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ABSTRACT

The optimal topological design of Programmed

Logic Arrays allows to implement complex switch

ing functions in a minimal silicon area. We address

the problem of array partitioning . and

the implementation of partitioned arrays as block

folded or parallel connected PLAs. We present a

graph theoretical interpretation of the problem

and an efficient heuristic algorithm. Experimental

results are reported.
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1. INTRODUCTION

Array logic is widely used in the structured design of VLSI circuits and sys

tems [1]. In particular Programmed Logic Arrays (PLA) are a convenient imple

mentation of multiple output switching functions [2][3], because they show a

regular structure and can be effectively designed and optimized with the sup

port of computer aids [4].

Though heuristic minimizers [5] [6] allow to express large switching func

tions as minimal sets of logical impiicants , their physical implementation may

still be too expensive in terms of silicon area. Large logic arrays are in general

very sparse: the number of "cares" is much smaller than the number of "don't

cares"[7]. A straightforward physical implementation results in a significant

waste of the silicon area not directly contributing to the implementation of the

logic function. The wasted area reduces circuit yield and degrades the time per

formance of the PLA by introducing unnecessary parasitics.

The optimal topological design aims to reduce the wasted area. A well

known technique is PLA folding [7] [8] [9]. The objective of folding is to deter

mine a permutation of the rows (and/or columns) of the array which permits a

maximal set of column pairs (and/or row pairs) to be implemented in the same

column (row) of the physical logic array.

An alternative approach is block folding [10] which has been referred to also as

bipartite folding in [11] and as array segmentation in [12] and [13]. Block fold

ing aims to determine a permutation of the rows (and/or columns) of the array

such that the columns (rows) can be partitioned into two sets and any pair of

columns (rows) in different sets can be implemented in the same column (row)

of the physical logic array.

PLA decomposition into parallel connected arrays has been investigated in



[12]. Alogic array is broken into several subarrays and the outputs of the subar

rays are merged together.

We investigate in this paper a general framework for PLA optimal topologi

cal design based on array partitioning . We present an algorithm for partition

ing a logic array ( or a plane of a logic array ) into n subarrays . The algorithm

takes advantage of array transformations based on logical operations to ease

partitioning. Since partitioned arrays can be implemented as multiple block

folded or parallel connected arrays , our approach embodies the previous pro

posed implementations as special cases.

The implementation of a partitioned array as a block folded array can be

obtained in two different ways: column block folding and row block folding .

Note that a multiple column block folded array requires a physical layout where

inputs and/or outputs are connected from the side of the array. We refer to [14]

for technological details.

In the parallel connected implementation each subarray can have different

size and be placed in arbitrary position. Though this implementation is more

general , the total area depends heavily on the interconnections among the

subarrays.

a BASIC CONCEPTS AND DEFINITIONS

We consider here Programmed Logic Arrays implementing sum-of-products

switching functions with the following structure. The PLA consists of two adja

cent arrays: the input array or AND plane and the output array or OR plane (fig.

2.1a). Input signals and their complements run vertically in the AND plane, pro

duct terms run horizontally in both planes and outputs run vertically in the OR

plane. Both arrays are personalized by the presence of active devices in posi

tions corresponding to the "cares" of the switching function. Note that in general
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PLAs are implemented by two NOR subarrays in nMOS and in cMOS technology,

but this does not affect our analysis.

The topological description of a PLA is contained in the Topological Per

sonality Matrix (TPM) whose entries are 1 if the corresponding element in the

PLA is a care, and is 0 otherwise. [8]

The TPM can be divided into two submatrices A and B related to AND plane (input

subarray) and OR plane (output subarray) respectively. If the PLA has N inputs,

M outputs and P products, the TPM has P rows and N + M columns (fig. 2. lb).

We define input ( output) column set I=|i1# i2. • • . .ijyj (O^Oj, o2, . . . , ojh\) the

set of the first N (last M) columns of the TPM.

We define product row set P=|pi. p2 Pp\ the set of rows of the TPM. A pro

duct row pj is split into two parts :pf (input product row) and pf (output pro

duct row), where pf contains the first Nentries ofpj andpf the last ones.

We define logical conjunction ( disjunction) of two vectors x,y:

xVy {xAy) (2-1)

the vector obtained by the component-wise conjunction (disjunction) of x and y.

Logical conjunction (disjunction) of n vectors will be indicated as :

throughout the paper.

