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Abstrect

The current trend of computer system technology is towards cpus with
rapidly increasing processing power and towards disk drives of rapidly
increasing density, but with disk performance increasing very slowly if at
all. The implication of these trends is that at some point the processing
power of computer systems will be limited by the throughput ¢f the
input/output system.

The solution to this preblem described and evaluated in this paper is
Disk Cache. The idea is to buffer recently used pertions of the disk
eddress space in electronic storage. Empirically, it is shown that a
large (e.g. 80% to 90%) fraction of all I/0 requests are capiured by e
cache of reasonable (e.g. 8 Mbyte) size. This paper considers = number
of desigr parameters for such a cache (called Cache Disk or Disk Ceche),
including those that can be examined experimentally {ceche location, cache
size, migration algorithms, bleck sizes, etc.) and others {access time,
bandwidth, multipathing, technology, consistency, error recovery, etc.)
for which we have no relevant data or experiments. We find theat disk
cache is a powerful means of extending the performance limits cf high end
computer systems.
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I. Introductien

Computer systems have traditionally relied on a memory hierarchy
(such as that inp figure 1a), inp which large amounts of less expensive
storage (disk, tape) have been used to retain the bulk of the stored
jnformation, while spall amounts of fast storage (main memoTy, CPU cache
memory) have been employed to hold information while it is in active use.
The problem in such systems has always been the large ratio in access
times (the "access gap") between the slovest electr;nic storage (main
pemory, at less than one microsecond) and the fastest bulk storage (drum,
at 5-10 milliseconds). The difficulty is that frequent accesses to bulk
storage (either through jmpicit (paging) or explicit input/ output) may
leave the cpu idle while the 1/0 request(a) complete. Mul tiprogramming is
used in large and medium scale computer systems to overlap processing and
1/0 delays, but if all active programs are awaiting 1/0, no processing can
take place.

There exists @& chain of Treasoning which suggests that
mul tiprogramming ig limited in its ability to overlap input/output and cpu
activity. The reasoning is as follows: (a) The speed of high end
cbmputer systems will continue to increase at a rate comparable to the
recent past; i.e. doubling every 3.6 years. (b) Disk density will also
continue to increase at a rate similar to the recent past: doubling every
three or so years [Hark81]. (¢) Disk access time will continue to improve
only very 8lowly [Hoag79]. (d) The I/0 rate associated with computer
systems will remain roughly proportional to the instruction execution rate
of the CPU [Amda?O]. (e) The cost of large, igh end disk spindles will
not decrease significantly over the next few years, although sharp
decreases in the cost per byte will occur. (f) The physical space
vrequired by large disk spindles will alsc not decrease significantly. (&)
Therefore, the number of disk spindles in a large computer system will not
jncrease (due to cost and space 1imits) as quickly as the 1/0 rate from
tne CPU(s). (1) The throughput of the 1/0 system is limited by the access
time of the disks and the number of independent 1/0 paths. (i) The number

of independent I1/0 paths is at most proportional to the pumber of disk
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opindles. (3j) Therefore, at some point the 1/0 system, no matter how
carefully tuned, will be unable to service 1/0 requests as quickly as they
can be generated by a fully utilized CPU.

This chain of reasoning, while indicating an eventual bottleneck,
does not rule out changes in the software or hardware that postponme the
problem. Ways of postponing the problem are discussed in section VI.

The mechanism proposed in this paper for coping with the 1/0
bottleneck is Cache Disk or Disk Cache. Disk Cache is a cache or buffer
used to hold portions of the disk address space contents. If such a
buffer can: (a) capture a significant fraction of the 1/0 operations, (b)
without being too expemsive, and (¢) can provide access times and transfer
rates significantly better than disk, then it can greatly improve 1/0
system performance and thereby postpone or eliminate the predicted 1/0
system bottleneck.

There is a reason to think that disk cache will be effective, and
that is the 1long established Principle of Locality [Denn72]. which
describes most program reference behavicr. This principle has two
components: (a) Information which has been used recently is likely to Dbe
reused (or conversely, the information to be used in the near future is
likely to consist primarily of information used in the recent past), and
(b) information "near” the information in current use is likely to be used
in the near future. The principle of locality accounts for the success of
cache memcries [SmitBZ] and main memory paging [Smit78a]. Because disk
files are frequently reused (data bases, indexes, directories, etc.)
and/or are read sequentiall& (most wuser files), we believe that the
principle of locality also describes access patterns to the disk.

Locality in disk reference patterns has been previously observed
(e.g. [smit75], [Seit76]). It was suggested that multiple arms be used
to access each of several open data sets on a given spindle in [Smit75]
and the idea of a cache was proposed in [Smit?Bb]. A brief discussion of
cache disk appears in [Smit81c]. The topic is also discussed in
[Ve1c79a,b]. More recently, a number of papers have discussed and/oT
evaluated aspects of disk cache: [BastBZ], [BuzeBZ] and [Dodss2]. Rone
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of these, hovever, presents any miss ratio studies. Research and various
industrial (uppublished) studies have been persuasive enough to lead a
pumber of vendors to develop their own cache disk systems; included among
them are IBM [IBH81a.b], Rippon Electric [TokuBOa], Storage Technology
[Cotesz], and Memorex [Hemo78].

In this paper, we will be concerned with the proper design,
implementation, and operation of disk cache. There are a number of design
considerations vhich merit attention: Where in the system shall the disk
cache be placed? How large should/need the cache be, based on cost and
performance? What migration algorithms (wvhen to fetch or replace
information) should be used? What block size is best? Should all or only
some files/devices be cached? Which? Are the results time varying?
Should the cache be turned on and off dynamically? What technology should
be used for implementation? What are the error recovery considerations?
Is there any impact on the rest of the systiem software? Each of these is
discussed and/or evaluated later in this paper.

As explained in the next section, many of tHe aspects of cache disk
design are sensitive to program behavior and file access patterns, and are
therefore best evaluated empirically. We will discuss in that secticn
(I1) our evaluation methodology and the data that we have. Section III
presents the results of our experiments, and in section IV we discuss
those design considerations which are either not suitable for experiment
or for vwhich we have no relevant measurements. Section V considers
briefly a related topic, disk arm buffers. Alternatives to disk cache are
examined in section VI and current commercial products are described in

section VIJ. An overview is provided in the conclusions section (VIII).

II. Methodology and Data
A. Cache Disk Effectiveness
The final measure of cache disk effectiveness iz the change in the
appropriate system performance measure (usually either response time or
throughput) for a given cache disk system. The worth and desirability of

cache disk must then be determined by taking into account the performance
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ipprovemert (if any) and the cost(s) involved. We shall mnot try o
calculate in this paper the overall system performance impact of cache
disk for several reasons. The primary Teason is that translating the
Jocal effect of the disk cache on I/0 times to the global effect on system
performance is extremely sensitive to the detailed assumptions about the
system configuration (pumber of disks, drums, string and storage
controllers, their interconnections, etc.) and workload (1/0 rate,
distribution of I/0s to files and devices, etc.). Further, any given
system can be tuned to some extent if a performance bottleneck is found.
The appropriate performance measure is also an arbitrary one; the two that
are used frequently are throughput and response time, but those two are
notl the same. Finally, an appropriate design point is heavily influenced
by technology, which is rapidly changing. We do note, however, NEC
[TokuBOa], which has published some performance figures on an operating
cache disk system.

It is possible to make some estimates of the effect of disk cache on
mean disk I/0 access times. That is done in [BuzeBZ] where it is noted
that disk cache may or may not yield any perfonmance‘ bepefits, depending
on the hit ratic and the design.

¥We shall instead evaluatg the effectiveness of disk cache designs in
twc ways. First, we shall measure the miss ratio, which is the fraction
of I/0s which are not captured by the disk cache, given certain disk cache
parameters. As noted below, miss ratio measurements will be made using
trace drivenm simulation. Low miss ratios can be expected to translate
into higher system performance, since every hit to the disk cache results
in an 1/0 time that is substantially less (e.g. 1-4 ms.) than would
otherwise be required (10-100 ms.}.

Our miss ratio measurements are limited in 2 pumber of aspects. Some
{nformation is not available from the trace data, as noted below, and some
information depends on more than the sequence of 1/0s; e.g. I/0 path
contention depends on the path configuration. Finally, some aspects, such
as error recovery, are not suitable for miss ratio analysis. Thus, for
topics for which miss ratios cannot be generated, discussions will be

presented instead.
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B. Trace Driven Analysis

Trace driven analysis is a powerful technique for evaluating aspects
of computer systems. The idea is to trace a computer system, recording a
sequence of events along with their relevant parameters (e.g. seek
address, memory address, time, etc.). A variation of that computer systen
can be evaluated by using an event driven simulation in which the events
are drawn from the trace rather than from random number generators. Ir
the variation to be evaluated is such that the trace can be considered to
be a valid sequence of events, <then <the simulation will indicate the
behavior of <the variant system. This technique has been used quite
sucessfully to evaluate virtual memory systems [Be1a66] and cache memories
[SmitBZ] using virtual address traces, and cpu scheduling [Sher72] using
cpu interval traces.

