelim

inary comparisons between RELAX and the standard circuit simulator SPICE

have shown that RELAX is fast and reliable for simulating MOS digital integrated

circuits.

Acknowledgements

I am deeply grateful to my research advisor, Professor Alberto L.

Sangiovanni-Vincentelli, who introduced me into the exciting area of computer-

aid design and optimization and has consistently guided me with enthusiasm

throughout the course of my graduate study.

I appreciate the scholarship from the Anandamahidoi Foundation (Bangkok,

Thailand) which has given me the financial support in persuing my graduate

study here at U.C. Berkeley. I also appreciate the research grants from Harris

Semiconductor Corporation, IBM Corporation and Joint Services Electronic Pro

gram contract F49620-79-C-0178.

I wish to express my sincere thanks to Professor A.R. Newton, Dr. Albert E.

Ruehli from IBM Research Center and J.P. Spoto from Harris Semiconductor for

many useful and stimulating discussions necessary for the progress of this work

and to the DELIGHT creatorWilliam T. Nye for numerous assistances in program

ming. I also wish to express the pleasure of my association with many friends:

Dr. M.J. Chen. Dr. V.H.L. Cheng, G. DeMicheii, C.L. Gustafson, R.J. Kaye. M. Lowy,

W.T. Nye, D.C. Riley, Dr. V. Visvanathan and the Projectile people of Ridge Pro

ject.

Finally, I wish to express my special gratitude for the inspiration and caring

provided by my dearest parents: Yothin and Yuwadee.

Table of contents

Chapter 1: Introduction 1

Chapter 2: Overview of Simulation Techniques 4

2.1 Standard Simulators 5

2.2 Decomposition 8

2.2.1 Tearing Decomposition 10

2.2.2 Relaxation Decomposition 13

2.2.2.1 Timing Simulation 16

2.2.3 Concluding Remarks 21

Chapter 3: The Waveform Relaxation Method 31

3.1 Mathematical Formulation 31

3.2 The Assignment-Partitioning Process 32

3.3 The Relaxation Process 33

3.4 Circuit Examples and Their Physical Interpretations 35

Chapter 4: Consistency of the Assignment-Partitioning Process 41

4.1 Definition of Consistency and Examples 41

4.2 The Formal Approach for Finding and Checking

a Consistent AP Process 47

Chapter 5: Convergence of the WR Method 56

5.1 Contraction Theorems in Functional Space 56

5.2 Convergence of the Canonical WR Algorithm 59

5.3 Existence of the Canonical WR Algorithm 64

u

Qiapter 6: WR Algorithms for Simulating Large Scale

Integrated Circuits 71

6.1 Nodal Circuit Equations and the WR Algorithm 72

6.2 Modified Nodal Equations and the WR Algorithm 75

6.3 Guaranteed Convergence of WR Algorithms for

MOS Circuits 77

6.4 WR Algorithm with Adaptive MOS Models 80

Chapter 7: RELAX: An Experimental MOS Digital Circuit Simulator 89

7.1 Basic Algorithms in RELAX 89

7.2 Scheduling Algorithm 90

7.3 Latency and Partial Waveform Convergence 93

Chapter B: Organization of RELAX 99

8.1 Look-ahead Storage Buffering Scheme 102

Chapter 9: Performance of RELAX 107

Chapter 10: Conclusion 114

References 116

Appendix A: Proofs of Theorems and Lemmas A.1

Appendix B: The Use of Iteraive Nonlinear Relaxation Methods

in Tune Domain Simulation of MOS circuits B.l

in

Chapter 1

Introduction

Simulation programs have proven to be effective software tools in evaluat

ing or verifying the performance of integrated circuits during the design phase.

Circuit simulators such as SPICE [l] and ASTAP [2] have been widely used by cir

cuit designers to provide accurate electrical analysis of the circuits being

designed. Although these simulators are designed to perform many types of

analysis such as "dc" analysis, small signal (or "ac") analysis and time domain

(or "transient") analysis, the majority of the use of these simulators in present

day circuit design is in the latter area of time domain analysis, the most compli

cated and expensive type of analysis.

In this dissertation, we shall focus on time domain or transient circuit

simulation. This type of simulation involves the solution of a system of

differential equations describing the circuit. The most common approach to

solving the circuit equations in time domain analysis consists essentially of the

use of three basic numerical methods: an implicit integration method, the

Newton-Raphson method and the sparse Gaussian Elimination method. We refer

to this approach as the standard simulation approach. Circuit simulators that

use this standard approach (such as SPICE and ASTAP) are called standard cir

cuit simulators. The bulk of the storage and computation of the standard simu

lation approach lies in the process of formulating and solving a system of linear

algebraic equations simultaneously. It turns out [3] that both the storage and

computer time required by standard circuit simulators grow rapidly as the size

of the circuit, measured in terms of circuit components, increases. Hence, the

cost-effective use of standard circuit simulators for performing transient simu

lation has been generally limited to circuits having a few hundred devices (e.g.

transistors) or less.

As we move into the era of VLSI (Very Large Scale Integrated) circuits, the

demand for simulating larger and larger circuits is continuously growing. It is

clear that to simply extend simulation techniques used by standard simulators

to circuits containing over 10,000 devices is not practical. Hence new algorithms

and simulators must be developed. A survey of these algorithms is given in [4].

These new algorithms include, for example, Block LIT factorization, the Tearing

Algorithm for solving linear algebraic equations, the Multilevel Newton-Raphson

algorithm and timing simulation algorithms. A common theme underlying all

these algorithms is the use of large scale system decomposition.

The purpose of this dissertation is to introduce another decomposition

method for time domain simulation. This method is called the Waveform Relaxa

tion (WR) method. The idea behind the development of this method originated

from a study of the work of Newton [5] who formulated the timing simulation

algorithm in the form of a relaxation technique for solving the nonlinear alge

braic equations associated with the discretization of the circuit differential

equations. In the WR method, relaxation decomposition is applied at the level of

differential equations whereas, in other previously proposed decomposition

methods, decomposition is applied at the level of (linear or nonlinear) algebraic

equations. Both theoretical and computational aspects of the WR method will be

discussed in detail. In particular, the development of an experimental program

for simulating MOS digital integrated circuits based on the WR method is

described. The program is named RELAX. Preliminary tests of the program and

its performance comparison with SPICE indicate that the WR method is highly

suitable for analysing this type of large scale integrated circuits.

The organization of this dissertation is as follows. In Chapter 2, we give a

brief review of the standard simulation approach and a comprehensive discus-

sion and classification of various decomposition techniques. The rest of this

thesis can be subdivided into two parts. The first part, consisting of chapters 3,

4 and 5, describes the WR method and its numerical properties in a purely

mathematical context. The second part, consisting of chapters 6 to 9, deals with

the WR method in a circuit simulation context. A brief description of these two

parts is given below.

In Chapter 3, the mathematical description of the WR method together with

the concepts of a decomposed system and the assignment-partitioning process

are given in Chapter 3. In Chapter 4, the effect of the assignment-partitioning

process of the WR method on the dynamical behaviour of the decomposed sys

tem is described and the concept of consistency of the assignment-partitioning

process is presented. An algorithm based on graph theory to produce a con

sistent assignment-partitioning process is also described. In Chapter 5, conver

gence properties of the WR method are fully discussed by using contraction

mappings in functional spaces. Sufficient conditions for convergence of the WR

method are given and convergence of the WR method using an adaptive error

control mechanism is also discussed.

We begin the second part of this thesis by specializing the WR method to the

analysis of VLSI MOS circuits in Chapter 6. Two WR algorithms are described and

are shown to converge under very mild and realistic assumptions. In Chapter 7,

the details of a few important techniques in implementing the WR method in

RELAX are given. The organization of the program is described in Chapter 8 and

its experimental results are given in Chapter 9.

Finally, the proofs of all theorems and lemmas are given in Appendix A and

in Appendix B we explore the use of iterative techniques to improve the numeri

cal properties of timing simulation algorithms.

Chapter 2

Overview of Simulation Techniques

Time domain simulation of a continuous dynamical system, such as an

integrated circuit, traditionally uses three basic (or conventional) numerical

methods.

a) An implicit integration method which approximates the time derivative

operator with a divided difference operator.

b) The Newton-Raphson (NR) method for solving a system of nonlinear alge

braic equations.

c) The Gaussian Elimination (GE) method for finding the solution of a system of

linear algebraic equations.

The integration method transforms ordinary differential equations into a

discrete time sequence of algebraic equations. If the differential equations are

nonlinear, the discretized algebraic equations are also nonlinear and can be

solved by the NR method. The NR method in turn transforms nonlinear algebraic

equations into a sequence of linear algebraic equations which is solved by the GE

method. This hierachical organization of numerical methods is shown in Fig. 2.1.

When certain structural and/or numerical properties of a given system of

equations are met, the system can be solved efficiently by using the so called

decomposition techniques. By decomposition, we mean any technique that

allows several subsets of the given equations to be solved individually by using

conventional numerical methods. In our opinion, decomposition is indispensible

in simulating efficiently large scale dynamical systems such as large scale

integrated circuits. Various decomposition techniques have been proposed in

the circuit simulation literature. A survey of these techniques is given in [4].

In this chapter, we will briefly review the direct applications of the conven

tional numerical methods in what we call standard simulators, such as SPICE [l]

and ASTAP [2]. Then we will describe the basic concepts and properties of two

fundamental approaches to achieving system decomposition, which have led to

the development of several simulators such as SPLICE [5], MOTIS [6], MACRO [7],

SLATE [8], DIANA [9], SAMSON [10] and CLASSIE [11].

2.1. Standard Simulators.

We define a standard simulator to be a simulator that directly applies the

conventional numerical methods (i.e., an implicit integration method, the NR

method and the GE method) to the solution of the system of equations describ

ing the behaviour of the circuit to be simulated. Typically, the circuit equations

can be written in the following form

f(x(t)tx(t),u(t)) = 0; z(0)=z0 C2-1)

where x(t) e jC is the vector of the unknown circuit variables, u(t) e if is the

vector of the independent (or input) variables, xQ € K? is the given initial value

of x and/ : RPxEf*xRf-»R? is a continuous function. Let fa ;i =0,1,...,JVJ denote

a sequence of increasing timepoints selected by the simulator with 10 = 0 and

t# = T where T is the given simulation time interval

By applying an implicit integration method, the system of equations (2.1) is

transformed into a discrete time sequence of algebraic equations by replacing

xfa) with an approximating formula

xfa) « A(x(0) i = 1.2.-.JV (2-2)

Hence, the resulting algebraic equations at time £* can be written as

/(Afe).^.u,) i g(n) = 0 (2-3)

6

where re* denotes the computed value of xfa) and u+ = ufa).

The fact that the approximating formula can be chosen in a variety of ways

gives rise to a number of integration methods with different numerical proper

ties, i.e., order of consistency convergence and stability [12]. The most com

monly used approximating formulae in the circuit simulation are the Backward

Differentiation (BD) formulae of order 1 to 6 [12] and the Trapezoidal formula

[12]. For example, the first order BD formula, also known as the Backward Euler

(BE) formula, is given by

A(,ft» - 'ty-'k-'* (2.4a)

and the Trapezoidal formula is given by

ACxft)) = 2«fa>-»<*-»> - ift.,) (2.4b)
H "~ H-l

To advance the timepoint, the timestep h^ k t% - *<_! is normally selected to

ensure that the local truncation error [12] associated with the approximating

formula is within the prescribed tolerance. The computation of the local trunca

tion error requires that (2.3) be solved accurately.

The solution of (2.3) is obtained in a standard simulator by directly applying

the NR method. To start the NR iteration, an initial guess xf, called a predictor,

of the solution is obtained through a prediction step that uses the information of

the past trajectories of x. For example, a simple linear extrapolation of the past

trajectories gives the following predictor (also known as the Forward Euler pred

ictor).

x? = Xi^+ ^-Oc^-x,^) (2.5)
"4-1

The iteration equation of the NR method is given by

fjfeMM-**-1] = -ffW-1) *-lA... (2-6)

where f^-(xf_1) denotes the Jacobian matrix of (7 evaluated at xf_1 and *
ox

denotes the NR iteration count. The NR iteration is carried out until the conver

gence is achieved.

The solution of (2.6) is obtained in a standard simulator by directly applying

the GE method. In circuit simulation environments, the coefficient matrix of

(2.6) is usually very sparse, i.e., the matrix -£— has very few nonzero elements

per row. Hence the GE method is usually implemented in standard simulators by

using sparse matrix techniques [1,28]. It is important to exploit the sparsity of

(2.6) since the computational complexity of the GE method applied to annxn

full matrix is proportional to n3 whereas the computational complexity of the GE

method using sparse matrix techniques is on the average [1] proportional to

n" ; a € [1.2,1.5].

Standard circuit simulators such as SPICE [l] and ASTAP [2] have proven to

be reliable and effective when the size of the circuit, measured by the number of

circuit components, is small. As the size of the circuit increases, the primary

storage and computer time used by these simulators increase rapidly [3]

despite the use of sparse matrix techniques. It has been estimated [13] that the

simulation of a circuit containing 10,000 Metal-Oxide-Semiconductor (MOS)

transistors from t=Q to *=1000ns, using SPICE on an IBM 370/168 computer,

would take at least 30 hours of computer time. Hence, the cost effective use of

standard circuit simulators has been limited to circuits which are considered

small in today VLSI technology.

8

2.2. Decomposition.

Decomposition refers to any technique that subdivides the problem of solv

ing a system of equations into several subproblems. Each subproblem

corresponds to solving a subset of equations, called a subsystem, for a subset of

the system variables. Decomposition can be applied at any level of equations,

i.eM differential equations, nonlinear algebraic equations and linear algebraic

equations. In effect, the system of equations, no matter at what level it is, is

viewed by a decomposition technique as a composition of several subsystems (of

the same level of equations) with interactions between them. When the system is

decomposed into subsystems, the solution of each subsystem is in general car

ried out by using the conventional numerical techniques that we have described

earlier in the previous section.

There are two different approaches to achieving system decomposition,

namely the tearing approach and the relaxation approach. These two

approaches are characterized by different ways of updating the interactions

between subsystems and by different numerical properties. Tearing is the

approach that aims at exploiting the block structure of the system to achieve

decomposition while maintaining the numerical properties of the numerical

method that is used to solve the system. Hence, the computational complexity

of this approach depends critically on the structure of the system. Clearly, this

approach does not provide any gain over conventional numerical techniques

when the system structure is not sparse or when the block structure of the sys

tem cannot be exploited. On the other hand, relaxation is the approach that

decomposes the system into subsystems so as to reduce the complexity of the

solution of the decomposed system regardless of whether the system structure

is sparse or not, i.e., the decomposed system is always easier to be solved than

the original one. However, the numerical properties of this approach are com-

9

pletely governed by the relaxation scheme, not by the numerical method used

to solve the subsystems. These two approaches will be described in more details

in the next sections.

In describing the structure of a system of equations, it is customary to

introduce the notion of a dependency matrix defined as follows.

Definition 2.1 The dependency matrix D € $0,ljn)<n associated with a system of

n equations in n unknown variables is a matrix whose i,,7-th element Dq is

defined by

% =
1 if the i-th equation involves the j -th variable
0 otherwise

The main advantages of using decomposition techniques are:

a) The structural regularity and repetivity of the subsystems, such as those

encountered in large scale integrated circuits, can be exploited.

b) Additional savings in computing time can be achieved by incorporating

bypassing schemes [3,5,7,8,10] that exploits latency or dormancy of a sub

system. These schemes allow a simulator to avoid solving a subsystem when

its solution can be cheaply predicted within a reasonable accuracy.

c) Decomposition techniques are suitable for computers with parallel or pipe

line architectures since more than one subsystem can be solved con

currently.

10

2.2.1. Tearing Decomposition.

Tearing is an approach that exploits the sparsity structure of the depen

dency matrix of the system to be solved. The particular structures1 that are

suitable for the tearing decomposition are

a) the Bordered Block Diagonal (BBD) structure as shown in Fig. 2.2a.

b) the Bordered Block Lower Triangular (BBLT) structure as shown in Fig. 2.2b.

From these two structures, we see that if the variables associated with the

borders of the matrices are known, then the values of the remaining variables

can be easily obtained by solving separately the subsystems associated with the

diagonal blocks. For this reason these variables are called the tearing variables.

However, in the tearing approach, the values of the tearing variables are not

computed (or updated if the algorithm associated with the tearing decomposi

tion is iterative) from the subset of equations identified by the last diagonal

block of the dependency matrix.2 Instead, they are computed from another sub

set of equations, called a reduced subsystem, which has to be constructed by an

algorithm as we shall see later. The number of equations in the reduced subsys

tem is equal to the number of the tearing variables.

Tearing decomposition of linear algebraic equations can be implemented in

two different ways, namely the Block LUFactorization [15] and the Tearing Algo

rithm [15].3 To illustrate the basic ideas behind these algorithms, consider the

system of equations shown in Fig. 2.3, i.e.,

Ax = 6

1 In showing a matrix structure, all nonzero elements are confined to the shaded areas only. The
shaded areas, however, may themselves contain some zero elements.

8We shall see that, in the relaxation approach, these variables willhe computed from this subset
of equations.

3 Note that George [14] has interpreted the Tearing Algorithm as a particular form of the Block
LU Factorization. We prefer to keep these two algorithms separated to give a better intuitive feeling
of the main ideas of these algorithms.

11

where Aetf1** is in BBD form as shown in Fig. 2.3, x=[^ €K? is the vector of
the unknown variables and w is the vector of the tearing variables.

In the Block LU Factorization, the variable v is first eliminated from the

system of equations to obtain the following reduced subsystem from which the

value of the tearing variable w is obtained.

(E-DB~lC)w = bw-DB~lbv

where the meanings of all matrices and vectors are given in Fig. 2.3. The com

puted value of w is then used to compute the value of v blockwise.

In the Tearing Algorithm, the solution is obtained by applying the Sherman-

Morrison-Woodbury formula [16]

x = 2-lb-2-lG[I + HA-lG]-lHA-lb

where the meanings of all matrices are also given in Fig. 2.3 (F in the figure is a

nonsingular matrix). Here the solution of the reduced subsystem involves the

process of formulating and inverting the reduced system matrix I + HA~lG

whose size is equal to the dimension of w. The full details of the implementa

tions of both tearing decomposition algorithms are given in [15].

The use of tearing decomposition in solving a system of nonlinear algebraic

equations gives rise to an iterative method called the Multilevel Newton-

Raphson (MLNR) method [7]. We briefly describe this method with the help of an

example. Consider the problem of computing the "dc" solution of the circuit in

Fig. 2.4a. Assume that the circuit equations can be written as

fi(*i.vj = 0 (2.7a)

fzixz,vx) = 0 (2.7b)

ix{xx, Vi) +i2(x2, vx) = 0 (2.7c)

where xx € Up is the vector of all internal variables of the first subcircuit,

12

xz € E?*+1 is the vector of all internal variables of the second subcircuit including

vg, /!: E?*xR -• J? describes the equations associated with the first subcircuit,

/2: tf*+lxR-» EP+1 describes the equations associated with the second subcir

cuit, ij: RPxR -* R and i2: Bf*+lxR -• R From this set of equations we see that

the output voltage v xof the first subcircuit is the tearing variable. The decom

posed (or torn) circuit is shown in Fig. 2.4b. In the MLNR method, the reduced

subsystem is constructed by treating xx and xz as functions of vx, Le., from

(2.7a) and (2.7b)

*i=Ji(vi) and xz = 9z(v\)

and substituting them into (2.7c). Thus the reduced subsystem has the following

form

iitoi(«i).wi)+i8to8(«i).«i) = 9(v\) = ° (2,8)

The reduced subsystem (2.B) is then solved for the tearing variable vx by using

the NR method which yields the following iterative equation

^-WMM -«*-«] = -g(vhrl) *-lA... (2.9)

where the evaluations of gM~l) and g^-M"1) are performed by applying

another level of the NR method to (2.7a) and (2.7b). The full details of the imple

mentation of this method is given in [7]. In circuit terms, the construction of the

reduced subsystem can be interpreted as replacing each subcircuit by an

equivalent (Thevenin or Norton) circuit which is referred to in [7] as the exact

macromodel. The reduced subsystem is thus equivalent to the interconnection

of these exact macromodels. For example, the reduced circuit associated with

the circuit equation (2.7) is shown in Fig. 2.5.

Examples of circuit simulators that use tearing decomposition are:

13

a) CLASSIE [11], SLATE [8] and SAMSON4 [10]. These simulators implement the

Block LU Factorization in the solution of the linear algebraic equations.

b) MACRO [7]. This simulator implements the MLNR method for solving the

nonlinear algebraic equations.

Note that whereas the original system of equations may be sparse, Le., its

dependency matrix has a small percentage of nonzero elements, the reduced

subsystem may not. Hence the computational advantage of this approach over

the standard approach depends crucially on how small each decomposed sub

system and the reduced subsystem are. However, the numerical properties of

the tearing approach are the same as those of the standard numerical methods

applied to the system without using decomposition. In fact, for linear algebraic

systems, both the Block LU Factorization and the Tearing Algorithm give the

solution in a finite number of steps since the solution of the reduced subsystem

gives the exact values of the tearing variables. For nonlinear algebraic systems,

the MLNR method still has the same local quadratic rate of convergence as that

of the conventional NR method.

2.2.2. Relaxation Decomposition.

Decomposition of a system into subsystems by relaxation is not restricted

or fixed by the block structure of the dependency matrix of the system. There

is no special procedure for constructing the reduced subsystem in order to

solve for the tearing variables as in the tearing approach. The system of equa

tions is simply partitioned into subsystems of equations. Within each subsystem,

the variables to be solved for are called internal variables and the other vari

ables involving in the subsystem are called external variables. If every

4 SAMSON also implements a hlockwiserelaxation technique for solving the nonlinear algebraic
equations. It is an example of using decomposition techniques at different levels of equationsin the
same simulation.