Two vectors x,y are independent (orthogonal) if x ky =0, where 0 is the null

vector. We denote by x±y two independent vectors.

Two vector sets X, Y are independent if
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x±y VielandVyey *2'3^

Logic array partitioning relies on determining independent sets of vectors

in the Topological Personality Matrix. A logic array is said to be input (output)

partitionable if there exist input (output) column independent sets. An input

(output) partitionable array has also independent sets of input (output) product

row pf(pf). A logic array is said to be parallel partitionable (or simply parti

tionable) if there exist product row independent sets.

Remark 2.1:k parallel partitionable array is input and output partition-
able, but the inverse is not true because input independent product row
sets and output independent product rows sets can belong to different
product row sets.

3. EQUIVALENT ARRAYS AND PARTITIONING

In general the TPMs of logic arrays do not have input and/or output

independent sets of products rows and cannot be partitioned as they are. It is

then necessary to transform an array into an "equivalent" one before partition

ing it.

Two logic arrays are equivalent if they implement the same switching func

tion. Equivalent arrays can have different size and can be obtained by introduc

ing redundant rows [15] and/or columns [10] [13] or by rearranging the TPM of

the array by a reshape [5] of the logic function.

We consider in this paper a general equivalence transformation based on row

(column) augmentation

We define augmentation of an input, output or product, the substitution of the

input, output column or product row with a set of input, output columns or pro

duct rows which gives an equivalent logic array. We present now rules to obtain



equivalent arrays by augmentation:

Rule 1: input column augmentation

The logic arrays defined by A,B and A'.B are equivalent if:

i) A' is obtained from Aby replacing an input column ij with a column

set Ij = \iji,ij2,-.,ij8l such that

Vf=1i^=i,. (3.1)

ii) Input signals to columns in Ij correspond to input signal to column

An input partitionable array can be obtained by a sequence of input column aug

mentations.

Rule 2: output column augmentation

The logic array defined by A,B and A,B" are equivalent if

i) B' is obtained from B by replacing an output column o;- with a

column set Oj = \ojlt oj2 oia] such that:

Vf»i oik = Oj (3.2)

ii) The output signal from column Oj corresponds to the logic con

junction of the output signals from the column in Oj.

An output partitionable array can be obtained by a sequence of output column

augmentations, and a partitionable logic array by a sequence of input and out

put augmentations.

Rule 3: product row augmentation

The logic array defined by A,B and A'.B' are equivalent if:

i) [A'|B'] is obtained from [A|B] by replacing a product rowjp;- with a

row set Pj=\PjV Pj2. • ,Pjs\ such that
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P$ =pf Vfc =l,2 s (3-3b)

An output partitionable array can be obtained by a sequence of product row aug

mentations and a partitionable array by a sequence of product augmentations

followed by a sequence of input augmentations.

It is clear that there are many different possible augmentations for a row or

a column according to rules 1.2 and 3. For optimal topological design it is con

venient that augmented rows and columns keep the array as sparse as possible.

Hence we require the augmented columns and the output part of the augmented

product rows to be independent. Moreover optimal topological design based on

array partitioning requires the determination of an optimal sequence of aug

mentations.

4. GRAPH INTERPRETATION OF THE PARTITIONING PROBLEM

A graph interpretation of the partitioning problem gives a pictorial

representation of the connectivity of the array and is useful in understanding

the underlying structure. We refer the reader to [16] for definitions of graph

theory.

The AND plane (OR plane) of a PLA can be represented by a bipartite graph

0 AT&{l,PtEA ) (GB{P,0,EB)) whose adjacency matrix is H q (
0 B

BT 0 ).

The whole logic array is therefore represented by the union of such graphs, i.e.

the tripartite graph G(I.P,0,E), where E-EA\jEB (fig. 4.1).

The node sets I,P and 0 are in one-to-one correspondence with the PLA input

column, product row and output column sets respectively.



In order to give an estimate of the silicon area taken by the PLA we define a

function F0 on G as follows:

F0 = (a|;Vi+o|/*f|)|P| + c\N\ + d\M\ + e\P\ ^

where coefficients a -e are parameters depending on the physical layout of the

PLA. The first term takes into account the area of the array and the last three

terms the area taken by the drivers, the output inverters and the loads.

We will consider now the input, output and parallel partitioning problem in

the order.

4.1 Input partitioning

In this case we restrict our attention only on graph GA(I,P,EA ) because

input partitioning does not affect the OR plane.

