
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DISTRIBUTING A DATABASE FOR PARALLELISM

by

E. Wong and R.H. Katz

Memorandum No. UCB/ERL M82/86

6 October 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



DISTRIBUTING A DATABASE FOR PARALLELISM

E. Wong and R.H. Katz

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

ABSTRACT

In this paper we treat the problem of subdividing a database and

allocating the fragments to the sites in a distributed database system in

order to maximize non-duplicative parallelism. Our goal is to establish

a conceptual framework for distributing data without being committed to

specific cost models.

We introduce the concept of "local sufficiency" as a measure of

parallelism, and show how certain classes of queries lead naturally to

irredundant partitions of a database that are locally sufficient. For

classes of queries for which no irredundant distribution is locally

sufficient, we offer ways to introduce redundancy in achieving local

sufficiency.

*

University of Wisconsin, Madison, Wisconsin.



1. Introduction

The context in which the problem arises is that of a distributed

database system. By this we mean any system consisting of multiple

autonomous processors communicating through a communication medium and

each accessing a separate fragment of the database, and where the

collection of fragments is to be seen by the user as an integrated whole.

Geographical dispersion is not a necessary ingredient. Replication and,

more generally, redundancy of data among the fragments may be present.

The question we pose is the following: if we are free to subdivide the

database into possibly overlapping fragments, how should we do it?

The objective of the subdivision is efficient performance for both

retrieval and update operations. While it would not be difficult to

express the problem of subdividing a database as one of minimizing a

weighted cost of database usage, doing so is not particularly useful for

several reasons:

(1) Weighting of costs requires knowing the frequenices of usage

for different operations. Such statistics are neither easy to obtain

nor very stable. They are better used in fine tuning than in the basic

structural design.

(2) Similarly, for a specific database operation, an appropriate

cost function is not easily estimated. In particular, how the cost

depends on the partition-p91icy is not likely to be known quantitatively.

(3) Even if precise cost could be computed for each partition,

there would be too many ways of subdividing a database for the problem

of finding the minimum to be tractable.

These considerations suggest that what is needed is a conceptual

framework that captures and makes precise qualitative factors important

-2-



in designing a database partition. The goal is not to find a single

strategy, but to identify classes of strategies with desirable properties

Within each class fine-tuning can then take place. The challenge is to

do as much as one can in the design without having to use quantitative

design data. In this our approach differs significantly from the

existing work on file allocation [CHU 73, MAHO 76] where a quantitative

cost model plays a central role.

2. Local Sufficiency and Minimal Redundancy

Let V denote the database as seen by the user. Neither distribu

tion nor redundancy is visible in 0. Let M. denote the fragment of the

database associated with the i processor. We assume that UM.=P and
i 1

call the collection M={M..} a materialization of P. The problem of

partitioning is to find the "best" materialization.

Let Q denote a class of queries on V, We shall say a materializa

tion M is locally sufficient (relative to Q) [WONG 81] if for every q Q

there exist local queries q. on M. such that

result (q,P) = U result (q.,M.) (2.1)
i

Local sufficiency means that no communication among the processors is

needed to process a query in Q, the only data movement being a final

one to collect the fragments of the result produced at different sites.

Local sufficiency is clearly a desirable property for retrieval

operations. It is in general not attainable without redundancy, and

that imposes a cost on updates. The tension thus created makes the

design problem interesting.

For any two materializations M and M' (of the same V) define a

partial ordering M>M* by

-3-



M> M' <=5> Mi D M! for every i (2.2)

If M>M\ then (2.2) implies

M. HM.. 2MIHM'. for all i, j

Hence, M>M' means that M is at least as redundant as M'.

Let M be a locally sufficient materialization for a given Q. We

say that M is minimally redundant (Q) if for every M' <M, M1 being Q-

locally sufficient implies M, = M. In other words, M being minimally

redundant means there is no locally sufficient materialization that is

less redundant than M.

