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Abstract

We believe that synchronization and chaos are closely

related. Common intuition suggests that when a circuit is

off sychronization the observed output, although not

periodic, will be a sum of periodic (intermodulation)

components. In fact, at least for a large class of systems

we have studied, the output does not have this relatively

simple form but is actually chaotic. This paper studies

a simple but realistic model for a large class of triggered

oscillators. Theory and experiments both confirm that the

output shows the properties of sensitivity to initial

conditions, non-periodicity, broad spectrum, and complicated

recurrence, that characterize chaotic motion.
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1. Loss of synchronization may imply chaos

The phenomenon of synchronization is not well-understood

theoretically, yet it is very widely used in practical

electronics (e.g., television, radar, oscilloscopes, etc.).

In general, a small periodic synchronizing signal with an

accurate period is used to drive a system which can produce

a larger signal having a period not far from the driving

signal, in such a way that the larger signal 'locks on' to

the synchronizing signal' s frequency (or to some multiple or

submultiple of it). There are several possible mechanisms

for this, but the most common in practical circuits, and,

fortunately, the easiest to understand, is the threshold

mechanism, in which the driven system produces an output

that depends on when a certain threshold level is reached

In this case, the synchronization signal works by causing the

threshold to be reached at a controlled time.

As we shall see, successful synchronization depends on

appropriate relationships between the signal levels and other

parameters, and in a system designed to synchronize, some

means is always provided to adjust the parameters to make

it work correctly. When the parameters are outside some

range, the system is not synchronized and the output is not

periodic. For example, the vertical rolling seen in TV

sets with improperly adjusted vertical sweeping controls is

a direct manifestation of such loss of synchronization. It

would be natural to assume that in this case it is merely

a sum of incommensurable periodic components due to the

driving signal and the driven system. If this were so.



the output would be almost periodic, and of no particular

interest.

We will show that the time state of affairs is quite

different: for a large class of systems that we can analyze

in detail - and probably for many other systems - the

output shows characteristics that are normally described

as chaotic. That is, although it is quasi-recurrent, there

are no stable periodic solutions; there are no stable almost

periodic solutions; the signal exhibits a broad spectrum;

and the system is sensitive to initial conditions, in the

sense that arbitrarily close initial states eventually

become mapped into different "cycles" of the recurrence.

(This is chaos in rather a strong sense, since many systems

described as chaotic actually have stable periodic solutions.

[1]) .

We want to emphasize that we have chosen a class of

systems that are easy to understand mathematically and for

which the circuit elements are all behaving in the way

they were designed to behave . Other chaotic circuits exist

but depend on exotic behavior of components operating outside

their normal design parameters. We should also remark that

although it is clear in retrospect that one of the seminal

papers in the study of chaos was about synchronization [2],

there seems to have been no follow-up. In fact, the literature

of synchronization is minimal and that on the relationship

between synchronization and chaos appears to be non-existent.

t For circuit engineers who are skeptical about chaos in

common circuits, we will discuss later why artefacts

of measuring equipment may often conceal such behaviour and

make it look as if something much simpler is happening.



In the rest of this paper, we are going to analyse

a mathematical model for threshold synchronization and

describe some experiments with real electronic circuits

that use it. To make the paper accessible to readers who

are not circuit theorists, we will begin by describing how

threshold synchronization works. It should then be possible

to skip the detailed circuit description (section 2) without

too much loss of continuity.

Suppose we have a system that produces a steadily

rising output x(t) until some upper threshold b is

reached, then produces a steadily falling output until

some lower threshold a is reached, and then restarts

with a rising output as in Figure 1.1a (drawn with a=0) .

To simplify matters, we will work vzith linearly rising and

falling outputs throughout the paper, but v/e will show that

this restriction can be dispensed with. Thus

X =

1q if x>0 , x<b

— if x<0 , x>a
I a

where a<b . Let us add a narrow periodic pulse d(t)

to the output, with period slightly shorter than the natural

period. If the system causes x to change from positive

to negative whenever the total signal x(t) +d(t) reaches

the upper threshold, we can have the situation in Figure 1.1b

where the combined signal x + d has the same period as the

driving signal d . (This case only arises if the driving

pulses are large enough and the periods are close enough,

of course.) The equation is now
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Iq if x{t) > 0 and x(t)+d{t)<b ,
or if X(t) + d(t) < a

if x(t) <0 and x(t) +d(t) > a
a

or if x(t) +d(t) >b .

