VLSI COMMUNICATION COMPONENTS
FOR MULTICOMPUTER NETWORKS

Richard Masao Fujimoto
ABSTRACT

Advances in microprocessor technology will soon make general purpose'
computing systems composed of thousands of VLSl processors economically
feasible. A high-performance communication system to interconnect these pro-
cessors is of crucial importance to exploit the parallelism inherent in applica-
tions such as circuit simulation and signal processing.. This thesis discusses
issues in the design of universal VLSI communication components to be used as
the building blocks for constructing robust, high-bandwidth, point-to-point net-
works. The components provide enough flexibility to serve a wide variety of mul-
ticomputer configurations and applicaticns. They feature special purpose
hardware to implement communication functions traditionally irnplemented

with network software."

A communication network constructed from the prepesed components is
modeled as a set of nodes (components) connected by bidirectional communica-
tion links. Because of technological constraints, the total 1/0 bandwidth of each
node is limited {o some fixed value, and assumed to be equally divided amon,;;
the attached links. Increasing the number of links per component leads to a
reduction in tbe average number of hops between nodes, but at the cost of
reduced link bandwidth. This ““hep count / link bandwidth'” tradeof! is examined
in great detail through M/M/1 queueing models and simulations using traflic
loads generated by parallel epplication prograrms. These results indicate that a
small number of links should be used. It is also found that a significant improve-
ment in performance is obtained if & component is allowed to immediafely begin

forwarding a message when the selected output link becomes idle, regardless of

2

whether or nol the end of the message has arrived Finally, rmechanisms which
efficiently transmit a single message to multiple destinations are seen to have a

significant impact on performance in programs relying on global informaticn.

Tke comgplexity of the circuitry required to implement a communication
component is examined. Schemes for providing hardware support for communi-
cation functions —~ routing, buffer management, and flow control — are
presented. Esumatizs of thle number of buffers and the degree of multiplexing
on each communication link are determined. The amount of circuitry to imple-
ment a cornmunication component is computed, ard it is seen that the proposed
comrrunication compoenent could be implemented with technology available
today. Design recommendations for the implementation of such a component

are made.

Pt /. Fosmtr ¥/25/53

Richard M. Fujimoto

ol K (o S/25HE

Carle’H. Séquin
(committee chairman)

iii

TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION ...ccuiiiiimiireeiniicineostasssmirimsiertsanneitansesscisssnsees

1.1. The Concept: Modular, High-Bandwidth Communication

NELWOTKS creeeeirenerecimuecescrssersossoresesssssssienennssasesssscssssesessnsstonsasssarasess

1.2. Definition Of TEIITIS ccciiereeciieniiiiieitiiirniseramsssrennsssssseuisinmaesnmrassnnaanecssss
1.3. Previcus Work in Communication NetWorks .ee..ceeccenevicercereeeasansannes
1.8.1. Loosely Coupled Computer Networksc.ciiiiinmniinniiiiiinen.

1.3.2. Interconnection Networks for Closely Coupled

MultiproCessors .uiiieieiniinenennnnicscsninninaennnanes eeerereneaeerereans
1.4. Overview Of TheSiS iciicsiiemioneimtiiinietenrn e cceacetstettecanneseneasasesaonananes
CHAPTER TWO - PERFORMANCE EVALUATION STUDIEScccciieeiiniininiiniinnnn.

D 1. VLSI CONSLIBINES ceuerrarreenierierriorerenssrerasossasassssscasossonssasssarmasasesssssssssssass

2.1.4. Summary of Constraints ...
2.2. Analytical StUdIes ..eicioioirieericisit st
2.2.1. AsSUIMDUONS tiirriiiiiiiiireree et cniitesrtiee et e s s e e s
2.2.2. Model I: Cluster NOAES .cviieeuiiiieucimenmiiiaisiitamaetenaetenitnesasanananne
2.2.2.1. Queueing Modeloeirimirieniicnniiianin et
B.2.2.2. DELAY weeeereerermtiseseseesrsssssssssasssssescsesesssesssnsmmssnsasensassasssssasases
2.2.2.3. Bandwidlh succieeerivecciercereicsisirienniniersnnsiisesestnianssansassasesssiiiasses

2.2.3. Model II: Networks with a Fixed Number of

COTNIPONENLS teiiitiiiiirenirreeerseeereeeciatttie it sa s st e s as s st e ea s s sanesaes

10

17

20

20

21

21

23

24

24

28

28

30

35

36

iv

2.2.3.1. Queueing Mode!l . viiimritcrreiente et s na s 45
2.2.3.2. DEIAY eeeiecerrrerrntrrenessisssssaresarsnssarasenssnassossssonssensasenssasnansasassases 48
2.2.3.3. Bandwidth Neeeseresveteasncesesesatsetttbeessstannnsrsnsearacaasesasaion 54
2.2.4. M/G/l Queneing MOGELS ciiverceeeriiimeessarsnecesessssnnnarasssssssasaessasss E5
2.2.5. Summeary of Analytic ReSulls waeiiiiiiceiiiciinrininiine s 57
CHAPTER THREE - SIMULATICON STUDIES ...cccuereeeremnresennsssenacacscscnsssssrassssasasses 59
3.1. The Simuator: SIMOM viiiiiierreiecimnitassereretennasestasssaanssraasssiesstrasiasannns 58
3.2. ASSUMPLIONS teveciririmmiiiiiiiiiitieiieearrtinsasensesoteasosscrtonuiotarensssnansanssnaonnssias 80
3.37 The Application Programs weeimeeesieeniiinninieiieasneiniaiiiesns 64
3.3.1. Barnwell Filter Program (global SISO, 12 tasks) ..c.ceereerearrevnesaneas 87
3.3.2. Block 1/0 Filter Program (local SISO, 23 tasks)ccceveveesseseraneeas 89
3.3.3. Block State Filter Program (local SISO, 20 tasks) ..ccceceeeeeeresnenas | 70
3.3.4. FFT Program (local PIPO, 32 tasks) ...cceceereecrsermessresssessneccscaseses 72
3.3.5. LU Decomposition (global PIPO; 15 tasks) ...cceeecseresenesenessaecacens 74
3.3.8. Artificial Traffic Loads {global FIPO, 12 £asks) weieeecrreeerenanneaannns 75
3.4. Cornmunicaticn Delays [75
3.5. Issues Under Investigation .cceccmecceccreeieneemcemsssaiecscoteienieiomeanns 78
3.8. Sirmulation Results on Cluster Node Networks ...c.cviiireccioneniiicienn, 81
3.8.1. Fully Connected Networks ...ciciicrniiicinciiiiiiniinienannnnaeenes g2
3.8.2. Full-Ring Tree NetwWorks .creicicieiiiinieneniiniiiiieeninennaes 87
3.8.3. Butterfly NetWOrkKS .icicieiccisiasisenmnnieranienaseicssismsssereosessmnsassnaasneasces 83
3.8.4. Ring NEetWOTKS ..iieieeieerenneeeiereinteeiassnasiesetseismetiestassmrasssssansasses &8
3.8.5. Conclusions for Cluster Node Networks ..eeeiiainniiiiiiniiiiinnnnnnnee. 102

3.7. Simulation Results cn Networks with a Fixed Number of

COMMDONENLS .veeeeiersceesasrasseseesssmesnsessssesssnsasnasasassarasssssasssssasssacsnsas 100

3.7.1. Lattice Topologiesceuu.eee
3.7.2. Tree Topologies ...ccceevieeanees

3.7.3. De Bruijn Networks

...

3.7.4. Conclusions for Networks wit.h a Fixed Number of

Componentsccceerevaneee.

3.8. Influence of the Mapping of Tasks to Processors ...coceeiueecrcniereninen.

3.9. Precision of the Simulations Resulls .iiiiniiiiiininciiriniiiene.

3.10. Surmmary of Simulation Studiescccciiiniiiiiisnniiiiinieienenaieni.

CHAPTER FOUR - DESIGN AND D{PLEMENTATION OF

COMMUNICATION COMPONENTS ...

4.1. Transport Mechanismsc......

4.2. A Virtual Circuit Based Communication System ...ccieoriiioniennineen.

4.2.1. Virtual Circuits ..c.veeveenennnas
4.2.2. Virtual Channels .ccceeneeennnee.

4.2.3. Routing Hardware

4.2.4. Packet Types and Formats

...

...

...

4.3. Key Functions of the Communication Componentccccuviveseisnaeees

4£.3.1. ROULINE wvevereerrrenereersasseseeescs
4.3.2. Buffer Management

4.3.3. Flow Control ..eeeevericcniannnes

...

...

4.4. Implementation of VLS] Comnmunication Compenentscoceveeenns

4.4.1. Routing Hardware

4.4.2, AY-Component Design

4.4.2.1. Bufier Management Hardwarecovininiimicc .

4.4.2.2. Flow Control Hardware

...

104

113

113

120

120

135

138

138
139
144
144
145
147
148
149
150
153
1565
158
159
161
164

185

4.4.3. Deficiencies in the Y-Component Design wiimicinviiniinneinncnnnnnn. 1685
4.4.4. An Alternative Design oicciccinciraiiriinietncenrncscsectuaieinsssracosenans 187
4.4.4.1. Buffer Management Hardware ...ccccoiiiiiininiiiecninnnen 171

4.4.4.2. Flow Control Hardware: Send /Acknowledge

Protocol veeeceeeecerennns eeeeeeeeevensaseessnsaceseesasanssrannnseessarsaasas 176

4.4.4.3. Flow Ceontrol Eardware: Remote Buffer

Management st se e aan et caens 179

4.5. Evaluation of Commmunication Component Parametersoeeeees 181
4.5.1. Number of Virtual Channels ...cceerieineicscreiieseiimniesinecnennas 182
4.5.2. Amount of Buffer SPace ...ttt 150
4.5.2.1. Buffer Space: Deadlock Considerations ...cccccieicneeeniaeneneee 191
4.5.2.2. Bufler Space: Performance Considerationsc.cccccvcaecenieeee 185

4.68. Complexity of the Communication Componenteeecrveaneciciccaanenene 206
CHAPTER FIVE - CONCLUSIONSctvruecrriminiensanmmmsncerimsenesssscsasectnsansecsssassnnnsns 211

CHAPTER ONE
INTRODUCTION

The processing poa;er of a génera.l purpose computing system can be
increased in two ways. One approach, which has the advantage that old software
can be re-used, is to increase the speed of an existing computer system by tech-
nological means without altering the basic organization of hardware com-
ponents. Much of this effort focuses on the de;'elopment of very high speed
electrical circuits through the use of new méterials. e.g. Joseph junctions
[Ghee82] or gallium arsenide [Long80]. The primary mode of operation in such a
system is sequential, although limited amounts of parallelism may be employed
in certain portions of the processor. The huge investment in existing software

tuels the effort to make this approach commercially viable.

The second approach to building high-performance computer systems
relies on a more general exploitation of parallelism, e.g. by using a large pool of
relatively inexpensive computers that operate in parallel to solve a large prob-
‘lem which has been decomposed into a number of smaller subproblems.
Advances in integrated circuit technology have made this approach feasible by
allowing the construction of chips using a very large scale of integration (VLSID)
to pack hundreds of thousands of transistors onto a small piece of silicon. 1t is
in this latter approach that VLSI technology can have a truly dramatic impact in
the structure of tomorrow's computing systems. This thesis will focus on the
exploitation of parallelism to achieve high performance, and in particular, on
the hardware necessary to support high bandwidth communications among

thousands of processors.

A key design parameter of Xmulticomputer systems (systems composed of
more than one processor interconnected by a communication network) is proc-
cesscr granularity, i.e. the size and capability of the individual processing ele-
ments. At one end of the spectrum, each processing element is very small and
limited in capability, allowing an entire multiprocessor system to be placed cn a
single chip. Examples are the special purpose systolic array processcrs which
are particularly suitable for high-throughput signal processing applications
[Kung80, KungB2], the ‘tree-machine’ developed at Caltech [Brow£0], and the
Boolean Vector Machine proposed by Wagner [WagnB83]. Since the unit to be
replicated is small, often consisting of only an arithmetic unit and a few data
registers, the granularity of the .system is very fine. The other extreme, using
very large granules, is exemplified by such supercomputers as the S1 which
employs a few large, high-performance processors [Widd80]. Each processor
consists of thousands of integrated circuit chips. Commercially available mul-
tiprocessor systems built by IBM [Ensl74a] or UNIVAC [Ensl74b] also belong to
this category.

Earlier work in the X-tree project [Desp78, Sequ78] advocated an intermedi-
ate granule size equal to that of 2 single VLSI chip. For a general purpose sys-
tem, some minimum ccmplexity is required in each processing element to allow
enough flexibility to enable several to cooperate productively across a wide
range of applications. The simple processer advocated by the ''small granule”
approach is toe small a building biock for a general purpose computer. On the
cther hand, a very large granule size forces clesely coupled components such as
a processor and its associated memory to be implemented on separate chips,
thus increasing the perfcrmance penalties resulting from off-chip comraunica-
tions. An intermediate granule size equivalent to a single-chip microprocessor

and its memory forms an entity with enough processing power for general-

purpose computing, but is still small enough to be implemented on a single chip.

Advances in VLSI technology are making general-purpose computing sys-
tems composed of thousands of processors economically feasible. The proces-
sors, however, comprise only a porticn of the system. The coﬁmunicahion sys-
tem that interconnects the processors is of equel importance. The performance
of many multiprocessor systems has been limited by insufficient inter-processor
input /output (1/0) bandwidth. Furthermore, the communication systern may
dominate the hardware cost. In Cm®*, for example, the hardware responsible for
setting up the communication paths (i.e. the k-maps) was considerably more
expensive than that used in the processors [Swan77b]. It is cleariy desirable to
also exploit VLSI technology to reduce the cost of the switching hardware. This
thesis discusses issues in the design of universal VLSI switching components to
be used as the building blocks for robust, high-bandwidth, communication net-
works with enough flexibility to serve a wide variety of multicomputer

configurations and applications.

1.1. The Concept: Modular, High-Bandwidth Communication Networks

A collection of VLSI communication compcnents that can be combined into
networks of high bandwidth and arbitrary topology is envision.ed. Any processor
with the proper interface can be attached to this communication system. Only a
few types of VLSI building blocks are required, providing modularity and incre-
mental expansibility (the ability to create a larger computing system by adding
hardware to an existing system). The goal is to develop components that plug
together easily and completely hide from the user the details of the information
transfer within the network. Just as the telephone system hides from the user
the details of routing calls and transferring voice information, these new com-
munication modules handle the low-level details of transferring data by provid-

ing circuitry to perform communication functions such as handshaking,

4

meséage_ routing, buffering, and flow control. For the system designer, the
- lowest level primitive that must be dealt with is the information packst or the
block of data to be transmitted. For the user of the final system, the network

provides end-to-end communications much like the telephone system.

Figure 1.1 gives a conceptual view of such a system, divided into 2 commun-
ication domain (C) using these VLSI communication components, and a proces-
sor domain {P) dedicated primarily to the user's computations. Required pro-
perties of the communication domain include unrestricted network topology,
modularity, incremental expansibility, decentralized control, and the ability to
recover from certain classes of failures. Low-latency, high-bandwidth communi-
cations are required to achieve good performance in applications such as circuit

simulation and signal processing. This research will focus on networks using

g
ol

Figure 11 Separatien of a Multicompuier into a Communications
Domain (C) and a Processar Domain (P).

dedicated links. The proposed communication domain is designed to support
high-performance communications among a large number, possibly thousands,

of processors.

The propcsed components perform several basic *‘store-and-forward” com-
munication functions. Each component receives messages from é.ny attached
processor(s) and from other communication components. Before a message can
be forwarded to the next component /processor, an output link must be selected
via some .rauﬁng algorithm. After an output link has been selected, the mes-
sage is forwarded over this link. To handle conflicts which occur when more
than one message is routed over the same output link at the same time, buflers
are provided to hold waiting messages. Each communication component must
provide circuitry for managing these buffers. Finally, to avoid loosing messages
when the buffer space in a component is exhausted, a flow control mechanism is
required to throttle arriving traffic. Details of mechanisms which perform these
functions are discussed in chapter 4, as well as estimates of the amount of circu-

itry required to implement them.

The types of processors used in the processor domain may very depending
on the application, but the interface to the c‘ornmunication system is standard-
ized. This separation of the communication domain and the computation
domain relieves the processors of much of the overhead associated with the for-
warding of messages destined for different nodes. It makes possible the
development of general purpose communication hardware that is suitable for a
wide range of applications, and also provides the flexibility to construct hetero-

geneous systemns containing many different types of specialized processors.

One may note the similarity between the components described here and
communication processors used in loosely coupled computer networks. An

example of such a processcr is the Interface Message Processor (IMP) used in

the ARFANET, a computer network linking several major universities and institu-
tions around the world [Fear70]. Indeed, many problems associated with loosely
coupled computer networks (e.g. routing, buffering, flow control) also appear in
this context. However, our design is not merely a scaled down version of the
ARPANET. Tﬁe key differences arise frorn the aim at higher bandwidth and lower
latency, intrinsically lower error and failure rates within the communication

hardware, 2nd the cnvisioned implementation in VLSL

1.2. Definition of Terms

A numter of terms will be used throughout this thesis. In order to avoid

confusion, their meaning in the context of this report will now be defined.

First, each message sent into the communication domain consists of some
number of fixed length packefs. Communication components deal exclusively
with packets. Here, it is often the case that each message fils into a single

packet, so the two terms will be used interchangeably when no confusicn arises.

Eacﬁ communication component contains some number of ports and links.
A link refers to the collection of wires connecting a communication component
to another such component or to a computation processor. The link is external
to the chip. A port is the circuitry within the chip which drives data onto, and
recéives data from the link. When necessary, the distinction is made between an
tnput port, which receives data entering the chip, and an oufpuf port, which
sends data away from the chip. Each link is bidirectional and full duplex, Le.
each may simultaneously carry traflic in both directions. There is exactly cne
link attached {o E&‘Ch port, so when referring to the “number of ports /links",

the two terms are used interchangeably.

A virtual circuif refers to an end-to-end connection from one processor

(say A) through a certain number of switching components to another processer

(B). Here, a virtual circuit (or circuit for short) refers to the directed path
through the network from A to B. As will be discussed in chapter 4, virtual cir-
cuits must be ‘‘established’ before messages can be sent, and all data sent on
the same circuit follow the same path. In order to distinguish data on different
virtual circuits which are using the same physical link, each link is divided ini‘.o
some number of virtuol channels, with each channel carrying data for one cir-
cuit. Thus, a virtual circuit is a sequence of channels from one processor to

another.

In the discussion presented above, virtual circuits were defined to have a
single source and destination processor. An exception to this is a multicast cir-
cuit which has a single source, but more than one destination. A message sent
on a multicast circuit is replicated within the network, and a separate copy is
received by each destination processor. Such a mechanism is useful in applica-
tions requiring the same data to be distributed to several other processors, as

will be discussed in chapter 3.

Another term used extensively in this thesis is wvirtual cut-through
[Kerm78]. This refers to a mechanism in which the forwarding of data packets
can begin as soon as the packet header (here, the first byte) arrives, if the
proper outgoing link is idle. Without cut-through, forwarding would have to be
delayed until the entire packet has arrived in its buffer. It will be seen that this
immediate forwarding mechanism can lead to a significant improvement in per-

formance.

F‘i.nally, several terms are used regarding the performance of the multicom-
puter and the communication network. Bandwidifi refers to the amount of
traflic a communication medium can carry over a fixed period of time, typically
measured in bits per second. The ﬁedium may be a single communication link

‘or the entire network as a whole. Delcy refers to the amount of time which

elapses from when a message/packet enters the communication medium, until
it leaves. A more precise definition will be given later. Lafency is another term
which is used interchangeably with delay. Finally, speedup refers to the ratio of
the exscuticn time of an application program on a single-processor computer
system to the corresponding time on a multicomputer system. Intuitively, it

indicates how much faster the program executes on the multicomputer.

1.8. Previous Work in Communication Networks

The research most applicable to the work reported here may be broadly
divided into two categories: loosely coupled computer networks, and intercon-
nection networks for tightly coupled multiprocessors. Each of these will now be

discussed in turn.

1.3.1. Loosely Coupled Computer Networks

A great deal of research has been carried out in loosely coupled comumuni~
cation networks. Although many of the constraints and goals in the design of
these networks are diﬂefent from those discussed here, much of this research is
still applicable. A complete overview of the literature in this fleld is beyond the
scope of the present discussion. Textbooks such as [Davi73, Tane81, Kuo8l,
Ahuj82] provide excellent introductions to the fleld as well as extensive
bibliographies. The research most relevant to the communication component
networks discussed here deals with message routing techniques and protocols
for error free transmission. Other research in relevant areas {e.g. deadlock

prevention) will be described later as the need arises.

Message routing is the process of selecting a route, Le. a path, through a
network from a processor sending a message to the processor receiving it.
Research in this area is usually concerned with develcping general techniques

which are applicable to networks of arbitrary topology. An overview and taxon-

8

" omy of practical routing algorithms is described in [McQu74, Gerl81]. Practical
routing algorithms used by specific networks have been described for several
networks, e.g. Arpanet [McQu74, McQuBO]..Datapac[SproBl], Tymnet [Tyme81,
Rind77], and IBM's SNA [Juen76]. Other heuristic routing schemes have been
proposed, among them [Floy62, Fran7l, ChouB1]. Finally, routing techniques
based on more rigorous meathematical performance models include [Cant74,'
Gall7?7, Sega77]. Networks constructed from communication components must
also use some routing algorithm to establish virtual circuits, so much of the

work described above is applicable here.

Another significant area of research in loosely coupled networks is in the
design of protocols to ensure reliable transmission of data through the network.
A good survey of work in this area and an extensive bibliog'raphy is reported in
[Pouz78]. Much of the work in protocols has centered around the development of
a layered structure of communication protocols, and defining standard proto-
cols within each layer. As a result of this work, a standard has been defined by
the International Standards Organization (ISC), and is now widely used by many

computer manufacturers [ZimmB80].

Of special interest here are protocols for flow control, i.e. mechanisms
which control the flow of traffic through the network. Good overviews of work in
this area are presented in [Pouz81, Pouz78, Kahn72). Flow control procedures in
Datapac and Tymnet are described in [Spro81, TymeB1, Rind77], while a

hierarchical flow control scheme is presented and analyzed in [Chu77].

Most of the protocols developed for loosely coupled networks are inap-
propriate for the networks discussed here. This is because these protocols
make assumptions which are not valid in closely coupled multicomputer net-
works. In particular, loosely coupled networks cover wide geographic areas and

are subject to adverse environmental ccnditions, so error rates can be expected

10

to be much higher than in networks constructed frcm communication corﬁ-
ponents. As a result, protocols in locsely coupled networks typically pay close
attention .to detecting and retransmitting corrupted messages at all levels of
the layered structure. Vith low error rates however, transmission errors can be
handled by high-level (ie. end-to-end) protocols, freeing lower level mechanisms
within the network to incorporate such performance improving techniques as
virtual cui-through. Thus, the protocols used in loosely coupled networks are

normally too inefficient for the networks discussed here.

1.3.2. Interconnection Networks for Clesely Coupled Hultiprocessors

A great deal of research has also been done in the area of interconnection
networks for closely coupled multiprocessor systems. *Classical” research in
interconnection networks examines single- and multistage-interconnection net-
works constructed from small (typically 2 by 2) crossbar switches. These net-
works are discussed in the context of establishing processor to memeory or pro-
cessor to processor communications. The bulk of the remaining research in the
field focuses on interconnection topologies. A good survey of work in both of
these areas is given in [Feng81].

The work in single- and multiple-stage interconnection networks can be par-
titioned into two categories: netwcrks for SIMD (single-instruction stream,
muiltiple-data stream) computers, and networks for MIMD (multiple-instructicn
stream, multiple-data strearn) computers. A survey of interconnection networks
for SIMD computers is given in [Sieg79a). Many of the SIMD networks are also

applicable to MIMD machines.

SIMD systemns are special purpose computers typically used for large com-
putational tasks requiring many vector operations. A “typical” SIMD computer
is shown in figure 1.2. Here, a number of processors are connected to memory

modules tkrough an intercornnection network. The controiler broedcasts

11

instructions to the various processors. All processors execute the same instruc-
tion on each clock cycle. Each performs some computation using data from one
of the memory modules. If data (e.g. elements of a vector) are properly distri-
buted across the memory modules, then conflicts in accessing the memories

can be avoided.

In the scenario described above, the interconnection network eflectively
aligns data scattered across the memory modules. Alternatively, the network
can be thought of as performing some permutation of input lines to output lines.
Thus, these networks are sometimes referred to as alignment or permutation

networks. Networks which supi:ort any permutation of input to output lines are

CONTROL UNIT
It
Procesao: > pe— Hemory
Proceszsor -3 Hemory
INTERCONNECTION
Procezsor e—x Hemory
NETWORX
° ®
[°
° . _
Procesasor nﬁ—-i{ Memory

Figure 1.2. A typical SIHD Hachine.

12

called “nonblocking”. The crossbar switch [Wulf72] znd the Clos network
[Clos53] are examples of nonblocking networks. Nonblocking networks become
pz;ohibitively expensive as the number of prccessors. and memory modules
grows, so less expensive networks which support some subset of all possible per-
mutations (called "blocking’’ networks) have been explored. Examples of bloc.k-.
ing permutation networks include the shuffle exchange [Sten71], banyan net-
works [Goke73], the omega network [Lawr75], the flip network used in the
STARAN processor [Batc78], the indirect binary n-cube [Peas?7], the baseline
[WuB0a], and the reverse-exchange network [WuB0b]. An introduction and over-
view of this werk is presented in [Chen81]. Classes cf networks which subsume
many of the specific networks listed above have also been discovered, e.g. the
delta network class [Pate81] and the multistage cube [Sieg81]. Thus it is not
surprising that many of the variations described .above have no, or only slightly

different, performance characteristics.

Extensive analyses and comparisons of different permutation networks have
been performed. For example, in [Sieg7Sb] bounds are derived for the time
required for some networks to simulate others. Parker shows that the inverse
omega network and the indirect btinary n-cube have identical switching charac-
teristics [Park80], while in [WuB0a] it is shown that the flip network, omega net-
work, indirect binary n-cute, and one form of the banyan network are topologi-
celly isornorphic. Equivalence classes among permutation networks are defined
in [Pradg0]. Cther analyses describing performance and permutation properties
include [Fran81, Nass81, Than81]. Extensions which allow the set of performable
permut‘ations to be expanded, typically by cascading more than cne network or
allowing multiple iterations through the same network, are discussed in [Yew81,
Wu81a]. A theory for composing the permutations performed by the omega net-

work is discussed in [SteiB3]. Finally, parallel zlgorithms for setting up the

13

“switches in permutation networks are described in [LevB1, Nass82]. Although
one disadvantage of the permutation networks described above is that the time
complexity to setup an n input network given some perrnutation is O(n log)
with the fastest known serial algorithms, these papers allow settings to be deter-
mined in as little as O({log n)?) time in some situations when n processors a;‘e

used to perform the computation.

works for MIMD machines. Here however, average message delay and network
bandwidih are used as performance measures rather than the number of per-
mutations performed. In this context, it has been shown that most of the net-

works described above yield virtually the same performance [Pate81).

These interconnection networks represent one class of networks which
could be implemented with the communication components described here.
Special switches designed specifically for these permutation networks (typically,
2 by 2 crossbar switches) have two gpparent advantages over the general pur-
pose components proposed in this thesis. First, since the network topology is
fixed, they may be optimized for efficient message routing. However, with a vir-
tuat circuit transport mechanism (described in chapter 4), message routing is
reduced to a single read from a relatively small (a few hundred entries at most)
table. In current technology, this can be performed in a single clock cycle,
where the clock cycle is determined by the rate at which data can be clocked

into a chip, so any advantage derived from oplimized routing is minimized.

Second, current implementations of the simple 2 by 2 switches require less
circuitry than the components described here. However this difference is
largely due to the improved functionality of our communication component,
rather than some fundamental increase in complexity. The components

described here use more sophisticated buffer management strategies than are

14

typically used in the 2 by 2 switches, and a microcoded engine is provided for
implementing failure reccvery protocols. Since the performance of a switching
node is limited by 1/0 bandwidth (i.e. there is some maximmum number of pins on
each chip and some maximurn rate at which each pin can be driven) and since
off-chip communications are typically an order of magnitude slower than on-chip
speeds [Sequ78], this additional complexity is not detrimental to the clock rate.
In addition, general purpose components provide encugh flexibility to allow net-
works to be tailored to the comrnunication needs of the system. For example,
more bandwidth could be placed near expected points of congestion, e.g. around
the disks. Thus, the communication components described here can achieve at
least as much performance as the switching ncdes in the permutation networks,

if not more, as well as provide additional flexibility to the system designer.

Other research in interconnection networks fccuses on déﬁning attractive
network tcpologies. This work can be classified into two categories: networks for
special purpose computation, and networks for general purpose computation.
Special purpose network topologies are aimed toward achieving an eflicient
mapping of some class cf algorithms onto the network. General purpose net-
works cannot assumne any specific algorithm, so they try to optimize some gen-

eral criteria for goodness, e.g. average hop count between pairs of nodes.

L]

An introduction to research in special purpose networks designed for
efficient execution of specific algorithms is presented in [Gott82). In [Thom80] a
theory of VLI is introduced and bounds for area/time tradeofls in implementing
VLSI chips for specific computations {e.g. the FFT) are derived. Also, the work in
aystolic architectures examines two dimensional networks suitable for executing
certain numerical algorithms for signal processing and matrix manipulation
problems [Kung80, Kung82]. There has alsc been an extensive amount of work in

matching problems to such well known topologies as the perfect shuflle

15

[Ston71], the mesh [Nass79, Prep83], and trec networks [Deke83, Nath83]. The
cube-connected-cycles network is another network which exhibits properties
favorable for the efficient implementation of certain parallel algorithms
[Prep8i].

Much of the work in topologies for general purpose computation focuses on
defining networks which achieve some characteristic expected to lead to gooa
performance {e.g. small average hop coun.t). One problem in this domeain which
has received some attention is the *'(d,k) graph problem", in which the goal is to
maximize the number of nodes in a graph of degree d, and diameter k [Acke85,
¥rie68, Korn87, Stor70, Toue'_?g. Imas81, Memm82, Amar83). Other topologies
recently proposed for communication networks include ringed trees [Desp78],
snowflakes [Fink80], clusters [Wu81b], chordal rings [Arde81], Cs' graphs
[Farh81], binary trees [Horo81], cube connected cycles [Prep81], hypertrees
[GoodB1], lens networks [Fink81], multiple tree structures [Arde82], and mobius
graphs [LelaBZa, LelaB82b]. Comparisons of some of these structures are
reported in [Witt81, Swar82, Reed83]. Finally, other research examines topolo-

gies which are attractive for fault tolerance, e.g. [Prad82, Adam82].

Most of this work is directly applicable to the networks studied here, since
it refers to topologies which can be constructed from the proposed components.
These earlier studies are at a higher level of abstraction than those presented
here however. While the work reported above focuses entirely on system perfor-
mance, the work descrited here is aimed at low level design decisions, e.g. the
number of 1/0 ports on each chip, and considers the constraints imposed by a
VLSI ifmplementation. The impact of these constraints on overall performance is
examined. Some work in implementation issues has been performed by Frank-
lin, however this has been restricted to studies of partitioning certain switching

structures, e.g. crossbar switches and banyan networks, into modules suitable

for VLSI implementation [Fran82].

In the area of communication components, some building btlock modules
have been proposed. In [Eopp79] a packet switched 2 by 2 crossbar node using
unidirectional links is proposed as a switching node. Routing information is car-
ried with each packet as a sequence of bits, with each bit indicating the direc-
tion the packet is tc follow at intermediate nodes. One disadvantage of this
scheme is that the destination address of each node varies according to the
location of the sender of the message, and senders are required to generate this
routing information themselves. With arbitrary networks, this computation is
somewhat complex, and recor.riputations are necessary if the topology changes
because of component failures or network expansion. Simple flow control and
buffering scheme are provided, although they do not prevent some of the bufler
hogging and deadlock problems discussed in chapter 4. Unlike the design
presented here, no processor is provided in each switching node. Overall, this
component can be regarded as similar in intent to the compcnents described

here, however much less soghisticated in functionality.

A component similar to that described above is the Dual Interconnecting
Modular Network Device, or DIMOND [Jans80]. Again, this compcnent has two
input and two ocutput links, and each message carries detailed routing informa-
tion with it. In [Jans80] details of the implementation of the DIMCND are
explained, as well as its use in constructing networks such as rings and trees. A
minimal amount of buffering is provided in each component (a single register on
each output port).

Finelly, a 3 input, 3 output link component cailed STICS (Synchronous Tri-
angular Interprocessor Connection Scheme) has also besn proposed [Riles2].

These components can only be applied to a very restricted class of topologies

however, and thus are not as general as the components described here.

17

To the author’'s knowledge, all of the previous werk in VLSI communication
components has emphasized simplicity at the expense of generality, functional-
ity, and/or performance. With advances in VLS] however, chip densities are
increasing at a rapid rate, and more functionality can readily be integrated onto
a single chip. Thus, more sophisticated designs achieving greater functionality
and performance are becoming practical. The communication components
described here.represent one attempt to design and analyze the performance of
such a switching chip.

The work presented here is a continuation and extension of the work in the
communication switch for the 'X-tree project [Sequ78, Desp78)]. Work in the low-
level design of the internal structure of an X-tree node are described in [Laur?9,
Grif79, FujiB0, Wong81)]. Perspectives and lessons learned from these designs and
the X-tree project as a whole are described in [Sequ82]. While the work in X-tree
focussed on a particular topology, the components proposed here provide more
flexibility, allowing construction of arbitrary high-performance communication

networks.

