PERFORMANCE ANALYSIS OF
SEVERAL BACKEND DATABASE ARCHITECTURES

Robert Brian Hagmann

Computer Science Division
Department of Electrical Engineering and Computer Science
Universtiy of California
Berkeley, California 94720

ABSTRACT

With the growing acceptance of database systems, the performance of these systems
becomes increasingly more important. One way to gain performance is to off-load some of the
functions of the database system to a backend computer. The problem is what functions should
be ofi-loaded to maximize the benefits of distributed processing.

The approach in this research consists of constructing several variants of an existing
relational database system, INGRES, that partition the database system software into two parts,
and assigning these two parts to two computers connected by a local area network. For the
purposes of this experiment, six different variants of the database software were constructed to
test the six most interesting functional subdivisions. Each variant was then benchmarked using
two different databases and query streams. The communication medium and software were also
benchmarked to measure their contribution to the performance of each configuration.

Combining the database and network measurement results, various conclusions were reached
about the viability of the configurations, the desirable properties of the communications
mechanisms to be used, the operating system interface and overbead, and the performance of the
database system. The variants to be preferred depend on the hardware technology, operating
system features, database system internal structure, and network software overhead.

PERFORMANCE ANALYSIS OF

SEVERAL BACKEND DATABASE ARCHITECTURES

Copyright © 1983

Robert Brian Hagmann

Chapter 1. Introduction ...
1.1 The Problemccvvmvverinnceeneee
1.2 Motivationccceceveemmmmnineneanen
1.3 Approach ...

Table of Contents

...
...
...

...

1.4 Functions of a Database System ...

1.5 Qutline ..ovvieeiricririnieiiinneenens

Chapter 2. Survey of Backend Database Machinescocvveermrerciiisiinriiieneeenns

2.1 Simple Disk Controllers
2.2 Complex Disk Controllers

...

2.3 Simple Backend with a Low Level Interfaceooovcninniinnainccnnes
2.3.1 Software AG's ADABAS Data Base Machineccoooneincciccicnnnnns

2.3.2 Experimental Data Manage

ment SYSLeM ...ocooovvniimmnieencnsieisieniinennnnes

2.3.3 Copernique MIX's Navigational Interfacecooeiciinmicnniassnnns
2 4 Backend Machines with a High Level Interfacecccveiinincnniinininnn.

2.4.1 Britton-Lee’s Intelligent Da
2.4.2 Intei's Database Processor

tabase Machineoccovvereiieriineniinniennnnn

...

2.4.3 Copernique MIX's Relational [nterfaceccooenniiiiinennnne

2 4.4 ICL’s Content Addressable
245 DIRECT .rieeiccceiininianens

File SEOPE ovveeiiiiiieeeeeeeeeier i eentreesenaanes

2 4.6 Ohio State University's Data Base Computer ...

2.5 Conclusioncccevviiinniinnienen
Chapter 3. Experiment Design
3.1 Objectives ...oorviieiiceniecnirians
3.2 The Experimental Approach ..
3.3 The Basis for the Experiment

3.4 A General Description of INGRES .o
3.5 The Configurations of INGRES ...ccccoiiniimiiiiciii e

3.6 Implementationc.ocvnnnn

3.7 Buflering and Non-volatile StOrageccoooimmiimiiinnencniiiniiee
3.8 Databases Used in the EXPeriment ..o inneiniees

3.9 Network Benchmarks

3.10 Criteria for Comparison of the Configurationsccoeecenienuiinins
3.11 Measurements and Instrumentationcooiiiiiiminiiicnni e

Chapter 4. Experimental Results ...
4.1 Network Measurements

4.2 Database System Measurementscc.coviiimminieniinincisi s
4.2.1 CPU Utilization Measurementscceceeerinrinirmnmesnsenseesicinnesnnens

4.2.2 Disk 1/O Measurements ...
4.2.3 Network Overhead Results

4.2.4 Summary Time Data
4.3 Page Buffering in the Backend
4.4 Non-volatile Storage
4.5 Granularity of Communication

...

OO*‘QOOO‘U\U\U\-&&‘A%‘%-&C»J(AWIOQQNJMHH

-5-&.&03008!3!388»—4»4—-»- —
00 Nt © »n w W o 0 0o 06 ~1 O

4.6 Performance Statistics ander UNIX Lo
4.7 The INGRES Process ID ...cooiiiiriiiininiiiiin s stinssnnessesaes
Chapter 5. DisCUSBION .oooovieirceieiimiiineie sttt e
5.1 Configuration COMPAMIBONS ...c.cocoveuiirmimiimniitmmneest s
5.1.1 IDEIE8 cooveeiemeuiiierirees e eeen et s e
§.1.2 SIMAM DK .ovvereerrireeeneisiiiseristanti et st
5.1.3 Access Methodsoooiciiiiiiiiriieie s et ssanese st e
5.1.4 INDET LOOP .oiveeerreeiiiireser st a s st s
5.1.5 DeCOMPOBItION ..couviirenriiierircitiit sttt
5.1.6 PAIBET .oeeeeeieiisieeseaienaesstsstessra e s sttt s e n s s eee
5.2 Experiment Versus Modeling or SIMUlAtion ...oocooreereernricnranrrereanar e
Chapter 6. Conclusions and Future WOTK coiiiiiiiieieiieseeanssnesaearaesrsaesesssesnnnss
6.1 CODCIUSIOBSE .vovrveseneieamecseeseemraessssusee ot iasin s st rasssanos et sa e s su st st s s con bt s
6.2 FULUTE WOTK ..oveeiieerrcieciiiirtesaesses s et s sn e st sa s st s e

Bibliograpby

tv

48

2g88L8EES

52
52
52
52
54
54
55

CHAPTER 1

Introduction

As databases grow in size and the use of them becomes more widespread, the load on a com-
puter due to a database system becomes a prime performance problem. This thesis examines
various methods for ofl-loading different functional parts of the database software to a second
machine. The goal is to reduce the load on the first computer by distributing part of the data-
base system to the second computer. For the remainder of this thesis, this additional machine will
be called a backend computer, and the first computer will be called the frontend.

This dissertation investigates the performance impact of a database system’s functional sub-
division by constructing the proposed software configurations. Once the functional subdivisions
were constructed, experiments were run to determine their performance. The software of a real
database system is modified so that parts of it can run on different computers. A wide spectrum
of functional subdivisions for the database software is examined.

This is an experimental thesis. An empirical approach was chosen because a database sys-
tem is not a stand alone entity: it executes on physical hardware and (usually) runs under the
control of an operating system. The interrelationships among hardware, operating system, and
bardware are quite complex and can best be studied by observing an actual system. This work
studies mot only database system performance, but also the interactions of the database system
with various hardware devices and operating system features.

1.1. The Problem

This thesis attempts to address the general problem of how should the software which
implements a database system’s functions be functionally subdivided between the frontend and
backend. One way to view the two parts of the database system is to consider them as running
on a pair of computers consisting of the frontend and the backend machine. However, the prob-
lem addressed in this work does not only arise in the case of a central computer assisted by a
backend machine. It is also found in a distributed system consisting of a set of computers, possi-
bly personal computers, that communicate with one or more database servers. In both cases, the
database software must be functionally partitioned into two pieces: the code for the frontend(s)

and the code for the backend (or database server).

In addition to this central problem, the dissertation addresses some issues concerned with
the interrelations between a database system, the underlying hardware, and the operating system.
In particular, some insight is gained into the benefits of using non-volatile storage and into the
desirability of implementing low level protocol functions for communications in hardware. As far
as the operating system is concerned, some data about the cHectiveness of buffering and overhead
are presented.

1.2. Motivation

The issue of database system performance has existed since the first of these systems were
built. Several machines to either assist or perform the database function have been proposed,
prototyped, and in some cases built. A survey of these machines is given in chapter two. Each of
these machines has been built upon intuition: its creators have proposed a technical solution to
what they perceived as the performance problem of database systems. A second way to approach
the problem of database machine performance, the method used in this work, is the experimental
way: with this method, each of several proposed functional divisions of the database system is
built and tested before deciding the tasks to be assigned to the backend machine and how the sys
tem ought to be organized.

Database systems are hard to construct or run poorly since the functions they must perform

often are not in harmony with those provided by the operating system or the underlying
hardware. Examples of these discrepancies are double paging (the operating system pages the

database system's buffer pool), delayed writes (the operating system delays a file system write to
gain efficiency), lack of fast stable storage (any data that must survive a crash or power failure
must be written to disk), and no user critical sections (so that the database system’s internal
resource managers, such as the buffer poo! and lock managers, can perform atomic operations)
[Blas79] [Gold74] |Gray78] [Gray79] [Lind79] [Ston80] [Ston81] {Trai82]. Much of the problem
stems from the fact that database systems are dependent on physical aspects of the hardware for
crash recovery and performance. Operating systems attempt to bide certain features of the
underlying hardware from the users. For unsophisticated programs this is probably a good deci
sion, but for sophisticated programs, like database systems, this hiding can be harmful. Database
systems are pliable in their memory needs, can often predict disk accesses, need to perform atomic
updates to data structures in memory and on disk, and can be designed capitalizing on the
knowledge of the physical characteristics of disks. Hence, in additior to studying the functional
decomposition of a database system, this thesis was designed to investigate some of the important
aspects of the interface between the database system and both the operating system and the
hardware.

1.3. Approach

The question of how should the functions of a database system be subdivided was addressed
by performing a series of experiments. An existing relational database system, INGRES [Ston76],
was chosen as the system to be functionally distributed. The one selected was the research ver-
sion of INGRES, that runs on the DEC VAX-11! series of computers under the Berkeley version
of the UNIX® [Ritc78] [Joy81b] operating system. Criteria were established for subdividing the
system, and six functional partitions of the database software were produced. The software of
INGRES was then modified to make each of the functional subdivisions, to be called a
configuration in the sequel, a running piece of software. The two dedicated computers were con-
nected by a local area network. Two databases and two sequences of queries were obtained.
Each of the six configurations was then benchmarked on the two-machine system to get perfor-
mance data. In addition, the network was benchmarked in order to distinguish the contributions
of database performance from those of network performance.

This methodology was followed to achieve the closest possible approximation to a real svs-
tem based on each functional division considered in this investigation. It was felt that a less
ambitious attempt to address this problem would not produce sufficiently accurate data. The
experimental approach using real software, real databases, and real computers provided the
unique opportunity to observe how an actual system implementing the various software
configurations would run.

1.4. Functions of a Database System
The basic functions of a database system are that it provides for the storage, access, inser-

tion, deletion, and meodification of data. It also provides for data protection (preventing access to
some data by some users), integrity (making sure the data satisfies a consistency constraint), tran-
saction management, cORCUITEnCY control, and crash recovery. Optionally, it may also provide a

high level query language to ease the use of the system.

1.5. Outline

This thesis has five more chapters. The next chapter contains a summary of some of the
relevant work in the field of database machines. Chapter 3 describes the concepts on which the
design of the experiment was based. Chapter 4 presents and discusses the results of the various
benchmarking sessions. Chapter five analyzes by configuration the data presented in the previous
chapter. The last chapter presents the conclusions and discusses avenues for future work.

IDEC and VAX are trademarks of Digital Equipment Corporation
UNIX is a trademark of Beil Laboratories

CHAPTER 2
Survey of Backend Database Machines

It is normal practice in a thesis to survey the related work in the field. Although there is
much literature on database systems in general (|Date75] and [Ullm80] for example) and on back-
end database machines (see below), we were unable to find any published papers that applied to
the study of database systems a methodology similar to that used in this dissertation. The pur-
pose of this chapter is to discuss several backend database machines that have been proposed. By
no means are all papers in this field discussed in the text of this chapter, or even referenced in the
bibliography. For example, [Aror81}, [Banc80], [Dogas80, [Kiyo81], [Kung80}, |Lin76], [Mari75},
[Shaw82], {Shib82], [Su75], and [Wah80] describe backend database systems not discussed here.
See also [Date83] for additional references. The machines discussed in this chapter are commer-
cial products, or the focus of a research project at some university. The discussion i8 not about
how the systems work, but is rather concerned with how database system functions are divided
between their hardware components.

This chapter is divided into four sections. The first section is for simple disk controllers
that are used in typical database systems. The next section covers complex disk controllers.
These are systems were tie controller has some decision making capabilities, but has no
knowledge of the semantics of the data on the disk. The third section deals with backends where
the interface is at a fairly low level. The backend does, however, have some model for the seman-
tics of the data. The last section covers backends whose interface is at a high level. These back-
ends have a large portion (or all) of the database system is moved to the backend.

2.1. Simple Disk Controllers

In common use today for the storage of moderately large amounts of information are mag-
netic disks. Although there is a quite large performance spectrum for these devices, a typical
"hard” disk has an average access time of 30 milliseconds, and transmits data at a rate of about 1
megabyte per second [Ampe82].

A typical disk controller handles physical positioning to the disk arm, converts between the
digital and the analog forms of the data, and performs direct memory access (DMA) to transfer
the data to/from the disk and memory [Emui80]. There may be some buflering of data in the
controller, but this is typically a small number of sectors. The controller does not do scheduling
of the data transfers.

