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ABSTRACT

This paper explains the parametric uniform B-spline curve
and surface representations. The parametric representation is
discussed, the properties of the B-spline representation are
described, and a detailed derivaticn of the B-spline basis functions
is presented. Various end conditions and boundary conditions are
described in order to enable the B-spline user to select which of
the many options would be appropriate for a particular applica-
tion. Efficient algorithms are designed and analyzed for B-spline
basis function evaluation, and for the evaluation end perturba-
tion of both B-spline curves and surfaces. Finally, difference
techniques to accomplish this are also developed.
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I. INTRODUCTION

The B-spline curve and surface representations provide very
appropriate mathematical models for computer implementation. Although
Schoenberg [14, 15, 2U4] developed the mathematical theory of spline
approximation in 1946, it was not until 1973 that Riesenfeld [18, 21]
applied B-splines to computer aided geometric design (CAGD). B-splines
have since been widely used and generally accepted as a standard tool
and method for the design and modeling of free-form curves and surfaces,
and have become prevalent in many geometry packages and turnkey geometry
systems.

By far the most ubiquitous of the many possible versions of B-
splines available is the cubic B-spline curve and bicubic B-spline
surface with unrepeated uniformly spaced parametric knot values

[9, 10, 20]. The cubic/bicubic B-spline is usually chosen because it
is the lowest degree B-spline which yields shapes which are sufficiently
"smooth" for most applications. The uniform knot spacing is usually
used because of the simplicity in concept and implementation, its
concise matrix formulation, and its amenability to implementation as an
efficient, precomputed "table lookup" algorithm capable of realtime
execution. This paper gives a detailed presentation of the methods and
computational exploitations which are possible for this special yet very

important case.
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II. THE PARAMETRIC REPRESENTATION

II.1. Motivation and properties
The conventional scalar-valued, explicit, functional form in the

Cartesian coordinate system,

f (x) and

<
"

£ (x, y)

N
1]

is only capable of describing a small class of curves and surfaces. For
example, such a function cannot represent a nonplanar curve twisted in

space. Furthermore, it cannot be used to describe a multiple-valued

curve or surface; that is, a curve having more than one value of y for a
single value of x, or a surface with more than one value of z for a
single (x, y) pair. Moreover, there is nothing inherently special about
either x or y or z; thus, it is unnatural to single out one of the
variables to be an independent variable, leaving the others to assume
the role of dependent variables. The choice of coordinate system should
have no effect on the shape of the curve or surface, because shape is an
attribute of an object dependent solely on the intrinsic relation
between the points on the curve or surface. The shape should be
independent of the orientation of the coordinate axes and should not
change if a different coordinate system is employed. All these

requirements can be satisfied with the parametric representation [17].



Brian A. Barsky: Parametric Uniform B-spline Representations 3

II.2. Explanation

The parametric representation of a curve has each component
expressed as a separate univariate (single parameter) function while
that of a surface has each component defined by a separate bivariate
(two parameter) function. The coordinates of a point can be written as

a row vector as follows:

[X(u) ¥(u)] for a curve in Euclidean two-space,
[X(u) Y(u) Z(u)] for a curve in Euclidean three-space, and

[X(u,v) Y(u,v) Z{u,v)] for a surface in Euclidean three-space.

For notational convenience, the row vectors for a curve and surface will

be denoted as Q(u) and Q(u,v), respectively.

A parametric derivative, with respect to some parameter or
parameters, can also be represented as a row vector. Each component is
the derivative, with respect to that parameter or parameters, of the
function corresponding to its coordinate. These parametric derivative

vectors are then:

d® qw) = [¢® x(w @& ¥(w]
du? du? du?
for a curve in Euclidean two-space,
@ Q) = [d® x(uw) ¢& y(u) @@ z(w)]
du? du? du? du?
for a curve in Euclidean three-space, and
220 g(uv) = [P x(uwv) B v(uw) 22 z(u,v))

udovP 2uP N2avP duovP

for a surface in Euclidean three-space.
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For notational convenience define

g(a)(c) = d@ Q)

a

|
|
du | u=c

(I1.1)
Q_(a’b)(C,d) = a_ig(u,v)

|
b |
v | uze, v=d

This parametric representation can be conceptualized as a mapping from
parameter space to Fuclidean spaze. For a given parametric value, it
yields the coordinates of a point on the curve or surface. As the
parametric value varies, the curve or surface is traced out. This

mapping is illustrated for each of the three cases in Figures I1-1, II-

2, and II-3, respectively.
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Q)

—— <

_———-P—U
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Figure II-1: Mapping from u parameter space to Euclidean two-space

for a planar curve.
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z , 2 ()

Q (0

Figure II-2: Mapping from u parameter space to Euclidean three-sgspac:

for a space curve.



Brian A. Barsky: Parametric Uniform B-spline Representations 7

v z Q (0,1)
A A Q (1,1)
(1,1
(0,1) ,//
/ 9 (0,0) (1,0)
4>_y
__»u
(0,0) (1,0)
X

Figure II-3: Marping from (u,v) parameter space to Euclidean three-spac

for a surface.
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III. OVERVIEW AND PROPERTIES OF THE B-SPLINE CURVE AND SURFACE

REPRESENTATIONS

III.1. Control vertices
A B-spline curve or surface is specified by a set of points called

control vertices. Although these vertices do not generally lie on the

generated curve or surface, their positions completely determine its
shape. The vertices for a curve are an ordered sequence and are

connected in succession to form (a closed or an open) control polygon.

Figure III-1 is an image from the curve representation system described

in [5, 4] which shows a B-spline control polygon and the curve which it

defines. For a surface, the vertices are organized as a two dimensional
graph with a rectangular topology, which will be referred to as a

control graph (see Section IX.1 for explanation). Figure III-2 is a

photograph taken from the surface representation system described in [3]
showing a B-spline control graph with its generated surface.

The generated curve or surface tends to mimic the overall shape of
the control polygon or graph, and the manipulation of a control vertex

causes a predictable modification in the resulting shape.
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CUBIC B-SPLINE RESOLUTION 9

ADD POINT DELETE POINT MOVE POINT SMOOTH

ADD SPLINE DELETE SPLINE | CHANGE TENSION AUTO COMPUTE

QuiT SELECT TYPE READ WRITE

Figure III-1: A B-spline control polygon with its generated curve.
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RETURN->MAIN

{[DEFN POINTS

HIDEFN NETWORK

CTL VERTICES

CNTRL GRAPH

SURF ACE

SURFACEZ

JIER | ROTATE X | LEFT/RIGHT |MOD: LFT/RT
HIGHER ROTATE Y | DOWN/UP | MOD. DOWN/LFP
DEEPER ROTATE Z OUT/IN | MOD: OUT/IN

Z00M Z00OM-DOLLY RESET

Figure III-2: A B-spline control graph with its generated surface.
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III.2. Piecewise representation

While an entire curve or surface is not easily defined by a single
analytic function, it can be apportioned into a set of smaller pieces,
each described by a separate analytic function, to form a piecewise

representation. A B-spline curve of degree d (order d+1) is composed of

a sequence of polynomials of degree not exceeding d, called B-spline

curve segments (Figure IIT-3). A bipolynomial B-spline surface of

degree d and ¢ in each parameter is a mosaic of surface patches, each of

which is a bipolynomial of degree not exceeding d and e in each

parameter, respectively (Figure III-H4).

Figure III-3: B-spline curve is composed of a sequence of curve segment
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Figure III-4: A B-spline surface is a mosaic of surface patches.

IIT.3. Local control
The B-spline basis is a local basis; that is, each B-spline basis

function has local support (nonzero over a minimal number of spans).

Since each control vertex is associated with a basis function, it
influences only a local portion of the curve or surface and has no
effect on the remainder of it. The effect of moving a single control
vertex, then; is localized to a predetermined portion of the curve or
surface. This enables the user of the B-spline representation to have
precise control over the resulting shape by moving one control vertex at
a time. This action consequently modifies only a local portion without
the undesired side effect of disturbing the other portions. Moreover,

since only part of the curve or surface is affected, only that part need

be recomputed. This is much more computationally efficient then what is
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required to modify global formulations where any change necessitates the
recomputation of the entire curve or surface.