14

subsystem has only one internal variable (or equivalently one equation), the

decomposition is said to be done pointwise. Otherwise, it is said to be done

blockwise.

To solve a subsystem for its internal variables, the values of its external

variables (which are internal variables of other subsystems) are simply guessed

or updated (through an iterative procedure), Le., the subsystem is decoupled or

decomposed. This approach usually requires an iterative procedure for repeat

edly solving the decomposed subsystems so that the values of the external vari

ables of each subsystem can be updated by using the information from the

current or previous iterations. Two well known types of relaxation are the

Gauss-Seidel (GS) [17] relaxation and the Gauss-Jacobi (GJ) [17] relaxation. Fig.

2.6 gives examples of the use of relaxation decomposition at different levels of

equations where k denotes the iteration count. Fig. 2.7 shows how to associate

relaxation with the conventional numerical methods at different levels of equa

tions in the hierachical organization of a time domain simulation.

Unfortunately this approach does not guarantee that the sequence of

iterated solutions will converge to the exact solution of the given system unless

a certain numerical condition on the partitioned system is satisfied. This condi

tion is called the convergence condition of the relaxation iteration.

As an example, consider the following linear algebraic equations

Ax = b (2.10)

where x € R? is the vector of the unknown variables, A € R1* n and 6 eBf1. Let

A = L + D + U (2.11)

where L € I?*" is a strictly5 lower triangular matrix, D € Kf1 is a diagonal

matrix and U e Bf is a strictly upper triangular matrix.

9A strictly (upper or lower) triangular matrix is a triangular matrix with zero diagonal elements.

15

Starting with an initialguessx° e J?, the iteration equation of the pointwise

GS relaxation method applied to (2.10) is given by

(L + £>)*fc+1 = 6 - Uxk (2.12)

from which we obtain

(L + D)[xk+l -x*] = - U\xk - x*"1]

Hence

[**+! -xk] = - (L + D)-W[xk -xfc"»] (2.13)
«

Therefore the GS relaxation iteration will converge for any given initial guess x°

if and only if all eigenvalues of the matrix (L + D)~lU have magnitudes less than

unity.

Now, applying the pointwise GJ relaxation to (2.10), we obtain the following

iteration equation

Dxk* = 6 -(L + U)xk (2.14)

which leads to the following recursive error equation

zk+i _x* - -£)-i(L + u)(xk -xk~x) (2.15)

Hence, the GJ relaxation iteration will converge for any given initial guess if and

only if all eigenvalues of D~l(L + U) have magnitudes less than unity.

The convergence condition of the relaxation iteration clearly limits the

class of systems to which relaxation can be applied. From practical points of

view, it is also very important to be able to check whether or not relaxation can

be applied before starting the iteration. This implies that we must find a numeri

cal condition on the elements of the system to guarantee that the convergence

condition is satisfied. For instance, if the matrix A in (2.10) is strictly diagonally

dominant [17], then the convergence condition of either GS or GJ relaxation

18

iteration will be satisfied. In circuit simulation, this sufficient condition must be

further interpreted in terms of the properties of circuit elements. If (2.10)

describes the "dc" node equations of a linear resistive circuit, then the condition

that the circuit contains only resistors, i.e., there are no dependent sources, is

sufficient to guarantee the strictly diagonally dominance of A. Obviously, this

condition severely limits the type of linear circuits to which relaxation can be

applied. Unfortunately weaker convergence conditions (although they exist) are

difficult to characterize or compute. For this reason, relaxation decomposition

has never been used in the "dc" simulation part of a circuit simulator.

The relaxation decomposition has been first used in the time domain circuit

simulation by the timing simulator MOTIS [6]. This approach has later been

modified and implemented in other mixed-mode simulators such as SPLICE [5],

DIANA [9] and SAMSON [10]. The particular association of relaxation with the

conventional numerical methods used by these simulators has given rise to a

new area of time domain simulation called the timing simulation.

2.2.2.1. Timing Simulation.

Timing simulation is a time domain circuit simulation which uses a particu

lar nonlinear relaxation approach for solving the nonlinear equations derived

from the time discretization of the circuit differential equations. This type of

simulation approach was originally introduced [6] for the simulation of MOS digi

tal circuits. The particular characteristic of timing simulation is that the relax

ation iteration is not carried out until convergence is achieved. Only one itera

tion (or sweep) of relaxation is performed and the results are accepted as the

solutions of the nonlinear equations. Thus the timesteps must be kept small to

reduce the inaccuracy of the solutions of the nonlinear equations. However,

since the computational expense of taking one iteration is very small, the com-

17

puter time used in the timing simulation is usually much smaller than that of

the standard simulator. In fact, with the inclusion of the selective trace algo

rithm or event scheduling algorithm in SPLICE [5] to exploit the latency of digi

tal subcircuits, the timing simulation approach can be at least two order of mag

nitude faster than the standard simulation approach. Two critical assumptions

that are responsible for the success of timing simulation are:

1) There is a grounded capacitor8 to every node in the circuit.

2) The subcircuits to be decomposed have unidirectional or almost unidirec

tional properties both in the steady state and in the transient situations.

Unfortunately, there are many MOS digital circuits which contain large

floating capacitors and/or trees of pass transistors (see Fig. 2.B). Experiments

with these circuits have indicated that the timesteps have to be kept small in

order to obtain accurate and reliable solutions. This is further complicated by

the fact that there is no reliable technique to determine the appropriate sizes of

these timesteps. The estimation of the local truncation error from the solutions

in order to determine the timestep is no longer reliable since there is no

guarantee that the nonlinear equations are accurately solved at every

timepoint.

To illustrate the basic steps and numerical properties of timing simulation,

we consider a circuit, such as the one shown in Fig. 2.8, whose node equations

can be written as

Cv+f(v,u) = 0; v(0)=V (2.16)

where v{t) e & is the vector of the unknown node voltages, u(t) €if is the vec

tor of the independent sources, Ce HP*" is the node capacitance matrix in

which C& is the sum of the capacitances of all grounded and floating capacitors

• Agrounded capacitor isa capacitor in which one ofits terminals is connected to aknown vol
tage source, such as an input voltage source ora constant voltage source, i.e., ground orpower sup
ply.

18

connected to the i-th node and "C^.i &j is the total floating capacitance

between the i-th and j-th nodes, and / : K?*xEf-»R? is a Lipschitz continuous

function [25] each component of which represents the sum of currents feeding

the capacitors at the i-th node. Note that all capacitors are assumed to be

linear and that C is strictly diagonally dominant since there is a grounded capa

citor to every node.

In timing simulation, the time derivative v is discretized by an implicit

integration formula such as the Backward Euler formula in MOTIS and SPLICE or

the Trapezoidal formula in MOTIS-C [27]. For this example, we assume that fixed

timesteps of size h are used and that the time derivative is discretized by the

Backward Euler formula, i.e.,

V(*t+l) " £<«(*!♦!) -tifo))

Hence, the nonlinear equations obtained through the discretization of (2.16) are

given by

C(vt+1-v4) + /i/(vi+1, Ui+1) a 0 (2.17)

where v<+1 wv(£i+l), v4 wvfa) and u^ = ufa+J. If (2.17) is solved exactly, then

the sequence of «j will possess all the numerical properties, i.e., consistency and

stability, of the Backward Euler integration method. This is, of course, not the

case in timing simulation. Let

C = L + D + U (2.18)

where L € Kf1 is a strictly lower triangular matrix, D € Kf1501 is a diagonal

matrix and U € if* is a strictly upper triangular matrix. In timing simulation,

(2.17) can be solved either by GJ relaxation as in MOTIS or by GS relaxation as in

MOTIS-C and SPLICE but only one iteration of relaxation is performed. Applying

one iteration of the pointwise GJ relaxation to (2.17), we obtain the following

equations

19

D{v&x - vft + (L + l/)(«fi? - «fO +hfci{v&x, vffx°, wt+1) = 0 (2.19)

where v$l € I^1 is the guess for the relaxation and, for each component index

jf = li2 n,

jGJj\vi+l' vi+l • **i+W = /iV^i^lj V*+l/-r vH-lf • vt+ly+1 V<+ln ' ut*l'

(2.20)

Similarly, applying one iteration of the pointwise GS relaxation to (2.17), we

obtain the following equations

CD +L)(v& - vf*) + U(v&° - V<<*) +/i/cs W?i. *£P. «i*i) = 0 (2.21)

where i/^ £ Kf* is the guess for the relaxation and, for each component index

j = 1.2 n.

/«/W».«fl£\iii«> = fj(Vi% Vi%,Vi%+l «fl£.Ui«) (2-22)

Note that neither (2.19) nor (2.21) are equivalent to (2.17). Hence neither the

sequence of vf® nor the sequence of vf* necessarily possess the same numerical

properties as the sequence otvi. In other words, the numerical properties of the

Backward Euler integration method are not necessarily preserved through the

one sweep of the relaxation process. Therefore, a complete analysis of the

numerical properties of these combined integration-relaxation methods has to

be carried out to characterize them. Such an analysis has been done in [18] for

the case when v£?x = vf3 and v$x = vf. It is interesting to note that in this

case, when C is not diagonal, the combined integration-relaxation methods are

not even consistent, i.e., the sequence of v^ or vf* does not converge to the

true solution of the original differential equations (2.16) as the stepsize h goes

to zero. This result can be easily shown by examining (2.19) and (2.21) when

vfff =v/^ andvffx =vf. From (2.19) we obtain

20

D(vffx - uf) + hfvivg,, v?% iZi+1) = 0 (2.23)

and from (2.21) we obtain

(D + L)(v{?x - vf5) +V«M?i •W*. «t+i) = 0 (2.24)

We immediately see that the effects of L and U which are due to the floating

capacitors completely disappear from (2.23) and partially disappear from (2.24).

In fact (2.23) can be exactly obtained by applying the combined integration-GJ-

relaxation to the following differential equations (with the initial guess

vffi =««

Dv+f(v,u) = 0; v(0)=V (2.25)

and similarly (2.24) can be exactly obtained by applying the combined

integration-GS-relaxation to the following differential equations (with the initial

guessv($ =vf3)

(D+L)v +f(v,u) = 0; v(Q) = V (2.26)

That is, these methods are solving dynamical systems which are not the same as

the original system described by (2.16). The circuit interpretations of both

(2.25) and (2.26) for the original circuit of Fig. 2.8 are shown in Fig. 2.9 and Fig.

2.10 respectively. This is a good example to show why these methods work

rather well when there are no floating capacitors or when the floating capaci

tances are small compared to the grounded capacitances.

Some of the drawbacks of the above methods can be overcome. It can be

easily shown that the use of the Forward Euler formula to generate the initial

guess for the relaxation will at least make the combined integration-relaxation

method consistent with the circuit equations. Also the study carried out in [18]

has indicated that the use of another type of relaxation based on an idea by

Kahan [19] results in a class of combined integration-relaxation methods, called

the modified symmetric Gauss-Seidel integration, which has better numerical

21

properties. Another simple way to improve the reliability of timing simulation is

to continue the relaxation iteration until convergence is achieved. This latter

technique is dicussed in more detail in Appendix B.

2.2.3. Concluding Remarks.

We have described and classified various decomposition techniques that

have been proposed and implemented. Whereas the relaxation approach to solv

ing linear and nonlinear algebraic equations has been treated quite extensively

(see [17] for the linear case and [20] for the nonlinear case), the study of the

relaxation approach at the differential equation level is still open both as a

numerical method and as a new tool for performing time domain simulation. At

this level, each decomposed subsystem is still a system of differential equations

and hence can be solved in the time domain by using conventional numerical

methods, e.g. the Backward Euler formula, the Newton-Raphson method and the

Gaussian Elimination method as shown in Fig. 2.7. The purpose of this disserta

tion is to provide a complete study of this new decomposition technique which

we call the Waveform Relaxation (WR) method.

Incremental Time Loop

C>

NR iteration Loop

iz

22

system of nonlinear

differential equations

Implicit numerical

integration formula

iz

system of nonlinear

algebraic equations

Newton-Raphson

iteration

iz

system of linear

algebraic equations

Gaussian

Elimination

—V
Solution vector

Fig. 2.1

Hlerachical organization of conventional numerical methods

for time domain simulation

tearing variables

• border

Fig. 2.2a

Bordered Block Diagonal (BBD) form of a matrix.

tearing variables

• border

Rg.2.2b

Bordered BlockLower Triangular (BBLT) form of a matrix.

23

B c

0 E

V

ur

B C

D E

B 0

D F

A

A

k,

24

B A

O I

E-F

H

Rg. 2.3

Various terms associated with Block LU Factorization and Tearing Algorithm.

^

Ca>

Hg.2.4

a) Aninterconnection of two analog inverters.

b)Node tearing decomposition of the circuit inFig. 2.4a.

^

i—^WV-

Hg.2.5

The reduced circuit of the circuit in

Fig. 2.4aas viewed by the tearing variable vx.

25

/,(xf,xf,i^fxi->,u1) = 0

/8(*f.*l.*E*.*t.tt8)s0

26

/l(*!.*l.«J.*«.«l)aO

/g(z,, xx, xz,x2,ux) = 0

a) Relaxation decomposition of differential equations

/a(arf-I,xJ,u2) = 0

^ - /i(*i. *2. ^1) =0
' /a(*i. *2. u2) = 0

b) Relaxation decomposition of nonlinear algebraic equations

*11*1 + «12*t~! + t*i = 0

21 1 + BggxS + U2 = 0

auS| + aiexg + Ui = 0

°81*1 + ^28*2 + 1*2= 0

c) Relaxation decomposition of linear algebraic equations

Fig. 2.6

Implicit numerical

integration formula

Newton-Raphson

iteration

1 t
Gaussian

Elimination

Solution subvector

RELAXATION

iteration
C

RELAXATION

iteration

RELAXATION

iteration

C

C

27

system of nonlinear

differential equations

\z
Implicit numerical

integration formula

iz

system of nonlinear

algebraic equations

Newton-Raphson

iteration

iz

system of linear

algebraic equations

Sparse Gaussian

Elimination

V
Solution vector

Fig. 2.7

The use of relaxation at various levels of system of equations.

28

U.

4-1 vt

floating capacitor

">-C>~-f pass transistor

grounded capacitor

Fig. 2.B

Atypical MOS circuit that contains a pass transistor and floating capacitors

u

$
V.

«Hh *-•

ux—r>>
C/ i

{>-i

Rg.2.9

The circuit interpretation of the application of

the combined integration-GJ-relaxation to the circuit of

Fig. 2.6 (according to equation (2.25)).

29

u

u„

*
V.

*-+

i>
\r.

4H

T eJ^1"'
^M>n

FVg. 2.10

The circuit interpretation of the application of

the combined integration-GS-relaxation to the circuit of

Fig. 2.8 (according to equation (2.26)).

30

31

Chapter 3

The Waveform Relaxation Method

In this chapter we describe the basic mathematical concept of the

Waveform Relaxation (WR) method together with a few circuit examples to

demonstrate the physical interpretation of the decomposition achieved by the

method.

3.1. Mathematical Formulation.

We consider dynamical systems which can be described by a system of

mixed implicit algebraic-differential equations of the form:

F{y,y.u) = 0 (3.1a)

E(y(0)-y0) = 0 (3.1b)

where y (t) e R? is the vector of the unknown variables at time t, y(t) e R? is the

time derivative of y at time t, u(t) € flf is the vector of the input variables at

time t, yu^^F is the given initial value of y, F: hPxrPxrT-*RP is a continuous

function, and E € lT*p, n^p is a matrix of rank n such that Ey(t) is the state

of the system at time t.

Note that equation (3.1b) is meant to supply the initial conditions for the

state variables [23] of (3.1a). We shall assume that y0 is chosen so as to give

v(0) =y0, Le., y0 also satisfies all the algebraic relations embedded in (3.1a).

In circuit simulation, y0 is usually obtained from the so called "dc" solution of

the system, i.e., it satisfies

F(y(0).y0, u(0)) = 0 ; y(0) = 0 (3.2)

The general structure of a WR algorithm for analyzing (3.1) over a given

time interval [0,7*] consists of two major processes, namely the assignment-

partitioning process and the relaxation process.

32

3.2. The Assignment-Partitioning Process.

In the assignment-partitioning process, each unknown variable is assigned

to an equation of (3.1a) in which it is involved. However, no two variables can be

assigned to the same equation. Then (3.1a) is partitioned into m disjoint1 sub

systems of equations, each of which may have only differential equations or only

algebraic equations or both. Without loss of generality, we can rewrite (3.1)

after being processed by the assignment-partitioning process as follows:

^i(Vi. Vi. <*i. u)

Fm(ifm,ymt dm.u)

E(y(0)-y0) = 0 (3.3b)

where, for each i = 1,2,...,m, yt e R^* is the sub-vector of the unknown variables

assigned to the i-th partitioned subsystem, Fi :R^xR^xE^^xrT^R?1 is a con

tinuous function, and

= 0

a\ i co\2(yx yt-i.Vi+i Vm.

V\> • • • .Vi-i. £i+i. • • • -Vm)

(3.3a)

(3.3c)

It is clear that if the vectors a\t i = 1,2 m, are treated as the input vari

ables of the system described by (3.3a), then the system can be easily solved by

solving m independent subsystems associated with Fx, F2, Fm respectively.

Therefore they are called the decoupling vectors of the subsystems. This gives

rise to the notion of the decomposed system as given in the following definition.

1 There are cases in which the algorithm has better convergence properties if the subsystems
are nondisjoint. For such cases, we can consider the nondisjoint subsystems as being obtained from
partitioning an augmented system of equations with an augmented set of unknown variables.

8col (a, b)*

33

Definition 3.1 The decomposed system associated with an assignment-

partitioning process applied to (3.1) consists of m independent subsystems,

called decomposed subsystems, each of which is described by

Fi(yit yi, u<. u) = 0 (3.4a)

£i(l/i(0)-yoi) = 0 (3.4b)

where y^ € R?1 is the subvector of the given initial vector yQ, ut € if"^* is the

vector of the decoupling inputs, Ft : R^xR^xR^^xRr -»if* is a continuous

function as given by (3.3a), and Ei € Rf1***"*, 7^ ^pt is a matrix of rank nj such

that JEijft is a state vector of the i-th decomposed subsystem described by (3.4).

•

3.3. The Relaxation Process.

The relaxation process is an iterative process. For simplicity, we shall con

sider two most commonly used types of relaxation, namely the Gauss-Seidel [17]

(GS) relaxation and the Gauss-Jacobi [17] (GJ) relaxation. The relaxation process

starts with an initial guess of the waveform solution of the original dynamical

equations (3.3) in order to initialize the approximate waveforms of the decou

pling vectors. During each iteration, each decomposed subsystem is solved for

its assigned variables in the given time interval [0, T] by using the approximate

waveform of its decoupling vector. For the GS relaxation, the waveform solution

obtained by solving one decomposed subsystem is immediately used to update

the approximate waveforms of the decoupling vectors of the other subsystems.

For the GJ relaxation, all waveforms of the decoupling vectors are updated at

the beginning of the next iteration. The relaxation process is carried out

repeatedly until satisfactory convergence is achieved.

Let the superscript index k denote the WR iteration count. Then the gen

eral structure of a WR algorithm can be formally described as follows:

34

The WR Algorithm Model 3.1

Step 0: (Assignment-partitioning process)

Assign the unknown variables to the equations in (3.1) and partition

(3.1) into m subsystems of equations as given by (3.3).

Step 1: (Initialization of the relaxation process)

Set k = 1 and guess an initial waveform (y°(0 ; t € [0,7*]) such

thaty°(0) = y(0) = y0.

Step 2: (Analyzing the decomposed system at the k-th WR iteration)

For each i = 1,2,....m., set

eff = col (ykx yf-i. vffl Vm1,

V\ yt-i.ytt Vm"1)

for the GS relaxation, or

df = col (y?"1 yfci1. yfc1 y*"1.

ttk~l rik-*1 vkr,1 v"-1)y\ S/t-l • 4/%-H J/m /

for the GJ relaxation, and solve for (yk(t); t € [0, T]) from

Fiiytytdf.u) = 0 (3.5a)

Ei(yf(o)-yi(o)) = 0 (3.5b)

Step 3: (Iteration)

Set k = k +1 and go to step 2. •

Remarks.

1) A simple guess for (y°(t) ; t € [0.T]) is y°(t) = y(0) for all t e [0,7*].

2) In the actual implementation, the relaxation iteration will stop when the

difference between the waveforms (y*(0', t € [0,7*]) and

(y*"l(0 : * e [0,7]), i.e., max lly*(0 - V*~l(OII. is sufficiently small

35

3) In analogy to the classical relaxation methods for solving linear or nonlinear

algebraic equations [17,20], it is possible to modify a WR algorithm by using

a relaxation parameter o e (0,2). With o, the iteration equation (3.5) is

modified to yield

rifSt.vt.dt-") = 0 (3-6a)
25^(0)-y<(0)) = 0 (3.6b)

yt = yt^ + uiyt-yt'1) (3.6c)

4) Note the following two important characteristics of the WR Algorithm Model

3.1.

a) The analysis of the original system is decomposed into the indepen

dent analysis of m subsystems.

b) The relaxation process is carried out on the entire waveforms, Le.

during each iteration each subsystem is individually analyzed for

the entire given time interval [0, T]. •

3.4. Circuit Examples and Their Physical Interpretations.

In this section, we shall use a few specific examples to demonstrate the

applications of the WR Algorithm Model 3.1 in the analysis of lumped dynamical

circuits and to give the circuit interpretation of the decompostion. Different

formulations of the circuit equations will be used to illustrate the resulting

decompositions.