It is reasonable to assume that a query takes longer to process

if the volume of data is greater. For example, in a relational system

the processing time for a restriction, projection or join is a non-

decreasing function of the cardinalities of the relations involved,

regardless of what storage structures and processing algorithms are

used. Under such an assumption, a minimally redundant M is always better

than one that is not, for any q^Q.

It is perhaps even more reasonable to assume that the cost of an

update is a nondecreasing function of the degree of redundancy, whatever

the underlying implementation. This is so because updating with redun

dancy is tantamount to an update without redundancy plus the enforcement

of an integrity constraint. Such enforcement never comes free. It

follows that in designing a materialization, we can limit our choices

to those that are minimally redundant, whatever the underlying implemen

tation and physical conditions. In so doing, we have succeeded in

extracting from a rather complex design problem an approach for optimiza

tion that is nearly universally applicable becasue it is free from

quantitative assumption.



It is interesting to note that any materialization M that contains

full replicas of the database at two or more sites can never be minimally

redundant, because an irredundant M*, having the entire database at a

single site,is already locally-sufficient for any Q, and clearly M' <M.

We shall take minimal-redundancy as a criterion of goodness in

designing a distributed database. As the example of having all the data

at a single site shows, a minimally redundant materialization

need not have all the desirable characteristics. One that is not,

however, is almost certain to be a bad design. Being entirely qualitative,

the criterion of minimum-redundancy is not sufficient to reduce the

choice to a single design, but it does achieve a drastic reduction in

the number of candidates that need to be considered.

3. A Semantic Model

Minimal redundancy is defined relative to a class of queries Q. How

should Q be chosen? Examples quickly suggest that natural query-classes

are determined by semantics. Therefore, we shall introduce a simple

semantic model, and define retrieval and update operations in terms of

this model.

The model that we choose is a simplified version of the entity-

relationship model [CHEN 76, WONG 79]. An entity is an undefined atomic

object. An entity type is a named collection of entities. A relationship

is a "relation" with entity types as its domains. For example, consider

a "company" database consisting of the following:

entity types: emp, dept, job

relationship: qualified (emp,job)

assign (emp,dept,job)

mgr (dept,emp)

-5-



The participation of an entity type in a relationship may be subject to

one or both of the following constraints:

(a) E is unique in R — Each entity of E can occur at most once

in R.

(b) E is total in R — Each entity of E must occur at least once

in R.

If E is both unique and total in R, then R is a function on E . In such

a case we shall call R an association. For example, suppose that every

employee has a unique assignment of both job and dept,. then the relation

ship assign is an association on emp. On the other hand, suppose

each dept has at most one mgr but some dept's may be temporarily without

one, then dept is unique in mgr(dept,emp) but not total, and mgr is not

an association. We shsll refer to entity types and those relationships

that are not associations collectively as primitive objects. An

attribute is a function mapping a primitive object into a value set,

which is any machine-interpretable data type (e.g., integers, character

strings). For example, the following is a description of the "company"

database in terms of the semantic objects that we have introduced:

Example 3.1 Semantic Schema for the "Company" Database

entity types: emp,dept,job

non-assoc. relationships: qualified (emp,job)

association: emp assig,j,dept,job

attributes: emp ename>c20
age

i2

dept^HtclO

job *!*I^clO
pay

*14

qualified JS^iZ
-6-



Suppose that every entity of each type is assigned a unique non-

updatable identifier that that serves as a surrogate for the entity.

Then, the semantic description of the database can be mapped immediately

into a collection of relations free of any serious update anormalies.

