Exploiting Structure in the Analysis of Integrated Circuit Artwork

Daniel T. Fitzpatrick

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Design of very large scale integrated circuits requires struc-
tured design approaches to deal with the ever increasing complex-
ity of these circuits. As designs become more complex, the need
for layout analysis tools, such as design rule checkers and circuit
verifiers, becomes greater. However, current layout analysis toocls
make no use of this structure, and as a result, are taking increas-
ingly large amounts of computer time. This thesis examines ways
in which these analysis tools can exploit the structure present in
the layouts of large integrated circuits in order to improve run-
times.

A major obstacle in building hierarchical analysis tools is in
handling overlaps of cells. This thesis describes an algorithm that
transforms a hierarchical layout description into a hierarchical
layout description without overlaps. This newly created hierarchy
is called the disjoint hierarchy. Analysis tools that rely on this dis-
joint hierarchy can effectively exploit the structure of the layout.
The design of hierarchical algorithms to do circuit extraction,
geometric design rule checking, and simple mask operations are
also described. A program that implements the disjoint transfor-
mation and performs circuit extraction is discussed. A comparison
of the runtimes of this program with conventional circuit extrac-
tors shows a considerable speedup for even relatively small cir-
cuits.

July 7, 1983

Table of Contents

Chapter L. Introduction .oeee it 1
Chapter IL. The Disjoint Transformation ... 9
1. EXAMIPIE .eeeerreerieeeeeeeecsniseree e ee——— e eeerar—eaeaaneevaabrrneran e 10
2. SDHL ... vevveecereereseeessesssssasseesseseesere s e s Ra e a R 11
1S T X A o =] PP S RPPS PP PR PPPPRPIPPPTOSPPR LR 12
4. Cleanup PhaSe.....coceiriiriininririieesiite e e 13
5. Subsequent ANALYSIS .ccouuieriie i 14
8. The Sweeping Line AlGoTithIm. .o 14
Chapter III. Circuit EXtraction ... 21
1. The ALGOTIERITL ..comriiiiiiir ettt e 21
2. Extraction of Geometry-0nly Cellsc.cccvireermmiiecminnaansieseessnse e 22
3. Extraction with INStanCesccuviiirii it e e 23
4, BXAIMIPLE oeteeierreeiescitcie e e e e e 25
5. Circuit DesCription.....uciiiiiiirimee e .25
Chapter IV. Design Rule Checkingccoormiiiiiimiiniinn e 31
1. Hierarchical Design Rule ChecKing.......evrmiiiirmimiiiiinn e 32
2. Geometric Checking AlGOrithIML. . .c i 33
3. Example of Hierarchical ChecKing......cccccooiiiiiiiiiiinciiien 34
4, NOon-Local RULES...ccuiiiieiirierrerernier e s et stemas st srrm s ereserasstea e st s st aesean s 35
Chapter V. Mask OPerations ...t 42
3 TR 0) U PRPPRIPPPPRPRITEEPEOPTPRED 42
PN\) ST USSP UPPPIPPPIIPRPRPRE 43
016 5 PP PPN PPPRIPRPPPPPREREPEP 43
L e =10) USRI PTPPPNPPPI PR 43
5. SHRINK oo eeteeeieieieueeeaeeertsaeaaeseetentesssttmmtaaasematrsaraaaasstesnsnssssimestssnsassnnanaases 43
Chapter V1. Implementation ... et 51
SR O L - Wa] 3 s O oA 0} of T O PPPPRPITRP PSPPI PPIPTPRITED 51
2. Disjoint ROULINE. ...uuiiieriieiiirii i 53
3. SPlit ROULINE coveetiiiiireee et 53
4. Gather ROULINE. ..ot iie ettt et e r e e er s reaeases s e s s i aan e 55
SRR 030 o o BT AAR 05 < o= TeL 91} o WENTUTIN U PUPTP NP PPIEPPPPRIP 58
Chapter VII. PErforTanCe. . um ettt 83

Chapter VIIL Work by OtRers ... 78

1. HierarChiCal Bl T ettt iii et te e et et e et rare e ee e s eensasaarasnaansinannnas 78
A R ey 1Y als B o g 1= 11) alUTT TR 79
3. Restricting OVErlaps ..euciiiicereiiiirmieae st 80
Chapter IX. SUMITIATY .cooicieiiee i n st e e 84
R T T B veunesnsesassnese e s st sssasnssnnsnsessnstasasncnstnsresstonrenatssssssnnanstnaensasusnasssesnonnncnts 86

Chapter 1. Introduction

Over the past few years integrated circuit technology has packed an
exponentially increasing number of devices onto a single chip of silicon. This
trend is likely to continue over the next decade. Already chips containing nearly
half a million transistors have been successfully fabricated[5]. Chips may soon
contain in excess of a million transistors. To cope with the complexity of placing
this many transistors on a chip, designers have been relying on structured
design methodologies. Large complex designs are broken down into their major
functional sections, and these sections are in turn broken down into a number of
components. Thus at each level there is a manageable number of pieces to be
considered by the designer. The details of the other parts are hidden by suitable

abstractions.

In addition to breaking each part of the chip into subparts, designers rely
on re-using previously designed cells to minimize design time. A memory cir-
cuit, althdugh it contains many tens of thousands of devices, is made up of only
a small number of different cells of a few transistors each. These cells, however,

are repeated many times to build up the circuit.

As the number of transistors increases, so does the possibility of making a
mistake in the layout. Several computer analysis tools are available to help
catch these mistakes before submitting a chip for fabrication. These tools
include Geometrical Design Rule Checking, which establishes that certain
geometric constraints are satisfled to insure correct fabrication, and Circuwit
FEztraction, which extracts the underlying circuit from the layout description.
The extracted circuit can be compared to other circuit descriptions derived
from the original specification. The data from the circuit extraction can also be
used to drive a Static FElectrical Rules Checker, which checks that certain
electrical rules are satisfled, and to perform Dynamic Simulation, which
predicts the behavior of the circuit under various situations. Most designers

consider these tools essential to create working circuits.

Figure I-1a shows a plot of the Risc chip. This chip contains almost 45,000
transistors. Although details of the chip are not visible at this scale, one can
readily see that the chip is highly regular. The designers use regularity to
minimize the design time and complexity of the chip. Figure I-1b shows this

same chip with every different type of cell drawn exactly once. The plot is

mostly empty space. Thus, the designers have to draw only a few individual dev-
ices that are repeated many times. The biggest chore is the wiring between cells

that are not placed in a regular array.

Computer analysis of this chip took eight hours of CPU time on a VAX 11/780
computer. Analysis included layout rule checking, circuit extraction, and static
electrical rule checking. To understand why analysis took so much computer

time we need to understand how these analysis tools work.

When checking a circuit, traditional computer tools make no use of the fact
that it is an array of identical cells. The layout is viewed as a hierarchically flat
arrangement of rectangles. Instead of checking only a few key cells, the com-
puter checks each feature in the array. Thus, in effect, the same cell is checked
over and over again. Although the computer can check a cell much faster than
the human designer, the human designer can exploit knowledge about the struc-
ture of the layout to make a more economical choice about the checks that

need to be performed.

Let us now consider the way a human designer would check an array of
cells, like that shown in figure I-2. A human designer would pick an interior cell
and check it for design rule violations, and make sure that it matched the
intended circuit. He would then check how the cell interacts with its neighbors,
whether any new design rule violations occur and that it connects in the proper
way to the next cell. The designer must also check cells on the boundary of the
array to see if the boundary cells introduce any errors. Because of the regular-
ity of the array of cells the designer can be sure that those few specific checks

are sufficient.

Traditional layout analysis tools make no use of this structure. Instead they
immediately flatten the hierarchical description, thus throwing away any
knowledge of the structure. This method of layout analysis will become imprac-
tical when chips containing over a million transistors will need to be checked.
Checking such large designs would take days of computer time. Clearly, future
analysis tools must exploit the hierarchy and repetition present in the layout

description.

The goal of this thesis is to investigate ways that computer analysis tools

can also exploit this knowledge of structure. By explicitly recognizing the

hierarchical structure of the layout, the performance of the layout analysis pro-
grams can be dramatically increased. In the following chapter, the Disjoint Algo-
rithm is introduced. This algorithm breaks a layout into a set of non-
overlapping hierarchical cells. Later chapters show how the Disjoint Algorithm
aids in carrying out circuit extraction, design rule checking, and mask opera-
tions in hierarchical manner. In chapter VI and VII the implementation and per-
formance of the Disjoint Algorithm and a specific hierarchical circuit extractor
is described. In chapter VIII other work that has been going on in this area is
reviewed. The remainder of this chapter reviews some of the concepts and
definitions used throughout this thesis.

The layout description of a circuit is usually available in a Hierarchical
Description Languaege(HDL), with all the repetition and structure explicitly
represented. A HDL describes the layout in terms of symbols. A symbol con-
tains geometry and instances. Geometry is specified by its layer and vertices.
An instance is a reference to a symbol definition with a given offset, rotation,
and mirroring. The offset, rotation, and mirroring can be represented by a 3 by
3 matrix, called a transformation[14]. Thus, an instance can be represented by
the ordered pair (S,T). where S represents the instance's symbol, and T

represents the instance’s transformation.

A symbol may be referred to many times through instances contained in
other symbols. This makes it possible to create large regular arrays of circuit
elements with very small descriptions. Figure I-2 shows a memory array with
over 700 transistors. This memory array was described in CIF, the Caltech Inter-
mediate Form[7], a HDL. The CIF description is only 124 lines long because the
hierarchical structure of the layout was suitably exploited.

Figure I-3a shows in graph form the symbols and instances of the layout
shown in figure 1-2. Symbols are represented by circles. Instances are
represented by edges. The edges leave the circle that represents the symbol
that contains the instance, and point to the circle that represents the refer-
enced symbol. Figure I-3b shows a graph of how the circuit would look if no two
instances referred to the same symbol. There is a considerable increase in the
complexity of this graph. This is analogous to what happens in layout analysis
tools that ignore the hierarchical structure of a layout. Rather than deal with

the layout in the compact hierarchical form, the hierarchy is flattened and the

amount of information the analysis tool must deal with explodes.

P SRS ERC PR S

Figure I-1a. fully instantiated RISC layout

Figure I-1b. RIs¢layout with each symbol drawn only once

Figure I-2. memory array

Figure I-3a. hierarchical graph of memory array

Figure 1-3b. fully instantiated graph of memary array

Chapter II. The Disjoint Transformation

The main problem in exploiting the hierarchical structure of layouts is deal-
ing with overlapping cells. Overlaps can invalidate any previous analysis of a
cell. They can create design rule violations in a cell, or remove apparent design
rule violations. In the context of circuit extraction, overlaps can radically
change the circuitry of a cell. Overlapping geometry can short together two
previously unconnected nodes, or it can disconnect two apparently connected
nodes. Overlaps can create or even remove transistors in a ceil. Figure II-1

shows some particularly drastic examples of the effect of overlaps.