Example 3.1

Consider the circuit shown in Fig. 3.1. Using Nodal Analysis [23] formulation

with vx and v2 as the circuit variables, the node equations of the circuit are

(Cx + Ca)vl - C2v2 + Gxvx = J ; vx(0) = Vx (3.7a)

36

(c?2+ Ca)v2- C<fix + GzV2 = 0 ; v2(0) = V2 (3.7b)

Let vt and v2 be assigned to (3.7a) and (3.7b) respectively and let (3.7) be

partitioned into two subsystems consisting of |(3.7a)J and |(3.7b)J. Applying the

WR Algorithm Model 3.1, the A:-th iteration of the corresponding GS-WR algorithm

corresponds to solving

(Cx + Ca)vf - Cavk~l + Gxvkx = J ; v?(0) = Vx (3.8a)

for the first subsystem, and

(C2 + Ca)vk -Cavk+ G2v\ = 0 ; v|(0) = V2 (3.8b)

for the second subsystem. The circuit interpretation of the decomposed circuit

at the fc-th iteration, as described by (3.8), is shown in Fig. 3.2. •

Example 3.2

Consider the circuit shown in Fig. 3.1. Using Modified Nodal Analysis [21]

formulation with vx, v2 and i3 as the circuit variables, the circuit equations can

be written as

Cxv x + Gxv i + is = J ; Vl(0) = Vx (3.9a)

C2V2 + G&2 -i3 = 0 ; v2(0) = V2 (3.9b)

*a~ Cjfii -v2) = 0 (3.9c)

Let vx, v2 and i3 be assigned to (3.9a), (3.9b) and (3.9c) respectively and let

(3.9) be partitioned into two subsystems consisting of \(3.9a)l and

f(3.9b),(3.9c)j. Applying the WR Algorithm Model 3.1, the fc-th iteration of the

resulting GJ-WR algorithm corresponds to solving

Cxvf + G^f +i3s-1 = / ; vk(0) = Vx (3.10a)

for the first subsystem, and

C2v%+ G2v\ -i% = 0; v|(0) = 78 (3.10b)

37

il-CaWf-1-**) = 0 (3.10c)

for the second subsystem. The circuit interpretation of the decomposed circuit

at the fc-th iteration, as described by (3.10), is shown in Fig. 3.3. •

Example 3.3

Consider again the circuit shown in Fig. 3.1. Using a "Sparse Tableau [22]

like" formulation with vx, v2, v3, ix, i2 and i3 as circuit variables, the circuit

equations can be written as

Cxvx -ix = 0 ;

G&J 2 ~* ^2 = 0 ;

Cav3-i3 = 0

v$-vx+v2 = 0

Gxvx +ix+i3 = /

G2v2 + i2-ia = 0

Let vx, v2, i3, v3, ix, i2 be assigned to (3.11a) through (3.11f) respectively

and let the system be partitioned into three subsystems consisting of

|(3.11a),(3.11e)J. K3.Hb),(3.11f)J and |(3.Hc),(3.11d)J. Note that we cannot

assign vx, v2, v3 to (3.11a), (3.11b), (3.11c) respectively since one of them has to

be assigned to (3.lid). Applying the WR Algorithm Model 3.1, the A:-th iteration of

the resulting GJ-WR algorithm corresponds to solving

Cxv?-ik = 0; vkx(0)-Vx (3.12a)

Gxvkx +ikx +i3s-1 = / (a 12b)

for the first subsystem,

C2v|-i| = 0; v|(0) = V2 (3.12c)

Gzv\ +ij -i\-x = 0 (3.12d)

for the second subsystem, and

vx(Q) = Vx (3.11a)

v2(0) = V2 (3.11b)

(3.11c)

(3. lid)

(3. lie)

(3.1 If)

38

Cavk-i$ = 0 (3.12e)

v|_v*-i+v|-i = o (3.12f)

for the third subsystem. The circuit interpretation of the decomposed system

at the fc-th iteration, as described by (3.12), is shown in Fig. 3.4. •

*i *

II
- v*

•v

^ £ *
II

C3
V'

)cTi:<?,= =Ci c*=

Fig. 3.1

Kg. 3.2

Example 3.1: Circuit interpretation of a GS-WR algorithm

applied to the circuit of Fig. 3.1.

39

Kg. 3.3

Example 3.2: Circuit interpretation of a GJ-WR algorithm

applied to the circuit of Fig. 3.1.

fig. 3.4

Example 3.3; Circuit interpretation of a GJ-WR algorithm

applied to the circuit of Fig. 3.1.

40

41

Chapter 4

Consistency of the

Assignment-Partitioning (AP) Process

In this chapter we introduce the concept of consistency of the assignment-

partitioning (AP) process and show how an inconsistent AP process can lead to

serious convergence problems for the relaxation process of the WR algorithm.

The formal approach for finding a consistent AP process or verifying its con

sistency directly from the system equations will be addressed by using tech

niques based on the graph-theoretic interpretation of the algebraic-differential

dependency matrix associated with the system equations.

4.1. Definition of Consistency and Examples.

Decomposition of a system of equations into subsystems of equations

through relaxation is specified by the AP process. If the system is purely alge

braic, i.e., it contains only algebraic equations, then the decomposed system as

defined in the previous chapter will also be purely algebraic independent of the

choice of assignment and partitioning. However, in our case the given system

contains differential equations. Hence, it is possible that, for some particular

choices of assignment and partitioning, some differential equations of the sys

tem are converted into algebraic equations in the decomposed system.

To show the effect of the AP process on the dynamical behaviour of its asso

ciated decomposed system, consider the following system of equations

xx+xx+x2 + ux = 0 (4.1a)

x2 + x2 +xx + u2 = 0 (4.1b)

42

Assume that we want to partition this system into 2 subsystems consisting

of {(4.la)J and $(4. lb)}. If we choose to assign xx and x2 to (4.1a) and (4.1b)

respectively, then the decomposed system according to Definition 3.1 is given by

xx + xx + U} + ux = 0

x2 + x2 + u2 + u2 - 0

which is a dynamical system with two state variables xx and x2 as in the original

system (4.1). On the other hand, if we choose to assign xx to (4.1b) and x2 to

(4.1a), then the decomposed system is given by

»w A
x2 + ux+ux + ux = 0

xx + u2 + u2 + u2 = 0

which is a purely algebraic system, i.e., it has no state variable.

From the above example, it is clear that different choices of the AP process

can result in decomposed systems with entirely different dynamical behaviours.

Furthermore, it is very important to choose an AP process such that the dynam

ical behaviour of its associated decomposed system is as close to that of the ori

ginal system as possible in order to obtain good convergence properties of the

relaxation process. Therefore, by using the concept of state variables [23], we

can classify the AP processes into two categories, namely the consistent AP pro

cess and the inconsistent AP process.

Definition 4.1 An AP process is said to be consistent with a given dynamical sys

tem if any choice1 of the state vector of its associated decomposed system is

also a valid choice of the state vector of the given system. The decomposed sys

tem associated with a consistent AP process is also said to be consistent with

the given system and a WR algorithm that uses a consistent AP process is called

a consistent WR algorithm. •

1 In general, the choice of state variables of a dynamical system is not unique.

43

The following two examples illustrate why consistency of the AP process

plays an important role in the convergence of the relaxation process.

Example 4.1 Consider a dynamical system described by

yx + y2-u = 0; l/i(0) = 0 (4.2a)

Vi-l/z = 0 (4.2b)

This system has one state variable. Suppose that yx and y2 are assigned to

(4.2b) and (4.2a) respectively and that the system is partitioned into two subsys

tems consisting of \(4r.2a)\ and {(4.2b)}. Applying the WR Algorithm Model 3.1,

the k-th iteration of the resulting GS-WR algorithm corresponds to solving

y\ = u -yf_1 (4.3a)

V\ = y\ (4.3b)

Notice that the decomposed system at the fc-th iteration, as described by

(4.3), is purely algebraic. Hence, this AP process is inconsistent with the given

system. From (4.3), it is easy to derive that the iterated solution of the decom

posed system is given by

vt<*> =vW) ='%}•-&§-* <*)+<-D* JJ-vKO
which leads to the following results:

a) If the initial guess of the relaxation process is yf (t) = e~Qi with a > 0, then

the iterated solution y\(•) or yj(-) will diverge. This result is independent of

the input u().

b) If the input is it(r) = e-0* with a > 1 and y?(0 = 0, then the iterated solu

tion will diverge.

c) If the input is piecewise continuous with at least one discontinuity, e.g.

44

«(*) - i i>!

and yi(f) = 0, then the iterated solution will be discontinuous and

unbounded at the points of discontinuity of the input whereas the exact

solution of the given system is continuous and bounded within any finite

time interval.

d) If u(t) = a and yx(t) -0, then the iterated solution y\(t) or y\(t) con

verges to yx(t) - y2(t) = a whereas the exact solution of the given system

is yx(t) = y2(t) = a(l-e_<). •

Example 4.2 Consider again the same dynamical system described by (4.2).

This time we assign yx to (4.2a) and y2 to (4.2b). Applying the WR Algorithm

Model 3.1, the fc-th iteration of the resulting GS-WR algorithm corresponds to

solving

yf = u-yl-1 ; l/i(0) = 0 (4.4a)

y\ = VX (4.4b)

Notice that this time the decomposed system at the A:-th iteration, as

described by (4.4), has one state variable yx which is also a state variable of the

given system. Hence, this AP process is consistent with the given system of

equations (4.2). In contrast to Example 4.1, we shall show that, for any given

time interval [0,7*]. the iterated solution of (4.4) always converges to the exact

solution of the given system (4.2) independent of the initial guess yx() and the

input it (•).

From (4.4) and (4.2), we obtain

yf-yi = -(yTl-yi); v*(o)-yi(o) = o

from which the solution is

45

tf(0-Vi(0 = -/[lrt-l(T)-Vi(T)]dT (4.5)
o

Multiplying (4.5) by e"2*, we have

«-"(y*(0-Vi(*» = -•"w/e«le-*(yi-l(T)-yl(T))]dT
o

Hence

|e"*(vf(0-vi(0)l * •-w/«8rl«-fr(yt"l(T)-yl(T))|dT (4.6)
0

Define

£* 4 ^maXjI.-w&^ftO-yiCO)! (4.7)

From (4.6) and (4.7), we have

|e_2'(yi(0-yi(0)l * e"* J*e^&'idT for all f €[0,T]
o

<s Ek'le-Zi f e^dr for all f e [0.7]

ss ^-S*-1 for all f €[0.r]

Therefore

Hence lim.Efc =0 which implies that the iterated solution (yk(t) ; t €[0,T])

always converges to the exact solution of the given system (4.2) independent of

the initial guess y ?(•) and the input u (•). •

The above two examples clearly indicate that an inconsistent AP process

can lead to serious convergence problems for the relaxation process of the WR

algorithm and should be avoided. To give an intuitive reason why inconsistent

AP processes should be avoided, consider a dynamical system which has n

states. Suppose that an inconsistent AP process applied to this system produces

an inconsistent decomposed system having m states where m * n. This means

46

that the natural response of the decomposed system has m natural time con

stants whereas the natural response of the given system has n natural time con

stants. Therefore it is not very likely that the iterated solution obtained from

the relaxation process which iterates only on the decomposed system will con

verge to the exact solution of the given system, let alone the fact that it might

not converge at all. For this reason, we shall focus only on consistent WR algo

rithms. Note that all the AP processes that we used in the examples of the pre

vious chapter are consistent with the circuit equations. We shall also see later

that, for large scale integrated circuits, there are simple procedures that

automatically guarantee the consistency of the WR algorithms. Of course, using

a consistent AP process does not necessary imply that convergence is

guaranteed. Additional conditions on the consistent decomposed system to

guarantee convergence of the iterated solution will be discussed in the next

chapter.

Having stated that inconsistent AP processes are undesirable, the next

problem that we shall address is how to obtain a consistent AP process or how to

verify that an AP process is consistent or not. In general, there are two

approaches to this problem, namely the physical approach and the formal

approach. The physical approach is based on the physical interpretation and the

physical structure of the system being considered. For example the state vari

ables of a lumped electrical circuit are usually voltages (or charges) across

capacitors and currents (or fluxes) through inductors. Hence, given the circuit

topology, a circuit designer can easily identify the state variables of the circuit.

This approach uses the fact that the decomposed system also has a physical

interpretation (as we have demonstrated earlier in the previous chapter). Based

on the physical interpretation, the state variables of the decomposed system

are identified and are used to verify consistency of the AP process. In fact, to

obtain an AP process, it is customary to first identify the state variables of the

47

given system and then choose an AP process such that these variables are also

the state variables of the resulting decomposed system. On the other hand, the

formal approach relies on using an algorithm to identify the state variables of

the system directly from the system equations without depending on the physi

cal interpretation. Hence it is more general than the physical approach.

4.2. The Formal Approach for Finding and Checking a

Consistent AP Process.

In order to check the consistency criteria formally as specified by

Definition 4.1, we must be able to identify directly from the system equations a

set of variables that can form a state vector of the system. However, since we

are dealing with a system of mixed implicit algebraic-differential equations of

the most general form, i.e.,

r(y,y,u) = 0,

we shall not attempt to determine explicitly the state equation form of the sys

tem equations. In fact, a global representation of the state equations of the sys

tem may not even exist. Therefore, in our approach, we shall identify the state

vector of the system symbolically from the dependency structure of the system

equations which is given in the form of an algebraic-differential dependency

matrix.

Definition 4.2 The algebraic-differential dependency matrix of a system of p

equations in p unknown variables yx, y2 yp is a matrix D € Kp whose i;-th

element is given by

Dij = 0 if the i-th equation does not involve y^ or y^

Dij = 1 if the i-th equation involves yj but not y;-

Dfj- = 2 if the i-th equation involves yj m

48

Definition 4.3 The symbolic state vector of a given system of equations whose

algebraic-differential dependency matrix is D is the largest state vector that a

system of equations whose algebraic-differential dependency matrix is D can

have. The dimension of the symbolic state vector is called the symbolic number

of states of the given system. •

For example, consider a lumped electrical circuit consisting of independent

sources, capacitors and resistors. It is easy to see that the symbolic number of

states of the circuit is equal to the total number of capacitors minus the total

number of CE and C loops where CE loops are loops of capacitors and indepen

dent sources and C loops are loops of capacitors only. Note that in this case the

symbolic state vector is also the state vector of the circuit. In most cases, it is

easy to identify the symbolic state variables of any circuit by simply examining

the circuit topology and the type of elements in the circuit, e.g. resistors, capa

citors and inductors. However, the following example shows that, for any arbi

trarily given system of equations, the symbolic state vector may be larger than

the actual state vector of the system.

Example 4.3 Consider the following system of equations

1.5yx +3.Qy2 + yx -ux = 0 (4.8a)

1.0yx + Z.0y2 + y2-u2 = 0 (4.8b)

Multiplying (4.8b) by 1.5and subtracting it from (4.8a), we obtain

yx - 1.5y2 = ux - 1.5u2 (4.9)

which is an algebraic equation. Hence this system has only one state, i.e., either

yx or y2. Equation (4.9) is a conditional algebraic equation since it is induced by

particular values of the coefficients that make the coefficient matrix of y singu

lar. Notice that a slight random perturbation of the coefficients can easily des

troy this conditional algebraic relation since a matrix of the same zero-nonzero

49

structure as the coefficient matrix of y is nonsingular for all values of the

coefficients except for a set of null measure [26]. The symbolic number of states

of (4.8) is thus equal to 2 and the symbolic state variables of the given system

areyiandy2. •

Assumption 4.1 (Nondegeneracy of the symbolic state vector).

Given a system of algebraic-differential equations, its state vector is a sym

bolic state vector. •

The nondegeneracy assumption 4.1 makes the problem of finding a state

vector of a given system tractable. This assumption is rather mild in practice.

Based on this assumption, we can formulate our problem into a graph problem

dealing only with the algebraic-differential dependency matrix of the given sys

tem. We first introduce a few definitions derived from the standard definitions in

graph theory [24].

Definition 4.4 The weighted bipartite graph associated with an algebraic-

differential dependency matrix D € H?*p of a given system of equations is a

bipartite graph, denoted by (5, V,B), with the following properties:

a) S = V = \l,2,...,p\. S and V are the sets of nodes in the graph. 5

corresponds to the set of indices of the system equations, i.e., the row

indices of D, and V corresponds to the set of indices of the system vari

ables, i.e., the column indices of D.

b) B = |(s,i;)|s € S, v € V, D^ # 0] represents the set of all edges joining the

nodes of S to the nodes of V.

c) The weight of an edge (s,v) e B, denoted by w(s,v), is equal to Dm. •

50

Definition 4.5 Amatching of a weighted bipartite graph (5, V,B), denoted by M,

is a set of edges with the property that no two edges have a node in common. If

\H| = \s\ = | V\ where | •| denotes the cardinality of a set, Le., the number of

edges in M is equal to the number of nodes in either 5 or 7, M is then said to

be a complete matching. •

From the above definition, a matching is actually a graph-theoretic

interpretation of the assignment stage of the AP process. That is, each edge of

the matching represents the assignment of a system variable to a system equa

tion. The weight of the edge indicates whether the assigned variable will be

treated as a symbolic state variable or not. An example of a system of equa

tions, its weighted bipartite graph and some complete matchings of the graph is

shown in Fig. 4.1 and Fig. 4.2.

Definition 4.6 The weight of a matching if of a weighted bipartite graph

(S,V,B) is equal to £ ^(s,v), i.e., it is the sum of the weights of all edges in
(«.V) Z u

the matching. A complete matching M is said to be a maximum weighted com

plete matching of a weighted bipartite graph if its weight is larger or equal to

the weight of any other complete matching of the graph. •

For example, consider the systems of equations shown in Tig. 4.1 and Fig.

4.2. In both cases, it is easy to see that both Mx and Mz are maximum weighted

complete matchings but M2 is not. In Fig. 4.1, the weight of Mx or M3 is 6

whereas the weight of Mx or M$ in Fig. 4.2 is 5.

The following lemma gives a graph property of a maximum weighted com

plete matching which will be useful in checking whether an AP process is con

sistent or not.

51

Lemma 4.1 Define an alternating cycle with respect to a matching M of a given

weighted bipartite graph (S,V,B) as a set of edges, denoted by L, such that it

forms a simple cycle (or loop) in the graph and that no two edges of LciH have a

node in common, Le., the cycle is formed by alternating edges from M and M

where M denotes the complement of M. Then M is a maximum weighted com

plete matching if and only if, for any alternating cycle L with respect to M,

(£>(s.v)| (s,v) zLnMl 2* i£w(s.v)\ (s,v) e ZrWj (4.10)

Le., the total weight of edges in the alternating cycle that belong to M is larger

than or equal to the total weight of edges in the cycle that do not belong to M. •

We now give the following result which states that the symbolic state vector

of a given system of equations is associated with a maximum weighted complete

matching of its weighted bipartite graph.

Lemma 4.2 Given a system of p algebraic-differential equations in p unknown

variables yv y2 yp and its weighted bipartite graph {S,V,B), let Mbe a max

imum weighted complete matching of the graph. Then the set of variables

\yvI(s.v) e M and w{s,v) - 2} is a set of the symbolic state variables of the sys

tem and a ~~p is the symbolic number of states where a is the weight of M. If

the system also satisfies the nondegeneracy assumption 4.1, then the set

\yv | (s,v) € M and w(s,v) = 2j forms a state vector of the system. •

For example, in Fig. 4.1, the weight of the maximum weighted complete

matching Mx or Ma is 6, indicating that the symbolic number of states of this

system is 6-3 = 3. Hence, provided that the coefficient matrix of y is nonsingu-

lar, the set of the state variables of the system is \yx, y2, ys\. In Fig. 4.2, the

weight of the maximum weighted complete matching Mx or M$ is 5, indicating

that the symbolic number of states of the system is 5-3 = 2. Hence, provided

that the coefficient matrix of y attains its maximum rank (which is 2), the set of

state variables of the system is either \yx, y3J or \yx, y2\.

52

We are now ready to describe an algorithm for finding a consistent AP pro

cess. The basic idea behind this algorithm is to maintain the symbolic state vec

tor of the given system as a symbolic state vector of the decomposed system.

Hence, the resulting AP process is consistent with the given system if both the

given system and the decomposed system satisfy the nondegeneracy assump

tion 4.1.

Algorithm 4.1 (Algorithm for Finding a ConsistentAP Process)

Step 1: Find a maximum weighted complete matching M of the weighted bipar

tite graph associated with the given system of equations

Step 2: Select the assignment according to M and the state variables according

to Lemma 4.2.

Step 3: Perform the partitioning of the system equations into subsystems of

equations. •

Remarks

1) The problem of finding a maximum weighted complete matching is a stan

dard problem in combinatorial optimization [24] and there are efficient

algorithms for it.

2) By assigning the variables according to the matching M given by Step 1, we

guarantee that M is also a maximum weighted complete matching of the

weighted bipartite graph associated with the decomposed system indepen

dent of the choice of partitioning of Step 3. a

53

To check if an AP process is consistent or not, first map the assignment of

the given AP process into a complete matching of the weighted bipartite graph

and apply the result of Lemma 4.1. If the matching satisfies (4.10) of the lemma,

then it is a maximum weighted complete matching and, by Lemma 4.2, we can

conclude that the AP process is consistent with the system.

OuO 0 Vi

0 CI22 0-23 yz +

0 agg aga Vz

blxbx20
f 1

«i

b2x b22*23 yz + u2

0 632633 ys us

w

1** equation ^ p» 1** variable

*
#•

"^
^

^ ble
3rd equation i^-——-^* 3"* variable

(b)

Mx = {(1.1). (2.2), (3.3)J

M£ = ((1,2), (2,1), (3,3)1

Md = {(1.1). (2,3), (3,2)J

(c)

54

= 0

fig. 4.1 a) The system equations.

b) The weighted bipartite graph associated with the system. Solid lines

represent edges with weight=2 and broken lines represent edges

with weight= 1.

e) Some complete matchings of the graph.

an 0 0

0 0 0

0 Ogs 033

y\

iz

1" equation ^>

6ii 612 0 Vi ux

62l 622 623 1/2 + u2

0 632 633 1/3
1 « ,ua.