Let us consider first the trivial case in which set P is the disjoint union on n

input independent sets Pj , ,7 = 1,2 n. Because of independence, input

columns are also partitioned into n disjoint sets Ij. As a consequence graph G4

is disconnected into subgraphs Gf = (Ij, Pj, Ef) 7=1,2 n.

Each subgraph Gf represents a block ofan input partitioned PLA.

It is straightforward that in this case an input partitioned array takes an area

smaller than the original one.

However, in general, graph G is connected and the input array is not parti

tionable. A transformation of the input array into an equivalent input partition-

able one is then required: this corresponds to transform graph &* into an

equivalent disconnected one. This goal can be achieved by an input node split

ting which is the counterpart of the input augmentation. The procedure is shown

in fig. 4.2 on a simple example.

Example 4.1: Input node 2 is split into two nodes 2' and 2" (column aug
mentation on the PLA) and the edges incident to 2 are now incident ei-



ther to 2' or to 2". The equivalent augmented PLA is shown with its input
partitioned implementation.

In general let us denote by Tln(EA) a partition of the edge set EA into n

subsets EJ,Ei,...,EA. Let Gf(Ijt Pj, Ef) be any subgraph induced by the parti

tion where Ij and Pj are the sets of input and product nodes which are adjacent

to edges in Ef. Because of input node splitting in general I/1 ^ 2 I// I wnue
i=i

l-Pl = 2 \pj\ (no product augmentation is allowed). Subgraphs Gf ,7=1.2 n

correspond to the blocks of the input partitioned array. An estimate of the

input partitioned array area is given by:

FA = £|^|(a|/yl+&|0|) + c£|/,| + d\0\ + e\P\

+/(2l/il-UI) (4-2)
i=i

where the last term takes into account the overhead due to the routing of the

augmented input columns.

We can now state the input partitioning optimization problem 0P1 as follows:

"Problem OP1"

Find a partition U^(EA ) such that:

FA(TK(EA))<zFA(Tln(EA)) vnn(#*;andVn (*-3a)

Pjr\Pk=<t> V;,Jfc =l,2 n\ j*k (43b)

Note that the optimal solution can be not unique.



4.2 Output partitioning

In this case we restrict our attention on graph GB{P,0,EB ) since the input

node set is not affected by output partitioning.

As stated in Section 3, output partitioning can be achieved by output column

and /or product row augmentation. The procedure is shown in fig. 4.3 on a sim

ple example.

Example 4.2: Product node 1 is split into two nodes 1' and 1" (product
row augmentation) and the edges incident to 1 are now incident either to
V or to 1". The equivalent augmented PLA is shown with its output parti
tioned implementation.

In general let us denote by Ilm(EB ) a partition of the edge set EB into m

subsets EB,EB E&. Let Gf(Pj, Oj, Ef) be any subgraph induced by the parti

tion where Pj and Oj are the sets of product and output nodes which are adja

cent to edges in Ef. Because of output node splitting in general |G| ^ 2 l^!f I

m

and |P| <. Yi \Pj I • Subgraphs Gfj =1,2,..,m correspond to the blocks of the

output partitioned array.

An estimate of the output partitioned array area is given by:

FB = 2l^l(a|/|+6|q,.j) +c|/| +d£|q| +e2\Pj\

+*[(2 lqi)-lo|] +M(2 I^IH^Il <4-4)

where the last terms take into account the overhead due to the routing of the

augmented output columns and product rows. We can now state the output par

titioning optimization problem 0P2 as follows:
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"Problem OP2"

Find a partition U^(EB ) such that:

FB(T&(EB))<> FB(Tlm(EB)) VHm(EB) and Vm (45)

Note that the optimal solution can be not unique.

Remark 4.1: If only output column augmentations are allowed, the last

term in (4.4) is equal to zero (\P\ = 2 \pj I ) a*"1 then FB can be ob-
tained from FA by interchanging I with 0. In this case the output parti
tioning is exactly the "dual" of the input partitioning. The problem 0P2
is then obtained from the problem 0P1 by adding the constraint equation
(4.3b) to equation (4.5)

4.3 Parallel partitioning

For this problem we require a graph representation of the whole logic array

by means of G(I,P,0,E). Parallel partitioning of a PLA can be obtained if we

transform the original PLA into an equivalent one whose graph G is discon

nected.

This goal can be achieved by node splittings i.e. by means of input .product

and/or output augmentations. The procedure is shown in fig. 4.4 on the same

simple example. The equivalent augmented PLA is also shown with its parallel

partitioned implementation.