The basic mapping rule can be stated as: "One and only one relation per

primitive object." For example, let eno, dno and jid denote the identi

fiers of emp, dept and job respectively. Then, the mapping rule yields

the following relational schema for the "Company" database:

Exampl3 3.2 Relational Schema of "Company" Database

emp (eno ,ename,age,assign-dno, assign-jid)

*

dept (dno , dname)

job (jid , title, pay)

qualified (eno, jid, year)

mgr (dno, eno)

For a relation representing an entity type, the identifier-domain of that

entity type is indicated by an asterisk and will be called its primary

key. The underscored domains are identifier domains for entity types

represented by some other relations, and they will be referred to as

foreign keys. Thus, for example, eno is the primary key of emp and

assign-dno is a foreign key in emp.

4. Semantic Queries

Assume that the user's view of the distributed database is given

by a relational schema, free of any distribution information and

designed according to the procedure given in Section 3. The question

we address.here is: what are the semantically natural queries?

-7-



We say a relational query is a semantic query if:

(a) it is a one-variable query (i.e., it involves a unary

operation), or

(b) it is an equijoin of two relations on an identifier domain, or

(c) it involves a finite sequence of operations of types (a)

and (b).

The principal restriction that semantic queries must satisfy is that

"joins" can only be "equality on identifier domains" (primary or

foreign keys). For example, the QUEL query

range of e is emp

range of j is job

retrieve (e. ename) where 1000 * e.age > j.salary

is not semantic because the join-condition is neither an equality nor

on an identifier domains. However, if the condition "e.assign-jid = j.jid"

were added to the qualification, the resulting query would be semantic,

since it would then involve an equi-join on the "jid" domain, to be

followed by a restriction on the condition 1000 *e.age >j.salary.

There are at least two reasons to restrict queries used in designing

a distributed database to semantic queries. First, they are more

natural, and hence are likely to be representative of the queries used

in practice. Second, these queries reflect the semantics of the schema

so that the schema can be used to suggest the class of queries to be

used in deciding how the database is to be distributed.

5. Semantically Induced Irredundant Materialization

The problem we face at this point is the following: Given a rela

tional schema designed by using the mapping rules of Section 3, how do

-8-



T will be called a partition-tree of a schema graph G if:

(a) T is a subgraph of G

(b) As an undirected graph, T is a tree.

(c) Each arc in T is directed from son to parent.

For example, the following is a partition-tree of the schema graph of

Example 5.1:

Example 5.2
dept

mgr « «j emp

qualified

Proposition 5.1. A partition of the root-relation in a partition tree

induces a unique partition of every relation in the tree.

Proof: The proposition follows trivially by induction on the depth of

the tree and from the property that R-*S together with a partition of S

induce a unique partition of R. a

For a given schema graph define a partition-forest as a collection

of partition-trees such that each node of the schema-graph appears in

one and only one tree. Partition-forests will be our basis for distri

buting data.

Given a partition-forest F, identify those relations that are roots

of the trees in F. Partition each root, and that induces a partition of

each non-root node in the corresponding tree. Assigning the root

fragments to sites then achieves a perfect subdivision of the database

in which the fragments of subordinate nodes follow the corresponding

-9-



we choose a design set of queries, and for each choice how should the

relations be partitioned?

First, we note that if each relation is subdivided horizontally

then every one-variable query is locally sufficient. It seems reasonable

that in most situations one would want all one-variable queries to be

in the design set. Hence, we assume that each relation is always

subdivided horizontally.

Next, we introduce a graph representation. A relational schema

designed according to the rules of Section 3 can be represented as a

directed graph (called schema-graph) as follows:

(a) The nodes are in one-to-one correspondence with the relations

of the schema.

(b) The arcs are in one-to-one correspondence with the foreign

keys such that, if a foreign key domain in R is the primary key in S then

the arc points from R to S.

Example 5.1 The Schema of Example 3.2 is Represented by the Following

Graph:

mgr qualified

dept

Observe that an arc: R->S represents a function mapping R into S,

and R is partitioned into disjoint subsets by the values of the primary

key of S. Thus, for example emp assign"dn0>dept partitions emp into
subsets each corresponding to a different department. It follows,

therefore, that any partition of S yeields a partition of R via a

function R-*S.