2.2. Complex Disk Controllers

There are two types of hardware products that fit into the category of complex disk con-
srollers. First, there are disk controllers that can be directly attached to the frontend by means
of a channel or by DMA, and provide bufering and other services to increase performance. An
example is the IBM 3880 Model 13 disk controller for the IBM 3380 Direct Access Storage (a disk)
{IBMSI]. The controller has up to 8 megabytes of magnetic bubble buffer storage. The prime
purpose of this buffering is to assist with cha.nnel/controller/string contention problems, and not
to help a database system perform its functions. As such, this controller would not really qualify
as a database system oriented complex disk controller. However, this suite of hardware is very
close to that needed by a complex disk backend (the smart disk configuration described in section
3.5). Only microcode and some hopefully minor engineering changes would be necessary to make
it more useful to a database system.

A second type of complex disk controller is a file server. The f{rontends access the file server
over a local area network. The file server has simple disk controllers, as described in the previous
subsection, attached to it. The server can buffer, pre-fetch data, schedule the disk arms, and pro-
vide some sort of transaction abstraction for the frontend. Descriptions of some examples of file
servers, not all of which have all the above features, can be found in [Swin79], [Dion80}, [Frid81],

and [Mitc82].

2.3. Backend Machines with a Low Level Interface
2.3.1. Software AG's ADABAS Data Base Machine

The ADABAS Data Base Machine [Soft] {Soft81] supports a network model database system.
The types of calls that pass over the interface between the frontend and backend are the Data
Manipulation Language (DML) commands. Examples of these commands are FIND (and its vari-
ants), MODIFY, GET, INSERT, and REMOVE. The database is offloaded as much as possible
to the backend given the restrictions of the database model. The backend (an Externally Sup-
ported Processor) sold by Software AG is functionally identical to members of the IBM 370 series.

It is connected to an [BM 370 series frontend using 2a channel-to-channel communications system
(CTCS).

2.3.2. Experimental Data Management System

A backend database machine that is part of a CODASYL [CODAT1| database system is the
Experimental Data Management System (XDMS) [Cana74]. The interface of XDMS is at the
DML command level. The frontend for the prototype was the UNIVAC 1108, and the backend
was a Digital Scientific META-4.

2.3.3. Copernique MIX's Navigational Interface

MIX is a commercial backend database machine being built by Copernique [Armi81]. There
are two different interfaces to the MIX backend: the navigational and the relational interface. (A
pavigational database system is either a network or hierarchical database system. It is called
navigational because the the interface to the database is such that the user directs (navigates) the
system through the data.) When using the navigational interface, MIX implements a CODASYL
style data model. Using either interface, MIX performs the following functions: data

retrieval/insert/update, data dictionary, transaction control, locking, and crash recovery.

2.4. Backend Machines with a High Level Interface
2.4.1. Britton-Lee's Intelligent Database Machine

The Intelligent Database Machine (IDM) [Epst80] [Ubel82] implements almost an entire rela-
tional database system in the backend machine. The only part of the database system that
remains in the frontend is the parser for queries. The frontend requests action by the backend by
transmitting a parsed query tree to the backend. Protection, query planning, validity checking,
logging and crash recovery, among other functions, are all performed in the backend. The back-
end is a 16-bit microprocessor chip (Zilog Z8000), possibly assisted by a "Database Accelerator”.
The "operating system” in the backend is quite small and is oriented toward supporting database
functions.

2.4.2. Intel’s Database Processor

The Intel Database Processor (iDBP) [Inte82] is a backend machine capable of supporting
relational as well as navigational database systems. The interface to the backend is via encoded
iDBP commands. Examples of commands are JOIN, SELECT, and PROJECT (all subtypes of
the DEFINE VIEW command), as well as DELETE, FIND, MODIFY and FETCH. To use this
t——» of backend, a query parser executing in the frontend must compile queries into a series of
.igh level commands for the backend.

2.4.3. Copernique MIX's Relational Interface

MIX, described above, also has a relational interface. The database system calls take the
form of queries in SEQUEL [Cham74]. All database operations, including parsing, are performed
in the backend.

2.4.4. ICL's Content Addressable Flle Store

International Computers Limited's Content Addressable File Store (CAFS?®) is an example of
a search processor [Babb79]. The backend is essentially 2 smart disk controller that has special
key matching hardware. It also has a "bit array store” that is used to mark tuples. The use of
the bit array store enable CAFS to perform simple relational queries in only a few commands
from the frontend. Up to twelve disk tracks from a single disk can be handled concurrently by
the backend.

2.4.5. DIRECT
DIRECT is a project aimed at building a relational database backend at the University of

Wisconsin [DeWi78| [DeWi79| [Bora8l]. The frontend, 2 PDP* 11/40 or a VAX 11/750, compiles
queries and does query planning. The backend consists of a controller running on a PDP 11/40
and a set of "query processors” executing on LSI 11/23’s. The planner running in the frontend
decomposes a query into a series of one and two variable queries all of which together are called a
"query packet”. Examples of the types of these smaller queries are RESTRICT, JOIN, PRO-
JECT. and INSERT. The controller receives a query packet and plans the query execution using

as many of the LSI 11/23's as possible.

2.4.6. Ohlo State Unlversity's Data Base Computer

The Data Base Computer (DBC) is a backend database machine at Obio State University
that implements the attribute-based data model [Bane78] |Hsia81]. The interface to the backend
makes use of a high-level query language. The operations the backend performs are security
enforcement and the insertion, retrieval, and deletion of records. The DBC does not run a typical
operating system. [t employs a variety of specialized hardware components to implement data-
base system functions.

2.5. Conclusion

This chapter has presented a survey of some of the literature about database machines. The
next chapter describes the experiment itself.

3CAFS is a trademark of Internasional Computers Limited
4°DP is a trademark of Digital Equipment Corporatioa

CHAPTER 3
Experiment Design

3.1, Objectives

The prime objective of this thesis is to investigate the performance effects of various subdi-
visions of a database system's functions between a frontend and a backend computer. Not only
are the raw values of the performance indices of each configuration of interest, but also the fac-
tors that influence these values. For example, one might conjecture that the performance of a
configuration is completely dominated by the network overhead, but the validity of this conjec-
ture will not be established unless the network overhead is measured together with the global
metrics of the system performance.

A database system interfaces directly with both the operating system and the underlying
hardware. A second objective of this thesis is to understand and quantify some of the interrela-
tionships among these three components of a system. In particular, the thesis investigates the
causes of disk 1/O operations, some buffering issues, and the use of non-volatile storage to avoid
or delay disk writes.

3.2. The Experimental Approach

At least four methods can be employed to answer the principle question examined in this
thesis: analytical modeling, simulation, careful measurement of a database system running on a
single computer, and construction and measurement of a multiple computer database system.
Each of these approaches represents a well respected method of investigation. However, both
analytical modeling and simulation are critically dependent on the assumptions the evaluator
makes about what is important to model. During the selection process for an approach it was
felt that in this study it would be impossible to make sufficiently good assumptions to justify a
modeling method (see section 5.2). The careful measurement of a single computer system could
be eflective if the functions that would in reality be performed by each of the separate computers
could easily be identified and measured. This approach was rejected for two reasonms. First, it
was felt it would be difficult to get good results because of the low clock resolution on the avail-
able machines (which were DEC VAX-11's), and of the inaccuracies that characterize the instru-
mentation available in the UNIX operating system. The second reason was that the difficulty of
really building a distributed system appeared to be only slightly greater than that of accurately
measuring a single computer. Furthermore, the distributed system solution had the advantage
that errors made in deciding how system functions should be partitioned would become bugs in
the implementation, while they would go undetected in the measurement of a single system.
These errors could take two forms. First, there could be simple errors in the analysis of the func-
tional subdivision. An example of this is assigning a backend function to the frontend. Second,
there could be errors due to incorrectly assigning the use of functions that were used in both the
frontend and the backend. An example of this would be to mislocate the temporary files for the
terminal monitor so that unneeded communication would be performed.

Hence, the fourth approach was adopted to get the best possible results. This approach has
the advantage over analytical modeling and simulation of not requiring any simplifying (hence
probably distorting) assumptions. Over a single-computer database system, it has the advantage
that the system has really to work: its running properly cannot mask possible errors in the parti-
tioning of its functions.

Once a configuration was identified, the software of the database system was examined to
determine exactly which functions would be migrated to the backend. Sometimes these functions
were performed by a complete process or a set of modules in the original database system. In
these cases, the mechanisms used by the processes or modules to communicate with that part of
the system that would reside in the frontend machine could be simply converted to allow them to

commubicate over a network connection. In the rest of the configurations, software was con-
structed to perform the necessary interfacing functions. The implementation of this interface usu-
ally took the form of a remote procedure call. That is, the arguments and return values were
specified by copy semantics {not by pointers) and the call was synchronous (blocking). When the
interface software was in place, the correctness of the configuration's implementation was tested
by using the standard system exerciser for INGRES. Section 3.6 discusses the implementation of
the various configurations in more detail.

Of course, this approach is not without disadvantages. First of all, it is by far the one that
requires the largest amount of work. Many thousands of lines of code had to be written, changed,
integrated and debugged. Subtle but critical implementation problems arose and could not be
finessed as would have been possible in the other approaches. These problems had to be solved.
All this took time that would not be needed in the other three approaches. Analytic modeling
and simulation typically can examine a broader range of parameters than an experimental
approach. Each "run” of a model of this tvpe is much cheaper, and therefore more runs can be
performed. However, the greater accuracy of the results produced by the experimental approach
makes this objection much less important in studies like the one described in this dissertation.

When running an experiment on real software, the performance data obtained could be
relevant only to that particular software system. The following questions can be asked. Are the
conclusions one may draw from the results valid for all types of database systems? Are the con-
clusions valid for at least all relational database systems? Are the conclusions valid for all data
bases and query streams or only those used in the experiment? Are they valid over the whole
spectrum of hardware configurations, capacities, and over that of operating system organizations
and implementations?

We believe, but cannot demonstrate, that the results obtained for some of the configurations
are valid for all database systems. These are the two configurations, described beiow and called
»access methods” and “smart disk™, where the least amount of functionality was migrated to the
backend. For relational database systems, we also believe that our results have a somewhat wider
generality. Only- one configuration, called "inner loop™ below, was clearly applicable only to
INGRES. Individual database systems use different methods for implementing the various data-
base system functions {e.g., join methods, type of locking). However, the functions performed by
INGRES must have some counterpart in anmy relational database system. Hence, the actuai
results from measuring INGRES are not directly applicable to all relational database systems, but
the indications from INGRES do have some implications for all relational database systems. As
mentioned below in section 3.8, there were two distinct databases and query streams used in the
experiment. Hence, the results should not reflect the idiosyncrasies of a particular database. To
enhance the credibility of the results, all the configurations were tuned. Usually the tuning was
quite simple, but for two of the copfigurations it involved substantial changes and additional
buffering, as described in more detail in sections 3.5 and 5.1.3.

However, even with these substantial drawbacks, we believe that the experimental method
provides the most reliable information about how a real database system would perform in the
ways we have experimented with when functionally partitioned between two computers.

3.3. The Basis for the Experiment

The University of California at Berkeley has many DEC VAX-11 series computers running
the Berkeley version of the UNIX Operating System (4.1a BSD) (see Figure 3.1) [Ritc78] {Joy81b].
In addition, the INGRES database system [Ston76|, that was developed at Berkeley, is available
for experimentation. The Computer Science Division of the University is also currently extending
the Berkeley UNIX Operating System to add networking facilities [Joy81a]. This is being built
using the 3 Mhz version of the Ethernet called Research Ethernet [Metc76]. The major network
and transport protocol being implemented is TCP/IP [Post80a] [Post80b]. Due to the availability
of the VAX computers, of the Berkeley UNIX operating system, of the INGRES database system
(version 7), and of local expertise in these two software systems, the choice of the hardware and
software basis {or the experiment was quite easy.

Frontend

VAX-
11/750

Backend

VAX-
11/780

e

3 Mbit Ethernet

Figure 3.1: Laboratory

Two computers were used in the study, Medea and Ingvax. Medea is a2 VAX-11/750 and
Ingvax is a8 VAX-11/780. Medea always served as the frontend and Ingvax as the backend.

3.4. A General Description of INGRES

Except for the utilities, Version 7 of INGRES running on the VAX-11 series under the
UNIX operating system uses four processes when running with the standard terminal monitor {an
ad hoc query processor). First, there is an initialization process that sets up connections for and
establishes the next two processes. The bulk of the system’s execution involves the process for
the ad hoc query processor (monitorj, and the process for the database system {vazingres). (Both
the initialization process and the monitor process may be replaced by an application program that
directly interfaces to the database process vaxingres.) The monitor and vaxingres processes are
connected by a pair of UNIX pipes. A pipe is a data stream between two processes on the same
machine. Data written into a pipe by one process can be read sequentially by the other process.
Queries coded in ASCII flow across this interface using one of the pipes. The queries are pro-
cessed by the vaxingres process. Results are returned using the second pipe. If a sort is needed,
it is invoked as a process by vaxingres. The sort process, ksort, communicates with the vaxingres
process by reading and writing specific files in the file system. During the implementation phase
of this research, the ksort process "vas merged into the vaxingres process to save process startup
overhead.

One way to understand bow a query is processed in INGRES is to follow a query through its
execution. This discussion is quite brief and many details have been omitted. First, the query
coded in the INGRES query language QUEL is entered into the user interface located in the mon-
itor process (recall that the monitor process can be replaced by an application program). The
user interface deals with the terminal and does some pre-processing on the query (e.g., macro
expansion). The query is then passed to the query parser located, as are all other functions, in the
main database process varingres. Here the query is parsed and checked for semantic and syntac-
tic correctness. Protection and view processing are also done at this time. Next, the query is sent
to the query decomposition and planning module (decomposition) who breaks the query into a
sequence of subqueries that involve only one variable (i.e., one relation). Each subquery is passed
to the inner loop (also called the One Variable Query Processor (OVQP)) for execution. The
access methods support the inner loop by accessing tuples (records) in the database. The access
methods use the UNIX file system to access the data on the disk. Results are returned to the user
interface by the inner loop as they become available, or the results are written into a (possibly
new) relation.