W

1st variable

p<
2nd equation <- ^> 2nd variable

3rt equation *

5

C. :* 3«« variable

V

(b)

*i = 1(1.1). (2.2). (3.3)1

Af2 = {(1.2). (2.1). (3,3)1

#g - {(1.1). (2.3). (3,2)1

(c)

55

= 0

Fig. 4.2 a) The system equations.

b) The weighted bipartite graph associated with the system. Solid lines

represent edges with weight=2 and broken lines represent edges

with weight= 1.

c) Some complete matchings of the graph.

56

Chapter 5

Convergence of the "WR Method

A WR algorithm applied to a given dynamical system is said to converge if it

generates a converging sequence of iterated solutions whose limit is the solution

of the given system with the given initial conditions. In this chapter we give

sufficient conditions on the decomposed system to guarantee convergence of

the WR algorithm. The key principle behind them is the well known mathemati

cal concept of contraction property of a map. To be able to give the convergence

conditions of the WR algorithm in a simplified form, we shall introduce the

definition of the canonical WR algorithm. Sufficient conditions to guarantee the

existence of a canonical WR algorithm will also be given.

5.1. Contraction Theorems in Functional Space.

From an abstract viewpoint, the WR method can be considered as a fixed

point algorithm [20] or a method of successive approximations for finding a

fixed point [20] of a map in a functional space of waveforms. To illustrate this

point, we define Y as a space of waveforms within a given time interval [O.T], i.e.,

Y = h/():[0.7l-tfj (5-1)
Next, we define a map F: Y-+Y such that F(y()) is the solution of the decom

posed system with the given initial condition and with y() as the guess in com

puting the decoupling vector of each decomposed subsystem. Then the relaxa

tion iteration of a WR algorithm can be rewritten as

¥*(•) = F(y*-'()) (5-2)

Clearly, if y (•) is the exact solution of the given system, we have

v(> = r(v()) (5-3)

That is, the solution of the given system is a fixed point of the map F and the WR

algorithm, as described in the form of (5.2), is called a fixed point algorithm.

The sufficient condition for convergence of a fixed point algorithm is based

on a well known property of the map F whose fixed point is being sought. This

property is called the contractionproperty [20] defined as follows.

Definition 5.1 Let Ybe a complete normed space [26] (or a Banach space [26]).

Amap F: Y-* Yis confracrw/e if there is a constant y € [0,1) such that

l|F(y)'-F(ar)|| * y\\y -x|| for all x,y G Y. -

Theorem 5.1 (Contraction Mapping Theorem)

Let Y be a complete normed space and F: Y->Ybea. contraction map. Then

Fhas a unique fixed point }e7satisfying y = F(y). Furthermore, for any initial

guess y° G Y, the sequence \yk € yjjT=i generated by the fixed point algorithm

yk = T(yk~l) k = 1.2 »

converges uniformly to y and the rate of convergence is given by

Hv*-vll * yV-511 (5-4)

where y is the contraction constant of F. •

The Contraction Mapping Theorem [20] is a well known theorem in

mathematics. Since it is of importance for the proof of the convergence of the

WR algorithm, we shall review the proof of this theorem in the appendix. This

theorem will serve as a fundamental mean for deriving sufficient conditions for

the convergence of the WR algorithm in terms of the numerical conditions of the

decomposed system equations as we shall see in the next section.

58

In practice, due to rounding or discretization errors in evaluating F, an

approximate sequence is generated in place of the exact sequence, Le.,

y*+i yt Y(yk). Furthermore, the map F itself can also be sequentially approxi

mated. The next theorem states that if F is contractive, there is an adaptive

scheme for controlling the errors due to these approximations which will gen

erate a sequence of solutions that converges to the fixed point of F.

Theorem 5.2 Given that F and Ffc ; k = 0,1,...,°° are contraction maps from a

completed normed space Y to Y with contraction constants y and yk ; k = 0,

1 oo respectively, let y e Y be the unique fixed point of F, i.e., F(y) = y, and

\yk e yjjTso De a sequence in Y. Define

e* = l|F*(yfc)-y'+l|| k =0,1 ~ (5.5)

*t = l|Ffc(y)-F(y)|| A: =0.1 °° (5.6)

ak k ek + 6k k =0,1 °° (5.7)
and

Pkj =

tin
+i

1 if j^k

Then the following statements hold.

a) !ly*+1-y|| * /Wolfe/0-y II+ £%<*/ (5-9)

W+i i*0*J**-l (5.8)

jaO

b) !fe/"+l-y|| * T^ll^+1-^l!+ r^T
k

c) If lima* = 0, limfr.,- = 0 for any j and lim £/?« = c <«,

then limi/* = y.

Corollary 5.2 If 7,.^7<1 for all A: =0,1 °° and lima* = 0, then

limy* =y.

(5.10)

59

Remark Note that (5.9) and (5.10) have different uses. Whereas (5.9) is used to

prove the convergence of the approximate sequence, (5.10) may serve as as a

computable estimate which may be used to terminate the iteration. •

Careful examination of Theorem 5.2 indicates that sk denotes the error due

to the evaluation of F* whereas 6k is somewhat related to how accurate F*

approximates F. This theorem is of particular importance for the WR method

since practical implementation of a WR algorithm always entails some numerical

errors. The most obvious error is the error due to the discretization of the time

derivative in the integration method and hence can be represented by ek. More

over, 6k can also be used to represent the errors caused by solving a simplified

decomposed system, i.e., the equations describing the decomposed system are

simplified. Theorem 5.2 states that if the conceptual (or ideal) version of a WR

algorithm satisfies the Contraction Mapping Theorem then convergence of its

implementable version is still guaranteed if these errors are eventually driven

down to zero.

5.2. Convergence of the Canonical WR Algorithm.

In this section, we shall derive sufficient conditions to guarantee conver

gence of a WR algorithm in terms of the numerical properties of the iterated

equations. However, to be able to obtain interesting and useful results, it is often

necessary to make certain restrictions on the object that we study. Here we

require that the iterated equations of a WR algorithm can be transformed into a

canonical form as defined below.

Definition 5.2 A canonical WR algorithm is characterized by the following

iterated equations.

60

xk = f(xk,xk~l, xk~l, zk~\ u) (5.11a)

zk a g(xk, x*-1, xk~\ zk~l, u) (5.11b)

where x e l£* is the vector of the state variables, z € K. u € hT and /, o; are

continuous functions. Note that the time derivative of the non-state variable z

of the canonical WR algorithm does not appear in (5.11). •

It should be noted that, when simulating large scale integrated circuits, this

restriction can always be met as we shall see in the next chapter. Moreover, as

we shall see later, we do not have to implement a WR algorithm in its canonical

form, i.e., we are not required to find / and g explicitly. However, the canonical

form is important to simplify the derivation of sufficient conditions for the con

vergence of the WRalgorithm.

Theorem 5.3 (Convergence Theorem of the Canonical WR Algorithms).

Consider a WR algorithm whose iterated equations can be transformed into

the following canonical form:

xk = f(xk, xk~l, xk'1, zk~\ u) ; xk(0) = x0 (5.12a)

zk = j(i»1«*-,1«*-1,i*-U) (5.12b)

where xk e if1, zk e Rf, x0 € Kf1 andu e FT. Assume that

a) u() : [0,T]-*l£ is a piecewise continuous1 function.

b) there exist norms in Ef*xrf and R*. \x fe 0. X2 &0 and y e [0,1) such that for

any a, 6. s, a, o-, s e H?1, v, v e K andu € if

f (a, b s,v, u) - f(a, S,s, v, u)
g{a, b, s, v, u) -g{a, b, s, v, u) -s \x\\a - a|| + X2||6 - 61| + 7

s -s

V —v

i.e., (/, g) is globally Lipschitz continuous with respect to x and globally

contractive with respect to (x, z).

1A function u(*): [0,T]-*f[is piecewise continuous if it is continuous everywhere except at a
finite number of points and at any discontinuity point, the function has finite left- and right-hand lim
its.

61

c) both / and g are continuous with respect to u.

Then, for any initial guess (x°(t), z°(t); t e [0,T]) such that both x°() and

z°() are piecewise continuous waveforms and that x°(0) = Xq, the sequence

\(xk(t), xk(t), zk(t) ; t € [0,T])\ksX generated by the WR algorithm converges ;

uniformly to (I (t). x(t), z (t); t € [O.f]) which satisfies

x = f(x, x, x, z, u) ; x(0) = xq (5.13a)

z = g(x,x,x,z,u) (5.13b)

•

Remark: We do not need condition (b) of Theorem 5.3 to hold for the entire

spaces I^xRf and tf\ Le., global Lipschitz and global contractive properties of

(/, g) are not necessary. Convergence is still guaranteed as long as the condi

tion (b) holds for the subsets of lf*xRf and R? that contain the sequences

\(xk(t), zk(t) ; t € [O.T])lks0 and \(xk(t) ; t e [0.T])]^ respectively. •

It is possible to justify intuitively the derivation of the convergence condi

tions given in Theorem 5.3 if one is familiar with the Contraction Mapping

Theorem and the Picard-Lindelbf Theorem on the existence and uniqueness of

the solutions of ordinary differrential equations (see [25] page 18). From the

Contraction Mapping Theorem, the conditions (b) and (c) guarantee that (5.12)

can be written equivalently as

I = f{x,u)\ x(0)=x0 (5.14a)

z = g(x, u) (5.14b)

where f and g are lipschitz continuous with respect to x and continuous with

respect to u. Hence, by the Picard-Lindelbf Theorem, (5.14) has a unique solu

tion (x, z) for any given initial condition and any given piecewise continuous

input Theorem 5.3 simply shows that the canonical WR algorithm is in fact a

constructive proof of the existence and uniqueness of the solution.

62

The next theorem extends the result of the above convergence theorem to

the case in which the initial conditions of the iterated decomposed system are

not fixed but vary from one iteration to another. Such a case can arise when the

initial conditions of the original system are not given explicitly but have to be

obtained from another iterative solution of a set of algebraic equations. For

example, the initial conditions of an electronic circuit may be given implicitly as

the "dc" solution of the circuit equations. In such case, we may opt to use the

iterated solution of the algebraic equations as the "iterated" initial conditions

for solving the iterated decomposed system, allowing both iterative processes to

interleave among themselves. We will see that, under the same assumptions of

Theorem 5.3, the sequence of iterated solutions is guaranteed to converge to the

correct solution if the sequence of the "iterated" initial conditions converges to

the correct initial conditions of the original system.

Theorem 5.4 Consider the canonical WR algorithm as given in Theorem 5.3 with

the exception that the initial conditions of the iterated equations are given by

xk(0) = x% with limarjj = xQ,
k-»*>

Then, under the same assumptions of Theorem 5.3, the sequence

\(xk(t),xk(t), zk(t)\ t 6[0.7,])J*Bi generated by the canonical WR algorithm

converges uniformly to the solution of (5.13). •

So far, the WR algorithm that we have described can be considered as being

stationary in the sense that the iteration process is performed with the same

set of equations. We now briefly describe non-stationary WR algorithms in which

the equations describing the system at each iteration can change from one

iteration to another. Obviously, nonstationary WR algorithms are meaningful

only if they can be interpreted as approximations of a stationary one. The follow

ing theorem tells us how to construct a nonstationary WR algorithm from a con-

63

vergent stationary one without losing the convergence property.

Theorem 5.5 (Convergence of Non-stationary WR Algorithms)

Let (x(t), z(t); t € [0,T]) be the solution of (5.13) in which /, g and u

satisfy all the assumptions of Theorem 5.3. Let {(**(*). z*(0 : t € lO,T])]ksX be

the sequence of iterated solutions satisfying the following non-stationary WR

algorithm:

= fk(xk,xk~l, xk~l, zk~\ u) ; x*(0) = x0 (5.15a)

zk = gk(xk,xk~\ xk~\ zk~\u) (5.15b)

where xk € if, zk e E?, x0 e if, u e if. /* : ifxlfxlfxE?xrT -» if and

0* : ifxlfxlfxRfxlf -» Rf. Assume that

a) for each A:, there exist constants \xk ^ 0, Xab ^ 0 and yk e [0,1) such that

fk(a, b, s, v, u) -/*(a. &•£•£. u)
gk(a, b, s,v,u) -gk(a, o-, s, v, u) <; XXk\\a -aJI+Xttllb -%\\ + yk s — s

V —v

for all a, b, s, a, 8\ s e Rn, v, v e E? and u € if where all norms are

the same as in Theorem 5.3.

b) yu = sup\yk\k = 1,2 «j < 1, \1Jtf = sup$Alib|A: = 1,2,...,«J < » and

Agtf = suplXatU =1,2 «j < oo

c) for any t € [0,7], lim^(f) = 0 where

t *
5* =

f (x, X, X, z, u) - fk(x, X, X , z, u)
x, x, x, z, u) -gK{x, x, x, 2,u)

Then, for any initial guess (x°(f), z°(t) ; t € [O.T]) such that bothx°() and

z°(.) are piecewise continuous waveforms and that x°(0) = x0. the sequence

{(**(*). **(0. «*(0 : t e[0,T])\ksX generated by the non-stationary WR algo

rithm converges uniformly to (x (t), x (t), z (t) ; t € [0, T]). -

64

Corollary 5.5 The result of Theorem 5.5 still holds when the initial condition of

(5.15) is given by x*(0) = x{j, provided that limx* = xq. •

We conclude this section with the remark that we have presented the WR

method in this and the previous chapter in a mathematical framework which is

quite general. However, since we made no assumption about the structure of

the system equations, we had to make certain theoretical restrictions (such as

the consistency requirement and the existence of a canonical representation)

in order to be able to derive the convergence conditions of the WR method. This

makes it difficult to interpret them in terms of physical properties. Moreover,

there are many different ways to formulate the circuit differential equations

such as NodalAnalysis formulation [23], Modified NodalAnalysis formulation [21]

and Tableau formulation [22]. Each formulation differs from the other by the

choice of the circuit variables. It is quite possible that the WR algorithms

derived from different formulations of the circuit equations have different con

vergent properties. In the next chapter, we shall specialize the method to a par

ticular formulation and a particular class of circuits. There we will see that the

theoretical restrictions given in this chapter are automatically satisfied.

5.3. Existence of the Canonical YTR Algorithm.

The convergence theorems presented in the previous section all require the

existence of a canonical form of the WR algorithm eventhough the algorithm is

actually implemented in its original form. In this section, we shall show that the

consistency of a WR algorithm plays an important role in determining the

existence of the canonical form of the algorithm. We first give a few examples to

illustrate the basic assumptions and basic steps in transforming a WR algorithm

into its canonical form as defined in Definition 5.2.

65

Example 5.1 Consider the WR algorithm used in Example 3.1, as decribed by

(3.8). Notice that this algorithm is consistent with the original circuit equations

(3.7). To transform it into a canonical WR algorithm, first rewrite (3.8a) as fol

lows:

Then, substitute it into (3.8b) to obtain

°z _.kVk = — v2
C2 + C3

Cs [J - Cxvkx +C3vk~l] ; v|(0) =V2 (5.16b)
(C2 + C2)(CX + C3)

The canonical form of the algorithm is thus given by (5.16). •

Example 5.2 Consider the following system of equations:

i\ = /i(Vi. Vz. u) (5.17a)

yz = /z(Vi. ya) (5.17b)

vs = fsiyi.yz) (5.i7c)

Let Vi. V8 and ya be assigned to (5.17a), (5.17b) and (5.17c) respectively and let

(5.17) be partitioned into 3 subsystems consisting of {(5.17a)J, {(5.17b)J and

f(5.17c)J. Then the fc-th iteration of the resulting GJ-WR algorithm is described

by

it = /iGrt.ylT1.*) ; v*(o) = yi(o) (5.18a)

yi = /2(yt"1.y§_1) (5.i8b)

vS = fz(y\-\y%-1) (5.18c)

It is easy to see that the given system of equations (5.17) has only one state

despite the fact that there are two variables with time derivative. Hence, this

WR algorithm is consistent with the given system equations. However, it is not in

66

canonical form because the non-state variable y2 appears in (5.17a) with a time

derivative. To transform (5.18) into a canonical form, we have to differentiate

(5.18b) and (5.18c). By differentiating the two equations, (5.18) can be written as

yf = /i(yf.y£-1.u) : y*(o) =vi(o) (5.i9a)

it = ^(ykrKytl)ifri^^r(ykrl.yk3-l)yi-1 (5.i»b)
ayx oj/a

M = ^2-(l/^l.J/i-l)vi!-, +̂ 2-(y^,.1/i-')y^, (5.190)
oy 1 oy2

which is a canonical WR algorithm. Notice that the system of equations (5.19) of

the canonical WR algorithm has 3 state variables as opposed to only one state

variable in the original system. This is because additional states variables y2 and

y2 are created by the differentiation. The initial values of y\ and y% for (5.19)
are given by the iterated equations (5.18b) and (5.18c) of the original WR algo

rithm, i.e.,

y|(o) = /2(yi(o).yri(o)) (5-20b)
y§(0) = f*(y 1(0), yk2-'(o)) <5-20c)

So we have a canonical WR algorithm in which the initial values of some of

the state variables will change from one iteration to another unless the initial

guesses y?(0) and y§(0) are equal to their exact initial values. That is, if

yS(0) =y2(0) and y?(0) =y3(0), then

y|(0) = y2(0) and y£(0) = y3(0) for any A: (5.21)

Now suppose that (5.19) satisfies the assumptions of the convergence

theorem 5.3, which is equivalent to saying that

67

0 ^(Vi'Vz-^) °
dfz
9yi

a-,—(yi. y2) *„
oyi oy2

This automatically implies that its principal minor

dfz

<Vi. ya)
dfz

dya
(yi. ya) is uniformly contractive.

d/3-(yi.y2) ^-(yi,y2)

a/a
9y2

3y3

(yi. y2) o

(yi. ya)
is also uniformly contractive,

which is sufficient to guarantee that the sequences of y|(0) and yjj(O) as gen

erated by (5.20) will converge to ye(0) and ya(0) respectively. Therefore, by

Theorem 5.4, the conditions for convergence of the canonical WR algorithm do

not depend on whether the initial values of y\ and y\ are given by (5.20) or

(5.21). •

Example 5.3 Consider the following system of equations

yi = /i(yi. y* u)

iz = /2(y2. ya)

ya = /a(ya. iz)

y* = /4(y2. ya)

(5.22a)

(5.22b)

(5.22c)

(5.22d)

Let Vi. y2. ya and y4 be assigned to (5.22a), (5.22b), (5.22c) and (5.22d) respec

tively and let (5.22) be partitioned into 4 subsystems consisting of j(5.22a)J,

{(5.22b){, {(5.22c)i and |(5.22d)j. The fc-th iteration of the resulting GJ-WR algo

rithm is then given by

yf = /lGrt.W"1. u) ; ykx(0)=yx(0) (5.23a)

it = f 2<vt. it'1) : y|(o)=y2(o) (5.23b)

68

it = /3(yS.y2*-1) ; vJ(o) = ya(o) (5.23c)

yi = ftdt'.yt1) (5.23d)

Note that this WR algorithm is consistent with the given system equations (5.22)

but is not in canonical form because the non-state variable y4 appears in (5.22a)

with a time derivative. To transform (5.23) into a canonical form, we

differentiate (5.23b), (5.23c) and (5.23d) to get

yt =^(ylitl)i^ ^(ylitl)yk'1 (&23e)

» = ^-(yt.W-W+S2-^.**-1)*-1 (5-23f)
oya °y2

ik = ^<&t-lM"im-l+^<Vt-l.vi-l)it-1 (5.23g)
Let

ys = y2 and ye = y3

Then (5.23) can be tranformed into the following canonical form

ik = fi(ylitl.u)-. y?(o)=yi(o) (5.24a)

it = /a(vi.viTl) : y^(o) =y2(o) (5.24b)

y3* = /a(yS.yl"1) ; v*(o) =ya(o) (5.24c)

it = ^(yfr1. yt1)itl +j^v*"1•vt"1)virl (5-24d)
w = ^_(y|,yS-l)yJ +Sr-(ytyri)y6fc-1 (&24e)

dy2 v*a,*° '*° 3y3

yf = ^(y^yrMy$ +|^(yty?rl)y*-1 <5-24f>

Just like the previous example, the system equations of the canonical WR

algorithm has more state variables than that of the original WR algorithm. The

initial values of y$ y% and y% for (5.24) are given by the iterated equations

(5.23d), (5.23b) and (5.23c) of the original WR algorithm respectively, i.e.,

V«0) = /4(y*-l(0).Va(0)) (5.25a)

V»(0) = fz(yz(0),yke'HO)) (5.25b)

V*(0) = fs(yz(0)tytl(0)) (5.25c)

Once again, by the arguments similar to those of the previous example, we

can conclude that if (5.24) satisfies all the assumptions of Theorem 5.3 then the

canonical WR algorithm will converge to the correct solution even if the initial

values of some of its state variables vary from one iteration to another. •

Example 5.4 Consider the WR algorithm described in example 4.1 of the previ

ous chapter, i.e.,

yt = u-yf"1 (5.26a)

y* = y\ (5.26b)

Notice that this algorithm is not a consistent WR algorithm. It is also not in

canonical form because the non-state variable yx appears in (5.26a) with a time

derivative. However, if we differentiate (5.26b) we will create a time derivative of

y2 which is also a non-state variable and the process of differentiating will loop

indefinitely. Hence the canonical form of the WR algorithm does not exist. •

From these examples, we see that consistency is essential in ensuring the

existence of a canonical form of a WR algorithm. We then formalize this result in

the following lemma.

70

Lemma 5.1 Consider a WR algorithm with the following assumptions.

a) For each decomposed subsystem described by (3.4), there exist smooth2

functions /< and o^ and a nonsingular matrix

can be written as

Ei
A

*i = 7tfo. uit u) -,
z< = gfiixi, uit u)

*i(o) = A(yi(o))

Di yi

<E H*** such that (3.4)

(5.27a)

(5.27b)

(5.27c)

where Xi € Kf1*, 2i € fl?4""*, i.e., each decomposed subsystem has a state-

equation representation.

b) Both the given system and its associated decomposed system satisfy the

nondegeneracy assumption 4.1.

c) The WR algorithm is consistent, i.e., its AP process corresponds to a max

imum weighted complete matching (defined in Definition 4.6) of the

weighted bipartite graph associated with the given system.