-10-



fragments of the roots. We call such a subdivision an F-induced

subdivision. Our first procedure for designing a distributed database

is simply the following.

(a) Given a schema graph, find a partition-forest F.

(b) Find an F-induced subdivision of the database, and identify it

as the materialization M of the distributed database.

Given an F-induced subdivision M, the class Q of locally sufficient

queries can be determined from F. We shall now present a way of doing

so. Let R be a relation on the schema. An identifier domain in R is

said to be F-supported if it corresponds to an arc in a tree in F. Con

sider the following example based on the schema of Example 5.1:

Example 5.3 Let F be given by;

dept
o

job

emp mgr qualified

The F-supported domain are

dno in emp and dept

eno in mgr and emp

jid in qualified and job

Relations produced by relational-algebraic operation inherit the F-

supported domains. Thus, for example, dno is an F-supported domain of

emp [5>*23 mgr because it is one for emp.

Proposition 5.2. Let F be a partition-forest. Let Q(F) denote the

smallest class of queries such that:

-11-



(a) Q(F) includes all one-variable queries on the base relation

(i.e., the relations specified in the schema).

(b) Q(F) is closed under projection, restriction, and join on an

F-supported domain.

Then, an irredundant materialization M is locally sufficient with res

pect to Q(F) if and only if M is F-induced.

Remark: M, being irredundant, is also minimally redundant with respect

to Q(F).

Proof: First, we prove that an F-induced materialization M(F) is Q(F)

locally sufficient. Let Q denote the subset of Q(F) involving n or

fewer joins, and let K(Qn) denote the set of relations obtained by Q

acting on the database. Every identifier domain D is partitioned by M(F)

into disjoint subsets D. with D. corresponding to site i.

Let R€R(Q ). We shall prove by induction that:

(a) R=UR. where each R. is produced by local operations, and
i

(b) if D is an F-supported domain in R then R.[D.] = <f> for i^j
• j

where [D.] denotes restriction on D-.
j J

First, consider RGR(QQ). Then R must be of the form

R = TTpB

when B is one of the base relations, tt is a projection, and p a restric

tion. B is partitioned by M(F), so that

R= ttP£ B. = ir£ pB.

= U7rpBi

Now, if D is F-supported in R then it must also be F-supported in B and

-12-



B. = B[D1-]. Hence,

R^Dj] =Trp(B[D.])[Dj]
=TrpB[D.nDa.] =*

and properties (a) and (b) are proved for n = 0.

Assume (a) and (b) to be true for n<m9 and consider RER(Qm+])«

R is expressible as

D

R = Trp(AtXB)

D

where |X denotes joint on D, and A and B are in R(Qm) with D as an

R-supported domain. Now,

D D

A[XI B = I A[D ]|X BCD,]
i

and with property (b) we have

D D

A|XB =I VDi] IX8^
D

Since A., and B. are locally generated, so is A.[D.]0*CB.[D.]- There

fore,

D

R=irpj A^D.JtXlB^D.]

D

=UTTpfA^D.lIXB^D.])

and (a) is proved.

For (b) let D. denote an F-supported domain in R. Clearly, D.

must be an F-supported domain in at least one of the pair (A,B). With

no loss of generality assume Di to be supported in A. Then,

-13^



A^Dj] =*
and

R^Dj] =ttp((A.[D«.])[D.] C*l B.[D.])

= 4>

so that (b) is proved. By induction, properties (a) and (b) are true for

all n.

We note that q^Q(F) implies q^Qn for some n and the "if" part of

Proposition 5.2 is proved. Next, we shall prove the "only if" part by

showing that any Q(F)-locally-sufficient M must be F-induced.

Let R be a relation corresponding to any node in F. Then there is

a unique path from R to a root relation R(0).