3.5. The Configurations of INGRES

As stated earlier, each subdivision of functions between the frontend and backend computers
is called a configuration. Although a larger number of possible software configurations exist, this
study focuses on the six configurations discussed below. These configurations were chosen on the
basis of three criteria. The first was that almost all tightly coupled processing be done in one
machine. The reason for this requirement was to make the network traflic manageable as well as
to reduce the synchronization overhead needed between the two machines. Second, it must be
reasonably simple to implement each configuration starting from the basic INGRES system. The
final criterion was the existence of an example of the configuration either in the real world or in

the literature in the form of a proposal. The configurations will be described in order of increas-
ing responsibilities for the backend machine.

With each configuration, there is a figure that graphically represents the software division.
On the top part of each of the figures, the various parts of INGRES, discussed in the previous
section, are depicted. Functions that reside in the same machine are represented by having the
boxes for the functions touch. Space in between boxes indicates the machine boundaries. The
bottom half of each figure shows the processes used in the configuration. Solid lines connecting
processes are UNIX pipes, and dashed line are TCP/IP reliable byte stream connections. The
bottom half of the diagram is for use in the next section on implementation and should not be
examined in detail in this section.

10

The first configuration, Ingres, is trivial to build, since it consists of the existing, non-
distributed INGRES system (see Figure 3.2). It does almost all of the processing in the frontend
machine. The backend machine is a standard disk controller. This configuration was tested using
only one computer. The Ingres configuration was included in the study because of its historic and
commercial importance, and because it provides a yardstick with which the other configurations
can be compared.

The second configuration includes an intelligent disk controller and is called smart digk (see
Figure 3.3). Here the file system functions have been moved to the backend machine. Examples
of the interface are opens and closes for files, and reads and writes for disk pages. The controller
has sufficient bufler space and processing power to allow it to make intelligent decisions regarding
buffering policies. This configuration is represented in the commercial world by the IBM 3880
Model 13 Disk Controller [[BM81] and by the Xerox WFS file server [SwinT9)].

The third configuration, called access methods, continues the migration of functions to the
backend machine (see Figure 3.4). In it, the software that gets, replaces, finds, inserts, and
deletes tuples (records) from/in the database (that is the software that is normally called the
access methods) also resides in the backend machine. This configuration is similar to that pro-
posed for a CODASYL style backend database machice by Canaday et al. [CanaT74|, to the Navi-
gational Interface in [Armi8l], to the ADABAS Data Base Machine marketed by Software AG
[Soft81], and to the [DMS backend machine built by Cullinane [Cull78}.

The fourth configuration also moves the “inner loop” of query execution to the backend
machine and is called inner loop (see Figure 3.5). Most operations on the database take the form
of queries. If the query is non-trivial, the database system must read and process more than a
single record. This involves looping through records and processing the data found in them. In
INGRES, this is called the one variable query processor (OVQP). It is reasonable to move ovQP
entirely to the backend because of the high amount of time the database spends in its inner loop
for complicated queries, and the tight dependency of the inner loop on the data from the data-
base. Dividing the inner loop and the data would tend to generate too large an amount of net-
work traffic. The idea of moving the inner loop computation to the backend is also used in
DIRECT [DeWi78] and Intel in the iDBP (Inte82]. However, the inner loop in both DIRECT and
in the iDBP is much larger than the loop migrated in this configuration. A single backend call in
DIRECT and in the iDBP is done to perform a join, while in the inner loop configuration this
operation could require many calls.

The fifth configuration is called decomposition (see Figure 3.6). The backend maciine has
now become a query execution emgine. A parsed and validated database query is sent from the
frontend to the backend machine. The full query is executed in the backend machine. This
configuration is reasonable because the interface is particularly simple: the frontend sends over
the parsed query and the backend machine responds with status information and possibly a data
stream. A similar organization has been adopted by Britton-Lee [Epst80| in the IDM.

In the sixth and final configuration, called parser, the backend computer is a full backend
database machine (see Figure 3.7). Unparsed and unvalidated queries are sent from the frontend
to the backend machine. The response is some status information (e.g., an error message indicat-
ing a malformed query) and possibly a data stream. Only the user interface or the application
program remain in the frontend. The Relational Interface [Armi81], that is still in the prototyp-
ing stage, i8 a potential commercial example of this configuration. The Data Base Computer
(DBC) is a university research example of this configuration [Bane78|.

3.8. Implementation

With respect to the implementation, the configurations could be divided into three classes:
the Ingres configuration that did not require any work as it was already available; some other
configurations, that needed only a moderate amount of work because the functional division fell
on of near an existing process or module boundary; the rest of the configurations, where this was
not the case, that required substantial amounts of software modification and construction.

User Interface

Query Parser

Query Decomposition
and Planning

Inner Loop

Access Methods

File

monitor

varingres

Figure 3.2: Ingres Configuration

11

User Interface
Query Parser
File
Query Decomposition
and Planning System
Inner Loop
Access Methods
Frontend Backend
monitor L ______) smart disk

vaxingres

Figure 3.3: Smart Disk Configuration

User Interface
Query Parser
File
Query Decomposition
and Planning System
Inner Loop
Access Methods
Frontend Backend
moniter |- __ _ simple disk
vaxingres | access methods

Figure 3.4: Access Methods Configuration

User Interface

Query Parser

File

Query Decomposition

and Planning

System

Inner Loop

Access Methods

Frontend

Backend

monitor

simple disk

VATINGTES

k- - — - - - —

inner loop

Figure 3.5: Inner Loop

Configuration

14

15

User Interface

Query Parser

File

Query Decomposition System
and Planning

Inner Loop

Access Methods

Frontend Backend

monitor L __ __ - simple disk

vazingres | ____J decomposition

Figure 3.8: Decomposition Configuration

16

User Interface

Query Parser File

Query Decomposition System
and Planning

Inner Loop

Access Methods

Frontend Backend

monttor |- _ - - _ simple disk

varingres

Figure 3.7: Parser Configuration

17

The code of INGRES is structured as a group of modules. A process is a set of modules.
Part of the design of INGRES is that these modules can call each other whether or not they
reside in the same process. Calls are either local within a process, or they are encoded and sent
over a pipe connecting (eventually) the source process to the process that contains the module to
be called. Hence, it is possible to repartition the software of INGRES into additional processes.
In fact, the PDP-11 version of INGRES running under the UNIX operating system executes using
one more process than the VAX-11 version.

The feature analogous to a pipe in the Berkeley UNIX operating system implementation of
the TCP/IP protocols is 3 reliable byte stream connection. If INGRES is partitioned following
module boundaries into processes on a single machine, then the pipes can be converted to connec-
tions when INGRES is run on two machines. This is, basically, what was done for the parser and
decomposition configurations. Due to some peculiarities in the implementation of INGRES, the
processes allocated to the frontend still have to be able to access the same file system as the back-
end. (This was for various functions such as storing and accessing macros and reading the text
for error messages.) Hence, a simple version of the smart disk backend (described below) was also
connected to the frontend processes. The code for the emcrt dick backend always ran in the back-
end.

The snner loop configuration also followed module boundaries. However, subtle problems
concerned with file synchronization and shared global data structures made this configuration
bard to build. The basic method of communication between the processes and with the smart
disk backend was the same as for the parser and decomposition configurations.

The remaining two configurations, smart disk and access methods, did not functionally
divide INGRES along module boundaries. For these configurations the following building metho-
dology was used. First, the function or procedure calls that were to be done remotely were
identified, thereby determining the functional bounda:s between the two machines. A "stub” was
built to catch all calls from the frontend machine to functions in the backend. The stub contains
a function of the same name as the function to be executed remotely. The first call to any func-
tion in the stub causes the creation of the backend process and establishes a reliable byte stream
connection to it. All calls to functions in the stub are then passed to the remote process by doing
a remote procedure call [Lamp81] [Nels81] [Spec82]. This means that the calls are converted to
messages on the connection. Each message identifies the function to be performed and the argu-
ments and global variables needed. The backend, upon receiving the message, determines which
function is to be called, sets up its own copy of the global variables and calls the function with
the received arguments. The return value of the function together with all potentially modified
arguments and global variables are sent to the frontend. The frontend decodes the response and
copies the arguments and global variables back to their original locations.

For the access methods configuration, this remote procedure call was synchronous: it blocked
in the frontend waiting for the backend. The smart disk configuration was optimized to allow file
system write calls to be non-blocking. This was done to simulate more realistically the use of
pon-volatile storage. However, since a write was very rarely followed by another write, this had
very little eflect on system performance. All other remote calls were blocking.

3.7. Buffering and Non-volatile Storage

Two additional issues in backend machine design were also addressed in the experiment: the
buffering of disk sectors and the use of non-volatile storage. A relational database system keeps
the data in relations. Each relation is stored on disk as a set of pages. By instrumenting a copy
of INGRES and tracing the logical 1/O operations to relation pages, it was possible to simulate
the operations of a backend database machine from the trace data. Since the simulations were so
simple, two moderate size programs were written, in C, to model the backend. Processing the
trace data by simulating the least recently used (LRU) memory management policy on different
memory sizes allows a study of buffer cache sizes to be performed. A simulation of geveral non-
volatile buffer sizes was done to determine the benefits of having non-volatile storage in the back-
end. After a page was written to the non-volatile storage, it was transferred to disk when the

18

disk was idle.

3.8. Databases Used in the Experiment

Any experiment in database system performance requires that one or more databases and
one or more query streams that refer to these databases be selected. In an attempt to get results
that would be less tied to the particular database used in the experiment, this experiment was
performed on two different databases. One was mostly synthetic, but was constructed to be
representative of data and queries used in a statistical application. In particular, the application
was concerned with census data and was called the Regional Accounting System (RAS) at the
Lawrence Berkeley Laboratory [Keen81]. In normal operation, the RAS database is used to
answer moderately complex queries. Some updating of RAS was performed, but most writes were
done to temporary relations. The query siream was designed to be representative of how a true
census database would be used.

The second database is called "Citator” and was obtained from the Commercial Clearing
House company. Citator consists of the data used to typeset a book containing cross references
between legal citations and appeals. It is updated semi-annually by appending new data. The
main query for it is the one that causes a new book to be typeset. For benchmarking, only a sec-
tion of the book was extracted from the database.

3.9. Network Benchmarks

During the design of the experiment, it was anticipated that for some configurations the
results would be dominated by network performance. Hence, a series of experiments were
designed and carried out to measure the CPU overhead and the delay associated with the net-
work. It was hoped that a simple empirical model of network performance could be constructed.
However, these tests revealed that message delay was pot a pice linear function of a few selected
variables {(number of logical messages, number of packets, and number of bytes). Each type of
remote procedure call had a characteristic message pattern: 3 certain number of bytes would be
sent and some number of bytes would be returned. The network was benchmarked for each logi-
cal message size combination that was used in some remote procedure call used in any
configuration. This was done by writing a program that first created a copy of itself on a remote
machine with a TCP/IP connection between them. These two processes would then exchange a
large number of messages of the desired size. Very little processing was perfermed by the
processes in either machine. In such an environment, the average time to exchange one message
could be computed. Both computers used in this experiment were dedicated and were the same
machines used in the database systern measurement experiments.

3.10. Criteria for Comparison of the Conflgurations

Part of the goal of this thesis is to keep the experiment and the measurements as general as
possible. One consequence of this goal is that there are no fixed criteria that we anticipated using
to compare the configurations. We also chose to run the query streams without "think time” to
stress the database system as much as possible. This means that the query streams do not simu-
late human users, since there is a lack of think time. While the measurements taken can be used
to calculate throughput, they lack the detail to compute the responsiveness to individual queries.

3.11. Measurements and Instrumentation

In a study like the one described in this dissertation, it is normal to measure the use of the
following resources: elapsed time, central processor time, main memory utilization, disk 1/O’s,
pumber of messages, and total number of message bytes transmitted. If at all possible, each of
these statistics should be broken down into the contributions of the individual modules that con-
sumed the resource. Since the programs were not memory limited, it was not necessary to instru-
ment main memory utilization. This study used internal counters and statistics kept by the
operating system on a per process basis as an approximation to the above ideal. To get better
measurements, the hardware and/or the operating system would have to be changed, and such an

19

endeavor was felt to be beyond the scope of this thesis.

When getting measurements, it is desirable to obtain the same or related data in a8 many
ways as possible, so that they can be checked against each other to insure their correctness. This
experiment used three methods to obtain performance data.

While running a database system configuration, just before each process exits, it does a sys-
tem call to the operating system to request a collection of performance data. This data is
obtained by the “vtimes” system call, and will be called vtimes data in the rest of this thesis.
The vtimes data obtained included user and system CPU time, average use of program and data
space in memory, disk 1/O reads and writes charged to the process, and the number of page faults
and swaps of the process. This data is sent back, eventually, to the terminal monitor process.
The data is then printed on a per process basis.

Each process in a configuration also keeps its own internal statistics. The number of logical
reads and writes from or to relation pages was recorded. Also kept were the number of logical
messages sent, an approximation of their size distribution, and the total number of bytes sent
over the network.