The B-spline formulation exploits the piecewise representation, in
order to achieve local control, by defining each piece in terms of only
a few nearby vertices. For B-spline curves of degree d (order d+1),
each curve segment is controlled by only d+1 of the control vertices and
is completely unaffected by all the other control vertices.
Equivalently, a given control vertex influences only d+1 curve segments
and has no effect whatsoever on the remaining segments. This means that
the effects of moving a control vertex are confined to d+1 segments.
Figure III-5 illustrates that the effects of moving a cubic B-spline
control vertex are confined to four segments.

A bipolynomial B-spline surface of degree d and e in each parameter,
respectively, has each surface patch controlled by (d+1)(e+1) control
vertices and is unaffected by all other control vertices. Again, this
is equivalent to the fact that a given control vertex exerts influence
over only (d+1)(e+1) surface patches and has no effect on the remaining
patches. Thus, the effects of manipulating one control vertex are

limited to (d+1)(e+1) patches.
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Figure III-5: The effects of moving a cubic B-spline control vertex

are confined to four segments.
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IIT.4. Continuity

It is desirable that the joint where curve segments meet or the
border between adjacent surface patches be smooth. Many applications
require continuity not only of position and the first derivative, but of
the second derivative as well. That is, there should not be any "jumps"
in position or in first or second derivatives. Clearly, a discontinuity
in position or first derivative is quite perceptible. What is not so
obvious, however, is that the same is true of the second derivative as
well. For example, a circular arc joined to a straight line can meet
with first derivative continuity, but the joint will be very noticeable
nonetheless. Even in less contrived examples, lack of second derivative
continuity will yield flatter, less full shapes and continuous smooth
shading of such surfaces can have perceptible discontinuities in colour.
Furthermore, surface representations with second derivative continuity
are desirable for some higher order shell finite element formulations

[26].

B-spline curve segments of degree d (order d+1) join with continuity
of the parametric first d-1 derivative vectors. Since each curve
segment is a polynomial, it is analytic; therefore, an entire B-spline
curve of degree d is everywhere continuous along with its parametric
first d-1 derivative vectors.

A bipolynomial B-spline surface of degree d and e in each parameter,
respectively, is thus continuous along with its parametric first d-1
derivative vectors in one parametric direction, and with its parametric

first e-1 derivative vectors in the other.
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III.5. Order

The order of the B-spline representation is independent of the
number of control vertices. Although the order must be sufficiently
high to offer enough freedom to satisfy various constraints, it is
desirable to maintain the order as low as possible. This inhibits the
tendency of oscillation znd increases computational efficiency. Note
that the order is define¢ to be one more than the degree; that is,

order = degree + 1.

III.6. Variation-diministing property

The B-spline curve representation possesses the variation-
diminishing property [19, 25]. Although the generated curve reflects
the shape of the control polygon, it does so in a much smoother fashion
with less undulations. More precisely, for a planar B-spline curve, any
arbitrary straight line c¢rosses the curve no more often than it

intersects the control polygon (Figure III-6).
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Figure III-6: Variation-diminishing property.

Any arbitrary straight line crosses a planar B-spline curve
no more often than it intersects the control polygon.

III.7. Convex hull property

A point on a B-spline curve of degree d (order d+1) is a convex
combination of d+1 control vertices. The set of all possible convex
combinations of these vertices is their convex hull; that is, the
nsmallest" convex set which contains these vertices. Thus, each order
d+1 B-spline curve segment lies within the convex hull of its d+1
defining control vertices. Figure III-7 shows the convex hull of the
four control vertices yi+r, r = -2, -1, 0, 1, which will contain the i-
th cubic B-spline segment.

Since an order d+1 B-spline curve is composed of a sequence of such
segments, it follows that the entire B-spline curve will pass through

the union of the convex hulls of each successive set of d+1 control
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v,
—i+1
. 1 -_-——---------------————-ﬂ

Figure III-7: Convex hull of the four control vertices Vi n» r=-2,-1,0,
vertices. In particular, a cubic B-spline curve wi.ll lie in the union
of the convex hulls of each successive set of four control vertices
(Figure III-8).

For a bipolynomial B-spline surface of degree d and e in each
parameter, respectively, each surface patch lies within the convex hull
of its (d+1)(e+1) defining control vertices. Hence the entire B-spline
surface will be contained in the union of the convex hulls of each set
of (d+1)(e+1) defining control vertices. Specifically, a bicubic B-
spline surface will lie in the union of the convex hulls of each set of

sixteen defining control vertices.
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v
—-i-2
(a)
Li-3
v
—i=2
(b)
V. V.
-1 —i+l v
v
—i-3
Lo i}
(c)
Ei-B v -~ g
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N VAVaw A
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(d) 77 777
v
A L Lia
E; 3 Figure III-8: Union of the convex hulls of each of three successive set

of four control vertices.
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IV. THE UNIFORM CUBIC B-SPLINE CURVE REPRESENTATION

IV.1. Explanation

A cubic B-spline curve segment is completely controlied by only four
of the control vertices; therefore, a point on this curve segment can be
regarded as a weighted average of these four control vertices.
Associated with each control vertex is a weighting factor which is a
scalar-valued function evaluated at some parametric value. For a
uniform B-spline curve segment, this parameter indicates the location in
the segment as it varies from a value of zero at the beginning of the
segment to a value of unity at the end.

In particular, let the control polygon be composed of the sequence

of control vertices
V= [yo, Viy oeey v._ 1.

Then a point on the i-th curve segment is a weighted average of the four
control vertices V; ., I = -2, -1, 0, 1. The coordinates of the point

Qi(u) on the i-th curve segment are then given by

1

Q;(w) = S bu(w) ¥y, for 0 <uc< 1. (IV.1)
r=-2

As the parameter u varies from zero to unity, the i-th curve segment is
traced out. (Figure IV-1 shows the (i-1)st, i-th, and (i+1)st cubic B-
spline curve segments.)

The weighting factors are the scalar-valued functions br(u), r = -
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segment controlled by

| Vi1 Yy Yyygr and Yy
|

segment controlled by

Yipr Yy y» 309 Ty

Xi-l 1

segment controlled by
Viogr Yyopr Yyg» a0 Yy

Figure IV-1: Cubic B-spline curve with its control polygon

showing the control vertices controlling each segment.
2, -1, 0, 1, evaluated at some value of the parameter u. These functions

are called basis functions because they form a basis; that is, they are

linearly independent, and any possible B-spline curve segment can be
expressed as a linear combination of them. Moreover, the combination
coefficients of this linear combination are unique since the basis
functions are linearly independent. Therefore, every B-spline curve
segment has a unique representation as a linear combination of these
basis functions, where the combination coefficients are the associated
control vertices. The uniform cubic B-spline basis functions are
derived in the following section.

The cubic B-spline curve segment gi(u) is controlled by the control

vertices Vi .y T = -2, -1, 0, 1. For the next curve segment, gi+1(u),

the first of these control vertices, V;_», is dropped, and a new control
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vertex, Vi o, is added. The basis functions are shifted to this new
sequence of control vertices so that the basis functions, bn(u), r = -
2, -1, 0, 1, are now associated with the control vertices V; ., r = -

1, 0, 1, 2, respectively.

IV.2. Derivation of the uniform cubic B-spline basis functions.

A cubic B-spline curve is composed of a sequence of segments, each
of which is a polynomial with a maximum degree of three. A cubic B-
spline segment is a linear combination of the four basis functions,
br(u), r = -2, -1, 0, 1, where the combination coefficients are the
associated control vertices.

Since each segment is a polynomial of degree at most three, and is a
linear combination of basis functions, each basis function must be a

polynomial with a maximum degree of three. That is,

br(u) = c3ru3 + °2ru2 + Cq U + g, forr = -2, -1, 0, 1. (Iv.2)

The sixteen coefficients ¢ q=0,1,2,3and r = =2, -1, 0, 1,

qr’
can be determined so that the continuity constraint is satisfied.
Recall that this requires the cubic B-spline segments to join with

continuity of the parametric first and second derivative vectors.

