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ABSTRACT

A steady-state security region is a set of real and reactive power

injections (load demands and power generations) for which the power flow

equations and the security constraints imposed by equipment operating

limits are satisfied. The problem of determining steady-state security

regions is formulated as one of finding sufficient conditions for the

existence of solutions to the power flow map within the security

constraint set. Explicit limits on real and reactive power injections

at each bus are obtained, such that if each injection lies within the

corresponding limits, the system is guaranteed to operate with security

constraints satisfied.
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1. INTRODUCTION

The steady-state operation of an electric power supply system

requires that the power supply and the load demand must be balanced.

This is described by a set of nonlinear equations known as the power

flow, or load flow, equations [1,2]. Furthermore, the system has to be

operated within the designed limits of the equipments. This is described

by a set of inequality constraints, sometimes referred to as the security

constraints. The fundamental problem in the steady-state analysis of

power systems is to determine, for a given set of load demand and

generation pattern, whether the system can be operated in such a way that

all the equipments are loaded within their security constraints. We

define a steady-state security region as a set of power injections (load

demands and power generations) for which the power flow equations and

the security constraints are satisfied. The concepts of steady state

security regions and dynamic security regions are used in our proposed

framework for probabilistic dynamic security assessment [3], A method

for deriving dynamic security regions is presented in [4]. In this

paper an analytic approach for deriving steady-state security regions

is proposed and the resulting regions are presented.

The conventional approach to the steady-state analysis of power

systems is to solve the power flow equations numerically and then

check whether the security constraints are satisfied [5,6]. Recently

there have been some attempts using analytic approach to tackle the

problem. Hnylicza et al. [7] used the linearized (DC) power flow

equations to derive steady-state security regions with respect to a

set of given contingencies. Fischl and De Maio [8] have suggested a

scheme for identifying these regions. Dersin and Levis [9] have derived,

using mathematical programming duality, some characterizations of these
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regions. All these works are based on the DC load flow model. On the

other hand, Galiana and Banakar [10] have used the rectangular coordinates

of the power flow equations to derive linear and quadratic approximation

formulas for the characterizations of the steady-state security regions.

The work reported in this paper is based on the full-fledged power flow

model. The proposed approach is to formulate the problem as one of

determining the conditions for the existence of solutions to the power

flow equations in the set defined by the security constraints.

The formulation of the problem is presented in Sec. 2. The proposed

approach to solve the problem is outlined in Sec. 3. The results are

presented in Sec. 4. A simple example is given in Sec. 5. The proposed

approach has two steps. At the first step, two simpler existence-of-

solution problems using the approximate formulation of the decoupled

power flow equations are considered. Leray-Schauder fixed point theorem

and concepts from Circuit Theory are used in the derivation. The results

we obtain for the two simpler problems are utilized to derive results

for the original existence-of-solution problem using the full-fledged

power flow equations at the second step. The analytic tool used here

is the theory of the degree of mapping. The theory of degree has

previously been applied successfully to the investigation of the existence-

of-solution problems in nonlinear circuit theory [11-13]. It should

be noted that in our approach the decoupled power flow equations are

used merely as a stepping stone and the resulting steady-state security

regions are exact, without approximations.

Standard notation is used in this paper. Q. denotes the k-th

component of a vector £, Ykl- denotes the ki-th element of the matrix
M M

Y» 1 < 1 means V\ < V.. for all i, and x := E means that x is defined

by the expression E.
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2. FORMULATION

2.1. Power Flow Equations

The branches of a power network represent transmission lines,

transformers, etc., which are modeled as linear time-invariant RLC

elements. The nodes of the network other than the ground node are called

buses. They correspond to generation stations and load-center substations

For steady-state analysis the network is considered as in sinusoidal

steady state.

Consider a power network with N+l buses. Let [Y] denote the

(N+l) x (N+l) node (bus) admittance matrix of the network and Y.. = G..

