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ABSTRACT

This paper describes the very large scale integrated circuitry
and chip level architecture of RISC I, a Reduced Instruction Set
Computer. RISC I is a single chip 32-bit microprocessor, designed
with a simple, yet powerful architecture. Its major features
include a 3 bus data path, a simple controller, and a 3 phase clock.
The RISC I microprocessor, also known as RISC Gold, was imple-
mented as part of the RISC project at the University of California
at Berkeley during the winter and spring of 1881. The chip contains
44,500 transistors, and has been fabricated using 4 micron
(minimum gate length) NMOS depletion load technology. Testing of
the chip has shown that it is operational. It has been demon-

strated running small programs.
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INTRODUCTION

The Reduced Instruction Set Computer project at U.C. Berkeley combines
research and development in the areas of computer architecture, computer
aided design, and integrated circuit design. The primary goal of the RISC pro-
ject is to investigate computer architectures that make effective use of the

resources offered by Very Large Scale Integrated ( VLSI ) circuit technology.

A single chip VLSI circuit, the RISC | microprocessor, was designed and built
as a part of the RISC project. This chip is intended to be a learning vehicle for
those peopie involved in the project, and to demonstrate to others interested in
this fleld *hat a RISC architecture is appropriate for VLS] implementation.
[Patterson 81]

Software was written for RISC I. There is a C compiler with optimizer,
assembler, and linker. An architecture simulator was written to predict execu-
tion times of RISC I programs. Benchmark programs run using this simulator
showed that a RISC I computer, running C programs, would perform at speeds

comparable to larger and more complicated computers. [Tamir 81]

One advantage of a RISC architecture is that its implementation can be
more regular than that of a complex architecture and require less design and
testing effort to build a machine with a high level of performance. [Fitzpatrick
81] The goal of this paper is to describe the architecture and implementation of
RISC I so that it can be better understood and its advantages used by those

working in the fields of computer architecture and integrated circuit design.

Mapping the architectural definition of RISC I onto silicon toock approxi-
mately 2.5 quarters. Three courses offered during the 1980-81 school year pro-
vided the opportunity for graduate students from the Electrical Engineering and

Computer Sciences Department to learn about and design the RISC I chip.



Courses for RISC |

CS248 A structured design approach studied

CS292X RISC I and RISC II datapaths designed

CS292Y | RISC I completed, simulated, sent for fabrication

Computer aided design (CAD) programs were devoloped that made it possi-
ble to layout, check, and simulate the RISC I design in a relatively short period
of time. These CAD tools were essential in getting such a large chip working

correctly the first time.

CAD Programs Used to Design RISC I
Graphic Layout Editors Caesar , Kic
Circuit Extractors Mextra , Cifplot -X
Plotting programs Cifplot
Design Checking LRC, ERC
Simulators Slang . Mossim , Spice '

The chip was implemented by MOSIS (DARPA's MOS Implementation Service
at the University of Southern California’'s Information Sciences Institute). We
submitted a design file in Caltech intermediate format (CIF). This file contained
the topological data for the 44,500 transistors of RISC [ implemented in 4 micron
NMQOS depletion load technology with butting contacts. MOSIS fabricated the cir-

cuits, and returned wafers and bonded chips to us for testing.

The returned chips were sorted and tested. Some were found to operate
correctly. These could be clocked at speeds up to 500 nano-seconds per active
phase. This is approximately 1/2 the hoped for speed [Foderero 82]. One non-
fatal design bug was found during testing (discussed below), and our compiler
was modified to avoid this bug. The RISC I single board computer was demon-

strated in the spring of 1982 with a RISC I chip running simple C programs.



CHAPTER 1 RISCI Architecture

The architecture for RISC I can be described as a high performance design
that has been kept simple enough to fit onto one chip. The chip and its instruc-
tion set were designed to carry out each instruction in only one clock cycle. Two

cycles are used for the load and store instructions.

RISC I uses registers for address and data manipulation, and a program
counter (PC) for instruction fetching. The processor status word (PSW) holds
the control state of the processcr and can be written and read under program
control. It contains the condition code information, and the window number

(discussed below).

A single RISC I instruction can address 2 source registers, specify the
operation to be performed, and indicate a destination register. RISC I makes
exactly one memory reference each clock cycle. Instruction fetching, instrue-
tion decoding, and instruction execution all occur during the same cycle. While
carrying out the current instruction, RISC I decodes the opcode of the next
instruction, and sends to the memory the address for the instruction after the
next instruction. Registers in the large register flle are grouped into windows to

achieve good performance in handling procedure calls and returns. [Halbert 80]

The RISC | microprocessor has a 32-bit byte address that can be mapped off
chip to implement virtual memory. Data can be stored, transferred, and pro-
cessed in 3 sizes: 8-bit bytes, 18-bit short words, and 32-bit long words. The two
major data types supported by RISC [ are signed two’'s complement integers and

unsigned logicals.
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Figure 1: RISC1 Single Board Computer

The diagram in figure 1 shows the RISC I chip with cennections to the rest of
the system as implemented in the RISC I Single Board Computer. This system
was designed, built and demonstrated with a working RISC 1 chip during the
winter and spring of 1982. Virtual memory management, bus control, serial and
parallel ports, clocks and timers make up the rest of the system. [Van Dyke
82a]

Instructions

The complete set of reduced instructions for RISC I contains only 39
instructions. Complex instructions and addressing modes are executed as
sequences and subroutines of these fast, simple RISC I instructions. [Patterson
80] It may seem that this approach would lead to very large programs, but our
studies showed that RISC I program sizes are on average 0.8 to 1.4 times those of

other comparable processors. [Patterson 82]
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There are three types of instructions in RISC I's reduced instruction set:
[1] data operation instructions perform ALU and shift operations;

[2] control instructions include jumps, calls, and returns;
J

[3] memory access instructions include only single loads and stores.

Opcodes
The 39 RISC I instructions and their 7-bit opccdes are shown in figure 2
below.
Nost
Significant
3 Bits
e = o9 1 2 8% 4 5 6 7
f“;“u 000 © o0t oic o011 100 Losoe 110 11r !
9000 0 11 ca g s | mmear (SPE  am SUB RET LDHI
;0001 1 | “,__..4 | STRH 4
1 0010 2__.11 ||| GETPSW | — 1 SUBI
co01z 3| ] e | 3 |
—_ ! | !4 et
201004@1 ii?\mxsu"snca . xOR SUBC RETI
001 9 | i:| LDRBU . _STRB
0110 B LDXBS . p—
os 7 i LDRBS [
(1000 8 1 caux |0 osm o DM STXW OR ADD GTLPC
c1001 9 |, LDRW STRW
000 A 1) ey PUTPSW
ci01 B ‘
1100 C__.j | caLLr SRA LOXHU ADDI
1100 D LDRHU
: -
a0 B e LDXHS
c11: F r LDRHU

Figure 2: RISC1 Opcodes

The "RISC I ISP Description” contains a detailed description of what actions
these instructions perform. [Corcoran 80] A table showing the major actions
that occur on the chip for each instruction is presented in Appendix A of this
paper. The only complete description of all the actions performed by RISC [ for
each instruction is the SLANG simulation description (discuss=d in chapter 3).
[Foderaro 81]
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There were 31 instructions in the criginal RISC I instruction set. Eight load
and store relative instructions were added near the end of the design of RISC L.
They were added because they can be useful to a compiler and required only a

slight reprogramming of the PLA that decodes the opcodes.