On the other hand, overlaps are very useful to a circuit designer. Figure II-
2 shows a way in which designers commonly use overlaps. The memory cell,
even when viewed in isolation, has its full context. When these cells are com-
bined to build a memory array, the designer overlaps the power and ground
busses of adjacent cells. If the designer were prevented from overlapping these
cells, he would have to either increase the pitch of the memeory array, or design
the basic memory cell without the full power and ground bus. Increasing the
pitch of the memory cell is not desirable, since it may have considerable impact
on the overall size of the circuit. Designing the memory cell without the full
power and ground busses is also undesirable, because the designer would see an
incomplete circuit when he examines the memory cell. The full cell could only
be seen in the context of the surrounding circuitry. The designer must
remember to complete the busses at the periphery and take special care to
avoid design rule violations in cells on t;he edge of the array. Such incomplete
cells may have apparent design rule violations, which only disappear when they
are placed into the full circuit. Thus, disallowing overlaps either increases the
area of the circuit or places a larger burden on the circuit designer, increasing

the design time and the chance for errors.

Rather than restricting the designer to designs in which cells do not over-
lap, the approach taken here is to transform the hierarchical layout description,
which may contain overlaps, into a hierarchical layout description without over-
laps. There are several reasons for this approach. The main reason is that we
do not want the layout analysis tools to restrict design styles in an inappropriate
manner. Since, as ocutlined above, it is useful to overlap cells, tools need to sup-

port this design style. Even if there were strong reason to ciscourage overlap, it

10

is desirable to have tools that still function when recommended practice has not
been strictly adhered to. Finally, there are many existing designs that have

overlapping cells. Tools should continue to be useful for these designs.

The transformation that takes a hierarchical layout description, with poten-
tial overlaps, and transforms it into a hierarchical layout description free from
overlaps is called the disjoint transformation. The disjoint transformation
works by partitioning each symbol into regions where instances overlap, and
creating new symbols corresponding to those regions. Repeated occurrences of
identical regions are recognized and new symbols are created only for regions
that have not been seen before. In this way much of the original étructure of the
layout is kept intact. Once overlaps have been removed from the layout, the job

of analyzing the circuit is made considerably simpler.

1. Example

Before going into details of how the algorithm works, it may be helpful to go
over an example. Figure 1I-3 shows a symbol, A, made up of one instance each of
symbols B, C, D, E, and F. Consider a layout consisting of four instances of A jux-
taposed in the form of a regular array as in figure II-4a. The function of the dis-
joint transformation is to remove overlapping cell instances. This is done by
generating new cells from combinations of given instances where they overlap.
The partitioning uses the edges of the boundaries of the given instances, so that
every edge of a derived cell is coincident with an edge of a given instance. The
result of this partitioning of figure II-4a is shown exploded in figure II-4b. Four
new cells have been generated: P, Q, R, and S, of which P and S appear once

each, Q appears three times, and R appears twice.

It is now necessary to consider the contents of each cell P, Q, R, and S to fill
out the next level of the derived disjoint hierarchy. The partitioning algorithm is
now applied to each of P, @, R, and S in turn. The contents of the derived cells
are shown in figure II-5. The cells B', B, C', C*, I, and I are parts of the cells
B, C. and F contained in the original cell A. This process continues to recurse

until the cells containing only geometry are met.

Of course, this example is atypical, not just in the small number of cells
involved, but also in the fact that only one type of cell is involved at the top

level, and that overlaps involve only two instances. A realistic algorithm has to

11

generalize on both of these issues.

The disjoint transformation is implemented as two procedures, Split, and
Gather, that call each other recursively. In the above example, Split generates
the structure shown in figure 1I-4b, except that the repetition of R and Q is not
recognized. Gather recognizes repeated occurrences and creates the cells P, Q,
R, and S.

2. Split

The Split procedure takes as input a symbol. A symbol here is a generaliza-
tion of the normally accepted use of the term. In common with conventional
usage, a symbol is made up of geometry and instances of other symbols. How-
ever, also associated with the symbol is a window. The window is a rectagonal
region (all edges parallel to the x- or y-axes) outside of which any component .
instances or parts of instances are to be ignored. This extended definition is
convenient for the intermediate strun;tures generated during the Split pro-
cedure. Each input cell is initially converted to such a symbol by defining its

window to be its minimum bounding box.

The function of the Split procedure is to partition the parts of the symbol's
geometry and instances that lie inside the window into a minimum number of
disjoint rectagons regions, called discells. Discells are defined to be regions uni-
formly covered by the same combination of instances. All geometry of the cell
is partitioned at the boundaries of the discells. Therefore, each discell is associ-
ated with parts of instances that overlap and with fragments of geometry of the
given cell that overlap the discell. The union of all these pieces covering such a

discell region is made into a new symbol.

The Split procedure uses a sweeping-line algorithm in which the set of
instance windows is cut into horizontal swaths whose upper and lower limits
coincide with vertices of the instance windows. Each swath is scanned left to
right keeping track of the set of instances between each consecutive pair of
vertical window edges. Each set corresponds to a partial discell to be used in
subsequent processing by Gather. Discells are kept in a hash coded dictionary
to make it possible to determine quickly whether a given discell has been seen
before. The hash is a function of the component instances’ addresses in

memory. If a discell has been previously seen, the entry in the dictionary is

12

updated to extend the window of that discell. The geometry of the given symbol
is clipped to the individual discells generated by the above procedure.

For example, consider a swath, S3, from the simple example shown again in
figure II-8. The individual instances of symbol A have been named Al, A2, A3, and
A4. While scanning swath S3 the following potential discells will be found: {Al],
{A1,A2], {AR], {AR,A3}, {A3], where {] denotes the set of instances making up a
discell. Of these, the discells A1}, {A1,A2}, and {AZ] will already be in the discell
dictionary from the analysis of the previous swaths below S3, and so their
entries will have their windows extended by the appropriate regions of the swath
S3. Discells {A2,A3], and §{A3} will make new entries in the dictionary. On com-
pletion of scanning all the swaths of the given symbol, Split transfers the discells
collected in the dictionary to Gather.

3. Gather

The function of the Gather procedure is to recognize sets of discells that
consist of similar juxtapositions of instances and windows, and to convert them
to regular symbols. In forming a new symbol from a discell, Gather replaces the
set of component instances with their contents, as shown in figure II-5 of the
simple example. Gather next creates instances of each new symbol to replace
the discells converted to that new symbol. The total set of instances so created
replaces the contents of the symbol originally passed to Split and from which

the discells were created.

The recognition of similar discells is achieved using another hash-coded dic-
tionary, except this time the hash is a function of the set of component symbols
as well as the relative transformation of those symbols. In figure I1-8, Gather will
recognize that discell {A1,A2], {A2,A3}, and §A3,A4§ all consist of similar juxtapo-
sitions of instances of A. The new symbol, Q in figure Il-4a, will therefore be
created, and will consist of instances making up component instances of the
replaced discells that overlap the discell's window, as in figure II-5. Each discell
is replaced by an instance of the symbol Q, shown in figure 1I-4b. Similarly, dis-
cells §A2} and {A3} are replaced by instances of symbol R. The set of instances
of P, Q. R, and S now replace the original contents of the symbol that consisted
of the four instances of symbol A.

13

To understand how similar juxtapositions are recognized it is important to
remember that instances are represented by an ordered pair consisting of the
referenced symbol and transformation. We now consider the discell itself to be
an instance, where the transformation of the first element is the transformation
of the entire instance. The inverse of this transformation is then applied to each
element of the discell. Thus, for example, we can represent the discell {A1,A2]
as §(4.7,).(4.T2)}. The discell is converted to an instance of the form
(A)(A. TaTT3.T)). (Note: I is the identity transform.) Likewise, the discell
{A2,A3] is converted into an instance of the form ({{AD).(A. T3T5')}.Tz). The
transform T,T[! is the relative transform from Al to A2, and the transform
TeTs! is the relative transform from A2 to A3. Thus, if TpT1 1 equals T3Tg !, it is
recognized that {Al, A2} and {A2, A3} are instances referring the same symbol
with different transformations. In addition to checking the symbols referenced,

it is necessary to check that the windows of the discells are similar.

Finally, Gather calls Split for each newly created symbol. The mutual
recursion between Split and Gather terminates when a created symbol is found

to contain only geometry and no instances of other symbols.

4. Cleanup Phase

This method of breaking apart overlapped symbols usually creates a few
new symbols which contain neither geometry nor instances, and several new
symbols which contains only one instance or one geometric primitive. On the
final phase of the disjoint algorithm, symbols that contain nothing, along with
instances of them, are filtered out. Instances of symbols that contain only one
instance or one geometric primitive are replaced by the referenced instance or

geometric primitive appropriately transformed.

An optional pass will rearrange the hierarchy by identifying arrays and
replacing them with extra levels of hierarchy. This pass helps speed up subse-
quent analysis procedures, but this pass is optional since the designer may not

want to change the hierarchy.

14

5. Subsequent Analysis

Now that all overlaps have been removed, the task of the analysis pro-
cedures is greatly simplified. Analysis can proceed on each symbol without hav-
ing to worry about overlapping regions changing its interior geometry. The

boundary is the only area of the symbol that can interact with neighboring cells.

The following chapters discuss layout analysis with respect to circuit
extraction, design rule checking, and mask operations. The broad outline of
these algorithms is always the same: for any symbol, first the program looks to
see if all the symbols instanced have been checked and recurses on the
unchecked symbols, then it runs the analysis procedure on the current symbol’s

geometry and boundary areas of the instances.

8. The Sweeping Line Algorithm -

Many of the algorithms presented in this thesis are derivations of a general
sweeping line algorithm. The sweeping line (also called the scan line) algorithm
is a method of completely traversing a layout from bottom to top in an orderly
fashion. It is presented here only for the sake of completeness. It has been pub-

lished and widely used by others for several years[13][15].

Let us consider using the sweeping line algorithm in order to produce a
minimum set of horizontally oriented trapezoids from a number of possibly
overlapping polygons. For the sake of simplicity let us assume that the polygons
are not self-intersecting. (The self-intersecting case is covered in [13].) First we
orient the edges in a counter-clockwise direction, marking those edges oriented
downwards as starting edges, those edges oriented upwards as ending edges, and
discarding horizontally oriented edges. We now sort the edges onto an edge list

by their minimum-y vertex, sorting first by y then by z.

We take the minimum-y value of the first edge on the edge list and call this
yCOurrent. We take all the edges off the edge list whose minimum-y value equals
yCurrent and put these edges onto a second list called the active list. We take

care to see that the edges on the active list remain sorted in z.

It is now necessary to find the next event point. An event point is defined

by one of the following three cases: a point at which an edge on the active list

15

ends, a point at which two edges on the active list intersect above yCurrent, or a
point at which an edge on the edge list starts. Since the edge list is sorted, if
the next event point is on the edge list, it must be the start point of the first
edge. If the next event point is the intersection of two edges on the active list,
the two edges must be adjacent. Thus we can scan down the active list to find
the minimum ending point of the edges, and the minimum intersection point
where two adjacent edges intersect above yCurrent. We set yNezt to be the

minimum-y value of these three points.

Now we consider the swath defined from yCurrent to yNezt. We run through
the edges of the active list, maintaining a counter which we increment every
time we see a starting edge, and decrement every time we see an ending edge.
Whenever the counter makes a transition from 0 to 1 we have found the starting
edge for a trapezoid from yCurrent to yNext. Whenever the counter makes a
transition from 1 to 0 we have found the ending edge for that trapezoid. Once
we have finished a swath we set yCurrent to yNezt, take the edges off the edge
list whose minimum-y value equals yCurrent and put them on the active list,
sorting the list for the current value of yCurrent. Edges on the active list whose
maximum-y value is less than yCurrent are removed from the active list. This
whole process repeats itself until both the edge list and the active list are

empty.