+ jBki be its ki-th element. Using the standard models of transmission

lines and transformers [14, p. 189 and p. 122], we have1"

Fact 1 GkR > 0, Bkk < 0; Gki <0 and Bki.> 0 for i f k.

lBkkl^j0BkiandGkk^j0lGkil-
i7k i?«k

We assume that:

(Al) The network is connected

(A2) The matrix [Y] is symmetric; in particular, B.. =B.k.t+

Let Ek denote the bus voltage phasor of bus k and Sk =Pk + jQk

denote the injected complex power at bus k. Let £ and £ be the vectors

of complex voltages and complex power injections, respectively. For

t
In our model, loads are represented by real and reactive power demands,

rather than shunt impedances.

This is true if there is no phase-shifting transformer in the system.
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convenience, we introduce a diagonal matrix [E] = diag{E,, Eg* •••» E^}.

Then we have

S* - [E*][Y]E (1)

where superscript * denotes complex conjugate. There are three types

of buses:

(i) Slack bus: a bus whose voltage magntidue and phase angle

are specified.

(ii) PQ bus: a bus where the injected real and reactive power

are specified.

(iii) PV bus: a bus where the injected real power and the voltage

magnitude are specified.

Normally PQ buses are load buses and PV buses and the slack bus

are generator buses. We let subscript 0 correspond to the slack bus,

subscripts {1,2,-«-Nq} correspond to PQ buses, and subscripts {Nq+1,««-,N}

correspond to PV buses. Let Ek =Vkej6k and eki =8k -6.. We may
express (1) as

N

J0 Vi <Gkisin eki " Bkicos eki> " \ k=1.2.-Nq (2)

J0 Vi <GkiC0S eki +Bkisin eki> - Pk k=T.2'-" (3)
T T

where V= (vi»V2'",,VN ' and £ = (©i» ^9 --'0N^ are the unknown
Q T T

variables or the state variables, and £= (Q1 ,,#,QN ) and £= (pi»"#pm)

are the power injections. Equations (2) and (3) are known as the power

flow equations [1,2,14]. For ease of later reference we represent

Eqs. (2) and (3) in the form

f(x) - L (4)

-5-



J.

where1 x = (_v,£) is the set of state variables and £ = (£,£) is the set

of power injections.

2.2. Decoupled Power Flow Equations

Suppose that we make the following simplifying assumptions:

(SA1) The line resistances are negligible, i.e., G.. = 0.

(SA2) The phase angles across the branches 0.. = 9k - 0. are small

so that the second and higher order terms in the series expansions of

sin e. . and cos 6k- are negligible, i.e., cos 0kl- - 1, sin e^. * 0k^.

Then the power flow equations (2)(3) become

\ =W :=-Vk j0BkiVi k=l,2,...NQ (5)
N

Pk = Pk(V, I) := Vk J Bk. V. (0k-0.) k= 1,2,---N . (6)

Equations (5) and (6) may be written in a compact matrix form

- [V] {[B] V + [B°] V°> = fl. (7)

[B'(V)]£=P (8)

where V° =(VQ, VN +1,---VN)T, fi =(QV"-QN )T, P=(pi »P2"-pN)T' the
ki-th element of [B] is Bkl-, k, i € {1,2,««-Nq} and the elements of

[B°] are Bki, k € {1,--NQ}, i e {0,NQ+1,«--N}. [B'(V)] is an NxN
matrix whose elements are functions of V_. The diagonal and off-diagonal

elements of [B'(V)] are

_ _

It is understood that x. = (V.,0.) means x = (V-|»"*V^ ,0-i>"-0N) •
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N

B£k(I) =Vk(J Bk.V.) k =1,2,.-N (9)

Bki^) • -VkV.Bk. kM (10)
k,i = 1,2, •••N

Equations (7) and (8) are called the decoupled power flow equations

[15,16].

2.3. Security Constraints

2.3.1. Voltage Magnitude Constraints

Operating limits are imposed on the voltage magnitudes of PQ buses,

i.e.,

Vm<V<VM (11)

Let us denote the region inside the limits by R , i.e.,

Rv := {V| Vm <V<VM (12)

2.3.2. Line Current Constraints

Thermal considerations limit the amount of current flowing through

transmission lines and transformers. The current I. through branch j

connecting bus k and bus i may be approximated as follows:

= -JBki<V -v >
j0. V.--JBk1VkE 1(cos 0k. +jsin eki -̂ )

*-JBk.VkeJe^ (j0k.)
where we used the approximations cos 0. . « 1 sin 0,. * 0, . and tt- - 1.

ki ki ki Vi,

This is true when per-unit system is used,
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Hence

1^1 - IBktMvk11ok -e^| 03)

Therefore the line flow constraints |I.| < Imax may be expressed

approximately in terms of the phase angle difference

0k - 9.| < 6. j is a branch connecting buses k and i (14)

jmax

where 6. =—J rj- . We assume that:

(A3) 5. <\ .

