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INTRODUCTION

This is a summary of the talks given in a Panel Discussion Session

of the 11th International Symposium on Multiple Valued Logic that

took place in Oklahoma City, Oklahoma, U.S.A, May 27-29, 1981.

The title of the panel was: Measures of Deviance in Non Classical

Logics, and the speakers were:

1st Prof. Ennc Trillas, from the Universitat Politecnica of

Barcelona, Spain. The title of his talk was: "Measures of Fuzziness:

Introductory Words."

2nd Dr. Teresa Riera, from the Universitat Politeoriico of Barcelona,

Spain. The title of her talk was: "Deviance Associated to a Special Kind

of Variables."

3rd Prof; Ronald Yager, from lone College of New York, U.S.A. The

title of his talk was: "Measurement of Properties on Fuzzy Sets and

Possibility Distributions."

4th Prof. Settimo Termini, from the Laboratorium di Gibernetica

of Naples, Italy. The title of his talk was: "The Formalization of

Vagueness Some (Epistemo) Logical Problems."

The panel was mainly prepared from the Computer Science Department

of the University of California at Berkeley where the organizer Dr.

Teresa Riera was a visitor the time before the symposium. Authors

thank warmly Professor L.A. Zadeh (University of California, Berkeley)

who has made possible that this summary come out.

The organizer thanks ISHVL-81 for including the session in the

symposium. She is in debt with the speakers first for taking part in

the panel and second for kindly writing their talks. She also thanks

all people who attended the session, they were who asked for the talks
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to be published as a first step to carry out a further debate which due

to time shortage could not take place after the talks. They all

together made it possible.

Research sponsored by National Science Foundation Grants IST-8018196 and
MCS-7906543.
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MEASURES OF FUZZINESS: INTRODUCTORY WORDS

by

E. Trillas

Universitat Politecnica de Barcelona, Spain

1. I am not sure if a good way to start this Panel is to take a

quick look through the part of the history of the subject in which I

have been working; but the chairmen ask me for this and I will try to

do it.

2. ONCE UPON A TIME there were two research fellows in Naples who

were interested in both epistemological problems in Physics and new

methodologies related to Cybernetics.

That is perhaps the reason why, after knowing Zadeh's 1968 paper

"Probability Measures of Fuzzy Events" (Jour. Math. An. and App. 23,

421-427), they have got the idea to regard fuzzy sets from a thermo

dynamic-! ike point of view by comparing the internal disorder in statis

tical dynamics with the fuzziness.

These people were A!do DeLuca and Settimo Termini and they were

those who gave the definition of "entropy" (in the celebrated sense of

DeLuca and Termini, of coursel) as a Measure of the Degree of Fuzziness

for a fuzzy subset of a ground set X (the universe of discourse) defined

by a mapping

D:P(X) -• R+

satisfying the following three axioms:

(1) D(A) =0 if and only if A is a crisp subset of X, that is A P(X).

(2) D(A)<D(l/2), for any A€P(X), being 1/2 the fuzzy set constantly

equal to 1/2, that is l/2(x) = l/2 for any xs X.
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(3) D is increasing with respect to the SHARPENED PARTIAL ORDER < ,

given by

A(x) <_B(x), when B(x) < 1/2

A < B iff
—s

A(x) > B(x), when B(x)>l/2

that is A£gB implies D(A)£D(B).

(4) D(A) = D(A), for an A€ P(X), being A the "complement" of A given

by A(x) = l-A(x),

D is called a symmetrical entropy. Many people prefer to consider always

entropies as symmetrical entropies.

In a certain way, entropy try to measure chaos due to the non-

of the fuzzy set associated with an ill-defined class. In fact, this is

an important problem still opened in the theory of Fuzzy Sets and that,

in my opinion, needs to be carefully studied from several points of view.

It is to be remarked that if f : 1R +1R -is a strictly increasing

function such that f(0) = 0, and D any entropy then foD is also an entropy.

2For instance, being all a. > 0, there are entropies: aQ + a,D + a«D +

... +anDn. In the same way D/l+D is an entropy.
Analogously if F : [0,l]n -> [0,l]n is a function strictly increasing

with respect to the order < (defined as above but in [0,l]n) and such

that verifies

F(l/2,l/2,...,l/2) = (1/2,1/2,....1/2)

F({0,l}n) = {0,l}n

F([0,l]n-{0,l}n) = [0,l]n-{0,l}n,
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then Dof is also an entropy. For example, functions defined by

f(tlft2.if,..tn) =(l-tltl-t2,...,l-tn)

fa(trt2,...,tn) =(ta(1)>ta(2),...,ta(n)), beingaGGn, are
functions of this kind.

In this point it is convenient to remark that the four axioms of

DeLuca and Tarmini do not characterize universally the entropy. In fact,-

there are a lot of different types of entropies to be choosen by the user

(if they need toi). Actually in their early work (1972), entitled, "A

definition of non-probabilistic entropy in the setting of fuzzy sets

theory," Information and Control, 20(4), 301-312, DeLuca and Termini

only use a particular D given by

D(A) = I [u(A(x.))+u(l-A(x.))], y(x) = - x log-x,
i=l 1 1 d

being X= (x^,x2,...,xn>, which is very closed to the probabilistic

entropy of Shannon.

3. It is necessary to remark that although the "logarithmic

entropy" does not seem inadequate to convey a first idea of "equally

fuzzy" it is clesely related to the interdependence properties of

classical sets. For instance if the entropy of the product fuzzy set

is required to be the sum of its factor entropies, we have a condition

such that u(x.y) = x\i(y) + yy(x) on y, which, under some suitable hypo

thesis of regularity, has a solution y(x) = (cxlogx ). On the other

hand, entropies like this are related with the property of being

"valuation" of the lattice P(x) (in which union is pointwise defined

through the function max and intersection through min), and one can
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easily prove that:

"The only entropies D that are valuations of the pointwise lattice

P(x)1 are those that have the form

D(A) = I d.(A(x.)),
i=l 1 1

being d.. functions from [0,1] into R+ such that:

d^t) =0 iff t =0

d. is strictly increasing in [0,1/2]

d^ is strictly decreasing in (1/2,1]

d. attains its maximum in t = 1/2."

Such entropies are invariant under the group G if and only if d, = d2

= ... = d. and the only symmetrical are those that satisfy d.(t) = d.(1-t)

for all i and any t e [0,1]. In the 1979 paper by C. Alsina and myself,

entitled "Sur les mesures du degre de flou," Stochastica, III-l, 81-84,

we also study entropies that are valuations in "sharpened" lattices

Sh(A) ={B'ep(x); B<^ A}.
If we call Sh(A) = {B e p(x); B e Sh(A)}, then, as it is proved in

the 1978 paper by T. Riera and myself, entitled "Entropies in Finite

Fuzzy Sets," Information Sciences, 15, 159-168, for any A € P(x)

- Sh(l/2) USh(l/2) there exists a unique o^^Gri aA(l ,2,.. .,n)

=(i-|f--*t1D»iD+-|f..»in)» being p=#A ([0,1/2]) <n, such that

A(x. )<...< A(x. ) < 1/2 < A(x. )<•..£ A(x. ).
H - np np+l nn
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With such machinery we have the following theorem, which is longer to

write than to prove, and that it is possible to be considered as a cen

tral result in the subject.