In this paper we use traces of I/0 events taken from large computer
systems to drive simulations of disk caches. The sequence of I/0O events
gepnerated should be only slightly sensitive to the actions of the disk
cache (which itself only changes the time for am I/0 to complete), and
therefore we believe that the miss ratio analysis presented is valid and
accurate.

C. Data Sources

Three large IB¥ (or compatible) computer systems were traced for
periods of 17 to 23 hours. The operating systems, as noted below, were
variations of 0S (0S/MVT, SVS and MVS); the primary deta collection tool
was GTF [IBM76)], IBM's Generalized Trace Facility. GTF can be activated
on the occurrence of most system interrupts, including supervisor calls
(svcs), 1/0 starts (SIOs), and 1/0 completions (I/0 interrupts). The
results presented in this paper are based mainly on a GTF generated trace
of data references (seek addresses) as derived from the SIO events. Each
trace record includes the device address, and the physical location of the
block, consisting of the cylinder and track, for a direct address device
(DASD = disk and drum). The record number on the track is also available,
but since the block sizes are not always known, record numbers have not

been used. Therefore, the smallest unit of storage in <the cache disk
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designs studied 4is the track. In all cases, only those input/output
events directed to disk or drum devices were considered for caching. Qur
analysis (with the exception of some summary tables) uses only those DASD
1/0s.

The three systems traced were located at the Stanford Linear
Accelerator Center (SLAC), Crocker Bank and Hughes Aircraft. Each is
briefly described below.

The SLAC computer installation at the time of tracing consisted of
two IBM 370/168s and one IBM 360/91, connected via channel-to-channel
adapters. The entire system was controlled by ASP version 3.1, and the
CPU measured, one of the 370/168s, ran 0S/VS2 release 1.6, otherwise known
as SVS. The processor measured was the "support” processor, and was
responsible for all unit record devices, spooling, the text editing and
job entry system (Wylbur [Fajm73]), the time sharing system (Orvyl), and
some portion of the batch workload; the other twc machines were used as
batch worker machines. The I/0 configuration comsisted of 16 IBM 3330
disks (@100 Mb), 27 IBM 2314 disks (@29 megabytes), two IBM 2305 drums,
many tape drives, and numerocus unit record and low activity devices.

The Crocker Bank computer system had two IBM 370/16Bs, which were
connected only in that they shared all of the I/0 devices. The processor
traced ran TSO and small batch Jjobs during the day; at night it was mostly
used for batch production work including bank transaction processing,
business data processing and reporting. The operating system was 0S/VS2
release 3.7, otherwise known as MVS, with JES2. The time sharing and text
editing system was TSO using IB¥ 3277 terminals and SPF (a full screen
editor). Cobol was used heavily with some PL/I and assembler use as well.
The 1/0 configuration consisted of 25 3350 disks (@317 megabytes), 16
3330-11 disks (@200 megabytes), 7 3330 disks (@00 megabytes), and
numerous tape drives, unit record devices and telecommunications
controllers.

The third system traced was at the Hughes Aircraft Company, and
consisted of an Amdahl 470V/6 and an IBM 370/165, loosely coupled via the

ASP system. The installation was the central corporate computer cente;
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for Hughes and ran a variety of work; the machine traced (the 470V/6) ran
TSO, business data processing and production scientific, representing
administrative, scientific, development and engineering support
applications workloads. The operating system was 0S/MVT vrelease 21.8.
The 1/0 configuration consists of 49 IBM 33308, 9 3330-11s, STC Superdisks
equivalent to 16 3330-11s, ome IBM 2305-2, 24 tape drives, plus
communications lines and numerous unit record devices.

D. Data Reduction

As noted above, the primary data collection tool was GTF. Each GTF
record (after, in one case, & modification to GTF) contained the "seek
address” for that I/0; i.e. the device address and track and cylinder
location. Also used, with some modification, was IBM's System Management
Facility (SMF) [IBMY?b] which generates a record for every open and close
of every data set. By combining SMF and GTF data and some partial device
maps it was possible to tag each 1/0 as to the type of file (systenm,
paging, or other) and the type of user (system, batch program, interactive
system (TSO or Wylbur)), wvhere the "user” is the cause of the I/0. This
data reduction effort (described here 8o briefly) was immense and required
man years of effort (see Acknovledgements). Further, the amount of data
gathered is very large; a one day trace comsists of about 1.5 gigabytes of
data, or about 10 full reels of 6250 bpi tape.

The data generated had two important omissions: first, the 1location
of the block referenced by each I/0 within the track was not kmown;
therefore the smallest block size used in any cache disk simulation is one
track. The track size, of course, varies with the device. Second, I1/0
events were not tagged as to read or write; therefore, measurements or
studies vhich depend on knowing whether an event is a read or vwrite were
pot possible and were not dome. (Much more extemsive system modifications
would have been required to obtain this information.)

Ve also note here that the large amount of dats meant that not all
experiments were run on all complete traces. In particular, for many of
the SLAC and Crocker data analysis runs, a trace of one million 1/0s (to

all devices), from a daytime period, was selected for analysis. Since
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pon-DASD I1/0s were discarded, the number of I/0e used was respectively
673K and 835K; see table I.

E. IRU Stack Analysis and Set Associative Mapping

Almost all of our disk cache simulations use a technique known as LRU
stack analysis [Hatt?O]; we assume that the reader is familiar with that
technique. A couple of special aspects of our analysis are worth pointing
out, howvever. Pirst, almost all simulations used set associative mapping
(see e.g. [Smit82]), to reduce the mean stack depth; this technique is
actually used in some commercial implementations of cache disk with which
the author is familiar. The number of sets used is shown in all plots and
tables. Experiments were run (but are not presented here for brevity)
that showed that the effect of the pumber of sets was very small for
realistic disk cache sizes. Second, we note that in many cases, multiple
caches were used. For example, simulations were run showing separate
caches in each device, string controller or channel. In other cases,
separate caches were simulated for each user and file type combinaticn.

F. Simple Data Characterization

In table I we present a number of simple statistics and figures that
characterize the measurements from the three sites. Most of the numbers
presented in table I are self explanatory. ¥e note, however, the row
labeled “fraction seeks.” That set of figures gives the fraction of all
SI0s which resulted in a seek taking place. As has been previously mnoted
(e.g. [sSmit75], [1yne72]), balf or less of all 1/0s tend to require disk
arm movement.

Table II shows the fraction of all DASD 1/0 events that can be
attributed to various File type and User type combinations. We note the
following points. First, the system (operating system and associated
system software, including communications, job entry system, etc.)
accounts for the largest fraction of the 1/0s. This tends t¢o surprise
many people, who perceive system operation as a reflection of the workload
that they directly generate, and not that induced indirectly. We also
pote the small mumber of paging events at SLAC. The SLAC system is

generally run with & large enough memory and a small enough degree of
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Systems Studied

\Site: SLAC Crocker Hughes
Type of Data
Operating System SVs MVS MVT
CPU 370/168 370/168 470V /6
Trace Period Spm-4po Spm-12noomn 6épn-1iam
1/0s(total) 5491891 5367267 3800459
1/0s8(DASD) 3671121 3287641 2731973
1/0s({DASD-short period) 673307 835236 -
1/0s(total)/second 66.3 78.5 62.1
I/0s(DASD)/second 44.3 49.5 44.6
CPU MIPS 2.8 2.8 4.2
fraction seeks .540 355 .41

Table I

Praction of 1/0s by File and User Type

File/User Type SLAC Crocker
Temporary/All L0311 .130
System/Batch .0564 .357
Other/Batch .0367 .192
System/TSQ | ¥Wylbur .4054 .068
Other/TSO,;Wylbur --- .015
System/Systen <4563 167
Paging/System .0136 .072
Other/Systenm .0005 ——
Table II

Distribution of I/0s Among Device Types

Device Type&Site | Fraction DASD I/0s ! Fraction Total I/0s
Crocker Bank

3330-1 .053 .034
3350 .669 422
tape —— .310
other ——— .059
Hughes
3330-1 .562 . 404
3330-11 .154 111
2305 <172 .124
superdisk .111 . 080
tape —— .108
other —— 173
Slac
3330-1 .524 . 350
2314 .190 127
2305 .2B4 .190
tape .- .0518
other ——— . 281

Table III
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pultiprogramming that paging is relatively infrequent; further, the use ¢f

the SVS operating system, which allows only a total address space of 16
megabytes among all processes, restricts the overcommittment of memory.