(1.1)

where t denotes lim(t+£) .
elO

This elementary mathematical model is an extremely

accurate description of the behaviour of a host of circuits:

to take only one example, the emitter - coupled astable

multivibrator to be discussed in section 2. It will turn

out that if the return from the upper threshold is too

slow (a>l , in fact), synchronization is lost and the output

becomes truly non-periodic. The system turns out then to

have an interesting relationship with pseudo-random number

generators.



§ 2, Circuit model

An astable multivibrator usually consists of a capacitor

connected across a resistive (memoryless) nonlinear circuit.

This circuit, usually made of resistors, transistors and a

dc power supply, charges and discharges the capacitor

periodically to produce the desired oscillation. Figure

2.1 shows one of these circuits. In this circuit, transistors

and Qg act approximately as two current sources which

always draw constant currents and I2 , respectively.

D and D are two Zener diodes with Zener voltage VZi Z2 z

When is on and Q2 is off, is equal to V

makes V equal to V ^-V„-2V__,_ . , where V_„, . ~0.6V
X ^ CO z BE(on) ' BE(on)

is the base-to-emitter voltage drop for the transistor in

the active region. Current 1^^ + I2 flows through

so is equal to V - (I,+I^)R (R is chosen to
^ 00 -L ^ 01

be small enough so that is not saturated.) Assume

is greater than V,-V -2V_„,^ v then remains off so
^ 1 z BE(on) *2

current flows through Cq . This causes to

decrease and will eventually turn on Q2 . As soon as Q2

is on, V2 will drop sharply so will be cut off.

will jump to V ~V -2V_p. V but V cannot change
00 z ^oii/

because of the capacitor Cq . Now is greater than

V2-V^-2Vggso Q2 remains off and the process is

reversed. This mechanism results in a nearly triangular

waveform across Cq and nearly square waveforms of

and V2 .

CO

t All voltages are measured with respect to ground.

which



Instead of the above analysis, this oscillation can

also be studied in a more general manner by modelling

the transistor circuit (excluding Cq ) as a nonlinear

resistor. Within the range when all transistors work

as they are designed to, the current-voltage relationship

looking from terminals x-y (with the capacitor Cq

removed) can be obtained and is shown in Figure 2.2. The

branch AB corresponds to off, on and CD

corresponds to on Q2 off. The dashed line BC

corresponds to the case when both and Q2 are on.

Since the current flowing into x will go through '

Q2 , and comes out from y , proportional to

the current by R +R . Because V -V, «V -V« «2V__, x+V„ ,
C2 X 1 y 2 BE(on) z

the characteristic betv/een BC is approximately a straight

line with slope -l/R- +R ) . Notice that the nrevious analvsis
c« " -

shows that corners B and C occur at V =-(I,+I«)R and
xy 1 2

(Ij^+I^) R^ respectively (when 0^

and Q2 change states) and the straight line joining them

does have the slope -1/(R +R ) . Though we did not carefully
•=1 '^2

analyse the exact shapes of the corners, it is clear that

they have little effect on the oscillation so we simply join

B and C with a straight line. The non-zero slopes of AB

and CD result from the imperfect performance of the

transistor current sources and are usually negligible.

This circuit and the resistor-capacitor model motivated

our study but from now on we shall analyze the further

idealized and simplified model shown in Figure 2.3a and b.



Here the nonlinear resistor charges capacitor Cq with

current until it reaches pcint C (V =b) . An
U 1\

instantaneous transition from C to A is assumed to

occur at this point and thereafter resistor R begins to

discharge with a current equal to • When it

reaches B (Vj^=0) , another instantaneous transition from

B to D is assumed to occur and R starts charging Cq

again. This idealized model of an "astable" oscillator

enables us to study the effect when it is triggered by

external narrow pulses as shown in Figure 2.4. The behavior

of this circuit model is characterized by equation (1.1) where

X corresponds to the capacitor voltage.



§3. Analysis of the model

We will now look in detail at the behavior of the

threshold-triggering model. We shall assume the lower

threshold a is zero and both the signal x(t) and

the triggering pulse d(t) are non-negative, so only the

upper threshold matters. We assume the pulse is so narrow

(compared to its period) that we can write it as

d(t) =
c t = np

0 otherwise

where n is any integer and p > 0 is the period.