Therefore,

ofad(n = af®)(0) fora =0, 1, 2. (1V.3)

The mathematical formulations for a cubic B-spline segment Qi(u) and

its first and second derivative vectors, gé1)(u) and géZ)(u), are

1
g§a)(u) = 232 bﬁa)(u) Vi,p for0<u<foras=0,1, 2. (Iv.4)
Ps=-

Evaluating this expression at u=1 and u=0 for a = 0, 1, 2 and
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substituting it into equation (IV.3),

1 1
222 bﬁa)(1) Vip = 222 bﬁa)(O) Vipq4p fora=0,1, 2. (1IV.5)
rs=— ==

Solutions to this equation for a = 0, 1, 2 can be determined by

equating coefficients of the vertices V; ., I = -2, =1, 0, 1, 2, for

bf%)(1) = 0 for vertex V;_»
bga)(1) = béf%(o) for vertex Vi ., r = =1, 0, 1 (IV.6)

0 = bga)(O) for vertex Vi .o

Consider these equations for a=0. Evaluating equation (1Iv.2) for
b,(0) and br(1), r = -2, -1, 0, 1, and substituting the resulting

expressions into equation (IV.6) yields,

03’_2 + 02,_2 + 01’_2 + CO,—Z =0

C3r. + 021" + 011" + COI" = CO,I‘—1 for r = -1, 0, 1 (IV.7)

00130

Now look at equation (IV.2) for a=1. Differentiating b.(u),
b1 4y = 3c4.u2 + 20,0 + cq, for r = =2, =1, 0, 1

p (W) = 3C3pU 4 cCopl + Cqp =-c =h B b

evaluating at u=1 and u=0, and then substituting into equation (IVv.6)

yields
303’_2 + 202,_2 + 01’_2 =0
3c3, + 2Cpp + Cqp = Gy p_q fOr P o= =T, 0, 1 (1v.8)
011 = O
Finally, consider a=2 in equation (Iv.2). Differentiating b§1)(u),

bgz)(u) = 6c3ru +2¢c,, forr = -2, -1, 0, 1,



Brian A. Barsky: Parametric Uniform B-spline Representations 24

evaluating at u=1 and u=0, and then substituting into equation (IV.6)
and simplifying, yields
3C3’_2 +Cp o = 0
3¢3p + Cop = C2 pog for r = =1, 0, 1 (IVv.9)
cpq =0
Equations (IV.7), (IV.8), and (IV.9) are now fifteen linear
equations in the sixteen unknown coefficients Cqry 4 = 0, %, 2, 3 and
r = -2, -1, 0, 1. However, they can be solved in terms of a constant Kk,

the value of which is the same as b_(0), b_;(1), bg(0), by(1). Thus,

b_o(u) = k (-u3 + 3u2 - 3u + 1)
b_q(u) = k (3ud - 6u? + W)
(IV.10)
bo(u) = k (=3u3 + 3u® + 3u + 1)
b1(u) = k u3

One more constraint is required in order to determine this constant
k. A useful constraint is to normalize the basis functions; that is, to
require that they sum to unity for any value of the parameter u between
zero and unity. Since each basis function is nonnegative (for k > 0)
for 0 < u < 1, this requirement means that a point on the i-th cubic B-
spline curve segment is a convex combination of the four control

vertices V; -2, -1, 0, 1. As explained in Section I1I.7, this

Jigpr T 7
guarantees that the entire cubic B-spline curve will be contained in the

union of the convex hulls of each successive set of four control

vertices. Thus, k is determined by

:
£ bau) =1 for0<uc< 1. (IV.11)
r=-2

Substituting the expressions given in equation (IV.10) for the basis
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functions into this equation yields
k = 1/6.

The basis functions are then

. b_o(u) = (-u3 + 3u2 -3u+1)/6
b_q(u) = (3u3 —6ul s ) /6
(IV.12)
bo(u) = (-3u3 + 3u2 +3u+1)/ 6
by(u) = ud /6
This can be written in matrix form as
[b_s(u) b_q(u) bglu) bylu)]
| =1 3 =3 1 |
| |
5 | 3 -6 3 0
= (w3 w? w1y (/6 | I (IV.13)
| =3 0 3 0 |
I |
| |

Graphs of the uniform cubic B-spline basis functions are shown in Figure

Iv-2.
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bl(u) bo(u) b . (u) b_z(u)

Figure IV-2: Graphs of the uniform cubic B-spline basis functions
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V. B-SPLINE CURVE END CONDITIONS

V.1. Classification
Recall that the control polygon is composed of the m+1 control

vertices

{Ygs Y15 ++v» Vgl
(Figure II1I-1). Considering the cubic B-spline curve formulation
(equation (IV.1)), it can be seen that these vertices can be used to
generate m-2 curve segments, specifically Q,(u), Q3(u), ceny Qp_q(u)
(Figure V-1). Note that the B-spline curve starts at

Q,(0) = (¥ + b, + V) / 6
and ends at

Qpo1(1) = (Vp o + BVp_ 1 + Vo) / 6.
In order to have the curve start closer to Vg and end nearer ym,
additional curve segments can be defined at the ends. The definition of
these segments, however, cannot be done by evaluating equation (IV.1) in
the usual way since this would reference nonexistent vertices. Various
methods are available for defining these curve segments and will now be

described. These techniques fall into two classifications, multiple

vertices and phantom vertices. Different end condition techniques have

various geometric properties which require careful study to enable the —

selection of an appropriate approach. The properties which each
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$<
&

ve, 3 ym
\'
' ., Qm_l(u)
‘\‘____”,.
\'s

!m—Z -m-1

Figure V-1: Interior segments naturally defined by the control polygon.

engenders are investigated in [2].

V.2. Explanation of multiple vertices end conditions

V.2.i. Double vertices

Using this technique one additional curve segment is defined at each
end by repeating the end vertex in the B-spline curve formulation.
These segments are Q1(u) and gm(u) (Figure V-2) and they are defined by

equation (IV.1) in the usual manner except that vertices ¥, and V are

used when V 1 and ym+1, respectively, are referenced. Thus,
Q, (W) = [b_y(u) + b_y(WIVy + bo(w¥y + bW, (v.1)
and

Q (u) = b_5(W¥, 5 + b_(W¥y 1 + [bplu) + by (u)1¥y. (Vv.2)
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V.2.ii. Triple vertices

The triple vertices technique is an extension of the double vertices
technique. In fact, it is simply the double vertices technique with the
definition of another additional curve segment at each end. The
segments Q4(u) and Qp(u) are defined by the double vertices technique
and the segments Qnp(u) and Qm+1(u) (Figure V-3) are defined by equation

(IV.1) using V, whenever 2; or V is referenced and using V, for V, 4

or Thus,

!m+2'
Qp(w) = [b_o(u) + b_q(u) + bo(u)1¥g + by(w)¥y

(v.3)
Q. q(w) = b_p(wW¥y_q + [b_q(u) + bo(u) + by(u)lvy.

V.3. Explanation of phantom vertices end conditions

V.3.i. Description

With these techniques, an auxiliary vertex is created at each end of
the control polygon. This can then be used to define an additional
curve segment at each end by evaluating the B-spline curve formulation
(equation (IV.1)) in the same manner as for the curve segments defined
by the original control polygon (Figure V-4),

The auxiliary vertices are created for the sole purpose of defining
the additional curve segments, and are inaccessible to the user and not

displayed; thus they will be referred to as phantom vertices. The

phantom vertices are completely defined in terms of the original control
vertices in such a manner so as to satisfy some end condition. Several
such end conditions are discussed in the following sections.

This phantom vertices concept was developed independently of that

which was mentioned in [12] by Coons, although the underlying idea is

similar. The latter case was developed only for B-spline curves and not
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9, .,

_Qm(u) \

o3 =
Q, () =
o Q@
Vo2 Vo1

Figure V-2: Additional segments from double vertices end condition.

9, ®. Q1 )
LW v,
e o]
v
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Figure V-3: Additional segments from triple vertices end condition.
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for surfaces, and this description of a curve involved a total of four
phantom vertices: two initiating vertices at the beginning of the
curve, and two terminating ‘vertices at the end. The two initiating
vertices are defined in terms of the first non-phantom vertex and two
- furnished points. Similarly, the two phantom terminating vertices are

expressed in terms of the final non-phantom vertex and another two

specified points.