We may use the incidence matrix A of the network and write (14) for

all the branches in the network in a vector inequality

-£<AT0_<6 (14)

Let us denote the corresponding region in ^ by RQ:

Re := t8 |-6 <AT 8<§} (15)

We are going to use the approximate expression (15) for line flow

constraints even when the full-fledged power flow equations are used.

The justification for this is that unlike the "hard" constraints on

power generation due to equipment limitation that wiill be introduced

shortly, the line flow constraints are "soft" constraints for which

approximation is usually adequate.

2.3,3. Real Power Generation Constraints

Physical limitation imposes constraints on the amount of real

and reactive power that can be generated at PV buses, as well as the

slack bus. The real power constraints on PV buses are
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Pk<Pk<p" k-NQ +l.—N (17)

where pk and pk are,respectively the minimum and maximum real power

generation at bus k. The real power generation from the slack bus is

a function of (V_, 0.) so the constraints are of the form

pS <P0d.£) <P^ (18)

where p« and pQ are, respectively, the minimum and maximum real power

generation at the slack bus. Let us denote the region in which (18) is

satisfied to be

Rp :• «!,£) |pm <Po(V,0) <pS> 09)

2.3.4. Reactive Power Generation Constraints

The reactive power generation at the slack bus or a PV bus k is

Qk(V,£) := Jo VkV. (Gk.sin 0ki -Bkicos ek1) (20)

k=0, NQ+1,««- N

The reactive power constraints may be expressed as

qk <Qk (1,0) <qk K=0, NQ+1,... N (21)

m M

where qk and qk are, respectively, the minimum and maximum reactive

power generation at bus k. Let us denote the region in which (21.) is

satisfied as R

Rq :» <(V,0) |qm <Qk(V,0) <%> k=°' NQ+1'"" N> (22)
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2.3.5. Security Constraint Set

We call the constraints (11) (14) (18) and (21) the security

constraints, and the set R in (V,0_)-space

R:= (R/R0) nRpnRq (23)

the security constraint set.

Sufficient conditions that guarantee R = R x R are given in
V D

Fact 2 below.

Fact 2. If conditions (CI) and (C2) below hold,

(CI) The reactive power generation limits qm and qk at the slack bus
and any PV bus k satisfy

qk <Qk(IM) -am and q" >Qk(Vm) +oj (24)

ks0, NQ+l,-«- N

where

M ._ r „M „M

^SB-1^^HtGkis1n6d +Bki{cosarl)}

m ._ r wM „M< - -.I0 Vk ^ Gk.sin S.
W

and we set V1!1 =V1 for 1=0, NQ+1, •••N in Eqs. (25) (26).
m M(C2) The real power generation limits p« and pQ at the slack bus satisfy

^(V) for k=0, Nq+1 ,•••Nis similarly defined as in Eq. (5)
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PS<(- I Pi)+Lmandp2>(- I P.) +LM

where

(27)

LM :- I (V?)2 Gkk + I I Vm V1? G.-cos 6_. (28)
k=0 K KK k=0 i=0 K 1 K1 J

Lm :- max{0, £ (Vm)2 G.. + I I vj* V^ Gki} (29)
k=0 K K k=0 1=0

1flc

then R = Rv x R

Proof: Comparing Eq. (5) (for k =0, NQ+1,««« N) and Eq. (20), we have

Qk(V,0) =Qk(D +ak(V,6). k =0, NQ+1,-.- N (30)

where

«k<V,e) =jo VkV. Gk.sin 0k. - jo VkV. Bk. (cos ek1-l) (31)
i7k i7k

It follows from Fact 1 that for any veR„ and e_ e R ,

Qk(VM) <Qk(V) <Qk(Vm) (32)

Fact 1 and assumption (A3) imply that

-ctm <ak(V,£) <a{^, k=0, NQ+1 ,••• N (33)