In general let us denote by IIj(EB) a partition of the edge set EB into I sub

sets E*1, E*2 E8*. Let GB(Pj, 0jt Ef) the subgraph induced by the parti
tion where Pj and Oj are the node sets of product and output nodes which are

adjacent to edges in Ef. Let Ef be the set of edges incident to nodes in Pj and Ij

be the set of nodes adjacent to Pj.

Because of output node splitting in general 10\ £ 2 Ity I an^i \F\ ^ 2 \Pj\-
;=1 j=l
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Moreover also j/j < J] I//1 because of the input augmentation required by eqn.

(3.3). Any subgraph Gj(Ijt Pjt Ojt Ef'jEf) corresponds to the j-th PLA of the

parallel partition.

An estimate of the area taken by the I logic subarrays and by the interconnect

to route them is given by:

F= tlPjKalljl+blOjl) +ct\Ij\ +dt\Oj\ +et\Pj\

+/[<£l/il)-l/|] +g[(t\oj\)-\o\] +h[(i\Pj\)-\p\] <4-8)
;=i i=i j=l

We can now state the parallel partitioning optimization problem 0P3 as follows:

"Problem 0P3"

Find a partition Ui*(EB ) such that:

F(Y\C(Ef))^F{I{l(Ef)) VIUfEf) and VZ (4-7)

Note that the optimal solution can be not unique.

Remark 4.2: The unconstrained partitioning of the edge set Ef may lead
to several product augmentations and consequently input augmentations
as required by eqn. (3.3b). The augmentation may induce a kind of "chain
reaction". It is therefore more convenient to consider a constrained par
titioning of the set Ef which avoids product augmentations. This
corresponds to add to eqn. (4.7) the following additional constraint:

PjC\Pk = 0 V;,A:=1,2 1; j*k (4-8)

The procedure is shown in fig. (4.5) on the example. •
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5. A HEURISTIC CLUSTERING ALGORITHM FOR PLA PARTITIONING

The optimization problems arising from PLA partitioning require to minim

ize a nonlinear function with integer constraints. The objective functions depend

on the cardinality of the node subsets induced by an edge set partitioning.

We propose a heuristic algorithm based on a cluster search [17] and on

array transformations. We use the same cluster search strategy for the three

partitioning problems. For this reason we denote by G{V,E) the graph related

to a partitioning problem. The node set V is defined as luP , PuO and IuPuO

and the edge set E as EA , EB and EAuEB for input,output and parallel parti

tioning respectively.

The algorithm attempts first to find a node cluster inside graph G{V,E) and then

partitions V into two subsets Vx and Vz. The former contains the cluster

nodes and the latter the remaining ones. Let EcE be the set of edges joining

nodes in Vx to nodes in Vz. If E is empty, the node partition induces a graph par

tition into two disjoint subgraphs Gx(Vi, Ex) and GZ(VZ, Ez). If E is not empty,

the algorithm modifies the graph by adding to Vx and Vz appropriate nodes

incident to E, so that E is partitionable into Ex and Ez and GX(VX, Ex) and

^2(^2- Fz) are disjoint. This operation corresponds to node splitting ( augmen

tation ) and is described in detail in the sequel according to the different parti

tioning problems. Subgraph Gi(Vh Ex) is stored and the algorithm reattempts

a cluster search on the updated graph G{V,E) = Gz(VZt Ez) . The selection of

cluster nodes is driven by the values taken by the objective function .

Different authors have dealt with clustering related problems [18],[19],[20].

We base our algorithm on the contour tableau approach described in [21] and

in [22]. The contour tableau is an array of three columns. The first one is called

iterating set ( IS) and its entries are nodes of the graph. The second one is the

adjacency set ( AS) and its entries are sets of nodes of the graph. The third
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column is the objective function vector ( OF) and for our purposes its entries

are the values of the area estimates FA , FB and F.

The tableau is built iteratively until a cluster is found and convenient condi

tions are met to separate it from the rest of the graph. At this point the tableau

is cleared and the algorithm restarts on the rest of the graph The algorithm is

described in Pidgin Algol.

Partitioning Algorithm

begin
while (V* 0 ) do
begin

IS - $;AS= tp;OF= 0 ;
i = 1;
IS{i) = DESELECT \V]\
AS{i) = ADJ [IS(i)\;

while ( \ cluster criterion not satisfied ] ) do

begin
/S(i +1) = NEXTSELECT [AS(i)];
AS{i+l) = NEXTADJ [IS,AS(i)\;
i =i+l;

end

G{V,E)= UPDATE [G(V,E)]'t
end

end.