-1 -2
‘7’m+1
9, (u) .. Q'm(u) N
. i
[
'
v i
I
LN BN 3 v
'
Yy v, o
]
1
!
! .
/ " el (@
Y: Q (v)
-1 V-2 Vo1

Figure V-4: The phantom vertices and additional curve segments

defined by phantom vertices end condition.
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V.3.ii. Position specification
Using this end condition, the phantom vertices are defined such that

each endpoint of the curve interpolates a specified point. That is,

2,(0)

&

(V.l)
Qp(1)

&

Evaluating the left hand sides of these equations by substituting the

extreme parametric values 0 and 1 into equation (IV.1) results in

vV /6 + (2/3)¥g + V4/6 = Py
-1 (V.5)
Vp_ 176 + (2/3)¥g + Vg, 1/6 = Py

Thus, the phantom vertices are

-1 (V.6)

V.3.iii. End vertex interpolation

Although the freedom to select the initial and terminal position of
the curve is frequently desirable, it is often convenient to constrain
these positions to coincide with the initial and terminal vertex,
respectively; that is, to have the curve start at XO and end at !m'
This is a special case of the previous end condition where Py = !O and
gm:!m.

Making this substitution into equation (V.6) yields the following

expressions for the phantom vertices:

v = 2Vs + V

x 20 =1

-1 (V.7)
Vne1 = 2Vp + V1o
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V.3.iv. Parametric first derivative vector specification

This end condition defines the phantom vertices by setting the

parametric first derivative vector, at each end, equal to some spec
value. Specifically,
{0 = ¢}
(1) . pl

The left hand side of these equations can be evaluated by using the

first derivative of equation (IV.1) yielding

33

ified

(v.8)

1
(y_1 - E 1) / 2 = EO
- 1 (v.9)
(!m_” - !m_1) / 2 = Bm.
The phantom vertices are then
1
v, =Y~ 2k
-1 ; (V.10)
Yns1 = 2Bp + Vpo1-

V.3.v. Parametric second derivative vector specification

The phantom vertices are defined by this end condition by setting

the parametric second derivative vector, at each end, equal to some

specified value. In particular,

(v.11)

o{@ o) = P2
(2) 2
Qi3 = R

Evaluating the left hand side of these equations, they can be rewritten

as
V - 2V. + Vg = P2
V. -2+ =k (
2
Vg g - 2V, + Voo = Po.

Solving for the phantom vertices then yields

V.12)
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U =20 - ¥+ Bg
-1 5 (V.13)
Vnyt = Vg = Vo1 * Bp-

V.3.vi. Zero parametric second derivative vector

While the capability of specifying the parametric second derivative
vector at each end of the curve is often desirable, it is frequently
convenient to have them set to zero by default. However, it was shown
in [2] that the end vertex interpolation end condition had just this
property. Thus, the zero parametric second derivative vector end

condition is equivalent to the erd vertex interpolation end condition.
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VI. EVALUATION AND PERTURBATION OF A B-SPLINE CURVE

VI.1. Basis function evaluation

The uniform cubic basis functions can be evaluated efficiently, for

2

a given parametric value, by storing u” and u3 and rewriting the

expressions using as much factoring as possible. That is,

u2 := u*u;

u3 =z u*u;

b_o(u) := (1 - 3*¥(u-u2) - u3)/6;

b_q(u) = u3/2 - u2 + 2/3;

bglu) := (1 + 3*¥(u+u2-u3))/6;

by(u) := u3/6;
This requires three additions, five subtractions, four multiplications,
and four divisions for each value of the parameter u.

However, a more efficient computation can be performed by exploiting

the symmetry of the basis functions. Observe that

b_p(1-u) = bqy(u)
(Vv1i.1)
b_1(1—\.1) = bo(U).

Thus, the computational requirements can be reduced if the basis
functions are evaluated at p+1 symmetrically spaced parametric values;

that is, at u = ug(=0), uq, up, «..y up(=1) satisfying
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u, - u =u - u a =1, 2y «os p/2
a a-1 -a+1 -2 y Sy ’
P P (VI.2)
where u0=0 and up=1.
A special case of symmetrical spacing is equal spacing; that is,
uy - uy_ 1 =1p fora=1, 2, «.., D (VI.3)

The algorithm to compute this equally spaced case is:

for u := 0 step 1/p to 1 do
begin

b_o(t) := by(u) := u3/6;
b_1(u) 3= bg(t) ==z u3/2 - u2 + 2/3
end;
This algorithm requires p+1 additions, 2(p+1) subtractions, 2(p+1)
multiplications, and 2(p+1) divisions. Note that this is less than half
what would have been required if each basis function were evaluated at

each successive parametric value.
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VI.2., Curve evaluation

The computation of a set of points on a single curve segment
requires the values of the four basis functions at each of the
corresponding parametric values. For a curve composed of m segments,
straightforward curve evaluation would require this basis function
computation to be performed m times. However, this can be avoided by
exploiting the fact that the uniform basis functions for all the B-
spline curve segments are identical -- only the set of parametric values
at which they are evaluated may differ. By restricting this set of
parametric values to be the same for all segments, the evaluation. of the
basis functions becomes identical for every segment and therefore needs
to be performed only once and stored in a table. Then the evaluation of
each coordinate of each point on the curve requires four multiplications
and three additions; thus, the computation of the p+1 curve points on
the m segments requires 4m(p+1) multiplications and 3m(p+1) additions.
Note that this does not impose any restriction on the selection of a
particular set of parametric values, although a convenient choice is

equally spaced values (equation (VI.3)).
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VI.3. Curve perturbation

If an already-existing curve is to be modified, it is not necessary
to recompute the entire curve. Careful consideration of the properties
of the B-spline representation enables an existing curve to be modified
in a manner which is more efficient than a complete recomputation.

Consider the consequences to an existing curve when the position of
one control vertex is modified. Since a single control vertex
influences only four curve segments and has no effect on the other
segments, the consequences of moving one vertex are limited to four
segments. Computationally, this implies that the movement of a control
vertex requires the re-evaluation of only four segments.

Moreover, even the four affected segments need not be completely
recomputed. Although each of these segments is controlled by four
vertices, only one of these vertices has changed position. Therefore,
the change in each of these segments is due only to the modification of
the position of one control vertex. Recalling the mathematical
formulation for the i-th curve segment given in equation (IV.1), the

change in this segment, Qi(u), can be written as

1
quA(u) = 22 br.(u) .Y:%H‘
r=-

(VI.W)
where E@'is the change in position of control vertex Vj.

Denoting the modified control vertex as Vg, and assuming all the

other vertices remain unchanged, then

=0 rfori#f. (VI.5)

Thus, only one of the four terms in equation (VI.4) is nonzero, and

hence this equation reduces to
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A = b (uw) ¥

Zi+r
* (VI.6)
where i+r = I.
Rewriting this equation as
@8 (W) = bu(u) ¥ for r = -2, =1, 0, 1, (VI.T)

it is easily seen that the four affected curve segments are gi(u), where
iz1-r forr=--2, =1, 0, 1. (VvI.8)

Therefore, the change in position of control vertex Vg perturbs the

segments Q; (u) by

gﬁXu)

where i takes on the values specified by equation (Vv1.8).

be_s(u) V&
i-1 21
(VI.9)
Since equation (VI.9) represents the change in the curve segment
Qi(u), the new segment can be determined by incrementing the old segment
by this change:

T ()

Qf Old(y) + bs_;(w) ¥& (VI.10)

= Qf
To compute the new curve resulting from modifying the position of
the control vertex Vs, equation (VI.10) is evaluated for all the
necessary values of the parameter u and for each of the four curve
segments Q;(u) with the values of i given by equation (VI.8). Thus, the
algorithm to compute the four perturbed curve segments at the parametric

v = e s iss
alues u Ugs Uqy y Up 1s

for i := 1I-1 to T+2 do
for each u in {ug, uqy ..., up} do
new ) 1= Q1% (u) + be_; (w) vy

9 Qi

This algorithm requires one multiplication and one addition for each
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coordinate of each of the p+1 points on each of the four segments; thus,
the total computational requirement is 4(p+1) multiplications and 4(p+1)
additions per component. This is one-quarter of the multiplications and
one-third of the additions that would be required if the four affected
segments were completely recomputed, and far less than the computational
requirements of recomputing the entire curve.