THEOREM

If we consider the famuly of functions:

+ +
a) 6 : 1R xR , strictly increasing and null in (0,0).

b) ef : [0,l/2]p ]R+, strictly increasings and null in (0,...,0)

c) 62"p : (l/2,l]n"p ]R+, strictly decreasings and null in (1,...,1)
satisfying

0(ep(l/2,...,l/2),0^"p(l/2,...,l/2)) <6^(1/2), 1<p<n-l

9^(1/2) <e!J(l/2),

the function D: P(X) -»-.IR+, defined by

e"(A), if AG Sh(l/2)

D(A) = e!)(A), if A€ Sh(l/2)

e(ep(A(x. ),...,A(x. )),e5"p(A(x. ),...,A(x. )),
1 P P+l \

if A e P(X) - Sh(l/2) uSh(l/2).

is an entropy in the sense of DeLuca and Termini.

This theorem opens the way to find a great number of possible

entropies which will be chosen depending on the required properties.

But not any entropy is of this kind, for instance in the case of X

having two elements, the function
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f(x,y) =1 - jl / (x-l/2)2+(y-l/2)2

generates

Df(A) = f(A(Xl),A(x2))

and Df does not satisfy the conditions of the theorem and it is an entropy.

The same happesn with some fuzzy-indices introduced by A. Kaufmann, and

it was just this kind of functions which made me study entropies that

come from norms. I did it in the 1979 paper by C. Sanchis and myself,

entitled "Sobre entropies de conjuntos borrosos deducidas de metricas,"

(in Spanish), Estadistica Espanola, 82, 17-25. The results of this paper

generalize the before-mentioned "indices of fuzziness," of Professor

Kaufmann.

Among the entropies satisfying the previous theorem we have called

algebraic-entropies (not. a very good name, sure!) those such that

D(A) = (DU0)^1)),

being

0 0, if A(x) e [0,1/2] , A(x), if A(x) G [0,1/2]
A (x) = , a'(x) =

A(x), otherwise 1, otherwise,

and among such algebraic-entropies the most "popular" are the so-called

6-* entropies, given by

D(A) = 6 [a.*<J>(A(x.))],
1-1 1 "•

bei ng

1) All ai >0
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2) ( ]R ,6,<) a commutative ordered semigroup such that

6(x,s) = 0 iff r = s = 0.

3) * an isotone operation for the pointwise order such that

x * s = 0 iff r = 0 or s = 0.

4) <j> a function from [0,1] into IR+ such that

<fr(t) = 0 iff t €{0,1}.

0 is non-decreasing in [0,1/2]

<J> is non-increasing in (1/2,1]

<J> attains a maximum at t = 1/2.

Particular cases are obtained by considering

9. * kind name

+ • D(A) =iDy^A^.))] . sum-prod

v a D(A) =V[ai a (A^.)] max-min

4. The case in which the ground set X is not finite was first

studied by J. Knopfmacher in "on Measures of Fuzziness," Jour. Math Anal.

Appl., 49 (1975), 529-534, generalizing sum-prod entropies by using

Lebesque integral.

The case in which X is denumerable was studied by A. DeLuca and S.

Termini in "On the convergence of entropy measures of a fuzzy set,"

Kybemeter, 6 (1977), 219-227, and also by E. Trillas and T. Riera in

"Sobre entropies para los mbeonjnitos difusos de IN," (Spanish), to be

-7-
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published in the Proceedings of the "VI Jornadas Matematicas Hispano-

Lusas," held in Aveiro (Portugal) in 1978.

In the 1979 paper by N. Batle and myself entitled, "Entropy and

fuzzy integral," Jour. Math. Anal. Appl., 69, 469-474, it is intended

to generalize the max-min entropies by using the so-called Sugeno's

fuzzy integral.

A nice survey, with new ideas, about the subject can be found in

"Entropy and Energy Measures of a Fuzzy Set," by A. DeLuca and S. Termini,

published in Advances in Fuzzy Set Theory and Applications, North Holland,

1979, edited by M. M. Gupta, R. K. Ragade and R. R. Yager.

This is, more or less, the situation till now. I can tell you in

advance that in brief it will appear in some new papers on the subject

containing interesting contributions.

5. Perhaps some of your are wondering what is the connection between

entropy measures for fuzzy sets and the title of this Panel. Well, there

is a tentative answer.

In fact, entropy measures for fuzzy sets can be regarded as a first

attempt to introduce something like a way to CONTROL BOOLEANITY, or some

thing like a measure of derivance from booleanity. Probably the papers

by R. R. Yager on fuzziness in lattices (to be published shortly) will

show a first extension of the primitive idea.

On the other hand, if it is a class of objects p, q,... (propositions,

for instance) having a DeMORGAN ALGEBRA structure, and it can be embedded

in a certain P(X), for some suitable X, then it is possible to define

the "booleanity of p e A" as a real number D(P), being £ the correspond

ing image of P in P(X) and D a convenient entropy in P(X). This is what
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we are doing in the case in which it is exactly P(X) and the objects are

fuzzy sets.

Really it is not very easy to prove a representation theorem of

DeMorgan Algebras by means of fuzzy sets, but a particular case can be

found in the Ph.D. thesis by Luiz Monteiro, "Algebras de tukasiewicz

trivalentes monadices," (Spanish), published in 1974, in Notas De Logica

Matematica, No. 32, by the Instituto de Matematica, Universidad Nacional

Del Sur, Bahia Blanca, Argentina. Also some initial results for the

general case are expected to be found in a paper by N. Batle and J. Grane,

entitled, "Ideals in the Algebra P(X)," to be published shortly in

Stochastica.

6. Let me finish with some additional ideas related to the last

point. Let £,, £2, ..., £ be proportional variables and a, v, >,...

logical convectives. As you know, well formed formulae (wff) are obtained

from the £., i = l,...,m together with the logical convectives following

formation rules and it is designed by Yn =<j>(£.|,.. .,£m), where it is the

number of proportional variables that actually take part on 4>(Ci» »Cm)-

Clearly each £.. is a wff and so are £. v £., 5 a £.,>£..,... etc.

If it is possible to take [0,1] to be the set of truth values of

the wff, and if

v^(5i) =X..

is a truth value for £., in order to know the truth values of a wff Y
i n

for every assignment v^(£..) e [0,1] (1 <i <..., 1 <j < ...) of the

variables that takes part in Y , we postulate the existence of a unique

function f„ : [0,l]u -* [0,1] such that, if
n
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(j,) (jn)v ] (^),...,v n (Kn)

are truth values of the 51».-.»5n appearing in Y , then

fY (v ] (^),...,v n (5 ))

is the truth value of Y . Indeed, fY depends on a finite number of
n

variables (the variables that actually appear in Y ) and it should be

consistent with the two valued proportional calculus, that is, fY should
n

contain the binary truth table of Yn, as for example it happens when

f£ v£ (xi»x2^ =max^x-i>x2^

fp *£ (x19x2) =minCx^Xg}

f^(x) =1-x,

and with the equivalence Y„ = l„ iff fv = f7 (which, as it is well
n P Yn ^«n p

known, implies n = p). In the quotient set we can consider the soft

structure P([0,1] ) as we have announced in the 1-st paragraph.