Hence

Qk(VM) - am <Qk(V,£) <Qk(Vm) +ajf, k=0, NQ+1 ,-•• N (34)

Condition (CI) thus implies (RwxR.) cr
v y — q

From the power flow equations (3), we obtain

N

p0 + I P* - L(V,0) (35)
i=l
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where

N N

L(V,£) := I I VkV. G..cos 0..
k=0 i=0 K1

N 9 N N

= I \ Gkk + I I VkVi Gkicos 8ki (36)k=0 K KK k=0 i=0 K n K K1

It follows from Fact 1 and assumption (A3) that for any V. e R and

e e R , we have
8

Lm < L(V,8) < LM (37)

Hence condition (C2) implies (RvxRe) c R n

Throughout this paper, we consider cases where conditions (CI) and

(C2) are satisfied, hence

R= Rv x RQ (38)

2.4. Steady-State Security Regions

A steady-state security region ft is defined to be a set of power

injections for which the power flow equations and the security constraints

are satisfied, i.e.,

ass := ty : 3x € R3 f(x) =£} (39)

Note that the power flow map f depends on the system configuration.

Hence Q is defined for a fixed system configuration [3].

3, OUTLINE OF THE PROPOSED APPROACH

The problem of finding a steady-state security region can be

expressed as a mathematical problem of determining the conditions for

the existence of a solution to the power flow equations, i.e.,
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(P) Determine a set of power injections (£,£) for which there exists

a solution to the power flow equations (2)-(3) that lies in the

security constraint set R.

The proposed approach to solve this problem has two steps:

(i) Two simpler problems are solved first, (ii) The results are then

used to solve the original problem (P). We first consider the simpler

model of the decoupled power flow equations. Because of the decoupling

of Q-V and P-0 in the decoupled power flow equations (7)-(8), the

problem (P) is split into two, namely,

(PI) Determine a set of reactive power injections (j. for which there

exists a solution V^ to the decoupled reactive power flow equations

(7) that lies in the voltage magnitude constraint set Ry.

(P2) Determine, for any X in Ry, aset of real power injections P. for

which there exists a solution 0. to the decoupled real power flow

equations (8) that lies in RQ.

The problem (PI) is solved in Sec. 4.1. The mapping V.-* £ is

nonlinear, Leray-Schauder fixed point theorem [17, p. 162] is used in

the derivation. The results are presented in Theorem 1. The problem

(P2) is solved in Sec. 4.2. The mapping 0.** P. is linear and has a

circuit-theoretic interpretation, hence concepts from Circuit Theory [18]

are used in the derivation. The results are presented in Theorems 2

and 3. These results (Theorem 1-3) are utilized to solve the problem

(P) in Sec. 4.3. A simple homotopy is constructed from the decoupled

power flow map to the power flow map and concepts from the degree

theory [17, pp. 147-164] are used in the derivation. The results are

presented in Theorems 4 and 5.

-13-



4. THE RESULTS

4.1. Existence of Secure Solution to Decoupled Reactive Power Flow
Equations

The problem (PI) is solved in this subsection. Lemma 1 below is

used to prove the results in Theorem 1.

Lemma 1. Let C be an open and bounded set in ]Rn containing the origin

and £: C -*• R be a continuous map. If for all x on the boundary of

C, denoted by 9C, there is aksuch that xk f 0 and xk gk(x.) < 0, then

there exists a x. in the closure of C, denoted by C, that satisfies

i(x*) =0.

Proof: Let h_(x) = &(*) + x. We will show that the conditions in

Lemma 1 imply that h£x) has a fixed point.

The conditions in Lemma 1 can be restated as follows: Vx 6 8C

3k => xk f 0and xk{xk - hk(x)} >, 0. This implies that Vx e 3C,

{x - ji(x)} + (A-l )x f 0 for A > 1, i.e., Vx e 3C, h_(x) f Ax for A > 1.

By Leray-Schauder theorem [17, p. 162], h£x) has a fixed point x in C.

Theorem 1.