Operands

Most operands for RISC I instructions come from on chip registers. The
data operation instructions can access 3 registers, or 2 registers and one
immediate operand. The condition codes can be set or not set, and they follow
the DEC PDP-11 format.

[Register C] « [Register A] + [Register B or 13-bit Immediate]

RISC I control instructions include offset-indexed jumps and PC-relative
jumps. They can access 2 registers, or 1 register and one immediate operand

to determine the jump address for the next instruction.

[PC] « [Register A (index)] + [Register B or 13-bit Immediate {offset)]
[PC] « [PC(pcrelative)] + [13-bit Immediate (offset)]

The memory access instructions supported by RISC I use 2 basic addressing
modes: offset-indexed and PC-relative. They can access 2 or 3 registers: one
holds the data, and two other registers, or one register and immediate operand,

are used to compute the effective address for the external memory.

[Effective Address] « [Register A] + [Register B or 13-bit Immediate]
[Effective Address] « [PC (pec relative)} + [13-bit Immediate]
[Register C (load)] « [Memory contents of Effective Address]

[Register C (store)] » [Memory contents of Effective Address]

When bytes and short words are loaded into RISC I they are shifted from any

position in memory to the least significant position in RISC I's registers. The
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sign bit of the data can be extended to fill the higher bits. Incrementing and
decrementing of the addresses is done explicitly with data operation instruc-

tions (add and subtract).

Instruction Formats

Instruction Fermats for RISC I

OPCODE<31-25> | SCC<24> | DEST<23-19> | SORC1<18-14> | IMF<13> | SORC2<4¢-C>

1
OPCODE<31-25> | SCC<24> | DEST<23-19> | SORC1<18-12> | IMF<13> ‘ [MM<12-0>

|

OPCODE<31-25> | SCC<24> | DEST<23-19> ; ‘ LDHI MMED<18-C>

All RISC I instructions are 32 bits long. The bit flelds for the instructions
are shown above. These fields within the instructions are located in the samne

positions in all instructions to simplify the task of decoding them in hardware.

The most significant 7 bits always contain the code for the operation to be
performed (OPCODE). The 24th bit teils whether the condition codes are to be
set. This is followed by the 3 operand flelds (DESTINATION, SOURCE: and
SOURCE2). The immediate flag bit (IMF) indicates whether the second source
operand is contaired in a register or the last 13 bits of the of the instruction. To
allow the use of 32-bit immediates a "load high" instruction is supported by RISC
I It loads a 19-bit immediate into the upper 19 bits of the destination register.

Registers

All RISC 1 instructions access at least one on-chip register. The program
counter (PC) and processor status word (PSW) are the two special purpose regis-
ters on RISC 1. All other RISC I registers are located in the register file. They are
general purpose registers to be used for handling data and addresses. All of
these general purpose registers are 32 bits wide. In any procedure 32 such

registers can be accessed.
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Figure 3: RISC1 Register Programming Model

Figure 3 shows the registers that can be accessed by a RISC | program.
Registers 0-17 are global registers; they can be accessed from any procedure
(window). Register O (global) is wired to always contain the value zero. Regis-
ters 18-21 are 4 '"next overlap” registers. These are useful for passing parame-
ters with the next called procedure. Registers 22-27 are a group of 8 "local"
registers that can be accessed only from the current procedure. Registers 28-
31 are the 4 "previous overlap” registers. They can be used to pass parameters

with the previous, or calling, procedure.
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Figure 4: RISC1 Windows of Registers

RISC | allocates a window of registers to each procedure. The window con-
tains those registers that can be accessed within a proceedure. The arrange-

ment of the windows is shown by figure 4.

There are 8 windows on the RISC I chip; each window is pointed to on the
chip by a number from 0 to 5. Procedures are entered by call instructions

which decrement the current window number. Return instructions increment
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the current window number. When all 6 windows on chip are either emptied or
fully used, a trap (interrupt) occurs to force the processor to jump to a window

handling routine.

Chip Architecture

The RISC I microprocessor chip was designed as three major functional
blocks. These blocks are the the clock circuitry, the control unit, and the data

path.

The clock circuitry synchronizes the control signals and provides order for
the events on chip. The RISC I control unit is much simpler than most micropro-
cessor controllers. Its job is to handle the PSW, and latch and decode the
incoming opcode. The bits of the decoded opcode are latched and gated with

clock signals, then sent to the data path.

The RISC I data path occupies most of the chip. It can operate on 32-bit
quantities and consists of 4 major modules. These are the register flle, shifter,
ALU, and PC. Data and pointers {data-addresses) are stored in the register file.
The PC contains the addresses used to fetch instructions. The shifter and ALU
perform operations on data in the register file or PC. In order to facilitate the
conditional jump instructions, the condition code information from the ALU is
latched into the PSW (part of the control unit) where the desired condition can

be tested.

The diagram in figure 5 below shows the major components cn the chip.

Data Path
- , ; . Control Clocks
Address and Noe P bus ‘ ’
Data Bus Pads = v 1 | Clock
[ R S - i
) " lrmmed. ! Pads
‘\ D‘_\_, __Res. Coantrol :
: i — i
A Co ! ‘ |
e ~ vy ot e e
; > psw < = Clock
wotars et toge
ecoders ! vwas @200 i é}
meem s - - *  Dline —_—— [
. CT— | 1 i
‘ 1 o i i P
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Bbus ! j o—> ‘
i ‘ Rbus.- '
Ry
Register File ; Cbous Shifter - - e ALU - ~__~ PC
< <

A

Figure 5: RISC1 Architectural Block Diagram
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The RISC I design makes effective use of some of the circuit configuations
associated with VLSL The shifter on RISC I uses a 32-bit cross bar which can
shift data by an arbitrary amount in one clock cycle [Sherburne 32]. All of the
control logic is implemented in programmable logic arrays (PLA's). A large
register file (2498 bits) is used like a data cache. The chip generates 32-bit byte
addresses and processes 32-bit data. Data and addresses are multiplexed
across the same 32 pins so that only 48 pins are required to connect RISCI to

the external world.