So, each equivalence class (Y ) of wff can be "represented" by a

fuzzy set fy :[0,1]n •> [0,1], and the booleanity of the wff can be
n

controlled by using suitable entropy measures in [0,1]n. We can take

advantage of the powerful structure of [0,1]n by using entropies derived

from a distance or from a norm in IRn.

7. With all this, here you have some ideas that I think it could

be interesting to discuss.
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DEVIANCE ASSOCIATED TO A SPECIAL KIND OF VARIABLES

by

T. Riera

Universitat Politecnica de Barcelona, Spain

1. I am going to talk about how we can use entropy measures as a

first step to describe a certain kind of variables defined in a universe

of discourse S in which we have previously distinguished a special family

of fuzzy sets that we consider modelizes the fuzzy environment in which

our problem takes place.

2. What I am going to explain can be regarded as continuation of

the paper by E. Trillas and myself, entitled "On a special kind of variables

in fuzzy environment," presented last year in Evanston and published in

the ISMVL-80 proceedings 149-152.

In it we suggested to modelize the fuzzy environment through the con

cept of fuzzy algebra, that is through DeMorgan algebras closed by

Watanabe transformations, and we showed how special real functions rela

tive to such fuzzy algebras could be defined in S.

3. First of all let me recall briefly some of these concepts as they

are basic to get our present aims.

3.1. Let P(S) be the srt of all fuzzy sets on S. We call Watanabe

transformation to any mapping W: P(S) -*• P(S) such that, for each

A e P(S), satisfies:

(i) If A(x) > X, then WA(x)> X

(ii) If A(x) < X, then WA(x) < X
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(iii) If A(x) = X, then WA(x) = X

being x e s and WA the image of A by W.

So, by one of such transformations a fuzzy set A is changed into

another WA whose values are kept either above, below or in the symmetry
•fg

level (given by the negation function which defines de complement in

P(S)) as they were in the fuzzy set A.

Actually, what is behind this definition is the idea also supported

by Watanabe in his work (see: "Fuzzification and Invariance," Proc. Int.

Conf. Cyber. Soc. 2, 947-951, Tokyo, 1978), that any algebra with fuzzy

sets should be invariant by slight changes in their membership functions

and in this sense, they have a special importance, quantities and proper

ties invariant by any transformation by which, using Watanabe's words

the "rather yes" is changed into the "rather yes," the "rather no" is

changed into the "rather no" and by which the indeterminance is preserved,

In our before mentioned paper we established this concept in terms

of equivalence classes by defining when two fuzzy sets, in this case A

and WA, were "more or less fuzzy at the level X" which is exactly the

same idea.

3.2. Now, we will go quickly through the definition of fuzzy alge

bra.

As I said at the begining fuzzy algebras are DeMorgan algebras

closed by Watanabe transformations, that is a fuzzy algebra A is a family

of fuzzy sets on S satisfying the following conditions:

See, "Sobre funci ones de negacionen en la teoria de Conjuntos Di fusos,"
by E. Trillas in Stochastica, III-l, 47-60 (1979).
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(FA 1) If A e A, then A e A (being A the complement of A).

(FA 2) If A, B e A, then A U B e A (and as a consequence A n B€ A)

(FA 3) If A€ A, then any Be W(A) is B€ A (being WA(A) the set

of all Watanabe-transformed from A with respect to X).

To get more operativity we add:

(FA 4) If A € A, then A e A (being A the nearest crisp to A, that

is the classical set with characteristic function defined for any x e s

as A(x) = 1 when A(x) > X and A(x) = 0 when A(x) < X.

(FA 5) X e A (being X(x) = for any x e s)

A fuzzy algebra modelizes the fuzzy environment in which our pro

blem takes place in the sense that it contains all the fuzzy events that

we can observe as far as our problem is concerned.

They have special importance the fuzzy algebras generated by fuzzy

partitions. We say that a fuzzy partition P generates a fuzzy algebra

A(P) if A(P) is the intersection of all fuzzy algebras that contain P.

A(P) is the smallest fuzzy algebra of P(S) containing P.

3.3. We define a fuzzy partition P with respect to the level X

(X-fuzzy partition) as a collection of fuzzy sets P. satisfying the

following axioms:

(FP 1) P1 i 0, for all Pi e P.

(FP 2) For each x e S either there exist a unique P. such that

P^x) >Xor 0<max {P1(x);P1 e ?} < x.

When P is finite and satisfies (FP 1) and (FP 2) we say that P is

a finite fuzzy partition.

Let P = {P-|,...,Pn} be a finite fuzzy partition. We consider

Pj ={x eS;P..(x) >• X} and pj ={x eS;P..(x) =X} for each P. ep,
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and P = {x G S; max P.(x) < X}. Let I = {!,...n} be a set of integers,
l<i<n

For each subset K c I such that k f 0 we define a subset of S in the

following way T„ = n p n n p being Kc the complementary set of K
N iek n jgkc J

with respect to I.

It is immediately verified that:

tHViei u <Vkci u W
W

is a classical partition of S. We say that Q is the classical partition

induced by the fuzzy partition P in S.

3.4. We modelize also a fuzzy environment in the real line by

defining the concept of Borel's fuzzy algebra as the fuzzy algebra B

generated by the fuzzy intervals together with the fuzzy set X. We

consider a fuzzy interval as the generalization of the notion of clas

sical interval obtained by admitting for the characteristic function

all possible values between 0 and 1 except what corresponds to the

symmetry level of the negation.

3.5. So, let <a,b> be an interval on the real line (<a,b> stands

for either [a,b], (a,b],... or (a,«) ). A fuzzy interval I b> is

a fuzzy set on the real line such that: (i) If <a,b> = (a,b), then

I(a>b)(x) <Xwhen x <a or x >b and 1/ bx(x) >Xwhen a <x <b.

(ii) Similar definitions are given in other cases.

3.6. At this stage we can define such special real functions I

told you at the beginning and that we call variables on the universe S

relative to a fuzzy algebra A (its fuzzy environment) as functions

[0X: S -^IR such that X'1 : P( IR) + P(S) satisfies X'^I) = IJGA for
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all fuzzy intervals I e B. That is we define them by the ordinary

calculus of inverse images analogous to what is usually done by measur

able functions but according to the theory of Zadeh. With adequate

resort to the nearest crisp we proved that the ordinary arithmetical

operations with such variables are still variables of the same kind.

Obviously, when everything is limited to P(S) (the set of crisp subsets

of S) we obtain that our variables are ordinary random variables relative

to boolean algebra of subsets of S.

The main point of our ISMVL-80 paper was that we managed to charac

terize such functions when the fuzzy algebras were generated by a finite

fuzzy partition. The characterization theorem is the following one:

3.7. A function X : S ->• IR is a variable relative to A(P) if and

only if

X= L V*o

where X. are real numbers and Q = {Q.} is the classical partition

induced by P in S.