1.4, Overview of Thesis

This thesis focuses on the design of VLS] communication components, and
the impact of certain design decisions on system performance. The remainder
of this thesis is organized as follows: In chapter 2, the tradeofl between the
number and bandwidih of the comrnunication links is discussed in the context of
a single-chip implementation of the proposed communication component. It is
seen that the 1/C bandwidth of each component is fixed, and assumed to be
equally divided among the attached links. The communicaticn network is
modeled as a set of nodes {components) interconnected by communication
links. The éuestion of whether each node should have a large number of low

bandwidth links (implying relatively few "“hops™ between a given pair of nodes)

18

or a small number of high bandwidth links (implying many hops) is addressed.
Each node of a topology requiring b ‘‘branches’ or links to neighboring nodes
can be implemented by a cluster of p-port communication components. .M/M/l
queueing models are used to analyze optimal value of p, using average delay and
total bandwidth of the *‘cluster node'" as performance measures. 1t is found th'at
components with a small number of ports yield cluster nodes with the rnost.

bandwidth, and smallest average delay.

Cluster nodes using components with a small number of ports require more
chips than those using a larger number of ports. Thus, the cluster node studies
do not consider differing chip counts. Networks with the same number of com-
ponents are compared within certain classes of network topologies (e.g. lattices
and trees). Itis found that components using a small number of ports, e.g. from
3 to 5, tend to yield networks with lower average delay, but less bandwidth than
networks using components with a larger number of ports. It is argued however,
that while network bandwidth can be increased by using more communication
chips, average delay cannot be reduced so easily. Thus, cocmponents with a

small number of ports should be used.

In chapter 3, results of simulation studies are presented. Here, parallel
application programs are used to create traffic loads for networks constructed
from communication comporents. The traflic loads cover a wide variety of
different communication patterns. Both cluster ncde networks and networks
using approximately the same number of components are examined. The simu-
lation results support the conclusion of the previous chapter that a small

nurnber of ports should be used.

Chapter 4 examines the design of a communication component in greater
detail, and discusses the complexity of the required circuitry. Various mechan-

isms for transporting data through any communication network are discussed,

19

and a mechanism based on virtual circuits is argued to be the moest appropriate
for the networks discussed here. Schemes for providing hardware support for
communication functions — routing, buffer management, and flow control — are
presented, and estimates of the number of buffers and virtual channels are
determined. Based on these estimates, the amount of circuitry to implement a
communication component is estimated, and a floorplan for one implementation

is shown.

Finally, chapter 5 presents concluding remarks, and a summary of design
recommendations for implementing general purpose, high-performance VLS]

communication components.

CHAPTER TWO
PERFORMANCE EVALUATION STUDIES

In this chapter, the performance of networks constructed from VLSI com-
munication components is evaluated. The optimal number of communication
ports for each chip is discussed in detail The performance improvement result-
ing from incorporating a virtual cut-through mechanism into the communication

hardware is also studied.

The first section discusses constraints imposed by a single-chip implemen-
tation of the communication components. These constraints lead to a tradeof
between the number and bandwidth of the communication links {or ports since
there is one link per port). The following section discusses analytical studies
evaluating the performance of various networks constructed with VLS] cormmuni-
cation components as a function of the number, and thus of the bandwidth of

the communication links.

2.1. Y151 Constraints

A VLSI chip is subject to a number of technological constraints. Violation of
these constraints will result in a chip which cannot be manufactured in large
quantities, or which cannot be depended upon for reliable operation. For this

study, the three most important constraints are:

(1) Limited amcunt of silicon area.

(28) Limited allowable power dissipation.

(3) Limited number of pins for off-chip communications.

We will consider the implications of each of these constraints on the design of a

VLS] communication component, and in particular, on the number and

21

bandwidth of the communication links.

2.1.1. Area

Beyond a certain die size, the yield, i.e. the fraction of manufactured chips
which function correctly, decreases dramatically with increased area [Glas78].
Current technology allows approximately 500,000 transistors to be placed on a
single chip. It is projected that chips with 1,000,000 device will be possible by
1985 [Patt80]. It will be demonstrated in chapter 4 that this is more than ade-
quate for the communication components described here, so limited amounts of

silicon area do not severely constrain the design of the chip.

2.1.2. Power

The total amount of power generated by the chip must not exceed some
upper bound determined by the power dissipation capacity of the integrated cir-
cuit package. Since the average power dissipation determines the amount of
heat generated by the chip, violation of this constraint will resuit in a com-
ponent which will overheat and fail during operation. We will assume that the
amount of power dissipated by the chip varies linearly with the number of links,
i.e. the total amount of power consumed by a p-port component is (Paxp)+Ce,
where P, is the average amount of power consumed by each port, and (, is the
power dissipated by circuitry which is not affected by the number of ports (e.g.
portions of the contirol and routing circuitry). The power dissipated by this “link
independent’ circuitry is assumed to be constant; it thus reduces the total
amount of power the port circuitry can dissipate, but does not enter into the

tradeoff tobe discussed.

If, for the moment, we neglect static power dissipation, then the power dis-
sipated by the link circuitry is proportional to the clock rate [Carr72]. Doubling

the number of links doubles the amount of circuitry, and thus the power dissi-

22

pated by the chip. This can be offset by balving the clock rate, which in turn,
halves the bandwidth of each communication link. Thus, increasing the number

of links requires a proportional decrease in the bandwidth of each one.

Let us now consider static power dissipation. If it is assumed that tke static
power dissipation of each transistor remains constant as the cleck rate is
varied, then increzasing the number of poris increases the number of transistors,
which in turn increases both the static and dynamic power dissipation of the
chip. However, reducing clock speed only reduces dynamic dissipation. Taus,
increasing the number of ports really implies a more than proportional decrease
in link speed. Therefore, the linearity assumption is biased to faver a large

number of ports.

On the other hand, a slower clock rate implies that smaller transistors may
be used, resulting in a reduction in static, as well as dynamic, power dissipation.
If the clock rate is cut in half, the current driving capabilities of (say) an NMOS
transistor may also be cut in half, which in turn halves the static power dissipa-
tion. In other words, both static and dynamic power dissipation are proportional
to the clock rate. This is in agreement with the criginal model which only con-
sidered dynamic power dissipation, so link bandwidth is again a linear function

of the number of links.

Therefore, when power dissipation is considered, the linearity assumption
can only be biased to favor a large number of ports. In the analysis which fol-
lows, it will be seen that a small number of poris yields better periormance
under the linearity assumption. A more complex model which accounts for the
bies will cnly 2dd further support for this conclusion. Here, it will be assumed
that link bandwidth is inversely proportional to the number of communication

links if power restrictions constrain the design of the chip.

23

2.1.8. Pins

The number of interconnections to the chip’s periphery is limited, and will
increase much more slowly than the number of transistors per chip [Keye78].
Given N pins for p communication links, there are N/p pins per link.
Bandwidth per link is thus proportional to N/ p, assuming a constant bandwidth
for each pin. Doubling the number of links halves th.e number of pins, and thus
the total bandwidth, of each link. Thus, due to pin limitations, bandwidth per

link also varies inversely with the number of links.

In the analysis presented above, it was assumed that all of the pins of each
link are used for transmitting data. In a real implementation, some of the
external connections may be used for control lines. These control lines
represent an overhead which increases with the number of links. Doubling the
number of links doubles the number of control lines, implying fewer pins are
available for transmitting data. This results in a more than proportional
decrease in link speed. A more precise model which includes control pins will
lead to better performance for networks with a small number of ports, since the
simplified model described above does not include this *per link" overhead.

Again, the more precise model strengthens the conclusions which follow.

' Finally, this model neglects the effects of data skew. In a traditional imple-
mentation of a parallel communication link, the receiver must wait for &ll of the
arriving bits to reach a stable value before clocking the data. Due to possible
variations in propagation delay along the different wires of the link, a parallel
link must usually operate at a slower clock rate than the corresponding serial
link, an effect not accounted for in the analysis presented above. These data
skew problems can be alleviated by implementing the parzallel link as a number
of autonomous serial links, allowing the link to cperate at the highest possible

clock rate. This latter implementation leads to link speeds which are propor-

24

tional to the number of pins per link, in accordance with the linear model

presented above.

2.1.4. Summary of Constraints

A tradeoff exists between the number of links per chip and the speed of
each link. If the chip design is constrained by either power or pin limitations, °
then doubling the number of links either halves the clock rate or halves the
number of pins allocated to each one. In either case, the link bandwidth is
halved. In eflect, each chip has some totel amount of I/0 bandwidth which is
equally divided amo;'Jg the existing communication links. This ‘‘constant
- bandwidth per chip’ model ’H‘ill’ be used in all of the studies which follow.

In addition to its eflect on link speed, the number of ports also affects the
average hop count between two nodes in the network (e.g. a ternary tree could
be used instead of a binary tree if one more port were available for each node).
As the number of links cn each chip is increased, the average hop count between
pairs of nodes is reduced. The sections which follow present a;nalytica.l and

simulation results explering this tradeoff between link speed and hop count.

2.2, Analytical Studies

" In this section, the performance of networks constructed from p-port com-
munication components is evaluated through analytical models. Average “end-
to-end™ delay and total network bandwidth are used as performance measures.
The delay from peoint A to point B in 2 network is defined as the time which
elapses [rom when the packet header begins to leave A to when the entire
packet arrives at B. The “hop count” from A to B is defined as the length, ie.
the number of links, of the minimum length path from A to B. Network
bandwidth is the amount of traffic the network can carry cver some fixed time

interval. A more precise definition for bandwidth will be given later.

25

In a rez! network carrying trafiic generated by a parallel application pro-
gram, average message delay may not be an appropriate performance measure.
If & data value is generated in one processor long before it is used by another,
then delays encountered by the message carrying this data do not afiect the
execution time of the program, so long as the data arrives before it is ne-ede;i.
However, since we cannot know a priori which message delays aflect perfor-
mance, average delays will be used. Also, averages are simpler to compute than
other measures, e.g. maximum delay. A more detzailed simulation study will be
discussed in chapter 3 which uses execution time (actually, speedup) as the per-

formance measure.

In order to evaluate the tradeofl between hop count and link bandwidth, two
multicomputer network models are developed. In the first model, the imple-
mentation of a topology requiring & *‘branches" per node with p-port communi-
cation components (p<b) is considered. To achieve the necessary fanout,
several components are interconnected to form a *‘cluster node"” with b exter-
nal branches. Bach cluster node forms a single conceptual node of the desired
topology. Delay and bandwidth are compared for various values of p. In gen-
.eral, a cluster node using components with a small number of ports will reguire
more components than one using a larger number of ports. Thus, comparisons

under this model neglect chip count.

A second analysis compares networks using the same number of com-
ponents. In this model, the hop count/link bandwidth tradeofl is evaluated

within individual classes of network topologies, such as trees cr lattices.

In each case, a queueing model is used to evaluate network performance.
The assumptions made by this model are outlined in the next section. Perfor-
mance with and without a virtual cut-through mechanism is explored. Delay in a

lightly loaded network and overall network bandwidth are computed and com-

pared for the different approaches.

2.2.1. Assumptions

As discussed earlier, it is assumed that the bandwidth of each communica-
tion link is a linear function of the number of links on each chip. In the analysis
which follows, a queueing model is used, and a number of other assumptions

must be made:

(1) Message arrivals at different nodes are independent.
(2) Message arrival times bave a Poisson distribution.
(3) Message' lengths have an exponential distribution.
(4) Each node contains unlimited buffer space.

(5) Routing through each node is deterministic.

(8) Electrical propagation delays are negligible.

(7) Transmission error rates are negligible.

The first three assumptions are necessary to solve the queueing model. In
particular, the first assumption, often referred to as the "independence
assumption”, states that “the exponential distribution [for message length] is
used in generating a new length each time a message is received by a node ...”
[Klei78]. This is clearly false since messages maintain their length as they pass
through the network, but the eflect of the assumpticn on the accuracy of mes-
sage delay cornputationé is negligible so long as the network does not contain
long chains with no interfering traffic [Kerm?79]. The assumption is a reasonable
one for the networks examined here because the traffic loads used in these stu-
dies lead to output links which carry traffic arriving from several different input

links, eliminating the long chains described above.

27

Similarly, the Poisson arrivel time and the exponentially distributed mes-
sage length assumptions (the latter implies exponential service times) allow the
use of M/M/1 queues which can be easily solved. Relaxing each of these assump-
tions results in G/M/1 and M/G/1 queues respectively. If these queues are used
however, Jackscn's theorem [Jack57] cannot be epplied, since the arrival times
at each node no longer follow a Poisson distribution. The resulting queueing |
models are difficult to solve for the large, complex networks studied here.
These assumptions are simplifications since traffic in the actual network need
not be Poisson, and the networks considered here use fixed length packets, as
will be discussed in chapter 4. Simulation studies will be discussed later which
remove these restrictions. Further, a second approximate queueing model
using M/G/1 queues will also be discussed [Klei76). Here, the approximating
assumption that Jackson's theorem still applies is made. It will be seen that
although this second approximate model yields performance curves somewhat
different from the first, the final conclusions drawn from the two models are

identical.

The remaining assumptions listed above are appropriate for the networks
examined here. The fourth assumption, unlimited buffer space, will be
addressed in chapter 4. It will be seen that components with a limited number
of buffers can achieve virtually the same performance as components with
unlimited buflering capacity. The deterministic routing assumption is appropri-
ate because packets traveling along the same virtual circuit follow the same
path from source to destination. As discussed in chapter 4, this is necessary to
ensure that packets sent on the same virtual circuit arrive in the order in which
they were sent, thus avoiding much of the overhead associated with reassem-
bling messages from their constituent packets. Since communication links are

short, electrical propagation delays are negligible (a few nanoseconds at most)

28

compared to the time required to transmit a single packet (hundreds or
théusands of nanoseconds). Finally, the assumption concerning errcr rates is
justified by the extremely low error rates measured in local communication net-
works [Shoc80]. Since the communication system described here is confined to
an even smaller physical area than these local networks, it is less susceptible to
noise in the operating environment, making this final assumption even more
appropriaie.

In addition to the *‘gneueing model assumnptions’ described above, it is
assumed that the internal structure of each cluster node is a balanced tree
topology (2 tree with rmmmal average path length between the root and leaf
nodes [Knut73)). This minimizes the average hop count through the cluster
node, as well as the number of compecnents required to implement a node with a

fixed number of branches.

Finally, in order to evaluate the performance of any communication net-
work, traffic distribution assumptions, i.e. which processors send messagés to
which other processors and how frequently, must be made. These will be
explained during the analysis as the need arises. In general, these assumptions
are made to simplify the analysis. Simulations using a wide variety of traffic dis-

tributions are discussed in chapter 3.

2.2.2. Hodel I: Cluster Nodes

Consider the implementaticn of a network topology requiring b branches,
i.e. communication links, for each node. Each node could be implemented with
a single communication component requiring & +1 ports, assurning one port is
used to connect to the computation processor attached to that node. Alterna-
tively, each node could be implemented with a ‘‘cluster’” of p-port communica-
tion components, where 3<p=<b. As discussed earlier, it will be assumed that

the components within each cluster node are interconnected by a balanced tree

29

topology. Figure 2.1 for example, shows a node with 4 branches (b=4) imple-
mented with 3-port communication components called *“Y-components™. This
"'cluster node" implementation implies a larger hop count between processors,
" however it also uses links of higher bandwidth, since fewer ports are required on

each VL3I chip.

Adding a p-port component to an already existing cluster node adds p—2
branches. Since the one component cluster node has p —~1 branches, an n com-
ponent cluster node has (p—1) + (p = 2){(n — 1) branches. Thus, a b-branch

cluster node uses

n = ceiling

b-p+1 + 1| = ceiling b -1
p—2 p-2

Figure 2.1. 4-branch node built from Y<omponents.

30

compenernts, where ceiling () is defined as the smallest integer greater than or

equal to z.

2.2.2.1. Queueing Mcdel

The gueueing model presented in [Klei78] is used to evaluate the perfor-
mance of a b-branch “cluster node”. In order to evaluate these models, trafiic’
distribution assumptions must be made. For the cluster node network, it is
assumed ithat there are two virtual circuits between every pair of branches in
the cluster node, one in each direction. In crder to simplify the analysis, trafiic
to and from the processors attached to the cluster node will be ignored, and
only traffic between branches will be considered. Since there are b branches,
there are b(b—1) virtual circuits through such a node. Assurne that a trafiic
load of ! messages per second exists on each of these virtual circuits, and each

message consists of a single packet of data.

The average delay T through a store and forward communication network is
defined as:

Ty
T = —_—
Z 5

where 7 is the average number of messages per second entering the virtual cir-
cuit from branch i to branch j, while 7 is the total arrival rate on all virtual cir-
cuits. Z; is the average delay for messages along the virtual circuit from i to].
It is assumed that %; = 0 if i = j. Since it is assumed that each of the b(b—1)
virtual circuits has the same external load, ! messages per second,
y=b (b—1)1, and 7y =!. Thus,

— 1
7= e § M

Let us now examine Zﬁ-.

31

Consider the path taken by the virtual circuit from branch X to branch Y,
as shown in figure 2.2. The average delay Z;, along this path is equal to

where T; is the average delay at link i. Assume links are numbered sequentially

from 1 to ny, as shown in figure 2.2. With cut-through,

_ m
T, = Ta=p) (1=pes1)(tm—tn) (2)

es discussed below and in [Kerm73]}, where

Figure 2.2. Virtual circuif from Xto Y.

32

m; = average message length

C = capacity (bandwidth) of the links

pi = utilization of link i

t, = time to transmit message header over the link

t, = time to transmit message over the link

The message transmission time, &5, includes the time to send both the data and
header portions of the message. Assuming the total 1/0 bandwidth of each p-
port component is B bits per second, C is equal to B/ p. The first term of
equaﬁon (2) is the sclution of an M/M/1 queueing model, and represents the
semount of time required to obtain and iransmit a message over the link. The
second term considers the effect of cut-through. (1 —py41) is the probability
that a cut-through cccurs, and #, — ¢, is the amount of time '‘saved’’ by begin-
ning to forward the message as soon as the header has arrived. It is assumed
that no “partial" cut-throughs cccur, i.e. forwarding begins either immediately

after the header arrives or after the entire packet is received.

Thus the delay through the virtual circuit from XtoYis

T = 3

=1

P
B(1-p)

Z,, measures the time from when the header of a2 message arrives at branch X

= (1=pea1) Em—ta)] -

to when the entire message has been forwarded over branch Y.

The total traffic load on link k is equal to the number of virtual circuits
using the link, say v, times I, the load on each virtual circuit in messages per

second. Thus, link utilization is

mylup .
A

1 ifkm"*'l

n

Assigning pn +1 to 1 forces the (1=pis1) (tm —ts) portion of the last term in the

summation for Z to be zero. This is necessary to fulfill the definition for delay

given above, i.e. the time which transpires from when the head of the message

33

enters the cluster node until the time at which the end of the message leaves.
The eguation for Z; measures the time from when the head of the packet
enters until the time at which the head begins to leave. Thus we must also add

the time which elapses until the end of the packet leaves the cluster node. Set-

ting pn.+1 to 1 accomplishes this by in effect, eliminating the *‘saved time"
resulting from cut-through in the final node.’

Sinc"e v, can be easily computed for each link of a given cluster node, the
delay Zy; for each virtual circuit can be found. Once Zy is known, equation (1)
can be used to compute the average delay among all virtual circuits using the
cluster node. Figure 2.3 shows the results of this computation for a 20-branch
(b = 20) cluster node. The optimal number of ports as a function of b will be

studied in a later section.

The various curves correspond to implementations that differ in two

respects:
(1) the number of ports on each communication component
(2) whether or not a cut-through mechanism is used

The ‘“‘without cut-through curves ere obtained by deleting the
(1 = pis1) (bm — &) term in equation (2). Average delay is plotted in figure 2.3 as

a function of the external load applied to each virtual circuit.

The computations assume that the average packet length m; is 17 bytes,
consisting of 16 data bytes and a one byte header. The total 1/0 bandwidth of
each chip, B, is assumed to be 100 Mbits/chip-second, and is equally divided
among the existing links. This latter value was chosen arbitrarily but does not
affect the relative ordering of the curves. These nun:lerica.l values will be used in
ell subseguent computations unless indicated otherwise. From figure 2.3, it is

seen that network performance deteriorates as p is increased for this particular

cluster ncde.

To a first order approximaticn, each of the curves in figure 2.3 can be

represented by two performance measures:
(1) T°, the delay in a lightly loaded network.
(2) 1°, the maximum traffic load the network can support.

T’ is the delay when I, the traffic load on each virtual circuit, is zero, and 1°is
the asymptotic value for traffic load at which the delay approaches infinity. This
latter quantity reflects the point at which some link(s) in the network approach
100% utilization, leading (mathematically) to gqueues which become infinitely
long. In the real network, a flow control mechanism limits the actual queue size
on each link, as will be discussed later. We will now exa:nix-'xe delay and

throughput in turn to determine the optimal number of porﬁs for implementing

CLUSTER NODE: BANDVWIDTH and DELAY
(20 branches)

Delay (usec)
100

80

8

e=== 8o cut-through

%o Y 02 0.3 0.4
Virtual Circuit Load
(Mbits/sec)

Figure 2.3. Queueing delay for 20-branch cluster node.

C)
n

cluster nodes of any size.

2.2.2.2. Delay

T°, the delay through a lightly loaded cluster node, is obtained by setting
the traffic load, I, or equivalently the link utilization, p;, equal to O (except if

i=n;+1, in which case p;=1). Thus, from equation (2), the delay at each hop is

B (tn-t) itismy
= ’ig—“— if i=n, +1

.
.

when cut-through is used. A graph of T*® as the number of branches increases is
" shown in figure 2.4. 1t is seen that cluster nodes implemented using components
with the minimum number of ports yield the smallest delay. The *bumps’ in
figure 2.4 occur when a new component is added to the cluster node as the
number of branches is increased. This leads to a discontinuity in the average

hop count, which in turn causes a discontinuity in the delay.

Without cut-throu.gh, the delay of each hop through a lightly loaded b-
branch cluster node implemented with p-port communication components is
simply p my/ B . If H is the average number of hops through the cluster node,
then T° = H my; p/ B . This function is also plotted in figure 2.4. It is seen that
the optimal number of ports is again never larger than 4. The curves also

demonstrate that virtual cut-through can significantly improve message delays.

Assuming the ciuster node is implemented by a balanced (p-1)-zry tree, at
most 2logp—;& hops are required. Thus, the delay through a cluster node

without cut-through is

2 my p logp1d
B

Diflerentiating with respect to p and setting the result equal to 0 reveals that

T* =

minimum delay is achieved with approximately 4.6 ports per component,

36

CLUSTER NODE: DELAY
Delay (usec)
€0

p::lo N :..psa
.—psg

——— '
~=«= no cut-through —— cut-through
o 5. M A
o] 20 40 &0 a0

Number of Branches

Figure 2.4. Deloy through cluster node under light troffic loads.

" agreeing with the curves in figure 2.4.
Thus we see that the optimal number of ports is relatively small when con-

sidering delay through lightly loaded networks. Delay through a lightly lcaded

cluster node is minimized when the number of ports is between 3 and 5.

2.2.2.3. Bandwidth

L’ is defined as the total network load when p; approaches 1 on the most
heavily utilized link in the cluster node. Since thke links around the root of the
cluster node carry the most virtual circuits, they will saturate first. If the load
on each virtual circuit at saturation is 1°, then L° is b(b—1)°. If the most
heavily utilized link has bandwidth BF/p and carries v virtual circuits, then
equation (3) suggests that saturation occurs at !°m; = B/v p bits per second.

Thus,

37

vp
bits per second. A plot of L*m; as a function of the number of branches is shown

in figure 2.5a. The curves indicate that cluster nodes constructed with the

minimum number of ports yield the most bandwidth.

The irregular behavior of the curves is an artifact of the manner in which
branches are added to the cluster node, and does not represent a general
behavior of communication networks. It is best explained by examining the indi-
vidual compenents from which the curves are derived. For a given value of p,
the behavior of L® can be characterized gualitatively by the quantity b(b-1)/v ,
ie. the number of virtual circuits using the cluster node divided by the number
of circuits using the most heavily loaded link. Figures 2.5b and 2.5¢ show plots
of these two guantities as a function of b. For clarity, only curves for p equal to
3, 4, and 5 are shown in figure 2.5¢c. The remaining curves demonstrate a similar
behavior. It is seen that while the function b(b—1) yields a smooth curve, the
curve for v contzins a number of discontinuities. These discontinuities give rise

to the peaks in figure 2.5a.

The location of the discontinuities in figure 2.5c is a consequence of the
manner in which components (i.e. branches) are added to the cluster node. The
number of branches is increased by adding components “from left-to-right” at
the leaves of the cluster node. Under this scheme, the most heavily utilized link
is always be the “‘leftmost’” link attached to the root of the cluster node (see
figure 2.5d). The number of virtual circuits using this link, v, is simply
& (b —&,), where b, is the number of branches in the leftmost subtree of the

root. If a new branch is added to the cluster node, one of two situations cccurs:

(1) The branch is added to the leftmost subtree, causing both b and b; to

increase by 1, and v to increase by (b — b;).

Figure 2.5.

o8

CLUSTER NCDES: BANDWIDTH

Bandwidth
(Mbits/sec)
180 T

p=3

100

(2)
)
p=10
o . . ,
0 20 40 60 80
Number of Branches
NUMBER OF VIRTUAL CIRCUITS
b(t-1)
8000
8000
4500 + (v)

° 20 P ” 20
Number of Branches

(o) Banduwidth of cluster node. (b) Circuils in cluster nede.

Figure 2.5.

38

CIRCUITS USING BUSIEST LINK
v (virtual circuits) ‘
2000 -

1600 F
1000

(c)

800

o 20 40 60 80
Number of Branches

most congested

link
. . (d)
L X X] *e e L X N] o9 oo S ,
| |
bl branches b-b 1 branches

leftmost subtree

(c) Most heavily loaded link. (d) Sample cluster node.

40

(2) The branch is added somewhere other than the leftmost subtree, causing

only & increases by 1, and v to increase by b;.

As branches are added to the cluster node, discontinuities occur when the tran-
sition is made between these two situations, since the rate at which v is increas-
ing suddenly changes. This transiticn occurs when the leftmost subtree
becomes full, and when a new level is added to the cluster node. An exception to
this rule occurs for p equal to’3, where adding a new level does nof cause a
discontinuity. This is a consequence of the symmetric nature of the binary tree.
When a new level is added, the number of branches in the left subtree b; is equal
to & — &;, the number in the right subtree, so the rate at which v is increasing
remains the same, and the transition causes no discontinuity. Thus, in the
binary tree, discontinuities occur only when the left subtree becomes full, and

new branches begin fllling the right subtree.

Each discontinuity results in a peak in the L® curve. As b is increesed, L’
increases if b(b—1) is growing faster than v, but falls if v is growing faster.
Each discontinuity represents a point at which the growth of v becomes

- . *
accelerated, causing L~ to fall.

The curves in figure 2.5a indicate that the bandwidth provided by the clus-
ter node deoes nol increase significantly as the number of branches, and thus the
number of components increases. This is due partially to the fact that the clus-
ter node is implemented as a tree, and partially to the traflic model presented
above. The traffic model assumes that there is a virtual circuit betwesn every
pair of branches, and that all of the virtual circuits are equally loaded. Thus, the
1/0 bandwidth of the root node limits the total bandwidth of the cluster node;
increasing the number of components does not significantly increase the total

bandwidth provided by the cluster ncce.

41

When the root node links become congested, most of the links of the cluster
node, i.e. those near the leaves, are underutilized. Thus, virtual circuits which
only use these links, i.e. circuits which do not go through the root node, can
actually handle much more traflic. Let us consider the total bandwidth of the
cluster node when trefiic on these *underutilized” virtual circuits is allowed to
increase. In particular, let us uniformly increase the traffic load on all virtual
circuits which do not go through the root node until more links begin to
saturate. The links “highest” in the cluster node tree will saturate first. Now
repeat this process, i.e. increase the load on all virtual circuits which do not use
saturated links, until all of the links are saturated. The total load on all of the

" virtual circuits gives the maximumn traflic load the cluster node will support.

VWith the traffic load just described, it is clear that all of the links of the
cluster node will be equally utilized. Such a network is said to be "'balanced”.
The bandwidth of a balanced network is equal to the sum of the bandwidths of all
of the communication links divided by the average hop céunt through the net-
work. Intuitively, eact'(link 2dds some fixed amount bandwidth to the network,
and each virtual circuit uses bandwidth proportional to the number of hops it
requires. Thus, this figure is indicative of the number of active (bi.e. transmitting
data) virtual circuits the network can support at one time, or alternatively, it is
indicative of the total bandwidth allocated to a fixed set of virtual circuits. It
will be seen later that this intuitive measure of bandwidth can also be derived

from a queueing model for balanced networks.

A b-branch cluster node built from p-port communication components pro-

vides bandwidth (see section 2.2.2):

b—l1
p -2
— f >3.
i or p

A graph of this measure of bandwidth for various values of p is shown in figure

B ceiling

42

2.8. Since a cluster node of n chips has a total link bandwidth which increases
linearly with n, and the hop count increases only legarithmically in n (assuming
a tree topology for the cluster nede), one would expect the cluster node with the
most chips to provide the most bandwidth. This corresponds to cluster nodes
constructed with components using the minimum number of ports, or here, 3
The graphs confirm this intuitive result. Note that virtual cut-through does not
impact the bandwidth provided by a network.

When constructing multicomputer systems with cluster nodes, congestion
at the root can usually be alleviated through the use of an appropriate routing
algorithm. For example, figure 2.7 shows a grid topology implementéd with Y-
components. An appropriate routing algorithm for this topology is to route

packets along one direction, say north/south, and then the other, east/west,

CLUSTER NODES: MAXIMUM BANDWIDTH

Bandwidth
(Mbits/sec)
800 1

p=3 p=7 p=10
p=4 p=8

ikl o .

0 20 40 80 80
Number of Branches

Figure 2.6. Mazimum bandwidth (§chips /hap count) of cluster node.

43

using or:ly one *80 degree turn”. With this scheme, each packet travels through
the root of a cluster node at most three times —at the source node, at the desti-
nation node, and at the node in which the 96 degree turn is made. In general,
this type of behavior can be exploited for any topology (except trees where
there is only one path between any pair of processors) by using a *global” sho.r-
test path routing algorithm through the network to increase usage of the

shorter paths through the cluster node which do not go through the root.

Thus cluster nodes built with communication components with a small
number of ports, say from 3 to 5, yield the least delay, and cluster nodes built

with 3-port components yield the most bandwidth.

7 ¢
o o g
Q cwjﬁ C

Figure 2.7. Grid topology built with Y-components

(
q

q

2.2.3. Hodel II: Metworks with a Fized Number of Components

The models in the previous section demonstrated that higher bandwidth
and lower delays can be achieved by implementing &-branch cluster nodes with
communication components using relatively few ports. Such networks require
more chips than networks constructed from comp.onents with a larger number
of ports. In this section, we explore the tradeofl between hop count and link

bandwidth for networlks with the same number of switching components.

Consider a large, unbounded network constructed from p-port comrmunica-
tion compcnents. As before, assume that each pért has a bandwidth propor-
tional to 1/p. It will be assumed that there is one processor attached to each
communication component in the network, using one of its p ports. Thus, in this
model, p must be at least 4, since a 3-port component can only implement a
ring topology.

Suppose that for some application, each node must communicate with all
nodes within R hops of it. Assume that there are M such nodes. A small value
for R, or equivalently M, indicates that traffic from each node is very localized,
while a larger value indicates more global communications. Consider one
specific node in the network, say X, and let us number the M ncdes it sends mes-
sages to: 1,2, - - - M. The average distance (i. e. hop count) from X to these X

nodes is

where ¢, is the number of links traversed in the shortest path from X to 1.
_ Assume that traffic from X is uniformly distributed among the M nodes it com-
municates with. As before, increasing p will reduce the average distance, but at
the cost of slower links. Conversely, reducing p implies faster links, but longer

distances.

45

The average distance H is clearly dependent on the topology of the net-
work. In general, more redundancy (i. e. distinct paths between pairs of nodes)
implies a larger H, assuming constant p. For the purposes of thls section,

different classes of network topologies will be characterized by a function, m (1)

(i=1,2, - - - k), with M=ini(i) and m(i) equal to the number of nodes whose
i=1

minimum length palh to node X is exactly ¢ hops. The networks discussed here
are assumed to be symmetric and unbounded. Since each node has p—1 ports
for communicating with other nodes {one port leads to the processor attached

to that node), m(1) = p—1. Two abstract cases will be discussed here:

lattices: m(i) = m(i—-1)+(p—1) }

trees: m(i) = (p-2)xm(i-1) 1=2,...,k and p=4

The first represents regular two-dimensional lattices (see figure 2.8) and the
second trees. Note that the latter case has no redundant links and thus gives
minimal H for any topology with p ports per node. It is thus a favorable topol-
ogy for components with a large number of ports, since networks using these
components depend on small hop counts to overcome the handicap of having
slower links. The lattice networks represent an alternative class of topologies
with less favorable hop count averages, but redundant paths between pairs of

nodes.

2.2.3.1. Queueing Model

The cut-through queueing model discussed earlier can also be applied to
the netﬁvorks presented in this section. The symmetric nature of the traflic load
and the network topology leads to links which are equally loaded, i.e. the net-
work is balanced. As before, we will consider only traffic within the network
itself. Delays on the links between the processors and communication com-

ponents are ignored.