This yields a set of non-overlapping trapezoids which exactly covers the set
of polygons. In order to minimize the number of trapezoids, we delay outputting
a swath of trapezoids until we have finished processing the swath immediately
above. We then look for any trapezoids on the lower swath which are continued
on the upper swath. When we find such a trapezoid, we delete the trapezoid

from the lower swath and add it to the trapezoid on the upper swath.

This algorithm can easily be extended to find the intersection of two layers
by replacing the single counter across a swath with two counters. Whenever we
cross a starting edge from layer A we increment counter A, when we cross an
ending edge from layer A we decrement counter A. Likewise for layer B. When-
ever the product of counter A and counter B makes the transition from 0 to 1 we
have found the starting edge for a trapezoid, and when the product of counter A
and counter B makes the transition from 1 to 0 we have found that trapezoid's

ending edge. To find the union of the two layers, we use the sum of counter A

and counter B rather than the product.

16

17

DN

—

i

NN NN
NN KA AN NS
SN A NN

Figure I[I-1a. sverlaps can create transistors

EArPOLY

EJDIFF

e
. A\ A% ~
NN R N

BURIED

==
EREEN

Figure TI-1b. overlaps can short out transistors

18

Figure II-2a. memory cell

.,xvﬁxtu

T

LU

i

AT

I

Figure [I-2b. ¢ by 4 array of overlapping memaory cells

(el

(o]
I\‘ J
"_“—”"r’ﬂl

[

Figure [I-3. symbol A

Figure II4a. bejfore partitioning

Figure [I4b. after partitioning

19

oo
B \ E - B
B | - -
C1P1E : 51E1) 51 E1F
F, Fz Cz Cl
Figure II-5. symbols P, @ R, and S
e e A
S7 4
_____________________________ — —
S5 3, 4
S5] AD L 2R - A A a1 -
S4 2 2,3 3
83 Al] T I 2 T
52 1 1,2 2
St 1
Figure [I-6a. swaths
4
3,4
3
2,3
2
1,2
1

Figure II-6b. generated discells

20

21

Chapter III. Circuit Extraction

The task of extracting the circuit from a layout description removed is con-
siderably easier once all overlaps are removed. The extraction of a symbol
proceeds as follows. If the symbol contains any instances, all the corresponding
symbols must be extracted. The extraction of these symbols yields, in addition
to a circuit description for each symbol, a set of connection points for each sym-
bol. Geometric analysis of the current symbol, similar to the analysis of a typi-
cal flat extractor, can be used to find connectivity between the symbol's
geometry, circuit elements, and connection points. The peripheral connection
points of the current symbol must also be found, so that later this symbol can
be used as part of another symbol. The extractor traverses the calling hierar-
chy, extracting each symbol once, until it has extracted the entire circuit. This

results in a hierarchical description of the circuit.

Since the symbols that are created by the disjoint transformation are cut
up regardless of content, many transistors will straddle symbol boundaries.
Thus the problem of partial transistors must be addressed by the circuit extrac-
tor even if the original layout description had no transistors crossing any symbol
boundaries. Figure III-1 shows several possible configurations of a transistor
gate area crossing a symbol boundary. The actual circuit may be a simple
transistor as in figure IlI-1a, or it may be a capacitor as in figure IlI-1b, or it may
even wrap back around on itself as in figure II-ic. From this symbol the extrac-
tor cannot tell what type of transistor will result, thus it waits until it processes
a larger symbol that totally contains the transistor. With this method the

extractor never makes a guess that later has to be fixed.

1. The Algorithm

The basic function of the extractor is to convert a symbol’s layout descrip-
tion into a circuit description and a set of external interface segments. The cir-
cuit description is a list of transistors and their connections to nodes of the cir-
cuit. A node is any electrically conductive path not including a transistor. A

node is specified by a number, which is called its node number.

External interface segments are those parts of the symbol boundary that
are touched by geometry that forms conductive paths. They are used to specify

how the circuitry of a symbol can connect to its neighboring symbols. An

22

interface segment is specified by a line segment, a layer, and a node number.
Each external interface segment is assigned a node number corresponding to
the node that generated the segment. There are two types of nodes in the sym-
bol: nodes that have external interface segments, called interface nodes, and
those that do not, called internal nodes. This distinction is similar to that
between parameters and local variables of procedures in programming

languages.

During the extraction it is often found that two node numbers have been
assigned to what turns out to be the same node. When this happens, the extrac-
tor merges the two node numbers, so that both numbers refer to the same node.
This is done by maintaining equivalence relations between nodes. When two node
numbers are merged their equivalences sets are simply combined. (Details on

how this is implemented are covered in chapter V1.

2. Extraction of Geometry-Only Symbols

First consider the simpler case of extraction of a geometry-only symbol. A
sweeping line algorithm progressing in the direction of increasing y-values cuts
the symbol into horizontal swaths coinciding with the vertices of the geometry
within the symbol. At the bottom and top of each swath swath segments are
created. These segments have a similar function as the interface segments
mentioned above. Given two adjacent swaths, by comparing the swath segments
at the top of the first swath with the swath segments at the bottom of the subse-
quent swath, node information is propagated from one swath to the next. Node
information stored with the segments at the bottom of the swath is passed to

the top of the swath by just following edges.

As an example, consider the geometry shown in figure III-2. The dashed
lines represent the boundaries for the swaths of our sample geometry. Figure
1II-3 shows our sample geometry broken up into trapezoids. The numbers on the
trapezoid are the node numbers assigned to that trapezoid. Let us consider how
node numbers are passed up from swath A to swath B. Running down the seg-
ment list for swath A shows that the first segment overlaps the first segment in
B. Node number 17 is assigned to the first segment of B. The second segment in
B is overlapped by the second and third segment in A. The node numbers 43 and

8 are merged and the second segment in B receives the smaller number, 8.

23

Finally, the third segment of B is overlapped by nothing. A new node numnber is

generates for this segment.

When an active region of a transistor is encountered it is also given a node
number and this node number is propagated upwards like any other piece of
geometry. Stored with the node number in each transistor record is informa-
tion about its gate, source, and drain. If any of that information is not present
the field is left unchanged. Since the entire transistor may not be in the symbol,
this information may be only partially known when the analysis of the symbol is
complete. By the time that the entire transistor has been seen, this information
will be known. The extractor must wait until other symbols are extracted to get
complete information about the transistor. Since there may be several partial
transistor records that refer to one transistor, there needs to be a way of
detecting when two transistor records should be combined. This situation can
be detected by noting when two node numbers that refer to transistors are
merged. When this happens it is not only necessary to merge the node numbers

but also to combine the partial transistor records.

Finding the external interface segments for the symbol is a matter of sim-
ply noting where any geometry touches the boundary. External interface seg-
ments are also generated when the active region of a transistor touches a boun-
dary. This allows transistors that cross symbol boundaries to be identified. The
list of external interface segments is attached to the symbol definition along
with the cireuit description. The emerging circuit description contains two lists
of transistors—one list of transistors fully contained within the symbol, and the
second list of transistors with active regions that touch the boundary. The

second list is used to record cases where transistors cross symbol boundaries.

3. Extraction with Instances

Now let us consider the case where a symbol contains not only geometry
but also instances of other symbols. The extractor first checks each instance to
see if its symbol has already been extracted. If not, then the extractor is
applied recursively to that symbol. Even if a symbol is called several times, it is

extracted only once.

After this phase the called symbols have been extracted, leaving a set of

interface segments associated with each symbel. The transformation specified

24

by each call to a symbol is applied to the starting and end points of each inter-

face segment for that particular instance.

Before extracting the connectivity of the symbol, the extractor takes into
account the connectivity information present in the interface segments. For
example, if an instance had a metal bus crossing it, there would be two interface
segments for that node; one on each side of the instance. These interface seg-
ments are physically separated so the physical connectivity extractor will not
find any connection between them. Care must be taken to ensure that the con-
nectivity of these two interface segments is not lost. This is done by assigning a
node number to each interface segment before starting the physical connec-
tivity extraction. This is called the actual node number of the interface seg-
ment. This contrasts it with the formal node number, which is the node number
assigned to it in the symbol for which it is an external interface. For each
instance, if two interface segments have the same formal node number, then
they must be assigned the same actual node number. Within an instance, if two
interface segments are connected, they will be assigned the same formal nc;de
number. Thus, by assuring that interface segments with the same formal node
number are assigned the same actual node number, we know that nodes con-

nected through instances are assigned the same node number.

The actual node number of an interface segment is assigned by adding an
offset to the formal node number of the interface segment. The offset is
different for each instance and is chosen so that no actual node number gen-
erated in one instance is the same for an actual node number generated in
another instance. A simple way to assure this is to set the offset to 1 and then
assign actual node numbers to the interface segments of the first instance.
Then set the offset to be 1 greater than the largest node number generated so
far, and assign actual node numbers to the interface segments of the next

instance. This process is repeated till all the instances have been processed.

Extraction can now proceed as in the case without instances. The only
difference is that the physical connectivity extractor must handle interface seg-
ments as well as geometry. At the end of the physical extraction phase the list
of external interface segments and the circuit description are attached to the
symbol. Also a list of the node numbers assigned to each interface segment of

each instance is attached to the symbol definition.

25

4. Example

As an example let us consider how the extraction of a four-bit shift register
shown in figure III-4 would proceed. This shift register contains eight instances
of the basic shift register cell. First the basic shift register cell must be
extracted. This cell is shown in figure II-5. Extraction of this symbol is straight-
forward since it contains no instances of other symbols. Extraction provides a
description of the three transistors in the circuit and how they are connected
both among themselves and to the external interface segments. This descrip-
tion is attached to the basic shift register cell. A pictorial representation of this
description is shown in figure 1II-8. The heavy black lines represent the inter-

face segments and correspond to the heavy black marks of figure III-5.

Now the four-bit shift register symbol is ready to be extracted. Figure I1II-7
shows the original four-bit shift register with the geometry of the basic cell
replaced by its interface segments. These are called internal interface seg-
ments of the four-bit shift register cell since these interface segments connect
to instances rather than the current symbol. Note that the internal interface
segments on the left and right ends of the four-bit shift register are also exter-
nal interface segments since they touch the boundary of the shift register.
Extraction of this symbol is a bit more complicated than that of the basic cell.

Connectivity of geometry and interface segments must be included in the

extracted description. Yet the same basic technigues for extracting a

geometry-only symbol can be used to extract a symbol with interface segments.
At the end of this extraction, a description of how the interface segments of the
eight basic cells are connected to each other, to the two poly lines, and to the

external interface segments of the shift register will have been produced.

5. Circuit Description

Figure III-8 shows the circuit representation for the shift register layout
used above. In this figure the circuit is represented in a macro language similar
to that generated by the extractor. The P names represent interface nodes, Le.
nodes that connect to interface segments. Internal nodes, those not connected
to interface segments, are represented as an offset from the base. The base is

used during macro expansion to assign unique numbers to nodes.