Table III shows the distribution of activity among the device types.
It is of interest for two reasons. First, we note that in all cases, the
bulk of the activity is directed toward the newest and fastest disks.
Second, the proportion of 1/0 directed toward the tapes varies a great
deal and varies from 5% to 30%.

II1I. Disk Cache Miss Ratio Analysis

As noted earlier, there are a number of aspects of disk cache design
which can be usefully examined by trace driven miss ratio analysis. In
this section we present the results of our analysis, with attention *to
parameters and 1issues such as: how large should the cache be? VWhere
should it be placed (cpu, chanmnel, controller, apindle)? What should the
block size be? What migration algorithm(s) are best? Should all or only
some devices be cached? Should caching be restricted to only some iypes
of files or users? Are there time of day aspects to the effectiveness of
disk cache? Each of these items, and others, are considered below.

A. Cache Capacity

Perhaps the most basic aspect of cache design is the cache size; hovw
large it should be in order to obtain a given hit ratio. In figures 2, 3,
and 4 we show the miss ratio for caches located globally, in each atring
controller, in each disk spindle and (for Hughes only) 4inm each channel
connected to DASD. In each case the block size is one track, the results
are based on the seek address trace for the full measurement pericd, the
write algorithm is COPY back, and the number of sets (using set
associative mapping for the IRU stack simulation) is as indicated. The
curves for the channel, controller and device caches are the miss ratio
per cache, and the capacities must be mpultiplied by the number of caches
to get comparable figures.

As may be seen from the data presented in figures 2, 3 and 4, the

miss ratios for the global cache are already 26% or less at 2 megabytes.
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Improvement is apparent beyond this point, but each successive doubling of
the overall global cache sigze yields only a small improvement. On the
basis of these figures, from 2 to 8 megabytes of total cache capacity
appears to be adequate when there is ome global cache, and the machine is
an IBM 370/168 or similar. (Faster processors, of course, would access
more data per unit time and would need s larger cache.)

It should be pointed out that the miss ratios observed in the three
sites are significantly different; SLAC bas a relatively small disk system
and shows high cache effectiveness. The Crocker Bank system shows the
wvorst performance, perhaps because of the large data bases kept on- line.

An alternative to buffering globally is to place the bduffer in the
channel, string controller or disk spindle. Those measurements are also
shown in figures 2, 3 and 4. Examining the controller miss ratios, we
again see significant differences between the systems. It appears, as 2
generalization, that capacities of from 512K to 2Mbytes per stiring
controller seem to give good results. A%t the device level, 256K to 512K
seem to be needed.

B. Cache Location: hit ratio, consistency and cost.

A disk cache can be placed in any convenient location along the data
path Dbetween the CFU and the disk surface (see figure 1b). In an IBK (or
similar) system, that suggests a mumber of reasonable locatioms: (&) A
global cache, at the cpu, either in pain memory or outboard. (b) A cache
associated with each channel or with a group of channels (e.g- with the
storage director). (c) In/with a storage controller or group of storage
controllers. (d) In/with the string comtroller. (e) In/with each device.
There are & number of considerations in choosing between these
possibilities ipcluding miss ratio, data consistency, and cost.

The closer a cache is to the cpu, the more it may be shared by =&
punber of I/0 devices. That is, if disk x is active at one time, and disk
y at another, they can use the same cache if it is along each of their
data paths to the cpu. The data paths from the cpu resemble for the most

part a tree, 80 sharing is enhanced by buffering mnear the cpu.

(Exceptions include the fact that storage controllers can connect to more
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than one channel and disks to more than one string controller (for some

vendors).)

In table IV we show the number of DASD devices, string controllers
(for DASD) and channels (connected to DASD) for each system measured.
Mul tiplying those pumbers by the suggested capacities noted in section
IV.A above, we find that the total capacity required for a given miss
ratio is much larger for device caches than for string conmtroller caches,
and larger for controller caches than for a global cache. Those global
figures appear in table V. The reason for this phenomenon is that 1/0
loads are unbalanced both statically and dynamically between devices and
strings. By that, we mean that over short periods of time (e.g- minutes)
some devices are much more active than others (dynamic imbalance) and over
long periods of time (days, weeks), some devices are still much more busy.
For example, in [Bast81] jt is stated that over moderate to short periods
of time 60% of the I/0s may go to two devices. It is impossible to
balance devices over short periods of time and even over long periods,
only very approximate balance is possible. Thus, much lowver miss ratios
can be expected for caches closer to the cpu than neer the periphery. (of
course, is there are multiple cpus, then a cache near the device will be
shared by the cpus, with corresponding efficiency considerations.)

Consistency is a second important issuve. If there can be more then
one copy of & given piece of information, all copies must be kept
consistent. The easiest way of doing this is to meke sure that =all
accesses to a given disk spindle pass through the same cache buffer.
Since a given device can be reached'via pore than one channel, storage oOT
string controller (if the system is so wired), a unique path is guaranteed
only if the cache is at the device; othervise explicit steps must be taken
to maintain consistency. A survey of methods for maintaining cache
consistency appears in [Smitsz] where CPU caches are discussed. See also
section IV.F.

The third issue, cost, would almost certainly be minimized by
minimizing the number of different caches in the system, given the same

'hit ratio or total storage capacity. That is, the increased size and
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System Configuration

Site: Crocker Hughes SLAC
System Aspect
DASD 48 63 45
Strings 12 18 13
Channels to DASD 4 10 7
Table IV
Miss Ratios
Total ~—=-==c=—-- Crocker-====r eccccccc-= SLAC-=-wcm=e=-
Capacity Global Controller Device Global Controller Device
1Mo .316 475 .61 «330 . 601 .630
2Mb .259 « 365 <45 .226 414 .496
4Mb .225 275 «330 -146 «326 <370
8Mb .197 233 . 266 .099 .227 271
16¥b .172 .203 . 224 .070 .136 - 174
32Mb. .150 JA77 .199 .050 .085 .109
64Mb .139 .155 175 . 033 . 061 .0Mm
Table V

Lowest Miss Ratio Block Size in Tracks
Global Set Associative Buffering, 16 Sets

Capacity Crocker Hughes SLAC
1MB 1 1 : 1
2MB 2 1
4MB 2 2 1
8MB 4 2 2

16MB 4 4 4

32MB 4 4 4

64MB 8 8 8

Table VI

Effect of Time Period on Miss Ratio
Crocker Bank, 1 Track Blocks,
Global Buffering, 16 Sets

Trace Section: O-1M 124 2-3M 3-4M 4-5M
Cache Size(Megabytes)
1 J313 0 .353 0 .33 .319 0 .303

2 .240 .298 .281 .292 .219

4 195 .27 262 .2T3 .167
8 .158 .258 .249 .260 .123
16 .126 .247 .238 .249 .085
32 .09 .236 .227 .237 .056
64 076  .217 .212 .230 .038
128 062 .183 .195 .224 .026
256 .057 .164 .163 .216 .020

512 056 .163 .159 .215 .019
Rumber of Disk I/0s 635984 517691 452527 646051 830398

Table VII
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complexity of a shared cache would not likely be as costly as replicating
a simpler cache. This suggests that placing the cache in the disk spindle
might not be cost effective.

The placement of the cache affects the amount of 1/0 overhead. If a
cache is placed in the mein memory, for example, a cache hit can bypass
the entire I/0 system, including some operating system routines, the
channel and storage controller, etc. Flacing the controller beyond the
channel means that no operating system or channel time is eliminated; the
latter is quite significant [HuntBO] and can typically be twice as large
as the data transfer time.

Based on the above discussion, it is mnot possible <o specify a
uniquely best location for a cache. Some vendors have chosen to place it
in the storage controller (IBM [1BM81a,b], Memorex [Memo78)), outboard at
the cpu (NEC [TokuB0a]), or inboard, with the cpu main memory [smits1d].

C. Block Size

An important aspect of any cache is the size of the block used. For
reasons noted earlier, we have examined block sizes of 1 track and its
mpultiples, specifically 1, 2, 4 and 8 tracks, and 1, 2, 4 and 8 cylinders.
(Cylinder and track sizes vary between devices, of course.) Mims ratios
for all three sites and for those B8 different block sizes are shown in
figures 5, 6 and 7. It can be seen in those figures that for emall cache
capacities, small block sizes give the lowest miss ratio. For larger
cache sizes, lower miss ratios are obtained with larger block sizes. In
table VI we show the block sizes that give the minimum miss retios at &
given total (global) cache capacity.