CHAPTER 2 RISCI Timing

The timing cycle for RISC | is composed of a cycle of three non-overlapping
clock phases. The data operation instructions occur in 3 phases: the operands
are read; the modification is performed; and the result is stored. The basic idea
behind the 3-phase clock is that one clock phase is used to drive gach part of an
instruction’s execution cycle [Katevenis 80]. The thrze phases are generated by
an external oscillator and enter-the chip via three input pins {one for each clock
phase). This allows for easy external synchronization and testing. All RISC I

instructions fit into some sort of 3 phase sequence as described below.

!
|
|

2] modificaticn is perfcrmed ‘ 3] result is saved !

1] data operands read } |

In RISC [ control instructions the following three thirgs cecur:

1] address operands read ] 2] jump address calculated

i 3] jump is taker cr net

i [n RISC [ lcad and stcre instructions the fcllewing six things ccour

| '

I 1

1] address operands read , 2] eflective address calculated ; 3] effective address sent cut,
|

l‘i 5] byte alignment is perfcrmed | 6] data is saved in reg.

| |

|

5] data is sent cff chip l 6] data stered in mem.

4] data lcaded cn chip

4] reg. data is read

]
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The External Clock

The timing diagram for the external clock is shown in figure 6 below. It is

composed of three separate active periods.

L Rise . Instruction
r Executlon Cycle

A A
a
[}
(1]
[ .3

A\

Time // ’

Figure 6: RISC1 3-Phase clocks

It is important that none of the phases overlap. This is to insure that one
internal event is completed before another is begun. These clock phases are
used internally by RISC I to gate the control signals which read and write to
internal latches. Non-overlap time is essential for digital latches as it allows for
the set up and hold times needed to reliably latch data. In some designs this
delay between phases is handled by circuitry on the chip. For RISC I we chose to
keep this constraint external to simplify the design and allow detailed perfor-
mance testing. If the non-overlap delay is to be handled on chip, the clock
skews and time delays of certain critical signals need to be known and

accounted for by on-chip clock circuits.

On Chip Sequencing

The clock circuitry on RISC I cycles through sequences of 3 out of 8 possible
phases, synchronously with the 3 external phases. The selection of the phases
depends on whether the instruction is a “normal” instruction, a memory access

instruction, or an interrupt.
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Figure 7: RISCI Clock-State Sequencing

The 8 phases and their transitions are shown in figure 7 above as a timing
state diagram. Once on chip, each of the 3 external phases is read and used to
generate 1 of 8 different internal clock phases. These 8 phases {or time-states)
are used to sequence all of the circuitry through each instruction and interrupt.
The clock circuitry generating these 8 phases is the heart of the machine. It
can be described as a hardwired, time-state controller. This sequence of state
transitions is analogous to the state transitions of the micro sequencer found in
most computers, but the RISC I sequencer requires no microcode, and no
micro-instruction sequencer. On most microprocessors approximately 50% of
the chip area is devoted to the microcode memory and sequencer. The RISC I
clock circuitry occupies less than 1% of the chip. The clock and control circui-
try combined occupy only 6% [Sequin 82]. This may be the major advantage of

this architecture for VLSI implementation.



-15-

Most RISC I instructions execute in the 3 phases: Philn, Phi2n, Phi3n. Only
the load and store instructions require more time, and they execute in 8 phases.

ey

They require one cycle of the 3 normal "n" phases with an additional cycle of 3
secondary “s” phases. This extra time used by load and store instructions is

required because the data path must do 2 major things for these instructions:

[1] Calculate the effective address and send it out.

[2] Send data to, or receive data from the external memory.

Interrupt Handling

Interrupted instructions are handled in 3 phases. The interrupt is accepted
during phase 1 (Philn or Phils). The clock circuitry issues 2 subsequent inter-
rupt "i" phases which abort the current instruction as if it had never occured.
After accepting an interrupt, Phi2i and Phi3i are issued instead of the normal
Phi2n and Phi3n or secondary Phi@s or Phi3s. Interrupts after Phils are allowed

so that page faults and addressing errors can be handled.

During Phi3i the interrupt vector is sent out to allow RISC-I to jump to its

interrupt handling routine.

The following things occur during an interrupt:

1] accept interrupt 2] ferce calli instruction next 3] send out interrupt vector

In RISC I the interrupt acceptance bit is part of the clock circuitry, and is
not part of the PSW. It allows interrupts to occur or be ignored. It is set to allow
interrupts after a "return from interrupt” instruction, and reset to ignore inter-
rupts after an interrupt has occured. Interrupts occur due to window over or
underflow, external signals, or receiving a "call interrupt” instruction. The reset

pin causes an interrupt whether the interrupt acceptance bit is on or off.
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Diagnostic Stopping

The RISC I chip is designed so that, during testing, it can be stopped after
any clock phase to allow diagnostic read-out of its internal state. Serial scan-
in-scan-out loops exist in the latches of the shifter, ALU, PC, and control cir-
cuits. When the chip is stopped the tester’'s clock must hold all three clock
phases low. A special refresh pin (PhiR) can be asserted to refresh all memory
on chip. The PhiR rin plus nine other special test pins are used to scan data in
and out of the chip. When the chip is running normally all on chip memory gets

refreshed by the three phase clocks.

Instruction Fetch Timing
Cyciel I‘_ Cyclel — €~ Cycie2 ~—5} = Cycted —A¢—- Cyules — 7€ Cycies ~— € Cycie8 —
Pt ] | I M 1 [l 1 |
Phi2 I S I S M N
Phid 1 N M [ | I l__l_
A/D Bus : : :
a—— O~ ao——0 G on 0 00 )
DataOP ;.’..;\.:ld...4..‘.-----::ibn--nn---u--~--~---------~bi~c~ memservesiocauvane i can “':::“
Load LA
Store

Ai -» Address for instruction out from RISC 1
Ad -» Address for data out from RISC 1

[ --» Ilnstruction into RISC |

Do » Data out from RISC !

Di --» Data into RISC 1|

Figure 8: RISCI Instruction Timing

The diagram in figure 8 above shows the timing of three complete instruc-
tions and part of a fourth. Fetching the first instruction (AiQ) occurs during
phase 3 of cycle0. This first instruction (I0), a simple data operation instruction,
is received from memory during phase 2 of cyclel. It is executed during cycle 2
(Exec 0). This instruction is followed by a load instruction, and then a store

instruction.