Finally, a program was constructed to measure the total amounts of resources consumed by
the system during a test. This program, endstat, also relied on the operating system as the collec-
tor of measurement data. It recorded total computer-wide user and system CPU time, the
number of disk transfers, the number of input and output packets, and the number of input and
output network errors, and packet collisions.

20

CHAPTER 4

Experimental Results

4.1. Network Measurements

The network used in the experiment described in this dissertation was the 3 megabit per
second version of the Ethernet. At the time of this experiment, only two families of protocols had
been implemented: those for shipping unreliable messages and those involving reliable byte
streams. Only the reliable byte stream family of protocols (TCP/IP) was used in this experiment.

As described in section 3.6, in most cases the frontend and backend machines communicate
via remote procedure calls. The arguments and the necessary global variables, preceded by a
small header, were packaged in a message and written onto the stream to the backend. Wken
this message arrived, it was unpackaged and the call was executed. The results of the procedure
call plus any changed globals were then packaged into a response message and sent back to the
frontend. The frontend would then unpackage the results and globals. Return would then be
done to the originating procedure in the frontend.

Therefore, the interaction between the frontend and backcad usually consisted of a message
sent and a reply returned. The length of a message depended on the type of procedure cail. By
recording the distribution of message sizes, it was possible to determine the counts of the various
types of exchanges (e.g., to distinguish 'open’ calls from 'get’ calls).

It was hoped that a simple network model could be constructed that would require few
parameters and yet would be a good predictor of transmission time inciuding the overhead. How-
ever, preliminary test results could not be made to fit well into any simple model. Hence, a
separate test was run for each size combination of message (send/reply) pairs exchanged between
the frontend and backend. For example, the emart disk configuration did a lot of page reads.
The frontend would send a 40 byte message requesting that a page be read; the backend would
read the page and send a 1040 byte response; therefore, to measure its performance in this type of
exchange, the network was benchmarked for a 40/1040 message call/response. All the message
size combinations were determined and clustered. Fifteen benchmarks were then run to get net-
work performance data.

Due to the way connections were established, sometimes this exchange was performed on 3
single connection. Sometimes, however, a separate reply connection was established to minimize
the changes required when converting from simplex pipes to duplex connections. The existence of
a separate conpection made a higher packet traffic likely, since the packet acknowledgements
could not be piggy-backed on the replies. Also, a second message was sometimes sent before the
response to the first had been received.

Except for a test (not shown in the table below) that exchanged 1 message, all tests made
5000 simulated calls to the backend. During measurement data collection, the only significant
work that was done in either the frontend or backend was to exchange the messages. In the
results presented in Table 4.1, separate reply (sep reply) entries indicate that two connections
were used. The "split F/B” column means that the data was written using two writes instead of
one in the frontend (F) or backend (B), respectively. A blank entry in that column means that
the data was not split. The packets sent and received by the frontend include those packets
necessary to start the test. Exchanging only one message caused 14 packets to be sent and 16
packets to be received in 10.9 seconds. The "adjusted time” in the table is the time it took each
test to run less the single message time of 10.9 seconds. This is to eliminate process activation
and communication establishment time from the total time required to do the simulated calls.
Fipally, the values in the exchanges per second column are computed by dividing 5000 {the
pumber of calls) by the adjusted time.

All tests were run twice, and the results used in the rest of this thesis are the average of the
two measurements. Two runs seemed sufficient since the test results were all within 49 of each

21

other. This indicates a high degree of repeatability, and is consistent with the 3% variability
found in the database benchmarks (see the next section).

message
sizes
40/40
1040/ 40
40/1040
212/160
160/212
128/128
128/128
128/256
256/128
2400/1032
76/1064
1400/200
800,800
28/40

28/1064

sep
reply

split
F/B

R oW w

frontend packets

send

5143
5071

10128
10164

10333
10142

5153
5185

5124
5208

.
[l
5222

5131

6013
6118

11216
11196
6770
6786

20466
20238

10210
10231

10304
10243

10216
10556

5080
5163

10151
10158

rec

5398
5406

10154
10347

10223
10382

5272

5304

5270
5268

5305
5229

6053
6060

68355
6831

11222

-

11241

20489
20486

10325
10393

10427
10425

10124
10185

5395
5301

10313
10362

Table 4.1: Network Performance Data

adjusted
time

1:26.8
1:24.3

2:08.8
2:14.5

2:24.1

2:236

1:44.7
1:46.6

1:42.9
1:45.9

1:42.7
1:38.8

1:40.7
1:43.9

2:05.7
1:58.2

2:01.0
1:59.3

4:22.7
4:14.5

2:46.2
2:48.9

2:35.5
2:38.5

3:19.7
3:21.1

1:27.0
1:24.3

2:233
2:26.8

exch
per sec

49.7
18.1

39.8
423

413
419

19.0
19.8

57.5
59.3

349
34.1

23

4.2. Database System Measurements

In section 3.8, the two databases used to collect database system measurements were
described. Each configuration was measured with each of the two databases separately as well as
with both of them combined together. For the separate database measurements, only one simu-
lated user performed the queries without »think time” between the completion on one query and
the start of the next query. When measuring both databases together, there were two simulated
users, and again no think time. Since the databases were disjoint, there was no conflict for user
data between the two query streams. Hence, there was no need for concurrency control (at least
not for user data).

Using two databases made the results less dependent on the actual data and queries used.
Running both databases and query streams together gave some indication of the throughput
increase possible with multiple machines.

The measurements reported in the thesis are for one execution of the benchmarks. Ideally,
several executions should have been done to compute confidence intervals for the results. Due to
the length of the benchmarks and the need for dedicated machine time, each configuration was
measured only once. However, prior to the final measurement sessions, several debugging runs
were petformed, in particular for the Ingres configuration. The results from these runs indicate
that there was at most a 3% variability in the major measurements: elapsed time, CPU utiliza-
tion, and number of physical disk [/O operations.

This section has four subsections: CPU utilization measurements, disk I/O measurements,
petwork overhead results, and summary of the results. Each subsection presents the results
obtained with each database and with both databases running together. As mentioned in section
3.11, the measurements were collected by three instruments: the UNIX vtimes system call, the
internal counters in the database system software, and the endstat program that recorded
machine-wide usage.

The first column in each table is named "Config”, and it contains the configuration of
INGRES as described in section 3.5. Some abbreviations are used. For the RAS database, the
Ingres configuration was benchmarked twice: once on a VAX-11/780 {Ingvax) and once on a
VAX-11/750 (Medea). The resuits are denoted in the ”"Config” column by Ing(l) and Ing{M)
respectively. For each configuration there is a line, where the "Config” name appears, which con-
tains test wide results (e.g., "elapsed time”). On some tables, this line is blank except for the
configuration name. All configurations, except Ingres, have separate lines for the frontend

("front”) and backend ("back”) data for all tables except for the summary tables.

Tables for the combined databases were run by executing the Citator database query stream
to completion and stopping the RAS test at that time. Thus, the RAS processes did not finish
normally. Because of this, only endstat results are presented for these runs.

4.2.1. CPU Utllization Measurements

Tables 4.2, 4.3 and 4.4 present CPU utilization data. This data was acquired by both the
vtimes and endstats methods. The "Vtimes CPU” column shows the total time charged by UNIX
to all the processes in the configuration. »Endstat CPU Time™ reports the machine-wide use of
CPU time during the test. This time is broken down into user, system and idle time. The VAX-
11/750 and VAX-11/780 do not have the same performance characteristics. The endstat columns
present the raw measurements unadjusted for differences in the processors. To get a balanced
view of the CPU time expended, it is necessary to adjust the time of one machine to the other.
Hence, the VAX-11/750 CPU time is adjusted to VAX-11/780 time. The endstat CPU times con-
sumed when running the Ing(I) and Ing(M) benchmarks were used to determine the multiplier,
that turned out to be .629. The "Total 780" times were computed by finding the total CPU time
and multipling by .629 if this portion of the test was run on a VAX-11/750. The two values of
»Total 780" CPU times obtained from vtimes and endstat are given in the tables.

One problem encountered in the benchmarking experiment was an apparent bug in the 4.1a
Berkeley UNIX software. A couple of the twenty-three sub-tests with the RAS database had

24

more characters than normal in the query inputs. The apparent bug in the operating system
made the remote shell, that was sending this query data, to loop. This extra CPU time showed
up principally as system time in the backend. Hence, only the user time was used to adjust the
values of "net time” in section 4.2.3.

The only measurement results that need to be explained, once the above bug is discounted,
are those for user CPU times measured by endstat. Here we see a nice progression of CPU cycles
used from the frontend to the backend as more functionality is added to the backend (see Figure
4.1). However, the endstat user CPU time for smart disk (2339 seconds) is greater than the time
for Ingres (Ing(M) used 2141 seconds). There are two reasons why this should not be very alarm-
ing. First, there is extra copying of data between buffers in the smart disk configuration. This
would show up as increased user CPU time. Second, there is the 3% varability {rom run to run
mentioned in the previous subsection. The combination of these two factors tends to make these
measurements appear to be within configuration construction idiosyncrasies and experimental
error.

The combined benchmark in Table 4.4 can be used to estimate the effects of parallelism.
The configuration that had the best balance, given the relative processing powers of the two
machines and network overhead, was inner loop. This can be seen because the idle times meas-
ured in the frontend and the backend were about the same. Of course, the balance is quite
dependent on the relative processing powers of the two machines.

Config

Ing(l)
Ing(M)

Parser
front
back

Decomp
front
back

I Loop
front
back

Access
front
back

S Disk
froot
back

Vtimes
CpPU

1508

935

1095

1202
958

277
417

user

1340

2141

953
1069

1160
980

1387
1097

2339
286

Table 4.2: RAS CPU Performance Data

Endstat CPU Time
system

351

546

333
891

414
1016

845
1468

1679
2402

813
1301

3787
4585

1747
3324

25

Total 780
Vtimes Endstat
1508 1691
1508 1691
1651 2775
556 815
1095 1960
1673 2986
715 990
958 1996
2421 3969
1048 1404
1373 2565
3579 5176
2037 379
1542 2997
2069 3570
1652 1083
417 1587

Vtimes Endstat CPU Time Total 780
Config CPU user system idle Vtimes Endstat
Ing(I) 512 313 200 554 512 513
Parser 502 517
front 8 9 6 1115 6 9
back 496 311 197 635 496 508
Decomp 508 528
front 11 12 11 1022 8 14
back 500 315 199 544 500 514
1 Loop 1141 1201
front 8 234 356 1384 326 71
back 815 371 459 1157 815 830
Access 1671 1691
front 1193 450 753 2173 750 757
back 921 179 755 2457 921 934
S Disk 1026 1043
front 988 617 379 1022 621 626
back 405 37 380 1614 405 417

Table 4.3: Citator CPU Performance Data

Config

Ing(I)

Parser
front
back

Decomp
front
back

I Loop
front
back

Access
front
back

S Disk
front
back

Endstat CPU Time

user

837

301
592

374
559

714
805

1303
324

1633
64

system

394

79
339

106
348

794
825

1691
1360

783
610

idle

254

963
431

946
539

1458
1357

1453
2784

410
2171

Total 780
Endstat

1231

1174
243
931

1209
302
907

2579
949
1630

3678
1994
1684

2194
1520
674

Table 4.4: Combined CPU Performance Data

27

Ingres T R S i 1340
[— '''''''''''''''''''''''''''''' T T T T -
Smart i 1471
Disk ‘1 286
Access ;_“f:_ff___ff_"_ff___'_f'__[:_ff_”f_—_fffff:f] 1323
Methods | | 595
Inner o 872
Loop | . 1097
Decomp e —— - 730
980
Parser ‘; ---------------- - | 600
1 | 1069
[:_—___—__::__:: Frontend cpu seconds
L i Backend cpu seconds

Figure 4.1: RAS User CPU Measurements

4.2.2. Disk 1/O Measurements

Tables 4.5, 4.6 and 4.7 present Disk /O data. This data was acquired by ali three methods:
endstat, internal counters in the database software, and vtimes. The endstat disk [/O columns
reflect the total number of disk I/O operations that occurred for any reason during the execution
of each run. The total pumber of I/O’s ("no.”), the number of 1/O's per second ("#/sec”) and
the estimated time the disk was busy ("% busy”) are all given. The busy time was estimated by
taking the average disk 1/O to be 30 milliseconds. The value of "% busy” is then just three
times the value in the "#/sec” column. Relation reads and writes were counted by the database
software. A relation read or write is made when the database system cannot find a page it needs
in its own internal buffers or has a page to be written to disk, and must request the file system to
do the operation. These counts are called "Relation read” and "Relation write” in the tables.
Note that these requests may not generate actual 1/O operations: the page to be read may be
already in the file system buffer pool. Vtimes also records all the reads and writes that UNIX
charges to any process in the database software. These counts are reported in the "Vtimes reads”
and "Vtimes writes” columns. Note that these three methods of measuring disk I/O activity are
not equivalent. A disk 1/O operation may be caused by some other reason besides those that are
directly charged to database processes. A relation read or write may not cause a physical 1/0
because of file system buffering. Finally, other system calls besides read or write can cause disk
1/0O operations to occur.

As can be seen in these tables and graphically in Figure 4.2, the various ways of measuring
disk 1/O lead to different results. One would hope that there would be a simple relationship
between the measurements from the various sources. The internal counts of relation disk 1/O
should be somewhat greater than the vtimes counts due to file system buffering (some reads are
satisfied in the file system buffer cache). Other reads and writes to files occur in INGRES besides
those to relations, but these were insignificant in our tests (5-10 read /writes per test). The sum of
reads and writes reported by vtimes plus the number of disk 1/O operations due to paging should
about equal the number of physical disk 1/O’s.