Then there exists a transformation which transforms the WR algorithm into

a canonical form as defined in Definition 5.2. B

8 By smooth we mean that the functions are r times continuously diilerentiable, where r is as
large as required by the transformation indentifled by the constructional proof of the lemma.

71

Chapter 6

TO Algorithms for Simulating

Large Scale Integrated Circuits

In this chapter we shall apply the TO Method to analyse an important class

of dynamical systems: MOS integrated circuits. In fact, this was the original

motivation behind the development of the TO method. A typical large scale digi

tal circuit is usually an interconnection of several basic subcircuits called

"gates". Hence decomposition techniques can be applied to the analysis of this

class of circuits in the most natural way. We will propose two TO algorithms for

analyzing MOS digital integrated circuits and show that, under very mild

assumptions usually satisfied by practical circuits, the proposed algorithms con

verge. Although both GS and GJ relaxations can be used in these algorithms, the

GS relaxation is preferred since it requires only one copy of the iterated solution

as opposed to two copies required by the GJ relaxation. Also its speed of conver

gence is faster, especially for MOS circuits where unidirectional models are used

MOS devices (for example see [5,6]), provided that the equations are properly

ordered (see [30] for a discussion of this aspect). For the sake of simplicity,

both algorithms use the simplest guessing scheme and an assignment-

partitioning (AP) process in which each partitioned subsystem is a single equa

tion. The generalization of both algorithms to allow more than one equation per

subsystem is straightforward and will not be discussed.

Two basic assumptions are made to derive our algorithms:

(i) Each element in the circuit and its interconnections can be modelled by

lumped (linear or nonlinear) voltage controlled capacitors, conductors and

current sources.

72

(ii) Every (internal or external) node in the circuit has a (linear or nonlinear)

capacitor, called a grounded capacitor, to either ground or dc supply vol

tage rails.

Note that, for MOS large scale integrated circuits, these assumptions are

usually satisfied.

6.1. Nodal Circuit Equations and the 1YR Algorithm.

For the first TO algorithm, we use the node voltages as the circuit variables.

Let the circuit to be simulated has n unknown node voltages. Using Nodal

Analysis formulation [23], the circuit equations can be written as follows.

C(v,u)v + g(v,it) = 0; v(0) = V (6.1)

where v e R? is the vector of all unknown node voltages, V€ rf1 is the given ini

tial values of v, u e ET is the vector of all inputs and their first order time

derivatives, q : BTxEf-^Rf1 is a continuous function each component of which

represents the net sum of currents charging the capacitor at each node due to

the conductors and the controlled current sources, C: nTxJ?-*!? is a sym

metric diagonally dominant matrix-value function in which -Qj(v, u) ; i / j is

the total floating capacitance between nodes i and j, and Cn(v, u) is the sum of

the capacitances of all capacitors connected to node i.

Algorithm 6.1 (WR algorithmfor solving (6.l) from t =0tot = T.)

Comment: a superscript denotes the WR iteration count and a subscript denotes

the component index of a vector.

Step 1: Set k = 1 and v°{t) = Kfor allU [0,T].

Step 2: For each i = 1,2 n, solve for \vf(t) ; t G[0,T]\ from

t (kM vt. ViVi1 I*"1. u)yf +

£ CfcM vf, vfc1 vt1, u)v*-* +
Jsi+1

g*M «f. vfci1. ••. .«S"1.*0 : = ° (6-2)

with the initial condition wf(0) = T£.

Step 3: Set k = A: +1 and go to step 2. •

Remarks:

1) Equation (6.2) is actually a single differential equation in one unknown vari

able vf. The variables vfrf, . . . , «{_1 are known from the previous itera

tion andi/*, vf_! have already been computed.

2) In most practical circuits, the circuit equations (6.1) are usually very

sparse, i.e„ only a few variables are actually involved in each equation. This

fact can be exploited in the implementation of the algorithm on a com

puter.

3) With regard to the theoretical concepts presented in the previous three

chapters, we can say that the AP process used in Algorithm 6.1 assigns i/j to

the i-th equation of (6.1) and partitions (6.1) into n subsystems each of

which has only one equation. Since it is clear that fa, i = 1,2 n\ form a

state vector of both (6.1) and (6.2). therefore the AP process is automati

cally consistent with the given circuit. •

Example 6.1

Consider the circuit shown in Fig. 6.1. For simplicity we assume that all

capacitors are linear. Using the node voltages vlt vz and v$ as variables, the cir

cuit equations are:

73

74

(Ci + cz+ cg)v! -i^x) +i8(i/i, Wi) +ig(vi. u2, v2)

—CiUj-Cgiig = 0 (6.3a)

(C4 + Cg + C8>U2 - CgVg - IgO^, Tig, Vg) - C4ll2 = 0 (6.3b)

(Cfl + C7)-Wg - CgVg - i4(v3) + i5(vZt VZ) = 0 (6.3c)

Applying Algorithm 6.1, the fc-th WR iteration corresponds to solving the follow

ing equations.

(cj + c2 + c3)vf -ii(v^) + i2(v?, ux) +i3(vf, u2, v%~1)

- cxux- cailg = 0 (6.4a)

(c4 + c8 +CeJvl - cgvg6"1 - i3(v?, Ug, v%) - c4ii2 = 0 (6.4b)

(cg + cOvf-Cevf-i^vS) +is(vj.v|) = 0 (6.4c)

The circuit interpretation of the iterated equations (6.4) is shown in Fig. 6.2.

If we consider that the original circuit in Fig. 6.1. consists of 3 subcircuits

sx, s2 and s3, then the decomposed subcircuits s1(sg and s3 (shown in Fig. 6.2)

are actually slt s2 and s3 together with additional components to approximate

their loadings. Hence we can describe the WR algorithm for simulating this cir

cuit in circuit terms as follows.

Step 1: Set k = 0 and make an initial guess of v|(t), vjj(t) ; t € [0,T].

Step 2: Repeat

Set A: = Jfe+1.

Analyse Si for its output waveform v}(-) by approximating the load

ing effect due to sg.

Analyse s2 for its output waveform Vg() by using t>i() as its input

and approximating the loading effect due to s3.

Analyse s3 for its output waveformv%() by using vj(-) as its input

Until the difference between {foi(0. vi(t)t vj(0 : t €[0,T]] and

WHO. v%-l(t)% i/JTl(0 : t € [0,r]j is sufficiently small. •

75

6.2. Modified Nodal Equations and the IfR Algorithm.

The second WR algorithm that we are about to describe is intended for MOS

circuits containing pass transistors (or transmission gates) such as the circuit

in Fig. 8.1. Here, we use the unknown node voltages and the drain currents of

pass transistors as the circuit variables. Let the circuit to be simulated has n

unknown node voltages and I pass transistors. Using the Modified Nodal Analysis

formulation [21], the circuit equations can be written as follows:

C(v,u)v + q(z,v,u) = 0; v(0) = V (6.5a)

z -g(v,u) = 0 (6.5b)

where C,v,u and Vare as defined in (6.1), z e R? is the vector of the drain

currents of the pass transistors, g : rFxRT^R? is a continuous function (each

component of which describes the drain current of each pass transistor in terms

of its terminal node voltages) and q :RfxK^xlf-»Rf* is a continuous function

(each component of which represents the net current charging the capacitor at

each node due to the pass transistors, the other conductive elements and the

controlled current sources).

Algorithm 6.2. (WR algorithmfor solving (6.5)from t-Qtot-T)

Comment: a superscript denotes the WR iteration count and a subscript denotes

the component index of a vector.

Step 1: Set k = 1, z°(0 = 0 andv°(0 = Kfor all t € [0,T].

Step 2: a) For eachi = 1,2 n, solve for (i/f(0 : * € [0,T]) from

£ Qj(v$ vf, vfc1 v*-1, u)vf +

£ CyM vf. lift:,1 njr1. u)vf-i +

qt(z*-\ v\ vf, ufci1 v*-\ u) =0 (6.6a)

78

with the initial condition vf(0) = J{.

b) Compute zk(t) ; t € [0,T] from

zk = g(yk,u) (6.6b)

Step 3: Set A: = As + 1 and go to step 2. •

Remarks:

1) Just like (6.1), Equation (6.5) is also very sparse.

2) Equations (6.6a) and (6.6b) can actually be solved together as will be

demonstrated in the following example.

3) By the same arguments as those for Algorithm 6.1, we can conclude that

Algorithm 6.2 is also consistent with (6.5). •

Example 6.2

Once again we consider the circuit of Fig. 6.1. This time we formulate the

circuit equations as follows:

(ci + c2 + c3)vl -ii(vi) +ig(vlt Ui) + z - CiUi - c&Lz = 0 (6.7a)

z -i3(t>i, uz, vz) = 0 (6.7b)

(c4 + cs + cfl)v2 - c6va - is(y j, uz, vz) - c4uz = 0 (6.7c)

(c6 + c7)v3 - cevz - U(v3) + i5(*u3, vz) = 0 (6.7d)

Applying Algorithm 6.2, the Jb-th WR iteration corresponds to solving the follow

ing equations.

(ct + c2 + c3)vf -ii(v?) + ig(vf, 1*1) + z*"1 - ci&i - c3ug = 0 (6.8a)

zk -i3(vklt itg, v%) = 0 (6.8b)

(c4 + c5 + Cq)v£ - cQvk~l -i3(v?, u2, v|) - c4ilg = 0 (6.8c)

(c6 + c7)vk - cQv£ -i4(v§) + is(va. ^|) = 0 (6.8d)

The circuit interpretation of the equation (6.8) is shown in Fig. 6.3. Note the

difference between the decompositions induced by Algorithm 6.1 (Fig. 6.2) and

77

Algorithm 6.2 (Fig. 6.3). From Fig. 6.3 we see that (6.8b) and (6.8c) can be

solved together since they belong to the same subcircuit. •

6.3. Guaranteed Convergence of KR Algorithms for MOS

Circuits

In this section, we interpret the sufficient conditions for convergence of WR

algorithms, as given by Theorem 5.3, in terms of the properties of the elements

of the circuit and show that they are very mild in practice.

Theorem 6.1 Assume that

a) The charge-voltage characteristic of each capacitor, or the volt-ampere

characteristic of each conductor, or the drain current characteristic of

each MOS device is Lipschitz continuous with respect to its controlling vari

ables,

b) Cinm > ° and ^max < °°where

Cmin £ R is the minimum value of all grounded capacitances at any permis

sible values of voltages, and

£max ^ R is the maximum value of all floating capacitances between any two

nodes at any permissible values of voltages,

c) The current through any controlled conductor (e.g. the drain current of an

MOS device) is uniformly bounded throughout the relaxation process.

Then, for any MOS circuit with any given set of initial conditions, and any

given piecewise continuous input u(), either Algorithm 6.1 or 6.2 generates a

converging sequence of iterated solutions whose limit satisfies the circuit equa

tions and the given initial conditions. •

78

Note that the first assumption implies that for any capacitor, conductor or

MOS device, its incremetal (or small signal) characteristic, i.e., capacitance,

conductance or transconductance, at any permissible dc operating point must

be uniformly bounded. The second assumption states that the value of any

grounded capacitor must be bounded away from zero and the value of any float

ing capacitor must not be arbitrarily large. The third assumption implies that

during the relaxation iteration, the current through any conductor or MOS dev

ice does not grow arbitrarily large. These three assumptions are very mild in

practice and hence either Algorithm 6.1 or Algorithm 6.2 is guaranteed to con

verge for any MOS integrated circuit of practical interest. The rate of conver

gence is linear, a typical property of any relaxation method.

It should be pointed out that the convergence of WR algorithms can be esta

blished by Theorem 6.1 for integrated circuits implemented by other type of

devices (such as bipolar transistors) as long as the circuit equations can be writ

ten in the form of the equation (6.1) or (6.5) and the assumptions of Theorem 6.1

on the branch equations are satisfied. Note also that the strong assumption of

Theorem 5.3 regarding the global contractivity of / in (5.12) with respect to x is

automatically satisfied because C(\ •) is strictly diagonally dominant. Moreover,

the contractivity of g in (5.12) with respect to z is irrelevant for Algorithm 4.1

since its canonical form does not involve algebraic equations. For Algorithm 6.2,

it is also irrelevant since g does not depend on z.

In both algorithms, the initial guesses are chosen, for convenience, to be

constant waveforms. From Theorem 5.3 we know that other choices of initial

guesses will not destroy the guaranteed convergence of both algorithms if they

are piecewise continuous waveforms. Hence, for MOS digital integrated circuits,

a logic simulation could be used to generate the initial guesses for these two

algorithms. It is also possible to show that, under the same assumptions of

Theorem 5.3, the corresponding GJ relaxation versions of Algorithm 8.1 and 6.2

79

are guaranteed to converge. Moreover, a relaxation parameter a can be intro

duced into these GJ-WR or GS-WR algorithms (as described in section 3.3)

without destroying their guaranteed convergence, provided that u € (0, 2).

As a first example, the ring oscillator shown in Fig. 6.4 is used to illustrate

the convergence of Algorithm 8.1. The circuit interpretation of the relaxation

process is shown in Fig. 6.5. The resulting waveforms at different iterations of

the algorithm are shown in Fig. 6.6a through 6.6d. Note that since the oscillator

is highly non-unidirectional due to the feedback from v3 to the input of the NOR

gate, the convergence of the iterated solution is achieved with the number of

iterations being proportional to the number of oscillating cycles of interest.

The next example, shown in Fig. 6.7a, illustrate the convergence property of

a WR algorithmwhen being applied to a bipolar analog integrated circuit Once

again, we purposedly choose as our example the circuit in which there is a feed

back from the output to the input of the circuit. This is to show that the WR

method is always guaranteed to converge regardless of whether the circuit

possesses any kind of feedback. In this example, the initial guess of the

waveforms v0°() and v&() are

*.°(0 = Koc ^d i/&(«) = V+K for all tfc 0

where V0 and V9bj)C are the "dc" solutions of the circuit. The resulting

waveforms at different iterations of the decomposed circuit (Fig. 6.7b) are

shown in Fig. 6.8. From this figure, we observe that, although the iterated solu

tion is guaranteed to converge to the exact solution, the convergence to the

steady state portion of the exact solution is quite slow whereas the convergence

to the transient portion of the exact solution is achieved in two iterations. This is

due to the fact that the effect of capacitors in the circuit becomes negligible

when the circuit almost reaches its steady state condition. Since the decom

posed circuit in this case is an open loop operational amplifier, its steady state

60

value is highly sensitive to the input voltages. Therefore, the convergence of the

iterated solution of the decomposed circuit to the exact solution at steady state

condition is very slow. Fortunately, this is not the case for digital circuits

because digital circuits are usually in saturation at steady state conditions.

Hence their steady state values are not sensitive to small changes in the input

voltages. Furthermore, as we have pointed out earlier, a logic simulation [29]

can be used to provide a good initial guess for the WR iteration, especially for

digital circuits with logic feedback between subcircuits to be decomposed. For

these reasons, we choose to implement the WR method for simulating digital cir

cuits as a first practical application of the WR method in circuit simulation.

6.4. KR Algorithm with Adaptive MOS Models.

It is well known [3] that the computational cost of evaluating the MOS model

equations can be quite expensive when the model equations contain complicated

mathematical expressions. For this reason, many simulators trade off the speed

of simulation with the accuracy of simulation by providing the user with various

models of different accuracy. The simplest device model is probably the so

called table look-up model [13] which is simply a piecewise linear function on

uniformly subdivided intervals. Unfortunately these simulators are non-iterative,

i.e., different simulations of the same circuit with different MOS models are com

pletely independent simulations. In other words, the result of simulating a cir

cuit using one type of MOS model cannot be exploited when the circuit is to be

resimulated using another type of MOS model. Hence, the use of highly compli

cated model in the simulation of large circuits is frequently avoided due to its

cost. In contrast, due to the iterative nature of the WR Method, we can take

advantage of various existing models to increase the speed of simulation of cir

cuits that use complicated models. The basic idea is to use the simple models in

Bl

the first few iterations and switch to more complicated models later when more

accuracy is needed. This adaptive use of different models in the simulation actu

ally corresponds to the concept of the non-stationary WR algorithm described in

the previous chapter.

For the sake of simplicity, we shall assume that all capacitors in the circuit

are linear and that there are only N models for describing the drain-source

characteristic of an MOS device. Let these models be ordered in terms of their

computational complexities. By using Nodal Analysis formulation, the circuit

equations of a circuit containing n unknown node voltages can be written as

Cv + qj(y, u) = 0 ; v(0) = V (6.9)

where C € R?*71 is the capacitance matrix, v € if1 is the vector of the unknown

node voltages, u € Rr is the input vector and q* : Kf*xUf -» Rf1 is the function

associated with the j-th MOS model. Let

C = L + D + U (6.10)

where L is a strictly lower triangular matrix, D is a diagonal matrix and U is a

strictly upper triangular matrix. Let q^ : jTxlTxtf-*!? be a vector valued

function whose i-th component is defined as

qL (v, v, u) = q}(vx vit vi+1 vn, u) (6.11)

Let tj ; j ~ 1,2 N be a predefined1 sequence of positive numbers in

which tj specifies the simulation accuracy associated with the j-th MOS model.

Then a WR algorithm that uses these models adaptiveiy can have the following

form.

1We assume that these simulation accuracy parameters are given either directly by the user or
automatically by the simulator. For example, if the user wants to use only the first model, he can
specify et = 0.

82

Algorithm 6.3 (WR Algorithm with Adaptive MOS Models)

Step 1: Set k = 1, j = 1 and v*(t) = Vfor all t € [0,7].

Step 2: Solve for vk{t)\t € [0,7] from

(L+D)vk + C/v*"1 + g^(v*. vk'\ u) = 0 ; v*(0) = K

Step 3: (Accuracy test)

If(max \\vk{t) -vk'l(t)\\^Sj and; < N), thenset; =;' + 1.

Step 4: Set k = k + 1 and go to step 2. •

Assuming that e;- > 0 for all j, then it is intuitively clear that this algorithm

will converge to the solution of the circuit with the most accurate model. This is

because when the algorithm stays with any model, it will tend to converge to the

solution associated with that model and hence will pass the accuracy test in a

finite number of iterations.

+5

1—H^

_£̂
IJTT

1
4=C.

a.

^is
*c_

'2

Jig. 6.1

An MOS dynamic shift register

fig. 6.2

The relaxation decomposition of the circuit in Fig. 6.1

at the ib-th iteration of Algorithm 6.1

83

+5

1—*4^

a
ft-

Rg. 6.3

The relaxation decomposition of the circuit in Fig. 6.1

at the A:-th iteration of Algorithm 6.2

64

♦5

d

65

+5

d
♦3

rf
V.

^z;
*

z

It
Fig. 6.4

An MOS ring oscillator

Fig. 6.5

The relaxation decomposition of the circuit in Fig. 6.4

at the ib-th iteration of Algorithm 6.1

6.9

4.e:

6.0„

0.0

tiii ii»

3.e e.e

6.0

4.0

2.0:

0.0

i.e 2.0 3.0 0.0

66

Iteration #2

i i i i i r • • • • • ' ' ' ' ' ' ' '

1.9 . 2.8 3.©

1.0

Fig. 6.6

Waveforms at various iterations of Algorithm 6.1 applied to the circuit

inFig. 6.4, assuming that v§() = 0

10 VOLT

^5loofr^- VI

t) ioo^A

?
0 loo^A

-10 VOLT

Fig. 6.7a

Asimplified bipolar transistor operational amplifier

10 VOLT

.k L >fc
'1IW

sTT_. r$»

0,0V" £<$> © loo^A

-10 VOLT

Fig. 6.7b

Arelaxation decomposition of the circuit in Fig. 6.7a

87

86

2.9 SEC.

Fig. 6.8

Waveforms at various iterations of the solution of the circuit in Fig. 6.7b

69

Chapter 7

RELAX: An Experimental

MOS Digital Circuit Simulator

In this chapter, we describe the basic numerical techniques used in RELAX:

an experimental circuit simulator which implements a WR algorithm and is spe

cially designed to simulate MOS digital circuits. In particular, a few important

techniques to improve the convergence property and the execution speed of

simulation will be described, namely the scheduling algorithm and techniques to

exploit the latency and the partial waveform convergence.

7.1. Basic Algorithms in RELAX.

RELAX implements a modified version of the WR Algorithm 6.1, as described

in the previous chapter. These modifications are described as follows.

1) Rather than having strictly one equation per each decomposed system,

RELAX allows each partitioned subsystem to have more than one equation

so that each subsystem corresponds to a physical digital subcircuit, e.g.

NOR, NAND, FLIP-FLOP etc. In fact, the choice of the decomposition is dic

tated by its input language, i.e., the user specifies his digital circuit as an

interconnection of several subcircuits.

2) Each decomposed subcircuit is solved by using conventional simulation

techniques as described in Chapter 2. The Backward Euier integration

method with variable timesteps is used to discretize the differential equa

tions associated with the subcircuit and the Newton-Raphson method is

go

used to solve the nonlinear algebraic equations resulting from the discreti

zation. Since the number of unknown variable associated with a subcircuit

is usually small, the linear equation solver used by the Newton-Raphson

method is implemented by using the standard full matrix techniques rather

than using the sparse matrix techniques. Note that in RELAX each subcir

cuit is analyzed independently from t = 0 to t = T using its own timestep

sequence controlled by the integration method, whereas in a standard cir

cuit simulator the entire circuit is analyzed from t = 0 to t - T using only

one common timestep sequence. In RELAX, the timestep sequence of one

subcircuit is usually different from the others but contains, in general, a

smaller number of timesteps than that used in a standard circuit simulator

for analyzing the same circuit.

3) The first iteration of RELAX is essentially the first iteration of Algorithm 6.2.