R = R(n)-*R(n-l) + ... + R(0)

where each link (-»•) corresponds to an F-supported domain. It follows

that the join:

R(n)MRM) ...|X R(0) = J

is in Q(F) and so is tt(J|R), the projection of J on the domains of R=R(n)

Since M is irredundant it must partition R(0). Because M is locally

sufficient with respect to tt(J|R) the fragment of R at site i is obtained

from the ith fragment of R(0) by the operation tt(J|R). This is exactly

how an F-induced materialization was defined. The proof is now complete.
n

6. Update Through Local Operations

The price to be paid for achieving a grater degree of local

sufficiency is increased update complexity. This is true even when the

materialization inovlves no redundancy. Basically, this is because

-14-



local sufficiency for Q(f) is achieved only when the distribution of

data (i.e., M) satisfies the following integrity constraint:

Every identifier domain D is partitioned by M so that

if D is F-supported in R then

Ri = R[Di]

where R is any base relation and R. is the fragment of R in

v

For example, in a materialization induced by the F of Example 5.3, frag

ments of "emp" are determined by dno, "mgr" by eno, and "qualified" by

jid. On updates the integrity constraint R. = R[D.] must be verified

for each relation that is affected.

In a distributed system the communication cost on updates has two

components: message traffic and synchronization delay. If every update

can be accomplished by broadcast then the synchronization delay, at

least, is minimized. In this section we attempt to isolate those up

dates that can be effected by broadcast and propose an update protocol

to take advantage of this property.

We define an update to be locally realizable if it can be completed

by broadcasting and updating in place. For example, if every base

relation is horizontally subdivided then any one-variable deletion

operation (e.g., delete e where e. age>65) is locally realizable.

The insertion of a single tuple is also locally realizable, but

somewhat more complex. We note that, first, the materialization being

irredundant, insertion is done at only a single site; and second, there

is a difference between inserting in a relation that corresponds to a

root node in F and one that does not. For a root insertion, there has

-15-



to be an algorithm for allocating a new tuple to a specific site. The

tuple is then sent to the designated site, or the tuple and its site

designation are broadcast. To insert a tuple in a non-root relations,

the tuple is broadcast and upon its reception, each site checks the

F-supported foreign key (there is only one) value in the received tuple.

The tuple is installed only at the site (again, there is only one) that

hosts that key value. For example, assume that M is induced by the F

of Example 5.3, and that the tuple:

e = (eno =12345, ename="F. Fox," age =32, dno =37, jid =213)

is to be inserted in emp. The domain dno is F-supported in emp. On

receiving the broadcast instruction to insert e, each site must check

on the existence of "dno=37" and e is inserted at the only site where

the existence is verified. If "dno = 37" represents a new department

then the appropriate insertion to dept must precede the insertion of e.

Changing values in a tuple is also locally realizable except for

changes to the primary key or any F-supported foreign keys. Changing

primary keys can be assumed to be a prohibited operation as it is in

most systems. Changing an F-supported foreign key is potentially non-

locally-realizable. Consider, for example, changing the department to

which a given employee is assigned. For the F in Example 5.3 "employees"

follow "departments" in the assignment of data to sites. Changing the

department may well require a tuple in emp to migrate from one site to

another, and is thus not locally realizable. This difficulty is circum

vented by requiring an update to an F-supported foreign key to be effected by

a pair of depletion-insertion operations. For example, changing dno from

-16-



37 to 12 for the employee with "eno=12345" would require the following

pair of operations:

delete e where e.eno = 12345

append to emp(eno=12345, name= "F.Fox,"

age = 32, dno = 12, jid = 213)

In summary, all one-variable updates are locally realizable except

changes to primary and F-supported keys. The former is an operation that

should be prohibited, and the latter must be replaced by a deletion-

insertion pair if all updates are to be locally realizable.