RISC I prefetches instructions and thus has a delayed jump. The jump takes

effect only after the next instruction, fetched after the jump, is executed. A
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special pipeline flush circuit could correct this by flushing the pipe aftar all
jumps, but this would not make it any faster. Instead the compiler inserts no-op
instructions after jump instructions. The optimizer then looks over this code to
reassemble the order of instructions, eliminating most of the no-ops, to make
the code run faster. No-op instructions are left only after jumps that cannot be
optimized. [Patterson 82]

Clock Circuitry

There are six input pads for the clock phases and clock controls. These are
labeled: Phil, Phi2, Phi3, Interrupt, Reset, and PhiR. The circuitry is shown in
figure 9 below.

- = - e - = - - -——— = - |- -,

‘ Pad | Fad “ . Pad Pad
interrupt reset | | phil Refresh ' phil phi2
‘_..l-_- R T .._‘;- """ -T T
Load/Store | [
instruction
! | |
| } t | | i | i
=G o~ TG : -G i
_D—-—! D o @ ' 1 D Secd ¥ — " M D Seca @—
window M TN ; = — : - ‘
overﬂzw ——J_/'J ! Q‘ l " : Q i Q
f Q i i | i
Interrupt i ;
Enable | ! ! P
1 Bit 1 } i ] T
-] R i ! -
—_T ‘ ; } ' ‘ . .
!/-\'i | : " ! ' . :
Return Int. Ty : l ; l ; l l l : l l l
instruction . ‘-\ ' : ‘ i N : A
T y 3 y ¥ ¥ ¥ ;
4 : 4 4 \ 4 4 A ‘L ‘L ‘L I l

phil/ philn/ phils/ phi3/ phi3i/ phi3n/ phi3s/ phi2/ phi2i/ phi2n/ phi2s/

Figure 9: RISCI Clock Circuit Diagram

The logic that implements the 8 clock phases contains 4 bits of state. A

set-reset latch and a D-type latch allow the interrupt phases te occur. Two other
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D-type latches sequence the load and store instructions through their secondary

phases.

The following diagram, figure 10, shows the layout of the clock circuit.
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Figure 10: RISC1 Clock Circuit Layout Plot

The clock circuit's latches, NAND gates, and drivers are located on the
upper right edge of the chip next to the 6 clock input pads. This location was
chosen to minimize the distance from clock pads to clock-control gates in the

datapath. Approximately 100 transistors are used in this circuit and it cccupies

the amount of area required for 3 input pads.



CHAPTER3 RISCI Data Path

The data path in RISC I is designed to process 32-bit numbers. It stores,
computes, and transfers 32-bit numbers as the basic units of data. It occupies
approximately 89% of the area of the chip. External routing and pads occupy
25% of the chip, with control using the remaining 6%. The data'path contains
42,000 transistors and consists of 4 major modules and 2 minor modules. The
four major modules are the register file, shifter, arithmetic-logic unit, and the
program counter. The two minor modules are the data input-output port, and

the immediate latch.
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Figure 11: RISC1 Data Path Block Diagram

Figure 11 above shows the components of the RISC I data path. All data pro-
cessing operations occur in the data path. Data and data-addresses (pointers)
are stored in the register flle. Instruction addresses are contained in the PC.

The ALU can be used to modify data in the register file and the PC. The shifter



-20-

can be used on data in the register file as well as to shift data during load

mmstructions.

Technology and Layout

Three layers are used to form transistors and interconnections in the NMGCS
technology used for RISC I. The first layer consists of the substrate silicon (sin-
gle crystal, p-type), with specially patterned diffused regions of n-type silicon.
The next layer up is a layer of poly-crystaline silicon (n-type). Above both of
these layers is a layer of metallic aluminum. Between each of these three layers
insulating silicon dioxide is deposited. Contact cuts can be placed to allow
electrical connections between metal and diffusion or metal and poly.

Transistors are formed by the overlap of a poly-silicon region over a
diffused region. Two types of transistors can be made: enhancement transistors
that can be turned on or ofl, depletion mode transistors that are always on and
act as resistive loads. Transistors are interconnected by lengths of metal, poly,

and diffusion.

Figure 12 below shows a photo micrograph of the RISC I chip.

Figure 12: RISC1 Chip Photo-micrograph
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The metal layer has the lowest resistance for a given length and width of
interconnection. It is especially important that the ground connections are
routed in metal. This is because the basic circuits operate by amplifying the
voltage difference between the gate (input), and source (ground) of an enhance-
ment transistor. and through this ground connection flows all of the current in
the depletion transistor load and the transient current required to drive the

external capacitive loads.

Five 32-bit busses are used to carry data between modules in RISC . Two
different types of busses are used. The bus that connects the Dataio and PC to
the I-O Pads is a tristate bus. It must be driven both high and low; it is labled "P
bus". The other four busses are precharged busses. They are the A, B, C, and D
busses. These are used to pass data between the modules of the data path. In
the clock phase before they are used all wires are charged to a logical high vol-
tage. This voltage is approximately 3 volts. Reading out onto these busses is

done by discharging only the bus wires that should be zeroes.

In the RISC I design, the control signals in the data path run perpendicular
to the bussed data signals. Metal is used for the signals in one direction, and
poly used for signals in the other direction. The register file and cross-bar have
metal data busses and poly control lines, whereas the rest of the data path has
poly data busses and metal control lines. Clock signals were routed in metal as

much as possible to minimize clock skew.

Gnrd =2 2 mmem=-=-= . -=-==-= . -=-=-----=
el Bl Dataio Imm Reg Control
vdd ‘ v"‘""“""‘,yCloch‘:
Gnd
Gnd Register File Shifter ALU PC
_______________________ DX

Vdd
Figure 13: RISC1 Metal Routing
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The circuits in RISC I were layed out as cells which were placed and routed
using the Caesar graphics editing program. [Qusterhout 81] The data path was
designed using a bit slice approach. Bach 1-bit slice of the data path was
stacked 32 high. All cells in the major data path are of the same height, with
differing widths. Some routing was required between cells, but almost all of the

connections were made within the cells which greatly simplified the routing job.

Design rule checking was carried out by the program "LRC". [Baker 80]
Static logic interconnections were checked by the "ERC" program. The circuits
were simulated by the logic simulator "ESIM" [Terman 82] as simple cells, as
parts of the modules {e.g. as the ALU), and as the entire chip with all 44300
transistors. Slang was used as the user interface for ESIM. Some of the cells

were simulated with the circuit simulator SPICE. [Nagel 75]

Register File
window
—_— ! 7 oumber
= |
! l } —_— PSW Pbus 32
L
e A A A s 5‘ :
| regb.decode [ regop o
' < .3
rega.decode | rega# & =
: 5 s 2
! regc.decode ‘,regc# e “——-\ . “24”  (11000)
‘ clock.enable — gﬁén save.lstpc
superbuffers i
| . Abus bits(0-15)
refresh i reqisters | ,, Bbus bits(0- 15)
bits{2-.5) 4 Cb .
| , Cbus  bits(0-15)
<
1
; . superbuffers
}A bus bits(:8-31)
> registars . Bbus Dits{16-31)

bits(16-31) Cous bits{16-31)

A Y

Figure 14: RISC1 Register File Block Diagram

The register file in RISC I is shown above in figure 14. It contains 78 regis-
ters: each 32 bits wide. The supporting circuitry consists of: seven 5-bit register
address latches; three register number decoders (1 of 78); three sets of 78 syn-

chronizing gates; and six groups of 78 super buffers.
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Register Address Latches

The register address latches receive the source and destination fields dur-
ing an instruction prefetch. They drive the inputs to the decoders later during
that instruction's execution cycle. The values are obtained from the P bus dur-
ing phi2n. One of the flelds must be changed on store instructions where the
"dest” field is used to address the register with the data to be stored. These
latches drive each decoder at least one clock phase before the outputs are
needed.