The reason for the behavior displayed in figures 5, € and 7 is as
follows: Por small cache sigzes, small blocks permit several pieces of
jnformation to be in the cache at once. If the blocks are large, the
several active blocks must be swapped in and out frequently, rather than
being coresident. If the cache becomes larger, then several large blocks
can be resident at once. In this case, fetching a lot of information with
a large bdlock results in a smaller miss ratio than fetching that

information in pieces using smaller blocks.
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Given, as noted before, that the appropriate buffering capacity is

from 2 to 8B megabytes, block sizes of from 1 to 4 tracks yield minimum
piss ratios. This observation, however, is somevhat misleading. larger
block sizes involve some other costs, the most important of which is that
the very large transfer time for a multitrack block will tie up the device
and data path for a very long time. If the block must be cached before it
is accessed, then the latency for a large block can be a significant
penalty. (See e.g. [Buze82].) Also, physical disk blocks need not end on
a cylinder boundary, which will either result in a block which is
partially full, an odd size block, or & block that must wait for a seek in
the middle of being read or written. Since 1larger block sizes cam be
effectively simulated by prefetching, and since the miss ratio differences
javolved are small, it seems clear that a 1 track block size is best.
(See {DukeBZb] for a discussion of the problem of multitrack physical
blocks.)
D. Migration Algorithms

1. Selective Petch - User Type and File Type

It is very easy to imagine situations in which disk cache would be
very effective, and other situations jn which it would be totally
{neffective; some such have been previously mentioned. For that reason,
ye have classified the "users” (source of an 1/0 request) by type (systez,
interactive (TSO or ¥ylbur), batch job) and the files by type (temporary,
system, paging, other). Miss ratios were collected separately for the
following classes: texmporary files, and then all combinations of user and
file types (excluding temporary). Each such class vas buffered (globally)
jn its own separate cache (which means that if a given track was accessed
by two different iypes of user, it appeared in two different caches). The
miss ratios for each class for one track blocks appear in figures 8 and 9;
data for the Hughes system was not classified by user and file type. From
those figures (and other tables, pot shown), we make the following
observations:

(a) The paging data set(s) appear to shov very little locality; i-.e.

the miss ratio doesn't drop significantly until most of the paging dats
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set is in the buffer. Since we are buffering using the physical disk
addrss, we know nothing about the logical page name. Therefore, we are
able to say very little about the use of gap filler technology for paging
store based on this data. (It is possible that the logical addresses
would show either more or less locality, but we have no way of knowing.)
Prom our other data (not preeented), it is also noitable that increasing
the block size does not seem to help reduce the paging data set miss
ratio.

(b) Slac and Crocker show different comparative results for the
effectiveness of buffering batch vs. buffering system data sets. The
Slac data suggests that temporary data sets show poor locality compared to
batch data sets. The Crocker data shows that the batch data set 1locality
is poorer than the system and temporary data set locality. The first
shift results at Crocker, however, suggest that batch and system data sets
have roughly equal hit ratios when cached. (The workload at Crocker
varies widely with the time of day; that is much less true at Slac.) The
interactive system miss ratios are not markedly different from the other
system miss ratios. On the basis of these measurements, neither batch or
system data sets merit a consistent preference for buffering. The large
variance between SLAC and Crocker, however, suggests that on some systems,
a preference might be useful.

(¢) It is worth noting that the batch and temporary file miss ratios
drop rapidly with dincreasing block size (not shown), whereas the same
phenomenon is not found for the other types of data sets. This suggests,
as one would expect, that such files are accessed sequentially.
Therefore, prefetching might be a good strategy for batch and temporary
files, possibly instead of more buffering.

2. Prefetching

The standard method of moving data into a cache is called "demand
fetch”, by which data is moved into the cache at the time it is first
referenced; thus demand misses result in a latency period during which the

desired information is not available. If it were possible to accurately

guess which disk blocks would be needed in the immediate future, those
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blocks could be prefetched (i.e. fetched in advance) and they would
therefore be available when referenced. Some quite sophisticated methods
of prefetching bhave been devimsed; see for example [Smit?Bd] for
prefetching in database systems, and [Smit78e] for prefetching to cache
end main memory. (See also [BennS1].) For this study, we have examined
only the prefetching method known as "one block lookahead” or OBL.

One block lookahead prefetching can be defined as follows: Consider
each disk (or drum) to consist of a linear addrese space of tracks,
numbered sequentially in the obvious way. Then when a Dblock i is
referenced, OBL prefetching checks to see if block i+1 is resident in the
disk cache. If so, it is moved to the head of the (its) LRU stack; if
not, block i+1 is (pre)fetched (asychronously) and is placed at the top of
its LRU stack. The advantage to OBL prefetching is that if blocks are
being accessed sequentially, it ensures that the next block is either 1in
the cache or on the way in at the time it is firat used. A number of
costs are associated with this prefetch, however. If references are Bnot
sequential, ¢then it does & lot of useless fetches. These useless fetches
tie up the data paths to/from the cache, tie up the spindle, busy the
éache controller, and cause "memory pollution™, which is the phenomenon by
which cache is polluted with blocks which are not in use, at the cost of
removing those that may be reused.

The effects of prefetching, for a glodal cache for each system (with
po user/file type breakdown) are shown in figures 10, 11 and 12; in each
case, prefetching produces a very significant drop in the demand fetch
miss ratio, usually on the order of 10% to 50% for reasonable cache sizes.
We bave also tabulated the effect of prefetching based on user and file
type, but omit the tables for brevity; we do comment on them here, though:
For both Crocker and Slac, we find that for batch files, batch users and
temporary files, lprefetching yields a dramatic drop (up to 80%) in miss
ratio. This is clearly due to the fact that most batch and temporary
files are sequentially allocated and are read and written sequentially.
Conversely, paging data sets shov no improvement from prefetching, which

is consistent with our earlier observation that they show little locality.
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Intermediate between the two cases are system files and filee used by the
system which show some but not massive improvement.

Vide variations in the effectiveness of prefetching can also be seen
by looking at a miss ratio breakdown by device and controller. The
efficacy of prefetching seems to be highly correlated with the type of
files on the device(s).

It is worth noting that our prefetching bas used the crudest
algorithm possible, OBL. A scheme such as that in [Smit?ed], in which a
variable number of blocks are prefetched depending on the observed degree
of sequentiality should show marked improvement. Therefore, we believe
that prefetching should be implemented, but made optional, and the
implementation should be one which minimizes the costs and overhead
associated with prefetching, as noted above.

3. Purge Behind

~ Many files, as noted earlier, are accessed sequentially. For batch
" and temporary files, it would be expected that after block i is
referenced, block i-1 would not have a high probability of reuse. This
leads to the idea that block i-1 could be removed from the cache, which
would free up a cache storage location. If the block removed were indeed
no longer active, then the effect should be beneficial. We define purge
behind replacement as follows: whenever block i is referenced, remove
block i-1 from the cache immediately.

Figures 10, 11 and 12 also show the effect of purge behind and the
effect of purge behind combined with OBL prefetch. As may be seen, purge
behind significantly increases the miss ratio. Breaking down the results
by device, controller, user type and file type shows almost universal
incresses in the miss ratio from purge behind.

Because of these poor results, we recommend that purge behind not be
used in disk caches.

E. WVhich Devices or Controllers to Cache

Tllustrated in figures 13, 14 and 15 are miss ratios for the 7 or 8

most heavily used devices for the Crocker, Hughes and Slac computer

systems. By referring to tables which shov the uses of the various disk
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drives, we note that of the 11 most heavily used devices at Crocker, the
three packs that show the worst cache performance are paging, Dbatch
applications, and un%Povn. At Hughes, the worst results are for the three
scratch packs; we speculate that these spindles contain user batch data
sets with large block sizes, since all three showed excellent results from
prefetching. At Slac, the worst results are for the packs with ASP
spooling and Jjob queue, and the Orvyl (time sharing) file system. (The
pext worst results are for user scratch packs.)

Based on these observations and those in section III.D.1 on user and
file type, the following design principles seen appropriate: (1) A
caching mechanism should have a provision for selecting only certain
devices for caching. (2) Paging data sets/packs should mot be cached.
(3) User data set devices should be cached only if the block sizes are
small enough +that there are at least 2 or 3 blocks per track. (4)
Prefetching should be available for sequential files, especially temporary
files, which are almost always sequential. (5) System packs should be
cached on an individual basis, depending on their contents.