But after that RELAX switches back to use Algorithm 6.1 for the rest of the

relaxation iteration. That is, in the first WR iteration of RELAX, the drain

currents of the pass transisters do not contribute any loading effect on the

subcircuits to which they are connected. This is done because, in the first

iteration when all initial guesses are constant waveforms, a pass transistor

can be driven continuously into its conductive region and may adversely

effect the speed of convergence if its current is treated as a load of the

other subcircuit. Hence, strictly speaking, the first iteration in RELAX is

used to generate a good initial guess for the actual WR algorithm.

7.2. Scheduling Algorithm.

The order according to which each subcircuit is processed is determined in

RELAX prior to starting the WR iteration by a subroutine called the "scheduler".

Although it has been shown in Theorem 6.1 that scheduling is not necessary to

91

guarantee convergence of the iteration, it does have an impact on the speed of

convergence. Assume that the circuit consists of unidirectional subcircuits with

no feedback path. If the subcircuits are processed according to the flow of sig

nals in the circuit, the WR algorithm used in RELAX will converge in just two

iterations (actually the second iteration is needed only to verify that the conver

gence has been obtained). For MOS digital circuits which contain almost uni

directional subcircuits, it is intuitive that the convergence of the WR algorithm

will be achieved more rapidly if the subcircuits are processed according to the

flow of signals in the circuit. The scheduler traces the flow of signals through

the circuit and orders the processing of subcircuits accordingly. To be able to

trace the flow of signals, the scheduler requires the user to specify the flow of

signals through each subcircuit by partitioning the terminals of the subcircuit

into the input and the output terminals. In general, a designer can easily

specify what the flow of the signals is intended to be even in a subcircuit which is

not unidirectional such as a transmission gate or a subcircuit containing floating

capacitors between its input and output terminals. For example, the input cir

cuit description of the circuit shown in Fig. 6.1 could be described as shown in

Fig. 7.1. Note that the analysis algorithm in RELAX will indeed take into account

the bidirectional effects correctly. To describe the algorithm used by the

scheduler, we need the following definition.

Definition 7.1 Asubcircuit sz is said to be a fanout of a subcircuit Si if an input

terminal ofsz is connected to an output terminal ofslt i.e., an output ofSx is fed

as an input to sz. •

Before stating the scheduling algorithm, we point out that all real input sig

nals to the circuit are considered by the scheduler to be contained in a special

subcircuit called the "source" subcircuit which is essentially a subcircuit with

only output terminals. The algorithm traces the flow of signals from the source

92

subcircuit through the circuit by using the fanout information of each subcir

cuit When there is a logic feedback loop, the loop is temporary opened. The

details of the algorithm is as follows.

Scheduling algorithm.

Comment: X is an ordered set of subcircuits. At the completion of the algo

rithm, X contains all the subcircuits and the order in which each

subcircuit is placed in X is the order in which it is processed by

RELAX. X is called the scheduling table.

Start: Set X = (source subcircuit} and Y' = (fanouts of the source subcircuitJ.

LOOP: Set Z = <pt i.e., clear the temporary set Z.

For each subcircuit s in Y

Begin

If (all inputs of s come from the outputs of subcircuits in X) then

Begin

Delete s from Y and add it to X.

Include in Z the fanouts of s which are not already in X, Y or Z.

End

End

If (Z is not empty) then include Z in Yand go to LOOP.

Else if (Y is empty) then stop

Else Begin (comment: there's a feedback loop)

Select a subcircuit s from Y.

Delete s from Y and add it to X.

Include in Y the fanouts of s which are not already in X or Y.

Go to LOOP.

End. •

93

For example, the set X produced by the scheduler applied to the circuit of

Fig. 7.2 is \ source, slt s9, s4, s2, s3 { and the set X produced by the scheduler

applied to the circuit of Fig. 7.3 is \ source, sz, sa, s^. Note that this scheduling

process is carried out only once before starting the WR iteration.

7.3. Latency and Partial Waveform Convergence.

In addition to the modifications described in Section 7.1, RELAX incor

porates two important techniques to speed up the process of analyzing a subcir

cuit. The key idea is to bypass the analysis of a subcircuit for certain time

intervals without losing accuracy by exploiting the information obtained from

previous timepoints and/or from previous iterations. Similar techniques have

been used in other simulators. For example. SPICE uses a bypass technique [3]

in its Newton-Raphson iteration. When a subvector of the vector of the unknown

variables does not change its value significantly in the previous two NR itera

tions, the part of the Jacobian matrix associated with the subvector is not

recomputed. SPLICE, on the other hand, uses an event scheduling technique [5]

by which a subcircuit is not scheduled to be analyzed at an analysis timepoint if

it is found to be inactive at that timepoint.

The two techniques used in RELAX are discussed by showing their applica

tions to the analysis of the subcircuit s xof the circuit shown in Fig. 7.4a which is

a schematic diagram of the circuit in Fig. 6.1. We denote the output voltages of

Sj and sz at the fc-th WR iteration by v\ and i>| respectively.

The first technique is based on the latency of Sj and is similar to the tech

nique described in [7]. According to Section 7.1, Si is analyzed in the first itera

tion with no loading effect from sz. After it has been analyzed for a few

timepoints, its output voltage v} is found to be (almost) constant with time, Le.,

vKu.Ol) w 0 (see Fig. 7.4b). Since the input ux of S! is also constant during the

94

interval [0.01. 1.9], v} will also remain constant throughout the interval [0.01.

1.9]. The subcircuit s\ is then said to be "latent" in the first iteration during the

interval [0.01, 1.9] and its analysis during this interval is bypassed. From Fig.

7.4b, S! is latent again in the interval [2.15, 3]. Note that, according to Section

7.1. the check for the latency of Sj after the first iteration will include uz and v2

as well as ux since they can effect the value of vv For most digital circuits, the

latency intervals of a subcircuit usually cover a large portion of the entire simu

lation time interval [0,7*] and hence the implementation of this technique can

provide a considerable saving of computing time as shown in Table 7.1.

The second technique is a unique feature of the WR algorithm. It is based

on the partial convergence of a waveform during the previous two WR iterations.

We introduce it by using the example of Fig. 7.4 as follows. After the first two

iterations, we observe that the values of v} and vf during the interval [1.7, 3.0]

do not differ significantly (see Fig. 7.4b, 7.4c and 7.4e), i.e„ the sequence of

waveforms of v t seems to converge in this interval after two iterations. In the

third iteration, shown in Fig. 7.4d, sx is analyzed from t = 0 to t = 1.8 and

vf (1.8) is found to be almost the same as vf (1.8). Moreover, during the interval

[1.8, 3], the value of vf which effects the value of vf also does not differ

significantly from the values of vi (which effects the value of vf). Hence the

value of vf during the interval [1.8, 3] should remain the same as vf and the

analysis of Sj during this interval in the third iteration will be bypassed. This

technique can provide a considerable saving of computing time as shown in

Table 7.1 since the intervals of convergence can cover a large portion of the

entire simulation time interval [0. T], especially in the last few iterations. Note

that the subcircuit need not be latent during the intervals of convergence

although the overlapping of these intervals with the latency intervals is possible.

96

Comment: Description of the circuit shown in Fig. 6.1.

si inverter input = nodel output = node2

s2 inverter input = node3 output = node4

s3 transmission-gate input = node5, node2 output = node3

Comment: Description of the models of MOS transistors.

Model ENHANCE NMOS [MOS parameters such as threshold

voltages, transconductance, etc. J

Model DEPLETION NMOS [MOS parameters]

Comment: The connectivity of each MOS device is described as

: MOS-name drain-node gate-node source-node body-node &

: MOS-model-name width length.

Comment: Description of transmission gate.

subcircuit transmission-gate input = source, gate output = drain

MOSl drain gate source GROUND ENHANCE width = 1/z length = 1/x

ends

Comment: Description of an inverter.

subcircuit inverter input = A output = 5

MOSload VDD A A GROUND DEPLETION width = 1/jllength = lfi

MOSdriver A A GROUND GROUND ENHANCE width = 4/2, length = Ijm

ends

Fig. 7.1

Example of an input circuit description for RELAX.

Fig. 7.2

A half adder

TRIGGER

Jig. 7.3

A ring oscillator

96

SUM

6.0

6.0

4.6?.

u. r
1 3

*_n.
e o.s us

(b)

6.0

4.0:

2.0 =

0.0

0.0

LP***

-2.U-

-5.0;.

97

(a)

3.0

-1

•kv*T?:

*"8.0 ;jjjj_jij J_L i i t i t I I i : ii iiiiii I

3.0 O.i 1.0 2.0

(e)

Fig. 7.4

A dynamic shift register and the waveforms at various iterations

of the WR algorithm used in RELAX.

3.8

iteration #

CPU time (seconds)

case 1 case 2 case 3 case 4

1 0.363 0.255 0.360 0.258

2 0.824 0.704 0.814 0.695

3 0.621 0.705 0.242 0.236

4 0.628 0.704 0.151 0.104

5 0.832 0.695 0.097 0.016

Total 3.668 3.063 1.664 1.311

Table 7.1

98

Comparison of CPU times used by RELAX for analyzing the circuit of Fig. 7.4a

with and without the latency and the partial waveform convergence techniques.

case 1: without the latency and the partial waveform convergence techniques.

case 2: with only the latency technique.

case 3: with only the partial waveform convergence technique.

case 4: with both the latency and the partial waveform convergence techniques.

Chapter 8

Organization of RELAX

99

RELAX is written in FORTRAN and runs in an interactive mode. The main

routine of RELAX acts as an interface between the user and the processors (i.e.t

subroutines). It interprets the input commands and activates the correspond

ing internal processors (implemented by subroutine calls). Some typical RELAX

commands are for

1) reading the description of the circuit from an external file,

2) continuing the execution of the WR iteration,

3) setting the accuracy of the analysis,

4) monitoring the waveforms at each iteration and

5) leaving the program.

The organization of the main internal processors of RELAX is shown in Fig.

8.1. We now describe the function of each processor.

The input circuit processor reads the description of the circuit from the

specified external file and stores it in a compact form in an internal array. As

mentioned in the previous chapter, the circuit must be entered as an intercon

nection of subcircuits whose input and output terminals are clearly specified.

The scheduler then reads the internal array produced by the input circuit pro

cessor and generates a fanout table for each subcircuit according to Definition

7.1. Then it executes the scheduling algorithm described in the previous

chapter to produce a scheduling table that gives the order in which each subcir

cuit will be processed in the WR iteration. Both the input circuit processor and

the scheduler are actually the preprocessing steps for the WR iteration since

they are performed only once for the circuit to be analyzed.

100

The analysis of a subcircuit using the WR iteration is implemented in RELAX

as a two-phase process: the setup phase performed by the intermediate code

generator and the analysis phase performed by the subcircuit analyzer. The

intermediate code generator reads the description of the subcircuit and its

fanouts (obtained from the input circuit processor and the scheduler) and gen

erates an intermediate code. This intermediate code is used by the subcircuit

analyzer to analyze the subcircuit from t = 0 to t = T, where T is the user-

specified simulation time interval. The subcircuit analyzer consists of several

subroutines implementing the Backward Euler integration method, the Newton-

Raphson method, the linear equation solver and the two techniques for speeding

up the analysis discussed in the previous chapter.

The output and internal voltages of the subcircuit at the sequence of

timepoints usedby the subcircuit analyzer as well as the sequence of timepoints

are stored in an internal waveform storage which stores the discretized

waveforms associated with all nodes in the circuit. To analyze a subcircuit at a

timepoint, say tlt the subcircuit analyzer has to know the values of its input vol

tages and the voltages associated with its fanouts at time tx. However, since the

sequence of timepoints for analyzing one subcircuit may be different from the

others. tt may not coincide with any of the timepoints associated with the

required voltages in the waveform storage. Hence an interpolation has to be

performed to obtain the required values when such case arises. In RELAX, the

subcircuit analyzer obtains the values of the input voltages and the voltages of

the fanouts of a subcircuit from a utility subroutine, called the interpolator,

which reads the waveform storage and performs the interpolation (if necessary)

to get the values at the specified timepoint.

101

In addition, the interpolator reads the waveform storage and performs the

interpolation (if necessary) to get the values of the output and internal voltages

of the subcircuit at the specified timepoint in the previous iteration. The

differences between these values and the corresponding values in the current

iteration are also stored in the waveform storage. These differences will be used

in the next iteration by the routine implementing partial waveform convergence

technique described in the previous chapter. At the end of the analysis of the

subcircuit, the discretized waveforms associated with the subcircuit in the pre

vious iteration are no longer needed and the storage occupied by them can be

reused.

At present, RELAXis still in an experimental stage. It can handle MOS digi

tal circuits containing NOR gates, NAND gates, transmission gates, multiplexers

(or banks of transmission gates whose outputs are connected together), super

buffers and cross-coupled NOR gates (or flip-fiops). It uses the Schichmann-

Hodges model [9] (or the level 1 MOS model used in SPICE2) for the MOS device.

All the computations are performed in double precision and the results are also

stored in double precision. Although RELAX code is rather small, approximately

4000 FORTRAN lines, it requires a considerably large amount of storage for the

waveforms, especially when large circuits are analyzed. For an MOS circuit con

taining 1000 nodes with 100 analysis timepoints per node, the waveform storage

is required to store approximately 3x1000x1000 floating point numbers

(corresponding to 2.4 megabytes if each number is stored in 64 bits). Further

enhancements of RELAX are

1) Capability of handling user-defined subcircuits.

2) Provision of more accurate MOS models. The user, if desired, can choose to

use a simplified MOS model in the first few iterations for a fast analysis and

switches to a more accurate model in the later iterations.

102

8.1. Look-ahead Storage Buffering Scheme

One of the drawback of RELAX is the fact that it has to store all the

waveforms at the current iteration and reuse them in the next iteration. For

large circuits which usually require large simulation time intervals, the amount

of storage required to store the waveforms can be extremely large and makes it

infeasible to store all the waveforms in the primary storage of a computer. How

ever, as we have mentioned earlier in Chapter 6, the circuit equations of most

practical circuits are usually sparsa. This means that not all waveforms are

required in analyzing any particular subcircuit. Furthermore, the order of

analyzing subcircuits is predetermined and stored in the "scheduling table".

Therefore, by exploiting these two facts, it is possible to use a slow but large

storage medium such as a disk to provide additional storage for the waveforms

without sacrificing much of the execution speed due to its slow access time.

This is achieved by a technique which we call the look-ahead storage buffering

scheme1 and is described as follows.

In the look-ahead storage buffering scheme, the amount of primary storage

allocation for the waveforms is limited. When this storage is not enough to store

all the waveforms, a secondary storage such as a disk is used to supply the addi

tional storage needed. Since the access time of the secondary storage is much

longer than that of the primary storage, the speed of the analysis of a subcircuit

will be greatly reduced if the interpolator has to access the secondary storage

directly in order to get the desired values. The buffering scheme is designed to

cope with this situation and ensure that all the waveforms associated with the

analysis of a subcircuit already reside in the primary storage prior to the begin

ning of the analysis of the subcircuit. This is achieved by using the following

algorithm.

1Currently, this scheme has not yet been implemented in RELAX

103

Algorithm 8.1 (Simplified look-ahead storage buffering algorithm)

Comment: s denotes the subcircuit currently being analyzed and S denotes the

set of the waveforms required in the analysis of s. For the sake of

simplicity, we assume that the storage of the waveforms associated

with the output and internal voltages of s in the previous iteration is

reused by the corresponding waveforms in the current iteration. We

also assume that S is in the primary storage.

LOOP: From the scheduling table, determine the next subcircuit to be analyzed.

Set S = [waveforms required in the analysis of the next subcircuit J.

If (S is in the primary storage) then go to WAIT

Else Begin

Set Y —{ waveforms in S which are in the secondary storage j.

Select a set Z of the waveforms in the primary storage which are not

in S or 5 such that the amount of storage occupied by Z is

larger or equal to that of Y.

Transfer Z to the secondary storage.

Transfer Y to the primary storage occupied by Z.

Go to WAIT.

End.

WAIT: Wait until the analysis of s is finished.

Set s = the next subcircuit and S - S.

Go to LOOP.

Remark:

We can easily modify the above storage buffering algorithm to allow the

algorithm looks ahead more than one subcircuit.

104

Fig. 8.2 illustrates the storage organization proposed by this algorithm and

the main data associated with the algorithm. Note from the above algorithm

that the look-ahead storage buffering process can be executed concurrently

with the process of analyzing the subcircuit s since they do not access the same

storage locations. Therefore by using this scheme RELAX will be able to analyze

large circuits without requiring a large amount of primary storage and without

reducing its speed.

USER

' /
/ /
/ /

INPUT CIRCUIT

PR0CES0R

SCHEDULER

--»
MAIN ROUTINE

OF RELAX

(interpreter)
T—

INTERMEDIATE

CODE

GENERATOR

SUBCIRCUIT

ANALYZER

INTERPOLATOR

R«.8.1

Organization of RELAX

105

EXTERNAL FILE

[CIRCUIT DESCRIPTION]
I SUBCIRCUIT DESCRIPTIONS 1

V /

fFANOUT TABLES
I SCHEDULING TABLE

INTERMEDIATE CODE

WAVEFORM STORAGE

Primary

Storage

RELAX >

swap

next

subcircuit

Secondary

Storage

subc rcuit

Scheduling

Table

Fig. B.2

Look-ahead storage buffering scheme

106

107

Chapter 9

Performance of RELAX

In this chapter, we describe the performance of RELAX and compare it with

a standard circuit simulaton SPICE2. Since RELAX has not yet been fully

developed and presently can handle very limited types of subcircuits and MOS

models, the comparison serves only to show that the WR method is very suitable

for simulating large scale digital integrated circuits. The two simulators use the

same MOS model, i.e., the Schichman-Hodges model (or SPICE2 MOS model level

= 1) with linear capacitors, so that the accuracy of RELAX can also be verified by

using the outputs of SPICE as references. For RELAX the specified convergence

error for its WR iteration is 0.05 Volt.

The schematic diagrams of the MOS circuits being tested and their output

waveforms obtained by RELAX and SPICE are shown in Fig. 9.1 through Fig. 9.5.

For RELAX output waveforms, each rectangular mark denotes the computed

value at every other two internal timepoints to illustrate the effect of the imple

mented latency technique. The two simulators run on a VAX 11/780 using UNIX2

operating system. A comparison of the analysis time in CPU seconds spent by

each simulator is given in Table 9.1. The tabulated CPU time for SPICE is the

total CPU-seconds spent only by its transient analysis routine, i.e., they do not

include the read-in, set-up and read-out phases. The tabulated CPU time for

RELAX is the total CPU-seconds spent by the intermediate code generator, the

subcircuit analyzer and the interpolator of the program as described in the pre

vious chapter. The total number of iterations used by RELAX is also tabulated. It

is clear from the figures and the table that RELAX can analyze MOS digital cir

cuits at least one order of magnitude faster than SPICE while achieving the same

accuracy.

1Unix is a trade mark of Bell Laboratory.

6.8

4.0-

6.0

SPICE

4.0

2.0 =£
f

0.0 •t i, i.j I, i t i i : ' • ' * ' • •

0.0 1.9 2.0

6.0.

6.0

x : RELAX

4.0

2.0

*2

v, 1

108

0.6 c. • • • t • i • i ; . • • • • » i • • i

3.0 O.O

¥\g. 9.1

A dynamic shift register

1.0 2.0

3.0

3.0

Cm

5.0

-1.8

-l.OE^

0.0

109

Cm

B

d> £
t+5 U

>1

Cqut

5.0

Fig. 9.2

A one-bit full adder using a pass transistor carry chain

c

SUM

3.0

5.0

3.0:

-1.0

0.0

5.8

SPICE

3.0

1.0

-1.0

0.0

Cm r

u

1.0 2.0

TV

B2

Az

+5

5.0,

3.0 0.0

SUMZ

x
%.

5.0

3.0"

1 .0

-l qEt ••'•'• r : . . t • t i i i i i * »wca

1.0 2.0 3.0 0.0

Cm

j
ONE BIT

FULL ADDER

ONE BIT

FULL ADDER

Com

1.0

Rg. 9.3

Atwo-bits full adderusing two one-bit full adders ofFig. 9.2

110

svux

SUMZ

M

fj

BjJ

6.0

At

Bz

I±
AND

6.0

16

Product

terms

>

Ill

OR

A=B

A<B

A>B

: SPICE I A>B [RELAX ! A>B

4.0 4.0

2.0 2.0

!

0 .AP .TTt • • • i i i i ; i i i i i i

0.0 1.0 2.0

a-**0 0<
1.0 2.0

6.0

SPICE
!\

A=B

4.0

I-/—tt—
2.0

0.0 . . t i i t i i i , i i-

3.0 0.00.0 2.0

Fig. 9.4

A two-bits magnitude comparator implemented by a NOR-NOR PLA with no

minimization of the product terms

3.0

Cm

0.0

J Cm —fc« •Cm

B2

A* 4

Ax-i\->I±
Bx

AND

6.0

32

>
Product

terms

112

OR

Fig. 9.5

A two-bits full adder implemented by a NOR-NOR PLA with no

minimization of the product terms

SUMX

SUMZ

4

Coot

113

Circuit1 of Fig. 9.1 Fig. 9.2 Fig. 9.3 Fig. 9.4 Fig. 9.5

of unknown nodes 4 8 16 27 45

of MOS devices 6 21 42 131 263

CPU-SPICE (sec) 21.30 121.57 211.53 B18.00
1

1334.80

CPU-RELAX (sec) 1.08 4.38 5.85 18.42 22.30 i

of RELAX iterations 5 5 7 5 4

CPU-RaUo(™) 19.70 27.73 36.16 44.42 59.86

Table 9.1

A comparison of CPU time (in seconds) between RELAX and SPICE2.

1 With floating capacitors. The ratio of a floating capacitance to a grounded capacitance is ap
proximately 1 to 12.

114

Chapter 10

Conclusion

We have proposed and studied the Waveform Relaxation (WR) method for

solving a system of mixed implicit algebraic-differential equations. The key idea

behind this method is to apply the relaxation decomposition directly to the

given system of equations. As a result, each decomposed subsystem is a dynami

cal system which can be solved independently by using standard numerical

methods. In particular, we have discussed the convergence of the method from

a sound theoretical basis. We have also shown that the WR method is guaranteed

to converge for a large class of dynamical systems, especially large scale MOS

integrated circuits.