That is X is a variable relative to A(P) if and only if X is con

stant in each set of Q, in other words the unique variables with respect

to fuzzy algebras generated by finite fuzzy partitions are the random

variables with respect to a boolean algebra generated by the classical

partition induced by the fuzzy partition P previously considered.

Now our interest has been driven to manage to describe such func

tions (such variables) by means of certain parameters. In this sense

goes the results I am going to present now.

4. We need, first of all, a measure to evaluate the fuzzy events
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of our fuzzy environment. We give it by the following definition:

An evaluation of possibility m defined in a fuzzy algebra A is a

function M : A -*]R such that:

(EP 1) If A,B G A, A c B then m(A) < m(B).

(EP 2) If An t A, An G A for all n and A G A then lim m(A )= m(A).
° " «_^~> n

(EP 3) BG WA(A), then m(B) =• m(A)

An evaluation of possibility is called 8-additive if

(EP 4) There exists an operation 0 : IR+ x ]R+ -»• ]R+ such that, for

any pair A, B G A of incompatible elements (A n B c x), satisfies

m(A UB) = 6(m(A),m(B)).

If 6-additivity is satisfied, it is not difficult to prove that 0

should be associative, commulative, non-decreasing, with null element

m(<j>) and 0 >_ max.

I would like to say that:

- Probabilities are evaluations of possibility 8-additive with

respect to 0 = +.

- Fuzzy measures of M. Sugeno introduced in: "Theory of fuzzy

integrals and its applications," Ph.D. Thesis, Tokyo Institute of Tech

nology, Tokyo, 1974, or evaluations of possibility and fuzzy additivity

is particular case of 0-additivity (0=V).

-Possibility measures of L. A. Zadeh introduced in, "Fuzzy sets as

a basis for a theory of possibility," Fuzzy Sets and Systems, 1, 3-28

(1977) and used later by H. T. Nguyen in "On conditional possibility

distributions," Fuzzy Sets and Systems, 1, 299-309 (1978) are evaluations

of possibility Max-additive.

- Scales of Nahmias defined in- "Fuzzy variables," Fuzzy Sets and
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Systems, 1, 97-110 (1978) are evaluations of possibility Max-additive.

5. Now, let m be an evaluation of possibility defined in a fuzzy

algebra A(P) generated by a fuzzy partition P. Then, to each variable

X relative to the fuzzy environment A(P) a real number can be assigned

by the following definition:

We call Confidence C(X) of a variable X to the real number given

by

C(X) = 0 .*X.
i=l 1 n

being a.. =m^.), Q. GQwhere Qis the classical partition induced by

Pin S, X^ the value of Xin each Q. and * any isotone operation in 1R+
such that x * y = 0 if and only if x = 0 or y = 0.

When X is a random variable, m a probability, 0 = Z and * = •,'

c(x) is the mathematical expectation of X.

With the only restriction of considering variables with only posi

tive values, such parameter c(x) comes to be a 0-* entropy in the

sense of DeLuca-Termini (of those that Prof. Trillas has just mentioned)

as you can see in the following theorem:

Let m be an evaluation of possibility defined in a fuzzy algebra

A(P) generated by a finite fuzzy partition P and X a variable relative

to A(P) such that X(x) G]R+ for any x GS. Then, the confidence c(x) of

X is a 0-*-entropy in the sense of DeLuca-Termini depending on X.

Proof. Let X.. be the value that X takes in Q. G Q (Q is the classical

partition induced by P in S), and T : Q •* [0,1] one of the fuzzy sets

that can be defined on the set Q satisfying the following conditions:
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(Tl) T(Q..) = 0 if and only if X.. = 0.

(T2) T(Q.) = 1/2 if and only if X. maximum. .

(T3) 0<T(Q.) <T(Qj) <1/2 or 1/2 <T(Q..) <T(Q.) <1if and

only if X. < X..

(T4) 1(Q.) =KQj) if and only if X. = X...

Let RanT be the image set of T. RanT is a subset of [0,1] such

that XG RanT and it contains either 0 or 1 if and only if there exist

Q. G Q such that X. =0. Obviously T is well defined because of (T4).

In RanT we define a function <J> : RanT -»-]R by (|>(r.) = X., being

r.j =T(Q^) and X^ the value of Xin Q.. Such <}> satisfies:

(i) <j)(r) = 0 if and only if r G {0,1}.

(ii) 4>(r) is maximum if and only if r = 1/2.

(iii) If r < r' < 1/2 then (|>(r) < <J>(r'). If 1/2 < r < r' then

(j>(r) < <j>(r').

Let $ : [0,1] -*IR be an extension of <J> to the whole interval [0,1]

according to the following rules:

1. If 0 £ RanT, then $(0) = 0.

If 1 £ RanT, then $(1) = 1

2. If r £ RanT, 0 < r < 1/2, let us consider r', r" G RanT with

r" < r < r" such that between r' and r" there are no other points of

RanT . Then we define $(r') <$(r) <$(r"). In the same way if

1/2 < r < 1 we define <j>(r') >$(r) >$(r")

3. If r G RanT, we define $(r) = <f>(r).

These are the proper rules for properties (i), (ii) and (iii) to be
n

preserved, so $ is an N-function and c(x) = 0 a. * X.
i=l 1 1

n

0 a. * <f>(T(Q.)) = 0 a. * 4>(T(Q.)) = D(T) which means (according
i=l 1 1 i=l n n
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to what Professor Trillas has just explained) that c(x) is a 0-* entropy

of the fuzzy set T.

Of course there are many functions satisfying the conditions required

to T. Even if we fix Tthere are many $, but in that case there is only
one <j>.

In the random case the previous theorem says that if X : S IR+ is

a random variable (with only positive values) then the mathematical

expectation of X is a 8-*-entropy in the sense of DeLuca-Termini.

6. Of course, variables such as X are not completely described by

c(x). It is an opened problem to find new parameters which bring more

information about variables themselves. We are thinking that energy

measures described by A. DeLuca and S. Termini in their paper entitled,

"Entropy and energy measures of a fuzzy set" (already quoted by Professor

Trillas) can be a possible tool but this work remains still uncompleted.

I ask you for suggestions, comments and criticisms on the whole work and

particularly on this point. Thank you very much.
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MEASUREMENT OF PROPERTIES ON FUZZY SETS

AND POSSIBILITY DISTRIBUTIONS

by

Ronald R. Yager
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Machine Intelligence Institute
New Rochelle, New York 10801

INTRODUCTION

In [1] Zadeh introduced the concept of a fuzzy subset as a

generalization of the idea of a subset. The main distinction being that

an element can belong to a fuzzy subset with a partial degree of member

ship, any number in the unit interval as opposed to the situation for sets

where the membership grades are selected from the set {0,1}.

Subsequent to the introduction of this new idea many different

applications and corresponding interpretations of the idea of membership

have been introduced.

One can use fuzzy sets to represent concepts, i.e., linguistic

values. In this application we represent a concept by a fuzzy subset over

some set of elements in which the membership grade can be interpreted as

the degree to which a particular element satisfies the concept. More

specifically the membership grade can be seen to be the truth of the

assertion that the element has the property of the fuzzy set we are

defining. In this application a matter of concern relates to the question

of how well we distinguish between elements having the property and those

not having the property.