28

In the macro description for the basic cell there is only one internal node,
which connects the three transistors. P! is the ground bus, P2 is the clock sig-
nal, P3is the input, and P4 is the output, and P5 is the Vdd bus. In the macro
description for Shift4 there are seven internal nodes, which are inputs and out-
puts to instances of the basic cell. Notice that in the macro description for
Shift4, ‘base+1' appears in the fifth field of the first occurrence of Shift Bit and
in the fourth field of the second occurrence of Shift7it. This shows the connec-
tion of the first ShiftBit cell's output to the second ShiftBit cell's input.
Throughout the macro description the node name in the fifth fleld in each
instance of ShiftB5it is repeated as the fourth field in the following instance. The
second field of ShiftFit is always P2, and the sixth fleld is always P5 this shows
the connection of the the ground and Vdd busses. The third field alternates
between P8 and PI, showing the alternating clock signals among the shift cells.
While the input of the first ShiftFit cell and the output of the last Shift5it cell
are parameter nodes, the input and outputs of the other instances of ShiftCell

are all internal nodes.

o ——

Figure lI-1a a simple transistor

A

NN,
LR
LU
NON NN
N,

NSO

NN
NSNS,

1
¥
‘1/
1

rd

s,
s

LS
H S
s s

L

s
7

Figure III-1b. a capacifor

27

!
i
REAEERANRRARN
OOV NN A N GO
\\\\\\\'\\\\\ NN N N NN NONON N
OO I IS N A OGS NONONONININ S
R N R TR N NONOSON
D R 2 S ONNIN N NN NN
NN N X, v NONON N
N R R R AR AR RN
OISO NN N SOV O NN NN
\\\\\\\\\\\\\\\\\\\\‘ NN ONONY
\\\\\\\\\\\\\\\\\\\ N, NN
\\\\\\\\\‘ NONON NN DN
A ~ NN\
, N, NONON N N NN
N NN NN N
~ NONON N NN
AT Y
\, NN N NN S
N \\\\\
N, AY N
% R
~ NSNS NN
N
~ ~ o ONN NN S NS
WNUAA NN NN NS SO SN WOAONON N NN Y
\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\'\\\\\ NN NONONN
\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Y
\\\\\\\\\\\\ ~ ~ A \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
e A RS N NN \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
N \\\\\\\\\\\\\\\\\\\\\\\\\\
LN NN NN NN N

Figure lII-1c. a transistor which wraps back on itself

28

P - —_— —— —_ ————$ =

Figure I1I-3. propagating node numbers

29

R e

m— G

Figure II-5. basic shift r

egister cell

l]l

1-

——
P2

Figure II-6. pictorial representation of basic shifter cell

P1

30

Figure [I-7. interface segments of four bit shift register

define ShiftBit(base,P1,P2,P3,P4,P5);
etrans(P3,P1,base+1);
etrans(P2,P4,base+1);
dtrans(base+1,base+1,P5);
end;

define Shift4(base,P1,P2,P3,P4,P5,P6);
ShiftBit{base+7, P2,P8,P3,base+1,P5);
ShiftBit(base+8, P2,P1,base+1,base+2,P5);
ShiftBit(base+9, P2,P6,base+2,base+3,P5);
ShiftBit(base+10,P2,P1,base+3,base+4,P5);
ShiftBit(base+11,P2,P8,base+4,base+5,P5);
ShiftBit{base+ 12,P2,P1,base+5,base+8,P5);
ShiftBit(base+ 13,P2,P6,base+8,base+7,P5);
ShiftBit(base+ 14,P2,P1,base+7,P4.P5);
end; '

Figure III-8. circuil desc'ript'i.on Jor shift register

31

Chapter IV. Design Rule Checking

In any fabrication process there are limits on what can be manufactured. A
line must be some minimum width in order to avoid breaks. Lines must be a
minimum distance apart to avoid shorts. Rules such as these are called
Geometric Design Rules. In order to pack the most circuitry into a given area a
circuit designer will push these rules to their limit. Before submitting a design
for fabrication, the layout is run through a program called a Design Rule
Checker{Drc). The DRC looks for violations of these design rules and reports vio-
lations back to the designer. Many runs through the DRC are usually required
before the designer has satisfled all the design rules.

There exist many commercially available design rule checkers. These DRC's
check for violations on the fully expanded layout. Flattening the layout forces
the DRC to recheck each symbol for each instance of that symbol. This approach
has many problems. The first problem is the amount of time spent on checking
the layout. Another problem is the large number of design rule violations that
can result from a few errors in symbols that are repeated several times. The
designer, lost in a sea of violation messages and knowing that most of the
reported violations are due to a few errors in a few key cells, is likely to skim
over the violation messages and thus may miss important errors in other sym-
bols.

Another problem with flattening the layout is how to report violations back
to the designer. One way is to present error messages graphically. A box can be
placed around the offending geometry with an indication of the problem found.
But, for designs consisting of a million rectangles it is quite hard to spot these
violation boxes. Listing all violations with the coordinates of their occurrence is
not much better. The designer must trace the approximate location of each vio-
lation on a plot of the full layout, identify the symbol in which the violation
occurred, then fix the problem. Although a good layout editor can help with this
process, it would be much better if the DRC could identify the symbol in which
the error occurred. This can only be done, though, if the DRC explicitly deals

with the structure of the layout.

32

1. Hierarchical Design Rule Checking

As in circuit extraction, a major problem with hierarchical design rule
checking of a layout is the presence of overlaps. Overlaps can create new design
rule violations in symbols in which no design rule violation were found, or can
remove violations from symbols which had violations. (See figures V-1 and v-2.)
We use the disjoint algorithm in order to remove overlaps from the layout, and

check the new hierarchical description with the overlaps removed.

Once overlaps have been removed, the basic algorithm proceeds as follows.
It starts with the top level symbol. In this symbol, each instance is examined to
see if its symbol has been checked. If the symbol has not been checked, the
algorithm recursively checks that symbol. Thus symbols containing only
geometry are checked first, then symbols one level up, and so on. Hence, the

algorithm proceeds in a bottom-up fashion.

Checking symbols which contain no instances is quite similar to conven-
tional design rule checking. Geometry on the interior of the symbol is checked.
If any design rule violation is found, the violation is reported with its type, loca-
tion within the symbol, and the symbol name. However, violations found near
the boundary of the symbol are not reported if geometry outside the symbol

could remove the violation.

Checking symbols which contain instances is done by considering not only
the geometry of the symbol, but also the boundary geometry from the symbol's
instances. A conventional design rule check is made on this geometry. Again,
violations on the interior of the symbol are reported, while violations that can be

fixed using geometry from the outside are not.

Finally, when checking the top level symbol, even violations near the boun-
dary of the cell are reported, since there is no geometry outside the circuit to

fix those errors.

Notice here that the design rule checker still scans the entire area covered
by the circuit. However, the amount of geometry it must check is considerably
smaller. Therefore, the runtime of the geometric design rule checking algo-
rithm should depend primarily on the amount of geometry to be checked,

rather than on size of the area to be»checked.

33

2. Geometric Checking Algorithm

There are several algorithms which can be used to do the actual geometric
checking[3][1]. The algorithm presented in this section has many desirable pro-
perties for use in hierarchical checking. First, its runtime is dependent on the
amount of geometry to be checked, rather than on area scanned, as in the ras-
ter approach[4]. Next, the algorithm's checks are all local, an important pro-
perty for hierarchical checking. Third, the algorithm checks general polygons,
not just manhattan geometry. Finally, the algorithm works well with the scan-

line algorithm.

The first step of the algorithm is to break the geometry up into a minimal
set of horizontally oriented trapezoids using the scanline algorithm. (See sec-
tion 11-6.) These trapezoids are called mask trapezoids since they correspond to
mask features. The algorithm generates three new types of trapezoids, inclu-
sion trapezoids, exclusion trapezoids, and senctuary trapezoids. The generated
inclusion trapezoids have the property that if there are no design rule viclations,
then the inclusion trapezoids will be completely enclosed in mask trapezoids of
the same layer. The generated exclusion trapezoids have the property that if
there are no design rule violations, then the exclusion trapezoids will not overlap
any mask trapezoid of the same layer. Sanctuary trapezoids indicate areas

where these conditions need not be met.

The method for generating these trapezoids depends on the design rules
being checked. Let us consider how these trapezoids are used to check Mead
and Conway separation rules[11] for the metal layer. Metal lines must be
separated by 3 lambda. For each mask trapezoid on the metal layer, a three
lambda wide exclusion box is generated to the right of the right edge of each
trapezoid. (See figure IV-3.) This checks separation on the right of the tra-
pezoid. Next, separation above the trapezoid must be checked. Since a metal
line may continue upwards beyond this trapezoid, it is important to check only
areas that are not continuations of the current node. Hence, the trapezoid is
broken into sections, those sections which have metal continuing upwards, and
those which do not. Exclusion trapezoids are generated above those sections
which do not continue upwards. (See figure IV-4.) So far, metal separation has
bteen checked above and to the right of the trapezoids, but there are gaps left in

the corners. Now any exterior angle greater than 180 degrees between the

34

edges of a mask trapezoid and the trapezoid directly above it is located. At
these corners exclusion trapezoids are generated. Corners of trapezoids with
exterior angles of greater than 180 degrees also generate exclusion trapezoids
when there is no adjacent trapezocid at that corner. (See figure 1V-5. For
increased precision, several trapezoids could be generated to approximate a cir-
cular section.) Thus, above and to the right of the mask trapezoid has been
checked. This is all that is necessary because below and to the left will be
checked by trapezoids in that area. Figure IV-6 shows all the exclusion tra-

pezoids generated for this sample geometry.

Testing minimum line width is similar to testing minimum separation.
Inclusion boxes are generated to the right of the left edge of each trapezoid.
(See figure IV-7.) The bottom edge is broken into sections, those sections with
mask geometry beneath them, and those without. Inclusion boxes are placed
above those sections with no mask geometry below. (See figure IV-8.) To check
the corners, inclusion trapezoids are generated at angles between adjacent tra-
pezoids greater than 180 degrees. {(See figure IV-9.) Figure IV-10 shows all the
inclusion trapezoids generated for this sample geometry. Note that these tests

forbid both interior and exterior acute angles.

Other design rule violations are easily detected with this technique. Metal
overlap of cut can be checked by creating inclusion trapezoids on the metal
layer one lambda bigger on each side of a cut trapezoid. Polysilicon overlap of
transistors can be checked, along with diffusion overlap, by creating inclusion
trapezoids along each edge of a transistor trapezoid but not at the corners. The
new inclusion trapezoids are placed on a special layer of ‘polysilicon-or-
diffusion’. These trapezoids must be covered by either polysilicon or diffusion

trapezoids.

Finding violations is simply a matter of detecting when inclusion boxes are

partially uncovered or exclusion boxes are partially overlapped.

3. Example of Hierarchical Checking

Now let us consider how to use the above algorithm to hierarchically check
a symbol which contains both geometry and instances as shown in figure IV-11.
Since the maximum extent of Mead and Conway design rules is 3 lambda,

included with the geometry of the symbol is the geometry of each instance

35

within a 3 lambda wide frame of the instance's boundary. The interior of each
instance is covered with sanctuary trapezoids to within 3 lambda of the
instance's boundary. The exterior of the symbol is also surrounded with sanctu-
ary trapezoids. (See IV-12.) The geometry checking algorithm now runs. Inclu-
sion and exclusion trapezoids are not generated from edges in sanctuary tra-
pezoids. Violations found outside sanctuary boxes are reported. Violations
found inside are ignored. Thus, in figure IV-13 there are five violations, four gen-
erated by insufficent overlap over the cuts, and one due to insufficient separa-
tion of metal lines. The four inclusion trapezoids generated by the cuts lie in the
sanctuary region, so they are not reported. The exclusion trapezoid generated

by the insufficient separation is not in a sanctuary trapezoid, so it is reported.