The diagram below in figure 15 shows the circuitry and layout of the 1-bit
latch cell used for these latches. This cell is loaded from the right side, with

buffered Q and Q/ outputs to the left.

Refresh ¥ Clock
H ‘__—; i ,

\

d Jd c
Figure 15: RISCI 1-bit Register Address Latch

Window Decoder

Individual registers are selected with a 5-bit register address number and a
3-bit window number. The window number latch and decoder circuitry is located
on top of the register file decoders. It drives six window enable signals into the
decoders, one for each window. One of the six lines is driven low to select the

current window. The window control circuitry is discussed in chapter 4.

Register Decoders
In RISC 1 there are three register address decoders. The destination
address is decoded by the top decoder. In the middle is the decoder for

source?. The sourcel decoder is on the bottom. The three deccders each
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activate 1 out of 78 outputs. The outputs of the register address decoders are
active high.

The decoders are implemented as 6 input negative input AND (NOR) gates.
Each gate is followed either by an inverter for a register with one address, or a 2
input NOR gate for the window overlapping registers which have two different

addresses.
Enable Gates and Super Buflers

Under the decoders is a row of clock enable gates which synchronize the
negative outputs of the decoder with the internal timing phases. They also allew
the decoder outputs to be ignored during transitions. These gates are imple-
mented as two input negative input AND (NOR) gates. The outputs of these
enable gates are positive true signals which drive a row of non-inverting buflers

which then drive the control lines into the register file.
The Registers

The RISC I register array was designed as two blocks of 78 18-bit registers.
These two blocks are placed one on top of the other, with a row of non-inverting
super buffers placed to drive the control lines between them to help speed up
the read and write times. Bit O of the register flle is on top nearest the decoders
with bit 31 on the bottom.

Three 32-bit data busses connect to and pass through the register file.
These are the A, B, and C busses. The A bus and B bus are used for reading the
sourcel and source? data out from the register file. They can read from the
same or 2 different registers. During every philn the register flle reads data
onto these busses.

The C bus is used to bring data into the register file. The ALU or Shifter can

write onto this bus during phi3n and the register file will read from it unless

prevented by the controller via the "nowrite” control line.

These busses are precharged to a logical high voltage level in the phase
before they are used. Reading onto these busses is accomplished by discharging
the bus lines that are to be read as zeroes and leaving the other lines high to be
read as ones.

Register O (global) is internally wired to read out the value 0. It can be writ-
ten into, but will always contain the value O. This simplifies the addressing
modes in RISC . [Patterson 81]
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Figure 16: RISC1 Register Cell

Register Operation

The register cell layout and circuit diagram are shown above in figure 186.
Each register cell is designed as a 22 transistor 2-bit circuit. It is designed with
2 bits so that adjacent registers can share bus read out drivers. Each register
consists of a semi-static latch with circuitry to load from the C bus and read to
the A and B busses.

The semi-static latch is made up of 2 series connected inverters with an
enhancement (or refresh) transistor connecting the output of the second
inverter to the input of the first. This connection forms a bistable network which

can either latch to a high or low voltage depending on its "initial conditions™.

Two sets of 3 poly-silicon control lines run vertically inside each cell. They
are used to load from the C bus, read to the A bus, and read to the B bus. Regis-

ters are loaded from the C bus through a pass transistor activated by the load
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control line during Phidn. During this phase the refresh transistor is off. This
action sets up the initial condition for latching to the desired state during the

next Phi2n when the refresh transistor is activated.

The registers read data out to the A bus and B bus when the read control
lines are activated during Phil. The circuitry that reads out to the busses for
this cell has some unusual characteristics. It buffers the latch from the busses
being read to so that even with the feedback transistor on, the data in the latch
will be undisturbed.( A simple pass transistor output to a precharged bus can
upset data in a latch if the feedback transistor is still active at the start of read-
ing out to the bus.) The transistor connected to the control line is a small one;
only twice minimum size. Pass transistors used to read to a bus are typically
much larger than this. Because the circuitry works as a non inverting gate only
the circuit with a logical high output (reading a register) dissipates any power.
This is important where there are 2496 such circuits and only 84 ever need to be

active at the same time.

One refresh control line runs horizontally through each register cell. It is

activated once each clock cycle during the Phi2n clock phase, and during PhiR.
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Figure 17: RISC1 Shifter Block Diagram
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The shifter on RISC I is implemented as a cross bar array with input and
output latches. A decoder located above the crossbar is used to ccntrol the
shift amount. The shifter is connected to the data input-cutput port and to the
PSW. A shift amount latch selects data from either immediate latch, the B bus,

or the byte controller.

Although a cross bar shifter could be arranged to do rotations, the imple-
mentation used here does not. Instead the wrap around capability is used in
conjunction with sign extension circuitry to execute logical and arithmetic
shifts. The bidirectional capability of the circuit is used to perform either left to

right or right to left shifts.
Cross Bar Description

The cross bar in the RISC I shifter is a 83 by 32 array of pass transistors
that connect two internal busses. These are the 32-bit R bus and 83-bit L bus. To
shift data to the right: data is written onto the L bus, sign extended from bit 31
to bit 83, while data is read from the R bus. Writing onto the R bus and reading
from bits 0-31 of the L bus will shift data to the left. The 2 transistor cross bar

cell layout is shown below in figure 18.

Figure 18: RISC1 Cross Bar Cell
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The two internal busses are precharged in phil, and are used in phiZ. Inverted
data is used in the shifter so that precharging of the array can be used for the

zero filling needed by logical shifts.
The R bus passes horizontally through the cross bar array, while the L bus

passes diagonally through the array. The least significant 32 bits of each bus are
connected to the shifter’s input and output latches. The most significant 31 bits
of the L bus are driven by the sign extension circuitry, which can extend the
sign for arithmetic shifts or extend zeroes (ones on these inverted busses) for

logical shifts.