(a) (®)

Figure 2.B. Two regular twe-dimensional lattices. (a)p=4. (b)p=5.

A closed form solution for estimating network delay, including the effects of
virtual cut-through, is known [Kerm73]. Using the same assumpticns discussed
in section 2.2.1, it can be shown that the average delay to send a message

through a balanced network is

H
r=THP

=By (A-1) (1-p) (tm—tn) (4)

where:

average hop count

average message length

total 1/0 bandwidth of each communication component
number of ports

utilization of each link

ty time to transmit message beader over the link

t,, = time to transmit message over the link

©'Y Y i

The first term of this equation is the deley when no cut-tbrough is used. The

second term is the improvement when cut-through is added. The efiectiveness

47

of cut-through in reducing delay increases with H because there are more
chances for cut-through to occur if the number of hops required is large. The
dependence on p erises from the fact that the probability that the outgoing link
is free, i.e. the probability that a cut-through will occur, depends on how heavily
the link is utilized. As before, the model assumes that no *'partial’ cut-throughs
occur, i.e. forwarding begins either immediately after the header arrives or
after the entire packet is received. The cut-through mechanism has greater

impact in lightly loaded networks (small p).

Consider a network with N processors {(and thus N communication com-
ponents), with each processor" sending messages to the X processors closest to
it. If H is the average hop count to reach another processor, then there are
NxHM virtual circuits, each using H links. Assume the load on each virtual cir-
cuit is ! messages per second, or ! m; bits per second. Since the network has
Nx(p-1) links {excluding the one connecting to the processor), the average load
oneachlinkis N M m, ! H/ N(p—1) bits per second. Therefore,

MmlH »p (5)

B p-1"
Since H can be computed numerically, given M and p, we can use equations (4)

end (5) to compute message delays.

Figure 2.9a shows delay in lattice topologies with and without a cut-through
mechanism as a function of the load applied to each virtual circuit. Table 2.1
lists the number of virtual circuits using each link. M is fixed at 50 nodes. The
optimal number of ports as a function of ¥ will be studied in a later section.
Under light traffic loads, networks with a smaller number of ports achieve lower
delays, regardless of whether or not a cut-through mechanism is used. Figure
2.9a indicates however, that the “‘knee’ for curves with a large number of ports
is further to the right than that of those with a small number of ports. This indi-

cates that networks with a large number of ports can maintain reasonable

48

delays for larger iraffic loads than networks with 2 small number of ports. In
other words, these curves indicate that cocmponents with a small number of links

yield networks with shorter delay, but less overail bandwidth.

Table 2.1.
. Link Usage
p | Link Bandwidth | Circuits per Link | Circuits per Link
(Mbits/sec) (Lattices) (Trees)
4 258.00 85.00 57.33
5 20.00 42.50 32.50
6 18 87 30.00 24.00
7 14.23 23.33 18.00
3] 12.50 18.57 13.43
9 11.11 15.00 .11.50
10 10.00 12.87 10.11

Figure 2.5b and table 2.1 present the same enalysis for tree topology net-
works, also with # fixed at 50 nodes. Again, networks with a small number of
ports yield better delay under light traffic loads, but poorer overall bandwidth.
The minimum number of ports achieves the least delay when a cut-through
mechanism is used, as would be expected since cut-through diminishes the
penalties of traversing extra hops. Networks without cut-through achieve

minimal delay when 5 ports are used, for this particular value of M.

We will now enalyze the optimal number of ports as a function of traffic
locality, or here, M. As before, T°, the delay in a lightly loaded network, and 1’
the maximum virtual circuit traffic load supported by the netwerk, will be

evaluated and compared.

2.2.3.2. Delay

T*, the delay in a lightly loaded network is again found by setting p equal to

0. Thus, from equaticn (4), one obtains:

49

LATTICES: BANDWIDTH and DELAY
(M = 50 nodes)
Delay (usec)

100 . : -
p=4 "‘ " I‘

(a)
7 4 cut-through
«-== po cut-through
0 . .
0.0 0.2 0.4 0.6
Virtual Circuit Load
(Mbits/sec)
TREES: BANDWIDTH and DELAY
(M = 50 nodes)
Delay (usec)
100 v
80 e
60 -
(b)

40

20 22X X 1
cut-through
-==- no cut-through

oo.o ; 2 0.14 o.’e 0.8
Virtual Circuit Load
(Mbits/sec)

Figure 2.9.

Queueing delay, M=50. (a)lattices. (b)trees.

T = m.;g - (H-1){(tn—ty) with cut-through
T® = ﬁ‘—g-l— without cut-through

These quantities are plotted in figure 2.10 as a function of M, the number of pro-
cessors to which each processor sends messages (which determines X). When
cut-through is used, it is seen that networks constructed with the smallest
number of porls yield the least delay for both lattice and tree topologies. The
same is true for lattices without cut-through, indicating that the reduction in
hop count caused by increasing the number of ports is not enough to adequately
cffset the lost bandwidth per port. The final case, tree topologies without cut-

through, is somewhat more complex.

In tree topologies without cut-through (figure 2.10b) it is seen that the
smallest number of ports (p=4) does not give minimum delay beycnd #=32
nodes. Similarly, as M is increased further, larger values of p appear more
attractive (see figure 2.11), although the optimal number never rises beyond 6.
Given some value of H, the growth of m(i) (as 1 increases) determines the aver-
ege hop count, H. The faster m (i) grows, the smaller H becomes. In tree net-
works, m(i) is an exponential function of p, implying its growth will be
accelerated substantially if p is increased. This acceleration is so substantial
that, to a certain extent, the associated reduction in hop count eflectively

offsets the bandwidth loss which results when more ports are used.

For both classes of networks, these results favor a communication com-
ponent with relatively few ports, say from 4 to 6. A cut-thrcugh mecheanism
makes the optimal number closer to 4. Under the conditions stated above, tree
topolegies will always yield lower delays than lattices because of lower hop count
averages. This in turn results from the lack of redundant paths in tree topolo-

gies and is in agreement with results already discovered by other researchers

~

oy

o1

LATTICES: DELAY

Delay (usec)
100 . . .

----- no cut-through

(e)

A 3

0 100 200 300 400
Locality
(number of nodes)

TREES: DELAY
Delay (usec)
w0

p=10

(b)

~=«= no cut-through

cut-through
200 300 400
Locelity

(number of nodes)

Figure 2.10. Delay under light troffic loeds. (a) lattices. (b) trees.

TREES: DELAY
Delay (usec)
200 .

180

100

S0+

) 2 4 s 8
10 10 10 10 10 10
Locality
(number of nodes)

Figure 2.11. Delay under light traffic loads, trees (no cut-through).

[Desp78]. Asymptotic values of my p H/B as a function of X will now be
derived, in order to determine an optimum number of ports when no cut-

through mechanism is provided.

Given such an abstract topology, we can treat M as a function of the con-
tinucus varizble r, the distance of a node from the other nodes to which it is
sending messages, (previously, m(i) was a function of the discrete variable 1).
As M grows toward inflnity, m(r) is asymptotically equivalent to m(i). With this

perspective, ¥ is no longer a sum, but rather an integral. Thus we have

R R
A= -;—{-fr m(r)cr with H= [m(r)dr
() ()}
And the two cases disussed above reduce to:

lattices: m(r) = (p-1)r . }

trees: m(r)= (P_l)(p__g)r-l p=4

Evaluztion of the above integrals for the two cases results in the {ollowing

equations for delay:

53

mHp _my B (p=1

lattices: T = B =g 5

B I _o\R
trees: T.___m.‘f-’p = lp Rp-2)" _

b
B " B (p-2)F-1 In(p-2)
- Inf# (p -2)In{p —-2)+p—-1] — In{p—1)
In{p -2)

with R

The equation for the first case again demonstrates that for any given M, a
lower delay results if fewer ports are used. The egquation for the second case

however, requires a more detailed analysis.

Minimizing Hp by taking the derivative with respect to p, and solving this
equation numerically yields ‘the curve in figure 2.12. This curve gives the
optimal number of ports {(optimal in that it minimizes the average delay) as a
function of M, the number of nodes communicated with.

TREE TOPOLOGY:
OPTIMAL NUMBER OF PORTS

Ports
¢ .
5* -
«H 1
s . e AL -
) 200 400 800 800 1000

Locality -
(number of nodes)

Figure 2.12. Optimal number of ports, tree topologies (no cut-through).

54

The azbove derivations assume that traffic from a ncde is uniformly distri-
buted among the nodes it communicates with. In practice, one would try to map
a specific problem onto the multicomputer in such a way that there is more
traffic with nearby nodes than with those which are further away. Traflic
between neighboring nodes should then be weighted more heavily. If one takes
this into account, the case for the use of a few high-bandwidth links ratker thaﬂ

many slower links becomes even stronger.

Thus, based on these studies, it appears that a communication component
with relatively few ports, say from 4 to 6, is the most desirable. If cut-through is

considered, the argument for a small number of ports also becomes stronger.

2.2.3.3. Bandwidth

Let us consider increasing the load on all virtual circuits of the network. As
before, network bandwidth is defined as the asymptotic traflic load supported by
the network as it approaches saturation, i.e. as link utilizaticn p approaches 1.

From equation (5), the load per virtual circuit at saturation 2° is

l . B p —1
my MH P
messages per second. The total network bandwidth at saturation is

L‘m.; - _,;_IN_ 2;1

bits per secongd, since there are M XN virtual circuits, where N is the number of
nodes in the network. Thus, neglecting the (p —1)/p term, the total bandwidth
of a network is approximated by the sum cf the link bandwidths divided by the
average hop count, agreeing with the maximum bandwidth figure of merit
derived intuitively for the cluster node model. This figure is indicative of the

maximum number cf active virtual circuits the network can support at one time.

When comparing networks with the same number of chips, the sum of the

link bandwidths is constant, so the topology with the smallest average hop count

o5

will achieve the highest bandwidth. Thus, in this case, networks constructed
with the largest number of links per node yield the most bandwidth. Bandwidths
for tree and lattice networks are shown in figure 2.13 for various values of p,
confirming this intuitive result. The curves also demonstrate how rapidly net-

work bandwidth diminishes as traffic becomes less localized.

2.2.4. H/G/1 Queueing Hodels

The queueing models presented thus far have assumed that message
lengths are exponentially distributed. This allows one to use M/M/1 queueing
models which can be easﬁy solved. Since the networks described here use fixed
length packets, an M/G/1 model is more appropriate. Unfortunately, the exact
solution of complex networks of M/G/1 queues is unknown, since Jackson's
theorem can no longer be applied. Briefly, Jackson's theorem allows one to
solve a network of queues with Markov arrivel rates by examining each queue
independently, isolated from the rest of the network. Fixed length packets

imply non-exponential service times which leads to non-Markovian behavicr.

An alternative approach to resolving this dilemma is to use M/G/1 queues,
but to make the approximating assumption that Jackson's theorem can still be
applied. Other studies have indicated good correspondence between this model
and simulation results [Klei78]. The Pollaczek-Khinchin mean value formula indi-
cates that replacing an M/M/1 queue with one using fixed service times reduces
the waiting time (i.e. the time spent waiting for the link to become free) by a
factor of two [Klei?5]. In the enalysis presented thus far, this implies that equa-

tion (2) for the cluster node model becomes

I, = %{ b +J"g } ~ (1 "P;ﬂ) (tm — ta)

C(1-pi)

while equation (4) for the second model becomes

56
LATTICE TOPOLOGY: BANDYWIDTH

Bandmdth(zoco node network)
(Gbits/sec)
100 .
80
eo o
wh (2)
20 b
° 1. 1 L
0 100 200 300 400
Locality
(number of nodes)
TREE TOPOLOGY: BANDWIDTH
Bandwidth(moo ncde network)
(Gbits/sec)
100 .
p=10
80 P-O 4
Y - p=8 p=7
p=6
60 p=d -
/ (®)
/|
- |
20+ / -
o . . .
] 100 200 300 400
Locality

(number of nodes)

Fgure 2.13. Bondwidth (Fchips /hop count) (z) lattices (b) trees.

o7

- 1
T = gyt Th| T E D@ -p) (e —).

Closer examination of these equations reveals however, that delay in lightly
loaded networks {delay as p approaches 0) and network bandwidth (traffic load
as p approaches 1) are identical to that in the M/M/1 model. Thus, the M/G/1
queueing models yield curves with the same relative orderings as those derived -

for the M/M/1 models.

2.2.5. Summary of Analytic Results

The analytic results for the optimal number of ports are summarized in

table 2.2 below.

Table 2.2.
Optimal Number of Ports
model delay | bandwidth
cluster nodes small small

fixed number small

large
of components g

When considering delay, all of the analytical models presented here indicate that
better performance is achieved with communication components with a rela-
tively small number of ports, say from 3 to 6. Virtual cut-through reduces the
impact of larger hop counts, and thus pushes‘the optimal number of ports closer.
to 3. It is seeﬁ that a cut-through mechanism can substantially reduce
transmission delays in the network, so it is unreasonable to exclude it from any

communication component design.

When considering bandwidth, the cluster node model favors components
with the minimum number of ports, while the *‘one-communication component
per processor’’ model favors a large number of links. It is impertant to realize

however, that the overall bandwidth of a network can be increased by adding

more chips, since the sum of the link bandwidths grows faster than average hop
count in most tcpologies (rings, which are generally considered to be unsuitable
for networks with a large numbers of processcrs, are an exception). This is
verified by the cluster node model, where networks constructed from com-
porents with a small number of ports achieved greater bandv«rlcith. Thus, achiev-
ing low lztency eppears to be the more important problem, leading to further

support of communication components with a small number of ports.

Itis impbrtant to remember that these bandwidth studies measure max-
imum network bandwidth, and thus only ccnsider performance under heavy
traffic loads. In a lightly loaded network, the bandwidth available to individual
virtual circuits is equal to the bandwidth of the communication links it uses and
thus will be larger if components with a small number of ports are used. There-
fore, when combined with the analytic results presented in this section, cne
must conclude that providing general purpose comrnunication components with

a small number of ports, say from 3 to 5, is the best choice.

The analysis presented above made a number of simplifying assumptions.
The strongest assumption concerned the traffic distributions among processors.
Simulation studies which explore a number of different traflic distributions will
be discussed next. It will be seen that for the most part, these simulations sup-
port the conclusions derived analytically. When discrepancies do occur, the
simulations indicate better performance for components with a small number cf
ports, thus strengtbening the conclusion that a smell number of ports should be

used.

58

CHAPTER THREE
SIMULATION STUDIES

The analytical models presented earlier made some simplifying assump-
tions. In particular, traffic distributions were assumed to be such that links are
equally utilized, message arrivals were assumed to follow a Poisson distribution,
and message lengths were assumed to follow an exponential distribution. To
evaluate the conclusions derived by the anal)}tical models when these assump-
tions are relaxed, and to gain.deeper insight into the tradeofls between various
network topologies and realizations of the communication components, a simu-
lation program was developed. The results of these simulation studies ar"e dis-
cussed in this section. An instruction level simulator called Simon is described,
and the respective speedups resulting from executing several parallel applica-

tion programs on various netwerk structures are reported.

~ The first two sections describe the simulator and the assumptions made
about the multicomputer system. Following this, the application programs are
described, and simulation results are presented. Some of the issues evaluated
by this study include the optimal number of ports and the effect of incorporat-
ing 2 mechanism in the communication hardware for efficiently handiing

multiple-destination messages.

3.1. The Simulator: Simon

Simon (Simulator of Multicomputer Networks) is a discrete-time, event-
driven simulation program designed to facilitate comparison of alternate switch-

ing structures [Fuji83]. The most important features of Simon are:

80

(1) Traffic in the communication domain is generated by application programs
executing some parallel algorithm. This is in contrast to the analyticel stu-
dies which made the simplifying assumptions that links are egually loaded

and message arrivals follow a Peisson distribution.

(2) The software modeling the interconnection network is ccntained in a
separate module cailed the ''switch model”, allowing easy comparison of

different switching structures.

The simulator consists of three components (see Agure 3.1): the application pro-
gram, the simulator base, and the switch model. The application program con-
sists of a number cof tasks, or equivalently, processes, which execute in parallel
and communicate by exchanging messages. The simulator base time-
multiplexes execution of the tasks on the host’ computer, in this case a VAX-
11/780. The base also keeps track of time for each task (each task bhas a clock
which advances as the task executes) to ensure that interacticns among tasks
{e.g. message tra.nsrnissions) are simulated in the proper time seguence.
Finally, the switch model provides a fixed virtual circuit interface for the tasks
and simulates message passing between processors. A detailed description of

the simulator is given in [Fuji83).

3.2, Assumptions

A number cf assumptions are made in the simulation experiments reported

here. These include:

(1) negligible operating system overhead

(2) VAX 11/780 processing elements

(3) one-tc-one mapping of tasks to processors

(4) fixed length packets (1 byte header, 18 data bytes)

61

SWITCH MODEL

TASK TASK TASK

P e T

BASE

SIMULATOR APPLICATION PROGRAM

Figure 8.1. Block diagram of simulator.

(5) unlimited buffering within each communication component
(8) error free transmission

(7) virtual cut-through

(8) virtual circuits set up in advance

(9) shortest path routing

Each of these assumptions will now be discussed in tufn.

(1) The bulk of the simulation studies assume that the time to execute an

operating system routine for invoking a communication mechanism (e.g.

(2)

(3

82

sending a message) is negligible. This allows separation of the penalty due
to operating system overhead from that inherent in the communication
switch. Studies which analyze the impact of operating systerns overhead
alone, Le. which assume negligible communication delays, will also be dis-

cussed.

The speed of the processing elements is fixed throughout the simulations to
that of a VAX-11/780. By the mid 1980’s, 32-bit microprocessors will have
achieved this performance level [Patt82]. However, the absolute speed of
the processors is not so important as the ratio of processor speed to com-
munication delays; since this afects the fraction of time each processor
spends performing computations relative to the time required for commun-
ications. As technology improves, the computational speedup due to the
use of multiple processers is unchanged if this ratio remains the same,
since both uniprocessor and muiticomputer execution times decrease by
the same factor. If }however, processor speed increases at a faster rate
than comrnunication speed, the ratio changes. Communication delays will
prevent the multicomputer execution time from decreasing In proportion
to that of the uniprocessor, and speedup actually decreases. Here, since
the “VAX'" assumption implies a constant processor speed, this ratio is
changed by varying communication bandwidth. This provides the flexibility
of determining performance under 1883 technology, as well as predicting
the effect of Leclnoiogical changes.

1t is assumed that each task executes on a separate processor. In other
words, it is assumed that the system centains enough processors to accom-
modate the application program. The programs studied here use at most

32 processcrs, 50 this is a reasonable assumption. Indeed, general purpose ’

_ systems using more than 32 processors have already been constructed

(4)

(5)

(8)

(7

63

[Swan77a, Stri83, Kusk82, Hosh83].

Packets consist of a single control byte followed by 16 data bytes. Fixed-
size packets are used because of the difficulties associated with managing
variable sized buffers, as discussed in chapter 4. This is in contrast to the
analytic models described in chapter 2 which made the simplifying assump-
tion that message lengths follow en exponential distribution. The control
byte is used to specify a virtual channel number, as will be discussed in
chapter 4. In the application programs discussed here, messages are short,
typically consisting of only a single floating point number, and fit within a
single packet. An area of future research is to consider workloads which
include large, multi-packet messages, e.g. paging traflic and/or file

transfers.

It is assumed that adequate buffer space is available in each component for
holding packets waiting to be forwarded. It will be shown later that chip
densities now allow eac;h component to provide enough bufler space to
achieve approximately the same performance as a component with an

unlimited amount of buffering.

The simulator assumes that no errors occur during data transmissions.
This assumption was also used in the analytical models, and was justified in

the discussion there.

Virtual cut-through is used in all networks. Partial cut-throughs are
allowed, i.e. if the outgoing link used by a packet is busy when the header
an:ives, but becomes free before the tail arrives, the packet need not wait
for the latter event before it begins using the link. The analytical results
presented earlier indicated that substantial improvements can be achievéd

with virtual cut-through, so it is unreasonable to exclude it from any design.

(8)

(®

84

It is assumed that all virtual circuits are set up before the tasks begin exe-
cution. All of the application programs studied are static in the sense thatl
new tasks are not created after exscution begins. ‘Since the programs exe-
cute for long periods of time, the set-up time is negligible relative to the
total exscuticn time. Thus, it’s effect on overall performance can be

neglected.

Finally, the simulator uses a shortest path routing algorithm to set up its
virtual circuits. Within the simulator, Floyd’'s algorithm [Floy62] is used to
perform this computation. To prevent unfair comparisons, one routing
algorithm was used throug'hout all of the simulation studies. Shortest path
routing was selected because it has a simple implementaticn and because it
has some prospect of achieving gocd performance since it minimizes the
amount of network resources, i.e. bandwidth, required for each virtual cir-
cuit. Evaluation of more sophisticated routing algorithms is a topic of

future research.

8.3. The Aprlication Programs

Traffic distributions are generated by application programs executing

paralle] algorithms. For the purposes of this study, an application program is

characterized by the communication pattern it generates. In particular, com-

munications are characterized by the structure of communications between the

program and ils surrounding environment, and the pattern of comrnunications

within the prcgram, i.e. among its tasks.

Fxternal communications between the parallel program and its environ-

ment are assumed to fall into one of two categories:

(1) serial input, serial output (SISO).

65

(2) parallel input, parallel output (PIPO).

These two communication patterns are shown in figure 3.2. In SISO, the input
data arrives from (is sent to) a single source (destination). In PIPO, the data

arrives (leaves) in parallel from {to) several sources (destinations).

Severa! of the application programs implement signal processing functions.
which use an SISO communication pattern. A single processor samples the input

waveform and distributes the data values to a number of the other processors

SERIAL INPUT
SERIAL OUTPUT (SISO)

PARALLEL

PROGRAM
input output
task task

PARALLEL INPUT
PARALLEL OUTPUT (PIPO)

PARALLEL
output
tasks

input

Oo—
.)
tasks ° PROGRAM
@
O—

Figure 3.2. (Communication patterns for application programs.

€6

which collectively compute results. Another processor collects the output
waveform. In other sittiations, a PIPO structure might arise. For example, the
application program could be one of several job steps, each of which is imple-
mented as a separate parallel program. Since the input (cutput) of each job
step comes from (goes to) another parallel program, one can expect data to
arrive (leave) in parallel. While other communication patterns are possible, e.g.
SIPO or PISO, these are only combinaticns of the patterns presented above, and

are not fundamentally different.

The internal communication paths are also partitioned into two categeries:
(1) globai
(2) local

As the name implies, global communications implies that each task communi-
cates with all, or nearly all of the other tasks. Local communications implies
each task communicates with a srnall subset of the other tasks. The programs
studied here that use local communications are pipelined. Thus, the communi-
cations are local in the sense that each stage of the pipeline sends messages
only to the next stage, and not to previous or subsequent stages. Although this
communication structure does nct exhibit loops among tasks in different stages
of the pipeline, lcops may exist among tasks within the same stage. Programs
that exhibit loops among tasks in different stages are consider=d to belong to

the class with global communications.

Six applicaticn programs demonstrating several different traffic patterns
were run cn Simon. Each uses one of the four combinations of the parameters

described above. These are:

(1) Barnwell, a signal processing program using Barnwell's algorithm (global
S1S0)

67

(2) Block 1/0, a signal processing program using block filters (local SISO)

(3) Block State, a second program also using block filters (local SISO)

(4) FFT, a program for computing Fast Fourier Transforms (local PIPO)

(5) LU, a program for performing LU decomposition on a sparse matrix (global
PIPO)

(8) Random, a program generating artificial traffic loads (global PIPO)

The communication patterns exhibited by these programs are summearized in

table 3.1 below.

Table 3.1
Communication Structures
Used by the Test Programs

SISO PIPO

global | Barnwell (12 tasks) ﬁz}n(dlosrrtla(slé)tasks)

Block 1/0 (23 tasks)
local | piocy State (20 tasks) | TT L (32 tasks)

All of these programs communicate relatively small amounts of data fre-
quently. Typically, a task waits for data values to arrive from other task(s), per-
forms some floating point operations on them, and then generates a result which
is passed on to another task(s). The number of processors ranges from 12 in the
Barnwell program to 32 in the FFT. Each of these programs will now be dis-

cussed in greater detail.

3.3.1. Barnwell Filter Program {global SISO, 12 tasks)

The Barnwell filter, and the two programs which follow, implement the digi-
tal filter defined by the equation:

-1 : =1
Yo = S bYan + %, oo
i=1 i=

Vectors X and Y are the input and output waveforms, A and B characterize the

g8

filter being implemented, and N and M are the number of poles and zercs in the

filter respectively. The programs presented hereuse ¥ = N = 7.

An “input task’ distributes a total of 400 samples of the input waveform
(the real multicomputer would collect this data from a sensor at some sampling
frequency) to some number of “‘computation tasks". An "outptit task’ collects
the output waveform computed by the computation tasks. Thus, all three pro-
grams have an 3130 communication pattern. When all of the 400 input samples
have been processed, execution terminates. It is assumed that the sampling
frequency is large compeared to the rate at which data points can be processed.
This ensures that the execution time is not limited by the input data rate. Thus,
at tirne O, the input processor begins distributing the 400 data points to the

computation processors and never waits for input data.

The Barnwell program computes the filtering functicn using Barnwell's algo-
rithm [Barn78, Barn78, Hodg8C, Barn82, LuBl]. The two signal precessing pro-
grams which follow use a dir;"erent technique for performing the calculations. In
Bearnwell, twelve tasks are used, as shown in figure 3.3. Each node in figure 3.3
represents a task, and each arc a virtual circuit. An arc which fans out to

several destinations represents a broadcast cocmmunication.

The Barnwell program uses ten tasks to execute the signal processing algo-
rithm. This is the maximum number of processors the algorithm can efiectively
use in perforining the computation, assuming small communication delays. This
numbex; is a function of the number of poles in the fllter being implemented.

Each computation processor receives 40 input samples.

Each data point received by a computation processor is combined with data
generated by other processors. The result is then broadcast to the six proces-
sors immediately *‘to the right'* of that processor. These communication paths

are shown in figure 3.3. The communication pattern for the Barnwell program is

85

BARNWELL PROGRAM

=% , -
) ———un

p. o
~

()
.S
i
I

/5>
e

K

IS

e
\ml'
&

M
A
$

(@)
b Neh
144

(@)
"
G

~J
K17

‘»J

118

[

ﬁgﬁr‘e 3.3. Communication paths for Barnwel program.

classified as global SISO, although communications are really only approxi-

mately global since each computation processor does nct communicate with all

others.

8.3.2. Block 1/0 Filter Program (local SISO, 23 tasks)

The Block State and Block 1/0 programs perform the filtering function

described above by grouping the input samples into blocks and then processing

70

" b o

each block as z single unit. The resulting communication patterns are local
SI1SO. These algorithms have the advantage that the block size can be varied to
change the performance of the system. A larger block size requires a larger
number of processors, but increases the rate at which input samples can be pro-
gessed. Increasing block size does incur a latency penalty however. The amount
of time between reception of the first input sample and the generation of an cut-
put waveform increases. In practice, one would use the minimum block size

which allows the input samples to be processed in real time; this minimizes the

latency as well as the number of processors.

Here, the Block 1/0 and Bleck State programs use the minimum block size
in order to minimize latency. This minimum size is related to the number of
poles in the filter. Given this bleck size, the computation is structured to use as
many processors as required to exploit the parallelism inherent in the computa-
tion. The Block 1/0 program uses 23 tasks which are structured as a two-stage
pipeline, as shown in flgure 3.4, Communications within the second stage are
global, so the program is actually somewhat intermediate between local and glo-
bal SISO. Note that input samples must be broadcast to several other tasks.
Details of the algorithms implemented by this prcgram can be found in [Burr71,

Burr72, Mitr78, Lug3].

8.2.3. Bleck State Filter Pregram (lccal SISO, 20 tasks)

The Bleck State progrém uses the same “blocking’ techniques discussed in
Blockﬁ 1/0. This program however, uses a somewhat different approach to per-
form the computation, and as a result includes information of the internal
behavicr of the filter as well as the input-output relationships. Thus, it allows
the determnination of some intermediate velues which the Bleck 1/0 program
does not compute. As before, the minimum block size is used, resulting in a

computation which requires 20 tasks. The communicatior paths for this

BLOCK 170 PROGRAM "

——
vt
ot
&

323

Figure 3.4. Cbmmaunication paths for Block 1/0 program.

program are shown in figure 3.5. It is seen that the computation uses a 4 stage
pipeliqe. and thus exhibits a local SISO communication pattern. Again, input
samples are distributed via multiple-destination messages. Further details of
the algorithms used in the Block State program can be found in [Barn80a,
Barn80b, Zema81, Lus3).

BLOCK STATE PROGRAM

Figure 3.5. (Communication Paths for Block State program.

8.3.4. FFT Program (local FIPO, 32 tasks)

This program performs a cemplex 16 point Fast Fourier Transforms on sets
of input values. The FFT algorithm is used to cornbute the Fourier coeflicients
for an analog signzl. The input consists of 400 sets of complex input values,
Zg* - :zw. The output consists of 400 sets of complex numbers Yo - * ¥1s such
that

Y = ﬁz,:exp((-—Zﬂ'/ 16)ik)
£=0

Details of the algoritam used to perform this computation in time proportional

73

to NlogN (here, N=18) are discussed in e.g. [Baas78].

The communication paths used by this program are shown in figure 3.6.
Since the same computation is performed on several sets of input data, the
computation can be pipelined. The input data are assumed to reside in the pro-
cessors comprising the first stage of the pipeline, so the resulting comrmunica-

tion paths are local PIPO.

FFT PROGRAM

1 9 l &

e‘my 23
R
: :; s‘a“
@‘@' A’A 5

0.@“ ’A‘@

18 24 32

Figure 3.6. (ommunication paths for FFT program.

74

3.8.5. LU Decomposition {global PIPO, 15 tasks)

This program performs LU decomposition on a sparse matriz. LU decompe-
sition is a well known technique for solving a set of linear equations. Suppose a
set of equations is specifled as

AX =Y
where A is a known n by n matrix, ¥ is a known column vector of length n, and
X is an unknown column vector also of length n The solution to this equation
can be found by factering the 4 matrix into two components, L and U, and then
solving the equations
ILB=Y =and UX=F

in turn for ¥ and then for X. L and U are upper and lower diagonal matrices
respectively, Le. all of the elements above (for L) or below (for U) the main
diagonal are 0, so these two equations can be easily solved by forward and back-
ward substitution respectively. If the equation AX = Y is solved many times with
different values for Y, then this method is more efficient than solving the origi-

nal eguation (AX=Y) repeatedly by say, gaussian elimination [Danl74].

LU decomposition is one step in the inner loop of the circuit simulation pro-
gram SPICE, so it must be exscuted repeatedly on each circuit simulation run
[Nage?S]. The parallel program used in these experiments performs the decom-
position by using Doolittle’s algorithm [Chua75]. The matrices used in this appli-
cation are sparse, but not necessarily banded, making other techniques, e.g.

systalic methods (Mead80), less attractive.

Given a sparse matrix, the parallel program was generated by first creating
uniprocessor code for performing the computation, analyzing the data depen-
dencies within this ccde, and then creating a parallel program from the data
dependency graph [Yug4, Wing80]. For the program in question, the communica-

tion pattern which results from this process is global, i.e. every task sends mes-

75

sages to every other task. The program is PIPO since LU decomposition is only
one of several parallel job steps in the inner loop for SPICE. Input (output)
values can be expected to arrive from (be sent to) another parallel program exe-

cuting the previous (subsequent) step of the inner loop.

9.3.8. Artificial Traffic Loads (global PIPO, 12 tasks)

A program creating synthetic traffic loads using random number genera-
tors was also studied. In the discussion which follows, this program is referred
to as the “Randem” program. In contrast to the other application programs,
this program does not perform any useful computation. Its only function is to
generate traffic for the communication network. The program consists of 12
tasks, eac.h of which sends a total of 500 single-packet messages. Messages are
uniformly distributed among other tasks, implyiné global - communications.
Since each processc;r originates its own messages, in contrast to a single proces-
sor generating all messages, the external 1/0 structure is PIPO. The mean time
between messages is chosen from an exponential distribution. loading on the

network is increased by reducing the average time between messages.

3.4. Communication Delays

Figure 3.7a shows the i:erformance of these application programs using a
fixed-delay, infinite-bandwidth switch. Speedup, wh.ich is defined as the execu-
tion time of the program on a uniprocessor divided by the execution time on the
multicomputer, is plotted as a function of communication delay. Here, delay
refers to the end-to-end delay to send a message along a virtual circuit. It is
assumed that this delay is the same along all circuits. Since the switch provides

unlirnited bandwidth, any number of processors may simultaneously send mes-

sages.

Figure 3.7.

78

SPEEDUP ws. DELAY

SPZXDUP
15.0 T T . +~
\m
10.0 g
BLOCX 1/0
BLOCK STATZ
(a)
i BARNWELL
80 k /— Inal
% 20 20 rm) 85 100
DELAY
{zicroeeconds)
SPEEDUP vs. BANDWIDTH
SPEXOUP
15.0 Y T Y ™
10.0
(b)

80

(Mbits /vec)

Speedup vs. (c) delay. (b) bandwidth.

{4

SPEEDUP
vs.
OPERATING SYSTEM OVERHEAD
SPEEDUP
15-0 T A L] L

BLOCK STATE (c)

5.0 PR U

° 4] 1.0 20 30 40 1]
OPERATING SYSTEW OVERHEAD
(microseconds)

Figure 3.7. (c) Speedup us. operating system overhead.