4. Non-Local Rules

A common criticism of hierarchical design rule checking is that there are
certain design rules which are non-local in nature. For instance, a fabrication
line may have a rule the says that polysilicon lines must have a minimum
separation of 3 microns but parallel runs of polysilicon lines longer than 2 milli-
meters must be separated by at least 4 microns. Rules such as these are espe-

cially hard to check hierarchically.

Most design rules, however, are local. The hierarchical algorithm described
here only checks local rules. Most conventional DRC's alsc only check local
rules. It turns out that very few rectangles in a layout are candidates for these
non-local rules. These non-local rules could fairly quickly be checked by a spe-
cial purpose flat design rule checker. The more time consuming local rules still

should be ckhecked hierarchically.

36

/ IN‘SUFF [CIENT OVERLAP

R

~,
\\\\\\
\\\\\
\\\\\\
\\\\\
SN

i

DN

\
RN

MIN SEPARATION VIOLATION

MNNN

Figure IV-1. overlaps can create design rule violations

INSUFFICIENT OVERLAP

\\ \\ \
7 NO POLY CR DIFF
COVERING CUTS

N
N

N
N
\\\\

7

Figure IV-2. overlaps can remove design rule violations

37

TR
AN

\\

N

Figure IV-3. generate ezclusion trapezoids to the right of geometry

Figure IV4. generate exclusion trapezoids above geometry

38

Figure IV-5. generate exclusion trapezoids at obligue corners

N\,

RN

N

NN

N
N
N

N

Figure IV-6. all exclusion trapezoids

v

2

7
7
Z
A
7

Figure IV-7. generate inclusion trapezoids ta the right of left edges

9

Figure IV-8. generate inclusion trapezoids above boltom edges

39

Figure IV9. generate inclusion trapezoids at oblique interior coTners

AN

G

N

7
7 %//

Figure IV-10. all inclusion trapezoids

40

Figure IV-12. ezpand geometry along perimeter of instance and
create sanctuary trapezoids

Figure IV-13. create and check exclusion and inclusion trapezoids

41

Chapter V. Mask Operations

Mask operations such as AND, OR, NOT, GROW, and SHRINK are an important set
of operations performed on mask layouts. Figures V-1 through V-5 show exam-
ples of these operations applied to various layouts. These operations may be
necessary to match the specific requirements of different IC processing lines, or
to allow the designer to specify his layout in a more abstract manner, freeing
him from worrying about the actual implementation details[18]. The methods
used for performing mask operations discussed here are different than those
described by Baird[3] and commonly used in commercially available software.
The most notable difference, besides being hierarchically applied to a layout, is
that they do not require a separate 'merge’ operation. None of the algorithms
described here assume that the input layers are in a merged format, nor will the
newly created layers from these algorithms be in a merged format. (A merged
format represents contiguous geometry on' a single mask layer as a single
polygon. The geometry dealt with here is assumed to be made up of several
polygons which may overlap each other. This is the type of geometry most likely
to come out of a design system.) It is important to note that the 'merge’ opera-
tion typically destroys most of the structure present in a layout and can result

in large unwieldy polygons for global signals such as Vdd and ground.

Most of the algorithms described here are based on the scanline algorithm
described in detail in section II-8. The AND, OR, and NOT operators preserve the
structure of the layout. However, the GROW and SHRINK operators do change the
boundary of symbols and may introduce additional overlap. Therefore, if further
processing is to take place on a layer created from a GROW or SHRINK operation,
the disjoint transformation must be run over the layout again. Since the disjoint
transformation is likely to create more symbols, care should be taken to avoid

unnecessary GROW and SHRINK operations.

1. OR

The OR operator is by far the easiest mask operation considered here. It
can be done hierarchically even in the presence of overlapping instances. The 0R
operator applied to layers A and B simply outputs a copy of any geometry it sees

on layer A or layer B.

43

2. AND

The AND-operation is slightly more complicated than the OR operator, but
once overlaps have been removed, it too is quite straightforward. To AND layers A
and B, a simple scanline algorithm is applied to the geometry on layers A and B.
The algorithm simply outputs a trapezoid on the regions where layers A and B
intersect along each swath. To minimize the number of trapezoids, the output
of the trapezoids is delayed until the following swath to see if any of the tra-

pezoids continue upwards.

3. NOT

The NOT operator is also straightforward once overlaps have been removed
from the layout. Again the scanline algorithm is used. This time, though, the
algorithm is applied to the considered layer as well as the boundaries of the
instances in each symbol. Trapezoids are output to cover any area within the
boundaries of the symbol currently being processed that is not covered by
either mask geometry or an instance. Instances are excluded from the NOT area
since these will be covered from within when the instances themselves are pro-

cessed.

4. GROW

The GROW operation is another straightforward procedure and can be per-
formed in the presence of overlapping instances. To perform a GROW operation,
each piece of geometry is expanded by the GROW amount. The GROW operation,
therefore, does not maintain the disjoint hierarchy. The boundary of each sym-
bol is likely to expand by the GROW amount, therefore instances which previously
did not overlap will overiap. Extensive GROW operations may destroy much of the

structure of the layout.

5. SHRINK

Of all the mask operations SHRINK is by far the most difficult to implement
hierarchically. The difficulty with the SHRINK operation is that geometry touching
the boundary of a symbol may be affected by geometry outside the symbol. And
since the geometry outside the symbol is likely to be different in different

instances of the symbol, the final shrunk geometry may be different in different

instances of the symbol.

The SHRINK operation can be done by performing a shrink operation on the
symbol as though nothing existed outside the symbol. (See figure V-6b.) In addi-
tion it is necessary to clip twice the SHRINK distance along the border of the sym-
bol on the original geometry. Thus, if s is the shrink distance, any geometry
within 2s of the symbol boundary is saved. (See figure V-6c.) Any of this clipped
geometry that does not touch the symbol boundary can be discarded. (See
figure V-6d.) When considering the SHRINK of a symbol which contains instances,
the clipped geometry of each instance must be combined with the geometry of
the current symbol. A SHRINK with this additional geometry will correctly
describe the shrunk geometry. Figure V-7a shows a symbol which contains two
instances of the symbols used in figure V-6. Figure V-7b shows the geometry of
the symbol along with the clipped geometry of the instances. Figure V-7c shows
the resulting shrink on this geometry. Finally, figure V-7d shows all the
geometry after the shrink operation.

Like the GROW operation, the SHRINK operation changes the structure of the
layout. Excessive SHRINK operations can destroy most of the structure that was
originally in the layout. Often, though, the GROW and SHRINK operations can be
arranged so that they are the final steps of a process. If this is possible to
arrange, the structure of the layout can be exploited by all the mask processing

operations.

=77 |
é 7 //}/,?% 0
AND(A, B)
Figure V-1. And operator
Bé’f//,//
17
é/// V///
A
CR¢ A, BY

Figure V2. Or operalor

Ty

/ -

=

////////%%
NOT¢ Ay

Figure V-3. Not operator

46

GROW(A)

Figure V4. Grow aperator

SHRINK(A)

Figure V5. Shrink operator

Figure V-8a. symbol before shrink operation

———— e e

Figure V-6b. geometry after shrink operation

47

5
T NN ! q Tt N i
" ! 3 " OO\ "
| . //// lllll | S | I NN |
. NE w . o
N e S
| NN I | //// "
mu».. //// / t:||1||1_ am .rlx /// |||||||| !

w

Figure V-8d. retain clipped geometry touching symbol boundary

49

T

v

Figure V-7a. shrink on symbol conlaining instances and geometry

SN

/f;f)

//w

o

N

N

Figure V-7b. expand clipped geometry of instances

i R — 2

r__g

| vl

I L
7
B
LT e,

Figure V-7c. shrink the geomelry

%

///1/ z/y

7 7

—

Figure V-7d. symbol fully expanded after shrink

50

51

Chapter VI: Implementation

This chapter discusses the implementation of a hierarchical extractor
based on the disjoint transformation. This program has been implemented on
two systems, one written in Mesa for the Dorado computer{9], and the other
written in C to run under Berkeley Vax UNIX. Rather than discuss the implemen-
tation of both programs, I will describe an idealized implementation and then

point out how the real implementations differ from this idealized description.

The implementation described here assumes that the geometry to be
extracted is rectilinear. This makes the implementation considerably easier,
but it is important to note that all the algorithms described here will generalize
to non-manhattan geometry. This manhattan restriction also applies to symbol
transformations. Thus, while symbols may be translated by an arbitrary
amount, they may be mirrored only about the X or Y axis and rotated by multi-
ples of 90 degrees. While this restriction does not easily generalize, it does cover

the overwhelming majority of integrated circuits layouts.

1. Data Structures

Before discussing the algorithms, it is useful to discuss the major data
types used by the program. By convention the first fleld in every data type is a
type identifier. This aids in writing generic routines (i.e. routines that can
operate on many different data types). The type fleld is commonly followed by a
link field which is used to put the structure into a list. The link fleld is then fol-
lowed by four integers, left, bottom, right, and fop, which form the bounding box

of the suructure.

One of the main data types is the symbol. Its structure is shown in figure
VI-1. Name is the symbol’'s name. /nstances is a list of instances contained in the
symbol. Bozes is a list of boxes contained in the symbol. (As noted above, this
implementation deals only with manhattan geometry, so all geometry can be
represented as rectangles. An implementation that deals with general geometric

shapes would need a list of polygons.)

The above fields are all needed to describe the symbol itself. The following
fields are used by the disjoint algorithm to transform symbols into non-

overlapping region, and by the extractor to pass connectivity information

52

lype

next —
left

bottom

right

top

name
instanceso——->
bozxes r—>
windows &—>
ifss *~—r—>

Figure VI-1. data structure for a symbol
between symbols. The windows fleld is a list of rectangles which define the
manhattan boundary of the symbol. (Rather than represent the polygonal boun-
dary of the symbol explicitly, the symbol is divided into rectangular regions
which covers this polygonal area. The polygonal boundary can be easily recon-
structed from these rectangles. No assumption is made that that these rectan-
gles are connected.) The ifss fleld is a list of interface segments for the symbol.
(Interface segments are discussed later. Basically, they are the means by which
the circuit extractor passes information between symbols.) In both the Mesa and
C implementations there are additional fields for maintaining statistics but they

need not concern us here.

The data structure for the box is shown in figure VI-2. Boxes are stored in
lists attached to the symbol they are contained in. The bounding box defines the
the area that the box covers. The layer field indicates the mask layer for that

box.

bype
nert e——-;>
left
bottom
right
top
loyer |

Figure VI-2. data structure for a boz

The data structure for an instance is shown in figure VI-3. Like the boxes,

83

instances are stored in lists attached to the symbol that contains them. The
nezt field is the link field for this list. The bounding box is the minimum bound-
ing box for the instance. The symb fleld is a pointer to the symbol which the
instance references. Transform is a 3 by 2 transformation matrix. (A 3 by 2
matrix is sufficient to describe all transformations commonly applied to sym-

bols, i.e. rotation, mirroring, and translation. See [14] for details.)

lype
next #—+—>
left
bottom
right
Lop
symb o—t+—>
| transform |

Figure VI-3. data structure for an instance

K]

There are several other data types used in the program but these will be

discussed later as their use becomes more apparent.