Consider the Ingres configuration running on Ingvax for RAS (Table 4.5). Here the number
of relation reads was 42,376, vtimes recorded 16,108 reads, there were 1,156 page faults (recorded
by vtimes but pot shown in the tables), and a total of 36,957 physical disk [/O’s. The smart disk
configuration used a 10 page read buffer. This cut the number of relation reads down to 13,996
with the vtimes count down to 12,079

In the Ingres configuration, the internal count (42,376) was substantially larger than the
vtimes count (16.108). However, when allowance is made for file system buffering by locking at
the smart disk configuration’s 12,079 reads, there is a discrepancy. There are about 4,000 extra
disk reads charged to the process that cannot be accounted for by relaticn disk 1/O operations.
While there were 10,286 relation writes, vtimes charged the process with 16,659 writes. The total
teads reported by vtimes (16,108) plus the pumber of writes (16,659) plus the number of page
faults (1,156) is 33,865. Since there were 36,957 physical disk I/O operations, there are about
3,000 disk I/O operations not accounted for by vtimes or page faults.

There should have been up to about 12.000 relation reads, 10,000 relation writes, and 1.000
page reads. This means that there should be about 23,000 physical disk 1/O operations. In fact
there were about 37,000. What were the other 14,000 disk 1/O operations?

Some of this discrepancy is due to the difference between what is counted as a relation
read/write and a read /write a8 reported by vtimes. By analyzing the Berkeley version of UNIX
used in the experiment, it was determined that at least the following system calls could cause the
write counter for vtimes to be incremented: access, acct, chdir, chmod, chown, close, creat, dup,
exec, exit, fork, ioctl, kill, link, Iseek, mknod, open, pause, ptrace, reboot, stat, sync, unlink,
utime, vfork, vhangup, vswapon, wait and write. It is likely that other system calls (e.g., vread
and vwrite) may also cause the write count to be incremented, since the analysis program only
followed simple call trees in the operating system. If these system calls branched indirect through
a table of functions, they would not be included in the above list. These are almost all the sys-
tem calls that deal with the file system or with process management. Note that these system calls

could, but are not guaranteed to, cause disk 1/O operations. The following system calls cannot
increment the write count: alarm, brk, getpid, getuid, nice, profil, setpgrp, setuid, signal, sigsys,
time. times, umask, vadvise, vlimit, and vtimes. These calls are mostly used to change or to
inquire about the process state, or to set or clear timers.

To process the RAS queries, only 23,000 disk 1/O’s were needed. An additional 11,000 disk
I/O operations occurred, presumedly due to system calls. That leaves 4,000 disk 1/O operations
that cannot be accounted for that were apparently due to internal functions in the operating sys-
tem kernel. Thus, there were 48 percent extra disk 1/O operations due to system calls, and 12
percent extra disk I/O operations due to internal functions in the operating system kernel.
Hence, 605 more disk 1/O operations than strictly necessary were performed.

This problem was even worse for other configurations. For the smart disk configuration, Bo
relation disk I/O operationms occur in the frontend. Vtimes reported 632 reads and 742 writes, and
there were 1,348 page faults. However, the number of physical disk I/O operations counted by
endstat was 10,150. The other configurations have discrepancies between 6,000 and 7,000 physi-
cal disk 1/O operations. All of these discrepancies are to be attributed to the operating system
kernel.

The observation is that running under an operating system is expensive. Many additional
disk 1/O operations occur than are needed.

Config

Ing(l)
Ing(M)

Parser
front
back

Decomp
front
back

1 Loop
front
back

Access
front
back

S Disk
front
back

Do.

36957

38152

8381
41646

9129
41917

9098
44811

10903

o

-

10150
36230

Endstat Disk I/O
[sec

14.8

11.0

1.8
8.6

1.4
4.7

21

7.4

% busy
44

33

[Nl }

6

a0
-

Relation
read write
42376 10286
49604 10288
0 0
63533 10288
0 0
55277 10412
0 0
70828 11804
0 0
20816 9858
0 0
13996 11355

Table 4.5: RAS Disk I/O Performance Data

Vtimes
read

16108

16572

414
15875

644
15983

621
17390

710
14252

632
12079

31

write

16659

16553

729

Config

Ing(I)

Parser
front
back

Decomp
froot
back

I Loop
froot
back

Access
front
back

S Disk
front
back

no.

28876

288
28245

498
28185

400

455
28088

448
20965

Endstat Disk I/O
[sec

71

hy

10.3

% busy

81

[9) W

[=]

1
31

Relation
read write
53900 8689
0 0
53907 8689
0 0
53656 8689
0 0
60350 9507
0 0
29076 8764
0 0
10772 8841

Table 4.6: Citator Disk 1/O Performance Data

Vtimes

read

17526

16650

16597

28
21233

16488

31
9564

3z

write

11047

15
11025

18
11032

16
11851

28
11103

16
1103¢

Endstat Disk 1/0
Config no. #/sec % busy

Ing(l) 45451 30.6 92
Parser

front 7 .6 2

back 43142 31.7 95
Decomp

froat 891 6 2
back 42823 29.6 89
I Loop

front 1064 4 1

back 50939 17.1 51
Access

front 1575 4 1

back 42294 9.5 29
S Disk

front 1147 4 1

back 33532 11.8 33

Table 4.7: Combined Disk /O Performance Data

Ingres ool 36.957
- ____- 52,662
Smart o 10,150
. C _] 36,230
Dxbk ro 25851
Access - 10,903
C] 36,002
NIGthOdS ____________________ 39 674
Inner S 9,098
L | 44 811
Loop T T T T T T T 82,632
. 9,129
Decomp [—] 41,917
_________________________________ 65,689
o 8,381
Parser — n 41 646
CC T T T T 73.821
':_—:______:___—__J' Frontend physical 1/0
Backend physical 1/0
: : : : o : : : Relation read/write

Figure 4.2: RAS Disk 1/0 Measurements

35

4.2.3. Network Overhead Results

Tables 4.8, 4.9 and 4.10 present the network overhead results. The database system has
internal counters to record the number of logical messages sent ("msgs’) and the total number of
megabytes of message data (" megabytes”). Endstat reports the total number of output packets
sent by a machine (output pkts”). From this number and the wall clock elapsed time, the
number of output packets per second ("opkts/sec”) sent by a machine can be computed. The per-
centage of time that data is present on the Ethernet cable is computed by knowing the number of
megabytes, the number of packets (each packet has a 80 byte header), and the duration of the
run. This value is reported in the percent wire busy column {"% wire busy”). Finally, using the
distribution of message sizes recorded internally by the processes, the count of each type of call
(e.g., get a page, replace a tuple) was computed. Using the network benchmark data from Table
4.1, these counts were used to compute the total amount of time spent in purely network over-
head for the test. The sum is reported in the ”"pet time” column. Since these times were com-
puted and not measured, additional care should be used in their interpretation.

The results reported in the tables of this subsection seem quite reasonable. Only two points
are worth mentioning. First, the amount of time that the Ethernet was busy ("% wire busy”)
was quite low. The access methods was the configuration that used the network the most, 2nd it
only kept the network busy about 7 percent of the time. Second, to get the access methods
configuration to perform reasonably well, it was necessary to tune this configuration by inple-
menting page level buffering for "get” calls. This meant that part of the code for the access
methods was duplicated in the frontend from the backend. The tuning cut the number of mes-

sages by about a factor of 5.7 and the number of bytes transmitted by a factor of 9.

36

mega output opkts % wire net
Config msgs bytes pkts | sec busy time
Ing(l) 0 .00 0 .0 0 0:00
Ing(M) 0 .00] .0 0 0:00
Parser 1968 32 .2 0:18
front 14485 3.7
back 8370 2.1
Decomp 7774 2.58 i 1:33
front 22254 5.3
back 14010 3.3
1 Loop 74936 12.54 1.7 12:00
front 71429 13.8
back 80656 15.5
Access 202271 142.74 7.3 53:11
front 215052 28.4
back 203841 26.9
S Disk 717838 26.15 2.5 14:16
front 78101 15.9
back 68184 13.9

Table 4.8: RAS Network Pcrformance Data

Config

Ing(1)

Parser
front
back

Decomp
front
back

1 Loop
front
back

Access
front
back

S Disk
front
back

msgs

58052

133433

65084

mega
bytes

.01

70.39

21.64

Table 4.9: Citator Network Performance Data

output
pkts

456

318

597
433

46640
54585

116686
116664

56050
56088

opkts

23.6
27.5

346
344

278
2716

% wire
busy

2.8

71

a7

net
time

0:00

0:01

0:01

10:41

32:44

12:53

output opkt
Config pkts [sec

Ing(l) 0 0
Parser
front 3666 2.7
back 2832 2.1
Decomp
front 6749 4.7
back 5407 3.7
1 Loop
{ront 89037 30.0
back 94152 31.5
Access

front 202213 45.5
back 198059 44.3

S Disk
front 88557 31.3
back 5873 30.2

Table 4.10: Combined Network Performance Data

39

4.2.4. Summary Time Data

Tables 4.11, 4.12 and 4.13 present summary time data. The "Wall clock” column reports
the time it took each test to run from beginning to end. The startup time for a null query stream
was also computed, and subtracted the proper number of times (RAS did more than one startup)
from the raw elapsed time to obtain the pure elapsed time ("wall clock less null”). The "adjusted
wall clock less null” time is the "wall clock less pull” time adjusted for if this test was run the
test on two VAX-11/780’s instead of one VAX-11/750 and one VAX-11/780. This column was
computed by subtracting 0.271 (i.e. 1.00 - .629) times the user time reported by endstat for the
frontend from the "wall clock less mull” time. The "net time” column is the same as in the
corresponding network overhead table. Finally, the elapsed time this test would have taken if run
on two VAX-11/780's, with no startup time and no network overhead, was estimated and is
reported in the “adjusted wall clock” column (which does mot appear in Table 4.13). This
column was computed by subtracting "net time” from the "adjusted wall clock less null” time.

If there were no additional resource consumption introduced in constructing the
configurations, the values in the ”adjusted wall clock” column should be fairly independent of the
configuration. In fact, in Table 4.11 this is nearly true for all configurations (the times range
from 38:00 to 42:00) except for inner loop. Due to the high data synchronization costs in the
inner loop configuration, a higher value was expected here, and the conjecture was confirmed by
the results. The conclusion we cap draw is that the construction of the configurations did not
induce any large performance problems into the database system software, and did not, therefore,
unacceptably distort our comparisons.

Config
Ing(I)
Ing(M)
Parser
Decomp
1 Loop
Access

S Disk

Config
Ing(I)
Parser
Decomp
I Loop
Access

S Disk

wall
clock

39:57

54:38

59:34

63:51

80:34

120:18

81:39

wall
clock

1744

18:50

17:26

32:54

56:17

33:38

wall clock
less null

37:16

51:11

46:55

48:31

65:14

107:39

68:37

adjusted
wall clock
less null

37:16
38:18
41:11
41:32
56:53
95:00

54:33

net
time

0:00

0:00

0:18

1:33

12:00

53:11

14:16

Table 4.11: RAS Summary Performance Data

wall clock
less aull

55:44

33:04

Table 4.12: Citator Summary Performance Data

adjusted
wall clock
less null

17:37
18:15
16:42
30:50
53.02

29:21

net
time

0:00

0:01

12:53

adjusted
wall clock

37:16
38:18
40:53
39:59
44:53
41:49

40:17

adjusted
wall clock

16:41
20:09
20:18

16:28

40

wall
Config clock

Ing(I) 24:42
Parser 22:26
Decomp 23:50
1 Loop 49:30
Access 74:10

S Disk 47.09
Table 4.13: Combined Summary Performance Data

41

42

4.3. Page Buffering in the Backend

As stated in section 3.7, a copy of INGRES was instrumented to get a trace of relation page
usage. One of the two studies performed on this trace data was to examine the effect of a cache
for page level buflering. The trace data was used to drive a simulator written explicitly for this
purpose. A least-recently-used (LRU) policy was used to manage the cache. Although LRU is
pot the optimum replacement policy for INGRES, its performance is within 10 to 15 percent of
those policies studied in [Kapl80], and it is very simple to build a simulation program for this pol-
icy. The cache size was varied to measure the effectiveness of very large buffers. Pages updated
in the cache but not on disk were written to disk at the end of each transaction.

The trace data was processed in two Ways: caching all relation reads and writes, or caching
all reads and writes to non-system relations (i.e. all relations except for ~attribute” and “rela-
tion”). Section 4.7 below stresses the importance of handling the system relations specially.

Tables 4.14 and 4.15 present the results for all relations and for only non-system relations
respectively. The "Number of Buffers™ is the number of one page buffers in the cache. The
"reads” and "writes” columns report the counts of those operations that are needed with this level
of buffering. The line marked <actual> shows the actual numbers of read and write requests
made by the database system.

What is striking about these results is that much of the file system 1/O is caused by system
relations. Also, a single page buffer can reduce the numbers of the reads and writes by a large
factor. There is clearly some performance bug in INGRES. (Note that this performance problem
is actually mitigated in the UNIX file system buffer cache, so the effect is not very large in the
released version of INGRES.) The addition of buffers did not increase performance to a3 large
extent: there is no knee in the table. The use of about 20 page size buffers seems adequate, but
this must be evaluated in the context of the tradeofl between the cost of memory and the increase
in performance.