We have described the organization and the analysis techniques of a new

MOS digital circuit simulator RELAX which implements the WR method. In partic

ular, we have described a few important techniques which account for consider

able improvements in the speed of RELAX and make the program suitable for

simulating large scale digital integrated circuits. These techniques are:

1) A scheduling technique which improves the speed of convergence of the WR

method.

2) The latency and partial waveform convergence techniques which increase

the speed of the analysis of each subcircuit.

3) A Look-ahead storage bufferring scheme which enables RELAX to simulate

large circuits without using a large amount of primary storage.

Experimental results have indicated that RELAX can exhibit definite

improvements over a standard circuit simulator SPICE for simulating MOS digi

tal circuits while maintaining the same accuracy. However, RELAX requires a

115

number of enhancements before it can become a standard tool for analysing cir

cuits. These enhancements include the implementation of the hierachical input

language decription of the circuit, an interface with a logic simulator in order to

utilize the information of the logic simulation and the implementation of the

table look-up models for MOS devices.

It is clear that the WR method is very suitable for implementing on a com

puter whose architecture supports parallel and/or pipeline processing since it

allows different subcircuits to be analysed concurrently on different processors.

More work needs to be done to explore this aspect. We remark here that both

GS-WR and GJ-WR methods can be implemented on this type of computer archi

tecture. However, the GJ-WR method may be more suitable since it does not

impose any constraint on the order within which the decomposed subcircuits

are simulated.

Another area of simulation techniques that needs to be further investigated

is the use of an iterative relaxation decomposition at the nonlinear equation

level. So far, only one sweep of nonlinear relaxation has been used in the so

called "timing simulation" technique which, although may be quite fast, can

sometime produce inaccurate results. The use of iteration not only will improve

the accuracy of the method but also can detect and inform the user when non-

convergence problems arise.

116

References

[1] L.N. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Cir

cuits," University of California, Berkeley, Electronics Research Laboratory,

Memorandum No. ERL-M520, May 1975.

[2] W.T. Weeks, A.J. Jimenez, G.W. Mahoney, D. Mehta, H. Qassemzadeh and T.R

Scott, "Algorithms for ASTAP- A Network Analysis Program." IEEE Trans, on

Circuit Theory, Vol. CT-20, pp. 628-634, November 1973.

[3] A.R Newton and D.O. Pederson, "Analysis Time, Accuracy and Memory

Requirement Tradeoffs in SPICE2," IEEEProc. International Symposium on

Circuits and Systems, pp. 6-9, 1978.

[4] G.D. Hachtel and A.L. Sangiovanni-Vincentelli, "A Survey of Third-Generation

Simulation Techniques," Proceedings of the IEEE, Vol. 69, No. 10, pp. 1264-

1280, October 1981.

[5] A.R Newtoa "The Simulation of Large Scale Integrated Circuits," IEEE

Trans, on Circuits and Systems, Vol. CAS-26, pp. 741-749, September 1979.

[6] B.R Chawla, H.K. Gummel and P. Kozak, "M0TIS- An MOS Timing Simulator."

IEEE Trans, on Circuits and Systems, VoL CAS-22, pp. 901-910. December

1975.

[7] N.B.G. Rabbat, A.L. Sangiovanni-Vincentelli and H.Y. Hsieh, "A MultUevel

Newton Algorithm with Macromodelling and Latency for the Analysis of

Large-Scale Nonlinear Circuits in the Time Domain," IEEE Trans, on Cir

cuits and Systems, Vol. CAS-26, pp. 733-741. September 1979.

[8] P. Yang, I.N. Hajj and T.N. Trick, "SLATE: A Circuit Simulation Program with

Latency Exploitation and Node Tearing," IEEE Proceedings Int. Conference

on Circuits and Computers, New York, October 1980.

117

[9] G. Arnout and H. De Man, "The Use of Threshold Functions and Boolean-

Controlled Network Elements for Macromodelling of LSI Circuits," IEEE

Journal of Solid-State Circuits, Vol. SC-13. pp. 326-332, June 1978.

[10] K Sakallah and S.W. Director, "An Activity-Directed Circuit Simulation Algo

rithm," IEEE Proceedings Int. Conference on Circuits and Computers, New

York. pp. 1032-1035, October 1980.

[11] A. Vladimirescu and D.O. Pederson, "A Computer Program for the Simula

tion of Large Scale Integrated Circuits," IEEE Proc. International Sympo

sium on Circuits and Systems, Chicago 1981.

[12] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equa

tions, Prentice Hall, 1971.

[13] A. R Newton, "The Simulation of Large Scale Integrated Circuits," University

of California, Berkeley, Electronics Research Laboratory, Memo. No. ERL-

M78/52, July 1978.

[14] J.A. George, "On Block Elimination for Sparse linear Systems," SIAM J.

Numerical Analysis, Vol. 11, pp. 585-603, 1974.

[15] A.L. Sangiovanni-Vincentelli, "On the Decomposition of Large Scale Systems

of Linear Algebraic Equations," Proc. of JACC, Denver, 18-20, June 1979.

[16] J. Sherman and W.J. Morrison, "Adjustment of an Inverse Matrix Correspond

ing to Changes in the Elements of a Given Column or a Given Row of the Ori

ginal Matrix." Amer. Math. Stat., Vol. 20. pp. 621. 1949.

[17] RS. Varga. Matrix Iterative Analysis, Prentice Hall, 1962.

[18] G. DeMicheli and A. L. Sangiovanni-Vincentelli, "Numerical Properties of

Algorithms for the Timing Analysis of MOS VLSI Circuits," Proceedings

ECCTD'dl The Hague, August 1981.

118

[19] W. Kahan, Private notes. 1975.

[20] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, 1970.

[21] C. W. Ho. A. E. RuehU and P. A. Brennan. 'The Modified Nodal Approach to

Network Analysis." IEEE Transactions on Circuits and Systems, Vol. CAS-22,

pp. 504-509, June 1975.

[22] G. D. Hachtel, R K. Brayton and F. G. Gustavson, "The Sparse Tableau

Approach to Network Analysis and Design," IEEE Transactions on Circuit

Theory, Vol. CT-18, pp. 101-113, January 1971.

[23] C.A. Desoer and E.S. Kuh, Basic Circuit Theory, McGraw-Hill, 1969.

[24] E.L. Lawler, Combinatorial Optimization, Holt, Rinehart and Winston, 1976.

[25] J. K. Hale, Ordinary Differential Equations, McGraw-Hill, 1969.

[26] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[27] J.D. Crawford, M.Y. Hsueh, AR Newton and D.O. Pederson, MOTIS-C User's

Guide, Electronics Research Laboratory, University of California, Berkeley,

June 1978.

[28] J.R Bunch and D.J. Rose (editors), Sparse Matrix Computations, Academic

Press, 1976.

[29] G.R Case, "The SALOGS Digital Logic Simulator," Proc. IEEE International

Symposium on Circuits and Systems, New York, pp. 5-10, May 1978.

[30] A. E. Ruehli, A. L. Sangiovanni-Vincentelli andN. B. G. Rabbat, "Time Analysis

of Large Scale Circuits Containing One-Waj Macromodeis," IEEE Transac

tions on Circuits and Systems, VoL CAS-29, pp. 185-190, March 1982.

A.1

Appendix A

Proof of Theorems and Lemmas

Proof of Lemma 4.1

Suppose that (4.10) is false. Then, by interchanging the edges between

Lr\M and LrsM, we obtain another complete matching whose total weight is

larger than the weight of M. Hence M is not a maximum weighted complete

matching. The converse is trivial. •

Proof of Lemma 4.2

We prove this lemma by contradiction. Suppose that the symbolic number

of states of the system is greater than a —p. Let Y be the corresponding set of

the symbolic state variables and M be any matching which matches at least all

the variables in Y to the system equations. Since the time derivative of a sym

bolic state variable must appear in the system equations and M is a maximum

weighted complete matching, we must have that

\u\ < p

i.e„ M cannot be a complete matching (otherwise, the weight of M will be larger

than the weight of M). Hence, given the values of the variables in Y and their

time derivatives, there are some system variables that cannot be solved for.

Therefore, Y cannot possibly form a state variable of the system and we obtain a

contradiction. Hence, the symbolic number of states of the system must equal

to a -p. It is then obvious that \yv \{s,v) e M and w(s,v) = 2J is a set of the

symbolic state variables of the system and, by the nondegeneracy assumption

4.1, it is also a set of the state variables. •

A.2

Proof of Theorem 5.1

This is a well known theorem in mathematics. We repeat its proof here for

the sake of completeness. First, we show that the sequence converges. Here, we

have

||y*-y*-»|| = ||F(y*-l)-F(y*-2)||

* 7\\yk-'-yk-*\\

This shows that the sequence is a Cauchy sequence [26]. Since Y is a complete

normed space, the sequence converges to a limit y € Y.

Next, we show that y is a fixed point and is unique. Taking the limit of equa

tion (5.2) as k-*oo and using the fact that F is continuous (an obvious conse

quence of being a contraction map), we obtain

y = F(5)

That is, y is a fixed point of F. Now suppose that there is another fixed point

y & y. Then

Iff-Vll = UF(S)-F(y)|| * 7||5-Vll

which is a contradiction since y < 1. Therefore, the fixed point of F is unique.

Finally, we show that the rate of convergence of the fixed point algorithm is

linear. Here, we have that

lly*-SII = lird^-F©)!

<; y\\yk-l-y\\

* 7*112/°-511

Proof of Theorem 5.2

a) We have

V*+1-5 = yk+l -Yk(yk) + Fk(yk) -Yh(y) +Fk(y) -Y(y)

A3

Hence

l|yfc+1-y|| * *jb+7*lh/k-Sli + <5*

= 7fcily* -Sli+a*

b) We have

yk+l-y = y**l-Ffcb*) +n(y*)-F*(y*«)

+ Ffc(yfc+1)-Ft(y) + Ffc(y)-F(y)

Hence

||y**1-$ II * £fc+7jbllyl+,-yA:ll +ribl!yfcM-yll + ^

Since 1 - 7* > 0, the above inequality implies that

llv*+1-vll * T^5J-|l»,H-*ll+T^r (A1-2)
c) We shall show that, given any 5>0, there exists an integer ks such that

||y*+i _ g|| * $ for all k s> k6.

From (Al.l), we have, for any k ^klt that

\\yk+l-y\\ <s /Wolly°-yll +5}fltfa/+ £ Ay«/ (A1.3)

Since limou = 0 and lim/5fc0 =0,we can choose k xsuch that

a* * £- and &o7olly0-5l! * f" ^raRk^k,
Hence (A1.3) becomes

lb/*+1-5ll * f+^A*Ai;a; +̂ t fin
a ;=0 JC i^Afj+l

A4

* T+ /»»,£ &,/«/ +£-£! fa for all A: 2*^ (A1.4)

Since lim Y. fl« = c, therefore (A1.4) becomes

Hy*+l-5ll * ^ +/J £&.«, forallA:^A:l (A1.5)
J 7=0

Since lim/S^ = 0, we can choose kz^ky such that

fi^tfi^jOLj * f- forallfcsrfca

Therefore, (A1.5) becomes

||y*+i_g|| ^ 5 forallfcS£fc2

and the proof is then complete. •

Proof of Corollary 5.2

Here we have

fly ^ yk~J for anyj£k

Thus

>=o j=o x 7

^ —=-w- for any A:.
1-7

Therefore, §ki satisfies the condition (c) ofTheorem 5.2. Hence

limy* = y if limcifc = 0
k-*m k-~

A5

The following fact is useful for the proof of Theorem 5.3.

Lemma Al Let ||-||a, \\\ be norms in H?, Kf*+I respectively. Then there exists a
constant jj, such that

IML * m for all x € iC and z € «f

Proof We use the fact that all norms in a finite dimensional space are

equivalent (see [20] page 39). That is, if ||-||o and ||-||~ are norms in tf\ there

existconstants fix and y^ such that, for anyx € tf1,

||*||B * /iJIxll- and ||s||; <: MalML (A2.1)

Define

in ib = and
x t x . 0

Then from (A2.1), there exist /x1(JI2 such that

ll«ll. * Mill« !a
and

z
5*

X

z

.2) and (A2.3) imply that

IMIB * MilWt

^ Ml 2
s*

^ M1M2
2

2 .

Therefore, the proof is then completed.

(A2.2)

(A2.3)

A6

Proof of Theorem 5.3

Define

D i \t e [0, T] | t is a discontinuity point ofeitheru(), x°() or z°()\

XXZ = ((*('). «(•)) : [O.ThlCxii | x() and «(•) are piecewise

continuous with possible discontinuity points in D J

XxZ -» XxZ such that
x()

x = f{x,x, X, Z, U) ',

z = 5r(x, x.x, z, u)

Since / is Lipschitz continuous with respect to x, by the Picard-iindelof

Theorem on the existence and uniqueness of the solutions of ordinary

differential equations (see [25] page 18), the above equations have a unique solu

tion (x(), *(•)) which belongs to XxZ. Therefore F is well defined. From these

definitions the canonical WR algorithm described by (5.12) can be written as

>(.)
= F

.fc-1/.
(•)
()J,k-l

= F
*(•)

x(0) = x0

satisfies

(A3, la)

(A3, lb)

(A3.2)

Lety =max(7, 0.1), %t =X^ %z =Xz and rj be a positive constant whose value will

be chosen later. Define norms in BTxH^xEf1 and X*Z as follows:

4(0
«(0
*(0

*(•)
»(•>

4(0
(0 +y-!i(OI!

4 max e"^*
* e [o.r]

i(0
2(0
x(0

where the norms in EpxK1 and H? are as givenin Theorem 5.3. Since

(A3.3)

(A3.4)

• (•)
.«(•)

^ e"*^r max
* 6 [O.T]

*(0
«(0
x(0

A.7

Therefore, it can be shown that the space (XXZ, ||-||) is closed (hence it is a

Banach space). Next we shall show that Fis contractive in (XXZ, ||-||). Let

z'(-)
= F and

(~,

1**(->J
= F

'**(•)
l*8()J

Then, from (A3.1) and the condition (b) of Theorem 5.3, we have

\ZKt)-Zz(t)
\zKt)-z2(t)

f{x\ x\ x\ z\ u) -/(x2, x2, x2, z*, u)
g(x\ xl, x1, zl, u) -£(x2, x2, x2, z2, u)

* Xj|«l(0 -*2(0II +\zW(t) -x*(t)\\ +7
K0-"(*>
z>(0-*2(0

After some algebraic manipulations using (A3.3), y and the above inequality, we

have

SKO-S^O
S'KO-^O
x '(0-^(0

* r

4HO-4z(0
z'(0-*2(0
*l(0-*2(0

+a1 +h-)\\xKt)-z*{t)\\

From Lemma A. 1, there exists a constant ji such that

pH0-x2(0ll * iM
*»(0-*8(0
^(0-^(0
xl(0-£2(0

Xa
From (A3.5) and (A3.6), letting (mx =/# and M2 = /x(*i + *--)• we have

||^K0-x2(0ll * Mi
il(0-i"(0

xl(0-*8(0
+ ^||x1(0-x2(OII

(A3.5)

(A3.6)

(A3.7)

Applying the fundamental results in differential inequalities to (A3.7) (see [25]

corollary 6.2, pages 30-32), using the fact that x*(0) - x2(0) = 0, we have

*** rie~**
x1(t)-z*(t)
z\t)-zz(t)
x1(t)-x2(t)

||xKO-£2(OII * *•"*/„

= Mi«

From (A3.4) we have

x1(t)-x2(t)
z\t)-z*{t)
xKt)-x\t)

dr

xl(r)-x2(r)
z\r)-z%r)
xl(r)-x2(r)

2i(.)-x2()

Substituting this inequality in (A3.8), we have

||z'(0 -«*(OII * W1*

_ >le"a'
*J-rts

x'()-s*(-

*'(•)-*2<-

x>()-x*(-

•»(•)-••(•

xK-)-x«(
z'()-*2(

JQ

dr

forallT€[0,r]

Mie
1<

assuming 77 —/zg > 0

Substituting this inequality in (A3.5) and multiplying by e"'»', we have

A.B

(A3.8)

,-»?<

3-KO-3?2(0
*l(0-*2(0
xHO-x2(0

^ 7e^'
xHO-i2(0
zHO-*2(0
xHO-x2^)

+ Z—
r) ~&i

*!(.)-x2(.)
z\)-z\)

Hence, using (A3.4), the above inequality implies that

x'Q-**(•)
z'() - «*(•> * 7

x'()-x2()

«>(•)-•*(•)

That is

»'(•)
l«'(-)J

-F
x2()

l»*(-)J

Mifti + •£-)
v-i*

x'()-xa()

«K0-«•(•)

7 +
M.a, * fo *l(0-*«(•)

Since 0.1 s 7 < 1, we can choose rj = ?i such that

(A3.9)

7 +

which gives

Mi(*i +yO 1 + 7
2

/♦ . *2\1±_7_ _ ,, 1 + 7

Hence, (A3.9) becomes

F
*l()

korVc-M
«•(•> 1 + 7 xH)-x2()

A.9

(A3.10)

(A3.11)

Therefore F is contractive. Hence, by the Contraction Mapping Theorem 5.1, it

has a unique fixed point in XXZ satisfying

That is

x() x()
= F«(•) " * z{)

x = / (x, x, x, z, u) ;

z = o/(x, x, x, z,u)

x(0) = x0

Furthermore, for any given initial guess (x°(), z°()) eXXZ, the sequence

\(xk(), zk())]ksi generated by the fixed point algorithm (A3.2) converges uni

formly to (x(), «(•)) eXXZ. Moreover, since we can choose (x°(), z°()) eXXZ

such that x°(0 = *o and *°(0 = 0 for all * e [O.^], we conclude that the discon

tinuity points of (£(•)• «(•)) belong to the set of discontinuity points of u() only,

i.e., they do not depend on x°() and z°(). Hence the proof is then completed. •

A. 10

Proof of Theorem 5.4

Here we use the same notations as in Theorem 5.3 and its proof. Let

$x*(0, zk(t) ', t € [0tT]lksl be the sequence generated by the following canoni

cal WR algorithm.

xk = f{xk,xk~\xk~\zk-\u) ;

zk = g(xk, xk~l, xk~l, zk~l,u)

Let

**(-)J

That is

= F
**-io
zk-K-)\

x*(0) = xj

x* = f(xk, xk~\ xk~\ zk'\ u) ; x*(0) =x0

zk = g{xk, xk~l, x*"1, z*"1, u)

Subtracting (A4. l) from (A4.2), we obtain

xk(t)-xk(t)
zk(t)-zk(t)

xk(t)-ik(t)
zk(t)-zk{t)
xk(t)-xk(t)

*»»

X2

* XiHx'W-^OII

From (A3.3) and the above inequality, we have

* a,+̂ -)P(o-**(on

(A4.1a)

(A4.1b)

(A4.2a)

(A4.2b)

(A4.3)

Let fJe = fi(\i + s£~) • Then from Lemma A.1 and the above inequality, we have

||**<0-**(0II * a*II**(0-**(0II <A4-4)

Applying the fundamental results in differential inequalities to (A4.4), using the

fact that x*(0) -x*(0) = x0 - x{|, we have

||x*(0-**(OII * «^ll*o-«*II <A4"5>

Substituting this inequality in (A4.3), we have

xk(t)-ik(t)
Z*(0-2*(0
x*(0-**(0

* (X1+^-)e^||*o-*Sll

From (A3.4), (A4.6) and the fact that m2 - rj < 0, we have

Hence

(•)-(•)
£*(•)-z*() * (Xx +^-)||x0 -x»|| mfaxBM'

t e[0.T]

* ai +̂)ii*o-*si

*-. 4
-*-iA

,*-!/.

O
(')J

_**!^ (Xx+ -^-)||*o-*

Since limx* = x0, therefore

limefc = 0
JS-»oo

A. 11

(A4.6)

(A4.7)

Hence, applying Corollary 5.2 with Yk = F (i.e., ^ = 0), we conclude that the

sequence of (x*(•).«*(')) generated by (A4.1) converges uniformly to the fixed

point of Fwhich is the solution of (5.13). •

A. 12

Proof of Theorem 5.5

We use the same notations as in the proof of Theorem 5.3 with the following

changes.

7 = max(7, 0.1, yu) < 1

Xi = max(X1(\ui)

%2 = max(X1(Xajtf)

rj = fi X,+
*r 1 +y
0.1 J 1-7

Now, define Fk : XXZ-»XXZ; k = 1,2 « such that

(5.15). Then, by using the proof similar to the proof of Theorem 5.3, we can show

that F, Yk, k = 1,2 « are all contraction maps with contraction constants less

than 7 where

7 *

Let

*» £

I+i. <

£(•)

F*l2(')J-F
*()
z()

«*(•)
l«*(-)J

= F*_*-i

.*-!(•)'
,*-i

(•)
satisfies

(A5.1)

Then, by applying Corollary 5.2 with ak = 0, the proof of this Theorem is com

pleted when we can show that limo* = 0. Let

That is

= Yk
*()
z()

Bk = fk+l(xk,xj,z,u) ; x*(0)=x0

zk = gk+l(xk, x, x, z, u)

Subtracting (5.13) from (A5.2), we have

(A5.2a)

(A5.2b)

Hence

'I* _|| \fk+\xk.x,k,z,u)-fk¥l(x,x,k>ztuj
2k-z\ = \gk¥\xk,x,k,z,u)^gk^{x,x,k,z,u)i

[/*+1(x,x\x, «.^) -/(*.*.*. *.«)'

i*(0-*(0 * x^O-^OII + fc+itO

By following similar steps in the proof of Theorem 5.3, we can show that

x*(0-*(0
2k(t)-z(t)
k(0-(0

Xi + -7T-
, y j

,p*(0-*(OII + &«(0

A. 13

(A5.3)

||£*(0 -1(011 * m«P*(0-*(0II +/^*«(0 (a&-4)

Applying the fundamental results in differential inequalities to (A5.4), using the

fact that xfc(0) - x (0) = 0. we have

||^(0"*(0II * ^fl^^^Mdr (A5.5)

Substituing (A5.5) into (A5.3), we have

x*(0"*(0
zk(t)-z(t)
**(0-*(0

r%f%**^tk+l(T)dT-rb+A*) (A5.6)

Since limfc(0 = 0 for any t € [0,T], (A5.6). (A5.1) and (A3.4) imply that
*-»-

iirno* = 0

Hence, the proof is completed. •

Proof of Corollary 5.5

The proof of this corollary follows immediately from the proofs of Theorem

5.4, Theorem 5.5 and Corollary 5.2. •

A. 14

Proof of Lemma 5.1

We shall prove this lemma by specifying the steps required to transform the

WR algorithm into a canonical form. These steps have been described informally

in the examples of Chapter 5. In this proof we shall describe these steps in terms

of their graph representations. In particular, the process of differentiating the

i-th equation ^ times will be represented as the process of adding tf/ to the

weight of all edges incident to the i-th node of S where G = (S,VtB) is the

weighted bipartite graph associated with the system equations. We shall refer to

this procedure as ADDW(ip,i,G).