2. Disjoint Routine

The disjoint routine is called with a pointer to a symbol. This symbol is usu-
ally the top level symbol in the layout hierarchy. Disjoint simply calls split pass-
ing the symbol as a parameter. This call to split may generate new symbols. Dis-
joint keeps feeding these newly created symbols to split until all the symbols
have been exhausted. Disjoint then calls a cleanup routine which performs vari-

ous bookkeeping chores, such as freeing up no longer used structures.

3. Split Routine

Split is also called with a pointer to a symbol. It is split’s job to consider the
instances of the symbol and to divide the symbol up into regions separated into
different regions of overlap. As noted in chapter II, this is done with a sweeping
line algorithm. Split first enters into a list the edges from the windows on the
symbol. The edges from the instances of the symbol are then entered into the
list. The window edges are used to mark which instances are contained within

the symbol and which instances are totally outside the symbol and can therefore

54

be ignored. The structure for these edges is shown in figure VI-4.

battom
top
side
element Type
element o-'-"\?

Figure VI4. data structure for an edge

The z, bottom. and top flelds describe the position of the edge. The side
field indicates whether this is a left edge or a right edge. The element Type field
indicates whether this is an edge from a window or from an instance. The ele-

ment field is a pointer to the window or instance that generated this edge.

As the program scans from left to right along a swath, a current set is main-
tained. The current set is the set of instances which covers the part of the
swath now under consideration. At the start of the swath, the current set is
empty. On every left edge of an instance that instance is added to the current
set. On every right edge the instance is removed from the set. The region
covered by the current set is bounded by the bottom and top of the current
swath, and by the x position of the last change to the current set and the
current x position. Whenever the current set is changed, i.e. instance is added
to it or removed from it, a check is made to see whether the edge is inside a win-
dow or not. If the edge is not in a window, no further action is taken. If the edge
is in a window, the rectangle covering the current set is added to the rectangles
that have already accumulated for this set of instances. These rectangies are
kept in a structure called a discell. The structure for a discell is shown in figure
VI-5.

The instance field is a pointer to the list of instances that this discell cov-
ers. The windows field is the list of rectangles generated as described above.
The bozes field is a pointer to a list of boxes contained in this discell. Initially it
is set to nil. The symbol fieid is a pointer to the symbol which matches this dis-

cell. This is described in section 4.

lype
next ’—w*"?
windows e+——>>
instances¢—>
bores e+—>>

symbol >~

Figure VI-5. data structure for a discell
By the time the entire symbol has been scanned, a discell for each distinct
set of overlapping regions will have been created. Any geometry in the symbol is
now partitioned into the appropriate regions. For each discell, the rectangles of
the symbol are clipped, creating two separate lists, rectangles inside the discell
and rectangles outside the discell. The rectangles inside the discell are attached
to the discell. The rectangles outside are kept to compare against the next dis-

cell.

This method of dividing up the rectangles has the potential to become
explosive. Figure VI-6 represents this process of clipping rectangles. When one
rectangle is clipped against another as many as 5 rectangles can be created, 1
inside rectangle and 4 outside rectangles. (See figure VI-7.) A discell may be
composed of several windows, and many rectangles could be created for each
original rectangle. Thus, this process could create a huge number of rectangles.

Fortunately, this doesn’t happen in typical layouts.

4. Gather Routine

The gather routine is called with a list of discells and the symbol which gen-
erated them. The job of gather is simply to change each discell passed to it, into
an instance of a symbol. It must see if this disceil can be changed into an
instance of an already existing symbol or if it must create a new symbol. Creat-
ing new symbols should be avoided if possible, since this can ruin the structure

of the layout.

Although the process of changing a discell into instances is long, it is not
complicated. Associated with each discell is a list of instances. These instances
are broken down into symbtol-transformation pairs. The pairs are sorted by sym-
bol names. The transformation of the first pair entered into the list is taken as

the reference transformation. All the transforms of the pairs are multiplied by

56

RECTANGLES

CLIPPER FOR | INSIDE
FIRST WINDOW RECTANGLES

OuUTS [DE
RECTANGLES

§
CLIPPER FOR INSIDE

SECOND ¥INDOH RECTANGLES
lomeme
RECTANGLES
CLIPPER FOR | INSIDE
LAST WINOOW [RECTANGLES
SYMEOL'S
RECTANGLES

Figure VI-6. clipping process
the inverse of the reference transformation. In addition, all the boxes and win-

dows of the discell are transformed by the inverse reference transform. The

boxes and windows are then sorted.

Next a check is made to see if there already exists a matching symbol.
Stored with each discell are the normalized symbol-transformation pairs it was
made from, along with its boxes and windows. It is compared with each previ-
ously encountered discell. To speed up this matching process a hash table is
used. A hash index can be computed from the symbol-transformation pairs, and
the windows. While this hashing scheme may not result in any algorithmic gains,

it significantly speeds up this lookup chore.

57

CLIPPING
WINDLW

RECTANGLE T3
BE CLIPPED

77707
//7// /
77 ///

Figure VI-7. clipping a rectangle
If a match is found, the matched symbol is returned. Otherwise a new sym-

/

bol is created, the discell is entered into the hash table, and the new symbol is
returned. The returned symbol is combined with the reference transform to
create a new instance. In this manner gather replaces each discell with an
instance. These new instances replace the old instances of the symbol gather
was working with. The important property that these new instances do not over-

lap is now established.

Symbols newly created in the gather procedure are placed on a new symbol
list. As mentioned earlier, the disjoint routine keeps calling split with these new

symbols until the list is exhausted.

o8

A new symbol is created based on the instances covering it. The contents of
these instances, boxes and other instances, become the contents of this new
symbol. Boxes and instances outside the symbol's windows are not considered

part of this new symbol.

The disjoint algorithm works from top down. First the top level symbol of
the hierarchy is called. It is broken down into non-overlapping instances and
gecmetry. Then the algorithm recurses and runs the split-gather routines on

these symbols, thus removing overlap.

The Mesa and the UNIX versions differ in the type of symbol transformations
considered in the matching. The Mesa version does not recognize rotated or
mirrored instances, and the only transformations considered are translations.
Rotated and mirrored versions of a symbol are considered different versions of
the symbol This may account for the differences in the statistics reported in

the next chapter.

5. Circuit Extraction

After the disjoint algorithm has been run over the layout hierarchy, remov-
ing all overlap, the actual circuit extraction can be performed. While the dis-

joint algorithm works from the top down, circuit extraction works bottom up.

The extractor is implemented as a two phase process. In the first phase all
the cells are scanned, finding transistors. For NMOS processes this is simply
finding where a polysilicon box overlaps a diffusion box. Where this occurs, a
transistor box is created, and the corresponding area is removed from the
diffusion layer. Two different types of transistors are created, depletion or
enhancement, depending on whether ion implant surrounds the transistor or
not. A sweeping line algorithm is used to find these polysilicon-diffusion overlaps.
This phase could not work with overlapping instances. Without overlap it is not

even necessary to pass information between symbols.

The second phase of the algorithm now concentrates on finding the connec-
tivity of the circuit. Connectivity within a symbol is a simple task, and can use
the methods of conventional flat extractors. It is necessary, however, to con-
sider connectivity information which may come from instances inside the sym-

bol, and to pass this information to the outside. Consider the symbol shown in

59

figure 8. In this figure, only the metal layer is shown. The symbol consists of two
boxes, and an instance. Cne box touches the left side of the instance, the other
box touches the right side of the instance. Suppose that inside instance A there
is a bus which connects the two boxes. If this symbol is extracted without taking
into account the connection made through A, these boxes will not appear electr-
ically connected. Thus the connectivity information of the instances within sym-

bols must be considered in this phase.

INSTANCE A

2 77

NN

Figure VI-8. symbol containing one instance and two bozes

To pass connectivity information between cells, each symbol has a set of
interface segments. Interface segments mark places along the symbol boundary
where a connection can be made to the circuitry of the symbol from the outside.
An interface segment is specified by a line segment, a layer, and a node number.

Figure VI-9 shows the structure of an interface segment.

The first step in extracting a symbol is to check that each instance has had
its corresponding symbol already extracted. If there is an instance whose sym-
bol has not yet been extracted, the algorithm recurses and extracts that sym-

bol. This check insures that all the instances have been extracted, and that they

60

bype
nezxt o—————>
left

bottom

right

top
nodeNumber

layer

Figure VI-9. data structure for an interface segment

have a set of properly connected interface segments associated with them.

The next step is to instantiate all interface segments of the included
instances. The instance’s transformation is applied to the all interface segments
in the symbol definition. This places the interface segment in its proper position
in the coordinate system. A zero width {or height) box is created at this posi-
tion, and its layer number is set to the layer number of the interface segment.
The box is assigned a node number by assigning the node number of the inter-
face segment plus an offset, called the base node number. (The base node
number is initially 1.) The base node number is then set to the highest node

number seen so far plus 1 and the next instance is examined.

Thus, every interface segment in every instance generates a zero width (or
height) box. Boxes created from interface segments of different instances can-
not be assigned the same node number. However, boxes created from interface
segments of the same instance with the same node number will be assigned the
same node numbers. This conveys the connectivity within an instance during

the extraction phase.

After these boxes have been generated, interface segments to the outside
must be created. To do this, all the boxes, including the zero width and zero
height boxes created from interface segments, are checked to see if they touch
the symbol's boundary. For any box that does touch the boundary, an interface
segment is created along the line segment where the box touches the boundary.
If the box already has a node number assigned to it, that node number is also
assigned to the interface segment. If there is no node number associated with
the box, a new one is generated and assigned to both the box and the interface

segment.

81

The next step is the actual connectivity extraction. A sweeping line algo-
rithm is used to extract the connectivity of the symbol. Care must be taken in
coding this algorithm so that the zero width (and height) boxes are not ignored.
By associating node numbers with these boxes, connections between the
geometry and interface segments, and connections among interface segments
will be recognized. If two nodes with two different node numbers are found to be

connected, their node numbers are merged.

Merging is used to keep track of equivalence relationships among node
numbers. If two node numbers are in the same equivalence set, then their
corresponding nodes are connected. The function merge takes two node
numbers as parameters and combines their equivalence sets. The function
lookup takes a node number as a parameter, and returns the smallest node
number in the equivalence set that contains the parameter. With this function, it
is possible to tell whether two nodes are connected by testing whether lookup
returns the same value for each of their node numbers. Thus, equivalent node

numbers are all represented by the smallest number in the equivalence set.

The equivalence relationship is maintained in an array of the node numbers
which is indexed by node numbers. This array maintains the property that if
node number i is not the smallest node number in its equivalence set, then the
ith element of the array contains a node number in i's equivalence set smaller
than i. If node number i is the smallest node number in its equivalence set, then
the it element of the array contains i. Initially each element of the array is set

to its own index.