Procedure ADJ [i] returns the nodes adjacent to node i. Procedure NEX

TADJ [IS,AS{i)] returns all the nodes adjacent to node IS(i+l) not contained in

\jj-i IS(j) . An efficient way to evaluate the procedure is described in [22]: the

nodes returned by NEXTADJ are obtained from AS(i) by deleting /5(i+l) and

adding the set of all the nodes which are adjacent to IS(i+l) that are not

already in AS(i) or in \jjsl IS(j). Procedure INSELECT [ V] selects an initial

node of the graph G(V,E) and procedure NEXTSELECT [AS{i)] selects the next

iterating node in AS(i). Both selections follow an heuristic criterion described in

the sequel. Procedure UPDATE [G(V,E)] stores subgraph Gi(Vlt Ex) and
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returns subgraph G2(VZ, E2).

Graphs GX(VX, Ex) and Gz(Vz, Ez) are defined according to the partitioning

problem and the augmentation strategy required. At each step of the internal

while loop of the algorithm, the set V is partitioned into three disjoint subsets,

namely:

X= U/=1 IS{j) Y=AS{i) Z= V-X-Y (5-1)

The nodes in X are inside the cluster and are adjacent only to nodes in Xu Y.

Nodes in set Y are "border" nodes. By construction, the nodes in Z are not adja

cent to any node in X. Let WoX be the subset of nodes adjacent to Y at the

current step of the • algorithm. Let us define

Xj (XP, X0) , Yt (YP, Y0) , Ifi (WP, W0) , Zf (ZP, Z0) the subsets of input

(product and output) nodes of X,Y, Wand Z respectively (i.e. Xj - Xnl).

In the case of input partitioning we augment only input columns. Hence the

set Vx is obtained by adding to cluster nodes X the input nodes 1/ adjacent to

cluster nodes. Set Vz is obtained by adding to the cluster complement set nodes

YuZ the input cluster nodes Wf adjacent to them. Note that the product node

set Z is partitioned into two subsets Xp and ZpuYp. The edge set E is parti

tioned accordingly: Ex and E2 are the subsets of E , whose elements are incident

to nodes in Xp and ZpuYp respectively. Hence we define:

GX(VX, Ex) = Gx(XuYj, Ex) GZ(VZ, E2) = Gz(YuZuWI, Ez) (5-2)

Example 5.1 : Consider the AND plane of PLA shown in fig 2.1. Suppose
that at one step of the internal while loop the cluster set contains the
following nodes : X = \IX, Px, Pz\. The adjacency set is: Y = [Iz\ . The oth
er two sets defined by the partitioning algorithm are : W = \PX\ and
Z = \I2, P3, PJ ( Fig. 5.1). According to (5.2) Vx = \IX, Iz, Px, Pz\ and
VZ=\I*h.P3.P4l

i- c



A similar definition applies , mutatis mutandis , to the output partitioning prob

lem with product (output) augmentations only : l

Gx(VXlEx)= Gx(XvYP,Ex) Gz(Vz,Ez)=Gz(YuZuWp,Ez) (53a)

( Gx(Vx,Ex)=Gx(XuY0,Ex) GZ(VZ, Ez) = Gz(YuZuW0, Ez) ;(53b)

In the case of parallel partitioning with input and output augmentations only,

the set Vx is obtained by adding to cluster nodes X the input nodes Yj and the

output nodes Y0 adjacent to cluster nodes. Set V2 is obtained by adding to the

cluster complement set nodes YuZ the input and the output cluster nodes

WjuWo adjacent to them. Note that the product node set Z is partitioned into

two subsets Xp and ZpuYp as in the input partitioning problem. The edge set E

is partitioned accordingly: Ex and Ez are the subsets of E , whose elements are

incident to nodes mXp and ZpuYp respectively. We define: l

Ox(Vx, Ei) = Gx(XuYjuY0, Ex) Gz(Vz, Ez) = Gz(YuZuWjuW0, Ez) (5-4)

The cluster criterion is satisfied when at least one of the following condi

tions is met:

|AS(i)|=0 (5-5a)

7(\Xi\AXp\AXol\Yi\,\Yp\,\Y0\AWi\,\Wp\.\Wo\) > 7™ (55b)