If the reactive power injections Qk at the PQ buses satisfy

condition (C3) below,

(C3) Qk(Vm) <Qk <QR(VM), k=l,2,... NQ (42)

then the decoupled reactive power flow equation (40) has asolution V_

in the set Ry =(V |Vm <V<VM}.
Vm+vf NQ NProof. Let xk :- Vk -J^JL ,and gk(x) :- Qk +Vfc{^ V. Bki +J+^ V^}.

vm-vM VM-Vm
The constraint set Ry becomes C={xj—^—12L1—z—^' wnicn contains

the origin.
-14-



The boundary of C is the union of the boundary defined by each

xk. Let 3Ck and 3Ck be the boundaries defined by xk =—*— and

v£-v"
xk =—2— >respectively.

Consider any point x <= 3Ck. We have xk >0 and

NQ N
«k<*>= Qk+ vkU0 viBki+ vkBkk+ i=NI+1 Vki>

Because B. . > 0 for i f k (Fact 1), it follows that
'ki

N,
/Mr ? UM 0 , WM,

•Qk "Qk(vn) (43)

Condition (C3) and Eq. (43) imply that gk(x) <0on 3Ck- Similarly
for any point xe 3Ck, xk <0 and gk(x) >0. Hence the conditions in

Lemma 1 are satisfied and Theorem 1 is thus proved. n

4.2. Existence of Secure Solution to Decoupled Real Power Flow Equations

Consider Problem (P2): Determine, for any V in Ry, aset of real

power injections P=(P],P2,...PN)T for which there exists asolution
T

§LS (0-j »02»-»«0|yj) to the decoupled real power flow equation

[B'(v)]0=P (44)

in the constraint set

Re ={i: -1< AT0 <6} (45)
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Lemmas 2 and 3 below provide some properties of the inverse of

the matrix [B'(V)] that are used in the proof of Theorems 2 and 3.

First we give a circuit-theoretic interpretation of [B'(V)].

Fact 3. Suppose that assumptions (Al) and (A2) hold. Consider a linear

resistive network of two-terminal elements having the same topology as

the power network and wish the conductance of branch ki being VkV1.Bki,

then the node conductance matrix of this resistive network with the

slack bus as the datum is precisely [B'(V)]. Consequently, [B'(v)]

is nonsingular, det[B'(V)] > 0 and the elements of the inverse

[X(V)3 := [B'(V)]-1 (46)

are nonnegative.

Lemma 2. Xk1(V) < Xkk(V), 1= 1,2,...N

Proof: We use the resistive circuit interpretation of [B'(y.)] for the

proof. Let us connect a current source across node k and the datum

with 1 unit of current flowing into node k. Xkk(V) is then the voltage

magnitude across this current source and Xki(V_) = Xik(y_) is the voltage

magnitude at node i. By the no gain property [18, pp. 777-778]

xki(I)<xkk(yj.

Lemma 3. V* >V. implies Xkk(V*) <Xkk(V_).

Proof. Xkk(_V) is the driving-point resistance of anetwork consisting

of two-terminal resistors with positive resistance. To increase V.

to V_ amounts to increasing the conductances of the branches from

V.V.B-. to V.V.B... Let us increase the conductances of these branches

one at a time, the resulting driving-point resistance Xkk never increases.

Hence at the end we have Xkj<(l )<Xkk(V_). n
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We will first consider Problem (P2) for a solution in a hypercube

Re inscribed inside RQ and then enlarge the set of interest to rI by
by moving the hypercube along a given direction.

Let

<J> := min i 6.
j J

and define a hypercube RQ in RQ as follows:

Rq := {0 : -<frl< £ <40.} (48)

where 1_= (1,!,...!). We then define Rq by moving Rq along the

direction of 1, i.e.,

Rq := {0 :0=0° +tyl, 0° €R°, -1 <t<1} (49)

where

(47)

u:= min <5. -<f> (50)
jes J

'index set of branches that

[are incident with the slack bus

Clearly R° CR^ cRQ (See Fig. 1).

Theorem 2 below provides the limits on real power injections in

order to guarantee the existence of a solution to the decoupled real

power flow equations (44) in the hypercube R«. Theorem 3 provides

the limits on real power injections for Eq. (44) to have solutions in

the enlarged region RQ.

Theorem 2.