Alternatively this can be seen as a question of the degree to which

the concept is a binary or crisp concept. The converse of this idea is

the degree of fuzziness of the concept. It is related to the satisfaction
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of the law of the excluded middle. A property which is fuzzy leads to

complications in problems involving the determination of how many elements

have the property, the cardinality of the set. The measure of fuzziness

effects the degree to which you can confidently measure the cardinality

of a set.

In [2] Zadeh introduced the idea of a possibility distribution

derived from a fuzzy set via the possibility assignment equation.

In particular let V be a variable taking values in the set X and let

A be a linguistic value represented as a fuzzy subset of X.

A proposition p is a statement of the form

P: V = A

The possibility assignment equation associated with the variable V

a possibility distribution IL, such that

nv :X+ [0,1]

in which

nv(x) = A(x),

with the understanding that Hv(x) is the possibility that the value of V

is x under the knowledge that V = A.

The possibility distribution is a reflection of the uncertainty

associated with the variable.

In discussing possibility distributions a matter of interest involves

the degree to which the possibility distribution points to one element

of the set X as .being the manifestation of the variable V. This is an

indication of the specificity of the distribution. This idea measures

the information contained in the possibility distribution. It appears
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to be the analog in possibility theory of Shannon's concept of entropy

for probability distributions.

On a Measure of Specificity

Let X be a finite set of elements and let n be a possibility

distribution associated with this set, i.e.,

II: X -* [0,1] .

We shall here introduce a measure of specificity associated with

this possibility distribution which can be taken in many regards as

an analog to Shannons concept of entropy associated with probability

distributions. Further details in regard to this new concept can be

found in [3].

Let

IL = {x|n(x) > a, x G n}

that is n is the set of elements having membership of at least a, let

card na be the number of elements in n , finally let a max be the

highest value of possibility associated with the possibility distribution

function n,then the specificity associated with this distribution is

defined to be

s(n,x) =

ar max -J

Card n da
a
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Example: Let X = {X1,X2,X3,X4,X5} and let n be defined as

n(x<[) =.3, n(x2 = .7, n(x3) = .8, n(x4) = 1, n(xg) =1. Then

0 <a < .3 na = {x1,x2,x3,x4,x5}

3 <_ a < .7 na ={x2,x3,x4,Xg}

7 <a < .8 Ha = {x3,x4,x5}

8 < a < 1 n = {x,,xc}
a LA4,A5

S(n,a) =
rl 1

Rand a a

cardn = 5
CJfc

cardn = 4
a

cardn = 3

cardn = 2
ex

=(j)(.3) +(J)(.4) * (!)(.!) +(1)(.2) =.294

The following properties are satisfied by this measure

1. For all n

S(II,X) G [0,1]

2. S(n,X) = 0 iff n(x) = 0 for all x G X

3. S(n,X) = 1 iff 3 x G X such that

n(x) = 1 andn(y) = 0 for all y f X.

4. If n, and n2 are two possibility distributions defined over X

such that

1) 3 x1 G Xsuch that n^) =1

2) 3 x2 GZ such that n2(x2) = 1

3) n^x) <n2(x) for all x GX

then

s(nrx) >s(n2,x)
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Psuedo Metrics From Co-Norms

Definition: A t-norm T is a mapping

T : [0,1] x [0,1]* [0,1]

s.t.

1. T(0,0) = 0

T(a,l) = a

2. T(a,b) = T(b,a)

3. T(a,b) < T(c,d) for c > a and d >^ b

4. T(a,T(b,c)) = T(T(a,b),C)

A t-conorm S is a mapping from [0,1] x [0,1] into [0,1] which satisfies

conditions 2, 3 and 4 of the above and in addition satisfies

V. S(l,l) = 1

S(o,a) = a

The idea of these norms was introduced into the theory of fuzzy sets by

DuBois and Prade [4], Klement [5] and Alsina, Trillas and Valverde [6],

Definition: Assume F is.the class of all fuzzy subsets of the set X, we

define a family of mappings

Gs : F- [0,1]

such that for each A G F

Gs(A) - S [A(x)]
xGX

where S is a t-conorm.

Definition: Again assuming F is the family of all fuzzy subsets of X we

define the mapping DS: FxF+ [0,1]

such that for each A, B G F

Ds(A,B) = |Gs(A)-Gs(B)|.
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Theorem: Ds is psuedo metric, i.e.

Ds(A,A) = 0

Ds(A,B) > 0

Ds(A,B) = Ds(B,A)

Ds(A,C) < D(A,B) + Ds(B,C)

Note: Ds(A,0) = Gs(B)

In Ref. [7] Yager has introduced a family of t norms and associated

t-conorms, these are

Tp(x,y) =1 - Minn.UCl-xjP+O-yjP)1^]

Sp(x,y) =Mind^xP+yP)1^).

Conormed Based Measures of Fuzziness

In [8] Yager has suggested that the idea of fuzziness associated

with a fuzzy set can be related to the distance between the intersection

of a set A and its negation A, i.e. A(x) = 1 - A(x), and the null set.

Since the t-norm provides a general class of intersection operations and

the family Ds provides a general family of psuedo metrics this suggests

a potential family of measure of fuzziness as

Fr c(A) = Ds(ADA,$) = Gs(A n A)i .a T T

• S [T(A(x),l-A(x))].
xGZ

A prototypical example of this family occurs when S = max and

T = min in this case

FA (A) = Max Min[A(x),(l-A(x))].
xGX
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Note for all T, S and A

FT,S 7<A> =FT,S <*>

In Ref. [9] DeLuca and Termini suggest an axiomatic definition for

any measure of fuzziness. Assume F is a measure of fuzziness and A is

a fuzzy subset of X then they suggest that

1. F(A) = 0 iff A is crisp, i.e. for all x G X-

A(x) G {0,1}.

2. If A and B are two fuzzy subsets of X such that

when A(x) > 1/2 then A(x) < B(x)

when A(x) < 1/2 then A(x) > B(x)

i.e. B is crisper than A,

then

F(A) > F(B).

3. If B is the fuzzy subset of X defined by B(x) = 1/2 for all

x G X then

F(B) > F(A).

It is our purpose here to investigate which of the members of our

conjectured family FT $ satisfy the DeLuca-Termini conditions.

Before preceeding we must make some definitions and observations

about T norms.

Definition: A T norm is said to be nil potent if there exists some n

such that T(al,a2,...,an) =0 for a1 G(0,1).

Note: If T is non-nilpotent then T(a,(l-a)) f 0 for a€ (0,1).

Definition: A t-norm T is said to be regular under complement for

any a,b G I
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a a (l-a) > b v (i-b) **T(a,(l-a)) > T(b,(l-b)).

Theorem

For all S and any nonnilpotent T, TT -(A) =0 iff A is crips.
Proof: 1. If A is crisp then for any T,

T(A(x),l-A(x)) = 0 for all x G X and hence

S [0] = 0
x€Z

2. If A is non-crisp there exists some x G X such that A(x),

1 - A(x) G (0,1). For non-nilpotent T-norms T (A(x),(l-A(x))) = B(x) > 0.