It should be emphasized that this algorithm is based on the
assumption that only one control vertex has been moved. If the
positions of more than one vertex are to be modified, they must be moved
one at a time, and the algorithm must be performed for each such change.
The algorithm is not valid in cases where the positions of several

vertices are modified simultaneously.



Brian A. Barsky: Parametric Uniform B-spline Representations 41

VII. DIFFERENCE TECHNIQUES FOR THE EVALUATION AND PERTURBATION OF A B-

SPLINE CURVE

VII.1. Background

The forward difference of f(s) with respect to the difference é'is

defined as
Agr(s) = £(s+d) - £(s). (VII.1)
The k-th forward difference is defined recursively as

Bir(s) = § o 'e(se8) - BT Ne(e) k=1, 2, 3, e

(VII.2)
0

£(s) k

From equation (VII.1), it can be seen that the first forward
difference of a d-th degree polynomial is a (d-1)st degree polynomial.
This result can then be used to show that the (d+1)st forward difference
of this polynomial is zero and hence, by induction, so are all the

succeeding forward differences.

Consider a generic cubic polynomial
3 k
f(s) = &, ay s (V1I.3)
k=0

Applying equation (VII.2),
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3 k 2 3
bﬁTO) = é§1 ag§ = = a1é'+ aZJ + a3§
3
Be(0) = 3 23 ¥ (2K11) = 22,8 + 6agd3 (VII.H)
k=2
3 3 k k-1 5k 3
b7£(0) = z} a d X (3% 12K0) = 6ags
and, from above,
BYE(0) = 0 for k = b, 5, 6, ... (VII.5)
VII.2. Curve evaluation
Substituting Q,(u) for f(s) in equation (VII.2),
bia,(w) = (a¥g, (ued) - BE=TQ () Kk =1, 2, 3, ...
(V11.6)
Q; (u) k =0
and therefore
Alg "o, (us ) = P51, (w) +B5Q (w) for k = 1, 2, 3, ... (VII.T)
From equations (IV.1) and (VII.2), it can be shown that the k-th
forward difference of Q,(u) is
1
bQ (w) = 5 Bfbaw) ¥y, (VII.8)
r=-2
Since the basis functions are cubic polynomials, the fourth and
succeeding forward differences are zero
Db (u) = 0 forr=-2, -1, 0, 1and k = 4, 5, 6, ... (VII.9)
From equations (VII.8) and (VII.9), then,
bfgi(w =0 forkz=1U 5 6, ... (VII.10)

Substituting equation (VII.10) into equation (VII.7) with k=4 yields
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(VII.11)

and therefore t?gi(u) is constant. Thus, the differences to be

computed, at each step, are as follows:

Qi(u+£)

= Q;(u) + bégi(u)

by (usd) = pyQ; (u) +BFQ (w
b29; (urd) = B%Q (w) + b, (0)

(VIiI.12)

The initialization requires the values of 5?Qi(0), k=20,1,2,3

which can be computed from equation (VII.8) given the values<ﬂ?b?br(0),

k

0,

1, 2,

33 r = -2

-1, O, 1.

The latter are determined using

equation (VII.4) for the four basis functions and are tabulated in Table

VII-1.

- - - - = o

- - —— - - -

b e e - - -

Table VII-

------------

12

e et e > e - — —— - > = - — - -

ity 1

e e e o o o —— - > -

Forward differences of the four basis functions at zero.

This difference technique can be used to evaluate equally spaced

points on t

aé

Ua

Then the algorithm to evaluate Q;(u) for a

i=1,

s sy

he curve.

where 5 = 1

m is:

Let

/P.

0y

Ty

(VII.13)

sy D and
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Compute bfbr(o) for k := 0 to 3 and r := -2 to 13

for i := 1 to m do
begin (* curve segment i ¥)

for k := 0 to 3 do K
begin (¥ compute D3Q;(0) *)

BEQ; (0) 1=Bfo_ (005 o;
for r = -1 50 1 do BfQ; (0) &= b Qi (D) +b§o (0)¥; s
end (* compute byQ; (0) #);

for a := 1 to p do
begin (* compute differences at u=uy ®)

Q;(ug) 2= Q3 (u_q) + bR (uy_1)5
g Qs (ua) 5= DyQ;(ua_q) +DFQ (v p)s
3793 (ug) 2= hfQy (ugp) L?gi(m
end (* compute differences at u=u, ¥*)

end (* curve segment i *);

This algorithm requires the computation of b%br(O) for k = 0, 1, 2, 3

and r = -2, -1, 0, 1, plus 16m multiplications and m(12+3p) additions

per coordinate to compute the p+1 curve points on the m segments.
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VII.3. Curve perturbation

The forward difference technique can also be used to modify an
already existing curve. This can be achieved by making two
modifications to the algorithm given in the previous section. First,
only four segments must be re-evaluated, and second, the computation of
bgg ;000 k =0, 1, 2, 3, can be accomplished simply by incrementing by

the appropriate change in value. That is,

for i := I-1 to I+2 do
begin (* curve segment i *)

for k := 0 to 3 do
b5Q;(0) £= By (0) + Bbs_; (0)#¥
for a := 1o p do
for k = 0 to 2 do
BEQ; (ug) =BG (uyp) + B Qug_ )

end (* curve segment i *);

This algorithm requires 16 multiplications and 4(4+3p) additions per
component to compute the p+1 curve points on the four perturbed

segments.
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VII.4. Conclusion

The advantage of the foregoing technique lies in the minimal number
of multiplications required. The inherent difficulty, however, is that
since each point is dependent on the previous one, there is an
accumulating error. Furthermore, in order for a curve to appear smooth,
it is desirable to evaluate many closely spaced points, but, at the same

time, this increases the sensitivity to cumulative error [11].
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VIII. GEOMETRICAL INTERPRETATIONS FOR Q;(0), Q§1)(0), and _Q_éz)(o)

Given a control polygon, a B-spline curve can be easily sketched
because there are straightforward geometrical interpretations for the
point at the beginning of the i-th B-spline curve segment, and the first
and second derivative vectors there. Considering the expressions for

these quantities,

M) =y - v /2

(VIII.1)

Q20 = -2+ Y

LE,

the following observations can be made. The second derivative vector at
the beginning of the segment is the sum of two vectors emanating from
yi-1: one to V; > and one to V;. The first derivative vector there is
in the direction from V;_, to V;, but its magnitude is half that

distance. The beginning point can be expressed as
Q;(0) = ¥ a{? (0)/6 (VIII.2)
=i =l .

and this is located one-sixth along the second derivative vector from

Vi-1 (Figure VIII-1).
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)

Figure VIII-1: Geometrical interpretations

for the beginning point of the i-th segment
and for the first and second derivative vectors there.

48
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IX. THE UNIFORM BICUBIC B-SPLINE SURFACE REPRESENTATION

IX.1. Control graph

A B-spline surface is defined by, but does not interpolate, a set of
control vertices, in three-dimensional x-y-z space, which are organized
as a two dimensional graph with a rectangular topology. Each vertex is
either an interior vertex or a boundary vertex. An interior vertex has
four well-defined neighbouring vertices. A boundary vertex has three
neighbouring vertices, except for the four corner vertices, each of
which has only two neighbours.

This notion can be formalized quite elegantly by drawing on graph
theory. The set of control vertices can be considered as a graph {V, E}

whose vertices form the set

V:{!ij |i=0,o--, m;j:O, se ey n}

and with the set of edges

0y evey n=1} J

E={(Vi5 Y5 5000 11 =
1 J = 0, oo 0y n}c

{(v )

Yij2 Lie,

Oy eoey m§ 3
0, oe.y m=1;

The interior vertices are the vertices
!ij where 1 < i {m-1 and 1< j < n=-1,

and the boundary vertices are
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!Oj’ j=0, ¢ooy n=13
Vips 1 = 0, ..., m=13
ij’ j=1, ...y n; and
Vigr 1 = 15 ooy m.

To emphasize this graph theoretic interpretation, the author has chosen

the term control graph to describe the set of control vertices (Figure

I11-2).

IX.2. Explanation

A point on tae (i,j)-th bicubic B-spline surface patch is a weighted
average of the sixteen vertices !i+r,j+s’ r = -2, =1, 0, 1, and 8 = -
2, -1, 0, 1. The mathematical formulation for the patch gij(u’V) is

then

.
Q  (w,v) = Z Z bb (u,v) ¥

—i+r, j+s
peed soud i+r, j+

(IX.1)
for 0 < u< 1 and 0Lv <.