7. Replicating Data to Enhance Retrieval

Without data replication, about the best one can do in distributing

data is to pick a "partition forest" F from a schema graph and use it to

induce a materialization M. In general, F being only a subgraph of the

schema graph, there are semantic queries for which M is not locally

sufficient. Another view of this problem is afforded by noting that

any collection of semantic queries corresponds to a subset of the schema

graph, and if the subset is not a partition forest, then an irredundant

materialization cannot be locally sufficient for the entire collection.

Example 7.1. Suppose that for the schema graph in Example 5.1 we require

M to be locally sufficient for the following joins:

dept [X]mgr dept|XemP

jobXlemP job[X]salification

The subgraph to support them is given as follow:

-17-



dept

mgr emp qualified

This not being a partition forest, there exists no irredundant materiali

zation that is locally sufficient for all four of the specified joins,

except for the trivial materialization of having all data at a single

site. However, there are many ways of replicating data to obtain a

locally sufficient materialization.

Replicating data to improve performance is hardly a new idea.

In the context of distributed processing, it has been considered as a

tactic of optimizing file allocation [APER 80, CHU 73, MAHO 76]. Our

approach is significantly different in that we exploit the semantic

information in a database schema in deciding how to replicate data.

Three approaches to replicating data are discussed here: denormalization,

all-or-none, and multiple-partitions.

The idea underlying denormalization is exceedingly simple. For a

given materialization M, call a query unsupported if M is not locally

sufficient. The idea is to preprocess any unsupported query and add it

to the database before considering the problem of partitioning and

distributing the database. The following example illustrates the

procedure.

Example 7.2

Consider the schema graph for the "Company" database considered

in Example 5.1:

-18-



mgr

dept

A possible partitioning forest is:

Partitioning Forest

emp.

mgr

qual

o qual

dept job

The mgr•>dept, emp•*dept, and qual -»-emp semantic joins are supported by

this partitioning, while mgr-*emp, emp + job, and qual -»• job are not.

Queries involving the latter three joins are not locally sufficient.

Suppose that we add the joins: mgr|XlemP» empXUob> qual XI J°D

to the database and show these as new nodes in the schema graph with

arcs directed to the relations that participate in the corresponding

joins.

Denormalization

mgr tx\ emp

mgr

dept
^—— — >

emp M job

qual

^> qual

/
V

/

/

S
job

Now extract the following partition forest from the denormalized schema

graph and note that it contains the previous partition forest:

-19-



dept

mgr p^t emp

emp

qual cxsi job

empcxjjob

qual

In this forest, all natural joins involving any two relations from the

original schema are supported, but not all semantic queries. For example,

empXl^al [XJ0D 1S not supported.

Partitioning and distributing the denormalized (hence replicated)

database can now proceed as before using the procedure given in Section 5.

In practice, it is probably desirable to distribute semijoins rather

than joins. For example, once we have partitioned emp|Xo°b into dls~

joint fragments (empXIJob)., we can project (empJX3°b). on the domain

of emp and job respectively to get fragments of emp and job, which can

then be grouped with the fragments obtained from partitioning emp and

job directly. In this way, only fragments of the original relations

need be stored locally.

Denormalization certainly increases parallelism for retrievals, but

at the price of making updates more difficult. For each tuple the number

of replicated copies and where they reside may be difficult to determine,

and on update tuples may have to migrate. All in all, denormalization

is probably not a good idea for dynamic data.

A better way of replicating dynamic data is "all-or-none." Here,

each relation is either partitioned into non-overlapping fragments, or

it is fully replicated at every site. Clearly, updating such a dis

tributed database is no more complex than updating an irredundant one.

The question is: how do we decide which ones to replicate?

-20-



Consider any subgraph G of the schema graph, including the schema

graph itself. A node x on G is said to be nonconflicting (G) if:

(a) no arc emanates from x, or

(b) exactly one arc emanates from x and is directed to a non-

conflicting node.