F. Time of Day Effects

In tables VII, VIII and IX, we show the global cache miss ratio as =&
function of the segment (portion) of the seek address trace. That is, the
miss ratio was recorded for each one million trace 1/0s (of which only
some were to DASD) throughout the trace period, using warm start (a full
buffer) for all but the first segment. We can see that the three systels
exhibit somevhat different behavior. The Slac system shows no significant
time of day effects, excepting the initial transient while the cache fills
up. Hughes shows a minor time of day effect, in that in the middle of the
night, the miss ratio drops slightly. Crocker has a very marked effect,
with a miss ratio at night much higher than during first shift. This
latter behavior can be explained by the following argument: online TSO
and IMS applications (during the day) have relatively small data working
sets. The batch jobs and batch IMS applications that run at night (e.g.
check proceasing) have poor locality. Conversely, both Slac and Hughes

run similar workloads during the day and night.
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Effect of Time Period on Miss Ratio
Hughes Aircraft, 1 Track Blocks,
Global Buffering, 16 Sets

Trace Section: O-1M 1=-2M 2-3M
Cache Size{Megabytes)
1 . 261 «217 348

2 .221 .176 .287
4 .195 141 .236
8 JA72 0 L1060 TT
16 .146 .078 .123
32 113 064 .084
64 .080 .056 .056
128 .064 .040 .035

Number of DASD I/0s 693101 TO6571 739077

Table VIII

Effect of Time Period on Miss Ratio
SLAC, 1 Track Blocks,
Global Buffering, 16 Sets

Trace Section: O-1M 1-2M 2-3M 5-4M
Cache Size(Megabytes)
1 .326 . 281 . 333 405

2 .235  .205 .232 .276
4 .172 150 .157  .160
8 132 107 .112 .09
16 .106 .075 .084  .057
32 .088  .051 L063 .036
64 .052 .034 .049 .022
128 .035  .021 036 .04

256 .032 .013 .03 011

031
Fumber of DASD I/0s 614087 681279 639404 678272 646961

Table 1IX

4-5M

406
0267
-151
.094
.060
.036
.024
0014
.010
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These time varying performance figures will reinforce our later
discussion (section IV.D) about the advantages of dynamic on/off for the
cache.

G. Static Device

One possible use for a level of storage between disk and mein
storage, the "gap filler”, is as a statically sllocated device, not for 2
dynamically managed cache such as we have discussed so far. The idea is
to statically allocate to the gap filler device those data sets with the
highest density (rate per byte) of reference. Such a use exactly reflects
what this author calls the "lambda(i,j)" model, by which user i references
file j as a Poisson process with rate lambda(i,j); if such a model is
valid, then an optimal static allocation should give non-lookahead optimal
results.

The method that we use to get a static allocation is loockahead
optimal. Por each DASD (disk and drum) cylinder, the entire trace was
processed, and the number of references to that cylinder was counted; then
the density of reference for each cylinder was computed, since the
cylinders varied in size by device. PFinally, the cylinders were morted by
decreasing density of reference and the miss ratic was computed.

In fiéures 16, 17 and 18, the static and dynamic miss ratios are
compared. It can be seen that except for very small cache sizes (where
the set associative mapping distorts the results) and very 1large cache
sizes (where the entire DASD addrees space is in the cache), the miss
ratios for dynamic management are dramatically better. Thus with respect
to miss ratio, a static device is & very poor idea. This also suggests
that fixed disk arms (as are available on the 3330 and 3350 disks) are not
cost effective.

An implication of the results presented in this section is that the
lambda(i,j) model, like the independent reference model for programs, is
not valid; reference probabilities are clearly time varying. Mathemsatical
models which are sensitive to the time invariance of the 1lambda(i,j)

assumption are also therefore not valid.



(saLaad) 3zIs IHOVI

ol y0!
— | 20 2L | ) § J- TreE V7 v ] LA BRI v |

N A | ]
— » —
' [~ e hohf::::z:.o ’

- - *
L e *06 ]
L > ~ + u
~ * —
T e * i
- ~ % -

~ .
[ . ~ ]
~ R ]
[ . 3 —
[ o .¢.¢¢. ]
o N\ ° -
poe , - -
-~ A
pe— ’ ... ——
! ouvis - M )
B S44S 01 ‘OINVNAQ + N “
- £X2018 HAANTIAD § W
[ 'uGaV Naas NELO ‘OVIS T
Al A A _D AL A A A 4 F _ Ad b A b Ad -¢ .4
dHOVD JINVNAQ ANV JLLVLS JU4VdNOD
gL 34nb4

Ll 3anb 4

00

20
[
(2]
[7/]

Yo w
a3
o

90

80

(SaLAGM) AZIS FHOVD

01 0! y0! 01

|- i J —--- L —--11 L] L | —-:4- ) | L §

- E — o0
- -~ ~ . o4

" . LN .

[ RS Yooy ]

— N S+ —1 2o

a8 A ... -4
5 N N Y 4
- > *< 5
— AN . — vo
- . .

o3 ~ -

L N . J

- . : — 90
i ‘. ]

L JUVIS - . ,

" 6435 91 "DINVNAQ + S - g0
a £3001a HIANIAD | Sl
[ ‘¥aqv ¥33s N2 ‘SAHONH v
4 A --PhFh A A —Ihhbb A 1 A --.-. 4 e 2 *

FHOVD JINVNAQ ANV JLLVLS J4VdNOD
(SALAgN) AZIS FHOVD
(1] § 1]} (1] §

ﬂ ~T ¥ § 0 1 v L L4 m— T76§8 0 ¥ v L4 ) J ’— LB LB
R S T T T TTVUN -] 00
L - - ”“ i
o ~ ~ . .0.0. b
- ~ .’
= ~ ‘v e b
[ ~ — 2o
” > ~ .*n’. 4

~ 8 J
- ~ PP
=3 ~ . -
- . i — Y0
- ~ M -
L - . -
~ M o
o ~ .
- Y . -
- S 1 - 00
r ouvIS - S 0]
[ 495 91 'DINVNAG + ~
- $%201d HZANTTAD § A I
T, » * - n °
Madv ¥33s NSEe .Enx“xu | ]

4HOVO JINVNAQ QNV JLLVLS JHVdNOD
9| 3unby4

OLLVY SSIR

OLLVY SSIR




-28-~
IV. Design Considerations

It was noted earlier that there are a number of design copsiderations
which we have not evaluated by means of a miss ratio analysis. There are
three reasons why we haven't donme so: first, our data is limited (e.g.
po read/write differentiation) and therefore, some studies are not
possible. Second, some items, vhile performance related (e.g. path
contention), are mnot usefully examined by that means. Finally some
topics, such as error recovery or data consistency, are not primarily
performance related. Therefore in this section we consider a number of
design considerations, but without the use of trace data analysis.

A. Access Time and Bandwidth

The access time of a disk cache depends on both the access time
desirable for performance Teasons and that achievable from technology
considerations. Because current disks are acceasible imn 20-30 ms.,
average, [HuntBO], any access time less than 10 ms. should yield
significant performance gains. Therefore, the access time can be 8llowed
to be primarily a function of the technology, as discussed below in
section IV.E. MOS RAMs or CCD's are very fast and access times of 1 ms.
or so ought to be easily achieved. Magnetic bubbles are a loit slower;
their access time could be as much as 5 or 10 ms. depending on the
implementation. These times are still acceptable in most cases. Kote
that the effective access time is the sum of the device access time, the
trapsmission time (including apy peth contention delays), channel and
storage controller "overhead” (command processing time), and the operating
system (0S) overhead time. Therefore, the device access time may not be
the limiting factor.

The bandwidth of a disk cache should be dictated by the desired
access time. If one assumes that it should be possible to transmit s
typical block (e.g. 4Kbytes) in less than 1 ms., this implies a data rate
of at least 4 negabytes/aecond. This compares to a current maximum of 3
¥B/sec. in IEM systems (to/from the 3380 disk) and up to 5 MB/sec. in
Cray I systems. Thus, figures in this range are already available, and

higher rates should be straightforward to obtain for this special case.
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(High 1/0 rates are expensive to implement, and may require short cables.
They are probably not Justified for many other devices.)

B. Multipathing

There are several stages in the data path between the disk surface
and the CPU and each stage is a point at which 1/0 congestion can occur.
Consider a system in which the data peth is {cpu <=> channel <-> storage
controller <-> string controller <{-> disk apindle}. Assume 3 Kbyte blocks
on the disk, 16 ms. disk rotation time, and 3 megabytes/sec.
transmission rate (i.e. approximately an IBM 3380 disk). Then the mean
latency is 8 ms. and the transmission time for a block.is 1 ms; thus
excluding seek time, the disk 1/0 time is 9 ms. Assume k disks/string and
3 strings/controller. Let the utilization of the disk (excluding seek
time and missed RPS delays; i.e. including only rotational latency and
transmission time) be x. Then the disk transmits 1/9 of x time. The
string controller is busy with data transmission k/9 of x. The storage
controller is busy for data transmission jk/9 of x. (Assuming 1 e&tring
controller per string, and each string connected to only one storage
controller.) For k=6 and j=3 (typical figures), the bottlenmeck is the
storage controller, which is twice as busy as the disk and 3 times as busy
as the string controller. (The channel is likely even busier than the
storage controller, since there are usually fewer channels accessing the
disk system than there are storage controllers.) Even allowing for seek
time (approximately 40% of I/0s require seeks, at a mean of 3Oms./seek.
(see table I); and missed RPS delays (at 16ms. per miss for a full
rotation time),(the bottleneck is likely to be at the storage controller
and channel. (It is also worth noting that the channel “"overhesd"
(command processing time) might typically be twice the transmission time
[Hunts0].)