Lookup is implemented as follows. For a given node number, that element
in the array is checked. If it contains itself, then it is the smallest element in its
equivalence set, and the node number is returned. Otherwise, continue this pro-
cess with the number found in this slot. Since each element of the array con-
tains a number smaller or equal to its index, the recursion must stop. Thus,

lookup always returns the smallest node number in the equivalence class.

Merge is implemented as follows: Given two node numbers a and b, call
lookup on these node number to get a’ and b'. If a’ equals b, nothing more needs
to be done. If they are not equal, set the entry for the larger number equal to
the value of the smaller one. This will cause all subsequent calls to lookup with

either a' or b’ to return the smaller value.

62

Once the extraction algorithm has swept the entire symbol, equivalence
relationships have been set up between node numbers. The nodes are then
renumbered, assigning a unique number to each equivalence set. The numbering
is done so that the interface segments’ node numbers are given the lowest
numbers. Nodes which do not have interface segments (called internal nodes)

are given higher numbers.

Finally, for every interface segment of every instance an equivalence
number is assigned. This step is necessary to allow the circuit to be recon-

structed later on.

63

Chapter VII. Performance

This chapter discusses the performance of the disjoint and circuit extrac-
tion routines. The data presented here are based on 5 layoutls, adder, cherry,
ralu, fifo, and testram. Adder is an eight bit adder. It is part of a larger layout,
and does not contain interface circuitry or bonding pads. Cherry is a 4x4 bit-
map manipulator, ralu is a 16-bit arithmetic-logic unit, and fifo is a first-in
first-out bufler; all these are complete layouts. Finally, testram is a 8Kbit ram.
This is again a partial layout, and it also has the property that no cell is rotated
or mirrored. The description of these circuits was available in the Caltech Inter-
mediate Form (CIF 2.0).

Table VII-1 lists for each layout the number of transistors, the number of
specified rectangles, the number of rectangles in the fully instantiated layout,
and the regularity. Specified rectangles are counted by considering the layout
where each symbol is expanded only once. The number of rectangles in the fully
instantiated layout are counted by considering the layout where each symbol is
expanded each time it is called. Regularity is computed here by dividing the
number of rectangles in the fully instantiated layout by the number of specified
rectangles. This definition is similar to that given by [10] but is easier to com-

pute, and is more natural to apply after the layout geometry has been

transformed.
Table VII-1: Size and Regularily of Layouts
specified total
name transistors rectangles rectangles regularily
adder 203 662 2017 3.0
cherry 881 583 7416 13.2
ralu 1853 28390 21583 7.5
fifo 1927 88120 86120 44.7
testram 20480 180 196992 1231.2

Running the disjoint algorithm over the layouts changes the hierarchical
structure of the layouts. Table VII-2 shows the effect on the number of specified
and total rectangles and on the regularity of the layouts, after they were run
through the Mesa and C versions. The differences between the Mesa and C ver-
sions are due to the fact that the C version recognizes rotations and mirroring of
symbols, whereas the Mesa version considers rotated and mirrored instances of

a symbol to be different symbois. This difference shows itself in the number of

Table VII-2: Effect of Disjoint Transformation
before disjoint after disjoint
Mesa Version C Version
spec total spec total spec total
name rects rects reg rects recls TEg recls rects Teg
adder 862 2017 3.0 980 2147 2.2 878 2147 2.4
cherry 583 7418 13.2 | 3972 11274 2.8 | 3763 11282 3.0
ralu 2890 21583 7.5 | 7368 21947 3.0 | 5200 21961 4.2
fifo 1927 868120 44,7 | 8248 117202 14.2 | 4079 117213 28.7
testram 180 196992 1231.2 ¢ B77 284076 457.7 577 264076 457.7

specified rectangles. While in many cases the difference is small, in some layouts
that contain many mirrored cells, such as ralu and fifo, the difference is

significant.

Figures VII-1 through VII-5 show the fully instantiated layouts, the layouts
with each symbol instantiated once, and the layout with each disjoint symbol

instantiated once.

Table VII-3 compares the runtimes of the Mesa and C versions of the extrac-
tor. The Mesa times are for a Dorado computer, and the C times are for a VAX-

11/750. Times are reported in minutes:seconds.

Table VII-3: Runtimes of Mesa vs. C Version of Extractor
Mesa Version C Version
disjoint disjoint

name trensform eziraction transform extraction
adder :01 :13 :06 :52
cherry :08 2:53 147 12:30
ralu :05 1:48 134 4:20
fifo :09 2:51 :52 14:04
testram :04 5:42 :28 13:30

The C version of the disjoint transformation takes approximately 8 times as long
as the Mesa version, whereas for the extractor the C version takes approxi-
mately 3 times as long as the Mesa version. {Note that the Dorado is a much fas-
ter machine than a Vax 11/750.) The C version puts more effort into the disjoint
operation trying to recognize mirror and rotated symbol combinations. This

pays off at extraction time since fewer symbols need to be analyzed.

It is interesting to compare how the hierarchical extractors compare with

flat extractors. Table VII-4 compares the two hierarchical extractors with two

85

flat extractors, one written in Mesa and one written in C[6]. Again, the times for
the Mesa programs are for a Dorado computer, and the times for the C pro-

grams are for a VAX-11/750.

Table VII<4: Runtimes of Mesa us, C Version of Exiractor
Flat Extractors Hierarchical Extractors

namae Mesa Version C Version | Mesa Version C Version
adder 1:33 A 113 152
cherry 2:37 1:40 2:53 12:30
ralu 10:33 3:57 1:48 4:20
fifo 26:54 16:03 2:51 14:04
testram 82:48 20:51 5:42 13:30

The C flat extractor is highly optimized. This explains why it does so well com-
pared to the other extractors listed in the table. Note that although this optim-
ized extractor does well against the hierarchical extractors for small layouts,

the hierarchical extractors start to do better as the size of the layout increases.

The runtimes for the hierarchical extractor show very little correlation
between the runtime and the regularity or the number of rectangles. Analysis of
the algorithm shows that the runtime is very dependent on the number of inter-
face segments which the extractor must look at. Let us assume that connec-
tivity extraction can be done in linear time with respect to the number of rec-
tangles and interface segments. Further, let us assume that the number of
interface segments in a symbol is proportional to the perimeter of the symbol.
Then, if symbol z is made up of k calls to symbol 4, the expected time to extract
symbol z is O(kp;), where p; is the perimeter of symbol 1. If ¢; is the number of
calls to symbol i in the disjoint hierarchy, then i contributes O(c;p;) to the
extraction time. Thus the contribution of all the interface segments to the
extraction time is O(P), where P is the sum of all the ¢;p;'s. Let R be the number
of rectangles in the disjoint hierarchy, then the total expected time for extrac-
tion is O(P) + O(R). We have seen that there is little correspondence between
the number of rectangles in the hierarchy and runtime. Table VII-5 shows run-
times of the programs versus the number of rectangles, R, and versus the total

perimeter, P.

This table indicates that the runtime is much more dependent on the total
perimeter than on the number of rectangles. Figures ViI-8a and VII-6b show
graphs of total perimeter versus runtime and number of rectanges versus run-

time for the MESA and C extractors. These graphs show that total perimeterisa

66

Table VII-5: Number of Rectangles and Total Perimeter vs. Runtimes
Mesa Version C Version
#of total #of total

name rects perimeler runiime rects perimeter runiime
adder 990 18 :13 876 19 :52
cherry 3972 425 2:53 3783 434 12:30
ralu 7388 181 1:48 5200 184 4:20
fifo 8248 303 2:51 4079 297 14:04
testram 577 484 5:42 577 471 13:30

good indication of what the runtime will be for a given layout. The total perime-
ter, of course, is not known until the disjoint hierarchy has been obtained. Table
VII-3 indicates, though, that the disjoint transformation takes only a small frac-
tion of the total time for extracting a layout. Thus, an estimate of the runtime

for a given layout can be made relatively quickly.

The dependence on total perimeter indicates that most of the extractors
time is spent on examining the interfaces between instances, very little time is

actually spent examining the geometry of the layout.

- tanniid

Figure VI-1la. fully instantiated layout of ‘adder’

67

R 8 88

N 8 8N

P s s v
S 3

T T

15 isnne

N-N_8R

L

Figure VII-1b. layout of '‘adder’ with each disjoint symbol drawn only once

68

70

e e ey

T

Eisaniated

Figure VII-2b. layout of ‘cherry’ with each disjoint symbol drawn only once

=

i
oA

N i

]

i
by

| b

HILL

J

)

|

Figure VII-3a. fully instantiated layout of ‘ralu’

71

72

I

TGy

ﬁuw .wwmwf:h

Figure VII-3b. layout of ralu’' with each disjoint symbol drawn only once

73

JH]
]

U]

Lt}

[H]

]

=

111
] P —

,m fa

Figure VII4a fully instantiated layout of fifo’

-
1]

Tl

IIRIRININInIn

-

I
I L=

Figure VII4b. layout of fifo’ with each disjoint symbol drawn only once

74

PR e g e T L L
ey s T ot ety

Figure VII-6a. fully instantiated layout of ‘tesiram’

i)

~ i ; LEERED- e & LA IR S
;
JU——
b g—— S—) T
d 0
! e : ‘
IS —
e o — : —
rarmam———
i r— " T
=] j— . r
C1 i { U]
oo { e i
A — =
a0 .
:"1-—-‘ ——n Y -
D — T I
i s | et a L H
o
1
el
+
‘;t:._ - - "
IR [y w—
[L=
RV . ;
— T :
R —
NEREn T 31|~1Jjan«x§

VII-5b. layout of ‘testram’ with each disizsint symbol drawn only once
¥ Y Y

MINUTES

o
A

MINUTE

0
[R ERRRCEEC e R b LR R b A © testrom
5
4
3 [F----eeeememmmmnmmnnans QF-orosesssessesssrsacerec O cherry
fife
2
[R R T Ee T ETTELPRPLE P T Q ralu
1
O----- O oager
100 200 3900 434 584 mm
2009 4000 YLl 2009 10000 rects
O PERIMETER
a # OF RECTANGLES
Figure VII-6a. total perimeter vs. runtime for MESA extractor
15
e TR, O @ dde O testran
10 3 AR ROIIILA TRt © charry
5
O-rormemeennenn g ralu
O--- odder
10¢ 209 309 420 500 mm
2999 4000 6209 £029 10000 rects

© PERIMETER
8 # OF RECTANGLES
Figure VII-6b. total perimeter vs. runtime for C eztractor

77

78

Chapter VIII. Work by Others

In the last few years a considerable amount of work has gone into finding
ways to exploit the hierarchical structure of VLSI layouts. This chapter reviews

some of that work and compares it with the approach taken in this thesis.

1. Hierarchical Filter

Whitney[21] developed an algorithm to do hierarchical design rule checking
(Drc). Her algorithm reads a hierarchical layout description, and produces a
flat description which can be run through a conventional design rule checker.
The algorithm acts as a filter, passing only a subset of the geometry to the
actual checking program. Repeated configurations of symbols are not gen-
erated. Thus, the algorithm’s flat description has far fewer rectangles to check

than the actual flat descripticn of the layout, so it can be checked much faster.

Whitney's method is based on pairwise comparison of instances within a
symbol. The algorithm starts by checking the top symbol of the layout. Each
instance is examined to see if its symbol has been checked. If it has not been
checked, the algorithm recurses and checks that symbol. After all the instances
have been examined, all geometry at that level that needs to be checked is gen-

erated.