When x(t) -!-d(t) exceeds b , x starts to decrease

(because the capacitor in the circuit is switched from

charging to discharging). A possible waveform is shown

in Figure 3.1; notice that the ratio of the falling and

rising times is still always a , as in the non-triggered

case, merely because the slopes remain the same and the

lower limit is always 0 . However, the times themselves

change, allowing the time for a cycle to range from a possible

maximum of q = b(l+a)/lQ down to a minimum of q' = (b-c)(l+a)/Ij

(see Figure 3.1; the existence of q' stems from the

fact that triggering is impossible if x(t)+d(t) <b-c .)

Let us assume the driving signal's period p is slightly

longer than the free running period q . (If p is slightly

shorter than q , we always get synchronization eventually.)

Suppose also that p-q is less than c/Iq , the time for

X to rise from its lowest triggerable value to its maximiim.
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With these assumptions, a possible waveform of x+d is

plotted in Figure 3.2. If p-q is small, the circuit

will not usually be triggered again on the cycle immediately

after a successful triggering: instead, it will free-run

with the triggering pulse shifting a distance p-q on

each cycle. From Figure 3.2, it is easy to see that the

next successful triggering occurs when

(p-q)k>at^ + (b-c)/Iq (3.1)

where k is the smallest integer that satisfies (3.1).

The assumption that p-q <c/Iq ensures a pulse will occur

in the first region where it could cause switching; if

p-q>c/Iq the region could be skipped, which would complicate

the analysis but could not give rise to any more complicated

behavior.

It follows at once that

^n+1 " (p-q)k-oitj^ (3.2)

and this recurrence relation describes the system fully.

However, k depends on t^ and it is more convenient to

remove it from the discussion; it turns out to be easy to relate

the conclusions derived without the presense of k to the

qualitative behavior when k is present. To remove k

we notice that

at^+ (b-c)/lQ = (k-1)(p-q) + (at^+(b-c)/Iq)mod(p-q) . (3.3)



This can be obtained either from the picture or by

considering (3,1) together with

(p-q) (k-1) < at^ + (b-c)/I|

Now subtract (3.3) from (3.2) to give

11

- (b-c)/!^ = (p-q) - (at^ + (b-c)/lQ)mod(p-q) (3.4)

or setting, = t^-(b-c)/lQ ,

T _^ = (p-q) - (a + 3)mod(p-q) (3.5)
n+i n

where B is a constant which we may take to lie in CO,p-q)

without loss of generality because of the modulo (p-q)

operation. There is also no loss of generality in choosing

units in which p-q = 1 , so we can write x =f(T„)
^ n+i n

where

f(T) =l-(aT + B) mod 1 . (3.6)

Equation (3.6) is our new system equation. Before analyzing

it in detail, we get a hint of its nature by noticing its

similarity to the popular linear congruence method for

generating pseudo-random number sequences [3]. Even though

the details are different (we assume x^^ , a and B are real

rather than rational) we expect something of the same

degree of unpredictability in the motion of the system.
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Note that if the rising and falling parts of the

waveform are not straight lines, equation (3.6) still holds

except that the fall time is replaced by a function

a(T) , and the constant in (3.1) is no longer (b-c)/!^ .

The important thing is that the fall time is still a

function of the rise time. We will return to this later.

Figure 3.2a shows the effect of the mapping

= f (t^) for a typical f with a>l . The auxiliary

line f(T) = T serves the usual purpose of allowing us

to follow iterates of the mapping, as explained in the

figure caption. The two fixed points are unstable and the

typical trajectory shown is pushed outwards in the domain

of one point until it crosses the discontinuity into the

domain of the other. Then it is pushed outwards once more

until it crosses the discontinuity again, and so on.

It is obvious that the m.otion is complicated, but it

is not clear at once why it could not be periodic with

a long period, or perhaps be almost-periodic. We will soon

show that neither of these is possible if a>l , but first

let us dispose of the cases a<l and a=l .
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3.1 The case a < 1

When a< 1 , the map (3.6) is shown in Figure 3.3;

it can be seen that the equation T = f(T) has at least

one fixed point, and that because a< 1 , f is a contraction

on each of its straight-line segments. Consequently, the

fixed points are stable attractors of the discrete dynamical

system every initial state is attracted

to one of them.