The congestion at the storage controller is worse when the storage
controller coptains a cache. Assume a COPY back and allocate on write
strategy. A hit to the cache requires the tranefer (to the CPU) of only
the bytes accessed. A miss to the cache requires that the cache be

loaded, and then the I/0 takes place to the cache. (Fetch bypass can also
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be used, whereby the information is transmitted at the same time as the

cache is loaded.) If each record is read exactly once, then the traffic to
the storage controller has doubled; i.e. each byte is loaded into the
cache when a miss occurs, and is then read by the CFU. (The hit ratio may
still be high in this case, since the blocks can be small and several may
be in each track.) For a write, the track is loaded, the write occurs, and
finally the track is written back, thus tripling the I1/0 traffic if each
byte on the track is written exactly once. If only some of the records on
each track are accessed (read or written), the factor by which the
utiligation of the storage controller data path has gone up is still
larger, because the whole track still gets loaded.

The implication of the above argument is that a workable disk cache,
if 1located at the storage controller, must have multiple data paths. In
particular, it should be possible to read or write the cache from the CPU
at the same time a cache to disk or disk to cache transfer is taking
place. More than two data paths would be even better. The performance
impact is discussed further in section IV.K.

C. Write Through Vs. Copy Back

A write through cache is one in which all writes go immediately to
the disk surface. A write through cache can be implemented with three
different allocation mechanisms: (1) Write allocate means that a copy is
made in the cache on a write, even if the block has not been in the cache
previously. (2) Write update means that (only) if a copy is already in
the cache, is it updated. (3) Write purge meeans that if a copy is in the
cache, it is purged. A corpy back cache accepts writes and transfers thenm
to the disk surface when that jpformation is pushed from the cache. A
copy back cache is usually implemented with write allocate, by first
reading the block to be written to, if it is not already in the cache, and
then modifying it.

A write, in a write through cache, has many of the undesirable
characteristics of a read miss. Even though the CPU does pot have to wait
for a write to complete to continue work on a given process (unless the

operating system so requiree), the write still takes the time of =&
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physical disk access, and the relevant datam paths are made busy for its
duration. Since in many systems, writes are about one quarter to one
third of all I/0s, it should be clear that the frequency of disk access
will be significantly higher in many or most write through systems as
opposed to copy Dback. Performance thus suggests that copy back should
work betier then write through.

Two aspects of aystem design favor write through: error recovery and
consistency. Each is discussed in more detail below in its own section.
We do note here, however, a modificstion to write through with performance
advantages. It is suggested in [DukeBZa] that twoc completions be
signalled on &8 write. The first specifies that the write is complete to
the cache {80 that processing can continue); the second indicates that the
write is complete to the disk surface (so that reliasbility and recovery
are assured).

There is a peculiarity to some system architectures (IBM's in
particular) which makes it difficult to implement a copy back write
through cache. In IBM's count-key-data architecture [SmitBia], g sequence
of data commands is followed by the command which indicates whether the
transfer is actually & read or write. Therefore, the transfer can't be
set up (to disk or to cache) until the last command is received. This
problem does not occur in the newer fixed block architecture (FBA) of the
3310 and 3370 disks [Smit81a,IBM79a,b].

A minor complication which relates to copy back is the removable
volume problem. If & disk can be dismounted, all buffered information
must be written back first. This must be provided for.

The conflict between performance and reliability suggests that =
mixture of modes may be desirable. It is worth noting that the desaign by
NEC [TokuSOa] has multiple modes; temporary files can be made write
through with allocate on write, and files in "high speed mode” can be made
cache resident only; the normel mode is write through with update on

write.
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D. Dynamic Cache On/Off

It is quite posasible for a disk cache to lessen rather than improve
performance (see e.g. [Buzesz]). Consider, for example, a file which is
stored with one large block ver disk track, and which is read once. In
that case, each block will be resd to cache and then to the cpu, thus
doubling the I/0 traffic, and causing the 1/0 access time <to increase.
The hit ratio would be zero. Somewhat less realistic but even worse cases
can be proposed. Further, it is likely that such poor rerforming
situations will occur unpredictably, and will be intermixed with I/0 in
which high hit ratios are observed.

The possible unpredictable occurrence of situations in which the digsk
cache reduces the performance of the computer system suggests that it
might be a good idea +to permit a disk cache to turn itself on and off
dynamically. That is, the eache would dynamically monitor its own miss
ratio and write ratio (fraction of 1/0s that are writes). When these were
found to be too high, the cache would disable itself, with respect to the
offending devices or strings. The cache could continue to simulate the
miss ratio to be expected were it still amctive (by maintaining a "shadow
directory”), and could turn itself orn when performance had improved
sufficiently.

This idea has not yet been tested, and algorithms need to be
developed to specify when the cache should be enabled and disshled.

E. Technology

There are three technologies that have been suggested in the paat for
use as a level of storage between disk and main memory. These three are
charge coupled devices (CCDs), magnetic bubbles and electron beam accessed
memory (EBAM). EBAM bhas not proved to be a viable technology and there
are currently no commercial EBAM projects. C(CDs have not been available
in sufficient supply in recent years and in all probability will not
experience increased availability in the near future. It was generslly
predicted however [Hodg?S], that they would be two to four times cheaper
on a cost per bit basias should they ever be produced in compareble volume.

Magnetic bubbles are also not yet available in adequate volumes and at
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reasonable prices. Purther, they are somewhat slow and might not be

suitable for many cache designs.

A better choice, and onme which has been made for all current
commercial designs, is that of MOS RAM. At the time of this writing, the
memory chips for a megabyte can be purchased for $500, and the performance
and design advantages of RAM are obvious.

MOS RAM is the technology used for main memory, and the question
arises as to why there is an advantage to disk cache, when the use of the
storage in main memory is more general. There are several reasons, vhich
are discussed elsewhere in this paper, but we note in particular:
consistency problems may be worse if data is shared between independent
cpus, and operating system modifications are certainly required for a main
memory cache.

F. Consistency

One problem with disk cache is that multiple copies of data may
exist; omne copy on the disk, and one in each cache connected to it. The
important point is that at any point in time there be a unique value for
every byte in a file and any attempt to read or write that file should
reference the uniquely correct value at that time.

There appear to be two general ways of ensuring that all cpus have
consistent views of a given file. Ome is to force all accesses to a given
disk to be via +the same cache; this solution may not permit sufficient
bandwidth, however. Further, it won't work if the cache is located in the
channel or main memory, neither of which are shared between independent
cpus.

The alternative is to provide explicit synchronization. The
synchronization required would depend on the cache design. For example,
consider a write through cache. 1In that case, it is sufficient that if a
file 3s opened for writing, there be no other readers or writers. If the
cache is copy-back, then it is necessary that all modified file blocks be
rewritten to the disk before that file can be read along a different data
path. See [SmitBZ] for a more thorough discussion, in the context of CPU

caches.
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It is possible for there to be inconsistent copies of a [file even
with only one cpu. Suppose that there are two (or more) data paths to a
given file from a single cpu, with a copy back cache along each path. In
that case, it is possible for each cache to have different values for
blocks of the file; this situation must be prevented via either explicit
synchronization or by allowing only a unique peth to a given disk from a
given cpu.

G. Error Recovery

Since disks are generally highly reliable, most operating systems
assume that once something is written to disk it is permanently stored and
will not be lost in a system failure. A disk cache design cannot afford
to lower this level of reliability, otherwise it would not be commercially
acceptable. The possible exception is that the loss of temporary files by
jobs that would be restarted after a crash would be permissible; ¢this is
what is presumed by "high speed file mode” in the NEC disk cache
[Tokus0a].

There are therefore three features that should be part of a disk
cache design: (1) Error correcting codes must be used in the cache to
avoid 1/0 data errors, even though a correct copy of the data may exist on
the disk. (2) A copy back cache must be nonvolatile, which implies either
magnetic bubbles or battery back-up. The probability of a failure must be
insignificant. (3) If the cache is disabled, there should be provision
for access to the disks without the use of the cache.

H. Software vs. Hardware Management and Locus of Conmtrol

A disk cache will consist of several parts: (1) the storage array,
which holds the data, (2) the directory, which specifies which blocks are
in the cache, where they belong on disk, etc., (3) the control mechanism
or logic, and (4) the data transfer logic. The question about items 3 and
4 4is whether they should be implemented in software or hardwvare, and
vhere.