Thirty two shift amount selection lines pass vertically through the cross
bar. Bach of these poly-silicon lines drives 32 gates of 32 cross bar pass transis-
tors. Thrity two shift amounts, from 0 to 31, are possible. The A, B and C busses
are implemented in metal here, and pass through the cross bar circuitry
without connecting to it. 'The dataio port and PSW are connected to the L bus
above the cross bar. The get and put PSW instructions actually are implemented

as shift instructions where the PSW is either the data source or destination.
Shift amount latch

During a shift instruction the 5-bit shift amount latch receives input from
either the immediate latch (for a shift by immediate), or the five least
significant bits of the B bus (for a shift by registersd variable). During load and
store instructions the shift amount latch receives input from the byte con-
troller. These latches use the same layout cell as the register address latches in

the register file.
Shift amount decoder and Buflers

The five-bit shift amount number provides the input to a decoder which
activates one of the thirty two cross bar control lines connecting the R and L
busses. The direction and type of shift is stated by the instruction itself. Non-
inverting super buffers (like those in the register file) are used to drive the cross

bar control lines.
Shifter Input and Output latches
The 32-bit shifter input latch receives the data to be shifted from the A bus.

The output of this latch can present inverted data to either one of the two
busses of the cross bar array. The output of the cross bar is received by the 32-
bit shifter output latch. It can be read out onto the C bus for storage in the des-

tination register. Both of these latches contain scan-in scan-out circuitry for



diagnostic reading and writing.

All control lines for the shifter and the rest of the data path medul
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synchronized with the appropriate clocks for proper sequencing.
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Figure 15: RISC1 DataI/0 Block Diagram

The data input-output port is shown in figure 12 above. It is used during
loads and stores to transfer and sign extend data between the pad bus and the
data path. This port is used to pass the byte or bytes of interest and sign extend
to the upper bits. The shifter is used to shift the data down to the least sig-

nifcant place and sign extend further, if required.

The dataio port is designed as a bidirectional 32-bit latch with an internal
byte and half word sign extender. One end of the this latch can read from and
write to the L bus in the shifter. The other end of the latch can read from and

write to the Pad bus. The data in this latch gets inverted to compensate for the
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inverted data required by the L bus of the shifter.
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Figure 20: RISC1 ALU Block Diagram

The block diagram of the RISC I arithmetic and logical unit is shown above
in figure 20. It is based on a one bit slice, with a carry look ahead unit designed
as a four bit slice. The ALU can perform 4 arithmetic and 4 logical operations.
Eight separate circuits make up the ALU. These are the input mux, input latch,
complementer, decoder, logic selector, adder, output latch, and carry look
ahead unit.

Input Multiplexor.

The first circuit is the input multiplexor. It is used to select the ALU-A and

ALU-B operands from 5 possible operands. The input selection is done with 7
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pass transistors and 5 control lines.

The 4 ways of Loading the ALU Operands

ALU-A ALU-B

Sourcel (from A bus) | Source2 (from B bus)

Sourcel (from A bus) 13-bit immediate
PC (frcm D bus) 13-bit immediate
Zero (ground) 189-bit high immediate

The 8 RISC I ALU Operations

Logical Operations Arithmetic Operations
pass B A plus B
AAND B A plus B plus Carry in
ACEB A minus B
" AXCORB A minus B minus Carry inJ

Input Latches

Two input latches hold the operands valid during clock phase 2 while the
ALU computes its result. These latches contain scan-in scan-out circuitry.

Complementor and Decoder

The next two stages, the cornplernehtor and decoder compute the three log-
ical functions of the two input operands and their inverses.

Logic Selector and Adder

The logic selector passes one of the three results of the previcus block to

the next stage, the adder.
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The adder can either pass data directly to the output register or add with
carry in. Addition is performed by computing the XNOR function of the output of
the logic selector with the carry in for each bit ((A XNOR B) XNCR Cin).

Output latch and Carry Look ahead unit

The output register is used to hold the result until clock phase Phi3 when it

can be read onto the C or D bus. This latch contains scan in scan out circuitry.

The carry lock ahead unit receives propogate and generate signals directly
from the logic decoder. This is a 4 bit circuit based on the logic implemented by
the 74182 TTL chip. The control of the least significant carry in bit is handled by
three logic gates located at the top of the ALU.

The ALU conditions: CNZV

The four usual conditions are generated by the RISC I ALU. The zero condi-
tion bit (Z) is computed by a 32 input negative input AND (NOR) gate connected
to the C bus. The sign, or negative bit (N) is driven by bit 31 of the C bus. The
carry bit (C) comes directly out of the last carry look ahead unit. The arith-
metic overflow bit is generated by an XOR gate connected to the carry bit and

sign bit.
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Figure 21: RISC1 Immediate Port Block Diagram
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The Immediate Port consists of the 19-bit immediate latch which can drive

the shift amout latch and two separate inputs into the ALU. One input to the

ALU connects the least significant 13 bits to the least significant 13 bits of the
ALU, while connecting the 13th bit of the latch to the higher 19 bits. This con-
nection passes the 13-bit RISC I sign extended immediates into the ALU. The

14th bit of the immediate register is the immediate flag for RISC I instructions

and it us used by the control circuitry to decide whether to gate the 13-bit

immediate or the second source register into the ALU. The other input of the

ALU driven by the immediate latch has all 19 bits of the latch connected to the

most significant 19 bits of that input, with the least significant 13 inputs

grounded. This facilitates the 19-bit load-high-immediate RISC I instruction.
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Figure 22: RISC1 Program Counter Block Diagram

The program counter in RISC I is shown above in figure 22. It is imple-

mented as a set of three program counter latches. Three instruction addresses

(the PC, next PC, and last PC) are required for the operation of RISC 1. The PC
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holds the address of the current instruction. The next PC holds the address of
the instruction being fetched, and the last PC holds the address of the previous

instruction so that it can be saved away after a call or an interrupt.

Two of these values (the PC and last PC) are loaded at the same time they
are read out, so they are implemented as master-slave latches. This group of
PC's consists of six 30-bit latches, one 30-bit incrementer, four 32-bit bus
drivers, and a hard wired interrupt vector. The C and D busses pass through the

PC and connect to it. The PC latch contains scan-in scan-out circuitry.

The circuitry was designed as 7 different one-bit cells. Like the rest cof the
data path, the least significant bit is on the top and the most significant bit is on
the bottom. The 30 bits of the PC's are connected to bits 2-31 of the data path.
The two least significant bits are connected to read out zeroes. This can be done
because each RISC I instruction is 32 bits wide and is to be aligned across the
four byte wide memory, so that the least significant two bits of each

instruction's byte address are always 00.