For any V_ satisfying V. <_ V_ £ V_ , if the real power injections Pk

at the PQ and PV buses satisfy condition (C4) below

-17-
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(C4) |Pkll£rt^ (52)

then the decoupled real power flow equation (44) has a solution 0 in R®
~- 0

Proof: Since £ = [X(V_)]P, we want to show

N

II x1k(V.)Pkl <*. 1=1,2,...N

Consider

I^ Xik(V)Pk| <̂ X1k(Y)lPk| (53)

±j/kk(Vm)|Pkl (54)

<<J> (55)

From (53) to (54) it is due to Lemmas 2 and 3. From (54) to (55) it is

due to condition (C4). n

Theorem 3.

For any V. satisfying j/" <V< V.M, if for some t€[-1, 1] the real

power injections Pk, k = 1,2,...N, satisfy condition (C5) below

(C5) (" *w?)+ tuV"v°Bko) lPkl{" zfe"+ tuVkV°Bko) (56)
then the decoupled real power flow equation (44) has a solution 0^ in

Rq.

Proof: Let P* := p -tu[B'(]/)];u We claim that P' satisfies (C4),

Indeed,

-18-



N A. „ (57)
v? A BkJ(i) =W»

V

N

v^x ih 8kJ(l) =VkV°Bko (58)

Hence there exists a£ in Rq such that

[B'(v)]0O = P' =P-tu[B*(v)]l_ (59)

or

[B'(v)](0°+tul) =P (60)

That is, (0°+tul) e r! . n
— — y

4.3. Existence of Secure Solution to Power Flow Equations

We now tackle Problem (P) using the results (Theorems 1-3) we have

obtained for the decoupled power flow equations. Theorem 4 below, which

utilizes the results of Theorems 1 and 2, provides the limits on real

and reactive power injections in order to guarantee the existence of

a solution to the power flow equations (2)(3) in the constraint set

Ry x Rq, whereas Theorem 5, which utilizes the results of Theorems 1

and 3, provides the limits for a solution in R„ x RQ. Each of them
v o

defines a steady-state security region.

Theorems 4 and 5 are derived with the construction of a homotopy

[17, pt 135] from the approimate decoupled power flow map to the power

flow map and applying the homotopy invariance property of the degree

[17, pp. 156]toobtain conditions for the power flow equations to have

secure solutions. Fact 4 below is used for the evaluation of the

degree of the decoupled power flow map.
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Fact 4. If assumptions (A4) and (A5) below, as well as assumption (Al),

are satisfied,

(A4) 2Vk > V. k,i = 1,2,...N. (61)

(A5) Qk (Vk =Vm; V. =^ for i=1,...,NQ and if j)

N m o
>-( I Bki)(Vk) k=l,2,...Nn. (62)i=0,NQ+l K1 K y

and the strict inequality holds for at least one k,+ then the Jacobian

Dfl.(V) of the decoupled reactive power flow map £(•) is nonsingular

for all V in Ry. Furthermore, det DC[(V) >0 VV e Ry.

Proof: Using the definition of Qk(V) in eq (5), the elements of the

Jacobian can be computed.

DQkk^) --2BkkVk -Jo Bk.V., k=1,2,...,NQ (63)
i7k

DQki(V) =-Bk.Vk, i=1,2,...,NQ, if k (64)

Assumption (Al) implies that DJ£ is irreducible [17, pp. 46-47].

Fact 1 and assumption (A4) implies that DQkk(V) >0 and DQkl-(V) <0.

We claim that the Jacobian is diagonally dominant. Consider

f N N
% 1 Bk. denotes B. Q+ \ B. ..i=0,NQ+l k1 k0 i=Np+l kl
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NQ
DQkk(DI - .1 |DQki(l)| (65)

n N9- "2BkkVk " JQ BkiVi " -l Bk1Vk (66)

N N

± "BkkVk - ^ BkiVi + I BkiVk (67)KK K i=Q KI 1 i=0,Nn+l K1 K

N N

> -BkuV!" - I B..V. + I B^V? (68)" kk k ^0 k! 1 i=Q j +1 kl k
1?k w

•^ftQk(Vk-vJ; V1-vffbr1-l,...NQand1,ik)
IX

+ I Bk,(Vm)2} (69)
i=0,NQ+l K1 K

> 0 (70)

N
From (66) to (67) we used the fact -Bkk > J B... The inequality

i7k
from (67) to (68) is true because V € R The last inequality from (69)

to (70) is due to assumption (A5). Hence DCJ^V) is diagonally dominant

for all v^ in Ry, and by assumption (A5) the strict inequality (70) holds

for at least one k. Therefore D£(V) is nonsingular [17, pp. 48-49].