The two programs using global communications, Barnwell and LU, experi-
ence a severe degradation in performance as communication delays increase.
This results from the relatively fine ‘‘granularity’’ of the computation, in which
communications are frequent and delays have a significant impact on total exe-
cution time. On the other hand, the FFT and Block State programs exhibit little
performance degradation as delays increase. These programs are pipelined, so
delays only affect the amount cf time required to fill and empty the pipe. Once
the pipeline is filled, data arrives at each processcr at a constant rate, indepen-
dent of communication delay, so all of the processors remain busy. It is errone-
ous however, to conclude that the interconnection switch does not impact the
performance of these programs, since the curves in figure 3.7a assume unlim-

ited network bandwidth.

The curves in figure 3.7b show the performance of the programs ‘as a func-

tion of network bandwidth. Conceptually, the network can be viewed as an entity

78

which provides a ceriain amount of bandwidth (this quantity is plotted on the
borizontal axis in figure 3.7b) for transmitting messages. The optimistic
assumption is made that all of the network's bandwidth can be allocated to a
single virtual circuit on demand. In the simulator, this is implemented by using
an **ideal bus’ switch mcdel. The cormmunication network consists of a single
bus of the indicated bandwidth. The full bandwidth cf the bus is allocated to.
messages as they are generated. Conflicts to access i.he bus are gueuved in FIF'O
sequence, and propagation delays along the bus are assumed to be zero. The
curves indicate that although the performance of the pipelined programs is
insensitive to communication delay, adequate network bandwidth is required to
" achieve good performance. The programs exhibiting global communication pat-
terns behave similarly. The LU program in particular, is seen to require very
large amounts of bandwidth before achieving good performance. Simulations at
higher bandwidths indicate that a 500 Mbit/second network is required to
achieve a speedup of 10.0 (speedup with an inflnite bandwidth, zero delay switch
is 12.7).

Finally, the curves in figure 3.7c indicate performance as a function of
operating system overhead. Here, overhead is measured as the time required to
execute an operating systemn routine for sending or receiving a message.
Transmiszion delays are assumed to be zero. It is seen that degradatlion is
severe when delays in the operating system are only a few tens of microseconds.
This result again is a consequence of the relatively fine granularity of the com-
putation. It points out that hardware support for operating system primitives
(bere sending and receiving messages) is required to allow full exploitation of
the parallelism inherent in many programs. ¥ith a traditional software imple-
mentation, the time spent in the operating system will dominate the transmis-

gion time, negating the benefits of incorporating a high-performance communi-
£ e

v

s

78

cation network. In particular, since recovery from transmission errors is left to
an end-to-end protocol, hardware support should be employed in the computa-
tion processor to keep these checks from degrading performance. Hardware
support for communication primitives thus represents an important area of

future research.

8.5. Issues Under Investigation

Four separale issues are studied in these simulation experiments. The first
explores the optimal number of ports, and compares simulation results with
those predicted by the analytical models presented earlier. Next, an alternative
model in which processor and communications are 'miegrated onto the same
chip is studied. Third, since many of the application progr@s send the same
message to several different destinations, the impact of incorporating a
mechanism which efficiently handles such messages, i.e. a multicast mechan-
ism, is investigated. Finally, the particular mapping of tasks to processors
which was used in these experiments is examined, as well as its impact on the

simulation results.

In order to evaluate the optimal number of ports, two types of switch
models were implemented: cluster nodes and networks with a fixed number of
components. These switch models correspond to the networks discussed in the
analytical studies presented earlier. In the first, each node of a topology requir-
ing b branches per node is implemented with a cluster of p-port communication
components. As p is reduced, the number of components required to construct
the network is increased. Thus, the cluster node switch models do not keep the
chip count constant. The second set of switch models compares networks with

different values of p, but with approximately the same number of components.

In addition to networks constructed from separate computation and com-

munication components, networks with processor and communications

g0

integrated onto the same chip are studied. This is the building block for the
“network computer” proposed by Wittie [Witt81]. In this model, the communica-
tion links between the computation and communication domains are eliminated.
In communication component networks, it will be seen that these links some-
times become bottlenecks which bias the results. Tone simulations under this
latter model eliminate this bias. Multicomputers using the Wittie model do
require more circuitry per chip than these using communication components,
making direct comparisons unfair. Nevertheless, it is included as an alternative

model for multicomputer networks.

Since the digital filtering algorithms (Barnwell, Block State, and Bleck 1/0)
involve transmitting the same data to several destinations, a mechanism which
efficiently distributes muitiple-destination packets (Le. a ““‘multicast’ mechan-

ism) is expected to improve performance.

If a multicast mechanism is not used, several ‘‘single destination’ packets
are generated at the source node, one for each destination, and each is routed
separately through the network to its particular destination using a shortest
path routing algorithm. If one traces the paths followed by these packets
through the network, it is seen that packets will follow each other up to a cer-
tain point, at which time they part and go their separate ways. The multicast
mechanism combines the single destination packets which are ‘‘following eac'h
other” into a single *‘multicast packet”. A new copy is not generated until one
or more of the single destination packets incorporated into the multicast packet
need to “'go their separate ways''. If several packets breaking off like this are all
going in the same direction, only one new multicast packet is created. Multicast
and broadcast mechanisms are described more fully in [Dala78, Bhar83,
McQu78]. Note that since virtual circuits are used, implementation of this does

not affect other parameters of the switching network. A longer header might be

Te
Nd

81

needed to provide a list of destination nodes. However, in a virtual circuit
mechanism, this information need only be carried through the network when the
multicast circuit is set up.

The mapping of the application program onto the network topology is
identified by labels assigned to tasks and processors. As shown in figures 3.3-3.6
(the remaining two programs, Random end LU, use global communications, so
the mapping does not influence the results), each task of each application pro-
gram is characterized by a unique integer called its “task id". Similarly, each
node, i.e. processor, of a topology is characterized by a unique node number. In
the discussions which follow, task i always executes on processor i. Thus, the
simulation results assume a specific mapping of tasks to processors. Care must
be taken to ensure that this mapping does not bias the results. More will be said

about this later.

3.6. Simulation Results on Cluster Node Networks

As discussed earlier, one can implement a node of a topology requiring b
branches per node as a cluster of p-port communication components. The vari-
ous application programs described above were run on Simon using switch
models for several diflerent cluster node networks. The results of these simula-
tion experiments are reported in this section.

For this study, four topologies are examined which vary b over a wide range
of values. All topologies are assumed to use full duplex, bidirectional links.

These topologies are:
(1) Fully connected network.

(2) Full-ring binery tree [Desp78].

. (3) Butterfly network.

g2

(4) Ring network.

The topolegy within each cluster noce is a balanced tree, with the processor

attached to the communication component at the root.

In all of the vgraphs which follow, speedup is plotted as a functicn of B, the
total 1/0 bandwidth of the communicaticn chip. The only exception is the
artificial traffic load program in which average message delay is plotted as a
function of traffic load. It is assumed that the bandwidth B is equally divided
among the existing communication links. Thus, a Y-component with B equal to
300 Mbit/second has thrze 100 Mbit/second communication links. For com-
perison, the speedup on a muiticornputer with an infinite-bandwidth, zerc-delay
interconnection system (i.e. a “perfect switch™) is also shown. The perfect
switch assumes that messages arrive at their destinaticn at the instant at which
they are sent. It thus gives an upper bound on performance for any comrmunica-

tion network.

The analytical results presented earlier indicated tkat cluster node net-
works corstructed from communication components with a small number of
ports yielded the most bandwidth and least delay. Thus, one would expect net-
.works constructed from Y-components to yield the best performance. It will be

geen that the simulation results confirm this conclusion.

3.8.1. Fully Connected Networks

The fully connected network is formmed by placing a single link between
every pair of nodes. Here, the number of nodes is equal to the numnber cf tasks
required by the parallel progrem, and it thus varies from application to applica-
tion. This topology minirnizes the number of hops between every pair of nodes,

but at the expense of a larger number of branches cn each node.

83

Three of the application programs were run on Simon with switch models
for fully connected networks. Performance curves are shown in figures 3.8a-c.
Due to limited amounts of computing rescurces, cluster node simulations for the
FFT, Block 1/0, and Block State programs are not available. Figures 3.8a-c indi-
cate that performance improves as the number of ports is reduced, in agree-
ment with the analytical results. Curves labelled *'P+C"’ indicate that processor

and communications circuitry are incorporated onto the same chip.

The curves resulting from the artificial traflic load program indicate that
reducing the number of ports reduces the average delay in a lightly loaded net-
work, and increases total network bandwidth. The bandwidth result however, is
somewhat misieading because the total network bandwidth shown in figure 3.8¢
is limited by the link between the processor and its communication component.
This is demonstrated by the curve in which communication circuitry is included
in the same chip as the processor. Network bandwidth is increased significantly

when this bottleneck is removed.

Figure 3.8d shows the curves for the artificial traffic load program with this
bottleneck link removed. Here, it is assumed that the root component of each
cluster node has both computing and switching capabilities. Other components
only perform switching functions. As expected, delay in lightly loaded networks
improves as the number of ports is reduced The curves also indicate, however,
that networks with a large number of ports provide as much bandwidth as those
using Y-components. This unexpected result is a consequence of the lack of
store-and-forward communications in the fully connected network, and the par-

ticular traflic distribution created by the artificial traffic load generator.

The bandwidths indicated by figure 3.8d represent the minimum of two

quantities:

Figure 3.8.

BARNWELL: FULLY CONNECTED

SPEEDUP
8.0
Y perfect switch
eo | P e
40 | J
~ (2)
20F /AT N
— with multicast
' ----- without multicast
o0 10 200 300
BANDWIDTA PXR CHIP
(Gbits/chip-vec)
LU: FULLY CONNECTED
¥FYZDUP
18.0 .
vpc.'feci switch
10.0
()

8.0

Fully connected netuwork (o) Bernwell. (5) LU.

85
Y RANDOM: FULLY CONNECTED

(microseconds)
160

6ot

80

(e)

40

NETWORK LOAD
(messages/microsecond)

RANDOM: FULLY CONNECTED (P + C)
DELAY

(microseconds)
100

-

60|
(a)

40 T

0 20 4.0 6.0 8.0 10.0

NETWORK LOAD
(nemages/microzecond)

Figure 3.B. Fully connected network (c) Randomn. (d) Processor with
Communications.

g6

(1) The maximurmn bandwidth provided by the network.
(2) The maximum rate at which traffic can be generated by the processors.

I? the first quantity is the limiting factor, then the tradeoff between hop count
and link bandwidth discussed earlier determines the cptimal number of ports. If
the second quantity limits performance, then the utilization of the links around
the processors generating messages determines performance. The more
efficiently these links are used, thz greater the amount of traffic sent into the
network, and the higher the overall bandwidth. This quantity is maximized if the
traffic generated by each processor is evenly distributed across that processor’s
output links, since this implies that on the average, all of the processor's links
will be busy all of the time. An uneven distribution causes some links to be over-
lcaded while others become idle, reducing the total traffic flow into the network.

In the artificial traflic load program, messages from each task are uni-
formly distributed among all other tasks. Thus, this program is a “perfect
match’ with the fully connected network with processor and communications
integrated onto the same chip, since a direct link exists between each pair of
communicating tasks. Because of the uniform traflic distribution, all links are
egually utilized, and the emount of traffic generated by the processcrs is max-

imized. This rate determines the bandwidths shown in figure 3.8d.

Creating a new network by adding switching components increases the
emount of trafiic the network can carry, but the amount of traffic which can be
generated is not increased. Thus, this additional network bandwidth cannot be
utilized. In fact, performance will actually be degraded if the new network deces
not preserve the equal utilization cf processor links described above. This
phenomena explains the poor performance of some of the networks in figure

3.Ed.

87

The behavior described above is atypical because the global/uniform traffic
pattern of the artificial traffic load generator is not always appropriate. It will
be seen that other topologies and different traflic patterns yield results favoring
a small number of ports. Indeed, performance curves for the other application
programs (figures 3.Ba-b) indicate that networks using communication com-
ponents with a small number of ports achieve better performeance than networks '
with a large number of ports, even if the latter have the added advantage of
including communication circuitry on the same chip as the processor. Networks
with a small number of ports and processor and communications on the same

chip will perform even better, widening this gap.

The curves for Barnwell's algorithm indicate that a significant performance
improvement results from incorporating a multicast mechanism in the com-
munication hardware. If no multicast mechanism is provided, the processor
sending the message must send a separate copy to each destination. A gueue
appears instantly in the processor sending the message, leading to long delays

and poor performance.

No rmulticast curve is shown when processor and communications are incor-
porated onto the same chip. This is because networks with and without a multi-
cast mechanism behave identically under these circumstances. Since each pro-
cessor has a direct link to every other processor, all “splitting apart’” of the
multicast packet is done at the source node. A network without a multicast

mechanism behaves in exactly the same way for this topology.

8.6.2. Full-Ring Tree Networks

The second topology is the full-ring binary tree [Desp78)]. This topology is
constructed from a binary tree by adding links between siblings and cousins, as
ghown in figure 3.9. The average hop count grows logarithmically with the

number of nodes, while the number of branches per node remains fixed at 5.

€3

Figure 3.9. Full ring bincry lree.

BARNWELL: FULL RING TREE

SPLEDUP
8.0 7 T
t periect gwitch
x4 =3
8o} pes O P
p=0 .
- ;K"“\“.“
X e e
4.0 & e N SO PR L T S .
20 ¢ , p=S (P+C)
—— with mmlticest
----- without muiticast
OO 100 200 300
BANDWIDTH PZR CHIP
(Mbite/chip-sec)

Figure 3.10. Full ring free (a) Barnwell.

89

Performance curves for full-ring tree networks are shown in figures 3.10a-f.
Qualitatively, these curves agree with those presented for the fully connected
networks. Again, components with a small number of high-bandwidth links

achieve the best performance.

The performance curves for Barnwell’s algorithm (figure 3.102) indicate
that as the 1/0 bandwidth of the communication components is increased,
speedup increases quickly at first, but becomes more gradual at higher link
bandwidths. Other curves howe\}er. such as some of those for the FFT program
(figure 3.10d), indicate a linear increase in speedup. These differences arise
from the nature of the communication patterns for the different programs. The
linear behavior arises when one virtual circuit remains the critical path for the
program as chip bandwidth is varied. As bandwidth is increased, delay, and thus
execution time, decrease in proportion. The pipelined programs often demon-
strate this behavior, with the longest path from the first stage of the pipeline to
the last forming the critical path. Many of the SISO programs alsc demonstrate
this behavior. Here, the bottleneck is in distributing the initial data samples to
the computations processors. The problem is aggravated if multiple-destination
messages are required to distribute the samples, as is the case in the Block 1/0
(figure 3.10b) and Block State (figure 3.10c) programs, particularly if the net-
work does not include a multicast mechanism. The speed of the links around
the input processor becomes the primary factor which determines the execu-
tion time of the program. Nonlinear behavior results when no single virtual cir-
cuit dominates performance across all chip bandwidths. Instead, delays on a
numbér of virtual circuits determine the overall execution time. Both types of

behavior will be seen in the performance curves which follow.

The curves for the artificial traffic load programn (figure 3.10f) again indi-

cate that delay and bandwidth are both improved as the number of ports is

g0

BLOCK 1/0: FULL RING TREE
SPZIDUP
8.0 & perfect S
switch
p=3
p=4
40 b
(®)
20 ¢
05" 100 200 300
BANDWICTH PIR CHIP
(ddits/chip-sec)
BLOCK STATE: FULL RING TREE
SPYXDUP
8.0 «— perfect entch ’
(c)

BANDWIDTH PER CHIP
(dbits/chip-wec)

Figure 3.10. Full ring tree (b) Block /0. (c) Block State.

FFT: FULL RING TREE

SPEEDUP
15.0 ~ T T
iperfect switch
100 p=3 7
p=5
(P+C)
=3
sor P “
p=4
p=5
° | A 1
(] 20 40 0 20 100
BANDWIDTH PER CHIP
(Mbits/chip-wec)
LU: FULL RING TREE
BPEEDUP
16.0 T r
vper!ect wwitch
100 p=3 b
p=5
(P+C)
p=4
=5
8.0 b P E
p=s
° 3 1
[+] 200 400 800
BANDWIDTH PXR CHIP
(idits/chip-sec)

Figure 3.10. Full ring tree (d) FFT. (e) LU.

g1

(d)

(e)

g2

. RANDOM: FULL RING TREE
ELAY

{microseconds)
100
o=8
8or <
eo 3 -
o
40 o
20 r -
00 l.AO 2.10 3.0
NETWORK LOAD
(essages/ microsecond)
_p RANDOM: FULL RING TREE (P+C)
(cxicreseconds)
160 -
& r o
p=4
L <
p=s (2)
40
p=3
20 <
% 1.0 Z0 30
NETWORX LOAD
(messages/microwecond)

Figure 3.10. Full ming tree (f) Rendom. {g) Rendsm (P+C).

83

reduced. The curve with processor and communications integrated onto the
same chip indicates that the link between the processor and communication
component is still a bottleneck, since the bandwidth provided is significantly
better than that provided by networks using components with 4, 5, or 8 ports
per node. This bandwidth is still somewhat less than that of the Y-component
network however, even though the latter is handicapped by this bottleneck link. .

This adds further support to components with a small number of ports.

3.6.3. Butterfly Networks

The 32 node butterfly network shown in figure 3.11 is the third topology stu-
died. The butterfly is similar to the tree to the extent that the average hop
count grows logarithmically with the number of nodes. Four branches are
required for each node. This topology is more symmetric than the tree however,
and thus is less susceptible to bottlenecks for applications exhibiting global

traffic patterns. The butterfly is ideally suited for the FFT application program.

Performance curves for the butterfly network are shown in figures 3.12a-e.
Due to the excessive amount of computing resources required, a curve for the
Block 1/0 program could not be produced. Networks constructed with com-
ponents using a small number of ports again achieve the best performance. The
FFT program (figure 3.12c) performs unusually well at low chip bandwidths,
demonstrating the reduction in bandwidth requirements when a good mapping is
found between the application program and hardware. The curve with processor
and communications on the same chip in the artificial traffic load program
(figure 3.12¢) indicates that the link between the processor and communication
component is not a serious bottlenéck. The bandwidth provided is equal to that
of the network using communication components with the same number of

ports.

é

\ .

17
18
1

9
10
11

/

&0

1
&
GX

2

12

Figure 3.11. Butierfly topology.

LS

85

BARNWELL: BUTTERFLY

SPEEDUP
8.0 v
? perfect switch
p=4 p:S
60 b -
p=3
p=4 i)
(P+c) I
40} PRI et
. _,-" ’./" (a)
20 ¢ h
- with multicast
.'.,*"' without multicast
% 100 200 300
BANDWIDTH PER CHIP
(Mbits/chip-wec)
BLOCK STATE: BUTTERFLY
SPYXEDUP i
80. «— perfect switch . -
40 1 . e
p=3
3.0 ¢ l' T - = p=4 T
p=4 (P+C) (b)
20 F SN, ‘ ".-" -
» l.: ':. 4 =3
1.0 } s L -
” ——— with multicast
C?'." ----- without multicast
00 100 200 300
(MDbits/chip-sec)

Figure 3.12. Butterfly (o) Barnwell. (b) Block State.

26

FFT: BUTTERFLY
SPEEDUP
15.0 T T ™ T
: perlect switeh

p=4 (P+C)
10.0

[N (c)

6.0 p=4

p=5

! 1

[-1¢] 80 100

BANDWIDTH PZR CHIP
(Mbdits/chip-sec)

- LU: BUTTERFLY
RPEZDUP

15.0 T r
Y—perfect swite
10.0 + p=3 "
P=4
d
pea P+C) ()
p=3
80 r
o " L
0 00 400 600
BANDWIDTH PER CiIP
(Mbits/chip~vec)

Figure 3.12. Butterfly (c) FFT. () LU.

a7

RANDOM: BUTTERFLY

DELAY
{microzeconds)
100 T
8or
80
(e)
40
20 F
00 Ot’) CO 1.5
NETWORX LOAD
(e ssages/microsecond)
RANDOM: BUTTERFLY (P + C)
{microseconds)
100
80 -
60 -
69
40
w b
00 O.l:‘) 1.’0 1.5
NETWORX LOAD
(messages/microsecond)

Figure 3.12. Butterfly (e) Random. (f) Processor with Communications.

g8

8.8.4. Ring Networks

The fourth topology, a bidirectional ring, minimizes the number of branches
per node, but maximizes the average hop count. Like the fully connected topol-

ogy, the number of nodes is equal to the number of tasks in the application pro-
gram.

Performance curves for the ring network are shown in figures 3.13a-f. In
ring topologies, the use of communication components also implies the use of
Y-compenents, since only three ports per chip are required. Thus, only two dis-
tinct networks need to be compared. The network with communicatien circuitry
on the processor chip yields better performance since it has higher bandwidth
links (only 2 ports are needed) and smaller hop counts. Thus, networks con-
structed with ccmponents with a small number of ports again achieve the best

performance. .

The only exception cccurs for the Block 1/0 program. Here, the communi-
cation component networks achieve better performance at high chip
bandwidths. This behavior is a2 consequence of the SISO behavier of the pro-
gram. When executicn begins, the “input” processor broadcasts data values to
a number of computation processors. In ring networks without commmunication
components, this causes the links around this processcr to become saturated,
blocking traffic produced by the cther processors since messages are serviced
at each node by a strict FIFO ordering. As a result, the signal processing calcu-
lations cannot proceed until this initial backlog of traflic is cleared up, slowing
down the computation. If communication components are used, the link
between the input processor end its communication component becomes
saturated: however, this link does not bleck traflic ameng other processors. The
arrival of the input data messages at the communication component is spread

out over time. Thus, these messages do not completely block other traffic,

A4

Figure 3.13.

BARNWELL: RING

SPEEDUP

8.0

80}

4.0 ¢

20

Ll N
Y perfect switch
ey
:" -,. ~
l" 4'." i
p=2 (P+C)
l" ""‘ pgs
l"' l"'
'."," o~ with multicast
P without multicast

den
100 200 300

BANDWIDTH PZR CHIP
(Mbits/chip-sec)

BLOCK 1/0: RING

SPEEDUP

6.0

4.0

2.0

< perfect
switch

. ‘ - with multicast
ST eeees without mmulticast

0 100 200 300

BANOWIDTH PER CHIP
(Mhits /chip-sec)

Ring (a) Barnwell. (b) Block 1/0.

839

(2)

(®)

Figure 3.13.

BLOCK STATE: RING

100

SPEEDUP
8. — Derfect switch)
40 } A -
so } pe2 (P40 A
i (c)
20 R p=3 4
1.0 ¢ ."":"]
'.':," ——— with multicast
‘:f" ----- without muiticas?
°O 180 290 300
BANDWIDTH PEIR CHIP
(3ibits/chip-pec)
FFT: RING
SPEEIDUP
15.0 T Y Y 4
Y perfect switch
100 1
()
p:
(P+C)
60 p b
=3
°0 29 40 &0 a0 100
(Mbits/chip-wec)
Ring (c) Block State. (d) FFT.

101

LU: RING
SPEEDUP
15.0 v T
Tpcrfect gwite
100 ¢ p=2 (P+C) <
=3
P (e)
5.0 ¢ -
0 - N e
[+] 200 400 600
BANDYIDTH PER CHIP
{Mbdits/chip-sec)
RANDOM: RING
DELAY
(microseconds)
100 T T
B0} - : .
p=3 :
N
6ot :]
;
p=2 (P+C) (0
40 I '-' “
e r ':' J
OO 1.0 2.0 3.0
NETWORX LOAD
(messages /microsecond)

Figure 3.13. FRing (e) LU. (f) Random.

102

although they do increase congestion. In general, a priority mechanism could
be used to avoid this anomaly: traffic generated by the computation processors
can be assigned a higher priority than the input messages. At low bandwidths,
the performance of the communication component networks is limited by the
bandwidth of the link from t.he input prccessor to its communication com-
ponent, allowing networks with processer and communications on the same chip

to yield better speedup.

The “blocked traffic” behavior described above is not as prominent in the
other SISO programs, Barnwell and Block State. In Block State, the traflic within
the pipeline exhibits enough locality that it can avoid the congested area around
the input processor. In Barnwell, the input message traffic is single destination,
in contrast to Block State where the input traffic is multiple destination, and
thus does not create as much congestion. The ‘“‘jump’’ in performance arcund
110 Mbit/chip in one of the Barnwell curves is caused by a fortuitous shift in the
traffic pattern which causes an unusual reduction in queueing delays along one

of the links; it does not reflect any general principles of behavior.

8.8.5. Ccnclusions for Cluster Nede Networks

The sirnulzation results for cluster ncde networks are in agreement with the
analytical results presented earlier. Networks constructed frem components
using a small number of ports yield less delay than networks using components
with many ports. Bandwidth can be increased by adding more components to
the communication domain. Eventually, as network bandwidth is increased, the
rate at which processors can generate traffic limits performance, rather than
the bandwidth of the network. Also, the programs using multiple-destination
communications show a significant performance improvement if the communi-

cation circuitry includes a multicast mechanism

N

103

8.7. Simulation Results on Networks with a Fixed Number of Components

Cluster nodes constructed from components with a large number of ports
require fewer components than those constructed with a small number of ports.
Thus, the studies presented above do not consider chip count. In this section,
networks using the same number of compeonents are considered. The applica-
tion programs are executed on lattice and tree topology networks like those
analyzed earlier. It will be seen that bottlenecks form around the root of the
tree networks, biasing the results to favor components with a small number of
high bandwidth links. De Bruijn networks are examined as an example of a class
of network topologies with logarithmic average hop count, but without this

inherent bottleneck.

The analytical results indicated that networks constructed from com-
ponents with a small number of ports yielded lower delay, but less bandwidth
than networks using components with a large number of ports. Based on these
results, one would expect networks using a large number of ports to yield better
performance when the network is bandwidth limited. Intuitively, as we move
toward networks with a larger number of (slower) links, the average hop count is
reduced, and additional paths are created in the network. These trends com-
bine to reduce traffic cn ;::ongested links. If the reduction in congestion is
significant, it will more than offset the disadvantage of using slower links, and
overall performance improves. Of course, if the network provides adeguate
bandwidth for the traffic ioad presented to it, then the queueing delays will be
small, and networks using a larger number of ports can only echieve poorer per-
formance since link speed is reduced. Thus, networks with a large number of
ports can be expected to provide better performance when the traffic load is
heavy relative to total network bandwidth, but networks with a small number of

ports can be expected to perform better otherwise.

iC4

3.7.1. Lattice Topologies

The application programs were run with switch models for the lattice topo-
logies shown in figure 3.14a-c. Performance curves are shown in figures 3.15a-f.
The FFT program exhibits better performance with a large number of ports, as
would be expected in bandwidth-limited net;works. The remaining programs.
however, indicate little performance variaticn as the number of ports is varied,
or better performance with a small number of ports. One reason for this is that
most of the programs encounter bottlenecks which are not alleviated when the
number 6f ports, and thus the number of paths through the network, is
increased. In the SISO programs for example, the bottleneck is around the
input processor, and performmance is determined to a large extent by the speed
of the communication links around this congested area. Since components with

a small number of ports use faster links, they achieve better performance.

(2)

Figure 3.14. Lattices (a) 3ports.

105

®
®
O

N D N D5 6
GO—@ 22—)—(0—63—=6)
Y ey N\ o\ o) A
) —13—0E—E=——=63
(b)
Y 2\ o) 1\ /A
G——0—(O—B@——E€2
N\ Yoy) e\ 7\
O———0O—E&—(—=€)
(e——1—19—=&9

(c)

Figure 3.14. Lattices (b) 4 ports. (c) 6 ports.

BARNWELL: LATTICES

SPEITUP

1C8

8.0

T T
? perfect switch
=4
- Kol d =5 J
=7
40 } PR (=)
2.0 L "l.“".' -y
Ry ——— with multicast
B
";- without muilticast
1 1

BLOCK I/0:

SPEEDUP

200

BANDYIDTH PZR CHIP
(ibits/chip-sec)

LATTICES

8.0

Zperfcct -]
¥witch
p=4
40 .
p=3
(b)
20 p=7 .- - ,.~"'. 4
LT e e
e ——— with multicast
T eeee without multicast
r3 i e

200

BANDWIDTA PER CHIP
(Mbits/chip-sec)

Figure 3.15. Lattices (a) Bornwell. (b) Block 1/0.

pele]

BLOCK STATE: LATTICES

SPEEDUP

5.0

v—perfe’cl switch v
"-l‘ .41
40 } <

AN N N—pss
20 }]
"- P) Pid - p:?
1.0 b i p=4 4
',:'_'.'_',.—" —— with multicast
R without multicast
o . " 1
] 100 200 300
(Mbits/chip-wec)
FFT: LATTICES
SPEEDUP
15.0 T v ¥ T

Yper{ecz swiitch

100 ¢ 1
p=4
sot p=5)
=7
L 1 1 .

20 40 80 80 100

BANDWIDTH PER CHIP
(Mbits/chip-wec)

Figure 3.15. Lattices (c) Block State. (d) FFT.

107

(e)

(d)

Figure 3.15.

108

LU: LATTICES
SPEECUP
15.0 T g
Y—per!ect swile
100 -
p=4
=5
F (e)
p=7
5.0 ¢ -
o 3. 1
0 - 200 400 800
BANDWIDTH PER CHIP
(Mbits/chip-pec)

RANDOM: LATTICES

®

0 0 0.5 1.0 1.5 20
NETYORX LOAD
(mexiages/microsecond)

Lattices (e) LU. (f) Random.

109

The delay,/Landwidtis curves for the artificial traffic load program indicate
that networks with a small number of ports achieve better delay and bandwidth.
The bandwidth result disagrees with the analytical results presented earlier,
which suggested that reduced hop counts would allow networks using com-
ponents with a large number of ports to achieve higher throughput. The reason
for the disagreement is that for high traflic loads, the processor/communication
componeant link becnmes a bottleneck. Performance is thus determined by the

speed of this bottleneck link.

In figures 3.18a-f, this bottleneck is removed by assuming that communica-
tion circuitry is integrated onto the same chip as the processor. The curves for
the artificial traffic load program are in closer agreement with the analytic
results presented earlier, however, the resulls for the other application pro-
grams are qualitatively the same. It is interesting to note that some of the SISO
programs, Block State and Block 1/0 in particular, experience lower perfor-
mance when this latter model is used. This anomalous effect can be attributed
to the *“'blocking problem" described earlier in the ring topology discussion.
Messages that carry the input samples block traffic generated by the computa-

tion processors.

Finally, the convergence of some of the multicast/non-multicast curves in
the Block State program is one other point of interest. Recall that Block State
uses multicast to distribute the initial data samples. The convergence of the
curves indicales that beyond a certain bandwidth, here approximately 100M
bit /chip, the network can provide computation processors with data samples as
quickly as they can be processed, so improved performance along these virtual
circuits results in no improvement in overall execution time. In addition, the
network provides enough bandwidth that the additional traflic caused by the

absence of a multicast mechanism does not degrade performance.

110

(®)

300

BARNWELL: LATTICES (P + C)
SPEEDUP :
8.0 x r

tper‘lect switch
80} p=3
p=4
p=s : e
40}]
N
20 L "_')
‘.;:“ = with multicast
.:." without multicant
0 A 3.
o) 100 200 200
BANDWIDTH P¥R CHIP
(Gibita/chip-wec)

BLOCX 1/0: LATTICES (P + C)
SPXEZDUP
€.0 v

pd perfect

gwitch
bt N N\ e
20 p / 1
p=3
. ',;:" — with muiticast
.;.' without multicast
00 100 200
BANDWIDTH PER CHIP
(Mbita/chip-wec)

Figure 3.16. lLattices (P+C) (c) Bornwell. (b) Block /0.

111

BLOCK STATE: LATTICES (P + C)

SPEEDUP
&0 «— perfect switch
0t S N b
so } Py ._.." p=3 e
s p=4 {(c)
20 b .
~:,."' p=8
1.0 b FoS 1
:"’ —— with muliicast
Ww o eeees without multicast
°O 100 200 300
BANDWIDTH PER CHIP
(Mbits/chip-sec)
<pepup FFT: LATTICES (P + C)
15.0 y v 1 -
errlect switch
100 | b
p=4
(d)
50 i
°0 20 <0 €60 80 100
BANDWIDTH PER CHIP
(Mbits/chip-oec)

Figure 3.16. Lattices (P+C) (c) Block State. (d) FFT.

Figure 3.186.

112

LU: LATTICES (P + C)

SPEEDUP
15.0 ~T T
Y?Cﬁect switch
p=3
100 o
p=4
(e)
p=8
50 P o
c 1 2L
o 200 400 600
BANDY¥IDTH PER CHIP
(Mbits/chip-vec)
. T)=}
gy RANDOM: LATTICES (P + C)
{microeeconds)
100 T =
p=4
Bor -
p=3
60 | o
< ®
40 ¢t -
20 “
° [} 1.0 2.0 3.0
NETWORX LDAD
(roexsages / microsccond)

Lattices (P+C) (e) LU. (f) Random.

113

3.7.2. Tree Topologies

Performance curves for tree networks (figure 3.17 shows one such network)
ere shown in figures 3.18Ba-g. For all application programs, it is seen that net-
works built. from components with a small number of ports yield better perfor-
mance than those using a larger number of ports, even when processor and
communications are incorporated onto the same chip (see figure 3.18g). These
results however, are a consequence of congestion around the root node rather
than from the hop count/link bandwidth tradeoffs discussed earlier. In trees, a
disproportionate amount of traffic must flow through the root, leading to
congestion in this portion of the network. Increasing the number of links does

not improve the amount of bandwidth allocated to this congested area. As a
result, performance is determined to a large extent by the speed of communica-
tion links near the root. Since components with a small number of ports have

faster links, they yield higher performance.