The locus of control for the cache can be either in the same location
as the cache (e.g. the storage controller) or the cache can be managed

from the cpu by means of the system software. There are several reasons
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pot to do the latter: (1) The cpu would take on a new and significant
processing task, resulting in increased supervisor overhead. (2) If there
is more than one cpu sharing a cache, this could lead to either
significant additional overhead to maintain consistency and error free
operation of <the shared cache, or to possible failure. (3) In the event
of system failure, it seems easiest to preserve cache integrity if the
control is local.

Because of the complexity of the cache control (with respect to
synchronization, directory maintenance, dynamic on/off, etc.), it should
be clear that the control should be either in software or microcode; it is
not feasible to hardwire it. Further, the algorithms for ceche operation
will 1likely be changed and updated, which is much more easily done in
software or microcode. Conversely, the data transfer 1logic, which must
transfer data at high {(>=3 megabytes/sec.) rates, will have to be
hardwired; software isn't fast enough.

I. Operating System Implications of Disk Cache

The use of disk cache in a computer system has implications for the
operating system, both as to correctness and system performance. The
correctness aspects have already been discussed. The performance aspects
of disk cache are somewhat more subtle, and each is discussed below.

Mechanisms for data set searches [Knut73] are typically reflective of
the storage technology used. For large disk data sets, tree structures
are often used to minimize the number of disk blocks read. Such tree
structured indexes can be even more efficient when the highest level or
levels of the indexes can be expected to stay cache resident. Conversely,
linear searches, such as occur in reading catalogs and volume tables of
contents, should not be permitted to go through a disk cache. Such =&
linear search (with large block siges) is likely to flush the cache of
other, more useful information, without achieving a high hit ratio itself.

Some systems maintain main memory buffers which serve the same
function as a disk cache. Unix [Rich74], for example, keeps a main memory
I/0 buffer. ms [Date??] maintains a buffer of recently accessed blocks
of the data base. It is preferable that multiple buffers serving the same
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function not be used; if they are, the result is {ncreased overhead, and
possible side effects leading to worse performance. Por example, if a
main buffer captures many data rereferences, the reference siream to - the
disk cache can result in the wrong blocks being kept.

The existence of a disk cache adds a new parameter to disk I/Os: the
probability of a miss. Therefore, for all 1/0 syeten optimirations, there
is a pew figure of merit to consider. For example, if the cache is write
through, then writes count (more or less) as misses. Thus whenever there
are tradeoffs between reads and writes, one would nov prefer to a greater
extent additional reads and fewer writes. Also, large block siges are
likely to lower the hit ratio, ®so much of the incentive for increasing the
block size is gone.

Traditionally, data sets are placed on 1/0 devices so as to balance
the load among spindles, controllers and channels. ¥With a cache, the load
must still be balanced, but the effective load depends on the hit ratio.
In addition, one may want ¢to segregate those data sets suitable for
caching from those that are not; thus caching can be made selective on a
device or string basis.

The use of an electronic drum and/or disk cache may suggest some
changes in the scheduling algorithms used apd in the way the dispatcher
operates. For example, there is significant overhead in standard 1/0
processing, including handing 1/0 interrupts and executing the dispatcher
at least twice. If the time to complete the I/0 is short emough, it may
be more effective to wait for the I/0 to finish rather than to task
switch. (If the cache is in main memory, then of course a real I/0 has to
be issued only on a miss.) Similarly, one might add as a factor in the
dispatching algorithm information about which ready process has the most
blocks in the cache; it would generally be advantageous to start a process
which is using a lot of cache blocks.

I. Cache Visibility, User Control and Operating System Modifications

The purpose of a disk cache is to improve performance; it bhas no
other user visible function. Thus, for example, if a cache is located in

the string or storage controller, it should be possible to activate or
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deactivate the cache, or for that matter, interchange a storage controller
without & cache with one that has a cache, all without the user having to
change either his programs Or the way din which he uses the system.
Further, in that case, it should be possible to add or delete the cache
without even modifying the operating system.

The problem with a completely invisible cache is that it sacrifices
possible performance benefits. For example, if it is known that a given
f£ile can be lost without ill effects in a system failure, thep write
through need not be used. Similarly, a temporary file can be written with
write allocate, whereas a permanent file should be written without write
allocate. If the cache is in main memory, which bhas the performance
advantages noted above (section III.B), then the cache must be visible to
the operating system, vhich must have been modified to manage it.

As ope example of the performance advantages to be gained by a user
visible cache, we note the cache built by NEC for the ACOS 1000 [TokuBOa].
In that system, running real commercial workloads, performance
improvements using all possible file modes (described further in section
VII.A) are twice those available using only the basic (write through, no
write allocate) mode.

To obtain the full possible performance benefits for a disk cache, it
seems clear that there must exist a mechanism for the user (or the systenm,
by default for certain classes of files) to specify how the cache should
handle I/0s to a given file. This can be done in most systems by adding
one or more parameters to the command that opens file. Imn, for example,
an IBY OS based system, Jjob control language (JCL) parameters can be
added.

K. Performance Impact

As poted esrlier, wve have not attempted to directly calculate the
performance impact of disk cache in this paper. There is one paper in the
literature which does 1look at the effect of disk cache on the mean I/C
access time. In [BuzeS2] it is observed that if the read/write ratio is
high enough and the hit ratio is bhigh enough, then the use of cache disk

can significantly cut mean 1/0 time; conversely, if the miss ratio is 1low
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and/or the read write ratio is 1low, I/0 access time increases. That
analysis, however, assumes a single data path through the cached
controller; thus the disk cache has the potential of impeding performance.
Analysis of a design with multiple data paths should shovw much better

results.

V. Disk Spindle Buffers

The purpose of disk cache is to frequently eliminate the mechanical
access time component of disk I/0. An examination of the components of
that access time also suggests another idea. Most modern disk drives have
a feature known as rotational position sensing (RPS), which works as
follows. A command is given to the disk to search for a specific record;
when that record is recognized, the disk attempts to reconnect ¢to the
storage controller and channel. If both are free, then the data transfer
begins. If one or both are busy (the reconnect fails) then a full
rotation time must elapse (until the record passes under the read heads)
before transmission can again be attempted. This delay (kmown as an RPS
miss) can add significantly to mean I1/0 times [HuntBO] and its freguency
is obviously very semsitive to the utilization of the channel and storage
controller.

A mechanism to eliminate RPS misses is called the Disk Spindle Buffer
(or the DASD arm buffer [Hunt81]). The idea is to build into each disk
spindle (or each disk amm controller - i.e. device address) a buffer
capable of holding a disk track or some part thereof. A read from disk
would then consist of the device accepting the command, loeding the buffer
with the +track (or record), and then seizing the data path to the cpu as
soon as it becomes available, without waiting for a specific angular
poeition of the disk. In this way, RPS misses are eliminated, and
further, the channel utilization can be increased greatly. Previously, if
the channel utilization became too high (above 30 or 40%) [Bere78]. RPS
mieses became quite frequent and costly. With a spindle buffer, queueing

can take place in a useful way.
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A spindle buffer also has another potential advantage. All transfers
to/from a disk must run at exactly the transmission rate of the device,
which itself is a function of the bit density along the disk track. If
transfers are buffered in electronic storage, they can be made at
arbitrary speeds, and also asynchronously. That is, they can be
interrupted by other (unbuffered) transfers, or can be slowed down if the
channel or storage controller is otherwise too busy to operate at the full

data rate.

VI. Alternatives to Disk Cache

Disk cache has been proposed as a solution to & predicted I/0
bottleneck. There are other ways to approach this problem and we discuss
them in this section.

One of the reasons that disk cache is so effective is that it avoids
repeated physical 1/0s to read many small blocks; those blocks are read
(or written) from disk to cache a track at a time, and are then sent to
the cpu from electronic storage. It is well kmown (see e.g. [Berb78))
that block sizes are frequently small, and that larger block siges improve
performance [Bere?B]. If system users begin to use relatively large block
sizes (half or full track), then disk cache ceases to be very useful for
sequential files. This is evident from an examination of our miss ratio
data on a device by device basis. When the miss ratios for scratch
volumes (not shown) are examined, miss ratios can be seen to be very high.
The reason is that scratch volumes are often used by experienced users to
hold large sequential data sets with large block sigzes; in that case,
rereferences to a given track are infrequent.

A certain amount of input/output occurs because of the 1limited size
of mein memory. For example, old compilers typically generate large
pumbers of temporary files so that they can run in small (50K, 10CK)
memory sizes. Each such temporary pust be written and then reread. With
large modern main memories, most such information can be kept in main
storage; thus that fraction of I/0 (see table II) going to temporary files

can be almost eliminated.
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Some systems already do a significant amount of internmal buffering.
For example, it was noted earlier that the IMS data base system keeps its
own buffer of recently used blocks. Similarly, UNIX maintains its own
pain memory I/0 buffer. To the extent that dedicated buffers are set up
to manage 1/0 streams, the disk cache becomes redundant. In many cases,
it can be expected that the author of a system or program vill be bdetter
sble to manage his buffers than a standardized, shared disk ceche. Ve
don't believe that this is a good approach, hovever, because of the time,
effort and expense of writing many different buffering systems, some of
which may not actually be effective.