Definition A.1 Let G = (S,V,B) be a weighted bipartite graph associated with a

given system of equations as defined in Definition 4.4, i e 5 and ^ be an integer.

The following procedure is defined as ADDW(i/,i,G).

For each edge (k,j) € B

If k = i, then vj(k,j) = w(k,j) + ^

Otherwise, w(k,j) = w(k,j). •

Definition A.2 Let G = (5,V,B) be a weighted bipartite graph with \S\ = | V\

and M be a matching of G. A node j e V is said to be dominant with respect to M

if there exists an edge (i,j) € M and

w(i,j) ^ w(k,j) for all (k,j)€B

i.e., there is an edge in M that is incident to j € V and its weight is larger than

or equal to the weight of any other edge incident to j.

M is said to be a dominant matching if all nodes in V that are matched by

M are dominant with respect to M. •

A. 15

Facts

a) If M is a maximum weighted complete matching of G, then ADDW will not

destroy its maximum weight property. That is, M is still a maximum

weighted complete matching of the graph after applying ADDW.

b) If M is both complete and dominant, then M is also a maximum weighted

complete matching.1 •

For the sake of simplicity, we shall consider the case in which the decompo

sition is pointwise. The extension to the general case is straight forward and

hence will be omitted. Without loss of generality,2 we assume that the maximum

weighted complete matching associated with the consistent AP process of the

WR algorithm is

M = ((1.0,(2.2) (p,p)J (A6.1)

and that

w(i,i) =
2 * (A6.2)
1 a -p <i^p

where o is the weight of M and a - p is the symbolic number of states of the

given system.

Using these assumptions and the first assumption of the lemma, the system

equations can be equivalently written as

Vi = My.yjM.v*) l*i*a-p (A6.3a)

Vi = fi(yj«.u) o-p<i*p (A6.3b)

1The converse of this fact is true if we are allowed to increase the weights of edges in B by using
appropriate ADDW processes. The proof of thisresult is actually the key stepinthe proof ofthe lem
ma.

BThis is because we can always renumber the equationsand the variables to satisfy our assump
tions.

A.16

where yjM =ty,\j =1 i-l.i+l....,pj. Vj* =\Vi\1 =l.....i-U+l....*J and
fit i =l,2.....p are smooth functions. Note that the weighted bipartite graph of
(A6.3) is identical to that ofthe original system equations. From here on, we use

(A6.3) as the representation of the system and ail differentiation steps that we

specify are meant to be performed on (A6.3).

As demonstrated in the examples of Chapter 5. the basic step in the tran-

formation is to keep on differentiating appropriate equations of (A6.3) until the

order of time derivative of each variable on the left hand side of (A6.3) is larger

than or equal to any of its occurrences on the right hand side. This corresponds
to applying appropriate ADDW procedures to the weighted bipartite graph
Ga (5, V,B) of (A6.3) so as to make M(as given by (A6.1)) adominant matching
of the resulting graph. After that, the differentiated system is converted into a

first order canonical form by introducing additional state variables (see exam

ples 5.2 and 5.3).

Before we give an algorithm for specifying appropriate ADDW procedures to

make a maximum weighted complete matching a dominant complete matching,

we need the following definitions.

Sk 4 J1,2 k J, i.e., it contains the first A: nodes of 5.

Vk t \l,2,....fc J. i.e., it contains the first k nodes of V.

Mk = 1(1.0.(2.2) (*.*)!. Hence Mp = M.

C5t i (Sk, Vk,Bk)vrhereBk = \(i*j)*B\i zSk,j e Vk\.
Q. is called the subgraph of Ginduced by (Sk, Vk).

P(k,j) is aset of all alternating paths in Ck with respect to Mk from k z Sk
to j € Sk such that the first edge in each path which is incident to k
must be a non-matching edge. Kence, P{k,k) is a set of all alternating

cycles that contain the edge (fc.A:).

A. 17

Algorithm A1 (convert amax. weighted complete matching to adominant one)

For k = a-p +1, o-p +2, • • • , p [

compute if/ = max\w(itk) -w(k,k)\(i,k) € Bk] (A6.4)

if f>0, ADDW(i/,k,G).

Fori = 1, 2, • • • .fc-lj

compute <5W = max j Y. w(l,m) - 2 vj(l,m)]. (ark)

\

Fori = 1, 2, • • • , fc-1 |

if <5W >0, ^IWfajw.i.G)

i

)

We shall prove by induction that, after applying Algorithm A.1, the .max

imum weighted complete matching M becomes a dominant complete matching.

First before we apply the algorithm, we have that

Mj is adominant complete matching of Gj for all j €[l.ff-p] (A6.6)

Now, assume that the algorithm has been executed at A: =£ - 1 and (A6.6)

is true for all ; e[l,£-l]. Suppose that, after the algorithm is executed at

Jfe=fc, (A6.6) is no longer true for all ;'e[l,£]. Then, there must exist

i,j € [1,£]; i *j such that

w(j.i) > w(i,i) (A6.7)

where vj denotes the weight function after completing the algorithm at k -k.

From (A6.5) of the algorithm, we have

A. IB

w(j,i) ss ktu(>.i) if J = *

Case 1 (i = £)

Applying (A6.7) and (A6.8), we have

vj(j,k) + 6%j > w(k,k)

Substituting the value of 6$j in the above inequality, we obtain

w(j£) + S vj(l,m) - J w(l,m)-w(££) > 0 ,*Rg)
{l.m)ePrsJI£ (l.m) e/>nAfc v * ;

where P is the maximizer of (A6.5) for 6%j. Let

L - P u(j,k)u(k,k)

Then (A6.9) can be written as

2 v)(l,m) - 2 oa(Z.m) > 0 (AB 1Q)

But L is an alternating cycle. Kence (A6.10) contradicts the maximum

weight property of M as given by Lemma 4.1.

Case 2 (i < £ and j = £)

Applying (A6.7) and (A6.B), we have

io(£,i) > w(i,i) + d£i
or

vj0c ,i) - w(i%i) > 6ii

This clearly contradicts the maximality of o^* since

\(k,i), (i.i)] e P(k,i)

A. 19

Case 3 (i < £ and j < £)

Applying (A6.7) and (A6.8), we have

w(j,i) -w(i,i) + 6£j > 6u (A6.ll)

Let P € P(k,j) be a maximizer of (A6.5) for <5£4. Since

P u(j,i) u(i,i) € P(k,i)

Therefore (A6.ll) contradicts the maximality of <5£t.

Since we obtain a contradiction in each of these three cases, we conclude

that (A6.6) has to be true for all ; e[l.£], given that it is true for ail

j e[l,£-l]. Therefore, by induction, Mp = M is indeed a dominant complete

matching of G.

The remaining steps of the construction proof of the lemma are trivial and

has been discussed earlier. Therefore the proof of this lemma is completed. •

A.20

The following facts are useful in the proof of Theorem 6.1

Lemma A.2 Define ||-||. in flP and if* n as follows:

\\x\L = max Ixs | where x* is the i-th component of x e tf\ and

||i4||w k max ^^ where i4y is the (i,;)-th element of A€I?1*11.

Let L and C/ be strictly upper and lower triangular matrices in I7lXn such that

2>0, C/StO1 and

ife^ +Uii)\\\L+U\U = 5g«|S(^+^)} * 1 (A7.1)

where ly, Cfy are the (ij)-th elements ofL, U respectively. Then

\\(I-L)-lU\U * \\L + U\\m * 1

Proof. Let x = coi(l,l l) € rf1, then from (A7.1) we have

(I-L-U)x Si 0 (A7.2)

Since L is strictly lower triangular, we have

(I-L)~l = / + Z, + L2 + ••• + Ln~l

Therefore

tt+tf)-(J-L)-ltf = [(/-^-/KZ-L-tf)

= (L + L2 + • • • + Ln-l)(I-L-U)

(L+U)x ~(I-LYlUx = (i+Z,2+ ••• +Ln-1)[(/-I-C/)x] (A7.3)

(A7.2), (A7.3) and Z,st0imply that

(L+U)x -(I-L)-lUx Ss 0 (A7.4)

Since (X+C/)ssO and (/ -L)~l U = (/+ I + ••• + Ln~l)U St 0, we have

1A vector * or a matrix A whose elements are all nonnegative is denoted by xifcO or A&Q respec
tively.

A.21

\\L+U\U = \\(L+U)x\l and \\(I-L)-*U\L = \\(I-L)-*US\\-

Therefore (A7.4) implies that

\\L+U\U * \\(I-L)-lU\U •

Lemma A.3 Let / lt fz : DCEf1 •» R be two bounded2 Lipschitz continuous func

tions, then the product function /1/2 is also bounded Lipschitz continuous in D.

If fo is also bounded away from zero, i.e., inf |/2(x)| = f2 > 0, then — is also
* zeD /2

bounded Lipschitz continuous in D.

Proof. Let fx =sup \f x{x)\, f2 =su^l/^x)! and X1(X2 be the Lipschitz

constants of / lt fz respectively. Then for any x, i/eD

I(/!/«)(*)-(/i/a)(v)I = \fi(x)f2(x)-fi(y)f2(y)\

= |[/i(«) -/i(v)]/«(*) + [/«(*> -/a(y)]/i(v)l

* l/i(*)-/i(y)ll/«(*)l + !/«(*)-/e(y)ll/i(y)l

* Xi/g||*-y|| + X«fill*-yll

= (X^z + Xz/Ollx-yll

Therefore /1/2 is Lipschitz continuous in Dand is bounded by / j/ 2-

Now, if fz is bounded away from zero, then

fz(y)-fz(x)1 1

TzlxT'TzW) TzWHTx) fz
^ ^z\\x-y\

-That is -=—is Lipschitz continuous in D and is bounded by -=-: Therefore by
/2 /2

using the previous result, the product /, —= 4r~is ^so a bounded Lipschitz
fz fz

continuous function in D. •

8 If Dis a bounded subset of tf\ then any function which is Lipschitz continuous in Dis also
bounded in D.

A.22

Proof of Theorem 6.1

Define

L, U :ifxlfxlf -> if*n /

H : ifxlfxlf - ifXn ?

^ : ifxlfxRf - If /

ifxlfxlfxlf - If

tfxlfxlfxlf - If

IfxlfxlfxK? xlf - If

as follows:

Zy(a,6,u) =

C/tf(a.b,u) 4

H(a,btu) = [/-/.(a.fa.u^^a.fe.u)

Qj(°l Qj. fy+i fen> ^)
Q4(alf . . . ,Oi, bi+1 bn, u)

Qj(ttl tti. fej-n &n. ^)
Qi(al Oi, bi+l bn,u)
0

if i £ j

if i > j

ifi <j

if i St j

Fi(a,b,u) 4 - 9i(al °t. bi+l &n. ^)
Qi(alt . . . , Oi, bi+1 bn, u)

/(a.b.s.it) = [/ - L{a,b,u)]~xF(atb,u) + #(a,b,u)s

^(z.a.b.u) = -
A ?i(«.ai at, bi+1 bnt u)

Qi(»i a*. &t+i &n. u)

f (atb,s,z,u) 4 [7 -Z,(a,b,u)]"1/'(2,a,b,u) +H(a,b,u)s

where C, q,q are previously defined in Algorithm 6.1 and Algorithm 6.2. Based

on these definitions, Algorithm 6.1 can be tranformed into the following canoni

cal form

vk = f (vk, vk~\ vk~\ u) ; vk(Q) = V

And Algorithm 6.2 can be tranformed into the following canonical form

v* = ?(vk, vk~\ vk~\ **->, it); vk(Q) = V

zk = g(vk,u)

A.23

PVom Lemma A.3 and the assumptions of Theorem 6.1. we can deduce that

a) /. 7'• 9 are continuous functions and are Lipschitz continuous with respect

tov* andu*"1.

b) / is also lipschitz continuous with respect to z, i.e. there is a constant X>0

such that

\\f(a.b,s,z,u)-f(a,b,s,z,u)\\m * X||z-z|L (A8.1)

where \\-\\m denotes the standard max-norm as defined in Lemma A.2.

Applying the result of Lemma A.2, we have

\\H(a,b,u)\\„ 4 \\L(a,b,u)+ U(a,b,u)\U

-^^(a! ot.bi+x bn,u)
ft} (AB.2)

= max —*zt7 r r \i*i*n Qi{ai ctj, bi+1 bn,u)

From the definition of C and the assumptions of Theorem 6.1, we have

Ck(ai ai,bt+1 bn,u) * C^- (AB.3)

^Qjtei a». &i+i *>n,u)
ft

and

- 2j Cijfal °t- bt+l bn. *") ^ fa ~ OCmax (A8.4)
ja

oSince, for all cr <i 0 , the function -pr-2- is monotonically increasing with
Cmin + a

respect to a, therefore (A8.2), (A8.3) and (A8.4) imply that

II r-rt i. Ml ^ (n—l)Cmax(n-lJCmu, _ < j (A85)
'max

Therefore Algorithm 6.1 satisfies all the conditions of Theorem 5.3 and hence it

converges for any piecewise continuous input u.

A.24

For Algorithm 6.2, we define |||| in ifxR? such that for any s e if and z e R?

= WL+^I«I
where Xis as given in (A8. l) and y is as given in (A8.5). Then

= \\f(a,b,s,z,u)-f(a,b,s.z,u]
f(a, b, s, z, u) - f (a, b, s, z, u)

g(a, u) -g(a,u)

«; X||z -z|L + ||#(a.b.u)|L||s-s|

7[||-«|U+£-||«-«IU]

= 7

s -s

z — z

Therefore Algorithm 6.2 also satisfies the conditions of Theorem 5.3 and hence it

converges for any piecewise continuous input u. u

B.1

Appendix B

Applications of Iterative Nonlinear Relaxation Methods

in Time Domain Simulation of MOS Circuits

It has been shown [18] that the use of non-iterative (i.e., only one iteration)

nonlinear relaxation methods in timing simulation of MOS circuits, as imple

mented in MOTIS [6], MOTIS-C [27] and DIANA [9], has deteriorated the numeri

cal properties (i.e., stability and accuracy) of the integration method used in the

time discretization of the circuit differential equations. Since there are no addi

tional computational steps to verify that the nonlinear equations are solved

accurately enough at every timepoint, the estimation of the local truncation

error of the integration method is no longer reliable. Hence the timestep control

mechanism based on local truncation errors is no longer valid for timing simula

tion.

We now discuss the use of conventional iterative nonlinear relaxation

methods in time domain solution. The basic idea is to solve the nonlinear equa

tions at each timepoint iteratively by a relaxation method until satisfactory con

vergence is achieved. Hence, the numerical properties of the integration method

are retained and the estimation of the local truncation error can be used as a

factor in determining the sizes of the timesteps commensurated with the accu

racy requirement. The main problem to be addressed here is whether or not the

relaxation iteration will always converge. We will show that, for MOS circuits with

the conventional assumption that there is a grounded capacitor to every node,

there exists a minimum timestep h^ which guarantees the convergence of the

relaxation iteration. The size of /i,^ is of course dependent on how the circuit is

decomposed. We then give a simplified timestep control mechanism which com

bines the uses of the local truncation error and the relaxation iteration count in

B.2

determining the sizes of the timesteps.

Consider an MOS circuit whose node equations can be written as

Cv -f(v,u) = 0 ; v(0) = V (B.1)

where v(t) € if is the vector of unknown node voltages, u(t) € if is the vector

of independent sources, / : ifxlf-»lf is a Lipschitz continuous function each

component of which represents the sum of currents feeding the capacitors at

each node and C e if*n is a symmetric strictly diagonally dominant matrix.

Applying the Backward Euler integration method to (B.l), we obtain the following

discrete time sequence of nonlinear equations

C(m+i-<MC)-/ii+i/(vi+i.tii4.1) = 0; v0=V (B.2)

where ^+1 = ^+1 - tit -u^ =u(im), Vi*v(*t) and vi+1*v(*i+1). For the sake of

simplicity, we consider the pointwise relaxation method only. Let

C = D + L + U (B.3)

where D e if** is a diagonal matrix, L e if*n is a strictly lower triangular

matrix and U e ifXn is a strictly upper triangular matrix.

Applying the iterative nonlinear pointwise Gauss-Jacobi [17] relaxation

method to (B.2), we obtain the following GJ iterative equation

/>(*&*) +(£ + ^&*-1-^ = ° <R4>

where vffk~l e if, vffk € if, k is the iteration count and, for each component

index j = l,2,...,n,

/«r/vff? •«flf"". «.«> = //«C «#&• VK •*#£. "#'»'• "^
(B.5)

The initial guess for starting (B.4) is the Forward Euler predictor, i.e..

B.3

vffi =m+^^i "Ki-i> (b.6)

Applying the iterative nonlinear pointwise Gauss-Seidei (GS) [17] relaxation

method to (B.2), we obtain the following GS iterative equation

(D +L)vgk + Uv&k-1 - Cvi - ht+JcsMg. vffi'1, u,«) = 0 (B.7)

where v{£xk~l e if, Vi?* € if, k is the iteration count and, for each component

index j = 1,2 n,

/.,«#. wsr. «...> = /i(«fif, ««5. *&':'. war. «,„) (b.8)

The initial guess for starting (B.7) is the Forward Euler predictor. i.e.,

vg? =*<+^*t-*i-i) (B.9)
We now state the following result which states that these two iterative relaxation

methods will always converge independent of the initial guess provided that the

stepsize /ii+i is sufficiently small.

Theorem B.1 There exists /i,^ such that if /itMss h^n then the sequence of

iterated solutions of either the pointwise GJ iterative equation (B.4) or pointwise

GS iterative equation (B.7) converges to the solution of (B.2)

Proof From (B.4), we have

MH—titT) = -jr'U + iOM^-wff?-)* <B-10>

Let

and Loj be the Lipschitz constant of/ with respect to \\-\\a. Then from. (B.10),

we have

B.4

E& * \\D~l(L + U)\\GiEtrl +hi^WD^WaLoriEi, + E&j1)

which yields (assuming that hn.i\\D"l\\GjLqj < 1)

*a i-A,+,||/J-»||«ic *

t r^i)^- (E12)
where

rw 4 pr>(£ +£/)ll«, <B-13>

Therefore, the GJ iterated solutions of (B.4) will converge ify^fo-n) < !•

Similarly, for the pointwise GS iterative equation (B.7), we have

- 7m +fr+illP-'fafrg ,-,
£& * l-A,+Ipr»||a,Z« &

where Xgy is the Lipschitz constant of/ with respect to ||||gs,

and

Jfc 4 lk<S'-"iSTllas <B18>

Hence, the GS iterated solutions of (B.7) will converge if ^(Ji^) < 1.

Since C as defined in (B.l) is symmetric and strictly diagonally dominance,

it can be shown (see [17]) that there exist ||-||<y and [Hies such that

7gj < * and 7gs < *

From (B.12), choose /i^ = /i^ such that

which yields

B.5

•** = b+7jwn»L* (B'18)
It is then easy to show that

7fi,(At+i) * 7&(fo») ^ all ^^c; (B.19)

Similarly, for (B.14), letting

< = &*ya,Mplal)-%aLa, (R20)
we have that

1+TfiSL7csfa+i) * rcs^^) = —2

< 1 for all /li^-i^^GS (B-21)

The proof is then completed by choosing

frmin = Tmn(hcj, has) •

We now propose a simple timestep control mechanism for time domain

simulation using an iterative nonlinear relaxation method as shown below. The

basic idea is to cut the size of the timestep automatically when the relaxation

iteration does not converge within a prescribed number of iterations.

B.6

Algorithm B.1 (Timestep Control Mechanism for Nonlinear Relaxation Method)

Data hx = initial timestep, N = maximum number of relaxation iterations

after which monotonic decreasing of the iteration error is expected.

Step 0: Set i = 0, fj = /iL

Step 1: Set k = 1 and vt°+1 = the predicted solution at time f<+1.

Step 2: Apply one iteration of relaxation method to solve the nonlinear equa

tions at time ti+i for i/f+i.

Step 3: If livft-! - vfciMl ^ 6 where <5 is a predetermined relaxation convergence

error \

Set i/i+1 = vf+i and compute /ii+2 based on the estimation of the

local truncation error (LTE).

If (LTE is too large) then set ^+1 = hi+2-

Else set i = i + 1.

Go to Step 1.

i

Else if (A: < N) then set fc = k +1 and go to Step 2.

Else if Wv&i - vfrf || < IKjfci1 " «fc? II then set k = k+1 and go to Step 2.

Else set /ii+1 = -jp- and go to Step 1. •

	Copyright notice 1982
	ERL-82-40 (1 of 2)
	ERL-82-40 (2 of 2)