Next, interactions between instances and geometry, and between instances
and other instances are checked. This is done by bloating the bounding boxes of
the instances and geometry by one half of the maximum extent of the design
rules. For each instance, its bloated bounding box is checked to see if it over-
laps the bloated bounding box of any geometry or other instance. If the bound-
ing boxes do overlap, the program checks whether it has checked this
configuration before. This configuration is ignored if it has been checked it
before. If not, the geometry in the overlapped region is generated and this

configuration is recorded as checked.

Checked configurations are recorded by storing with each instance's sym-
bol, the other instance's symbol and the instance’s relative transformation. For
example, in figure VIII-1 instance a's bloated bounding box overlaps instance b,
where a is an instance of symbol A with the transformation T, . and b is an

instance of symbol B with the transformation Ty . Thus, with symbol A the

79

configuration (B.T{!Ty) is stored, and with symbol B the configuration (A, Ty 'Ta)

is stored.

There are problems with this approach, however. One problem is that the
algorithm does not generalize to other layout analysis operations such as circuit
extraction or mask operations. A more serious problem is that one can con-
struct pathological cases where this algorithm fails to report actual design rule
violations. Figure VIII-2 is an example of where this algorithm fails for simple
Mead and Conway design rules. Figures VIII-2a through VIII-2c shows symbols A,
B. and C. Figure VIII-2d shows symbol D, which is composed of two instances of
symbols A and B, and one instance of symbol C. If the algorithm checks the bot-
tom cluster first, it will output the A-B-C cluster finding no design rule violations.
When the algorithm sees the top cluster, it will not output anything since Aand B
have been seen in an identical configuration. Thus, the design rule violation
caused by the absence of the diffusion layer of symbol C is not caught. Whether
cases such as the above arise in actual layouts I do not know, but their possible

existence makes this algorithm less attractive.

2. Front-End Processor

Hon[8] has considerably extended Whitney's algorithm to make it applicable
to other applications such as circuit extraction. His algorithm concentrates on
a front end processor for hierarchical analysis. The front end processor is
responsible for dividing the layout into non-overlapping rectangular regions
called windows. Different analysis modules may be plugged into this front end
processor. The front end processor requires each analysis module to implement
two operations: analyze a single window, and compose two previously analyzed

non-overlapping windows.

The front end processor uses a heuristic algorithm to divide the layout into
non-overlapping windows. The algorithm starts by creating a window that con-
tains the top level symbol. This window must now be broken into sub-windows. A
window is divided by first checking to see if any instance completely covers the
window. If there is such an instance it is expanded and replaced with its com-
ponent instances and geometry. Now the window is checked to see if any of the
instances within it are overlapping. The instances within the window are divided

into groups. A group is two or more instances that overlap. If a group is found

80

whose bounding box does not overlap any other group, a subwindow is created at
the group's bounding box. If a group's bounding box completely surrounds one
or more other groups, a sub-window is created at the bounding box of that
group. The instances and geometry that are contained in these newly created

sub-windows are removed from the original window.

If any instances are left that overlap in the window, an instance is selected
to be expanded. Various heuristic techniques may be used to pick which
instance to expand. A heuristic that works well in most cases is to pick the
instance overlapping the most other instances. After the selected instance has

been expanded, it is necessary to repeat the checks for groups.

At the end of this process the layout will have been divided into a hierarchi-
cal set of windows. Each window will contain only non-overlapping instances and
geometry. The front end processor will then call upon the analysis module to
analyze each window, and to compose adjacent windows. This process continues

until the highest level window has been analyzed.

This technique for dividing up the check provides a function similar to the
disjoint transformation. This method does take more time than the disjoint
algorithms but it usually produces fewer cells that need to be examined by the
back end processor. Although both Hon's technique and the disjoint transforma-
tion change the hierarchy, the disjoint transformation is driven solely by the
hierarchical structure of the original layout. This results in a derived hierarchy

that is closer to the original layout.

3. Restricting Overlaps

Scheffer[17] describes a system which exploits hierarchy by disallowing
overlapping cells. He shows that by allowing the circuit designer to specify a
polygonal outline of his cells, no area loss results. A layout with no overlapping
cells has several advantages for the analysis tools. Besides easing the job of cir-
cuit extraction and design rule checking for the entire layout, incremental
checking can be performed at the end of each editing session with a cell. This is
extremely valuable to the circuit designer in that errors can be reported while

the design is still fresh in his mind.

Although disallowing overlaps resuits in no area loss, it can complicate the

81

design process. The designer is forced either to avoid sharing busses between
adjacent cells or to contort his design so that only half the shared bus resides in
each cell. Tucker and Scheffer[19] relax the constraint by allowing the designer
to overlap regions along the perphiery of the cell as long as certain restrictions
are met, such as no transistors are formed by the overlap. (A similar approach
is used by Weise[20].) By making suitable restricticns on the overlapping areas
they show that most of the advantages claimed for non-overlapping éells rernain.

This approach is found much more acceptable to circuit designers.

82

Figure VIII-1. bloated bounding bozxes of instances a, b, and ¢

~ S
SN

N

N
\ RN
| SN NN
1% AR
A
[N VN NN

SO N

B C

NS N
AN
~
M \\\ N
NN
N N
XN
S < ~
AN \\\
« SONY
~ N N
. ~
\ N
L .
N N
\
Y

= NO DIFF OVER CUTS

—
A > ~ Y
N, AN
AN N
. N N,
N N
N N
N N
b N
~ SN
N N
NN
s\ . N
Ny O
~
q N ~

A, B, & C

Figure VIII-2b. design rule violation in second cluster may be missed

83

METAL

84

Chapter IX. Summary

Over the past few years much progress has been made in integrated circuit
technology. Better fabrication techniques have made it possible to fit close to a
million transistors onto a single integrated circuit. The problems of designing a
circuit with this many devices have led chip designers to adopt structured
design approaches. Analyzing layouts of this size has presented a major prob-
lem, though. The conventional approach of flatting the symbol hierarchy, and
thereby ignoring all structure present in integrated circuit layouts, is doomed
to fail as the size of circuits continue to increase. Layout analysis tools must
take advantage of the structure of the layout to solve the problem of analyzing

layouts of this complexity.

This thesis has discussed approaches to exploiting the structure of
integrated circuit layouts. The main problem in doing this is the presence of
overlapping instances. The disjoint transformation solves this problem by
transforming a hierarchical integrated circuit layout description, which may
contain overlapping instances, into an equivalent hierarchical layout description

that does not contain any overlapping instances.

Once the overlap has been removed from the layout, the analysis tools can
proceed much more efficiently. An algorithm hierarchical circuit extraction is
discussed. By creating connection points along the boundary of each symbol
this extractor is able to maintain connectivity information through each level of
the hierarchy. The output of this extractor is a hierarchical description of the
circuit. An algorithm that performs conventional design rule checking based on
only local information is also presented. This algorithm works for generally
shaped polygons and is not limited to manhattan shapes. This algorithm is then
extended to check layouts hierarchically. Algorithms for performing the gen-
eral mask operations of AND, OR, NOT, GROW, and SHRINK hierarchically are also

presented.

Programs that hierarchically extract circuits have been implemented in the
MESA and C programming languages. Comparing the performance of these pro-
grams to conventional flat extractors shows that while the flat extractors do well
on smaller circuits, the hierarchical extractors perform better on larger cir-
cuits. The runtimes of the hierarchical extractors were shown to be mostly

dependent on the total perimeter of the instances in a layout, while the

85

runtimes of the flat extractor were dependent more on the total number of rec-
tangles in the fully instantiated layout. The disjoint transformation took only a

small fraction of the total time for extracting the circuit.

The benefits of exploiting the structure of layouts are more than just faster
runtimes for layout analysis tools. The data files created by hierarchical tools
can be much smaller, because the data files can be made hierarchical. Smaller
data files, in turn, mean that less time is spent reading these files by programs
which cperate on them. These data files will more likely be meaningful to the
chip designers since their structure is much closer to the structure that the

designer created for his layout.

Another benefit of hierarchical analysis tools is the possibility for incremen-
tal analysis. In conventional layout analysis systems the whole layout must be
rechecked if the designer makes a change to any part of the layout. With a
hierarchical system, only the symbols that change. and the symbols that refer-
ence these symbols, need to be checked. This can result in great saving near the
end of the design as the designers fine-tune parts of the layout. Small changes
will mean only those parts of the design affected by changes will be checked

instead of the entire layout.

86

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

M. H. Arnold and J. K. Qusterhout, "Lyra: A New Approach to Geometric Lay-
out Rule Checking', Design dutomation Conf., 1981

M. H. Arnold, "Research in Corner-Based Design Rule Checking"”, PhD. thesis
proposal, U.C. Berkeley, 1982

H. S. Baird and Y.E. Chao, "An Artwork Design Verificaticn System”, Froc.
12th Design Automation Conf., 1975.

C. M. Baker and C. Terman, "Tools for Verifying Integrated Circuit Designs”,
Lambda Mcgazine, fourth quarter 1980.

J. W. Beyers, et al, "A 32b VLSI Cpu Chip” ISSCC Digest of Technical Papers,
1981.

D. Fitzpatrick, "MEXTRA: A Manhattan Circuit Extractor”, ERL Memo MB2/42,
U.C. Berkeley, 1982.

R. Hon and C. H. Sequin, "A Guide to LSI Implementation”, Xerox PARC,
1980. ’

R Hon, "The Hierarchical Analysis of VLSI Designs", PhD. thesis proposal,
VLSI Memo V073, CMU, 1981.

B. Lampson and K. Pier, "A Processor for a High Performance Personal Com-
puter”, Proc. 7th Symp. on Computer Architecture, 1980.

W. Lattin, "VLSI Design Methodology: The problem of the 80’s for micropro-
cessor design”, Proc. Caltech Conf. on VLSI, 1979.

C. Mead and L. Conway, Introduction to VLSI Systems, Reading MA:
Addison-Wesley, 1980

M. Newell and D. Fitzpatrick, "Exploiting Structure in Integrated Circuit
Design Analysis”, Proc. Conf. on Advance Research in VLSI, 1982.

M. Newell and C. H. Sequin, "The Inside Story of Self-Intersecting Polygons”,
LAMBDA, Second Quarter 1980.

W. M. Newman and R. F. Sproul, Principles of Interactive Computer Graph-
ics, Second Edition, McGraw-Hill 1979.

J. Nievergelt and F. Preparata, '"Plane-Sweep Algorithms for Intersecting
Geometric Figures”, CACH, October 1982.

I. Rowson, "Understanding Hierarchical Design"”, PhD. thesis, Caltech, 1980.

L. Scheffer, "A Methodology for Improved Verification of VLSl Designs
Without Loss of Area”, Proc. Second Caltech Conf. on VLSI, 1981

18.

19.

20.

21.

87

C. H. Sequin, "Generalized IC Layout"”, VLS/'81, 1981

M. Tucker and Lou Scheffer, "A Constrained Design Methodology for VLSI",
VLSI Design, May,/June 1982.

D. Weise, "Eierarchically Based Analysis Tools for Computer Assisted Design
of VL3I Ciruits", Masters Thesis, MIT, May 198%.

T. Whitney, "A Hierarchical Design Rule Checking Algorithm", LAMBDA, First
Quarter 1981.