Number of
Buffers

<actual>

LB EBE oo oo s oo

500
1000
10000

Table 4.14: Disk Page Buflering for All Relations

Reads

80,208

26,785
24,593
22,028
20,367
19,678
18,973
18,265
17,852
17,399
16,814
14,224
12,566
11,184
9,990
6,798
4,339
2,875
1.815
1,184

Writes

13,141

9,843
8,226
6,27
5,517
5,255
5,047
4,852
4729
4,568
4,419
3,450
2,920
2,516
2,199
1,386
958
790
641
556

43

Number of

Buffers Reads Writes
<actual> 45,869 6,839
1 13,660 3,506

2 12,874 3,169

3 12,262 2,895

4 11,987 2,799

5 11,767 2,730

6 11,653 2,645

7 11,413 2,550

8 11,225 2,518

9 11,166 2,466

10 11,050 2,454

20 9,926 2,017
30 8,941 1,762
40 7,637 1,502

50 6,931 1,374
100 5,577 1,073
200 3,451 762
500 2,467 675
1000 1,767 588
10000 1,121 518

Table 4.15: Disk Page Buffering Without System Relations

45

4.4. Non-volatlle Storage

The second study performed on the trace data mentioned in the previous subsection was a
simulation of non-volatile storage. The results of the simulation are presented in Tables 4.16 and
4.17. Here the backend is assumed to contain bufler space ("Total Buffers™), some of which is
volatile and some is non-volatile ("Non-volatile”). Oaly reads and writes to non-system relations
were simulated. As write requests arrived, they were cached in the non-volatile buffers. If no
non-volatile buffers are available, the contents of a non-volatile buffer must be written to disk
while the current request waits (" Write Wait”). The policy simulated for writing the non-volatile
buffers to disk was to perform the write when the simulation of the disk showed that the disk was
idle. Hence, a read arriving while a buffered write was in progress must wait if the page needed
was not in the backend's cache ("Read Wait”). The interarrival of read or write requests {rom
the trace was modeled as a Poisson process, with a mean arrival time of 25 milliseconds for Table
4.16 to model the current INGRES system, and 3 milliseconds for Table 4.17 to model a faster
gsystem (in terms of CPU speed). The "Elapsed Time” column is the total wall clock time the
simulation covered. All times in the tables are in seconds.

There are several conclusions that can be drawn from the simulations. First, the conflict for
the disk as measured by "Read Wait” is larger for simulations with an interarrival time of 3 mil-
liseconds than for those with a time of 25 milliseconds. This is reasonable since in the former
case, the time required by a disk write is nearly the same as the mean request interarrival time.
For an interarrival time of 3 milliseconds, there is a much larger chance that a conflict for the
disk will occur. Second, the "Elapsed Time” for most tests with one non-volatile buffer was about
10%; faster than with no non-volatile buffers. Although additional non-volatile buffers increased
performance, the change was never as dramatic as the change from 0 to 1 non-volatile buffers.
Hence, the inclusion of non-volatile memory in the backend can help performance, but the
amount of such memory may be kept quite small. A rule of thumb might be that the backend
have one non-volatile buffer for each transaction expected to be executing concurrently.

Total
Buflers

10
10
10
10

BRBEEY

s

50

100
100
100
100
1060
100
100

1000
1000

Table 4.16: Non-volatile Page Buffering

Non-volatile
Buffers

VY = O

Uy o 2D = O

<

QY

ngmw-—o

go

Elapsed
Time

1,798
1,612
1,606
1,606

1,77

1,590
1,583
1,583
1,583
1,583

1,706
1,517
1,508

1,671
1,482
1,472
1,472
1,472
1,471
1,471

1,562
1,259

Read
Wait

46

Write
Wait

[
O
(93]

— D e

3

— e b £D W OV

205

with a Mean Interarrival Time of 25 Milliseconds

Total Non-volatile Elapsed Read Write

Buffers Buflers Time Wait Wait
5 0 652 0 205

5 1 552 27 7

5 2 541 41 53

5 3 537 45 44
10 0 640 0 205
10 1 538 2 78
10 2 527 39 53
10 3 522 42 45
10 4 521 44 42
20 0 619 0 205
20 1 515 23 79
20 2 503 35 54
20 3 499 39 47
20 4 498 41 43
20 5 497 42 41
20 10 495 45 36
100 0 513 0 205
100 1 400 10 82
100 2 385 18 59
100 3 281 20 53
100 4 330 21 50
100 5 379 22 48
100 50 373 33 32
1000 500 235 21 14

Table 4.17: Non-volatile Page Buffering
with a Mean Interarrival Time of 3 Milliseconds

43

4.5. Granularity of Communication

Communication between a frontend and a backend machine can be expensive, in terms of
both throughput and latency. If the communication medium has a relatively small bandwidth, it
is very important to send as few bytes as possible over the interface. If communication costs are
high, then it may cost more to send a request to a remote machine than to process it locally.

Thus, very careful planning of the granularity of communication {the message size) is neces
sary in a distributed processing environment. In the tests for the access method configuration, it
quickly became very clear that the natural granularity cf communication made the configuration
so slow that it was impractical to benchmark. With the addition of page level buffering, a
dramatic improvement occurred (a factor of about 5 in wall clock time). This improvement was
directly due to the high costs of running TCP/IP and the necessity of executing some low level
protocol functions in the VAX (e.g., byte swapping and checksum computation).

Not all networks have the same characteristics. The critical factor may be the number of
messages, the total number of bytes exchanged, the total number of packets, or the bandwidth of
the communication medium. A factor may be critical because of an unexpected phenomenon: for
example, the number of messages may be the bottleneck not because of network considerations
but because of the context switching overhead each message causes in one or both of the
machines.

4.8. Performance Statistics under UNIX

UNIX makes two types of performance statistics available: counts of events and sampled
quantities. The event counters are quite accurate, but they have two problems. First, the operat-
ing system software used in the experiment typically takes seven seconds to start a process on a
remote machine. This means that statistics that were to be coordinated between the frontend
and the backend had a 7 second gap. This decreased the accuracy of the elapsed time recorded
for a test, and added extra items to certain counters during the process startup period. Second,
counters do not always work exactly as described in the manual. As discussed above in section
4.3, the disk I/O reads and writes charged to a process could come from a multitude of sources.
More accurately, the disk read/writes attributed by UNIX to a process are those physical disk 1/O
operations whose cause can be traced to that process, even though the counter was specified in the
manual as counting reads and writes.

The only sampled quantities used in this experiment were CPU utilization variables. There
are two basic problems with the sampling. First, the clock used for sampling is also used to drive
internal events in the operating system. Since these events trigger activities that are never seen
as running by the sampler, they are never recorded. Second, when the sampling occurs, the
currently running process is recorded as being active either in system or user state depending on
the processor state. If the machine is in system state, attributing this sample to the system time
of the currently running process may be inaccurate. If the system state was entered because of a
system call, then this is reasonable. If, however, the system state was entered via an interrupt,
then charging the currently running process is questionable. If a process sends 2 message to a
remote process, then the sending CPU time is correctly charged, but the receiving CPU time is
attributed to whatever process is running at the time the packet arrives. Since this is unlikely to
be the process that receives the data, charging the CPU time to this process is unreasonable.

Consider the example of an I/O bound process and a CPU bound process running in the
same machine. The I/O bound process is almost never charged for the interrupt time spent for
its I/O. Almost all of this time is likely to be attributed to the CPU bound process since it is
almost always running when the [/O interrupt occurs. Another example is that of an I/O bound
process on an otherwise idle computer. All interrupt time is now assigned to the null process or
to the system itself. The CPU time statistics will tend to understate the true CPU cost of an 1/0
bound process, and to overstate the CPU cost of a CPU bound process.

All of the above explains why the sum of the vtimes CPU times does not always match the
endstat CPU time. It also is a good example of why it is desirable to measure the same quantity
in several ways so that confidence can be gained in the accuracy of the measurements.

490

4.7. The INGRES Process ID

When the INGRES database system needs to construct for its own use a temporary relation,
it builds a unique name based on the process identifier of one of the database processes. The tem-
porary relation name and its field names are stored in the system relations "relation” and "attri-
bute”, that are stored by hash value. Since the hash value can change from test to test, the
access to the system relations is different from test to test, thereby making the tests non-
repeatable and subject to error. Above, the overall estimate was made that the variability was
within 3% for the entire test and for all tests.

The temporary relations mentioned above caused disk 1/O anomalies. Various runs of a
sub-test of the RAS database for the Ingres configuration gave relation read counts of 628, 655,
655, 899, 1267 and 1690. Of these, only 345 went to relations other than the relation relation and
the attribute relation. The reads to the system relations accounted for 45 to 80 percent of all
relation reads in this sub-test. The vast majority of these reads were due to lookup of temporary
relation data. While measuring the Ingres configuration, we found that the percentage of reads
and writes for the entire RAS benchmark that went to system relations of all file system reads
and writes were 43 and 48 percent respectively.

It is surprising to note that many of these relations are internal temporary relations. They
are unpamed, as far as the user is concerned, and they do not survive the transaction they are
involved in. Although it is convenient to keep all the relation descriptors together in the relation
and attribute relations, there is no compelling reason to do it. INGRES could have two different
types of relations: normal relations cataloged in the relation and attribute relations, and special
relations for temporaries. The catalog information for temporary relations could be managed
separately. This could eliminate up to 40 percent of the file system calls.

50

CHAPTER 5

Discussion

§.1. Configuration Comparisons

Each configuration consumed different amounts of resources in the experiment. Depending
on the performance metric chosen as the most important one, each configuration could be con-
sidered the best performer. No configuration was uniformly better than all other configurations
based on the tests described in the previous chapters. The parameters of the communication
medium and the protocol overhead, the relative processing powers of the frontend and backend,
and their respective processing loads can cause ome configuration to outperform all other
configurations. In addition, certain design factors of a backend database machine for navigational
database systems (e.g., IMS and CODASYL) make some configurations infeasible. This is because
the semantic level of the interface between an application program and the database system is
quite low in navigational database systems. Hence, the higher level interfaces, those found in the
inner loop, decomposition, and parser configurations, could not be built for these types of data
base systems. This section examines each configuration and describes the environment in which it
is expected to perform best.

It should be noted that almost all the factors referred to in this section are related to perfor-
mance or cost. In practice, other factors are certainly important: market place acceptance, over-
load of the frontend, protection, portability, and maintainability should all be considered in build-
ing a real world database backend.

5.1.1. Ingres

This configuration was included as a reference; it is not a serious contender for a backend
database system. However, the Ingres configuration has two advantages over all other
configurations: it can be built using only one machine and uses no additional bardware com-
ponents. If the query load is light, the extra cost of a more complex backend than a simple disk
controller may not be justified. Even a smart disk controller may not be cost effective if the type
of query load does not lend itsell to effective buffering (e.g., semi-random single tuple retrieval out
of a large database). [ngres has the advantage over the other configurations in that all decisions
are made in one machine. This configuration used the fewest total CPU cycles. The reason for
this is simple: the communication and the coordination needed in the other configurations are not
free.

5.1.2. Smart Disk

The smart disk configuration did not perform as well as expected. A small amount of
buffering worked quite well, but its effectiveness did not scale to larger buffers (see section 4.3).
Including stable storage in the controller can be very eflective, but only if the query load does a
comparatively large number of updates (see section 4.4).

We feel that the following properties are necessary in a smart disk controller to be used as a
database system's backend. First, the controller must possess an accurate model of the processing
order of the disk pages [Ston81]. When reading a relation serially, the access to pages may not be
sequential from the viewpoint of the file system or the disk controller. Some inserted tuples cause
disk pages to be split and an overflow page created. These overflow pages are to be logically
inserted into the body of the file when it i8 read serially. Databases thus have a logical order of
pages that may be quite different from the physical order of sectors on a disk or even from the
logical page order of a file. If the controller knows that sequential processing of a relation is
peeded, then better buffering than simple sequential pre-fetch can be done at the controller. The
controller can either learn that sequential access is required from a hint from the frontend or
detect sequential processing by itself.

51

Second, the controller should have sufficient stable storage to perform the delayed writing of
some amount of committed data. Note that only committed data for non-temporary relations
peeds to be buffered in a stable manner: a system crash can destroy database internal temporary
relations without any major consequences. An estimate of the amount of the data to be buffered
can be obtained by measuring the effectiveness of the delayed write policy in the operating sys-
tem. The size of the buffer can be determined by doing a cost/performance analysis.

Third, multiple pages should be read from disk when the cost of doing this is sufficiently
low, and when the processiug order of pages makes it likely that some of the additional pages will
be used.

Finally, the disk controller must do "load through”. As stated above, when a page is
peeded that resides only on disk, it is likely that the controller will choose to buffer more data
than that actually requested. However, it must send the requested page to the frontend as soon
as possible.

A hypothetical example can be used to describe this last point. Suppose it is the policy of
the controller to buffer up to eight pages for each read, and suppose we ceed page 3 of this buffer.
When the head comes on the cylinder where the pages to be read reside, suppose that the head is
just before the beginning of page 1. If the controller does no data transfer until the disk turns so
that page 0 of our buffer is under the head, we will lose almost an entire disk revolution. Suppose
instead that pages 1 through 8 are read. If the data is not sent to the frontend as soon as it is
available in the backend (i.e. at the time page 3 is in the controller's buffers), we can lose a good
part of a revolution (the time from page 3 to page 8). In this example, the best policy is to
transfer pages 1 through 8 into the controller’s buffer. As page 3 is read off of the disk, it should
be sent immediately to the frontend {load through). Page 0 may be added to the buffer if the head
does not have to be moved before the next physical 1/O operation. The load through policy con-
sists of reading and transmitting to the frontend the data page needed as soon as possihle, and to
transfer into the buffer nearby pages if it is convenient.