In all other cases, x is said to be conflicting. For example, in the

schema graph of Example 5.1 (also shown in Example 7.2) dept and job

are nonconflicting nodes, and the other three are conflicting. In

Example 7.1, emp is the only conflicting node.

A procedure for constructing a materialization with all or none

replication is simply the following. Replicate the conflicting nodes

and partion the nonconflicting ones. The reason why this works is that

the subgraph of G that contains only the nonconflicting nodes is always

a partition forest.

A materialization with many fully replicated relations is of

dubious value. One achieves parallelism in such a situation, but the

parallel efforts are duplicative. For example, fully replicating every

relation enjoys no advantage in parallelism over placing the entire data

base at a single site. (It may enjoy an advantage in communication.) We

shall consider an approach, "multiple partitions," that combines features

from both denormalization and all-or-none.

The idea underlying "multiple partitions" is to replicate the con

flicting nodes in a graph while keeping the number of arcs the same, so

as to eventually produce a partition forest. We shall illustrate the

idea with an example, but omit any proof for the general case.

-21-



Example 7.3

Consider the schema graph in Example 7.2:

dept job

"^ emp

dept qual

Duplicate the conflicting node emp, and let each arc connected to emp be

connected to one or the other, but not both, of the replicas.

dept

mgr emp 1 emp 2

Now, only mgr and qual are condlicting, and we can replicate each to

get a partition forest:

dept

mgr 1

emp 1 emp 2 qual 2

^mgr 2 qual 1

Any partition of dept and job induces a perfect partition of each copy

of emp, mgr, and qual. At each site, the fragments from different copies

of the same relation can be merged if desired. However, for each tuple

at each site we need to know which copies contain it. Compared to all-or-

-22-



none replication, replication by multiple-partitons incurs less redundancy

but greater complexity on updates.

8. Conclusion

To attain a high degree of parallelism in a distributed database,

one has to distribute the data in a way as to minimize the need for

moving data between sites. In this paper we advance the thesis that

doing so requires semantic information concerning the data.

To make precise the notion of parllelism without commiting to a

quantitative cost function, we introduce the notion of "local sufficiency"

for distributed databases. Given a database schema with a limited

amount of semantic information, we demonstrated a procedure to find those

classes of queries for which local sufficiency without replication can

be achieved. For classes of queries that require replication to achieve

local sufficiency, three approaches to replication are proposed. Each

enjoys a different blend of cost and benefit.

Acknowledgement

Research sponsored by the Air Force Office of Scientific Research

grant AF0SR-79-3596, the National Science Foundation grant ECS-8007684,

and the Office of Naval Research contract N00014-80-C-0507.

-23-



References

[APER 80] Apers, P.M.G., "Redundant Allocation of Relations in a

Communications Network," Proc. Fifth Berkeley Workshop on

Distributed Data Management and Computer Networks (Feb. 1981).

[CHEN 76] Chen, P.P.', "The Entity-Relationship Model-Toward a Unified

View of Data," ACM Trans. Database Systems, VI, Nl (Mar. 1976),

[CHU 73] Chu, W.W., "Optimal Allocation of Files in Computer Networks,"

in Computer Communications Networks, Prentice-Hall, Englewood

Cliffs, NJ, 1973.

[MAHO 76] Mahoud, S., J.S. Riordan, "Optimal Allocation of Resources in

Distributed Information Networks," ACM Trans, on Database

Systems, VI, Nl (Mar. 1976).

[WONG 79] Wong, E., Katz, R.H., "Logical Design and Schema Conversion

for Relational and DBTG Databases," Proc. Intl. Conference on

Entity-Relationship Approach to Systems Analysis and Design
(Dec. 1979).

[WONG 81] Wong, E., "Dynamic Re-Materialization: Processing Distributed
Queries Using Redundant Data," Proc. 5th Berkeley Workshop

on Distributed Data Management and Computer Networks (Feb.
1981).

-24-


	Copyright notice 1982
	ERL-82-86