2.7.3. De Bruijn Networks .

The results for trée topologies were biased because of the inherent
bottleneck around the root. To provide a true test of the analytical results, a
class of topologies is required which does not have this inherent bottleneck, but
which also has an average hop count which grows logarithmically with the
number of nodes. The class of topologies must be general to the extent that net-
works with ;p;:r:::im_atcly the same number of nodes can be constructed as the

number of ports is increased.

One class of topologies which satisfy these requirements are De Bruijn net-
works [Brui46]. De Bruijn networks, which are only defined for even degree (ie.
an even number of links per node), are the densest known infinite family of
undirected graphs of even degree greater than 4. A dense graph of degree pis

one with a small diameter. Diameter, which is specified as a function of p and

) @ ©@ €9

Figure 3.17. Tree topology.

SPEEDUP

BARNWELL: TREES

11

8.0

T T

err!ec'. mntch

80

p=4
p=8

p=?

-
-”
=" -
-

—— with muiticast
..... without multicast

"

.-
-

-
="
-
"
-
.
-
"
-
-
"

-

200

BANDWIDTH PER CHIP
(Mbits/chip-wec)

Figure 3.18. Trees (c) Barnwell,

22

114

(2)

115

BLOCK I/0: TREES

SPEEDUP
8.0 Y T
Zpertect
switch
40 } Landi®
P=5
p=6 (b)
20 | PR] e 3
——— with multicast
~--- without multicast

200 300

BANDWIDTH PER CHIP
(Mbits/chip-sec)

BLOCK STATE: TREES
SPEEDUP
5.0

—— perfect switch

30t

(c)

20

..
0
L)

— with maulticant
..... without roulticast

0 100 200 300

BANDNIDTH PER
(Mbits/chip-sec)

Figure 3.18. Trees (b) Black /0. (c) Block State.

Figure 3.1B.

FFT: TREES
SPEZDUP
15.0 r T T
t.per{ect gwitch
F=4
100 + p
p=6
p=7
p=8 e
8.0 F 7
° 1 X 1 1
[¢] 20 40 80 B0 100
BANDYIDTH PER CHIP
(Mbits/chip-sec)
LU: TREES
SPEFDUP
5.0 T T
Y—pcr!ecz rrite
100 -
p=4
p=d
p=s
80 p P=7 5
° . A
] 200 400 800
BANDWIDTH PIR CHPP
(Wbits/chip-—mec)

Trees () FFT. (e) LU.

118

(d)

(e)

RANDOM: TREES

(microseconds)
100 T

&0

801

40

20T

° o) 0.12 0.'4 0.16 O.LB 1.0
NETWORX LOAD
(m:uages/microcecond)
DELAY RANDOM: TREES (P + C)
{microscconds)
100 Y T

80

eo

40 o
20 o
o L "y -t 1
0 02 0.4 0.6 0.8 1.0
NETWORX LOAD
(rDessages/microsecond)

Figure 3.1B. Trees (f) Random. (g) Processor with cornmunications.

117

(0

(g)

118

the number of nodes in the graph, is defined as the largest distance between any
pair of nodes, where distance réfers to the length of the shortest path between
the two nodes. Until recently, De Bruijn graphs were not 'orﬂy the densest family
of graphs of degree greater than 3, but De Bruijn graphs of degree p were also
denser than any other family of graphs of degree p+1. Recenily however,
denser graphs have been discovered for degrees 3, 4, 5 [Lela82a, Lela82b]. Also,
Cs' graphs, which are only defined for odd degrees greater than 3, yield smaller
diameter than De Bruijn graphs with one fewer port per node [Farh81]. Still, the
De Bruijn networks represent a set of graphs with logarithmic hop count without
the "root bottleneck” inherentv in trees, and thus represent an attractive topol-

 ogy for analyzing the optimum number of ports.

A De Bruijn graph is characterized by two parameters, a base & and an
integer n. The graph consists of b™ nodes. The address of each node is defined
by a string of digits, zo=, * * * =y, where 0<xz;<b. The addresses of nodes which
ere directly connected to X are derived by shifting X's address left or right 1
digit, and shifting in Qvnew digit k, O<k<b. Thus, node X has links to nocdes
YZoT, ' ' Zp-pz and nodes =, * - - Ty, where y=0,1, - - - -1, Each node has up
to 2xb links to other nodes. From this definition, it is clear that node X can
reach any other nccde in at most n hoﬁas. since an arbitrary address can be gen-
erated by shifting the X address n times. The topology does contain some
degenerate cases. For example, with =2, nodes 00 - -0 and 11---1 have
links to themselves, and nodes 0101..., and 1010... have more than one link
between them. These are the only special cases however. The edges of the De
Bruijn graph yield exactly the same interconnection as the perrnutation network
sometimes called the single-stage shuffle-exchange [Ston71, Ston72]. A base 2, 8

node network is shown in figure 3.18.

118

Figure 3.19. Base 2 De Bruijn nefwork.

For this study, three De Bruijn graphs were examined:
(1) =2, n=5(32 nodes)
(2) =3, n=3(27 nodes)
(3) l;=5, n =2 (25 nodes).

. These graphs were selected since they have roughly the same number of nodes,
and also provide enough preccessors to execute most of the application programs

(the FFT is the only one requiring more than 25 processors). Communication

120

components for these graphs require 5, 7, and 11 poris for each node, respec-
tively, including one port to attach to the node’s computation processor, provid-

ing a wide range in values for p. -

The performance curves for the De Bruijn networks described above are
shown in figures 3.20a-e. Performance with processor and communication circ;J-
itry integrated onto the same chip are shown in figures 3.21a-e. The results are.
qualitatively similar to those of the lattice topologies. The curves indicate that
better performance is achieved when components with 2 small number of ports

are used.

8.7.4. Conclusions for Networks with a Fixed Number of Components

The primary result of these simulation studies is that networks constructed
with components using a small number of ports achieve better performance
than those using a large number of ports. In some cases, this is in disagreement
with the results of analytical studies. This is normally due to bottlenecks that
prevent much of the bandwidth provided by the network to be utilized. These
bottlenecks can be alleviated by using components with a small number of
ports, since this provides maximum bandwidth for the concerned links. The
bottlenecks may arise from the application program (e.g. the SISO programs
here), or from the network topology (e.g. trees). The limited 1/0 bandwidth of
the processors generating messages may be the source of another bottleneck.
Finally, the simulations also demonstrate that significant performance improve-
ments can be achieved if mechanisms are included for eflicient handling of

multiple-destination messages.

8.8. Influence of the Mapping of Tasks to Processors

The results described above assumned a specific algerithm, to be discussed

below, for mapping aprplication programs onto the network topologies. Care

121

BARNWELL: DE BRUIJN

SPEEDUP

8.0

i perfect wwitch

¥

8.0

(2)

20 r
R ~——— with multicast
/ T ieeas without multicast
Z 2 1
0O 100 200 300
BANDWIDTH PER CHIP
(Mbits/chip-sec)
BLOCK 170: DE BRUIJN

SPEEDUP
6.0 T r

prd periect

switch
4.0 1 b
p=5
y:'] (b)
20 e -
p=11 e e
s .E'::’_'.'.--"'—"—'-‘vuh multicast
o | et , —=---_without multicast
0 100 200 300

BANDWIDTR PER CHIP

(dbita /chip-eec)

Figure 3.20. De Bruijn network (a) Barnwell. (b) Block I/0.

SPEZZDUP

BLOCX STATE: DE BRUILIN

5.0 T
—— perifect ywitch ’
4
L
.
40 b pa7 p=5 o o
”"
p=11 .
r"
!"
O' “
3.0 F -~
= e
v' 0"
. .
.
"‘ "'0’
fl‘ ."'
20 e
. -
"'. "- ---."
O. -'-.
-‘.. "‘ ""
" ’l. -"-
. -
L e .-
SO .
e es” = with muolticast
. e’
et e withcut multicast
~‘_O-
" Y i

SPXIDUP

100 200 300

RANDWIDTH PER CHIP
(Mbits/chip-oec)

LU: DE BRUILJN

15.0

T T

vper!ec‘. gwite

100

8.0

Figure 3.20. e Fruijn network (c) Block State. (d) LU.

122

(c)

(a)

RANDOM: DE BRUIIN

T

A X

0.5 1.0 1.6 2.0

NETWORX LOAD
(mmessages/microsecond)

Figure 3.20. De Bruijn network (e) Random.

BARNWELL: DE BRULIN (P + C)

SPEEDUP
8.0 T v
? per‘!ect switch
=4
60 - P

4.0

.=
.
-

—— with multicast
..... without multicast

100 200 300
BANDWIDTH PER CHIP
{(Mbits/chip-wec)

Figure 3.21. De Bruijn network (P+C) (a) Barnwell.

123

(e)

()

BLOCX 1/0: DE BRULIN (P +
SPEEDUP
8.0

<

Zperfect

switch .
.
.
.
l' .’
.
.
S,
.
.
.. .
» 'l .
.
.
4.0 Rl
K 4 d
. -
] ¢ 'r
."' -
l' ’
.
LA
.

o~ with multicast
..... without multicast

200
BANDWIDTH PER CHIP
(MDbits/chip-pec)

S00

BLOCK STATE: DE BRULIN (P + C)

SPLIDUP

. v - T
8.0 «— perfect wywiteh
>
k . S emtT
’ ’ -
. R S
l" "
40} SO 4
l' .‘
P .
.,' K ". p:&
" 'l .
o’ ,‘ S
S.0 S S s h
S,
S
* ’
‘I' " "' p=10
. B 4
" ’ ’
’ .' .
20 S o b
. . "
LS,
l' " i’
KA p=4
’ ‘.
R
l‘ l' ‘
10 p SO T
l'!"‘
.
o ——with muiticast
g
& eees- without muliticast
Nl

0 160 200

BANDWIDTH PER CHIP
Qbits/chip-wec)

Figure 3.21. De Bruijn network (P+C) (b) Block /0. (c) Block State.

124

(b)

(c)

125

LU: DE BRULIN (P + C)

SPEEDUP
15.0 T ¥
Y—perfec‘. switch
p=4
100 |) i
p=6
(d)
p=10
50 r o
0 . 8 2.
0 200 400 800

BANDWIDTH PER CHIP
(Mbits/chip-»ec)

RANDOM: DE BRULIN (P + C)
DELAY

{microseconds)
100

(e)

40+ k
ot k
0 r r r
0 1.0 2.0 3.0 <0
KETWORX LOAD
(oeeseges/mi

Figure 3.21. De Bruijn network (P+C) (d) LU. (e) Random

126

must be taken to ensure that this mapping algorithm is “‘equally good™ for the
networks being compared, or else the differences between the curves may just
be a result of using a better mapping in one net.work relative to another. This
section addresses the question of how the quality of the mapping algorithm

affects the results presented above.

The simulation results used two types cf switch models. The first is based
on the clusler ncde. However, cluster node networks are only an implementa-
tion of a given topology. Thus, within each topology, identical mappings are

used, and no cluster node network is favored over another.

The second type of switch model compares networks with different topolo-
gies. Performance curvés for different types of lattices, trees, and De Bruijn
networks are compared. In order to characterize the ‘“‘goodness’ of 2 mapping,
a quality measure must be established. Changing the number of ports affects
link speed and average hop count. Since the mapping algorithm has no impact
on link speed, but does aflect average hop count, the latter is an appropriate
measure. In particular, as the number of ports is increased, the average hop
count should decrease in a manner similar to that observed in the analytical
studies. If it can be shown for each application program that the average hop
count decreases *‘as it should”, then it can be concluded that the mapping algo-
rithm does not bias the results to favor (say) lattices with a small number of
ports. On the cother hand, if increasing the number of ports creates an unex-
pectedly small (large) improvement in average hop count, then a better map-
ping was done on the network with a small (large) number of ports, weakening

(strengthening) the conclusion that a small number of ports is better.

Average hop count is deflnec for an application program a as:

Hy = '1—27-;54‘-’-;;'
7 (%)

where d;; is the number of links traversed in the shortest path from itoj, and

127

7 is the tolal nuinber of niiessages sent into the network. 7, is the total number

of messages sent from i to j. This definition differs from that presented earlier

because the earlier definition assumed a uniform trafiic distribution, implying

all paths have equal weight. Values for H, are given in table 3.2 for the different

application programs.

Table 3.2.
Average Hop Count
Lattices De Bruijn
p=3 p=4 p=6 =4 p=8 p=10
ent. (g) | 3.442 3.079 2.437 | 2.605 2.026 1.632
10.55% 29.207% 22.23% 37.35%
BARNWELL map 1 2.850 2.575 1.862 2.387 1.875 1.587
9.65% 31.167% 21.457% 33.517%
Lb. (1) 1.870 1.652 1.382 1.739 1.565 1.382
11.66% 25.56% 10.01% 19.95%
map 1 2.620 2.471 2.082 2.944 2.081 1.627
BLOCK 170 ° 5.69% 20.15% 29.31% 44.74%
map 2 3.827 3.827 3.479
0.00% 8.097%
Lb. (1) 1.333 1.222 1111 1.278 1.222 1.111
B8.33% 16.857% 4.387% 13.07%
I map 1 3.258 3.000 2.314 2.830 2.000 1.370
BLOCK STATE i 7.957% 25.00% 23.957% 47.817%
map 2 2.649 2.482 2.316
6.30% 12.57%
map 1 5.542 4.792 3.825
13.537% 34.587%
FrT
map 2 2.867 2.167 1.917
18.757% 28.127%
ant. {(g) 3.442 3.079 2.437 2.805 2.026 1.632
LU 10.55% 29.207 22.23% 37.35%
man 1 2.979 2.585 2.044 2.515 1.983 1.638
13.23% 31.39% 21.15% 34.87%
ant. (g) | 3.442 3.079 2.437 | 2.605 2.026 1.632
10.55% 29.20% 22.23% 37.357%
RANPOH map 1 2.692 2.483 1.511 2.459 1.925 1.556
7.76% 29.01% 21.72% 3B.72%
Lb. (1) = lower bound from weighted average hop count, optimal packing

ant. (g)

anticipated from 20 node network, global communications

128

Two mapping schemes were used in the application pregrams exhibiting
local communications {Block 1/0, Block State, and FFT). The first is the original
mapping whose results were described in section 3.7. This mapping was
designed to minimize the average hop count on virtual circuits carrying the ini-
tial data samples in the SISO programs. If the processors of the network are
envisioned as being uniformly distributed across the surface of a disk, the pro-
cessor distributing the data samples resides in the center, and the processors

receiving these samples are packed around it.

The second mapping attempts to optimize the virtual circuits carrying the
locel, ie. pipelined, communication traflic among the computation tasks. This
mapping was performed for lattice topologies only. Figures 3.22a-e indicate
which tasks are assigned to which processors for this latter mapping. The FFT
program uses the same task number assignments that are shown in figure 3.6.
Figures 3.23a-f are the performance curves for these mappings for lattices with
communication compenents and lattices with processor and communications
integrated onto the same chip. Except for the FFT program, which will be dis-
cussed later, the results are gualitatively the same as those found in the original
mapping.

Also included in table 3.2 are "‘anticipated’ values for H,. For programs
using global communications (Barnwell, LU, and Random), this anticipated value
is computed by examing the average hop count in a 20 node network, assuming
a uniform traffic distribution. For programs exhibiting local communications
however (Block 1/0, Block State, and FFT), this is clearly an unrealistic measure.
Here, a lower bound value for anticipated hop count is used. Suppose the appli-
cation program requires that processor X must send messages to k other pro-
cessors. The minimum hop count from X to these processors is obtained by

assuming that the k processors communicated with are those which are closest

129

(2)

e
D—E——e)

)
()33
O—O——@
O—@——e

(b)
O—B—6—
O—O—@—&
D —6)
D—©—E—

Figure 3.22. Second mapping, lattices (a) 3 ports. (b) 4 ports.

-+ 130

O
SavAYaAYATaATAY

12 =

E—(Er—(Z)
KPR

() (=

&3

(a)

(c)

Figure 3.22. Second Happing (c) 6 ports. (d) Black I/0 program.

131

BLOCK STATE PROGRAM

11

R

Figure 3.22. Second Mapping (e) Block state program.

BLOCK 1/0: LATTICES

SPEEDUP (2nd Mapping)

8.0

prd perfect
switch

40 p=5 -

(a)

20 | N .

Leol P
. -
) -

e

--=-- witheut multicast

0 100 200 03

BANDWIDTR PER CHIP
(Wbits schip-wet)

Figure 3.23. Lattices (2nd mapping) (a) Block 1/0.

BLOCK STATE: LATTICES

(2nd Mapping)

132

SPEXDUP
8.0 - perfect mmtch i
p=4 '.‘.' ‘.a
40 } T
p=5 o
30 } p=7 N o
20 + "" ",' --.," e
1.0 t 1
“:".-_".-" ———— with multica=t
.-.';: T eea-- without multicast
% 100 200 aco
BANDWIDTH PER CHIP
(dbita/chip-sec)
FFT: LATTICES
SPEEDUP (2nd Mapping)
18.0 T T T
iperfect switch
p=3
100 | 1
p=7? (c)
5.0 } 1
p=4
0 0 20 40 &0 80 100
BANDWIDTH PER CHIP
(Mbits/chip-wec)

Figure 3.23. Lattices (2nd mapping) (b) Block State. (c) FFT.

BLOCK 1/0: LATTICES (P + C)

SPEEDUP (2nd Mapping)

e.c

4.0

N
=}

periect switch

Lo ——— with multicast

o «=-«= without multicast

100 200

BANDWIDTH PER CHIP
(Mbits/chip-sec)

SPEEDUP (2nd Mapping)

5.0

300

BLOCK STATE: LATTICES (P + C)

~— periect switch

K —— with multicast

..... without multicast
A ' e
100 200 200

BANDWIDTH PER CHIP
(Mbitz/chip-sec)

133

(9)

(e)

Figure 3.23. Lattices (énd mapping, P+C) (d) Block 1/0. (e) Block State.

134

FFT: LATTICES (P + C)

SPTEDUP (2nd Mepping
15.0 ¥ 1 T .
-?per{cct sriteh

100 I

p=3
69)

p=4

°.C 7
p=%

00 20 40 80 80 100
BANDWIDTH P¥R CHIP
{Mbits/chip-sec)

Figure 3.23. Lattices (@nd mapping, P+C) (f) FFT.

to X. By repeating this computation for each processor, a lower bound on A, is
obtained. This is the traffic distribution assumed in the enalytical model
presented earlier {networks with a fixed number of components), except the uni-
form traffic distributicn assumption has been relaxed. In table 3.2, no antici-
pated value is listed for the FFT program since each task communicates with

only 2 other tasks, leading to H, = 1 for all topologies.

Table 3.2 also includes fractional improvements in average hop count rela-
tive to the network using the minimum number of ports, (p =3 for lattices, p=4
for De Bruiin) as the number of ports per chip is increased. In comparing the
experimentally measured results with anticipated and lower-bound hop counts,
it is seen that in most cases the experimental results are comparable to or sur-
pass the anticipated improvement. This implies that any bias introduced by
differences in the mapping algorithms makes a large number of ports appear in
a better light than they should, thus strengthening the conclusion that a small

number cf ports is better,

135

Finally, let us consider the impact of using a better mapping algorithm on
the results derived so far. As a closer match is found between the communica-
tion structure of the application program and the network topology, communi-
cations becorne more localized. Processors communicate less with processors
far away, so the reduction in average path length, which occurs when the
number of ports is increased, become less effective. The strength of the argu-
ment for a large number of ports relies on a reduction in network congestion.
However as the mapping is improved, congestion becomes less significant.
Increasing the number of ports only decreases the bandwidth available to each
virtual circuit, and thus degrades performance. Thus, the fact that the simula-
tion results may not use an ‘‘optimal” mapping of tasks to processors can only
bias the results to favor a large number of ports, strengthening the conclusioﬁ
that a smell number of ports is better. Some support for this conclusion is seen
in figure 3.23f, where an optimized mapping for the FFT program yields better
performance with a small number of ports, while the original mapping yielded
better perforrnanlce with a large number of ports. Similarly, as shown in figure
3.12c, the execution of the FFT on the butterfly topology, an optimal mapping,

yields better performance when a small number of ports is used.

8.9. Precision of the SSimulations Results

A certain amount of uncertainty exists in all of the simulations presented
thus far. The arrival times of messages at each node is a function of the queue-
ing delays encountered in previous nodes, which in turn depends on the arrival
times of other messages. These complex interactions lead to message delays
which vary according to the times at which messages are generated. In general,
the application programs executed on the multicomputer are not known a
priori, so some uncertainty exists in the times at which messages are generated

by the application program, leading to uncertainty in message delays. If this

136

uncertainty is large, the results presented thus far could be based on chance
behavior rather than the tradeofs described earlier. The amocunt of this uncer-

tainty will now be examined.

The fact that the programs generated a relatively large number of mes-
sages (typically, thousands) combined with the large quantity of curves produ'c-
ing the same qualitative results leads one to suspect that the conclusions
presented thus far are not simply the result of randem fluctuations. Further-
more, the fact that the curves yielded results which were consistent with those
predicted by the analytical models (or in disagreement in explainable ways)
strengthens this belief. Nevertheless, in order to obtain a qu;mtitat.ive measure
of the uncertainty described above, sizﬁuLations were repeated with ﬁu;ctuations

introduced in the times at which messages are generated.

The artificial traffic generater program was executed on the hexagonal lat-
tice network of figure 3.14a for the case of processor and communication circui-
try integrated onto the same chip. This network was chosen because it does not
exhibit any of the bottlenecks described earlier, e.g. the root bottleneck in the
tree network, which might mask the effect of the random fluctuations. Interar-
rival times are again selected from an exponential distribution. The results of
these experiments are shown in figure 3.24. Each curve represents performance
for a different set of message arrival times. Fluctuations are introduced by
using different seeds in the random number generator which determines
interarrival times. As shown in figure 3.24, the delay in the lightly loaded net-
work: varies by up to 1.7%, while network throughput varies by up to 8.8%.
Uncertainty in delay does increase significantly as the network approaches
saturation, however this does not affect the conclusions derived above since

they were based on the previous two performance measures.

137

RANDOM: LATTICES (P + C)
DELAY

(microseconds)
100

80 I

6o r

40 I

200

R

0 1..0 2.0 3.0

NETWORK LOAD
(messages/microsecond)

Figure 3.24. Precision of simulations.

Message delay uncertainty leads to uncertainty in the execution time of the
programs. This latter quantity is the performance measure used in the bulk of
the simulations presented here. The percentage of uncertainty in execution
time will be less than that corresponding to message delay however, because
message delay only affects one component of the overall execution time. Execu-
tion time is composed of two components, the time spent executing instructions
and the time spent waiting for data. Message delays only affect the latter com-
ponent. Although the absolute magnitude of fluctuations may be the same for
both message delay and execution time, the percentage of the uncertainty will
be smaller in the latter, since it is always larger. Thus, the uncertainty in mes-
sage delay described above will lead to an even smaller uncertainty in execution

time.

T

3.10. Summary of Simulation Studies

138

In most cases, the simulation results support the analytical results dis-
cussed earlier. When discrepancies do occur, they favor networks using a small
number of ports. It was seen that bottlenecks are the source of these
discrepancies. Thus, the simulation results support the conclusion found earlier
that components with a small number of ports are better. These results also
d.emons'c.rate the utility of incorporating efficient mechanisms for handling mul-
tiple destination messages. Such 5 mechanism can yield significant perfor-

mance improvement in algorithms relying heavily on global information.

138

CHAPTER FOUR

DESIGN AND IMPLEMENTATION OF
COMMUNICATION COMPONENTS

This chapter examines the amount of circuitry required to implement &
VLSI communicaticn component. Alternative mechanisms for transporting data
through communication networks are first compared, and a virtual-circuil tran-
sport mechanism is argued to be the most attractive alternative for the net-
works discussed here. Details of such a transport mechanism are then
- described. Next, alternative schemes for providing hardware support for three
key communication functions: routing, buffer management, and flow cont.rol. are
described. Practical figures for the number of channels and buffers within each
component are derived and used as the basis for estimates of the complexity of
such a component. It will be seen that the functional capabilities of VLSI chips
are now sufficient to allow the construction of communication components with
enough buffer space and virtual channels to provide high-bandwidth communica-

tions in multicomputer networks.

4.1. Transport Mechanisms

Since the primary function of the communication network is to move data,
a transport mechanism, i.e. the means by which data is transmitted through the
network, must be selected. A classification tree which includes the various tran-
sport mechanisms in use today is shown in figure 4.1. A number of characteris-
tics which distinguish these transport mechanisms are also shown. Briefly,

these characteristics are:

(1) Data Unit: The unit of data transported through the network is either a

variable-length message or a fixed-length packet.

140

(28) Routing Overhead: The overhead asscciated with message routing is
incurred either on a hop-by-hop basis at each node in the network or only in
the initial set-up of a circuit.

(3) FBandwidth Allocation: Bandwidth is allocated by the network either stati-
cally, e.g. when a circuit is set up, or dynamically as messages enter the
network.

(4) Buffering Complezity: The complexity of the buffering hardware varies with

the sophistication of the chosen transpert mechanism.

CIRCUIT SWITCH STORE-AND-FORWARD

PACKET VIRTUAL

Data Unit arbitrary messages packets packets

Routing set-u er per

Overhead onlyp rne%sage packet set-up
Bandwidth (reassembly)
Allocation Static dynamic dynamic dynamic
C%g;%?}g%y low high moderate moderate

Figure 4.1. Tronsport Mechanisms.

141

According to the tree in figure 4.1, the first alternative to consider in
selecting a transport mechanism is between a circuit-switched and a store-and-
forward approach. The circuit-switched approach is best exemplified (at least
conceptually) by the telephone system: When someone picks up a telephone and
‘dials a phone number, a circuit is established between the caller and the party
being called. Once this circuit is established, it remains intact until either party
hangs uvp. Fxamples of circuit-switched networks are described in [Joel7s,
Mass79]. The most distinguishing characteristic of this approach is the fact that
communicating parties are guaranteed a certain bandwidth and maximum
latency when the call is established. Since the communication network cannot
know when data will be transmitted, bandwidth must be allocated statically when
the call is set up. Otherwise, the bandwidth may not be available when it is
needed. Users are ellocated a certain amount of bandwidth regardless of
whether or not they actually use it. If communications are bursty, as is often
the case in computer networks, much of the network's bandwidth will be wasted.

This is the primary disadvantage of the circuit-switched approach.

However, the circuit-switched approach also offers a number of advantages.
Routing overhead is usually paid only when the circuit is set up, so subsequent
meséages can flow through the network with little delay. This reduces the aver-
age delay on circuits carrying more than one message. Also, buffering stra-
tegies are simpler than those required for store and forward networks because
bandwidth allccation is performed statically. If circuit-switching is used, the
network can be designed to ensure that the rate of trafiic flow into each node of
the network never exceeds the rate of flow out, alleviating buffer overflow prob-
lems. In fact, if eack circuit is implemented as a physical electrical connection
between the communicating parties (e.g. a series of relays), the network need

not provide any buffering at all!

142

Store-and-forward networks avoid the wasted bandwidth problem described
above by zllocating bandwidth dynamically to messages as they enter the net-
work. Three types of store-and-forward networks have been implemented in the

past:

. (1) Datagram networks.

(2) Packet switched networks.
(8) Virtual circuit networks.

Datagram networks are characterized by the unit of data sent through the
network - variable length messages. Since each message can be relatively
large, communication components would have to provide a relatively large
amount of buffer space to hold arriving messages. This implies that a large
emount of circuitry in each component must be devoted to messages buffers. In
addition, since messages may vary in length, variable size buffers must be used.
This increases the complexity of the buffer management circuitry significantly,
since the bufler selected for a particular message must be at least as large as
the message. This problem is identical to the difference between virtual
memory systems based on segments, whose complexity usually requires a
software implementation, and those based cn pages, which are usually impl'e-
mented, at least to a large extent, in hardware. Finally, routing overhead in the
datagram appréach is worse than that of the circuit-switched approach because
routing decisions rmust be made on a hop-by-hop basis with each message sent
into the network.

The packet switched transport mechanism alleviates many of the buffering
problems described above. Here, each message is divided into a number of
(usually) fixed-sized packets which are routed separately through the network.
An end-to-end scheme is required to reassemble the message from its consti-

tuent packets. Since packets can be relatively small, buffering requirements in

143

each component are reduced. The use of fixed-sized packets also simplifies the
buffer management circuitry. This approach does incur a significant amount of
overhead on an end-to-end level to reassemble messages however. Since pack-
ets are routed separately through the network, they may follow different routes
to the destination node, and therefore may arrive in an order different from that
at which they were sent. The other disadvantage of the packet switched
approach is that the routing overhead problem is worse than that of the
datagram scheme, since this overhead now occurs on every packet rather than

on every message,

If we examine the transport mechanisms described thus far, we see that the
circuit-switched approach suffers from static bandwidth allocation, while the
packet switch approach suffers from reassembly and routing overhead. One
might hope that a hybrid which combines these two approaches can achieve the
best of both mechanisms without their respective disadvantages. This is the
motivation behind the virtual circuit transport mechanism, which is a mixture
of packet switched an.d circuit-switched techniques. Here, a virtual circuif is
established between processors which wish to cormmmunicate. A virtual circuit is
a fixed, unidirectional path through the network from one processor to another.
All messages sent on this circuit travel along this path to reach their destina-
t.ioﬁ.

Let us ccnsider the characteristics of the virtual circuit transport mechan-
ism (listed in figure 4.1). Like the packet switched mechanism, the data unit is
a fixed sized packet (simplifying the buflering problems of the datagram
mechanism). Routing is similar to the circuit-switched approach to the extent
that the routing algorithm need only be applied when the circuit is set up, and
not with subsequent packets. It will be seen however, that some overhead is still

required to route messages, so the routing overhead is intermediate between

144

the circuit switched and the datagram/packet switched approaches. Since a
stere-and-forward mechanism is used, network bandwidth is allocated dynami-
cally, although allocation is not as adaptive as it is in packet switched networks
because packets are constrained to follow a fixed path from source to destina-
tion. The fixed path restriction in the virtual circuit mechanism is necessary to
reduce routing cverhead and to avoid reassembly overhead. Thus, while packet
switched networks meay be able to achieve higher bandwidth along an end-to-end
connection by utilizing multiple paths between the two processors, the virtual
circuit scheme will yield lower latency on individual messages since they spend
less time in each‘ node waiting for routing decisions to be made. In addition, the
‘virtual circuit mechanism can utilize multiple paths between tWo nodes by

establishing several circuits between the two processors.

Thus, a virtual circuit transport mechanism appears to be the most attrac-
tive for the networks described here. Details of the operation of this mechanism
are described in the next section. Kardware implementations are described in

the sections which follow.

4.2. AVirtual Circuit Based Communication System

The communication domain studied here is a packet-based network using a
virtual circuit transport mechanism. Mechanisms for establishing, maintaining,

and tearing down circuits are described in this section.

4.2.1. Virtual Circuits

Each processor has a fixed number of input and output circuits for receiv-
ing and sending data respectively. Sending a message is a three step process.
First, a virtual circuit (i.e. a path of time-multiplexed links) to the destination
processor is established by sen.ding a message header with routing information

through the network. Once a circuit is set up, an arbitrary amount of data,

145

which may consist of several logical messages, can be sent along this circuit.
Data can follow the message header immediately without an end-to-end
handshake and need not be transmitted continuously for the circuit to remain
intact. This approach reduces the routing overhead on all packets except the
message header. When the circuit is no longer needed, it is torn down by send-

ing a tagged message trailer.

The communications system provides only a data transport facility. Except
for the header and trailer information, all data passes uninterpreted through
intermediate nodes. Error checking and retransmission are left to an end-to-
end protocol. This allows the forwarding of data packets in each node to begin
| before the entire packet has arrived if the proper outgoing link is idle (virtual
cut-through [Kerm79]). If error checking and retransmissions were performed
within the network on a hop-by-hop basis, forwarding could not begi.ri until the
entire packet has arrived and was checked for errors, since otherwise an
erroneous packet wéuld have been forwarded by the time the error was
detected. This end-to;end approach is justified by the low error rates observed
in local computer networks [Shoc80]. Since the networks discussed here cover
an even smaller geographic area, and thus are less susceptible to environmental

noise, this assumption is even more appropriate.

4 22 YVirtual Channels

The communications domain can be viewed as a simple, connected graph.
Nodes and edges represent communications components and links, respectively.
A circuit from one processor to another corresponds to a path in this graph.
Two distinct paths (say from node A to B and from C to D in figure 4.2) may use a
common edge (from X to Y). Thus, the link associated with that edge must be
multiplexed between the two paths, and provisions must be made to ensure that

data from A is sent to B, and not to D.

146

TN

Figure 4.2. Two Puths Multiplezed through the Same Link.

Each physical link is divided into some fixed number of unidirectional vir-
tugl channels, Each channel can carry data for one virtlial circuit (i.e. one
path). Thus, a circuit from one node to ancther consists of a sequence of chan-
nels on the links in the path between the two nodes. The circuit from Ato Bin
figure 4.2, for example, might use channel #3 to get to X, then #5 to get to Y,
and finally #7 to get to B.

When node X sends data to ncde Y, the latter must determine which circuit
this data beiongs to. Two commonly used techniques for providing this informa-
tion are, among others:

(1) Divide the link into a fixed number of time siots and statically assign each
time slot to a channel (e.g. the first time slot might be assigned to channel

#0, the second to channel #1, etc.). The time slot on which the data arrives

identifies the channel that sent it.

147

(2) Precede the data with a tag that identifies the channel it is being sent on.
In this scheme, the available bandwidth on the link is allocated to the vari-

ous channels by some demand-driven scheduling algorithm.