The set of bivariate uniform basis functions is the tensor product of

the set of univariate uniform basis functions. That is,

bbrs(u,v) = b,(u) by (V)

(IX.2)
for r = -2, -1, 0, 1 and s = -2, -1, 0, 1.
Therefore, this formulation can be rewritten as
1 1
gij(u’v) = ég 22 br(u) !i+r,j+s bs(v)
r==2 sz=-2
(1X.3)

for 0 L u< 1 and 0LvK 1.

Observing that br(u) is independent of s, it can be treated as a

constant multiplier in the inner sum; thus, equation (IX.3) can be
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rewritten in the following form:

1 1
g y(wv) = 2 [, T ¥y us Pg(V)]

r=-2 g=-2
(IX.4)
for 0 {u< l1and 0 v <1,

These mathematical formulations are used in the design of an algorithm

to construct the B-spline surface as explained in Section XI.
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X. B-SPLINE SURFACE BOUNDARY CONDITIONS

X.1. Classification
The (m+1)x(n+1) control graph described in section IX.1 (Figure III-

2) contains the set of control vertices
V= {&j I i=0,..., m; j:o’ s ey n}-

Using the bicubic B-spline surface formulation (equation (IX.4)), it can

be seen that these vertices naturally define the interior patches
Qij (u,v)’ i = 2, ey m-1; j - 2, co ey n—1

(Figure X-1). It is desirable to have additional patches around the
periphery which are more dominated by the boundary vertices. Analogous
to the B-spline curve formulation, such additional patches cannot be
defined simply by evaluating the B-spline surface formulation (equation
(IX.4)) in the usual manner because this would reference nonexistent
vertices. This problem can be circumvented using two different types of

boundary condition techniques, multiple vertices and phantom vertices,

which will now be described. The corresponding geometric properties are

analyzed in [2].
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X.2. Explanation of multiple vertices boundary conditions

X.2.i. Double vertices

With this technique, additional surface patches are defined around
the periphery of the interior patches which were naturally defined by
the control graph, by repeating boundary vertices in the B-spline
surface formulation. The interior patches are then surrounded by the

additional patches

]
-—
-

Q1j(u,v), j = eeey D=1

}
—_
-

Q;(uyv), 1 = ceey m=13

Q_mj(uyv) y J o=

Qi1(u,V), i=

1
n
-

...y N3 and

1
n

ceey M

(see Figure X-2).

The additional patches are defined by evaluating the usual B-spline
surface formulation (equation (IX.4)) except that whenever a nonexistent
vertex is referenced, the "nearest" boundary vertex is used instead.

Specifically, let gij be the referenced vertex. Then the selection of

the appropriate vertex is accomplished as follows:

if i<0 then use KOj
else if i>m then use !mj;
if j<0 then use V;q

else if j>n then use V;,;

Note that an out-of-range value of the subscript i does not preclude an

out-of-range value of the subscript j.
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-EIL-D

[1,3+1)

o

1,9

i+1,3)

Figure X-1: Interior patches naturally defined by the control graph.
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- (m-l’n) (m,n) |
:(n,jﬂ) '

Figure X-2: Additional patches from double vertices boundary condition.
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(0,0)

Figure X-3: Additional patches from triple vertices boundary condition.
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X.2.ii. Triple vertices

This technique extends the double vertices technique by defining

another set of additional surface patches around the periphery of those

which were defined by the double vertices

additional patches is

goj(u,v), j=0, 1%, ..., 03

Q

_i’n+1(u,v), i=0,1, ..., mj

gm+1’j(u,v), j =1, +ssy n+l; and

-Q—i0<ufv), is= 1, ceey m+‘];

technique. This second set of

(Figure X-3) and they are defined by the same algorithm as that for the

patches defined by the double vertices technique.

Using this algorithm for the patch on(u,v) yields

:
Q03(u,v) = (b_p(u) + b_g(u) + bolu)) 22 Vg, 34505(¥)

]
+ bqy(u) 2,2 V1, 54Ps (V)

S=-

S==-

(X.1)
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X.3. Explanation of phantom vertices boundary conditions

The surface analogue of this type of end condition for a curve
creates a set of phantom vertices around the boundaries of the original
control graph. These phantom vertices are used to define additional
surface patches (Figure X-U4) around the patches which were naturally
defined by the control graph. Analogous to this type of end condition
for a curve, the phantom vertices are completely defined in terms of the
original control vertices in order to satisfy some boundary condition.
However, the direct specification of positions or of parametric first or
second derivative vectors around the boundaries of the surface would be
unwieldy. A convenient condition is to set the appropriate parametric
second partial derivative vector to zero at the endpoint along each
boundary curve between adjacent surface patches. The appropriate
derivative is with respect to the parametric direction across the
boundary.

Evaluating these derivatives at the appropriate parametric values,
substituting the values of the second derivative of each basis function
(as tabulated in Table X-3), and setting the resulting expression to
zero yields an underspecified system containing 2m+2n+4 equations in the
2m+2n+8 unknown phantom vertices [1]. A solution is easily found

yielding the following explicit expressions for each phantom vertex.
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(1,n) (2,n) (1,n) [ (i+1,n) (m-1,n) (m,n)

(1,n-1) . (m,n-1)

[FTE) [

(1,2)

(m,2)

(m-1 91) (m,1)

Ei?

Figure X-4: Additional patches from phantom vertices boundary condition
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Y ,,o1 7 Moo - 2lor - 2hio + In

X; y = 2!0j - !1j for j =0, seey, n

!-1,n+1 = Won = 2¥9 n1 = 2qn * Yy non
Ei,n+1 = 2Vip - yi,n_1 for i = 0y ¢eey, m
Yoet,n+1 = ®an - 2 n-1 = 2Vpo1,n * Yno1,n-1
Ym+1,3 Zymj - Va1 3 for j =0, ...y n

Vne1,-1 = %o = 2Vp,1 = 2Vpo1,0 * V-1,

!i’_‘l :2&0-111,1 fOPi:O, ..-,m

60

(X.2)
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s S=o=CSTS=s= PSS-S oS- C IS =SCoXZSS=Z=SZIZ===Z===S=SzSz===S :::::::::::::‘t::::::::::ﬁ'
k by (u) at u=0 at u=1
== ===z==2=2= ::::::::::§===::5::::::::::::::::::: P ===z z=2==f=-==S=x==z====35
-2 (=u”® + 3u“ -=3u+1) /6 1/6 0
____________ P______---__75____75____-_-____-__-_“__-____-____”_-____-____
-1 (3u” - 6u“ + 4) 7 6 2/3 1/6
0 (-3u3 + 30 +3u+1) /6 1/6 2/3
1 ud /6 0 1/6
E::::::::::: CEC TS ST E oS E=ERIZIZSIToCZZZzoIZDS=S=Zo====2=39 ooz Z2=====zXzz==sz=z=zZz=z=c==4
Table X-1: The uniform cubic B-spline basis functions.
P:::::::::: F:::::::::::::::::’::::::::::::::::: ::::::::::::F:::::::::::
k béf)(u) [ at u=0 at u=1
i‘::::.'::‘:::‘.‘ P C ST EsS S-S CSEZsSSCTCSIZ=ZZsS=S=SzZEzZzZsS=S=SzZ=zZz=== o s sz ===z ===9
-2 (=u“ +2u=-=1)/ 2 -1/2 0
-1 (=3u° + bu) / 2 0 -1/2
0 (=3uf + 2u + 1) / 2 172 0
1 wé /2 0 172
L:::::::::: :=::::::::::::::::::::::::::::::::::t::::::::::::E::::::::::J;
Table X-2: The first derivative of the B-spline basis functions.
== =====z=z=c== ::::::::=::‘.—‘::::::::::::::::::::::::F::::::::::::l::::::::::
k béZ)(u) at u=0 at u=1
-2 -u + 1 1 0
-1 3u - 2 =2 1
——————————————————————————————————————————————— o - — — — (R S S ——— 0 =
0 =3u + 1 1 -2
e e d e e e 40 e e o o o e ISR EUU R p— S
1 u 0 1
b::::::::::E:::::::::::::::::::::::::::‘—':::=:=:L=======:==:===:==::::==‘;

Table X-3:

The second derivative of the B-spline basis functions.
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XI. EVALUATION AND PERTURBATION OF A B-SPLINE SURFACE

XI.1. Surface Evaluation

A B-spline surface patch is described by equation (IX.4) as the
parameters u and v both vary continuously from 0 to 1. To display it
involves the computation of points on the surface for many different
parametric values. The determination of a point on the patch requires
the evaluation of the surface formulation at an appropriate (u,v) value.
This entails the evaluation of the four basis functions at the value of
u and of v, and then the computation of the sum which requires 20
multiplications and 15 additions for each coordinate.