The program counter performs the following tasks to maintain the proper
fow of instruction addresses. The last PC latch is loaded from its input latch
every Philn. During each Phi2n the next PC is passed to the PC input latch. The
next PC is loaded from the D bus during each Phi3n and Phi2i. The data on the pl
bus comes from the incrementer for normal instruction flow; and the ALU for
jumps. The incrementer operates from Phi3 to Phil and is valid by Phi2. It uses
a ripple carry across all 30 bits. Immediately after call instructions and inter-
rupts the iast PC can be saved in the register file with the "get last pc” instruc-

tion. Return instructions restore the saved PC’s via the D bus.



CHAPTER 4 RISC1 Control Circuitry

After the data path was designed it was simulated to check for design
errors. The simulator "Slang” was written to do this and to simulate the opera-
tions that the control circuitry would perform. [Van Dyke 82b] The following 5
diagrams in figures 23 and 24 show the 30 control signals (plus clocks) which
must be provided to the RISC I data path for it to work correctly.
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Figure 23: RISC1 Regfile, Data I/0, Shifter Control Lines
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Figure 24: RISC1 ALU, PC Control Lines

Our simulations of the data path uncovered design errors in each module

which were easily corrected, once found. Slang provided the capability for

interactive, high level functional simulations.

After roughing out the control

functions, the detailed logic simulator ESIM was run internally by Slang. This

provided the designers with a way to zoom in on the problems and ignore the

massive amounts of uninteresting data that were actually being processed. This

was especially useful because at any one clock phase only about 100 nodes were

actually doing anything interesting out of the more than 10,000 nodes simulated

in the data path.
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The ideas for the control were checked out in simulation at a high level
before they were implemented in transistors and interconnections. Programm-
able logic arrays (PLA’s) were used almost everywhere to perform the logic func-
tions required by the controller. These PLA's were layed out automatically from
logic equations by a set of programs built around the program "makepla".
[Landman 82]

The RISC I controller was designed as 3 circuits. Together they contain
approximately 15C0 transistors. The primary circuit is the opcode coniroller.

The window controller and byte controller are the other two circuits.

Opcode Controller

The opcode controller consists of 2 PLA’s and some latches. It latches in
the 7-bit operation code (opcode) of the next instruction and generates 31 sig-
nals in its pipeline latch which go to control the data path and the other two sec-

tions of the control circuiry. It is shown in figure 25 below.

a2 P bus
P (e
. ¢Cc — CClogic —_—>
nvert ~ l'ake\:z
lateh - N
B
- CCPLA QPPLA
~ =
3/ 34’/ 4-[
cc CNZV
select = X
lateh latch 3t 7 —
A ~ ~ D o~
SZA/ A d
. D !
Read or Write .
) % pipeline opcoda:
L bus PSW _connection ol lateh o 3 lateh
v 22922 v v 7""
~
Controi “~
4/ Signals
L. Y__ e e e e e
Shifter ALU

Figure 25: RISC1 Opcode Controller Block Diagram

The basic organization is as follows. The opcode of an incoming instruction

is latched into the instruction input latch from the P bus during clock phase
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Figure 25: RISCI Opcode PLA Layout Piot

The opcode decoding PLA is shown above in figurs 26. This PLA has 8 input
terms, 7 from the instruction latch, and 1 from the conditicn code logic which
decides if a jump is to occur. It contains 36 product terms, and drives 31 out-

puts.
The outputs of the OPPLA are latched into the pipeline latch either on Phi3n

or Philn depending on when they are used. The signals that are needed for Philn
or Phi2n of the execution cycle are latched in Phi3n of the decode cycle. Signals
needed for Phi3n of tne execution cycle are latched in Philn of the deccde

cycle.

Most of the outputs of the pipeline latch are synchronized with the 8 inter-
nal RISC I clock phases at the upper edge of the data path before driving the

data path control lines. A few signals like the ALU function control lines do not
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The 31 bit control word latched into the pipeline latch is unique to each of

the 39 RISC I instructions. The load and store instructions use the same control

word for both the "normal” and "secondary’ clock cycles of their execution.

The ALU condition bits can be latched into the CNZV latch following an ALU

operation. During a conditional jump instruction the CNZV bits are tested by the

condition code PLA to determine if the correct condition is valid. If the condi-

tion is valid the CC-logic circuit drives the jump taken bit into the OPPLA and

the jump is taken.

Window Controller

The other two sections of the control circuitry are the window controller

and the byte controller. The window controller responds to call and return

instructions by changing the register file window number and checking for under

and overflow. It is shown below in figure 27.

¥indow Overtlow To Clock Logic

|

«— '3 Call or Return [nstruction
! CWP inc/dec N
cwP | | &« ] SwP
| temp. &3 PLA wndow e e m e ==
! lateh i P lateh
3
! : A OPPLA
i Y . 3
— — ; Read or Vrite
rnd:‘! : wmdowg PSW Connections S
ecode™ " latch 31y
—— 32 >
L —————
—_— = ) L bus pipeline
! : i ; lateh A
A I A N SR . SR 2R
! c0o0Q
! 7Y v vy
| Controi
Register Flle ! Shifter Signals

Figure 27: RISC 1

Window Controller Block Diagram

Two 3-bit pointers are used to manage the window file in RISC L There is the

"saved window pointer” (SWP) which always points to a window saved on chip to

be used for interrupts and traps.

This number is written by the processor as a



- 4D -

part of the PSW and is not changed during calls and returns.
The other pointer is the "current window pointer” (CWP) which points to the

window of registers that is currently being used. This number is incremented on
returns and decremented on call instructions. A PLA is used to increment and
decrement the CWP and to check for equality of the CWP and SWP. Incrementing
and decrementing wrap around between 0 and 5 so that the six windows can be
used effectively. If equality is detected then a window overflow trap is issued to
the RISC I interrupt circuitry. When the processor recieves this trap it jumps to

a special routine to take care of the situation.

Byte Controller
The byte controller responds to load and store instructions by signalling to
the data input-output port to shift and sign extend its data. It is shown in figure

28 below.
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Figure 28: RISC1 Byte Controller Block Diagram

The 2 least significant bits of the effective address are latched in to the byte
latch. These are combined with two control bits from the pipeline latch, and
these 4 bits together drive the byte PLA. The three outputs of this PLA and their

inverses drive the byte selection circuitry of the dataic port.
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The Processor Status Word

The processor status word, or PSW is part data path, part control unit. The
way the bits in the PSW affect the control have been discussed, but it can also be
written from and read into the general purpose registers with the put and get
PSW instructions. The format for the RISC I PSW is shown below.

Processor Status Word Format

XXX <31-10> | CWP <8-7> t SWP <6-4> | VZNC <3-0> i
]

The last four bits (CNZV) come from the alu. They indicate the status of

result of the alu operation. The next 8 bits are the 2 window pointers.