5.1.3. Access Methods

The access methods configuration does not make sense for relational database systems. For
navigational database systems, it is hard to imagine circumstances where this configuration per-
forms well. As the network performance results in chapter 4 indicate, the access method
configuration caused the heaviest load on the network. Before page buffering was added, this
difference was even more extreme. (Buffering five pages in the frontend cut the number of mes-
sages by a factor of 5.7 and the number of bytes transmitted by a factor of 9). Clearly, the
sccess method configuration requires a high-bandwidth, low overhead interface.

The market for this type of backend mackine may be quite narrow. The backend must be a
moderately powerful computer, since it has to perform fairly complex tasks. Thus, it cann:t be
an inexpensive machine. A high bandwidth and low overhead communications medium must be
used (e.g., a bus or parallel 1/O channel). When a backend is being built to support an existing
database system, this configuration can efficiently run only if the access methods are on a process
boundary in the original database software. For new systems being buiit, the process structure
should satisfy the same requirement. This may very well be the case in IMS or CODASYL style
database systems. The underlying reason for this structural requirement is that the database sys-
tem must protect itself from the user, and the only real protection mechanism in most systems is
that of process isolation. In IMS or CODASYL style database systems, the interface to an appli-
cation program is at the access methods level. We speculate that the main savings for the fron-
tend when the access methods are moved to the backend are not primarily in user CPU time, but
rather in context switch overhead time. Each call to the database usually causes two full context
switches: one to the database process and one back to the user process. By moving the access
methods to the backend, the two full switches become two half switches: a half switch to the
operating system to issue the request to the backend, and u half switch from the operating system
back to the user process when the request is completed. (A full context switch is a change from
one process to another process; a half context switch is either a process giving up control to the

52

operating system kernel without starting a different user process, or the operating system giving
control to a user process.). The overhead of communications must be much less than the savings
due to context switch overhead. The cost of this type of backend must be offset by saving CPU
cycles in the frontend. While this is possible in IMS and CODASYL style database systems, it is
unlikely to be effective in a relational database system.

5.1.4. Inner Loop

The inner loop configuration used more CPU time in both the frontend and backend than
the decomposition configuration. It is, therefore, never to be preferred to decomposition.

This configuration resulted in the best distribution of the CPU usage between the frontend
and backend. However, the amount of coordination required between the two machines made this
configuration almost impractical. Although initial analysis of this configuration made it appear to
be viable, testing proved that this was not the case. We feel this was because the level of the
interface was too low: the backend should have been able to do joins in response to a single
request from the frontend instead of usually requiring several requests.

5.1.5. Decomposition

This configuration was quite successful, as it combined a reasonably low amount of com-
munication with high processing locality in the backend. If the backend is built to perform rea-
sonably well, this configuration should be expected to do quite well. Unfortunately, this
configuration is only applicable to relational database systems.

Both this and the parser configuration provide a high level interface to the backend
machine: the semantic content of the messages exchanged by the two machines is large, the mes-
sages are fairly infrequent, and the context switch time consumed is small. Both configurations
also have a good match between the protection boundaries of the database system, and the physi-
cal boundary between the two machines. In the decomposition configuration, the backend must
check that the parse tree passed to it has certain properties. This is necessary to insure that the
parse tree makes sense; and to provide some protection in the backend, which may be necessary if
the backend is to be interfaced to multiple frontends. Most of this checking must be donc in the

parser anyhov., but in the decomposition configuration some of the checks must be duplicated in
the backend.

5.1.8. Parser

Like the previous configuration, parser was successful, but is only applicable in relational
database systems. Since it had the lowest communication costs, by far, of any of the
configurations, this configuration could be used in contexts in which the communication medium
is slow or the protocols expensive. Except for communication costs, it performed very much like
the decomposition configuration. In fact, our experiments suggest that the performance difference
between these two configurations is probably smaller than the effects caused by our design deci-
sions and by the errors affecting our measurement results. A cost advantage in the backend, the
petwork communication speed, or a bottleneck could make either configuration preferable to the

other.

As noted in the previous sub-section, in this configuration the natural database protection
boundary nearly coincides with the machine interface.

5.2. Experiment Versus Modeling or Simulation

As discussed in section 3.2, this thesis used the experimental approach. The main reason
given there was that such an approach would give the best results since building accurate models
would be too hard and running them too expensive. This section reviews that decision on the
basis of the experimental results.

Some of the configurations were quite hard to build and debug. The functional divisions
specified in section 3.5 do not really describe the problems of the actual implementation. The

83

performance of the system can be quite adversely aflected by a migration of some (apparently)
small functions between the frontend and backend (e.g., adding page level buffering in the fron-
tend for the access methodsj. To get reasonable performance data, each configuration was to be
tuned. This resulted in some minor functions being moved between the two machines; in some
cases, a cache was added to the frontend.

Some features that are conceptually quite easy are tremendously hard to implement and
debug. Examples of these features are those needed to ensure file and buffer consistency. Details
of the implementation, such as internal relation numbers, must be kept consistent between the
frontend and backend. All this entails additional code to be written and run, and extra messages
or data to be exchanged between the frontend and backend.

All of these problems make it very hard to buiid a realistic analytic or simulation model.

In addition to the objections above, some of the performance results show that the
configurations do not run as would be expected based on the basis of simple assumptions. About
40-50,000 relation reads were found to be necessary in the Ingres configuration processing the
RAS benchmark. By use of 10 page buffers, the smart disk configuration was able to reduce this
to about 14,000 relation reads. Since the UNIX file system buflers are far more numerous (about
50), less than 14.000 physical reads to relation pages were done in the Ingres configuration. Since
there were also about 10,000 relation writes, the total number of relation disk 1/O operations
should have been about 24,000 or less. However, 37-38,000 disk 1/O’s were counted in the operat-
ing system kernel. The previous chapter examined the causes of disk 1/O, but the point here is
that this operating system overhead would not have been predicted by a simple model of database
use.

The conclusion is that the proper choice was experimentation. Even very sophisticated
models built without having confronted practical implementation problems beforehand would
have ignored several significant aspects of an actual database system. The experience and insight
gained by really building the software was quite different from that needed to plan the
configurations. Even the careful measurement of a singlecomputer database system would not
have been nearly as satisfactory as actually building the distributed software. Despite the imple-
mentation problems we encountered, we feel that the experimental approach gave us the most
reliable results.

54

CHAPTER 6

Conclusions and Future Work

8.1. Conclusions

The prime goal of this thesis was to investigate the relative performance of several func-
tional subdivisions of a database system. Depending on the choice of performance metric, the
relative processing power of the two computers, the network overhead and other factors, there is
no configuration that is uniformly better than all others. The smart disk configuration should be
used where there is a strong concern with overloading the backend since it uses the least process-
ing power in the backend. The access methods configuration could perform well for IMS or
CODASYL style databases provided that communication is very inexpensive. The decomposition
and parser configurations were both found to be excellent choices for relational database systems.
The data collected in this study could not adequately distinguish them. Hence, each
configuration, except inner loop, is to be preferred to all other configurations in certain cases or
contexts.

Our method of investigation was based on experimentation. The results of the measure-
ments of operating system overhead due to disk accesses would alone suffice to prove that this
method of investigation is more reliable in this case than simulation or modeling.

Several times during the debugging and benchmarking of the configurations, the direct or
indirect measurement of a given quantity by multiple techniques proved to be very useful. Not
only did this point out errors in measurement, but it also caught operating system performance
bugs and uncovered anomalies in disk 1/O and CPU usage.

We would also like to caution other performance investigators who use the UNIX operating
system: beware the performance statistics presented by the system! The statistics that are meas-
ured by sampling are suspect. Statistics which are obtained by the use of counters also have a
problem: the description of what the counters measure are often misleading.

The INGRES system did not run queries the same way every time, since the system needs a
unique identifier and it constructs one from the process identifier. This caused some trouble for
someone interested in benchmarking the system for performance since tests are not repeatable.
Any system that uses unique identifiers, such as process identifiers, has a similar problem that an
experimental performance investigator must address.

The network protocol dominated the performance of one of the configurations and was quite
significant in two other configurations. Although we did expect the protocol to have a significant
impact on performance, the degree that it influenced performance in some configurations was not
expected. To send a one packet message takes around 10 milliseconds (i.e. about 10 times the
context switch time). It is beyond the scope of this thesis to examine in detail the causes of this
phenomenon.

A second interesting feature of the petwork performance is that it is not a simple function of
the number of messages, the number of packets, and the number of bytes sent. The network
seemed to be improving its performance as messages got longer.

The use of large buflers in the backend did not seem worth the expense. Although the
backend performed somewhat better with more space, the use of twenty page buffers seemed more
than adequate. This does seem counter-intuitive and may only be an anomaly of INGRES.

Nop-volatile storage in the backend helped transactions to commit quickly, but it would not
help read-only transactions. In many workloads, read-only transactions dominate the use of the
database. Also, transactions that modify large sections of the database wil! not be helped unless
the amount of non-volatile storage is large. The conclusion is that pon-volatile storage is helpful
but will not dramatically change the performance of a database system unless the application is
very specific. This conclusion should be re-examined for distributed database systems in which

65

the commit protocol needs to write emall amounts of data often and reliably.

One of the most impressive results was the size of the operating system overhead. One
measurement indicated that 609 more disk 1/O occurred than was necessary (i.e. about 40% of
disk I/O was overhead). We speculate that there is a similar large overhead in CPU cycles. We
feel that these overheads were primarily due to the mismatch between the database system and
operating system requirements. The conclusion is that a backend should not run under a stan-
dard operating system. The performance penalties of using a standard operating system are too
large. Instead, a specially tailored runtime executive is about all that is necded. Functions that
are candidates for omission from the executive are memory management, device management,
processor management, and the file system. Memory management can be performed better by the
database system since it can make a more intelligent use of buffer space. Device management for
the disk is important because of crash recovery. Processor management by the database system
can help prevent convoys. Finally, the general file system provided by typical operating systems
is too rich in functionality and too expensive to run with a database system.

We also observed in INGRES that there appears to be a tradeoff between modularity and
performance. By adding some semantics of the higher level functions to the low level implemen-
tation, a gain in performance can be achieved. This can be seen in disk page buffering, in adding
the concept of temporary files to a file system, and in disk head scheduling.

6.2. Future Work

At the beginning of this work, we did not have sufficient data to build accurate models of a
database system, or in particular of the INGRES database system. Our work can now be
extended to build a model of INGRES based on the data obtained in our experiments. A more
general mode! of relational database systems based on the underlying data model could also be

constructed.

A further extension of this work would be to test additional configurations. In particular, a
configuration similar to inner loop that also did join processing in 3 single call to the backend
would be interesting.

[Ampe8?2|

[Armi81]

[Aror81]

[Astr76]

(Babb79]

[Banc80]

[Bane78|

[Blas79)

[Borag0]

[Bora81]

[CanaT4]

[Cham74)

(Chapso)

58

Bibliography

Capricorn Models 165/830 Disk Storage Drive Operation and Maintenance Manual,
3312369-01, Revision D, Ampex Corporation, El Segundo, California, May 1982.

J. P. Armisen, J. Y. Caleca, A Commercial Back-End Data Base System, Seventh
International Conference on Very Large Data Bases (1981}, 56-65.

S. K. Arora, S. R. Dumpalt, K. C. Smith, WCRC: An ANSI SPARC Machine Archs-
tecture for Data Base Management, Proceedings of The 8th Annual Symposium on
Computer Architecture, (SIGARCH Vol. 9, No. 3, May, 1981), 373-388.

M. M. Astraban, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P.
P. Grifliths. W. P. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, 1.
L. Traiger, B. W. Wade, V. Watson, System R: Relational Approach to Database
Management, ACM Transactions on Database Systems, Vol. 1, No. 2 (June 1976).

E. Babb, Implementing a Relational Database by means of Speciolized Hardware,
ACM Transactions on Database Systems, Vol. 4, No. 1 {(March 1979), 1-29.

F. Bancilhon, M. Scholl, Design of o Backend Processor for a Data Base Machine,
Proceedings of the ACM SIGMOD 1980 International Conference on Management of
Data, Santa Monica, California, May 1980, 93-93g.

J. Baperjee, D. Hsiao, Performance Study of & Database Machine in Supporting Rela-
tional Databases, Proceedings Fourth International Conference on VLDB, 1978.

M. Blasgen, J. Gray, M. Mitoma, T. Price, The Convoy Phenomenon, Operating
Systems Review, Vol. 13, No. 2 (April 1979), 20-25.

H. Boral, D. J. DeWitt, Design Considerations for Data-flow Database Machines,
Proceedings of ACM-SIGMOD Conference on Management of Data, Orlando, 1980,
94-104.

H. Boral, D. J. DeWitt, Database Machine Activities at The University of Wisconain,
Database Engineering, Vol. 4, No. 2 (Dec. 1981), 20-27.

R. H. Canaday, R. D. Harrison, E. L. lvie, J. L. Ryderc, L. A, Wehr, A Back-end
Computer for Data Management, CACM, Vol. 17, MNo. 10 (Oct. 1974), 575-582.

D. D. Chamberlin, R. F. Boyce, SEQUEL: A Structured English Query Language,
Proceedings ACM-SIGMOD Workshop on Data Description, Access, and Control,
Ann Arbor, Michigan, May 1974, 249-264.