In fact D(ji(V) is an M-matrix [17, p. 55] and Dfl(V) > 0. n

The difference between the power flow equations (2)-(3) and the

decoupled power flow equations (5)-(6) are given below:

«k<*4> := +.|Q Wkisin 9ki "j0 vkviBki<C0S \i-V
6k(V,£) := +Jq V^SyCOS 6ki+iIo VkVlBki(sTn eki-eki)

-21- k = 1.2....N



We now introduce the error bounds of the approximation. Fact 5 below can

easily be checked by Fact 1 and assumption (A3).

Fact 5. For (V,0) e r x Ra,

-ctk <ak(j/,0) <ak, k =1,2,...NQ

-3k <3k(j/,0) <3k, k = 1,2,...N

where

a":='XVkVi{GkiSln6J +Bki(cos V1)}
17k

In — I , £ , . . . IMa

ak : " £ VkViGkisin 6iK i=0 K^ K1 J (72)
1?£k k =l,2,...Nn

(71)

*k := I fftp *j ' V^Bki(sin 6.-6.)> +(V?)2Gkk
W (73)

k = 1,2,...N

*k== J0^iGki+V^Bk1(sinV6.)}-(V^)2Gkk
i^k (74)

k = 1,2,...N

Theorem 4.

Let assumptions (Al-5), as well as conditions (CI) and (C2), hold.

If the reactive power injections Qk at the PQ buses satisfy condition

(C6) below

(C6) Qk(Vm) +a* <Qk <Qk(VM) - am k=1,2,...NQ (75)
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and the real power injections Pk at the PQ and PV buses satisfy condition

(C7) below

(C7) -£^+^pk<t:-b:-Bk k-iA-H
kkk' wn

(76)

then the power flow equations (2)-(3) have a solution (V,£) in the

security constraint set R defined in Eq. (23). In other words, Eqs. (75)

and (76) define a steady-state security region ft .

Proof. Consider the decoupled power flow map

F: (V,8) - (Q(V,0), P(V 0)) (77)

We will construct a simple homotopy from the decoupled power flow map

F to the power flow map and apply the homotopy invariance property of

the degree [17, pp. 156] to prove the theorem.

First we claim that deg(F,R xR^y) f 0 for any
v y

y.€ftss := {(£,£.) |£ satisfies (C5) and P satisfies (C6)} (78)

The Jacobi an DF(_v>0.) of F is given by

DF(V,0) =
DQ(V) 0

* [B'(V)]
(79)

It follows from Facts 3 and 4 that det DF(V,0) = det DQ(V) • det[B,(V)]

> 0. This, together with Theorems 1 and 2, and the definition of the

degree [17, pp. 147-160] establishes the claim.

We introduce the following homotopy H: ((V,0.),t) -»• (H^((V_,0_),t),

HP((V,0),t)) from Fto the power flow map (Eqs. (2) and (3)):
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H((Y,6),t) := F(V,0) + t G(V,0) 0 < t < 1 (80)

where G: (V,0) •* (a(V,£), £(V,6)) .

We claim that for any £ € ft ,

H((V,8),t) f y, t€ [0,1], (V,9) € 3(RyxR°) (83)

Consider the following two cases.

tvxR°) and V- w„Case 1). (V,0) e 3(RwxR°) and Ve 3R .
MSuppose the boundary is defined by Vk = Vk< We have on this

boundary

Qk(i) >Qk(VM) (84)

On the other hand from Fact 5, for (V,£) eRxR^,
v 0

-ak <ak(V,0) <ak (85)

Consequently

H^((V,0),t) >Qk(VM) - c£ (86)

Condition (C6) and Eq, (86) establish our claim (83) for this case.