OF{i) is a local minimum (5.5c)

The first condition guarantees that a cluster is found if graph G{ V,E) is not con

nected. The second condition allows the user to define a scalar function y of the

1In the case of output partitioning with product and output duplications and
parallel partitioning with input,output and product duplications, subgraphs
GX(VX, Ex) and GZ(VZ, Ez) are defined differently. Since these definitions do not
affect the analysis of the algorithm, they are not reported here for the sake of
simplicity.



cardinality of the subsets Xj, Xp, Xo, Yj, Yp, Yq, Wj, Wp and Wq in order to

specify the maximum size of each block according to the technological con

straints of the implementation of the partitioned array. The third condition is a

heuristic rule to determine a cluster. It can be also required that OF(i) is

smaller than a proper fraction of the initial area OF{0) to ensure that partition

ing is performed only if it gives a considerable saving in the total area. Since the

objective function vector may have several local minima close to each other,

the cluster decision can be taken a few steps after the minimum is detected.

We can now describe procedure NEXTSELECT . Procedure NEXTSELECT

uses a greedy strategy to select the next iterating node among the nodes in

AS(i). When any node in AS(i) is added to the cluster node set X , graph

G{V,E) can be partitioned according to (5.2) , (5.3) or (5.4) and the correspond

ing value of the objective function be computed. The selected node is the one

that minimizes the objective function at that step of the algorithm. This means

that the selected node is the "local best" node.

Procedure DESELECT returns the initial iterating node. As pointed out in [22], a

node connecting two clusters is a bad selection of initial node. Nodes with

degree 1 cannot join two clusters and hopefully the lower the degree of the node,

the lower is the probability of choosing a "bad" node. Hence procedure

INSELECT returns the min-degree node in the actual implementation of the

algorithm.

It is interesting to show that the time computational complexity of the algo

rithm is polynomially bounded , though the total number of nodes may increase

at each iteration. Let n = \V\.
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Theorem 4.1 The time computational complexity of the Partitioning Algo
rithm is bounded by 0(n2).

Proof:

Every time the algorithm cycles through the external while loop, pro
cedure UPDATE [G(V,E)] returns GZ(VZ, Ez). At least one node of the
cluster set is not added to 72,because otherwise G(V,E) = GZ(VZ, Ez)
and the cluster condition cannot be met. Hence VzcV and | V\ is de
creasing at every step of the external loop. The algorithm cycles at most
n times through the external while loop. Moreover since AS(i)<zV and
|i4S(i)| <n , the algorithm will execute at most n inner inner while
loops, because there is necessarily an integer m , m < n , such that
\AS{m)\ =0 and a cluster condition is satisfied. Since procedures
NEXTSELECT and NEXTADJ can perform at most n comparisons and ob
jective function evaluations, the time complexity of the algorithm is
bounded by 0(ns).

6. EXPERIMENTAL AND CONCLUDING REMARKS

The Partitioning Algorithm has been coded in ratfor and tested on several

industrial Programmed Logic Arrays. Some results are reported in table 1. Fig.

6.1a shows the personality of a benchmark array ( PLA2 ) and Fig. 6.1b the out

put partitioned personality. Note that for this particular PLA , having no "don't

cares" in the input plane TPM , no input partition is found by the algorithm.

The partitioned personality can be used as input to a silicon assembler program

to obtain a layout of the block folded PLA masks. We used program plaid [23] to

assemble the block folded PLA of fig. 6.1. The checkplot of the original array is

shown in fig. 6.2a and the block folded implementation in fig. 6.2b.
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TABLE 1

Normalized partitioned array areas. Initial area = 100.

PLA size

P*(N+M)
Input
Partitioning

Output
Partitioning

Parallel

Partitioning

PLA1 6*(6+4) 71 64 61

PLA 2 16*(4+16) 100 71 65

PLA 3 30*(19+10) 78 81 67

PLA 4 75*(35+29) 75 70 46

PLA 5 62*(24+14) 75 80 60

PLA 6 84*(27+10) 71 81 59

PLA 7 84*(27+10) 69 81 57
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Fig. 4.2a GA of the
original PLA
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Fig. 4.4a G| and G2 of parallel-partitioned PLA
(with product augmentation)
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Fig.4.5a G| and G2 of parallel-partitioned
PLA (without product augmentation)
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Fig. 6.2b Checkplot of a benchmark PLA
(PLA 2) after output-partitioning
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