It is then trivial to see that these fixed points

correspond to periodic solutions of the original system,

the value of k being fixed for any one fixed point.

3.2 The case a = 1

When a = 1 , we get

•^n+2 = (Tj,+i + B)mod 1

= 1- (1-(t^ + 3) + 6)mod 1
n

= -(-T )mod 1
n

=

because 0 < t < 1 . This means the circuit will be
n

synchronized to an even multiple of p for all initial

conditions except those for which t = t ,, /in which case
^ n n+1 '

synchronization to odd multiples is possible.

3. 3 The case a > 1

The interesting case is when a >1 . We can see at

once that all the fixed points of f are now unstable;
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moreover, iterates of f consist of straight line

segments with slope (-a)^ and so fixed points of all

periods are unstable. So there can be no stable periodic

solutions in the original system.

What is more, the mapping is always locally expansive;

nearby points get pulled further and further apart, until

eventually they find themselves on opposite sides of a

discontinuity of f ,, corresponding to being in different

switching cycles of the original system. (We will go into

more detail on this shortly.)

Figure 3.5 shows a possible map; because a>l , there

is at least one discontinuity. We are going to show that

this implies every almost-periodic solution must be periodic

(Since we know there can be no stable periodic solutions,

this shows there can certainly be no stable almost-periodic

ones.)

Theorem Every almost-periodic orbit of '^n+l~^^'^n^ '

where f is defined by (3.6), is periodic.

Proof Let almost periodic orbit. Then for

every e > 0 there is an N > 0 such that | x | < e

for all j . Define ^o~ show that this

must be zero , proving that is actually periodic.

Choose e > 0 so small that ae << 1 . Consider the

sequence =II * Suppose there is a point of

discontinuity of f between some j ;

then since aSj << 1 / is nearly 1 , which violates
< e . So there can be no point of discontinuity between
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"^N+j ^ ' which means we must have

^j^-j. since a >1 , ^j+i ^ ^ implies
£q=0 ; that is, the orbit is periodic.

Remark If ax is replaced by a function a(T) as

described earlier, the theorem still holds if the function

is non-negative and Lipschitz v/ith minimum Lipschitz constant

strictly greater than 1. The same applies to the separation

proposition which follows.

Returning now to Figure 3.2a, we see that the situation

must be rather complicated. If we let

sequence of numbers of iterates spent in the domains of

repulsion of the fixed points, so a point starting in the

left side of the picture takes r^^ time intervals to enter
the right side, spends s^^ intervals there, re-enters the
left side for r2 intervals, and so on. A slight variation
on the proof of the above theorem shows us that two points

starting arbitrarily close together must have different

sequences: we will call them kneading sequences though

the stretching and folding of our interval is not the usual

dough-like operation.
Separation proposition

Any two distinct points t,t' e [0,1) have different

kneading sequences.

Proof Consider the sequence ~ with ~ ^

and Tq = t' . Suppose that there are no discontinuous points

of f between x. and xfor all j from 0 to k
3 3

(i.e. the kneading sequences match up to the k iteration),

so we must have ~ ^ * Since a > 1 , ^-^+1 eventually

becomes so large that x and x' lie on opposite sides

of a discontinuity, so the kneading sequence then differ.



16

This proposition shows that the trajectories of two

distinct points t,t' must split apart onto different

sides of a discontinuous point of f for at least once.

We shall call this "separation by order 1".' The points

may eventually come close together again but the proposition

shows that unless they coincide/ they must split again

by order 1. Thus any two trajectories must either coincide

after a finite time or split with order 1 infinitely often.

They may not approach each other asymptotically.

In the case when a is an integer, we can in principle

give a complete picture of the history of any point using

a counting argument [4,5]. The trick is to make a base-a

expansion of the unit interval, and to show that the

expansion of any point contains its complete history (kneading

sequence) in full view. When a is not an integer, the

problem is that while every point has some expansion in base

Ca]+1 that contains its kneading sequence, not every

expansion to this base corresponds to a point on the interval.

This makes it difficult to attach the expansion to the point.

Here is how things work for integral values of a . Note,

incidentally, that integral a has nothing to do with

our choice p-q = 1 , and to make this clear we go back to

(3.2) which was

t The reason we talk about "order 1" is that if two points

are on opposite sides of a discontinuity, either they are

already far apart or they will be so on the next iteration.