Similarly for Vk =Vm.
Case 2). (V,0) e 3(R xR°) and 0 e 3R°

v y ~~ y

[X(_V)] is a nonsingular linear map, therefore, it maps the (relative)

interior of a convex set onto the (relative) interior of a convex set

[19, p. 44]. The convex set {P :IP. |<£ ^--} is mapped by [X(V)]
xkk(¥- }

into a subset of RQ by Theorem 2. Consequently the points on the

boundary of RQ are necessarily mapped to the boundary or the exterior

of the set {P :|P. I<& L—}, i.e., for 0e 3R° and VeR.
K nxkk{f) e " v
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I\(*e)|>$—j— (87)

On the other hand from Fact 5, for (V,0) e RxR^,
— v y

-3k <3k(V,0) <^ (88)

Hence

HkP((V,£),t) >f—J— -$l (89)

or

Hkp(a£),t) <-£—L— +6m (90)

Condition (C7) and Eqs. (89) (90) establish our claim (83) for this case.-

By homotopy invariance property of the degree [17, pp.156], we have

deg(F+G, RwxR~|, y) /0 for any y € ft Theorem 4 then follows from the
v o — •- ss

Kronecker theorem [17, pp. 161]. a

If we use the results from Theorem 3 instead of Theorem 2, we obtain

the following characterization of a steady-state security region.

Theorem 5.

Let assumptions (Al-5), as well as conditions (CI) and (C2), hold.

If the reactive power injections Qk at the PQ buses satisfy conditions

(C6) below

(C6) Qk(Vm) +ak <Qk <Qk(lM) +a£ k=l,2,...NQ (91)

and the real power injections Pk at the PQ and PV buses satisfy condition

(C8) below

-25-



(C8)" *r^r+tpVkV°Bk°+ 6"< pk< t yj^+tvVkvoBko+ 6k
for some te[-l,i], k = l,2,...N (92)

then the power flow equations (2)-(3) have a solution (V_,0.) in the

security constraint set R defined in Eq. (23). In other words, Eqs. (91)

and (92) define a steady-state security region.

5. EXAMPLE

The following simple example illustrates the fact that the numbers

one obtains by applying the results of this paper are reasonable.

Consider a power system consisting of a generator connected to a

load through a transmission line with impedance z = 0.001 + jO.l (Fig. 2).

Let Ry = {V-10.95 < V1 < 1.05}. RQ = {0, [-0.1745 <. 8-j < 0.1745},

Rq -{(Vr61)|-0.7 <Qo(V1,01) <0.7}, Rp ={(V^^jO < Pq(V1,81) <1.0},
and VQ = 1.

For this example, we have Q^V^) =0.525, Q}(V™) =-0.475,
Q0(v!y) =-0.5, QQ(Vm) =0.5, <j> =0.0873, a|] =0.1778, ajj =0.0182,
JJ =0.1778, am =0.0182, (p/X^^) =0.8293, 3^ =0.262, fl™ =0.0243,
LM = 0.0232, and Lm = 0.

m.Clearly assumption (A5) is satisfied, because Q,(V-) = -0.475

>-B10(V^)2 =-9.02. The condition (CI) is satisfied:

^0 =°-7 ±V^ +a0 =~0*3222
%= -0-7 <QQ(Vm) -am= 0.4818.

The condition (C6) requires that the reactive power injection Q,

lies within the limits:

-0.2972 < Q, < 0.5068
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The condition (C7) requires that the real power injection P-, lies with

in the limits:

-0.8031 < P1 < 0.8050

In order to satisfy condition (C2), the following inequalities must hold,

P1 < 0

P. > -0.9768

Therefore a steady state security region is defined by

ftss= {(P1,Q1) 1-0.8031 < P] <0, -0.2972 < Q1 < 0.5068}.

6. CONCLUSION

In this paper we have posed the problem of determining the

steady-state security regions as one of finding sufficient conditions

for the existence of solutions to the power flow map within the security

constraint set. We look for conditions that are easy to check. The

results which we obtain are expressed in terms of limits on real and

reactive power injections at each bus. In other words, the steady-state

security regions that we have obtained are hyperboxes in IR . The

assumptions (Al-5) we impose on the system are not restrictive at all.

The conditions that define the regions may be conservative, however, we

believe that the proposed approach has the potential to yield improved

results.
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Figure Captions

Fig. 1.. A two-dimensional example to illustrate the regions

Re £ Re £ V
Fig. 2. Example of a two-bus system.
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