Consider the computation of a set of points on one patch. Let
U = Ugy Ugy eeey Up and Vv = Vg, V5 seey Yq be the set of parametric
values at which the patch is to be evaluated. Straightforward surface
evaluation requires the evaluation of the four basis functions at all
the parametric values plus 20(p+1)(q+1) multiplications and 15{p+1) (q+1)
additions to determine each coordinate of the (p+1)(q+1) surface points
on the patch. For a surfaée which is a mosaic of m by n patches, these
computations would be performed mn times resulting in a very
computationally intensive process. However, the computational
requirements can be reduced by exploiting some of the properties of the
B-spline representation.

Since the uniform basis functions are independent of the particular

patch being computed, the evaluation of the basis functions can be made
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identical for all patches by restricting the set of parametric values to
be the same for all of them. In this manner, the basis function
evaluation can be performed only once and stored in a table. Algorithms
to tabulate the uniform cubic B-spline basis functions were designed in
Section VI.1. It should be noted that this does not impose any
restriction on the selection of a particular set of parametric values.
After tabulating the basis functions, the surface points must be
computed. However, this evaluation can be accomplished more efficiently
by exploiting the tensor product form of the B-spline surface
formulation. Observe that a point on the surface can be thought of as a
point on a B-3pline curve defined by an appropriate set of intermediate

control vertices. Specifically, equation (IX.4) can be rewritten as

1
Qij(u,v) _ bp(u) Hi+r,j(v)
r==2
(XI.1)
1

where W;j . (V) = 2?2 Yi4r,jes Os(V)
S=-

This mathematical formulation is the nucleus of the following algorithm

to construct a uniform bicubic B-spline surface:
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compute b,(t) for each t in {ugy uqgy «eey up} {Vgs Vs +ees vq}
and r := -2 to 1;
for i := 1 tom do
for j :=z 1 to n do

for each v in {vg, Vq, ..., vq} do
begin

for r := -2 to 1 do

begin

W, := V

Wp 0= Vip, 5-2"0-2(V05

for s := -1 to 1 do

We 3= W+ Vyop jes

*bg(v)
end;

for each u in {ug, uq, «esy up} do

begin
Q_ij(u,V) HH b_2(u)*ﬂ_2;
forr 1= -1to 1 do
Qij(u,v) = Qij(u,v) + bn(u)*W,,
end

end;

This algorithm to construct the entire surface requires the computation
of the basis functions for all required values of the parameters u and
v, plus mn(q+1)[4%4 + (p+1)4] = Umn(p+5)(q+1) multiplications and

mn(q+1)[4%*3 + (p+1)3] = 3mn(p+5)(g+1) additions'per coordinate.
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XI.2. Surface Perturbation

Analogous to curve perturbation, the modification of an already-
existing surface does not require the recomputation of the entire
surface. Rather the modification of an existing surface can be
accomplished much more efficiently by exploiting various properties of
the B-spline representation.

Consider the consequences to an existing surface when the position
of one control vertex is modified. Since a single control vertex
affects only sixteen surface patches, the consequences of moving one
vertex are confined to sixteen patches, and hence the movement of a
control vertex requires the re-evaluation of only sixteen patches.

Furthermore, even these sixteen patches do not need to be completely
recomputed. Although each of these pat.ches is controlled by sixteen
vertices, only one vertex has changed position. Therefore, the change
in each of these segments is due only to the movement of one control
vertex. Recalling the mathematical formulation for the {(i,j)th surface
patch given in equation (IX.4), the change in this patch gfﬁ(u,v) can be

written as

1 1
QiAj(u,v) = i [bp(u) 22 K‘?_lr,j-ﬁ-s bg(v)]

r=-2 S==
(X1.2)
where E%- is the change in position of the control vertex !ij'

Assuming that the modified control vertex is the only one that has

moved,

yﬁﬁ =0 fori#ftiorj#3

(XI.3)

where Xij denotes the modified vertex.

Hence, equation (XI.2) contains only one nonzero term; thus, it
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reduces to

QiAj(u’V) = bp(u) Yf+r,j+s bs(V)

(X1.4)
where i+r = I and j+s = J
Rewriting equation (XI.4) as
Qgir,j—s(u’V) = bp(w) ¥y bg(v) ,
(X1.5)
forr = -2, -1, 0, 1 and s = -2, -1, 0, 1,
it is easily seen that the sixteen affected surface patches are
Q‘ -(U,V)
=i
J (XI.6)
where i = f-r for r = -2, -1, 0, 1
and j = j-s for s = -2, -1 0, 1.
Hence the movement of control vertex yij perturbs the patches
Qij(u,v) by
@ (u,v) = be_.(u) W ba_ (V)
=1 I-i 21 -
) I3 (XI.7T)

where i and j take on the values specified by equation (X1.6)

Since equation (XI.7) represents the change in the surface patch
Qij(u’V)’ the new patch can be computed by incrementing the old patch by

this change:

QM (u,v) = gg%d(u,v) + bg_;(u) !ﬁ% b3_3(¥v) (XI.8)

The sixteen perturbed surface patches resulting from modifying the
position of the control vertex yij can be computed by the following

algorithm:
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eacl

for v it {Vgy Vi ey vq} do

begin
IR L L
for i := -1 to I+2 do
for each u in {ug, uy, ..., up} do
Q??w(u,v) 1=z _Q_g]fd(u,v) + by _; (W)*W

end;

This algorithm requires a total of 4(4p+5)(q+1) multiplications and
16(p+1)(q+1) additions per component for the evaluation of the
(p+1)(q+1) surface points on the sixteen patches. Compare this to the
64(p+5)(q+1) multiplications and 48(p+5)(q+1) additions which would be
required to completely recompute the sixteen affected patches, and to
the 4mn(p+5)(q+1) multiplications and 3mn{p+5)(q+1) additions required
for the recomputation of the entire surface.

As with curve perturbation, this algorithm is based on the
assumption that no more than one control vertex has been moved. To
perturb the surface by moving more than one vertex, they must be moved
one at a time, and the algorithm must be performed after each such

change. The algorithm is not valid if several vertices are modified

simultaneously.
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XII. DIFFERENCE TECHNIQUES FOR THE EVALUATION AND PERTURBATION OF A B-

SPLINE SURFACE

XII.1. Background

The forward difference technique described in Section Vii.1 for
curves can also be applied to surfaces. For a bivariate function
h(s,t), the forward difference with respect to the difference J in the

first parameter is
b}:gh(s,t) - h(s+d,t) - n(s,t) (XI:1)

The k-th forward difference with respect to the same parameter 1is

defined recursively as

Bifn(s,t) = BE-LOn(se ,8) - B 0%00s,0) k=1, 2,3, wen
(X11.2)
h(s,t) k =0

The forward differences with respect to the second parameter are defined

in an analogous manner.
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XII.2. Surface evaluation
These definitions of forward differences can be used for the surface

Q(u,v). From equation (XII.2),

k.0 _ k-1,0 _Nk=1,04 . =
B g9 sturv) = (B0 5tur yv) - BT 0T, 5w, ) K )
Qij(U,V) k=0
and therefore
k-1,0 k-1,0 K,0
B e Qjtusd,v) = BgTor7ay5(u,v) + B, 5(u,v) (XII.4)

for k = 1, 2, 3, ...

Substituting the surface formulation given in equation (IX.4) and

using the recursive definition in equation (XII.2), it can be shown that

1 1
bg:éo_Q_ij(u,v) = 2 [kbr.(u) 2' !i+r',j+s bg(v)] (XII.5)

r=-2 sS==2

Analogous results hold for bg’%gij(u,v).
?