Read Write Wait Pads

The final circuits of RISC I to be described are the read-write-wait circuity
and pads which are used to control the external memory. An 8 transistor circuit
detects load and store instructions and signals the external memory if a write is

required.

The sequencing of RISC I requires that data be valid from memory during
phil of a load instruction. This only allows 1 phase for the external memory to
operate in. All other instructions allow the memory to delay until phi2. To
remedy this the "wait” pad is asserted during a load instruction. It can be used
to request that the external clock circuitry wait one phase before issuing the
next phil.

Two other pads are used during store instructions to indicate whether a

byte, short word, or long word is to be written. They are driven from bits 27 and

28 of the current instruction held by the opcode input latch.

RISC1 Control in Operation

To better understand the operations of the internal circuits of RISC I, dur-
ing its design, we created a table that shows the major actions that occur on the
chip for each clock phase as it processes each of its instructions. This table isin

Appendix A.



CHAPTER 5 Cverview and Conclusions from RISC I

The chip level architecture and layout considerations of the RISC I
microprocessor have been presented. The structured and regular design of the
data path, clock and control circuits have been discussed. We now discuss some
of the positive and negative aspects of the RISC I architecture and VLI imple-

mentation.

One advantage of the RISC ‘architecture is that the implementation time can
be quite short. Fewer circuits need to be layed out and simulated than for a
more complicated architecture. The performance of the RISC I processor has
been tested. Even at 500 nano seconds per phase, it has been shown to be com-

parable with other microprocessors. [Foderero 82]

The control circuitry of RISC | was simple to design and understand. Most
computers and microprocessors use a microcoded control circuit that executes
an instruction by decoding a series of micro instructions requiring micro jumps
and branches. The RISC I controlier executes instructions by directly deceding
the instruction and combining the bits of the decoded control word with the on-
chip clock phases. RISC [ executes its instructions quickly, providing the com-

piler with a smalil set of fast, orthogonal instructions.

Approximately 100 cells were used in the design of RISC I. No library of
cells was available at the time RISC I was designed so circuits were designed and
placed as needed by the various designers of each module. The ALU, shifter, and
PC use three different latch designs, and three different bus driver circuits were
used where only one of each was needed. Using a cell library design approach
could allow the the number of circuits and the design time to be reduced, while

increasing the flexibility and performance of the final chip.

CAD tools were essential throughout the design of RISC I. The layout editor,
plotter, and simulators were the most essential of the tools. The functional
simulator SLANG was used to be simulate, design and document the control cir-

cuitry. The layout extractor and rules checker were also heavily relied upon.
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Two CAD tools that would have been very useful in the design of RISC ! are a tim-

ing simulator (or analyzer) and a schematic editor for documentation.

Using programs to generate PLA's from logic equations was very worth-
while. The time required to design and modify them was reduced from days to
minutes. They were simulated before being included mainly to check the vali-

dity of the logic equations rather than the layout.

Performance analysis of RISC I was carried out manually. We first extracted
some of the known critical paths and simulated them on SPICE. Later this
method was abandoned and instead only rough hand calculations of capacitance
charging were analyzed which consumed much less of the designer's time. A
timing analyzer such as described by Ousterhout [Qusterhout 83] would have
been very useful. As it was some critical paths were missed and the chips run at

about one half of the speed hoped for.

Primary emphasis was placed on acheiving functional correctness at first
silicon. Accomplishing this required full scale software simulations with some
detailed hand analysis. Some errors, like forgetting to refresh a latch, would not

normally be caught by a simulator and needed to be checked manually.

Testing the chips proved to be a complicated problem. The scan-in scan-out
circuitry was found to be incompatible with the capabilities of the testing
hardware. After many frustrating hours this circuitry was ignored, and full scale
CPU operations were attempted on the chips with good results. A few chips
actually ran all the original diagnostic programs and new programs were writ-
ten. In running these new programs the only known design bug (so far) was
found. The shifter was unable to set the sign bit in the PSW as had originally
been desired. Luckily the compiler could be changed to take the problem into
account: using the ALU to set the sign bit if so needed. Perhaps a fault coverage
simulator (another CAD tool) could have helped us write more comprehensive

diagnostics programs to catch such errors.

Some ldeas for Future RISC's

Many good ideas were utilized in the design of the RISC I chip, but there are
many ways of improving it. Designing a chip with increased functionality is one
way for improvement; designing for faster throughput is another. Due to yield

limitations of large chips like RISC I, designing for a smaller die size with the
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same functicnality and same through put would be a different path for improve-

ment (RISC I measures 10mm X 7.8mm). A second generation RISC has recently

been designed at Berkeley [Sherburne 82]. The RISC II design incorporates

ideas that could lead to a faster and smaller chip. The following list includes

some ideas which could improve the design of RISC [ in one or more ways.

[1] Use a six transistor register cell az done in the RISCII design.

[2] Fully overlapping the registers in the windows allows the compiler to make

maximum use the number of registers in the regfile.

[3] Designing the control circuitry as a rectangular module would require a lit-

tle more area, but its layout would be much simpler. Figure 22 shows a

block diagram for a control module.

Modular Control Block

Gnd

Control
Outputs

vVdd

e T

- - m = e = = o = = -

Clbck Lines
- — o~ —i
~ ~— ~ ~ S’ Gatos

Control Outputs

Figure 29: Proposed Modular Control Bleck for a RISC

The clock circuitry lines and gates could be included in the control module

minimizing clock skews and simplifying clock routing.

[4] The PSW could also be included in the control module with a bus connecting

it to the data path, independent of the shifter.
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A ROM could be used as a smaller and faster instructicn deccder.

]
[6] The ALU could be designed with a smaller and faster carry look ahead cir-

cuit.

[7] The PC could be designed with a multiplexer so as not to require a bus to

select the next address.

[8] The bus connecting to the on chip pad drivers could be designed as 2 busses
that would be faster than the one tri-state bus used on RISCI. This is done
on RISC II.

[5] The immediates could be loaded into the data path through the dataio port
removing the need for the separate immediate latch on RISC 1. This also is
done on RISC IL

[10] The data and address busses could use separate pins of a large chip carrier
package to minimize the external support circuitry required in the design
of a system using the chip.

[11] Designing the sequencing around a 2 or 4 phase clock could allow the exter-
nal clock circuit to be simpler. This could also provide better load and
store timing.

[12] Some hand shaking logic could be added to the on chip clocks to allow it to
more easily access data across slow external memory busses.

[13] Better on chip diagnostic circuitry would be a very good idea. A special par-
rallel access to the controller and data path via the 1/C pads would be use-
ful.

[14] In order to make the circuits more useful to other designers working on the
same or later projects, fully characterizing and decumenting them is very
important. This will be more work initially, but should pay off with less work

and hassle soon after.
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