Since for all conorms S, S (B(x)) = 0 iff B(x) = 0 for all x our theorem
xGX

is proved.

For the second of the DeLuca-Termini conditions we see the following

theorem applies.

Theorem

Assume T is a t-norm which is regular under complement then FT -

satisfies Termini and DeLuca's second condition for all S.

Proof: Let A and B be two fuzzy subsets such that when A(x) >_ 1/2 then

B(x) >_ A(x) and when A(x) _ 1/2 then B(x) _ A(x). Under this condition

A(x) a (l-A(x)) > B(x)(l-B(x))

for all x G X. If T is regular under complement then T(A(x), (l-A(x))

>T(B(x),(l-B(x)) for all xGX. From the monotonicity property of S it

follows that Fy $(A) > FT $(B).

The satisfaction of the third condition of DeLuca and Termini is

more complicated. We first prove a theorem for a weaker versionof this

third condition.

-28-



Theorem

If B is the fuzzy subset of X defined by B(x) = 1/2 for all x G X

and if T is regular under complement than for all S and A G F

FT,S(B>1FT,S(A>-

Proof: For all x G x, (1/2,1/2) > A(x) a (l-a(x)), hence

T(B(x),(l-B(x))) > T(A(x),(l-A(x)))

for all x and the result follows from the monotinicity of S.

A thoerem showing some conditions under which the strong version of

the DeLuca Termini conditions hold has been proven by Yager in [10].

We here state the theorem without proof.

Theorem

Assume X is finite set of n elements and A and B are two fuzzy sub

sets of X such that A(x) = 1/2 for all x G X and B t A. Let T be the

product norm, a.b. Then FT <. (A) > FT <. (B) for any Sp in Yager's
' p ' p

family such that
log-

(1) if n >4 then pG[-^ n,«]

(2) if n < 4 then p G [!,«].
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THE FORMALIZATION OF VAGUENESS:

SOME (EPISTEMO) LOGICAL PROBLEMS*

by

Settimo Termini

Istituto de Cibernetica del C.N.R., ARCO FELICE
Napoli, Italy

1. Introduction

The problem of the formalization of vague concepts has attracted

more and more people in recent years and has also become - rightly in

my opinion - one of the standard topics of this series of Symposia on

Multiple-Valued Logics. This, in fact, is related to a general trend

to a strong and vigorous increase of new ideas, theories and debates in

many disciplinary subjects. This trend, in subjects near the ones in

which we are interested, is both cause and effect of a renewal of

interests in such things as the philosophical import and the possible

applications of many-valued logics, the problem of imprecision in

science, the possible and provided by the techniques of modern formal

logic to some problems of the empirical sciences, and so on.

For the topics which we are concerned with, the catalyst of all

this has been - as it is well known to all of us - Lotfi Zadeh, and we

all owe very much to him not only for his pioneering works but also for

his constant activity aimed at the defence and diffusion of these ideas.

His merit, however, is not limited to this. It rests also in the fact

Abstract of the talk given at the Invited Session on "Measures of
Deviance in Non Classical Logics," organized and chaired by Teresa
Riera at the 11th Symposium on Multiple-Valued Logics - Oklahoma City,
Oklahoma (U.S.A.), May 27-29, 1981.
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that as a by-product of the debate caused by the spread of these new

questions, we all have been obliged to look back and rediscover a huge

number of problems already present in our scientific and cultural tradi

tion, and look at them from a new point of view and with the hope of

being able to deal with them in a unified manner. From this perspective

the role played by Zadeh's work is similar to that played by Kuhn's, The

Structure of Scientific Revolutions, in birth of what Brown [1] calls

the "new philosophy of science."

Kuhn presented the epistemological thesis on the development of

scientific theories elaborated in The Structure of Scientific Revolutions

as the result of his personal experience and specific work as a historian

of science. The professional epistemologists observed that in order to

appreciate fully the conceptions outlined there, besides comparing them

with Popper's theories, one had to remember what, for instance, Hanson,

Agassi, Wartofsky had already stressed; and before them Collingwood in

his Essay on Metaphysics.

This new trend had been primarily brought about by some new ques

tions in the history of science, the answers to which - though being of

direct interest to this discipline - involved also an assessment of many

old problems. These, in turn, needed for their clarification other tools

and work already done in the epistemology, and philosophy of science,

and in the history of the philosophy of science.

What Gaines has celled the exponential growth in the interest in

the theory of fuzzy sets is, I think, very similar to all this. After

more than five years of exponential growth in this field some epistemolo

gical reflections are needed if we are to 11ok carefully and critically
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at the paths that we can follow.

The main reason why I spoke at the beginning of "the problem of the

formalization of vague concepts" and not of "the theory of fuzzy sets"

tout court is just based on my conviction that this theory acted also

as a pointer towards a lot of already existing problems, theories and

trends of research.. It is now that we ought to try to look at them from

a general perspective aiming at focussing and individuating some unifying

points.

A general epistemological discussion on the problem of the presence

of vagueness and imprecision in science and of the most fruitful ways of

dealing with it involves, of course, also a re-examination of the founda

tions of the theory of fuzzy sets intended as a specific methematical

theory, a need which has recently been stressed also by Goe Goguen [2].

This is, in my opinion, a positive fact. The raising of foundational

and conceptual questions witnesses, in fact, strong vitality - the more

so if the questions which are raised point to new trends that are pre

sent in contemporary philosophy of science.

What I shall do in the present talk is to argue - in a very brief

manner - in favor of the thesis according to which:

any theory of vagueness, in order to make fully explicit its pro

blems and potentialities, has to develop a dialogue with classical

sciences.

This dialogue, however, is hampered by the claim that the real world

is fuzzy, usually considered as one of the strongest justifications for

the theory of fuzzy sets and shared also by some of the people working

on the philosophical aspects of vaguesness (see, for instance, [3]).
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In the following I shall briefly outline an epistemological view

of vagueness that indicates how to found the theory of fuzzy sets with

out use of this ontological assumption (Section 2) and shall then out

line the role of the measures of fuzziness in this setting (Section 3).

2. Vagueness, Fuzziness and Ontological Assumptions

A preliminary clarificationof the terms used in the title of the

paper (or, at least, of the way in which those terms are used there) can

perhaps help in understanding better the aims of the talk.

First of all, the term "vagueness" is used in the philosophical

sense given to it by Russel and Black and not in the ordinary languages

sense. It is then very similar to Zadeh's use of the general term

"fuzziness," in that it is distinct from ambivalence and lack of speci

ficity. There is, however, one reason why I think that the term "vague

ness" has to be preferred at an informal level. The reason is that it

is useful to have two distinct terms for indicating the explicandum and

the explicatum of a given notion. Now, linguistically, the term "fuzzi

ness" is too much related to the explicatum provided by the theory of

fuzzy sets to be a neutral candidate for denoting the explicandum. The

term "vagueness" presents also some disadvantages, for instance, its

pejorative use in colloquial discourse. What I see in favor of its use

is, however, apart from the lack of other available terms, its' specific

and technical use in philosophy which corresponds exactly to what we

have in mind and need in this context.