G. A. Chapine, Back-End Technology Trends, IEEE Computer Magazine, Vol. 13,
No. 2 (Feb. 1980), 50-58.

[Chan78|

(Chlas0]

[CODATY]

[Codd70]

[Cull7g]

[Date73]

[Date83]

[DeFiT3]

[DeWiT8]

[DeWiT9]

{Dion80)

[Dog80]

[Emul80]

[Epst80]|

[Frid8]]

[Gard81]

87

H. Chang, On Bubble Memories snd Relational Data Bases, Proceedings 4th Interna-
tional Conference on Very Large Data Bases, 1978, 207-229.

1. Chlamtac, W. R. Franta, P. C. Patton, B. Wells, Performance [s2ues in Back-End
Storage Networks, [EEE Computer Magazine, Vol. 13, No. 2 (Feb. 1980), 18-31.

CODASYL Data Base Task Group April 71 Report, ACM, New York, 1971.

E. F. Codd, A Relational Model for Large Shared Data Banks, CACM, Vol. 13, No. 6
(June, 1970), 377-387.

IDMS DML Programmer’s Reference Guide, Cullinane Corp., Wellesley, Mass.,
1978.

C. J. Date. An Introduction to Data Base Systems, Addison-Wesley, Reading, Mass.,
1975.

C. J. Date, An Introduction to Data Base Systems, Vol. 11, Addiscn-Wesley, Read-
ing, Mass., 1983.

C. R. DeFiore, P. B. Berra, A Dats Management System Utilising an Associative
Memory, Proceedings of the ACM National Computer Conference, 1973, 181-185.

D. DeWitt, DIRECT - A Multiprocessor Organization for Supporting Relationsl Data
Base Management Systems, Proc. Fifth Annual Symposium on Computer Architec-
ture, 1978, 182-189.

D. DeWitt, Query Ezecution in DIRECT, Proceedings of ACM-SIGMOD Conference
on Management of Data, Boston, 1979, 13-22.

J. Dion, The Cambridge File Server, Operating Systems Review, Vol. 14, No. 4 (Oct.
1980}, 26-35.

A. Dogac, E. A. Ozkarahan, A Generalized DBMS Implementation on a Database
Machine Proceedings of ACM-SIGMOD 1980 Internationa! Conference on Manage-
ment of Data, Santa Monica, California, May 1980, 133-143.

SC21/B1 SC21/BF SC21[V1 (RM02{RMOS[RM0S5 Compatible) Disk Controller,
Emulex Corporation, 1980.

R. Epstein, P. Hawthorn, Design Decisions for the Intelligent Database Machine,
AFIPS Conference Proceedings, 1980 National Computer Conference, Vol. 49 {May
1980), 237-241.

M. Fridrich, W. Older, The FELIX File Server, Proceedings of the Eighth Sympo-
sium on Operating Systems Principles, Dec., 1981 (also printed as Operating Sys
tems Review, Vol. 15, No. 5), 37-44.

G. Gardarin, An Introduction to SABRE, A Multi Micro-Processor Data Base
Machine, Sixth Workshop on Computer Architecture for Non-Numeric Processing,

[GoldT 4]

[Gray78]

[Gray 79|

[Hawt79]

[Hawt82

[Hsia81]

(IBMS1]

[Inte82]

[Joy81a)

[Joy81b]

[Kapl80]

[Keen81]

[Kiyo81]

[Kung80)

58

Hyeres, June 1981.

R. Goldberg, R. Hassinger, The Double Paging Anomaly, Proceedings AFIPS 1974
NCC, Vol. 43, AFIPS Press, Montvale, N. J., 195-199.

J. Gray, Notes on Dats Base Operating Systems, IBM San Jose Research Report
RJ2188, Feb. 1978.

J. N. Gray, V. Watson, A Shared Segment and Interprocess Communication Facility
IBM San Jose Research Report R J2450 (a revision of RJ1579), Jan., 1979.

P. Hawthorn, Evaluation and Enhancement of the Performance of Relational Data-
base Management Systems, Ph. D. Thesis, U. C. Berkeley, Report No. UCB/ERL
M79/70, 1979.

P. Hawthorn, D. J. DeWitt, Performance Analysis of Alternative Database Machine
Architectures, [EEE Transactions on Software Engineering, Vol. 8, No. 1 (Jan 1982),
61-75.

D. K. Hsiao, The Laboratory for Database Systems Research al the Ohso State
University, Database Engineering, IEEE, Vol. 4, No. 2 {Dec. 1981), 14-19.

IBM 8850 Direct Accese Storage Description and User's Guide, IBM, Order Number
GA26-1644-1, Second Edition, Dec. 1931

iDBP DBMS Reference Manual, Preliminary Release 3, Order Number 2221C0, Intel
Corporation, Austin, Texas, Feb. 1982.

W. Joy, R. Fabry, An Architecture for Interprocess Communication in UNLX, Com-
puter Systems Research Group at U. C. Berkeley memo {1981).

W. Joy, R. Fabry, Proposals for enhancement of UNIX on the VAX, Computer Sys-
tems Research Group at U. C. Berkeley memo July 21,1981, revised Aug. 31, 1981.

J. Kaplan, Bufer Management Policies in a Database System, M. S. Report, Univer-
sity of California, Berkeley, 1980.

M. M. Keenan, A Comparative Performance Evaluation of Datebase Management
Systeme, M. S. Report, Computer Science Division, University of California, Berke-
ley, Oct. 1981 (also Lawrence Berkeley Laboratory report LBL-13700).

Y. Kiyoki, K. Tanaka, H. Aiso, N. Kamibayashi, Design and Evaluation of a Rels-
tional Data Base Machine Employing Adyvenced Dats Structures and Algorithms
Proceedings of The 8th Annual Symposium on Computer Architecture, (SIGARCH
Vol. 9, No. 3, May, 1981), 389-406.

H. T. Kung, P. L. Lehman, Systolic (VLSI) Arrays for Relational Database Opera-
tions, Proceedings of ACM-SIGMOD Conference on Management of Data, Santa
Monica, 1980, 105-116.

[Lamp81]

|Leil78]

[Lin76]

[Lind79)

[Lowes0)

[Mall79]

[Mari7 5]

[Mete76]

[Mitc82)

[Nels81]

(O]

[Oliv79]

[Ozka75]

(OzkaT7]

[Post80al

59

B. W. Lampson, Disiributed Systems -- Architecture and Implementation: An
Advanced Course, Lecture Notes in Computer Science B. W. Lampson, M. Paul, and
H. J. Siegert ed., Springer-Verlag, 1981, 365-370.

H. O. Leilich, G. Stiege, H. Ch. Zeidler, A Search Processor for Data Base Manage-
ment Systems, Proceedings of the Fourth VLDB, Sept. 1978, 280-287.

C. S. Lin, D. C. P. Smith, J. M. Smith, The Design of & Rotating Assoctative
Memory for Relational Dats Base Applications, ACM Transactions on Database Sys-
tems, Vol. 1, No.1, (March 1976), 53-65.

B. G. Lindsay, P. G. Selinger, C. Galtier, J. N. Gruy, R. A, Lorie, T. G. Price, F.
Putzolu, I. L. Traiger, B. W. Wade, Notes on Distributed Databares, IBM San Jose
Research Report RJ2571, 1979.

E. Lowenthal, Database Management Syestems for Local Area Networks, iEEE Com-
puter Magazine, August, 1982.

V. A. J. Maller, The Content Addressable File Store - CAFS, ICL Technical Journal,
Nov. 1979, 265-279.

T. Marill, D. Stern, The Datscomputer - @ Network Utility, AFIPS Conference
Proceedings, 1975 NCC, Vol. 44, 389-365.

R. M. Metcalfe, D. R. Boggs, Ethernet: Distributed Packet Switching for Local Com-
puter Networks, CACM Vol. 19, No. 7 (July 1976}, 395-404.

J. G. Mitchell, J. Dion, A Comparigon of Two Network-Based File Servers, CACM,
Vol. 25, No. 4 (April 1982), 233-245.

B. J. Nelson, Remote Procedure Call, Ph.D. dissertation, Computer Science Depart-
ment, Carnegie-Mellon University, CMU report number CMU-CS-81-119, Xerox
PARC report aumber CSL-81-9, 1981.

K. Oflazer, A Reconfigurable VLSI Architccture for o Database Processor, unpub-
lished paper available from the author at CMU.

E. J. Oliver, RELACS, An Associative Computer Architecture to Support & Rela-
tsonal Data Model, Ph. D. Thesis, Syracuse University, 1979.

E. Ozkarahan, S. Schuster, K. Smith, RAP - Associative Processor for Database
Manasgement, AFIPS Conference Proceedings, 1975 NCC, Vol. 44, 379-383.

E. A. Ozkarahan, S. A. Schuster, K. C. Sevcik, Performance Evaluation of a Rela-
tional Associative Processor, ACM Transactions on Database Systems, Vol. 2, No. 2,
{June, 1977), 175-195.

J. Postel ed., DOD Standard Internet Protocol, Internet Working Group, IEN 128,
Jan. 1980.

[Post80b)

[Ritc78]

[Seki83)]

[Seo81]

{Shaws0]

[Shaw82]

[Shib82)

[Soft]

[Soft81]

[Spec82]

[Ston76]

[Ston80)|

[Ston81]

[Su75)

[Swin79]

80

J. Postel ed., DOD Standard Transmission Control Proiocol, Internet Working
Group, IEN 129, Jan. 1980.

D. M. Ritchie, K. Thompson, The UNIX Time-sharing System, Bell System Techni-
cal Journal, Vol. 57, No. 6, (July-Aug. 1978), 1905-1930.

A. Sekino, K. Takeuchi, T. Goto, K. Hara, Design and Implementation of an Infor-
mation Query Computer, Proceedings of Compcon, San Francisco, 1983, 374-377.

K. Seo. H. Aiso, N. Kamibayashi, 4 Look-Ahead Data Staging Architecture for Rela-
tional Dats Base Machines, Proceedings of The 8th Anp2al Symposium on Com-
puter Architecture, (SIGARCH Vol. 9, No. 3, May, 1981), 389-406.

D. E. Shaw, A Relational Database Machine Architecture, Fifth Workshop on Com-
puter Architecture for Non-Numeric Processing, March, 1980, 84-95.

D. E. Shaw, S. J. Stolfo, H. Ibrahim, B. Hillyer, G. Wiederhold, J. A. Andrews The
NON-VON Database Machine: A Brief Overview, Database Engineering, [EEE, Vol.
4, No. 2 (Dec. 1981), 28-30.

S. Shibayama, T. Kakuta, N. Miyazaki, H. Yokota, K. Murakami, A Relational
Database Machine "Delta”, Technical Memorandum of ICOT Research Center No.
TM-003, Nov. 1982.

The Database Machine, a promotional brochure published by Software AG of North
America, Inc.

ADABAS Channel-to Channel Sojtware System Instcllation and Operations Manual,
Software AG of North America, Inc., 1981.

A. Z. Spector, Performing Remote Operations Efficiently on a Local Computer Net-
work, CACM, Vol. 25, No. 4 (April 1982), 246-259.

M. Stonebraker. E. Wong, P. Kreps, G. Held, The Design and Implementation of
INGRES, ACM Transactions on Database Systems, Vol. 1, No. 3 {Sept., 1976) 189-

509

-

M. Stonebraker, Retrospection on 6 Database System, ACM Transactions on Data-
base Systems, Vol. 5, No. 2 (June 1980), 225-240.

M. Stonebraker, Operating System Support for Database Management CACM, Vol.
24, No. 7 (July 1981}, 412-418.

S. Su, G. Lipovski, CASSM: A Cellular System for Very Large Data Bases, Proceed-
ings of the International Conference on Very Large Data Bases, Framingham, Mas-
sachusetts, 1975, 456-472.

D. Swinehart, G. McDaniel, D. Boggs, WFS: A Simple Shared File System for a Dis-
tributed Environment, Proceedings cf the Seventh Symposium on Operating System
Principles, Asilomar, California, Dec. 1979, 8-17.

81

[Thor80| J. E. Thornton, Back-End Network Approaches, [EEE Computer Magazine, Vol. 13,
No. 2 (Feb. 1980), 10-17.

{Traig2] I. L. Traiger, Virtual Memory Management for Data Bese Systems, Operating Sys-
tems Review, Vol. 16, No. 4 (Oct. 1982), 26-48.

[Ubei82] M. Ubell. The Intelligent Database Machine, Database Engineering, IEEE, Vol. 4,
No. 2 (Dec. 1981), 28-30.

[Uemu83| S. Uemura, Database Machine Activities in Japan, Database Engineering, [EEE, Vol.
6, No. 1 (March 1983), 63-64.

[UllmSO] J. D. Ullman, Principles of Dctabage Systems, Computer Science Press, Potomac,
Maryland, 1980.

[Valds2) P. Valduriez, Semi-join Algorithms for Multi-proccssor Systems, Proceedings of
ACM-SIGMOD Conference on Management of Data, Orlando, 1982, 225-233.

[WahSO] B. W. Wah, S. B. Yao, DIALOG -- A Diatributed Processor Organization for Data-
baze Machines, AFIPS National Computer Conference, Vol. 49, 1980, 243-255.

[Wats80] R. W. Watson, Network Architecture Design for Back-End Storage Networks, [EEE
Computer Magazine, Vol. 13, No. 2 (Feb. 1980}, 32-48.