That is, given any 6>0 sufficiently small and t,t'

on opposite sides of a discontinuity, either |t-t'| >6

or If (T)-f (t') I =0(1-6) .
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Vl = (P-<3)k-at^

where k is an integer.

Define = [t^/(p-q)]mod 1 and suppose x^ has

a base a expansion: that is.

^0 " j where 0 <Xq^ <o .

It follows from (3.2) and the fact that a is an integer,

that

which implies

X = (-a X )mod 1
n+1 n

^1 " *0, (k+l)"

*2 . ^,^0,k+2" '
k=l

00

*2n ' , ^ *0,k+2n"
k=l

-k

^2n+l ^ " j^^^^0,k+2n+l°^

Thus there is a one-to-one correspondence between the

a-nary expansion of Xq and the sequence
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above equations show that at each iterate, the expansion

loses its first digit and is complemented modulo a . Thus

in the case a = 2 ,

.0101.... -*• .1010 (drop first digit)

.0101 (subtract from 1) .

We have found a fixed point. (It is unstable, of course).

In fact, since rational numbers exist we can find fixed

points of any order m , i.e. points for which x . = x
^ ^ n+m n

for all n , but x . „ x for 0 < £ < m . Moreover,
n+£ n

irrational number exist, so there are non-periodic points

which are certainly not asymptotically periodic.

To examine the history of any point, write down its

a-nary expansion and complement the odd numbered digits modulo

a . The digits then give, in order, the kneading intervals

visited. Since any two distinct points must differ in their

base a expansions by at least one digit, we see another

interpretation of the separation proposition.
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4. Experiment

To illustrate and confirm the chaotic behavior predicted

in section 3, a simple experimental circuit which simulates,

almost exactly, the idealized characteristic in

Figure 3.2b, is built and studied. The circuit is shown

in Figure 4.1. A standard integrated circuit module NE555

performs the switching between charging and discharging.

The output of the NE555 jumps from 15V down to 0

whenever the threshold input reaches lOV and jumps from

0 to 15V whenever the trigger input falls below 5V .

Two transistors act as current sources. When the output

of NE555 is high, overcomes Q2 and charges Cq .

Otherwise is off and Cq is discharged by Q2 . The

other NE555 generates the triggering signal which is added

to the oscillator via an operational amplifier.

The experiment was performed with a«1.5 , q 2 1ms ,

p s 1.1ms , b ~ 12V , a K 5v , and c « 2V . These values

are not critical. The real technical problem is to obtain

meaningful displays of v^ using an oscilloscope.

Oscilloscopes can be triggered by the input. That is,

the display will always start at the time when the input

rises up to (or, at the user's option, falls down to) a

certain adjustable level, namely, the trigger level. By

triggering, oscilloscopes are able to display steady pictures

of periodic waveforms. When requested by the user, a scope

makes its attempts to be triggered, but it often fails when

the input is chaotic. Even if the scope is triggered, the

picture may still not be steady for non-periodic inputs.
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Thus a chaotic input usually results in a messy display

which is not meaningful to anyone. This may be one reason

why chaotic behaviors of electronic circuits are seldom

observed, let alone reported.

For this circuit, we are able to obtain meaningful

pictures by properly selecting the trigger level. Since

the waveform consists of triangles resting on one level (5V) ,

we can adjust the trigger level so that the display always

starts from a certain voltage of the rising portion of

triangles (i.e. slightly larger than 5V , positive slope),

and so obtain a picture consisting of overlapping triangles.

Moreover, if we choose the sweep speed of the scope so that

no more than one triangle is displayed every time it is

triggered, we shall obtain a picture as plotted in

Figure 4.2. Here A is the trigger level of the scope, the

band BC consists of triangles being triggered at different

levels by the pulses, and D is the free running triangle.

Since the time range that a triangle can be triggered

ia. p-q / the width of BC is approximately p-q . Notice

that in order to see the entire band BC , the trigger level

of the scope must be less than the smallest triangle. In

fact, if the level is set between C and D , we shall see

only the free-running triangle which may mislead us to

conclude that the waveform is periodic. Several real pictures

taken from the scope are shown in Figure 4.3. Figure 4.4 shows

the broad spectrum of the resulting triangular waveform.
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5. Conclusions

We have discussed a simple mathematical model and an

experimental circuit that is well described by the model.