Since

bk’lgij(u,v) = bk’OD&?’lQ..(u,v)]

§ € & s€ €=1] (XII.6)
for kK = 0, 1, 2, 3, +ac and 1 = 0, 1, 2, 3, ...
hence
k,1 ! k ! 1
bé:egij(u’v) = éa b&br(U) 2? [!i+r,j+s Bebs(V)]
rz=-2 s5==-2
(XI1I.7)

for k = 0, 1, 2, 3, . and 1 =0, 1, 2, 3, ...

Recalling from equation (VII.9) that the fourth and succeeding forward

differences of the basis functions are zero,

bg;égij(u’v) =0 fork=24,5 6, ...0or1=4,5 6, ... (XII.8)

From equations (XII.4) and (XII.8) with k=4 it can be seen that
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0 - 83,0
biiégij(“+ V) = DYy 5(u,v) (XII.9)

and therefore D319q. (u v) and similarly p9> .(u,v) are constant.
8,61 g, 6 =i

Thus,

(u+5 v) = Gy (u,v) + b;’e L 5(usv)
1,0q
AS’GQlJ(u+ v) =B 565 (u,v) o« b fc 1J(u v)

(XII.10)

2,0 0
LS 09, s(u+ V) = L‘ 29; 5(u,v) + h% %9; 5(0,%)

and similarly for the differences with respect to the second parameter.
The initialization requires the values of b? éQlJ(O 0), for
k=0,1 2, 3and 1 =0, 1, 2, 3, which can be computed from equation
(XII.7). This requires the values of the forward differences of the
four basis functions in each direction. The D%bP(O) are tabulated in
Table VII-1 in terms cm‘g and the analogous tabulation can be prepared
for the beb (0) in terms of the difference in the other direction, €.

This difference technique can be used to evaluate surface points

that are equally spaced in each direction. Let

aJ where 5

b€ where €

u

a 1/p

(XI1.11)
v

b 1/q

Then the surface can be constructed by the following algorithm:



Brian A. Barsky: Parametric Uniform B-spline Representations T1

Compute b%b (0) for k := 0 to 3 and r 1= =2 to 1;

-2 to 1;

Compute béb (0) for 1 := 0 to 3 and s :
for i := 1 tom do

for j := 1 ton do
begin (* patch Qij<usV) %)

compute b? éQlJ(O 0) for k := 0 to 3 and 1 := 0 to 3;

for b := 1 toq do
begln(*compute differences along curve gij(o,v)*)

(0 Vb)

ST
ba CQlJ(O Vb—1) +) J(O,Vb_1);
52:1Q-~(0,vb) 1=

b9 19; 5(0,vp_1) + B

o, 2
b‘e (0 Vb) =

}'e 13(0 Vb 1)’

0 2 0,3
LJ e_Q_lj(O,vb_1) +b;:e-Q—l,](0’O)
end (*compute differences along curve gij(o,v)*);

for a := 1 to p do
begin (* fix u= zu, *)

for 1 := 0 to 3 do
begin (* compute differences to start next
curve ¥)

Aa’ é—lJ ,0) :=

1, l
;6% 3(ua1,0) + A6’6-1J(ua-1’0)s

Thlg .=
Lge -(u ,0) =

b5 625 (Uas1,0) + A560s5(ua 1,005
B322Q; 5(uy,0) i

0) + A>La. .(0,0)

t‘d‘ e-la Ya-17 g, c-13

end (* compute differences to start next
curve *¥);



Brian A. Barsky: Parametric Uniform B-spline Representations 72

for b := 1 to q do
begin * compute differences along curve
Q; j(ua,v) *)

bg (u arVp) i=

LS C-—lJ(ua’vb 1) +A5 éQlj(ua,vb s
hé C—lj(ua’vb) =
b% o 1(UasVpat) + Lg éQlJ(u »Vpo1)3
5 Q--(ua,vb) ‘=

bX Qi j(UarVpo1) + b 3 ij(ua,o)

end (* compute differences along curve
Qs j(ua,v) *)

end (* fix u=u, ¥)

end (* patch gij(u,v) )3

The computation of bg’éQla(O 0) can be performed efficiently by
exploiting the tensor product in a similar manner as was done for the
evaluation of a surface point in Section XII.1. From equation (X11.7)
with u=v:=0,

bE129;500,0) = régz Mb (0) Wy,. 41

(XII.12)

1
where W, . p, 3,1 g yer, J+Sb b5 (0)

Using this formulation, the following algorithm can be used to compute

5 " 13(0 0) for k =0, 1, 2, 3and 1 = 0, 1, 2, 3:
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for 1 := 0 to 3 do

This algorithm requires 128 multiplications and 96 additions per

coordinate to perform this computation.

begin
for r t= -2 to 1 do
begin

1 .
Wpoi= Uyop, 32" Bebo2(0);

—

for s 1= -1 to 1 do Wp := WosVi,p 5,5*Bbs(0)

for k := 0 to 3 do
begin
k
D7 5(0,0) 2= Bgo o (0% s
for r := =1 to 1 do
Q;4€0,0) =05 1a, (0,00 +B5p.(0) 4w,

end

end;

73

The complete algorithm to

construct the entire surface thus requires the computation oftﬁ?br(O)

for k =

and r =

mn{96 +

0, 1, 2, 3and r = -2, -1, 0, 1, and Bgbg(0) for 1 = 0,
-2, -1, 0, 1, plus 128mn multiplications and

q*3 + p(U4*3+g*3)] = 3mn{32 + q + p*(4+q)] additions per

coordinate.

1, 2, 3
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XII.3. Surface perturbation
The forward difference technique can also be used to perturb an
already existing surface. Analogous to the use of this technique for

curve perturbation, the algorithm for surface perturbation requires two
modifications to the algorithm for surface evaluation. First, only
sixteen patches need to be re-evaluated. Second, the computation of
b;;égij(o,o> can be accomplished easily by incrementing it by the
appropriate change in value. This approach yields the following
algorithm to compute b%;égij(o,o) for k=0, 1, 2, 3and 1 = 0, 1, 2, 3:

for 1 := 0 to 3 do

begin

W= VAA* 1y

vry* t3-5(00;

for k := 0 to 3 do
birla; 500,00 1= DXr%a; 500,00 + Kjps s (0) M

end;

This algorithm requires 20 multiplications and 16 additions per
coordinate. Thus, the complete algorithm to perturb the surface
requires 16%20 = 320 multiplications and 1616 + q¥%3 + p(4¥*¥3.q%*3)] =

16[16 + 3(q + p*(4+q))] additions per coordinate.
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XII.4. Conclusion

As with the application of forward difference techniques to curves,
the advantage is the reduction of the number of necessary
multiplications. However, this saving is at the expense of cumulative

error.
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XIII. CONCLUSION

The intent of this paper is to provide sufficient information to
understand and implement parametric cubic B-spline curves and bicubic B-
spline surfaces in the case of uniformly spaced parametric knot values
without multiplicity. The parametric representation was discussed, the
properties of the B-spline representation were described, and a detailed
derivation of the B-spline basis functions was presented. A systematic
discussion of various choices of end condition and boundary condition
specification was also provided so that the B-spline user czn decide
which technique is appropriate for a particular application. A
distinction was made between the evaluation of a new, nonexistent curve
or surface, and the perturbation of an already-existing one. Efficient
algorithms, which exploit the repetitiveness of the uniform case, were
designed and analyzed for B-spline basis function evaluation, and for
the evaluation and perturbation of both B-spline curves and surfaces.
When multiplications are much less desirable than additions, finite
difference techniques provide another computational approach which is
probably the method of choice as regards efficiency. Algorithms for
that situation which accomplish the evaluation and perturbation of both
curves and surfaces were also designed and analyzed.

The methods and economics of B-spline evaluation vary considerably
with the generality of the implementation, and it is only by restricting

attention to this case that the computational savings realized in this
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paper can be achieved. The goal of this paper was to give a rather
thorough treatment of this specialized yet frequently used case. There
is a large body of literature which has grown rapidly since a practical
algorithm with stable and efficient characteristics for computing B-
splines was first availed to the heretofore stifled applications area by
Cox [13] and de Boor [6]. Most of these results, which are independent
of the ones presented herein, are concerned with the more general

problem, and the interested reader is referred to [7, 8, 16, 22, 23].
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