In the first scheme, the link is effectively divided into a number of lower
bandwidth links, with the sum of these bandwidths equal to that of the physical
link. If a channel does nol send any data, its allocated bandwidth is wasted. In
addition, latency is increased since each channel must wait for its turn to send a
unit of data. In the second scheme, the entire bandwidth of the link can be allo-
cated to channels upon demand, ie. when they have data to send, so the
inefliciencies associated with the previous approach are avoided. However,
some bandwidth is required t§ carry the channel tag. Demand-driven time-
multiplexing is superior if the degree of multiplexing on each link is high, and
many channels do not always have data to send. This is often the case in
computer-to-cornputer communications, so the dynamic approach is more suit-

able for the netwcrks described here.

4.2.3. Routing Hardware

In order to route messages through each node of the network, channels
entering a node (input channels) must be “linked" to channels leaving the node
(output channels). Each node maintains a set of translafion tables to perform
this function. There is one translation table for each input port of a node. Each
entry of the translation table contains two fields: an output port, and the
number of a channel on that port. When data arrives on an input channel, say
channel #3, entry 3 of the translation table for that port is read to yield the out-

put port and the number of the channel the data is to be forwarded on.

The translation tables logically link incoming and outgoing channels, and
thus establish the various virtual circuits through the node. Setting up these

circuits involves allocating channels and updating translation tables along each

148

path from source to destination. This task is performed by a routing controller

residing in each communications node.

Initially, all translation tables specify that data is tc be sent to the local
routing controller. When a message header setting up a new circuit arrives at a
node, the routing controller analyzes the destination address in the header,
determines the proper output port with the use of some routing algorithm, allo-
cates a free output channe-l, and updates the translation table at the input port.
Measurements on a TTL prototype of such a routing controller [Fujig80] show that
this entire operation can be dcne in 4-5 p.séc if a free channel is available on
the selected link. Subsequent data is then forwarded without intervention by
the routing controller. Similarly, when the circuit is torn down, the channel is
released, and the corresponding translation table entry is reset to point to the

routing controller.

4.2 4. Packet Types and Formats

Three types of packets have been discussed thus far: a *‘set-up packet”
which establishes virtual circuits, a *“trailer packet’ which tears them down, and
e ““data packet” which carries data. In addition, it is useful to provide a “‘clear
packet™ which flows through a virtual circuit, removing any data packets it
encounters along the way. Such a mechanism is useful in error recovery protoe-

cols to reset virtual circuits to a “known'' state.

Packets must be tagged to distinguish the various types. Each packet is
preceded by a header which indicates the packet's type, as well as a channel
number indicating which virtual circuit the packet belongs to. Set-up packsts
elso carry routing information {e.g. a destination address) which the routing
controller uses to set Lip the circuit. Assuming two bits io indicate type, one bit
for parity, and a one byte header on each packet (excluding routing information

on set-up packets), 5 bits remain for a virtual channel number. This implies a

148

maximum of 32 channels can be supported on each link. later, it is argued that
under current technology, a larger number of channels should be supported, say
84 or 128. Since it is convenient to restrict the header information to an
integral number of bytes, a two-byte header could be used to support this many

channels.

An alternative approach to the fixed length header scheme described above
is to use variable length packet headers. For example, assuming that most of
the packets flowing through the network are data packets, we could confine the
overhead in these packets to a single byte, while forcing other packet types to
use several bytes. Under this scheme, the header of each data packet consists
of a 7-bit channel number and a single bit for parity. One channel number, say
#b. is declared to be *‘undefined”. When a packet header specifies this channel
number, it indicates that the packet is not a data packet, but rather some other
type. Subsequent bytes indicate the type of packet, and any type-specific infor-
mation. This approach reduces the overhead required on data packets, and thus
provides better perfor;nance in transmitting these packets than the fixed-length
header scheme describeld above. Although the amount of time required to pro-
cess the other packet types, the set-up packet in particular, is slightly
increased, delays on these other packet types are less crucial. The assumption
that data packets use a single byte for header information was used in much of

the analysis presented earlier.

4.3. Key Functions of the Communication Component

Any communication component must provide mechanisms for routing mes-
sages to their proper destination, managing the limited amount of buffer space,
and controlling the rate at which packets flow from one node to another.
Hardware implementation of these mechanisms is required to achieve high-

performance. Mechanisms to perform these functions are outlined in this

150

section. Fardware implementations are described in the section that follows.
Implementation of other portions of the communication component, Le. the 1/0
ports and routing controller, are only briefly summarized since they are

described elsewhere [Laur79, Wong81, Fuji80].

A block diagram indicat'mg the functions that must be provided by each
component is shown in figure 4.3. The component contains three or more ports,
each accommondating a link to a neighboring node. It also contains a certain
amount of bufler memory, bookkeeping tables, and control .logic. Translation
tables logically link incoming and outgoing cbannels.\and thus establish the vari-
ous virtual circuits through the component. Finally, a microcoded engine called
the routing control is responsible for setting up virtual circuits and implement-

ing less frequently used network functions such as failure recovery protocols.

4.3.1. Routing

All commumication networks require some routing algorithm to build the
paths, Le. the virtual circuits, between nodes sending and receiving messages. A
great deal of research has been done in the area of routing in loosely coupled
computer networks, and much of this work is applicable here [Gerl81, Tane81].
In the context of the proposed communication domain, we will only consider
totally distributed routing that does not rely cn a centralized authority. For this
discussion it is also appropriate to distinguish between regular networks with a
predefined topolngy, such as arrays or binary trees, and irregular networks of
arbitrary connectivity.

In regular networks, routing can be performed in each node by 2 state
machine which performs a fixed algorithm based on the local and destination
addresses. In square lattices, for example, the routing controller could forward
the message header in a direction that would reduce the difference between the

x- or y- coordinates of the current and the destination nodes. Routing

151

INPUT
ROUTING OUTPUT
PORT PORT
CONTROLLER
INPUT : OUTPUT
PORT ' PORT
TRANSLATION
BUFFERS
° TABLES " e
°)
i CONTROL BOOKKEEPING i
LOGIC TABLES
INPUT , OUTPUT
PORT ' PORT

Figure 4.3. Functions provided by communication component.

algorithms for binary half-ring and full-ring trees have been discussed elsewhere
[Sequ78].

For a general-purpose communication component, the routing algorithm
must nol be frozen in hardware. A routing controller with a writable program
memory is more appropriate and guarantees that the same component can
serve meany different network topologies. A routing algorithm suitable for the

particular network structure could be broadcast at system initialization.

For irregular networks, routing may be based on suitable lookup tables. In

a decentralized system each node 1 has entries of the form:

1582
NN = R;(DN),
implying that messages destined for node DN are forwarded by node 1 to neigh-
bor node NN. This lookup table, commonly called a rouling iable, can be
defined statically, or it can be maintained dynamically using information
exchang=d between neighboring nodes. The latter approach also allows the net-
work to automatically reconfigure itself should the topology change due to node-
feilure or network expansion [Taji77]. Techniques to initialize and maintain the

routing tables are discussed in [Gerl81].

If the network has many nodes, the routing table will be excessively large
since a separate entry is required for each destination node. A common tech-
nique which reduces the size of this table is to employ hierarchical names and
multiple routing tables per node [Kamo78). An example of such a mechanism is
seen in the telephcne system in which names (telephone numbers) consist of an
area code and a seven digit number. When a call to a number with a different
area code is made, the area code is first used to route the call to the correct
area, and then the phone number is used to locate the final destination. Con-

ceptually, routing could thus be performed as follows:

(1) If the area code of the destination matches that of the router, then the
seven digit number is used to locate the next ncde via a '‘neighborhood"”
routing table.

(2) If the area code does not match that of the node doing the routing, then the
area code is used to look up the next node via an “*area code” routing table.
The remaining seven digits in the phone number are ignored.

Thus, a two-level naming hierarchy is used along with a routing table for each

level. Such a scheme reduces the table size by grouping nodes which are far

away into a single entry in the "“area code’ routing table.

153

One can easily extend this principle to an arbitrary number of naming lev-
els. To determine the number of levels required to minimize the storage space
required for routing tables, let there be ! levels, with g; entries in the level ¢
table. The object is to minimize g;+ g+ :-- +g; subject to constant
N =g XgpXx - - - Xg,, the number of nodes in the network. It is easy to show that

this sum is mintmized for

g1=g2= - =g =e and Il =InN,
where e is approximately 2.718. Thus, to minimize the table size in each node,

there should be rnany levels with few entries in each level [McQu74].

The reduction in table size resulting from a multi-level routing scheme can
be substantial. A 16-bit destination address partitioned into eight 2-bit fields
requires eight 4-entry routing tables, or a total of 32 entries. The single-level
routing table would require 85,538 entries. The routing controller described in
[FujiB0] uses a single-level lookup table with 256 entries. A hardware implemen-

tation of a hierarchical routing scheme will be presented later.

4.3.2. Buffer Management

Each message passed into the communication domain must be subdivided
by the sender into some number of fixed-length packets. As discussed earlier,
allowing variable length packets adds a considerable amount of complexity to
the component. These packets form the unit of data transmitted across the
links of the communication domain. Due to conflicts that arise when several
packets simultaneously require the use of the same link, buflering is required in
each node. The communicatiocn component must have some strategy for manag-

ing these buffers.

A scheme is necessary to allocate a node's buffers among the virtual cir-

cuits using the node. A simple solution is to give each channel on each link a

154

separate bufler. This is inefficient however, srince much of the bufler space will
be unused most of the time. By allowing sevéeral channels to share buflers,
fluctuations in the need for buffer space can be averaged over a large number of
communication paths, and fewer buffers are required to achieve the same per-
formance. A mapping is then required to link each channel to the buffers hold-
ing packets for that channel so that they can be found when it is time to forward
them. Furthermore, when a new packet arrives, an empty buffer must be found.
From this perspective, buffer management is similar to the management of a

cache memory: a program (here, a channel) must fit blocks from main memory

(packets) into cache pages (buffers).
As in cache memory design, there are three well known schemes for per-
forming this mapping:
(1) direct mepping
(2) set-associative mapping
(3) fully associative mapping

In turn, these three schemes offer an increased degree of buffer sharing, and
thus improved memory utilization, but at the cost of increased complexity in
the control circuitry. They are distinguished by restrictions on where a
channel's packets can be placed. In the direct mapping scheme (minimal shar-
ing), each channel bhas a set of buffers dedicated to it, ie. its own fifo buffer
queue. The set-associalive scheme (moderate sharing) allows each channel to
use é larger set of buffers, but it is no longer given scle access to them. This
scherme might be implemented by letting all channels cf a single port share a
poal of buffers dedicated to this port. In the fully associative scheme (maximal
sharing), each node has a centralized pool of buffers which all channels share.
Implementations of the set-associative and fully associative schemes will be dis-

cussed in later sections. An implementation of the direct mapping scheme has

155

been described previously [Laur79, Sequ78].

4.3.3. Flow Contral

Flow control refers to the mechanism which regulates the transmission of
data packets along virtual circuits. The network must be able to *‘throttle™
traffic on virtual circuits to prevent buffer overflow {(such mechanisms are some-
times referred to as congestion control in the literature [Tane81]), and to han-
dle sitx_}ations in which a processor is sent more messages than it can immedi-
ately receive. In addition to providing a mechanism which allows components to
throttle traffic, a policy is also required to determine which virtual circuits must
- be throttled, and when. Such a.policy will be discussed next, followed by a dis-

cussion of different throttling mechanisms.

Since one of the purposes of flow control is to avoid bufler overflow, a
natural policy is to begin throttling traflic when the pool of free (i.e. empty)
buffers becomes depleted. If a node is inundated with data, packets will “‘back
up'’ along the virtual circuits leading up to it, much like the way cars back up on
a congested freeway. This type of flow control, called ‘‘back pressure flow con-
trol”, is analogous to water (packets) flowing through a pipe (buffers). If the
pipe becomes blocked or constricted, water backs up to its source. Such a
mechanism has been used successfully in TYMNET, a loosely coupled, commer-

cial communication network [Tyme81].

The flow control policy described above can lead to a problem called "bufler
hogging". Here, one virtual circuit uses more than its share of the buffersin a
node. If a virtua! circuit becomes blocked, e.g. due to a congested output link,
packets may continue to arrive on that virtual circuit and occupy most, or all of
the buﬁ'ears in the node. Without some mechanism to restrict buffer sharing,
buffer hogging will impede other traffic using the node and lead to deadlock

gituations. This situation can be avoided by controlling the maximum number of

158

bufiers ezch channel cen use. It might be noted that the direct mapping
scheme, and to a lesser extent the set-associative scheme, automatically pro-
vide scme protection against bufler hogging, since they inherently restrict
buffer sharing. All three schemes bowever, need some mechanism to ensure

that data is not lost if no free buffers are available.

Thus, in order to preveﬁt buffer hogging, each output ckannel may not holc{
more than some ‘‘channel limit"” of buflers at once. Even with this restriction
however, another form cof buffer hogging may still arise. A congested output link
could use all of the node’s buffers and block traffic on other links. To prev‘ent
this, each output port is restricted to using no more than some maximum
number of buflers, determ'm‘ed by a higher level protocol. This maximum
number, called the *'port limit", can be changed dynarmically to shift additional
buffers to highly utilized perts, while still providing some space for traffic on
lightly loaded ports. Studies indicate that by restricting the number of bufiers
an output ‘port can use “output port bufler hogging' is prevented, and a
significant improvement in the bandwidth provided by the node is obtained

[Irla78]. These studies also indicate that as a general rule, each port should not

be allowed to use more than b/ Vp buflers in a p-port node with & buffers.

Assuming a bufler allocation policy is used to control the rate of packet for-
warding, let us now examine the flow control mechanism itself, i.e. the mechan-
ism which performs the actual throttling. Two mechanisms, sender-controlled
and receiver-controiled throttling, will be discussed. They are characterized by
whether the sending or the receiving node implements the peolicy described
sbove. The receiver-controlled mechanism is the simpler mechanism, and will

be described first.

The receiver-controlled flow control mechanism can be implemented by a

send /acknowledge protocol to transmit data over the link. In this scheme, each

1587

node sends a packet, and waits for the receiver to return a control signal indi-
cating whether it accepted or rejected (i.e. discarded) the packet. An *‘ack’ sig-
nal denotes an accepted packet while a ‘‘nack™ denotes a rejected packet. Ifa

nack is returned, the packet must be retransmitted at a later time.

A receiver may choose to reject a packet because of buffer space limita-
tions or transmissions errors. Here, it is assumed that communication com-
ponents only check header information for transmission errors, since the virtual
cut-through mechanism prevents retransmission if errors in the data are
detected. Witk virtual cut-through, the first bytes of the packet may have been
forwarded to the next node before an error in later bytes is detected, making
immediate recovery difficult, if not impossible. Errors in data bytes must be
handled by an end-to-end protocol which detects and retransmits damaged

packets.

1t is also assumed here that each link has a separate control line to carry
the ack/nack signal back to the sender. Alternatively, the control signal could
be piggy-backed onto a packet going in the opposite direction, however, this
leads to a "‘looser coupling’ between sender and receiver, forcing the sender to
either deal with multiple unacknowledged packets pending over the link
[Pouz78] (adding a considerable amount of complexity to the circuitry in the
port), or to stop using the link until the acknowledg‘ement arrives (wasting
bandwidth). Since the receiver can generate an acknowledgement after only the
header is received, aud since a direct connection to the sender is available for
transmitting this signal. this scheme offers the unusual feature that the sender
will receive the acknowledgement before it has finished sending the packet!
This allows a virtgal circuit to “pipeline’ a stream of packets through an other-
wise idle node without incurring the delays associated with waiting for ack-

nowledgements or the complexity of multiple unacknowledged packets.

188

An alternative approach to flow control is to implement the buffer allocation
policy fdr a2 node in its neighboring nodes, Le. control the flow of informaticn
from the sender rather than the receiver end of each link. For example, each
output port could maintain a table remembering how many buffers in the neigh-
boring node are allocated to each channel of the link connecting the two. With
this information, the sender can decide which channel to serve next, and pack-
ets can be forwarded without the risk of overflowing the buffer space m the
receiver. Maintaining this remocte status information requires some overhead:
The fact that the receiver has freed up a buffer must be reported back to the
transmitter., Finally, since packets cannot be retransmitted, transmission
errors in packet headers result in lost packets. An end-to-end mechanism is

required to retransmit these packets.

As in the send/acknowledge flow control scheme, buffer hogging is
prevented by controlling the number of buflers used by each channel. It might
be noted however, that output port buffer hogging is much more difficult to
prevent. This is because the size of the queue on an output link depends on the
packets received from the nodé's neighbors. When these neighbors send pack-
ets, they do not know which output port in the receiving node the packet will
use, since routing dec‘isions are made inside the receiver. Thus the neighbors
cannot control the gqueue size on a specific link, and nothing prevents a single

port from monopolizing the entire buffer pool.

The send,//acknowlecdge protocol leads to a simple implementation, while the
remote bufler management approach prevents rejected packets, and thus
avoids retransmissicns and waste of bandwidth. Both schemes require some
overhead to provide the feedback signals necessary for flow control. In tke
send/ackno;ﬂledge scheme, dedicated pins are used, while in the remote bufler

management scheme, piggy-backed control signals are required. Implementa-

159

tion and comparisons of these two mechanisms will be described in the sections

which follow.

4.4, Implementation of YLS] Communication Components

Hardware implementations of the communication functions described
above are outlined in this section, and two designs are presented which
integrate these functions into a single chip. The first is a Y-component design
using a set-associative bufler management scheme and remote bufler allocation
for flow control. It will be seen that there are a number of severe deficiencies in
this design. The second design, which corrects these deficiencies, uses a fully
associative buffer management scheme. Implementations of both sender-
controlled and receiver-controlled flow control mechanisms are also discussed.
Common to both designs is the routing controller with hardware support for
hierarchical routing. This is the subject of the next section. The two designs are

described in subsequent sections.

4.4.1. Routing Hardware

This section describes a hardware implementation of the hierarchical rout-
ing table mechanism described earlier. This hardware is part of the routing con-
troller which is responsible for setting up virtual circuits through the node. The

remainder of the routing controller is described in [Fuji80].

When a virtual circuit is being constructed, the routing hardware is given a
hierarchical destination address, and must determine which output port the vir-
tual Eircuit is to use. This is accomplished by a set of routing tables, one for
each level of the hierarchy, as discussed earlier. The routing controller, part of
which is implemented as a microprogrammed engine, is responsible for loading

and maintaining the routing tables, e.g. by a shortest path routing algorithm.

180

Two implementations are discussed. The first assumes that routing tables
at all levels are the same size, some power of 2. The second design relaxes this

assumption, but at the cost of added complexity.

An l-level hierarchical node address consists of a string of digits,
A_yA_p- - - AjAg Digit A is used to index the routing table at level 1. A routing
table entry contains either an output port number indicating which port to use,
or a “NULL" flzz indicating that the table on the next level must be searched.
Let RT; denote the routing table at level 1, with 0<i<l. The algorithm to deter-

mine the appropriate output port is as follows:
level := 0; /*currentlevel, 0, 1,...1-1%/

while ({RTievet [Asver] = NULL) and (level < 1))

level := level + 1;

if (level < 1)
return (RTuet[Auvet 1) /* return output port */
else

return (NULL); /* destination node reached */

If this routirne returns NULL, then the message has reached it’s final destination,
ie. the destination address matches the local address. Otherwise, the number

of the output port selected by the routing algorithm is returned.

One hardware implementation of this table lockup mechanism is shown in
figure 4.42. It is assumed that each table contains 2* entries. The bus widths in
figure 4.4a assurne that there are 8 levels, and 4 routing table entries in each
level (ie. k=2). The "address register” hoclds the destination address. The
rightmost'k bits of this register hold 4g, the next & bits hold A, etc. A single
RAM holds all of the routing tables. The upper bits of the address lines of this
RAM specify a routing table (ie. a level), and the lower bits specify' an offset into

this table. The lower k bits of the address register (i.e. 4., in the program

161

above) are concatenated with the output of the level counter (the current level)
to form this address. The shifter aligns the destination address bits by shifting
out 4 and moving 4,; into the rightmost position each clock cycle. Since each
bit is shifted exactly k bits on each clock, the shifter can be implemented by an
edge triggered register and a simple permutation of wires. Finally, not shown.is
the control logic which sequences through the various routing tables. Design of
this finite state machine is straight-forward, using the level counter and circui-
try to detect NULL routing table entries, and generating signals to shift the

address bits and increment the level counter.

A second implementation, shown in figure 4.4b, relaxes the "fixed routing
table size' restriction. The bus widths shown in this figure support up to 8 levels
end a total of 256 routing table entries. The number of levels and sizes of the
various routing tables is programmable at system initialization. The *‘address
RAM" holds the base addresses of the various routing tables. Entry 1 contains
the base address of the routing table at level i. The routing tables are again
stored in a single RAM. The routing table offset, 4, is generated by masking
appropriate bits of the address register. This offset is added to the base address
to generate an address for the routing table RAM. A barrel shifter aligns data in
the address register for the next iteration. The mask bits and the number of
address bits to be shifted are stored in the “‘mask RAM" and *'shift RAM" respec-
tively. These RAMs are loaded by the routing controller at initialization.
Together, their contents describe the format of the address register. The con-
trol logic for this second implernent.atioh is virtually the same as that of the pre-

vious design.

4,42 AY-Component Design

The design of a Y-component has been studied [WongB1]. Details of this

design will be repeated here as an example of one implementation of the

Routing

Tables

182

3
Z]
4 7
-
Level Cntr.
A 2
18
4
.
~
Shifter , Address Reg. i
Y
yd
rd
18
Level Cntr.
A4 3
Shift Hask
RAM RAM
/’ 4 ,‘/]
Hask
T T
7.
Shifter , Address Reg. |

L.

Figure 4.4. Mierarchical routing circuitry (e) simple. (b) comple=.

7

18

(2)

Routing

" Tables

(b)

163

functions described above. A block diagram for this design is shown in figure
4.5. The component consists of a routing controller (R), three input ports, three
output ports, and three buffer modules (B), one associated with each input port.
It will be assumed that there are ¢ input and ¢ output channels on each port,

and that each buffer module consists of b data buflers.

When a packet arrives at an input port, it is placed in one of that port's
buffers. The routing controller (which can, fé:r the moment, be considered a
fourth output port) and the other two output ports actively search this input
port’s translation table and buflers to 10cafe packets destined for it. When such

a packet is found, it is forwarded and the buffer is marked empty. Some addi-

L1

Figure 4.5. Block diagram of Y-component.

164

ticnal control logic ensures that packets cn each channel are foerwarded in the

order in which they arrived.

Although the translation table and the buffer memory of a single input port
can both be read at the same time, it is not possible to simultanecus perform
two reads of the sawmne translation table or buffer memory. To avoid conflicts,
each “major clock cycle’ {the time interval to transmit or receive a single word
of data over the link) is subdivided into 4 *minor clock cycles”, and these minor
cycles are statically assigned to output ports' to time multiplex access to the
buflers and translation tables without contention. It is assumed that each trans-
lation table and buffer memory can be accessed during a single minor clock
cycle. This assignment ensures that each output port has an opportunity to
read the translation table and buffer memory of each of the other two ports (or
in the case of the routing controller, the other three ports) during each major

clock cycle.

4.4.2.1. Bufler Hanagement Hardware

A set-asscciative buffer management scheme is used in this design. Of the
b buffers assigned to each input port, each channel is statically assigned (say) 4
buflers by means of some algorithm for mapping channel numbers to buffer
addresses, e.g. channel 1 might be able to access buffers i, i+1, 1+2, and 1+3,
where all sums are taken modulo &. Thus, several channels share the use of

each buffer.

Each input channel has four status bits which indicate which buffers actu-
ally hold a packet for that channel. These bits, as well as the input port's trans-
lation tables are scanned by the other two output ports and routing controller to

locate packets which must be forwarded.

1865

4. 422 Flow Control Hardware

A remote buffer management scheme is used for flow control. The buflers
of each input port are managed by the neighbor on the sender side of the link.
In other words, the output port of each node is responsible for allocating buffer

space in the neighboring node to the packets it sends.

In addition to the 'anut‘. port status bits described earlier, each output port
maintains a bit map indicating which of the buffers of the input port on the
other side of the link are free, and which are in use. When a component sends a
packet, it not only specifies the number of the channel the packet is being sent
on, but also the buffer that tﬁe receiving component is to use. It also must set
the appropriate bit of the bit map to signify that the remote bufler is now in use.
The input port receiving the packet then loads it into the designated buflfer, and
sets the appropriate input port status bit for the channel the packet arrived on,
indicating that it has a packet waiting to be forwarded. When the appropriate
output port sees that this bit has been set, it forwards the packet. The neighbor
which originally sent it must be notified that this buffer is now free. A control
byte piggy-backed onto a packet going to this neighbor accomplishes this task
(a dummy packet is created if there is no traflic in this direction). Since the
sender does not send a packet unless there is an empty buffer on the neighbor-

ing node to receive it, buffer overflow cannot occur.

4.4.3. Deficiencies in the Y-Component Design

The design presented above suffers from a number of deficiencies. The
most severe problemn arises from the polling scheme used to determine which
channels hold packets waiting to be forwarded: each output port polls the trans-
lation tables and the status bits of the other input ports. If there are c cha.nnels
per port, then each port requires ¢ major clock cycles to poll all of the input

channels of the other two ports (two channels, one from each port, can be polled

1885

in one clock cycle). If 2 packet arrives on an arbitrary channel, then an average
of ¢/ 2 clock cycles expire before that channel is polled. Later, it will be seen
that ¢ should be relatively large, say 128 or 256, so long delays result from this
polling scheme. In addition, it will be seen that the number of buflers in each
component need not be very large, say 16 or 32, so most channels do not have
packets waiting to be forwarded. Many idle channels will have to be polled
before a channel with data is found. Thus, channel polling is an unreasonably

slow and inefficient mechanism to locate waiting packets.

The remote buffer management scheme described above wastes link
bandwidth, since it requires more overhead than is actually necessary. In the
previously described scheme, a buffer number precedes every packet sent over
the link. This is required because the sender allocates buffers in the receiving
node. The allocation function could be controlled by the receiver however, since
the sender only needs to be sure that a remote buffer exists to hold each packet
it sends, and dces not need to know the address of the remote bufler. Thus,
buffer numbers need not be transmitted over the link. A single counter indicat-
ing the number of {ree buffers in the remote node’s input port could be used to
provide the necessary information without incurring additional overhead on the
link. Sending a packet decrements the counter, while receiving a signal indicat-
ing that the remote node forwarded the packet will increment it. The receiver is
left the responsibility of determining which buffer each arriving packet should
use. This approack eliminates the need to send bufler numbers over the link,
and thus achieves more efficient use of the link's bandwidth. Details of such an

approach will be described later.

The design described above requires several memory references to the
same memory on each major clock cycle. For example, the translation table

polling mechanism reguires four memory references per clock. In addition, i

167

two output ports want to simultaneously forward packets from the same input
port, two buffer memory reads per clock are required. The time required by
these memory references could slow the clock rate, reducing the communica-

tion bandwidth of the entire network.

Finally, the studies which follow indicate that a high degree of buffer shar-
ing is desirable, since there are many more channels than bufiers. This
increases the desirability of a fully associative buffer management scheme. Cne

implementation of such a scheme is described next.

4.4.4. An Alternative Design

In order to remedy the deficiencies described above, an alternative design
for a communication component has been studied. Unlike the previous design,
this design has been structured in such a rnanne.r that the number of 1/0 ports
can be increased without adding unduly to it's complexity. A fully associative
buffer management scheme is explored, as well as two types of flow control

mechanisms.

A block diagram of the communication component design is shown in figure
4.6. The most distinguishing fgature of this design is a single pool of buflers
shared by all channels of the component. Since all packets traveling through a
node must use this pocl, it must provide enough bandwidth to avoid becoming a
bottleneck. This is achieved by interleaving the memory 18 ways, assuming
packets consist of 16 bytes. Byte i of each packet (i<0<18) is always stored in
memory module i (#};). Each of the p ports can simultaneously load a packet
into a buffer, provided no two use the same memory module at the same time.
In the worst case, p packets simultaneously arrive at a node. Since only one
port can be granted access to MM, additional registers are required to tem-
porarily buflfer the arriving data bytes until they can be stored in MMy On the

next clock cycle, when the second byte of each packet arrives, one of these

168

newly arriving byles will be loaded into M#;, and one of the temporarily buffered
bytes can now be written into M. Similarly, three accesses to the buffer pool
will occur on the third clock, and so on. Eventually, each port will be able to

access a different memory module on each clock cycle.

If the links can transmit one data byte per clock cycle, then the communi-
cation component must be able to transport p bytes from the input ports to the
memory maodules in sach clock A high-speed, time-multiplexed bus performs

this function. Since this bus remains entirely within the chip, it can run approx-

High-Speed Bus : ROUTING High-Speed Bus
—

INPUT CONTIiOLLER QUTPUT
PORT ” - >l PoRT
CONTROL

| LOGIC
INPUT OUTPUT
PORT ~ "l PORT
MM 0 >
[9
[®
f— MM 1 >
[} [}
v v
[
o
INPUT i . OUTPUT
PORT " | "1 PORT
' MM 15 >

Figure 4.8. Flock diagram of alternative design.

168

| imately an order of magnitude faster than the I/0 links, which require off-chip
communications [Sequ78). A second high speed bus carries bytes from the
memory modules to the output ports. Single-port memories can be used in the
memory modules provided the control logic only initiates one operation - for-
ward a packet cr receive a packet - per clock cycle. The designs which follow

assume that this is the case.

A block diagram of the control logic module is shown in figure 4.7. Let us
consider the events which occur when a packet arrives at the node. First, the
header, i.e. the input channel number, arrives. The translation table is read to
determine which output port and channel will be forwarding the packet. The
output of the translation table is sent to both the buffer management and flow
control modules. The buffer management module allocates an empty buffer to
hold the newly arriving packet, and notes the location of this buffer as well as
the output port/channel specified by the translation table. This information will
be needed when it is time to forward the packet. The buffer module then sends
the address of the bufler into MM, and the packet is stored, byte-by-byte, into
successive memory modules on subsequent clock cycles. The flow control
module notes that this output channel now has a packet waiting to be forwarded.
When the output link specified by the translation table is free, the flow control
logic sends a signal to the bufler management module indicating that the latter
should forward the next packet waiting on this output channel. The buffer
management module &nds the address of the buffer holding this packet and
sends it to MM, The packet is read from the buffer byte-by-byte, and forwarded
over tize output link. In both reading and writing a packef, the same memory
address is pipelined from memory module to memory module on successive
clock cycles. Since the pipelined structure of the memory modules allows the |

reading, i.e. forwarding, of a packet to begin before all of it arrives, virtual cut-

170
through is easily implemented.

The sections which follow give more detailed explanations of possible
hardware impiementations-of these mechanisms. The next section describes -
two implementations of a fully associative buffer management scheme which
differ in the number of buffers each virtual circuit can hold at one time. It is
seen that a significant reduction in complexity is possible if this number is res-
tricted to o'ne. Tollowing this, two possible implementations of flow control
mechanisms are presented. The first uses a send/acknowledge protocol, while

the second uses a remote buffer management scheme.

High 3peed Dos
Flow
\M -
Control A
Logic : Buffer
l Hanagement MM O

Logic

Translation
Tablesa '

-

High Speed Bos

Figure 4.7. (Contrsol logic.

171

In the circuit diagrams which follow, the widths of data paths are based on a
component with 4 1/0 ports, 32 data buffers, and 128 channels per link. Thus,
port numbers, buffer numbers, and channel numbers are 2, 5, and 7 bits in

length respectively. These choices will be discussed later in this chapter.

4.4.4.1. Buffer Management Hardware

The buffer management module must perform two functions:
(1) Locate a free bufler to hold a newly arriving packet.

(2) Locate the next packet waiting to be forwarded on a particular output chan-

nel

Two implementations will be described for performing these functions. The first
assumes that the number of packets waiting to use a given output channel can

be larger than one. The second restricts this number to be at most one.

Since buflers are dynamically assigned to virtual channels on demand, a
mechanism is required to keep track of which buffers are assigned to which
channels at any given time. In the presented solution, this task is accomplished
by *‘chaining"” the buffers waiting to be forwarded on an output channel into a
linked list for that channel. When a packet arrives, it is placed at the end of the
linked list corresponding to the channel the packet is to be forwarded on (read
from the translation table). It is removed from the list after it has been suc-
cessfully transmitted to the next node. The linked lists are managed as a FIFO
queue to ensure that packets are forwarded in the same order in which they
arrived. The mechanisms for managing the linked lists are implemented in
bardware so that packet forwarding can proceed as quickly as possible. A block
diagram of one implementation is shown in figure 4.8a. In the discussion which
follows, it is assumed that each p-port component has b buffers and ¢ input (or

output) channels per port, i.e. £ Xp channels per node.

172

t’ ’
Front Rear
k
Ram Ram Lin
Ram
(2)
b s s
Enux mu A8 | mux l
:u s I ‘
L L
| tree | [mux} [Eut!erj
Fs re rs e MAR yr xyeys s b4 J A 4
. b d b
) - T
I t.emE l
oyt port/shasmel ————r—
Ao
Channel!
to)
‘ % Buffer
Ram
As
»
T (b)
¥ O

Free

Buffer ‘

Lateh

o

Figure 4.B. Buffer management circuitry (a) >1 buffers/channel.
(b) ! buffer /channel.