The real circuit is described by a differential equation

rather than a difference equation, with the equation taking

the form

X = g(x+d,y) ,

MY = h(x+d,y)

1. nfor X € H , y € 3R , and small p e H . The good agreement

between theory and experiment indicates that the output

of the differential system is chaotic. Certainly, it has

a broad spectriim and is sensitive to initial conditions.

We believe that just as the qualitative properties of the

real system are close to those of the model, so other features

of the model (such as straight line segments in the waveform)

are more important for ease of analysis than they are for

determining the general features of the behavior.

(Recall that v/e showed in section 3 that ax could be

replaced by a function cx(t) without affecting our

conclusions.)

If we accept that the mathematical model is realistic,

or if v/e regard it as worth studying in its ov/n right, then

we discover interesting features of our system. Different

initial conditions give rise to quite different futures,

giving the sensitivity and broad spectrum that we require.
Specifically, v/e have proved our model has the following

features v/hen a>l .

(a) There are no stable periodic solutions of any

order.

(b) There is no almost-periodic solution that is

not periodic.
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(c) There are unstable periodic solutions. If a

is an integer, these exist for all possible periods.

(d) Any two trajectories either coincide exactly

after a finite time, or are separated by order 1

infinitely often.

These features are akin to but are not quite the same

as the features found in the systems of first order difference

equations which are usually discussed (see, for example,

Li and York [5]). For example, the discontinuities in

our system remove all stable periodic solutions, whereas

the usual one-hump functions tend to have stable periodic

solutions even in their chaotic regions [7].



References

[1] Mees, A.I. & Sparrow, C.T. (1981) Chaos. Proceedings

lEE, 128D(5), pp.201-205.

[2] Cartwright, M.L. & Littlewood, J.E. (1945) On

nonlinear differential equations of the second

order. J. London Math. Soc., 20, pp.180-189.

[3] Knuth, D.E. (1973) Seminumerical Algorithms. Addison

Wesley.

[43 Preston, C.J. (1975) Analysis of the iterates of a

one-hump function. Internal report. Department

of Pure Mathematics and Mathematical Statistics,

Cambridge University.

[53 Mees, A.I. (1981) Dynamics of Feedback Systems. Wiley

[63 Li, T. & Yorke, J.A. (1975) Period three implies

chaos. Amer. Math. Monthly, p.985.

[73 May, R.M. (1975) Deterministic models with chaotic

dynamics. Nature, 256, pp.165-166.



Figure Captions

Fig. 1.1a Output x(t) increases until x(t) =b , then

decreases until x(t) =0 , and repeats. Ratio

of slopes is a . (Here a = 0) .

Fig. 1.1b Slope changes when x + d reaches b from below

or a( = 0) from above. Period of x + d is locked

on to the period of d .

Fig. 2.1 An emitter-coupled astable multivibrator.

Fig. 2.2 The current-voltage characteristic of the

transistor circuit measured across terminals x - y .

Fig. 2.3a The circuit model of the astable oscillator.

Fig. 2.3b The idealized characteristic of the

nonlinear resistor.

Fig. 2.4a The circuit model of the triggered astable oscillator

Fig. 2.4b Narrow periodic trigger pulses.

Fig. 3.1 A possible triggered waveform. Pulses are d(t);

when x(t)+d(t)>c, x changes sign. It

is still true that x = 1^ or always.



Fig. 3.2 A possible triggered waveform using assumptions

th
mentioned in the text. The n successful

triggering occurred at time t^ measured relative

to the preceding time when x(t) = 0 .

Fig. 3.2a The effect of f(T) . Tq is mapped to f ("^q) •

The line f(T) =t reflects into t-axis.

This reflected point becomes and the process

continues. The mapping and reflecting proceed

along the arrows.

Fig. 3.3 A possible map with a < 1

2
Fig. 3.4 A possible f (x) .

Fig. 3.4 A possible map with a > 1 .

Fig. 4.1 The experimental circuit.

Fig. 4.2 A plot of overlapping triangles observed on the

scope.

Fig. 4.3a A picture of overlapping triangles.

Fig. 4.3b/C Amplified BC portion of the overlapping

triangles. Pictures are obtained with slightly

different p . They indicate a great change in

the distribution of triangles with a very small

change of p .



Fig. 4,4. The spectrum of a typical waveform of . v
'(2
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