Secondly, the word "(epistemo) logical" is used in order to point

out and stress that, by dealing with the problem of vagueness and the

ways of treating it with the rigour that is now customary in modern
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science, one is forced to take into consideration both logical (techni

cal , formal, absolute, context free) and epistemological (conceptual,

relative, context-dependent) aspects. This is, in my view, a very

interesting and innovative circumstance especially as compared to such

sterile attitudes towards science such as divisions into watertight'

compartments. Let me add, incidentally, that this is more positive the

more one locally uses (and takes account of) the rigorous results and

the methodological rigor of modern formal sciences.

As I have already said, a formal approach to vagueness can manifest

all the potential richness and eepth only by means of and through a dia

logue and comparison with the other sciences.

We have to acknowledge that a dialogue of this kind between classical

theories and the theory of fuzzy sets has not been fully developed. In

my opinion this dialogue has been hindered by the development of an onto

logical view that is radically different from the basic (naive) ontology

of classical science. According to this view, widely shared in the fuzzy

sets community, a good and solid foundation for the theory of fuzzy sets

could be obtained only by admitting that vagueness is ij! the world -

namely that it is the real world that is actually vague and fuzzy. It

is obvious that this thesis provides an immediate foundation and justifi

cation for the theory of fuzzy sets.

However, once we take this thesis seriously (as we should) it can

be seen to be not at all as innocent as it first seemed. It is only at

a first level of approximation that it provides us with an easy founda

tion for the theory of fuzzy sets. If we take it seriously we are left

with a lot of difficult additional problems intertwined with our theory,
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since the assumption that vagueness is in the world - which can be

described as an essentialistic attitude - involves a deep and drastic

change in perspective in our way of looking at the world forcing us to

enrich it with a host of attributes (precision, imprecision, crispness,

fuzziness) usually considered as pertaining to the realm of language

and description.

On the other hand, if we succeed in showing that the role of the

theory of fuzzy sets or of other formal theories of vagueness can be

defended without the help of presuppositions different from the ones of

"classical" science, then we are much more free to defend the actual

results of these theories for what they are. Moreover, this perspective

can also help us to appreciate more properly, and even to discover, the

innovative points that have arisen and developed outside the classical

approaches.

What I propose then is to interpret and develop all the theory of

fuzzy sets - and, for what is of interest here, also any other theory

of fuzziness and vagueness - without making any ontological committment

regarding the existence of fuzzy entities.

Incidentally, I think that the notion of a real world that is essen

tially fuzzy and vague (as well as the one that the world is precise)

come out from the (oldfashioned) idea that what science (or, in general,

human knowledge) does is to represent reality as it is. (See what D.

Bohm has written in this respect, for instance in [4]).

This point certainly deserves a more detailed treatment, both in

itself and with respect to the following point. However it is impossible

to go into this deeply here.
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In my view the really interesting feature of present attempts at

the formalizationof vagueness is that they - implicitly - break this

representational tradition and present the challenging issue of provid

ing rules for a correct functioning and handling of a certain language

and theory in new domains (in which their validity begins to become

unclear). The challenge is that to behave in that way can be more

rational than trying to construct a model aiming primarily at represent

ing correctly the "permanent" things in a considered piece of.reality.

What can, in fact, happen in this last case is that giving a priority

to "following the rules" for a correct representation one loses sightof

the meaningful features of the particular piece of reality considered,

so that the model comes out actually uncorrelated with these meaningful

features. All that leads then to revising, the notion of model; and

first, therefore, to clarifying what a classical model is. This will be

briefly outlined in the following section. In the remaining part of

this section we shall clarify a little our thesis of "vagueness without

ontological assumptions."

As a matter of fact, one can give a correct and satisfactory charac

terization of vagueness, independent from ontological assumptions,

starting from reflections concerning language. Intuitively, one says

that a predicate of a language L is vague if it is not possible to deter

mine precisely its extension (i.e., a set, in the classical sense).

Thus, "vague" is a (vague!) predicate whose extension is in turn a set

of predicates, trying to capture a central feature of their relation to

the domain of the intended model. This position, which stresses the

epistemological aspects of vagueness, dates back essentially to the

classical 1923 paper by Russell.
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According to this epistemological view, the notions of vagueness

(and of precision) capture a feature of the relation between a predicate

and a domain of application, or of a notion and the context in which it

is used. Therefore, there are no inherently inexact, fuzzy or vague

notions (and equally, there are no inherently exact or precise notions).

A predicate that is vague if applied to a certain domain might have a

very precise application, with no doubtful cases, in another domain.

This means also, of course, that predicates with a precise extension

within a given domain - even those embodying numerical parameters - can

be used vaguely. But this is not especially strange; it is what was

done, for instance, during the initial stages of development of new

theories of the physical world. In these stages the normal practice

of the scientists is that practice strongly characterized by J. L. Synge

[5] as. the "cuckoo process:" the embryo of the new theory is inserted

into the body of the previous theory borrowing from the latter in an

undogmatic way whichever notions can be useful. This process is likely

to create discrepancies (and then vagueness), which subsequently the

scientist tries to locate and then eliminate. In both scientific

practice and that of daily life what is really found is then both fuzzy

According to the view expressed by Lakatos in his Proofs and Refutations,
this is true not only of empirical sciences but also of mathematics.

2
Let me observe that the previous point is strictly related to one of the
most debated topics of contemporary philosophy of science, namely, "the
commensurability of theories" and "the dynamics of science." I shall not
enter into this tangle of difficult problems. However I wish to note that
a discussion on the presence of vagueness in science acquires its full
significance only in the setting of a dynamic view of science. Conversely
the problems of philosophy of science previously mentioned cannot but bene
fit by having at their disposal detailed conceptual analysis of vague con
cepts and the elaboration of formal instruments for dealing with them.
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and precise uses of the same notions, depending on the domains in which

we utilize them. In this perspective then the distinction precise/

imprecise becomes a fluctuating one.

It is true that classically one tends to eliminate all eliminable

vagueness; but this is a policy worth following also according to the

new perspective proposed by the theory of fuzzy sets: the difference

with the classical attitude being only (but it is an "only" that makes

a difference) that we wish to have appropriate tools for dealing with

vagueness when this is not eliminable in a certain specific situation.

(And it is not important that in principle it could be, or, in the future,

it actually will be eliminated).

From this perspective the distinction between the classical and

fuzzy approaches is not that the first refers to a precise stuff while

the second to a fuzzy stuff; indeed our ontological opinion towards the

worlds simply have no relevance on the issue in question.

The difference lies in the attitude of the two approaches towards

the possibility of elaborating meaningful instruments to treat the

vagueness present in the theory, and towards the relevance of these

tools for identifying and solving the central problems of the given

theory - in all those cases in which as a matter of fact a certain

vagueness is present.

3. A Role for the Theories of Measures of Fuzziness

One could rightly ask what is the relevanceof all this to the speci

fic topic of this Special Session. My point of view is the following

one.