173

A buffer consists of a 16 byte data portion, which is physically distributed
across the memory modules in figure 4.6, and a pointer word. The pointer word
indicates the.address of the next buffer in this buffer’s linked list. The b-word
“link'* RAM in figure 4.8a holds these pointers. Each output channel has
" pointers to the buffers at the front and end of its linked list. The ¢Xp-word
“tront” and “‘rear” RAMs in figure 4.8a perform this function. Adding & new
buffer to an output channel implies reading the rear RAM (to find the last buffer
in the list), and writing the address of the new buffer into this address of the link
RAM (to set the new link) as well as the rear RAM (to set the pointer to the new
rear element). Deleting an entry implies reading the front RAM (to get the
address of the buffer being deleted), reading the link RAM (to get the new front

element), and writing this latter address into the front RAM.

Buffers not linked to any channel list are empty, and are linked together in
a separate *‘free list"’. A register, called the *‘free” register, points to the begin-
ning of the free list. The arrival of a new packet implies removing an element,
i.e. the address of a free'buﬁér. from the free list, and adding this address to an
output channel's linked list. Forwarding a packet implies removing the front
element from the channel list, and adding it to the free list. Allowing simultane-
ous access to different memories, a buffer can be added to or deleted from a
linked list in four and three clock cycles respectively (where each memory
reference requires one clock cycle). The operations necessary to process an

arriving /departing packet are shown in figure 4.9 below.

The complexity of the design described above can be reduced significantly
if the restriction is made that any output channel can use at most one bufler at
a time. The impact of this restriction ﬁn system performance will be discussed
later. Most of the hardware for managing the linked lists can be eliminated,

since the lists are at most one element long. This allows the three RAMs in figure

174

Packet arrives on channel “ich™:

clock cycle action
1) buffer « free;
MARiny « free;

if (free = NULL) abort;
2g free « Link[{ MAR,; };
Link[MARM, +« NULL;
temp « Rearlich];
e+~ Rear{ich];
4) Rear{ich] « buffer;
if (temp = NULL)
Frontlich] « buffer;
else
Link[MAR;zu.] « buffer;

Packet forwarded on channel **och’:
clock cycle action
1) bufler « Front{och];
MAR,. + Front[och]:
2) if (buffer = NULL) abort;
temp « Llnk{MARw]
3) Front{och] + temp;
Link[MARine] « free;

comments
address of free buffer
get ready to read new free list head
no more free buffers
read new free list head
mark pointer for new bufler
locate end of linked list
get ready to add to end of list
update pointer to end of list
if channel list now empty
then update front pointer

else update previous last element

comments
get address of first buffer in list

abort if list empty

address of new front element
update front pointer

add bufler to free list

free « buﬁer new front of free list
if (te check if list now empty
f‘ochl NULL

Figure 4.9.

Operations to send and receive packets.

4.8a to be combined into one RAM, the *‘channel-to-buffer’ RAM shown in figure

4.8b. This ¢ xp-word RAM maps output channels to buffer addresses. Word 1

bolds the address of the buffer currently holding a packet for channeli. The list

of free buffers is replaced by a b-bit latéh. called the “‘free buffer latch™.

The

free buffer latch is implemented as a bit-addressable latch, i.e. a memory device

which is written as a RAM (one bit at a time), but read as a latch (all bits in

paraliel). Each bit indicates the status of a buffer: free (1) or in use (0).

Yhen a new packet arrives, the buffer management circuitry must perform

two operations, assurning the flow control circuitry has first established that the

packet can be accepted (discussed later):

175

(1) Find and allocate a free buffer.

(2) Note the location of the buffer so that the packet can be found when it is

time to forward it.

The address of a free buffer is determined by a priority encoder attached to the
free buffer laich. The resulting address is sent to MM,. This address is also used
to clear the corresponding bit in the free buffer latch, eflectively allocating the
buffer, and completing the first operation. The second operation is accom-
plished by writing the address of the selected buffer number into the chaﬁnel-
to-bufler RAM at the memory location corresponding to the output channel

responsible for forwarding the .packet (read from the translation table).
Forwarding a packet on output channel 1 also requires two operations:

(1) Locate the buffer holding the packet for channel 1.

(2) Release the buffer. .

The first task is accomplished by reading address i of the channel-to-buffer RAM.
The resulting address is used to set the corresponding bit in the free buffer
latch, marking the buffer free to be used by other packets, thus accomplishing

the second task.

Forwarding a packet requires the time of two memory operations since the
channel-to-buffer RAM read must be completed before the latch write can be
begun. These two steps are easily pipelined however, allowing a ‘‘'send packet"
operation to ’be initiated every clock cycle. The operations for receiving a
packet can be performed in a single clock cycle since both can be executed con-
currer;tly. This is in contrast to the four clock cycles required in the previous

buffer management scheme which used linked lists.

176

4.4.42 Flow Control Hardware: Send / Acknowledge Protecol

In the send/acknowledge flow control scheme, each node sends a packet,
and receives an acknowledgement signal indicating whether the receiver
accepted or rejected (i.e. discarded) the packet.‘ Packets may be rejected
because of buffer space limitations or transmissions errors in the header and
must be retransmitted at some later time. As discussed earlier, it is assumed
that each link uses a separate conrrol line to carry the acknowledgement vsi,gnal

back to the sender with minimal dclay.

In order to prevent buffer hogging, each output channel may not use more
than some ‘‘channel limit"” of buffers at ény one time. In addition, each ocutput
port may not use more than some “port limit"” of buffers. Note that the port
and channel limits only restrict the number of bufifers the port and channel can

use, and do not represent an a priori allocation of buffer space.

A block diagram of the flow control circuitry for one port is shown in figure

4.10a. The circuitry performs two functions:

(1) It selects a channel which is waiting to use the link and initiates a request

(to the buffer manager) to forward the next packet on this channel.
(2) It accepts or rejects arriving packets.

Note that the flow control circuitry does not deal with buffer numbers. The

buffer manager keeps track of which buffers are assigned to which channels.

The first function is accomplished by the '“channel FIF0O'" shown in figure
4.10a: This memory lists channels with packets waiting to be forwarded. When
the link is ready to forward a packet, the first element of the channel FIFO is
removed. The resulting channel number is sent to the buffer management cir-
cuitry indicating that the next packet on this output channel is to be sent over
the link If this packet is accepted by the neighboring node, the FIFO element is

17

Figure 4.10. Flow control circuitry (a) send /acknowledge.
(b) additional circuitry for remote buffer management.

outpat chana E‘ 7, Channel v
I—)L:_:J ’ FIFO “‘“‘(_'n:)“”"
7, 4
7, .
4 i } 7
mux
&
‘/
f 7
port cntr. R Channel (2)
¢ inc/dec Ram B
zero det.
e Ae
wgnal |
zero det.
pe buffers
parity error
\- ~ port Hemit
cnannel limit
——
‘ send budler §
-—;:——— buller §
mux
(b)
arrive channal § .;L_) Release reieese ch.m:,l L
‘ 7
. _
arrive poct § —<—) Ram frieem port /'; demux
) A] r
fifo fifo fifo
buffer buffer o0 buffer

178

discarded. Otherwise, the channel number is reentered at the end of the FIFO.

The remaining circuitry in fligure 4.10a performs the second function: deter-
mine whether an arriving packet should be accepted or rejected. A packet may

be rejected for any of four reasons:

(1) No buffers remain in the node to hold the packet.

() The parity check ca the header indicates a transmission e~ror.

(3) The output port is already using the maximum number allowed.

(4) The output channel is already using the maﬁmum number allowed.

The flow control hardware must detect each of these cases, and generate a nega-
tive acknowledgement should any of thern arise. If none of the conditions arise,

the packet is accepted and a positive acknowledgement returned.

The first condition is detected by a control line from the bufler manage-
ment module indicating whether the free bufler pocl has been exhausted. A
NULL pointer in the free register in figure 4.8Ba, or a lack of 1’ bits in the free
buffer latch in figure 4.8b indicates this condition. Similarly, a parity checker in
the input port detects the second condition. A “‘port counter” is used to detect
the third. This counter indicates the number of additional buffers that port can
use before the port limit is reached. The counter is initially set to the port limit,
decremented each time a packet is accepted, and incremented each time the
port successfully forwards a packet. K t.he output of the counter is zero, the
port cannot accommodate another packet. The zero-detection circuitry, imple-

mented by.a single nor gate, identifies this situation.

In order to detect the final condition, a channel using its limit of buflers,
circuitry similar to the port counter is required for each output channel. The
c-word “channel RAM' indicates the number of buffers each channel can use

before reaching its channel limit. Entry 1 is initially set to the channel limit for

178

channel %, is decremented each time a packet is accepted by that output chan-
nel, and is incremented when the channel successfully forwards a packet. If a
packet arrives and the corresponding channel! RAM entry is zero, the packet

must be rejected and a negative acknowledgement returned.

If the restriction is made that each channel can use at most one buffer at a
time, then the circuitry in figure 4.10a can be simplified. The channel RAM is
now one bit wide, and indicates whether or not the channel has a packet waiting
to be forwarded. The incrernent/decremeht circuit attached to the channel
RAM is no longer needed, since accepting a packet implies setting a bit in the
RAM, and forwarding a packet implies reseting a bit. Similarly, the channel
RAM’'s zero-detection circuitry is not required, since only a single bit is output

from the RAM.

4.4.4.3. Flow Control Hardware: Remote Buffer Management

| In this scheme, each output port maintains enough information about
buffer allocation in its neighboring nodes to determine which channels may send
packets, and which must wait. A channel must wait if it is using *‘too many” of
its neighbor’s buflers, or if there is insufficient free buffer space to hold a new
packet. Control decisions are made by the sender, and receivers must accept
all packets sent éver the link. Eventually the receiver will forward the packet to
a third node. When this happens, the receiver reports back to the sender by
sending a “release channel number” 'mciicating that the buffer is again available
for another packet. This indicates the number of the channel which originally

sent the packet.

In addition to restricting the number of buffers each channel can use at one
time, a *port limit" restricts the number of buffers each output port can use.
Both the port and channel limits are initialized by the local routing controller.

If the port limit is pl, then pl buflers are reserved in the neighboring node for

180

use by this output port. This is in contrast to the send /acknowledge design in
which the port limit only restricts the number the port can use, but doe; nct.
actually reserve buffer space. Because no retransmissions are used, the remote
buffer management scheme must reserve buffers to avoid overflows, since this

will result in lost packets.
The flow control circuitry must perform four functicns:

(1) 1t selects a channel which is waiting to use the link, and initiates a request

(to the buffer manager) to forward the next packet on this channel.
(2) It generates release channel numbers to prévious nodes.
(3) It processes incoming release channel numbers.
(4) It maintains infermation of buffer allocation in receiving nodes.

The physical circuitry for performing the first function is virtually the same
as that shown in figure 4.10a for the send/acknowledge scheme, however the
logical meaning of the information kept in the channel RAM is different. I.nstead
of indicating the number of local buffers below the channel’s limit in the local
node, the RAM indicates the number of remofe buflers below the limit in the
neighboring node. As long as entry i is not zero, channel i may send another
packet, assuming the port limit has not been reached. Similarly, the port

counter also refers to buffers in the neighboring node used by this output port.

When a packet arrives, the number of the output channel responsible for
forwarding the packet is added to the end of the channel FIFO. Since all packets
are accepted, no further processing is required. To forward a packst, the next
entry Ln the channel FIFO is removed. The corresponding channel number is
used to address the channel RAM. If the corresponding entry of the channel RAM
is not zero, and if the port counter is not zero, then the channel number is sent

to the buffer mcdule and the next packet on this channel is sent over tke link.

-

181

The port counter and channel RAM entry are then decremented. If either of the
counters was zero, the channel cannot forward the packet so the channel

number is reentered at the end of the channel FIFO.

Each time a packet is forwarded, a release channel number must be sent
back to the neighboring node which sent the packet. The circuitry in figure
4.10b performs this function. In order to generate release channel numbers,
information must be kept with each packet that indicates which input port and
channel it arrived ocn. A b-word ‘‘release RAM" accomplishes this task. Element
1 indicates the input port and channel number the packet in buffer 7 arrived on.
This information is loaded into the release RAM when a packet arrives and read
when it is forwarded. A small fifo buffer in each output port holds the channel
number portion of the word until it can be forwarded to the neighbor which sent

the packet.

Finally, when a release channel number is received from a neighboring

node, indicating that a certain channel is using one fewer buflfer, the count of

buflers the channel is allowed to use must be incremented. The appropriate
entry of the channel RAM is read, incremented, and written back into the RAM,

completing the processing of the release.

The simplificaticns resulting from constraining each output channel to
using at most one remote buffer at a time are similar to those described in the
send /acknowledge scheme. The channel RAM is again one bit wide. Forwarding
a packet resets a bit in the RAM, effectively disabling the channel. Receiving a

release channel number causes the bit to be set, reenabling the channel

4.5. Evaluation of Communication Component Parameters

In order to evaluate the amount of circuitry required to implement the

communication component described above, estimates are required of:

182

(1) the number of 1/0 Perts
(2) the number of virtual channels
(3) the number of buffers.

Chapters 2 and 3 examined the first questicn in detail and concluded that from 3
to 5 1/0 ports should be used. The remaining two questicns will be discussed
next.

4.5.1. Number of Virtual Channels

Because each virtua! channel requires a certain amount of overhead circui-
try, the number of channels must be limited. In addition, it is desirable to limit/
the number of channels on each link to prevent "ov*erboéking" the link's
bandwidth, since this will lead to long queueing delays on the link and to poor
performance. Cn the other band, providing tco few channels per link will lead to
2 high failure rate in establishing virtual circuits, deadlock situations, and
underutilization of the link’s bandwidth. Thus the number of virtual channels
per link must be chosen to achieve good link utilization without incurring an

excessive amount of overhead circuitry.

First, link utilization will be used to determine the proper number of chan-
nels per link. The overhead issue will be ignored for now. Deadlocks can be bro-

ken with an end-to-end timeout mechanism, as will be disussed later.

Each virtual circuit using a link requires a certain amount of bandwidth.
Since the bandwidih provided by each link is fixed, each link can support a large
number of circuits with low bandwidth requirements, or a small number of cir-
cuits with high bandwidth requirements. If a large number of channels are pro-
vided to accommodate the former case, a number of high bandwidth circuits
may use the link and overbook the available bandwidth. If 2 sall number of

channels are provided, much of the link’s bandwidth will be wasted when many

183

low bandwidth circuits monopolize the available channels.

One approach to resolving this dilemma is to provide enough channels to
accommodate a large number of low bandwidth circuits, but to also provide a
separate mechanism which prevents overbooking the link's bandwidth. New cir-
cuits may not be established on the link if the link's bandwidth has been fully.
booked, regardless of the number of unallocated channels remaining. Later,
when existing circuits using the link are torn down, new circuits could again be

established.

In order to implement this mechanism, the bandwidth requirements of each
circuit must be estimated. This could be accomplished statically when the cir-
cuit is established (e.g. the operating system may be able to provide this infor-
mation based on the type of f.raﬁ'ic expected over the circ{.lit), or dynamically,
“‘on the fly’’, by measuring traffic on the circuit. Of course, the latter scheme
has the disadvantage that link bandwidth may still be overbooked since thé
amount of bandwidth required by the circuit is not known until after it is esta-
blished, i.e. a high bandwidth circuit may be established over the link before it is

known that its bandwidth requirements overbook the link.

Both the static and the dynamic schemes could be implemented by associ-
ating a *link bandwidth indicator® with each output link which. indicates the
anticipated bandwidth requirements of circuits using the link. When this
bandwidil indicator exceeds some threshold, no more traflic is routed over that
link. In the first scheme, using “‘hints” from the operating system, a field in the
packet which sets up the virtual circuit could indicate the anticipated bandwidth
requirements of that circuit. The link indicator is increased by the value of this
field when the circuit is set up, and decreased when the circuit is torn down.
The value of this field must be included in the packet tearing down the circuit as

well as the header, since the component does not keep track of the bandwidth

184

requirements of each channel.

In the dynamic 'scheme. the bandwidih indicator could be incremented
each time a packet is sent on that link. Periodically, the routing controller
examines the indicator to determine if the link is overbooked, and then clears it.
Finally, a third alternative is to measure the average queue length on each link, .
and declare the link overbuoked if this average exceeds a certain threshold.
Again however, these two schemes do not prevent overbooking the link's

bandwidth, but rather attempt to prevent a bad situation from becoming worse.

If a separate mechanism is used to prevent overloading the link, each com-
'ponent should ideally providé an unlimited number of channels since this
guarantees that it will never needlessly block circuits trying to use a link w{th
excess capacity. This number can be reduced however, if the minimum
bandwidth requirements of any virtual circuit can be established. The mazimum
number of channels the link will ever require can be calculated by dividing the
total link bandwidth by this minimum channe! bandwidth, as will be derived

below.
In this context, two questions must be considered:

(1) How many minimum bandwidth circuits can be maintained on a fixed
bandwidth link?

(2) EHow much traflfic corresponds to a minimurn traffic load?

Tke ﬂrst question lends itself to a precise mathematical analysis, and will be dis-

cussed next. The second is more difficult to resolve since it is application pro-

gram dependent. It will be addressed later.

Given an expected traffic load on each circuit, the proper number of chan-
nels can be estimated via a queueing model. The mode!l for the traflic load on

each communiceticn link is shown in figure 4.11. The n virtual channels using

185

Channel 1

Channel 2

Channel n QUEUE SERVER
(LINK)

Figure 4.11. Queueing model for analyzing number of channels.

the link are modeled as a single server queue with traffic arriving from n
sources. It will be assumed that packet arrival times on each virtual circuit fol-
low a Poisson distribution. Since fixed-length packets are used, service times
are deterministic, resulting in an M/G/1 queueing model. From the Pollaczek-
Khinchin mean value formula [Kléi'?f)], the average time W each packet spends

in the queue waiting for the link is

-3
2(1-p)
where Z is the service time, i.e. the time required to transmit a packet, and p is

F =

the link utilization. Assuming the average arrival rate on each of the n virtual
circuits is A messages per second, or Am; bits per second, where m; is the
packet length in bits, the utilization of a link with a bandwidth of b bits per

second is

_ namy
b

Since the service timeisZ = m;/b, we find

186

nim?
26 (b —nAmy)

To determine numerical estimates of the number of channels, consider the

W =

number of virtual circuits required to drive the link utilization p to 1, which in
turn drives the average waiting time to infinity:

b

Amy

Figure 4.12 shows a plot of this quantity for an 80 Mbit/second link (a byte wide

n =

link running at 10 Mhz) as a function of 1/2, the mean time between packets on

each circuit. This plot also assumes that packets are 17 bytes in length.

The critical parameter in evaluating the number of channels is the
expected traflic load on each‘ virtual circuit. Unfortunately, the bandwidth
requirements of each circuit may be arbitrarily small, implying an arbitrarﬁy
large number of channels should be supported. In reality however, seldomly

MAXIMUM NUMBER OF CHANNELS

vs. CHANNEL LOADING
Number of Charnels

300
200 h
100 T
0 N . N
(] 100 200 300 400
Mean Interarrival Timme/Channel
(:microseconds)

Figure 4.12. Number of channels us. load per channel,

187

used virtual circuits may be torn down and reestablished as necessary to reduce
the number of channels required. Since reestablishing a circuit incurs consider-
ably more delay than sending a message on an existing circuit, these lightly

loaded circuits must not have low latency requirements.

In order to determine numerical estimates of virtual circuit loading, the
average time between messages on virtual circuits was measured for the five
application prograins described in chapter 3 (the artificial traflic load program
is excluded) assuming negligible communication delays. These arrival rates are
shown in table 4.1 below, and represent rates averaged over all virtual circuits in
the application program weighted according to the number of messages sent on
each circuit. If n; and A; are respectively the number of messages sent and the
average arrival rate on virtual circuit i, then the overall average arrival rate is

computed as:

i
Standard deviations for the interarrival times are also shown in table 4.1.
The zero value in the FFT program is due to the regularity of its structure: All
tasks iteratively perform the same computation, so the time between messages
is always the same. The other values reflect the fact that the programs typically
use two types of circuits - those with little or no computation between messages,

e.g. the circuits distributing the initial data samples in the signal processing

Table 4.1
AVERAGE ARRIVAL RATES PER VIRTUAL CIRCUIT

ARRIVAL INTERARRIVAL STANDARD NUMBER OF

PROGRAM RATE TIME DEVIATION CHANNELS
{msgs./sec.) {microseconds) (microseconds) (80 Mbit link)

BARNWELL 9840 100.6 40.4 59
FFT 17200 58.0 0.0 34
BLOCK 29200 34.2 43.8 20
JORDAN 45200 22.1 23.2 13
10 85500 11.7 9.2 7

188

programs, and those with more significant computaticns belween messages.
These latter circuits have an average interarrival time which is much larger

than the former.

Figure 4.13 shows the average waiting time to use an 80 Mbit/second link
loaded with virtual circuits which each carry an artificial traffic load
corresponding to the average values listed in table 4.1. The curves show that up
to 59 channels should be allowed for the program exhibiting the lightest trafiic
load —the Barnwell signal processing program. This value is also listed in table
4.1 along with the corresponding values for the other epplicaticn programs.
Thus, for workloads similar to those discussed here, it would be reascnable to
provide up to 84 channels on each link. If one considers the standard deviation
on the Barnwell program, one could argue that this ﬁgure should be raised to
128, since it is possible that most of the circuits using a link could by chance fall

below the average arrival rate.

As discussed earlier, the tasks in the application programs listed in table
4.1 communicate relatively frequently. Programs reguiring less frequent com-
munication use circuits that are more lightly loaded, implying each link could
support even more channels. Thus, the figure derived above should be con-
"sidered a lower bound rather than an absclute estimate of {he number of chan-
nels. Since there may be any number of circuits which communicate infre-
quently, but which require low latency (making it unreasonable to tear down and
reestablish the circuit each time a message is sent), more than 84 channels
should be provided. However, increasing the number of channels increases the
gize of the channel number that must precede each packet, reducing the
amount of bandwidth available for transmitting data. A compromise between
these conflicting considerations is to provide 128 or 256 channels per link, since

this allows more than 84 channels, but still confines the channel number over-

189

WAITING TIME vs. NUMBER OF CHANNELS

Waiting Time
(microseconds)
100 T
80 b -
BARNWELL
eo - -
40 _ o
~ FFT
\\ |~ BLOCK 1/0
20 BLOCK STATE |]
w
0 T
0 20 40 80

Number of Channels

Figure 4.13. Waiting time vs. number of channels for various programs.

head to a single byte.

Finally, let us consider the impact future improvements in technology will
have on the number of channels. Both computing speeds and link bandwidths
can be expected to improve. Higher bandwidths imply that each link could sup-
port more channels. On the other hand, higher computation rates lead to higher
traffic loads, implying’ fewer channels are necessary. If switching speeds
increase at a faster rate than communication rates, then we can expect virtual
circuit loading to be the more dominant factor, implying fewer channels per
link. 'On the other hand, if communication rates progress at a higher pace, then
more channels may be provided. While switching speeds can be expected to
improve by an order of magnitude over the next 20 years [Keye79], fiber optic
links may lead to much larger improvements, implying more channels may be

supported.

180

4.5.2. Amount cf Bufler Space

Technological capabilities limit the amount of buffer space that can be pro-
vided by each communication component. On the other hand, insufficient bufler
space will lead to performance degradations, since cornmunication bandwidth is

wasted and delays increased if buflers are not available to hold arriving packets..

In extreme cases, buflfer deadlock will result. Buffer deadlock is a situation
in which message trafiic comes to a complete halt because a set of nodes have
exhausted all of their available bufler space. Each node cannot forward a packet
because no buffer is available to receive it, and each node cannot fres a bufler
because no packets can be fofwarded. An example of such a deadloék situation
is shown in figure 4.14, where each node has a single bufler holding a packet
waiting to be forwarded. The network will remain deadlocked until a packet is

discarded, releasing a buffer.

[

Figure 4.14. Ezample of buffer deadlock.

151

Thus, sufficient buffer space must be provided to:
(1) avoid buffer deadlock.
(2) ensure good performance.

Each of these issues will now be discussed in turn, followed by results from simu-
lation studies that help to determine the buflering requirements of each com-

rmunication component.

4.5.2.1. Buffer Space: Deadlock Considerations

Buffer deadlock can be prevented if enough buffer space is provided in each
communication component. A brute force solution is to provide each virtual
channel with it's own bufler. Since each circuit is allocated a buffer in each
node it passes through, traffic on a circuit cannot be blocked by traflic on other
circuits, so buffer deadlock cannot occur. Providing a separate buffer on each
channel is wasteful however, since each component will have to provide as many
buffers as there are channels. It will be seen that virtually the same perfor-

mance can be achieved if many channels share a much smaller pool of buffers.

An alternative approach to avoiding buffer deadlock is outlined in [Mer180a,
Merl80b]. Here, each node must have at least H . buffers, where Hoex is the
maximumn number of hops traversed by any virtual circuit. The buffer pool in
each node is partitioned into Hoex disjoint pools or levels, say 1,2, - H .
Each node maintains a ""hop count” for each circuit passing through the node
indicating the number of hops the circuit has traversed from the source node to
the current node. The hop count is set when the virtual circuit is first esta-
blished. A packet erriving at a node on a circuit with hop count i may only be
placed in one of the buffers in level £. I can be shown that buffer deadlock will

never occur in this scheme.

1e2

The central disadvantage of this scheme is that large networks reguire
more buffers than smaller ones, so the communication component must provide
enough buflers to accommodate the largest network it will ever become a part
of. This may require an excessively large amount of buffer space. In addition, if
traffic is highly localized, many buffers are wasted because those reserved f;x

bigher hop countz are never utilized.

Partitioning ¢he buffer pool also adds a certain amount of complexity to the
- component. The partitioning can be accomplished by limiting the total number
of buflers used by circuits at the same level, rather than physically partitioning
the buffer space. For example, if Homaz is 10 and there are 20 buffers in the
buffer pocl, it is sufficient to use the buffer management schemes described
above, and ensure that the circuits at any given level collectively use no more
than 2 buflers at one time. This could be implemented with a ccunter at each
level indicating the number of free buffers currently available at that level. A

packet is rejected if no more buffers are available at it’'s particular level.

Implementation of this scheme with a remote buffer management policy for
flow control is more difficult, since different nodes ccmpete for the buffers in
each level. The buflers in each level must be further partitioned among the

neighboring nodes to avoid overflow within each level.

A third approach to resolving the deadlock issue is to allow deadlock to
occur, but to incorporate a mechanism that ensures that deadlocks are broken.
Since detecting and breaking a deadlock may be a time consumning operation,
enough buffer space should be provided to ensure that deadlocks occur infre-
quently: The deadlock breaking mechanism could be implemented as a side
eflect of an end-to-end protocol using timeout counters to retransmit lost mes-
sages. In such a scheme, each message sent over a virtual circuit must be ack-

nowledged by the receiver. If an acknowledgement is not returned after a cer-

ar

183

tain amount of time, the sender assumes that the message was lost and must be
retransmitted. In order to avoid duplicate packets, the sender must first
“clear’ the virtual circuit by sending a special packet which flows through the
circuit and destroys all packets it encounters. It then resends the lost message.
If deadlock occurs, timeouts will result and circuits will be cleared. This
releases buffer space and breaks the deadlock. Since such a timeout mechan-
ism is already required to retransmit lost packets, the deadlock breaking
mechanism incurs virtually no additional cosl’_.. In this scheme, communication
components are not required to ensure that buffer deadlock never occurs, so
they need not provide excessive amounts of buffer space. Thus this mechanism

appears tc be an atiractive one for solving the buffer deadlock problem.

It might be noted that a similar mechanism could be used to break
deadlocks arising when links use all of their virtual channels. Expiration of an
end-to-end timeout during the set-up of a virtual circuit could trigger the
release of a special packet which destroys the partially completed circuit,
releasing channels, and breaking the deadlock. This protocol also requires an

end-to-end acknowledgement to mark the establishment of each virtual circuit.

Simulation experiments similar to those discussed in chapter 3 were car-
ried out to evaluate the number of buffers each communication component
should provide to avoid buffer deadlock. The six application programs discussed
in chapter 3 were executed on Simon with a switch model for a hexagonal lattice

network built from 4-port communication components (figure 3.14a).

The first set of experiments assumed that each component provides b
buflers, an.d that no restrictions are made on bufler sharing, i.e. virtual circuits
may use as many buffers as are available. A large number of buffers, over 100
for some of the programs, was required in each component to avoid buffer

deadlock.

184

Figure 4.15. Ezample of congestion leading to deadlock.

Bufler hogging was at the root of these deadlcck problems. Consider the
situation in figure 4.15. Virtual circuits 1 and 2 join at node A, sharing the link
from A to B, and virtual circuit 3 uses the link from B to A. Suppecse all three
circuits carry a steady stream of packets, or equivalently, suppose a burst of
packets simultaneously arrives on each circuit. Since the flow of packets into
node A on circuits 1 and 2 exceeds the flow from A to B (the latter is limited by
the capacity of the link from A to B) a queue begins to form at node A The
queue will grow until the free buffer pool in node A is exhausted. When this hap-
pens traffic on circuit 3 is blocked, and a queue of packets begins to grow in
node B. Eventually, B's free buffer pool will alsc be exhausted, blocking traffic
on circuits 1 and 2. The network is now deadlocked, and will rernain in this state

until packets are discarded.

The scenario described above can be avoided if precautions are taken to

avoid buffer hogging, e.g. by restricting the number of buffers each circuit can

185

use. The simulation experiments were repeated assuming each circuit could not
use more than one buffer in each node at one time. It was found that 12 buffers

were suflicient to avoid buffer deadlock in all six application programs.

The simulation experiments thus demonstrate the need to provide a flow
control mechanism which prevents buffer hogging. The studies also indicate
that, it is reasonable to provide each component with a few tens of buflers, say

32, to reduce the probability of buffer deadlock.

4.5.2.2. Buffer Space: Performance Considerations

Each communication component must provide enough buffer space to
maintain a steady flow of traffic through the node. Otherwise, communication
bandwidth will be wasted: In the send/acknowledge flow control scheme,
retransmissions are required to resend rejected packets, while in the remote
buffer management scheme, links simply become idle. How many buffers are
required to maintain this flow? Studies of multistage permutation networks,
called delta networks, indicate that virtually no performance improvement
arises beyond three buffers per node [Dias81la, Dias81b]. Three buffers are not
sufficient however, to avoid many deadlocki situations. Thus, based on these stu-
dies, deadlock rather than performance optimization should be used to deter-

mine the amount of buffer space required.
Simulation experiments were carried out to evaluate the following ques-
tions:
(1) EHow many buffers should each component provide to achieve good perfor-
mance?

(2) How many buflers should each virtual circuit be allowed to use at one time?

(3) How well does the simple send /acknowledge flow control mechanism per-

form?

166

Before discussing the results of these simulation experiments, let us anticipate
the answers to these questions by deriving an intuitive understanding of the

impact of buflering and flow control on network performance.

Buffering and flow control questions are of little consequence when the net-
work is lightly loaded, since buffering requirements are low {buffers start to
empty while they are being filled) and throttling mechanisms are not necessary.
Therefore, we will only considef the case.in which links are congested. An exam-
ple of a congested link is shown in figure 4.16a. Two circuits, 1 and 2, arrive at a
node on links A and B respectively, and share link C. Assume that each circuit
carries a continuous stream of packets. Since the combined bandwidths of links
A and B is twice that of C, the latter becomes the bottleneck which limits the

performance (Le. bandwidth) of each circuit.

First, let us consider the simplest communication component design in
which a send/acknowledge protocol is used for flow control, and where each
channel is allowed to use only a single bufler at one time. Figure 4.18b indicates
the utilization of the communication links over time. The contents of the bufier
held by each circuit is also shown. Successive packets on virtual circuits 1 and 2
are labelled 1a, 1b, lc ..., and 2a, 2b, 2c, ... respectively. As shown in figure
4.18b, the congested link, C, is fully utilized, and carries packets from both vir-
tual circuits. The end-to-end bandwidth cf the two virtual circuits will be equal
to half the bandwidth of the C link, assuming traflic in other ncdes does not limit
performance. Note that most of the packets sent over links A and B must be
retransmitted, since the first attempt fails because of the “‘one buffer per chan-
nel” restriction. Yet, these retransmissions dc not waste bandwidth on the
bottleneck link, C, so the end-to-end bandwidth is not aflected. However, the
negatively acknowledged packets do reduce the effective bandwidth of other cir-

cuits which do not use link C, but which are instead limited by the bandwidth of

197

ia ib pT 1e 14 1d 10 1s u 1

sck ck pack ack nack eck pack ack eck ack
ILINK A b -) prm— e ———p—

2a -] -} 2e 2e 2d 24 Be e -4

1s 2 1b -] e Be 1d M 1e
ack ack ack ack sck ack ack ack ack
LINK C o » ; ’ ¥ % - .) (1)
ia 1b 1b ic ie id id is 1e 1
BUFFER (VC §1) e ; T
£a 2a - - 2 -] d 24]]
BUFFER (VC #2) e . ’ o : a pm——f
»
4
time

Figure 4.16. Link usage scenarios (a) Congested link.
(b) Send /ocknowledge protocol, 1 buffer /channel.

158

1a 15 1o id 1s i
LINK A oo} ———eoncsd + | ———frcmsamy
Sa D & |+]
LINK B joeemmnt———mesern fracref - jos s ———— RS rmer]
ia 2a 1d - L] 4 4 12 (C)
LINK C oo ; o)
: 1a 1% 1a pt) 1e 1d 14 is le 1
BUFFER (VC §1) bovmestmoncatmemce s :]
2a a = } 2] o] 2o -] - 2 2o
BUFFER (VC §2) irswmcrecodmnc - : ; oz
>
time
ia 1» 1o 1d is 1
ILINK A P : > ° o
2a - 2c 2d 2a 2
LINK B b= oy @ °
(d)
is 2a 1b b -] le -3 id 4 le
LINK C b ‘ ¢
tirce

Figure 4.18. Scenariss (c) Remote buffer management,

1 bufer/channel. (d) Unlimited buffer space.