The idea of disk cache ie that it is a self managed cache which
retains recently used blocks of data. An alternative is to create an
explicitly managed electronic storage device, such as the electronic drums
made by Intel (FAST-3805 [Inte79] and 3825) and Storage Technology (3805).
Software already exists to manage drums and to maintain on them the most
frequently used information. In some cases, that software may work fairly
well.

From the above list of alternatives, we can see that each performs
one or more functions of the disk cache. Internal buffers and main memory
keep data in electronic storage just as does disk cache. Reblocking does
explicitly what disk cache does automatically. Thus to the extent that
one or more of these techniques are implemented, the projected 1/0
bottleneck is put off; if all are implemented, then disk cache becomes
redundant. The appealing aspect of disk cache is that it is a simple and
elegant solution which avoids the need for many small and costly systenm

changes and improvements.

VII. Commercial Disk Cache Products

In the last two to four years, a number of cache disk producte have
been announced; some have actually been delivered. In this section, we
mention some of them, with particular attention to the KEC and 1IBM

designs.
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A. The Kippon Electric (NEC) Integrated Disk Cache

FNEC has designed and tested a disk cache for their ACOS 1000 system
[TokuB0a). That wmachine is structured around a "system control unit”
(SCU) through which all input/output passes. Attached to the SCU is the
disk cache; thus the cache is global to the entire system and is
accessible on all I/Os. Purther, the operating system is aware of the
disk cache, and the type of caching provided is determined by the
operating system based on the file type. Performance is also improved by
providing a 5.3 MByte/second 1/0 rate between the cache and mein memory.

The disks in the NEC system are fixed sectored, and the cache holds
fized size blocks, equal to some {adjustable) multiple of the fixed block
size. These blocks are arranged in a set associative manner (as with our
simulations) with IRU replacement within each set.

One of the most interesting features of the NEC cache is that it
provides four different modes of operation, depending on the file type:

Y. Basic Mode- (i) A read hit is serviced by a read of ome block
from the cache. A read miss results in a load to the cache followed by a
read from the cache. (ii) A write always goes directly to disk, with
write update if the block is also in the cache. Completion is reported
only after the physical disk update.

2. Sequential File Mode - This is the same as the Basic Mode,
except: A read miss causes n records to be prefetched into the cache. A
cache block whose last record has been accessed is placed at the head of
the list for replacement. (Similar to "purge behind".)

3. Temporary File Mode - Same as basic mode, except with write
allocate as well as write update.

4. High Speed Pile Mode - The file is allocated to the disk cache
only and is never written to disk; space must be preallocated. This mode
is used for temporary files only, and is vulnerable to cache failure.

Error correction is provided. Upon cache failure, only <the use of
high speed file mode can cause a job to fail; in all other cases, a

failure of the cache will cause the cache to be bypassed.
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Some performance figures are reported, with the use of all but high
speed mode. Hit ratios of 60% to 95% are observed in practice, and the
elapsed job times decrease by 10% to 35%. Response time decreases for
interactive use by 15% to 25%. It has also been observed [Tokusob] that
the use of basic mode alone yields only about half of the potential
performance gains.

B. IBM 3880 Mod 11 and Mod 13.

The IBM 3880 Model 11 storage controller [IBH81a] is a storage
controller expressly designed for paging and swapping. 1t has a capacity
of 8 megsbytes, and can transfer data to the channel at up to 3
megabytes/sec.. Its use is invisible to the user and operating system and
no changes are required by either. It will support up to one string of 8
model 3350 disks, although two disks are recommended per cache. Access
time on a page read hit is 2.4 ms. It appears to use copy back rather
than write through, although the documentation is not explicit. It also
appears that there is only one data path in the storage controller (to
which the cache is connected); thus at most one 1/0 operation can be
transferring data at a time.

There appear to be two problems with the 3880 mod 11: First, our
earlier results suggest that paging data sets have lov locality, and that
therefore the hit ratio will be low. (But it may be possible <o
reorganize the paging data sets in such a way that they can be cached
effectively.) Second, the existence of only one data path suggests that
there may be path contention; the suggested restriction to only two disks
implies that IBM is aware of the problem. Ko performance results on the
3880/11 have been published yet, but for the reasons noted, significant
system performance improvements are unlikely.

The IEM 3880 mod 13 storage controller [IBH81b] uses a different
cache design than the mod 11 and is explicitly designed for nonpaging 1/0.
It can have either 4 or 8 megabytes, and can attach to two storage
directors. It supports only IBM 3380 disks. The 1/0 transfer rate is 3
Mbytes/sec. Use of the cache requires no changes in either the operating

system or the user program. Individual devices attached to the controller
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can be locked out of use of the cache. It is possible to lock certain

data sets into the cache; prefetching appears to also be implemented for
sequential data sets. Write through is used with write update but no
write allocate. Read hit access time is an average of 3.5 ms. Read hit
ratios (based on sample IBM benchmarks) are claimed to range from 50% to
85% at 4 megabytes, and 65% to 90% at B megabytes.

It also appears that only one data path to/from the 3880/13 cache can
be active at any one time. This fact, plus the use of write <through and
the fact that I/0 overhead has not been cut, suggests that only small
performance improvements are possible with the current 3880 designs. This
impression is reinforced by the analysis presented in [BuzeBZ].

C. Other Cache Disk Systems

Some time ago, Memorex [Memo78] designed and build a disk cache (the
model 3770) into one of their storage comtrollers. It contained 1 to 18
megabytes of storage which buffered recently used ¢tracks using LRU
replacement. The 3770 was never commercially successful, due among other
reasons to the fact that since the cache had only one data path, with no
fetch bypass (a miss caused a load, followed by a read from the cache).
Performance improvements, if any were minor.

Storage Technology offers a disk cache system, the 88390 Intelligent
Disk Controller, or Sybercache [CoteBZ] [StorﬁZ]. It consists of from 1.5
to 12 megabytes of RAM storage associated with two storage directors. A
"typical” configuration would be 6 megabytes of storage and 16 spindles.
The design uses write through and full track blocks. Ko actual
performance figures are presented in [Cote82].

Amperif manufactures a disk cache which can be used on Sperry Univac
computers. Significant performance improvements [Comp&?d] are reported
from its use. Sperry Univac also manufactures its own cache disk system
[Sper81]. Amperif also bas a model of their cache [CompBZb] that is
specifically designed to run with the Airlipe Control Program on IBM
computers.

Computer Automation [Huge82] makes a disk cache to run with their

SyFA 1line of minicomputers. It uses from .5 to 2 megabytes of RAM,
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echieves an average access time for a hit of 4 ms. and a hit ratio
average of 85% is claimed. Replacement is by a complex algorithm
reflecting both the amount of reference and ¢time since 1last reference.
Write through is used.

Other disk caches are announced and/or manufactured by Minicomputer
Technology LElec81] for the DEC FDP-11 and VAX, by Point4 Data [compsa2c]
for their Mark 5 or Mark 8 minicomputers, by Qualex Technology [CompBZa]
for the HP 3000 computers, by Integrated Business Computers [IBCBZ], by
IBM for the Series I [ElecB}]. and one vendor has a software package that
simulates a disk cache in main memory [InfoBB].

VIII. Summary and Conclusions

As explained at the beginning of this paper, the rapid dincrease in
cpu performance without a corresponding improvement in the performance of
mechanical I/0 devices is leading to an 1/0 bottleneck. The addition of a
disk cache to a large computer system can result in significant
performance improvements and elimination of the projected I/0 bottlemeck.
Our trace driven experiments and the commercial benchmarks reported all
show that a disk cache can capture 60-95% of 1/0s, with access times for
read operations of 2 to 4 ms.

Reflecting the clear desirability of disk cache, a number of
commercial instances of this product have been produced in the last few
years. Performance figures, where reported, confirm the utility of disk
cache. In some cases, however, the designs are suspect, due to the lack
of multiple data paths to/through the cache; those products may not be
useful.

The experiments reported in this paper are only a fraction of the
range of data we have gathered. Bever the less, there are a number of
aspects of disk cache design that have not yet been investigated, and need

to be explored. Migration algorithms peed to be studied further, and the
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effectiveness of more sophisticated prefetch algorithme must be tested.
Algorithms for managing a dynamic on/off cache must be developed. The
overall system performance impact needs to be quantified.

The data that we have currently available is mnot sufficient, but
there is <the need to study information gathered from non-IBM systems, to
look at the frequency of writes and compare write through with copy back,

and to further refine the measurements with regard to user and file type.
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