The stated program of reinterpreting all the results of the theory
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of fuzzy sets without making any ontological assumption implicitly requires

that when we tackle a certain problem through a fuzzy approach we have

already tried to eliminate all eliminable vagueness. The fuzziness that

we are concerned with is then really that bare unavoidable minimum which

comes out either from the incompleteness of our informationand our know

ledge of the subject or system under consideration or from the imperfect

fit (discrepancy) of the (conceptual or mathematical) tools that are

used and the domain in which they are used.

It seems natural then to ask how much vagueness remains in the

model; and that is what a theory of measures of fuzziness is designed to

answer.

Let us call classical a situation in which a complete information

is, at least in principle, obtainable with respect to the parameters

chosen asmeaningful in the theory and expressed in the language deter

mined by the tools used to construct the model.

Asking to know how much residual fuzziness is in the fuzzy model

corresponds explicitly to asking how distant our model is from a classical

one. The classical model, in this context, then remains (and must remain)

as an ideal at which we aim; and in all cases in which we cannot achieve

it we have to measure how distant from it we are.

Theories of measures of fuzziness would then represent a bridge for

passing from fuzzy theories to classical theories or at least for relating

them; moreover they are an active basis for the coexistence of both kinds

of thoeries.

Of course, for the previous thesis on the role assigned to the

measures of fuzziness tohave more than exhortatory value it must be
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articulated better and preliminarily, it will need to rely on a more

detailed analysis of the notion of the classical.

I shall not (and could not for reasons of brevity) provide this

here. However besides stressing the importance that an analysis and a

clearcut definition of the classical would have in the setting of an

epistemological view of vagueness, I which to call the attention to one

more point.

The theory of measures of fuzziness - as presented above in the

setting of an epistemological view of vagueness - is charged with two

burdens. First it has to show to measure the fuzziness present in the

model. Secondly it has to measure how much the model departs from a

classical one.

In a good theory of the measures of fuzziness these two quantities

should turn out to be the same.

Let me observe that this demand is less innocent than it seems; I

attribute to it a noteworthy importance since it does not usually hold

in the current interpretations of the notions of vague and classical.

For instance a stochastic model is considered classical with respect to

the role of its defining parameters, but vagueness remains.

Conversely a model of quantum theory would be structurally non-clas

sical without presenting, according to rhe usual interpretation, any

vagueness.

I find particularly interesting and challenging our being naturally

led to consider the "degree of non-classicity" of a model and the quan

tity of fuzziness or inexactness that it contains as two (interchangeable)

aspects of one and the same problem. And it is noteworthy that this
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comes out just in an approach, like the one outlined above, that gives

full citizenship to vagueness at each stage of the of the process of

constructing and developing a model but asbstains from making any onto

logical assumption about (the nature of) the vagueness which is present.

Both traditionally and in a fuzzy approach rroted in an essentialis-

tic attitude we would regard the two previous problems as different.

The theory of measures of fuzziness would (and could) then be just

a formal tool allowing a not purely qualitative development of the epis

temological thesis of vagueness: it could then strengthen the project

of precipitating a confrontation and comparison with some classical

sciences.

But are there really in the recent developments of some of these

sciences elements that justify provoking such a confrontation? One

could generally refer to all the epistemological problems raised by

microphysics and quantum theory, but there exist moreover two specific

examples which I want to mention. One is borrowed from the theory of

automata and is due to von Neumann; the other is from the foundations of

physics and is due to Wheeler. In my view they show a particularly strong

relationship with the topic of measures of fuzziness.

Wheeler's program tries to work out a basic theory from which to

derive the actual properties and manifestations of space-time. His main

idea is that the geometry of space-time (as we can know it at a physical

level) has to come out of an underlying structure (a "pregeometry"),

which cannot itself be modelled by means of geometrical intuitions and

extrapolations.

But if we want to go beyond the notions of space and time there is
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very little left that we cna use for our purpose. So it is very diffi

cult to answer the question asked by Wheeler, "Out of what 'pregeometry'

are the geometry of space and space-time are built?" [6].

The little left to which one could refer is elementary logic (in

particular the calculus of propositions). And, in fact, the first pro

posal based on these concepts is ecpressed by Wheeler in the following

terms: "make a statistical analysis of the calculus of propositions in

the limit where the number of propositions is great and most of them are

long. Ask if parameters force themselves on one's attention in this

analysis, 1) analogous in some small measure to the temperature and

entropy of statistical mechanics, but 2) so much more numerous and

dynamic in character that they reproduce the continuum of everyday

physics." However Wheeler disconsolately ends by saying that "a later

analysis found nothing in mathematical logic supportive of this proposal."

The other example to which I want to draw your attention is von

Neumann's attempt to construct a "logic of automata." Let me quote the

following passages:

"Everybody who has worked in formal logic will confirm that it is

one of the technically most refractory parts of mathematics. The reason

for this is that it deals with rigid all-or-none concepts and has very

little contact with the continuous concept of the real of of the complex

number, that is with mathematical analysis." "(In the theory of automata)

the operations of logic will have to be treated by procedures which allow

exceptions (malfunctions) with low but non-zero probabilities. All of

this will lead to theories which are much less rigidly of an all-or-none

nature than past and present formal logic. They will be of a much less
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combinatorial and much more analytical character."

"This new system of formal logic will move closer to another dis

cipline which has been little linked in the past with logic. This is

thermodynamics, primarily in the form it was received from Boltzmann,

and it is that part of theoretical physica which comes nearest in some

of its aspects to manipulating and measuring information" [7].

Let me stress that what von Neumann says in the first quotation is

very similar to what Wheeler regrets and the second quotation outlines

what Wheeler would have been very glad to find already developed; the

difference being, mainly, that von Neumann seems more optimistic about

the feasibility of this project.

Let me stress finally that both the previous programs aim at some

thing that is conceptually strictly related to the underlying core of

the theory of fuzzy sets and, specifically, to what a fullfledged and

fully developed theory of the measures of fuzziness would do.

It is then natural to presume that an understanding of the problems

in the above fields can help in developing this last theory in the most

promising directions. In the same way one can naturally presume that

new formal developments in the theory of measures of fuzziness could be

of the greatest use in a reanalysis of Wheeler's and von Neumann's

approaches, which have been abandoned (partly) also of the lack of

suitable formal instruments.

In conclusion, a program that aims at the construction of a quanti

tative calculus for dealing with situations of incomplete description and

information is both epistemologically rooted in the best classical tradi

tion and potentially useful for the actual problems of the hard sciences.
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What both Wheeler and von Neumann are searching for respectively in

the further development of physics and the toeory of automata is in my

view very similar to some of the things that the theory of fuzzy sets

is searching for and trying to develop, in that all are trying to con

struct something that takes as a starting point situations of incomplete

knowledge.

The demand for the kind of tools that the fuzzy community wants to

develop is then very strong also in those sciences that belong to the

classical tradition.

So there are, in principle, objective, favorable conditions for

establishing a fruitful dialogue between "classical" science and these

new approaches. But in order that this dialogue actually begins one has

to create the widest possible common background.

From this perspective, then, it is useful to have no (unnecessary)

estrascientific assumptions that are not shared by both speakers.
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