189

links A or B. This will be discussed later.

In figure 4.16c, the send/acknowledge protocol is replaced by a remote
buffer management scheme, and circuits are still restricted to using a single
buffer at one time. The optimistic assumption is made that each node has “'per-
fect information’ about buffer utilization in its neighboring nodes, i.e. the time
required to transmit the feedback signal indicating a packet has been forwarded'
(and consenuently, a buffer has been release) is assumned to be negligible. The
flow of traflic over the bottleneck link, C, is exactly the same as that when the
simpler send/acknowledge protocol is used, so the end-to-end bandwidth of the
two virtual circuits remains the same. In comparing figures 4.16b and 4.16c, it
is seen that the negatively acknowledged packets on links A and B in figure 4.16b

are replaced by idle periods in figure 4.18c.

Finally, in figure 4.16d, an unlimited amount of buffer space is provided in
each node. No flow control mechanism is required since there are no buffer
overflows, and therefore no reason to throttle traffic. Utilization of the

bottleneck link is the same as that of the previous two cases.

Intuitively, buffering is provided in each node to achieve higher network
bandwidth by maintaining a large enough “b.acklog" of traffic in the node so that
its output links remain busy under heavy traflic loads. If a node provides
enough buflers to keep its links busy, then additional buffers do not improve
performance. As demonstrated in figures 4.16b-d, a relatively small amount of
buffer space per node is required to perform this function, explaining the results
observed in [DiasB1ia, Dias81b]. Protection against buflfer hogging must be pro-
vided ﬁowéver, e.g. by limiting the number of buflers each port can use, to
ensure that one link does not monopolize the buffer pool and cause other link(s)

to become idle.

<00

Figures 4.16b-d indicate that the one buffer per channel restriction doces
not have a significant impact on network performance. Performance is limited
by the bandwidth of bottleneck links, rather than a lack of bufler space. If links
are underutilized, then each channel need only provide a single buffer to main-
tain a steady flow of traffic, as discussed earlier. If links are congested, then
there is enough traffic on other circuits to keep the links busy, so no bandwidtk
is wasted. Performance is not improved by allowing channels to use additiona’

buflers.

These studies also indicate that the send/acknowledge protocol does not
adversely affect performance on bottleneck links (link C in figure 4.16b). This
flow control mechanism does however, require retransmissions cn the links lead-
ing up to the bottleneck, implying some wasted bandwidth. Often however, it is
the bottleneck link which limits performance, and not the links leading up to the
bottleneck, so this wasted bandwidth is of secondary importance. In addition,
this waste is only of consequence if there is other traffic wzaiting to use the link.
If other traffic exists, then the amount of wasted bandwidth is reduced, since
many of the “negative acknowledgment slots’ in figure 4.16b will be replaced by
traffic on other virtudl circuits, assuming the blocked circuit is not allowed to
dominate use of the link. Thus, a2 more sophisticated flow control mechanism
which avoids negatively acknowledged packets, e.g. the remote buffer manage-
ment scheme described earlier, leads to an even smaller improvement in perfor-
mance. Since network bandwidth can be improved at a higher level by using
moere switching chips, the additional complexity of the remote buffer manage-
ment scheme is difficult to justify. In addition, output port bufler hogging is
more difficult to prevent with this more sophisticated scheme (section 4.1.3), so

performance may actually be reduced if this scheme is used.

201

Let us ncw examine the simulation results to see if they are consistent with
the discussion presented above. Figures 4.17a-f show the performance resulting
from executing the six application programs discussed in.chapter 3 on a hexago-
nal lattice network built from 4-port communication components. All curves use
a send/acknowledge protocol for flow control If several packets are queued,
waiting to use the same link, a round.-robin algorithm is used to select the next
packet to be sent over the link. This prevents a blocked virtual circuit from
dominating use of the link by continuously retransmitting negatively ack-

nowledged packets.
The curves in figure 4.17 are distinguished by the amount of bufler space

provided in each comrmunication component, and the degree to which bufier

usage is restricted. Four combinations of these two parameters result:
(1) Unlimited bufler space and no restrictions on bufler usage.

(2) Unlimited bufler space but with restrictions on bufler usage.

(3) Limited buffer space and no restrictions on buffer usage.

(4) Limited buffer space but with restrictions on buffer usage.

As discussed earlier, the third class of networks, those with a limited amount of
buffer space and no restrictions on buffer usage, resulted in deadlock situations
for many of the application programs. Thus, performance of the application

programs on these networks is not shown in figure 4.17.

All networks with limited amounts of buffer space provide 16 buflers per
communication component. These networks also assume that each output port

may not use more than 8 buffers at one time, or 16/ V4 as suggested in [Irla78].

The curves indicate that networks with 16 buffers per component yield vir-
_ tually the same performance as networks with an infinite armount of buffer

space, in agreement with the discussion presented earlier. Restricting virtual

Figure 4.17.

202

BARNWELL PROGRAM

SPEEDUP
8.0 T r
Y perfect switch
60 <
18, @ buffers total
1. 2, © buffers/channel
4.0 o (a)
20 p 4
o i L
0 100 200 300
BANDWIDTH PER CHI?
(Mbits/chip-vec)
BLOCK I/0 PROGRAM
SPEXDUP
8.0 -r
Z perfect switch
40 p -
16, @ buffers totai
1, 2 ® buffers/channe}
(&)
20 o
c . A
Q 100 200 300
BANDWIDTH PR CHIP
(Mbits/chip-wec)

Limited buffer space (a) Bernwell. (b) Block 1/0.

BLOCK STATE PROGRAM

SPEEDUP
s-o T T
SN— perfect switch
16, @ buffers total
40 1, 2, @ bufferz/channel e
3.0 . <
: (c)
20 p
10 .
o A i
(] 100 200 300
BANDWIDTH PER CHIP
(Mbits/chip-sec)
FFT PROGRAM
SPEEDUP
15.0 Y T T T
‘perlect switch
1 buffer/channel ?
100 } A
(d)
:'- 1
50 b d ® buffers/channe}}
2 bulfers/channel
—— 16 buffers total
~==- @ buffers total
0 v v : Y
) 20 40] 80 100
BANDYIDTH PER CHIP
(Mbits/chip-wec)

Figure 4.17. [Limited buffer space (c) Block State. (d) FFT.

LU PROGRAM

SPEDDUP
15.0 r r
‘ perfect switch
100 b <
18, @ buffers total
1 bulfer/channel
S0 <
16, @ buifery total
2, @ buffers/channe}
[+] . 1
0 200 400 800
BANDWIDTH PZR CHIP
(Mbits/ckip-pec)

Delay (microeeconds)

RANDOM PROGRAM
(SHORT MESSAGES)

T

100 T
8o F buffer/channel : 4
éor .

4+ © bufferz/channel L
20 F 1
e 18 buffers total
-==- © buffers total
°0 0.5 1.0 1.5 2.0
TRAFTIC LOAD
(Messeges/mecond)

204

(e

(£

Figure 4.17. Limited buffer space (e) LU. (f) Random (short messcges).

ST

205

RANDOM PROGRAM
(LONG MESSAGES)

DEZLAY {(microseconds)
1000 T

2 buffers
/channel

800

600 I

(g)

400 ’
.-‘ \—m buffers

/channel
200
—— 18 buffers total
ee-- @ buffers total

Q 0.05 0.10 0.15

TRAFFIC LOAD
(Messages/secand)

Figure 4.17. Limited buffer space (g) Random (long messages).

circuits to using at most one buffer at a time results in no significant degrada-
tion in performance. Networks using a send/acknowledge protocol for flow con-
trol yield virtuaily the same performance as networks with an infinite amount of
buffer space and no restrictions on buffer usage. This indicates that the
bandwidth wasted by negatively acknowledged packets does not have a
significant eflect on performance. This is due in part to the round-robin algo-
rithm used for scheduling usage of the communication links. Blocked virtual
circuits relinquish use of the link when a packet is rejected, allowing other
traffic to use the link. Thus, the simulation results agree with the intuitive argu-

ments presented earlier.

It might be noted that many of the programs achieve identical speedups
regardless of the amount of buffering provided, or the buffer restrictions
enforced. In these programs, a single, or a few isolated bottleneck links limit
performance, e.g. the SISO programs are L'lmiteti by the links carrying the initial

data samples. This is in agreement with the scenarios outlined in figures 4,16b-

206

d, where identical utilizations are achieved on bottleneck links regardless of the

buffering scheme used.

All of the application prcgrams send small, single-packet messages. To
examine buffering requirements when large messages are used, the artificial
traffic load program was modifled to send longer messages consisting of 258
“bytes, or 16 packets each. Figure 4.17g shows the performance cf this program
under different buffering schemes. The curves indicate that message delays are
the same under light traffic loads, demonstrating that one buffer per virtual cir-
cuit is adequate to maintain a steady stream of packets if there is no interfering
traffic. The curves also indicate however, that networks achieve somewhat
bigher bandwidth if multiple buffers per virtual circuit are allowed. As buffering
is increased, the number of negatively acknowledged packets on circuits leading
up to congested links is reduced, and bandwidth improves. This additional per-
" formance must be weighed against the added complexity of allowing multiple
buflers per virtual circuit. In light of the fact that network bandwidth can be
improved by increasing the number of communication chips, it is doubtful that
this additional improvement is justifiable. In addition, the additional complexity
of allowing a circuit to use more than cne buffer (a fifo queue on each channel is
required) may lead to longer circuit delays, and slower clock rates, reducing

performance.

4.68. Complexity of the Communication Compenent

Using the results presented above, the complexity of the VLS] communica-
tion components described here can be estimated. It is assumed that each
component provides from 84 to 258 channels per link, 32 buffers, each large
enough to accommodate 16 bytes of data, and 4 1/0 ports. Transistor counts for
different versions of communicaticn ccmpcnenAts providing diflerent levels of

functionzlity are presented.

207

The ccmmurnication component design described here consists of 6

modules:

(1) 1/0 ports,

{2) routing controller,

(3) translation tables,

(4) packel bufiers,

(5) buffer management circuitry,
(8) flow control circuitry.

Each of these will be discussed in turn. Estimates of the amount of circuitry

required for these modules are summarized in table 4.2.

Approximate gate counts are derived in part from the designs described in
the TTL Databook [Inst76]. For example, the five 2 line to 1 line muitiplexers
shown in figure 4.10b are assumed to require 18 gates, based on an extension of
the corresponding TTL part, the SN74157 [Inst76]. Similarly, registers are
assurmed to use 5 gates per bit. Data paths for the high speed buses and com-
munication links are 8 bits wide. It is assumed that each finite state machine
requires 200 gates. This is based on the average number of gates required for
the finite state machines described in [Fuji80], which are of roughly the same
complexity as those described here. Finally, the transistor counts assume four
transistors are required for each gate. The estimates in table 4.2 are rounded

to the nearest 1000 transistors.

Estimates for the 1/0 ports are based on the circuitry described in
[Laur?gj. The output port estimate includes circuitry for removing data from
the high speed bus and driving the communication links. The input port esti-
mate includes circuitry for driving the high speed bus, as well as three tem-

porary registers to handle conflicts in accessing the shared memory modules, as

208

Table 4.2
Transistor Counts
logic mermory -
module {transistors) (kbits)
all designs B84 channels | 128 channels | 256 channels

1/0 Ports {4 ports) 8000 - - -
Routing controller .

simple 8000 0.6 1.1 2.1

complex 10000 1.4 1.9 2.9
Routing Processor 20000 32.0 32.0 32.0
Transiation Table - 2.2 5.0 11.0
Buffers (16 moduies) 8000 4.0 4.0 4.0
Buffer Management

=<1 bufler/vc 2000 1.3 2.5 5.0

=<4 buflers/ve 2000 2.7 5.2 10.2.
Flow Control
Send / Acknowledge

=<1 bufler/vc 11000 0.8 0.9 1.5°

=<4 buffers/vc 12000 0.9 1.4 2.5
Remote Buffer

<1 buffer/vec 13000 1.0 1.3 2.0

=<4 buflers/ve 14000 1.2 1.8 3.0
totals

gimplest 58000 40.7 45.5 55.6

most complex 82000 43.5 49.9 ! 83.1

discussed earlier. Based on this, each 1/0 pert requires roughly 2000 transis-

tors, or BCOO transistors for 4 ports.

The routing controller estimates are based on the design described in
[Fujigo], medified to include circuitry for a 256 entry hierarchical routing table
supporting up to 8 levels of lookup tables (see figures 4.42 and 4.4b). The
numbers in table 4.2 only include the hardware support provided by the routing
controller for setting the translation tables, and do not include the processor or
microcode memory portions of the routing controller. These are listed

separately in the table under "‘routing processor’.

The translation table requires pxc entries. Each entry specifies an output
port or the routing controller (3 bits) and a channel number (8, 7, or 8 bits for
84, 128, or 258 channels respectively), so 9, 10, or 11 bits are required. The

buffer memory estimate includes circuitry to interface each memory module to

209

the two buses, registers to hold the pipelined buffer addresses, and a 32 byte
RAM to hold data. The figure in table 4.2 includes circuitry for sixteen memory

modules.

Two estimates of the buffer management circuitry are shown in table 4.2.
The first assumes each virtual circuit can only use at most one buffer at a time,
and is based on the design shown in figure 4.8b. The second assumes four

buffers can be used, and is based on the design in figure 4.8a.

Four.estimates of the flow control logic are shown. The first two use the
send/ackno;vledge protoco], and the latter two use a remote buffer menage-
ment scheme. In addition, ea.ch of these designs allows virtual circuits to use
either one, or up to four buffers at a time. The estimate for the
send /acknowledge protocol with up to four buffers per channel is based on the
design shown in figure 4.10a. As discussed in section 4.2.4.3, the remote buffer
management scheme uses the same circuitry, as well as the additional logic
shown in figure 4.10b. Modifications corresponding to the one bufifer per channel

restriction are outlined in sections 4.2.4.2 and 4.2.4.3.

The figures in table 4.2 indicate that a minimal complexity communication
component with 4 1/0 ports, 32 16-byte buffers, 84 channels per link, one buffer
per virtual circuit, and a send /acknowledge flow control scheme, can be con-
structed with approximately 58,000 transistors for logic, and 40.7 kbits éf RAM.
Assuming single transistor ROM cells for microcode memory and single transis-
tor dynamic RAM cells, approximately 100,000 transistors are required. Except
for the number of channels, this design is in accordance with the design recom-
mendations derived throughout this chapter. A similar design using 256 chan-
nels per link and the more complex routing scherne requires 58,000 transistors.
of logic, and 56.4 kbits of RAM. Assuming a static RAM implementation using 5

transistors per RAM cell, this more complex design requires on the order of

210

350,000 transisters, most of which is taken up by memory. Chips are currently
available using 450,000 transistors, so the communication components

described here can be implemented with current integrated circuit technology.

Figure 4.18 shows a possible floorplan for the 64 channel communication
component described above. Sizes of various sections of the chip are based on
the approximate trarsistor counts listed in table 4.2, based on single transistor

RAM and ROM cells. [ata paths correspond to those shown in figures 4.5 and 4.7,

WICRCCODE MEMORY

TRANSLATION $igh
TABLES ROUTING CONTRCLLER Speed
Buses
("
A |
FLOW CONTROL

RUFFER MANAGEMEN
/ | % UEMORY MODULES

INPUT PORTS OUTPUT PORTS

Figure 4.18. Floorplen for communication component.

211

CHAPTER FIVE
CONCLUSIONS

VLSI technolegy can provide us with a novel set of building blocks for the
construction of high-performance point-to-point networks for closely coupled
multicomputer systermns. “Plug-compatible” VLS! communication components
with 3 to 5 ports make particularly attractive building blocks. Their modularity
permits the incremental growth of a multicomputer system with a corfespond-
ing growth of the total bandwidth of the comrmunication domain. To be useful
for the construction of systemns with hundreds or thousands of processors, the
complexity of these components must be above a certzain threshold. The func-

tionality of MOS VLSI chips now exceeds this threshold.

Technological considerations in the design of communication components
have been examined. The described approach based on dedicated links between
individual switching nodes is well matched to the evolving VLSI MOS technology.
The overall performance of the network depends critically on the total chip
bandwidth of these components, which is determined to a- large degree by pack-
eging fechnology. Performance is also influenced by the buflering and forward-
ing policies employed, which depend themselves on the amount of bufler space
and the complexity of the control logic in the switching components. Analytic
and simulation models have been used to investigate the impact of these con-
siderations on overall network performance. Based on these studies, a number
of conclusions can be drawn regarding the design of VLSI communication com-

ponents. These include:

(1) A small number of ports should be used, say from 3 to 5.

212

(2) Under current technology, the degree of multiplexing cn each communica-
tion link shculd be relatively lerge. FEach link should provide a large

number of channels, say 128 or 236.

(3) Only a relatively small number of buffers, say 18 cr 32, need to be provided.
~ Further, restricting virtual circuits to using at most one bufler per node zt

one time causes little performance degradation.

(4) Negatively acknowiedged packets in the send/acknowledge flow control
mechanism do not lead to a significant perfcrmence degradation, implying
that more sophisticated schemnes, such as the sender-controlled remote

bufier management scheme, are not justified.

(5) A multicast mechanism has a significant impact on performance in applica-

tions which send the same data to many different destination processors.

An important issue that has nof been addressed by this thesis concerns
faﬁlt tolerance. If a communication component fails, routing tables need to be
updated, and broken message paths must to be restored. The rerouting must be
done in a manner that ensures that loops are not introduced. Much of the work
in rerouting strategies in computer networks is directly applicable here [Taji77,
Merl79, SegaB81]. One must also safeguard the network against messages
addressed to ncn-existent or unreachable nodes. These issues cannct be

ignored in any comrmunication component design.

For the near future, the limmited cumber of devices that can be fabricated
econcomically on a single chip will encourage the development of separate
switching components. However, towards the end of this decade, the preferred
building block may well consist of a powerful processor, a substantial amount of
on-chip memory, and the switching circuitry that is needed so that these com-

ponents can be readily plugged together into a working multicomputer system.

[Ackes5]

[AdamB2]

[Ahuj82]

[Amar83]

[Ardesi]

[Arde82]

[Baas78]

[Barn80a]

[Barn80b]

[Barn78]

[Barn79]

[Barn82]

213

REFERENCES

S. B. Ackers, **On the Construction of (d,k) Graphs,” [EEE Transac-
tions on Electronic Computers EC-14 p. 488 (June 1965).

G. Adams III and H. Siegel, '“The Extra Stage Cube: A Fault-Tolerant
Interconnection Network for Supersystems,” JEEE Transactions on
Computers C-31(5) pp. 443-454 (May 1982).

V. Ahuja, Design and Analysis of Computer Communication Net-
works, McGraw-Hill, New York (1982).

D. Amar, On the Connectivity of some Telecommunication Net-
work)s," IEEFE Tronsactions on Computers C-82(5) pp. 512-519 (May
1983).

B. W. Arden and H. Lee, "*Analysis of Chordal Ring Network,” JEEE
Transactions on Computers C-30(4) pp. 291-295 (April 1981).

B. W. Arden and H. Lee, ““A Regular Network for Multicomputer Sys-
tems)." IEEE Transactions on Computers C-31(1) pp. 60-69 (Jan.
1882).

S. Bazse, Computer Algorithms: Introduction to Design and Analysis,
Addison-Wesley, Reading, Massachusetts (1978).

C. Barnes and S. Shinnaka, **Block Shift Invariance and Block Imple-
mentation of Discrete-Time Filters,” IEEE Transactions on Circuils
and Systems CAS-27 pp. 667-672 (August 1980).

C. Barnes and S. Shinnaka, “Finite Word Effects in Block-State Reali-
zations of Fixed-Point Digital Filters,” JEEE Transactions on Cir-
cuits and Systems CAS27 pp. 345-349 (May 1980).

T. P. Barnwell 111, S. Gaglio, and R. M. Price, ‘A Multi-Microprocessor
Arrhitectiyre for Digital Signal Processing,” Proc. of the 1978 Intl.
Conf. on Parallel Processing, pp. 115-121 (August 1978).

T. P. Barnwell I1I, C. J. M. Hodges, and S. Geglio, **Efficient Imple-
mentations of One And Two Dimensional Digital Signal Processing
Algorithms on a Multiprocessor Architecture,' 1979 ntl. Conf. on
ASSP, Washington, D. C., pp. 698-701 (Apr. 1979).

T. P. Barnwell IIl and C. J. M. Eodges, "‘Optimal Implementation of

Signal Flow Graphs on Synchronous Multiprocessors,” Proc. o the
1982 Intl. Conf. on Paraliel Processing, pp. 90-95 (August 1962).

[Batc75]

[Bhars3)]

[Brow80]

[Brui4s]

[Burr71]

[Burr72]

[Cant74]

[Carr72]

[ChenB1]

[Chous1]

[Chua7s]

[Chu77]

[Closs3]

[Dahl74]

cl4

K E. Batcher, “The FLIP Netwcrk in STARAN,” Proceedings of the
1976 International Conference on Parallel Processing, pp. 65-71
(August 1976).

X. Bharath-Kumar and J. M. Jaffe, "“Routing to Multiple De.stinations
in Computer Networks,” [EEE Transacclions on Communications
COM-31(3) pp. 343-351 (March 1583).

S. Browning, Communications in o Tree Hachine, Bell Laboratories
internal memorandum (Jan. 1980).

D. G. de Bruijn, *A Combinatorial Problem,” Koninklijke Neder-
landsche Academie van Wetenschappen te Amsterdam, Proc. Section
of Sciences 4%(7) pp. 758-754 (1948).

C. Burrus, “Block Implementation of Digital Filters,” [EEE Transac-
tions on Circuit Theory CT-18 pp. 687-701 (Nov. 1971).

C. Burrus, “Block Realizaticn of Digital Filters,” JEEE Transaclions
on Audio and Flectroacoustics AU-20 pp. 230-235 (Cct. 1972).

D. G. Cantor and M. Gerla, *Optimal Routing in a Packet-Switched
Computer Network,” [EEE Transactions on Computers C-23(10) pp.
1062-1069 (Oct. 1874).

W. Carr and J. Mize, MOS/LSI Design cnd Applications, Texas Instru-
ments Inc. {1572).

P. Chen, D. Lawrie, D. Padua, and P. Yew, '‘Interconnection Networks
Using Shuffles,” Computer 14(12) pp. 55-84 (Dec. 1981).

W. Chou, A W. Bragg, and A. A. Nilsson, “The Need for Adaptive Rout-
ing in the Chaotic and Unbalanced Traffic Environment,” JEEE Tran-
sactions on Commaunications COM-2%(4) pp. 481-450 (April 1581).

L. Chua and P. Lin, Computer-Aided Analysis of Electronic Circuits:
Algorithms and Comnputational Technigues, Prentice-Hall, Englewood
Cliffs, New Jersey (1975).

W. W. Chu and M. Y. Shen, 4 Fiercrchical Routing and Flow Control
Policy (HRFC) for Packet Switched Networks, North Hcelland Pub-
lishing Co., Amsterdam (1S77).

C. Clos, “‘A Study of Nenblocking Switching Networks,” Fell Sysiem
Technical Journal 32 pp. 406-424 (1953).

G. Dahlquist, A. Bjorck, and N. Anderson, Numerical Methods,
Prentice-Hall, Englewood Cliffs, New Jersey (1974).

[Dala78]

[Davi73]

[DekeB3]

[Desp78]

[DiasB1a]

[DiasB1b]

[Ensl74a]

[Ensl74b]

[Farh81]

[FengB1]

[Fink80]

[Fink81]

[Floys2]

215

Y. K Dalal and R. M. Metcalfe, *“Reverse Path Forwarding of Broad-
cast Packets,” Communications of the ACH 21(12) pp. 1040-1048
(December 1878).

D. W. Davies and D. L. A. Barber, Communication Networks for Com-

puters, John Wiley & Sons, National Physical Laboratory, Teddington,

England (1973).

E. Deke! and S. Sahni, *Binary Trees and Parallel Scheduling Algo-
rithms,” JIEEE Transacctions on Computers C-32(3) pp. 307-315
(March 1883).

A. Despain and D. Patterson, ‘“X-Tree: A Tree Structured Multiproces-
sor Computer Architecture,” Proceedings of the Sth Annual Sympo-
siumm. on Computer Architecture, Palo Allo, Co. 6(7) pp. 144-151
(April 1978).

D. Dias and J. Jump, *‘Packet switching Interconnection Networks for
Modular Systems,” Computer 14(12) pp. 43-53 (Dec. 1981).

D. M. Dias and J. R. Jump, *'Analysis and Simulation of Buffered Delta
Networks,” IEEE Transactions on Computers C-30(4) pp. 273-282
(April 1981).

P.H. Enslow, "Appendices I & J: IBM System 360 & 370, pp. 238-256
in Multiprocessors and Parallel Processing, John Wiley & Sons
(1974).

P.H. Enslow, “Appendices N, 0, & P: UNIVAC 1108, 1110, and
AN/UYK-7,'" pp. 290-327 in Multiprocessors and Parallel Processing,
John Wiley & Sons (1974).

G. Farhi, “Diametres dans les graphes et numeroctations gra-
cieuses,” Ph. D. Thesis, 1'Universite de Paris Sud (April 1981).

T. Feng, *“A Survey of Interconnection Networks,” Computer
14(12) pp. 12-27 (Dec. 1961). .

R A. Finkel and M. H. Solomon, *“Processor Interconnection Stra-
tegies,”” JEEE Transoctions on Computers C2%5) pp. 360-371 (May
1980).

R. A Finkel and M. H. Solomon, “The Lens Interconnection Stra-
tegy." IEEE Transactions on Computers C-30(12) pp. 960-965 (Dec.

1981).

R. W. Floyd, “Algorithm 97: Shortest Paths,” Communications of the
ACHM 5(8) p. 345 (June 1962).

[Fran71]

[Fran81] .

[Frang2]

[Frie6s]

[Fujigo]

[Fujig3]

[Gall77]

[Gerlsi]

[Gheeg2]

[Glas78]

[{Goke73]

[GoodB1]

[GottB2]

[Grif7s)

2186

H. Frank and W. Chou, ““Routing in Computer Networks,” Networks
1{2) pp. 99-112 (1971).

M. A. Franklin, “VLSI Performance Comparison of Banyan and
Crossbar Communication Networks,” /EEE Tronscclions on Comput-
ers C-30(4) pp. 283-291 (April 1581).

M. A Franklin, D. F. Wann, and W. J. Thomas, ""Pin Limitations and
Partitioning of VLS] Interconnection Networks,' JEEE Transcciions .
on Computers C-31(11) pp. 1109-1116 (Nov. 1282).

H. D. Friedman, ""A Design for (d,k) Graphs,” JEEE Transaoctions cn
Electronic Comnputers EC-15 pp. 253-254 (April 1966).

R. M. Fujimoto, “Routing Controller for X-Tree,” Master's Report, UC
Berkeley (Dec. 1580).

R. M. Fujimoto, **Simon: A Simulator of Multicomputer Networks,"
ERL Report, in preparation (1983).

R G. Gaﬂagef, “A Minimum Delay Routing Algorithm using Distri-
buted Computation,"” /EEE Tronsoctions on Communicaiions COM-
25(1) pp. 73-85 (Jan. 1977).

M. Gerla, "“Routing and Flow ControlL' pp. 122-174 in Proiccols cnd
Techrmigues for Dotc Communicalion Networks, ed. F. F.
Kuo,Prentice-Eall, Inc., Englewood Cliffs, New Jersey {1981).

T. Goeewala, *'The Josephscn Technology.” FProc. IEEE 70(1) pp. 26-
34 (Jan. 1932).

A. Glaser and G. Subak-Sharpe, '‘Failure, Reliability and Yield of
Integrated Circuits,” pp. 746-799 in ntfegratied Ciarcuil Engineering,
Addison-Wesley, Reading, MA (1978).

L. R. Goke and G. J. Lipovski, "Banyan Networks for Partitioning Mul-
tiprocessor Systems,'” Proceedings of the I1st Annual Symposium on
Computer Architecture, Gainesville, Florida 2(4) pp. 21-28 (Dec.
1873).

J. R Goodman and C. H. Séquin, "Hypertree: A Multiprocessor Inter-
connection Topology,"” [EEE Transactions on Computers C-
80(12) pp. 923-933 (Dec. 1881).

A. Gottlieb and J. T. Schwartz, '“Networks and Algorithms for Very-
Large-Scale Parallel Computation,” Computer, Special Issue cn
Kighly Parallel Computing 15(1) pp. 27-36 {(Jan. 1982).

M. Crifiin, "X-Tree Comrmunication Buses,"” Master's Report, UC
Berkeley (August 1979).

[Hear70]
[HodgB0]
[Hopp79]

[Horo81]

[Hosh83]

[ImasB1]
'[lnst'rs]

[Ir1a78]
[Jack57]

[Jans80]

[Joel79]

{Juen76]

[Kahn72]

217

Heart, R Kahn, S. Ornstein, W. Crother, end D. Walden, *The Inter-

ce Message Processor for the ARPA Computer Network,” Proceed-
ings)AFIPS Spring Joint Computer Conference 38 pp. 551-567 (May
1370).

o

C. J. M. Hodges, T. P. Barnwell IIl, and D. McWhorter, “The Imple-
mentation of an all Digital Speech Synthesizer Using a Multimi-
croprocessor Architecture,” 1980 ntl. Conf. on ASSP, Denver,
Colorcdo, pp. BS5-858 (April 1980).

A. Hopper and D. Wheeler, **Binary Routing Networks," IEEE Tran-
sactions on Computers C-23(10) pp. 695-703 (Oct. 1979).

E. Horowitz and A. Zorat, "The Binary Tree as an Interconnection
Networlk: Applications to Multiprocessor Systems and VLSL"” JEEE
Transactions on Computers C-30(4) pp. 247-253 (April 1981).

T. Hoshino, T. Kawai, T. Shirakawa, J. Higashino, A. Yamaoka, H. Ito,
T. Sato, and K. Sawada, ‘'PACS: A Parallel Microprocessor Array for
Scientific Calculations,” ACHM Transactions on Computer Systems
1{3) pp. 195-221 (August 1983). .

M. Imase and M. Itoh, *Design to Minimize Diameter in Building Block
Networks,” IEEE Transactions on Computers C-30(8) pp. 438-442

‘(June 1981).

Engineering Stafl of Texas Instruments, The T7L Data Book for
Design Engineers - Second Edition, Texas Instruments Inc., Dallas,
Texas (1976).

M. 1. Irland, “Buffer Management in a Packet Switch," JEEE Transac-
tions on Communications COM-26(3) pp. 328-337 (March 1978).

J. Jackson, “Networks of Waiting Lines,”" Operations Research
5(4) pp. 518-521 {August 1857).

P. Jansen and J. Kessels, *“The DIMOND: A Component for the Modular
Construction of Switching Networks,” JEEE Transactions on Comput-
ers C-2(10) pp. 884-889 %Oct. 1980).

2. E. Joel Jr., "Circuit Switching: Unique Architecture and Applica-
tions,” Computer 12(8) pp. 10-22 (June 1979).

" R R Jueneman and G. S. Kerr, *Explicit Path Routing in Communi-

cations Networks," Proceedings from [nternational Conference on
Computer Communications, pp. 340-342 (August 1976). Toronto

R. E. Kahn and W. R. Crowther, “Flow Control in a Resource-Sharing
Network,” JEEE Transactions on Communications COM-20(3) pp.
539-548 (June 1972).

[Kamo735]

[Kerm79]

[Keye78]

[Klei7s]

[Klei76]

[XKnut73]

[Korn67]

[Kung80]

[Kunge?2]

[KuoB1]

[Kush8z)

[Laur7s]

[Lawr75]

[LelaB2a]

[LelaB25]

218

F. Kamoun, "“Design Consideraticns for Large Computer Communica-
tions Networks,” Ph. D. Dissertation, Engineering Report 7842,
UCLA, Los Angeles, California (April 1978).

P. Kermani and L. Kleinrock, **Virtual Cut Through: A New Computer
Communication Switching Technique,” Computer Networks 3(4) pp.
287-298 (Sept. 1979).

R. Keyes, ""The Evolution of Digital Electronics Towards VLSl IEEE
Journal of Solid-State Circuits SC-14(4) pp. 193-201 (April 1879).

L. Kleinrock, Queueing Systerns, Voiume [: Thecry, John VWiley &
Scns {197S).

L. Kleinrock, Queuweting Systems, Volume [I: Computer Applications,
John Wiley & Sons (1876).

D. E. Knuth, The Art of Computer Progremming, Sarting cnd Search-
ing (vol. 3), Addison Wesley, Reading, Massachusetts (1873).

1. Korn, “On (d,k) Graphs,” IEEE Transactions on Elecironic Com-
puters EC-16 p. 90 (Feb. 1567).

HE.T. ¥ung and C.E. Leiserson, “Algorithms for VLS] Processor
Arrays,” pp. 271-292 in Introduction to VLS! Systems, ed. C.A. Mead
and L.A. Conway, Addison-Wesley, Reading, MA (1580).

H. T. Kung, ‘““Why Systolic Architectures,’" Computer, Specicl [ssue
on Fighly Parcllel Computing 15(1) pp. 37-46 (Jan. 1882).

'F. F. Kuo, Protocols and Technigues for Data Communicaiion Net-

works, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1581).

T. Kushner, A. Y. Wu, and A. Rosenfeld, '‘Image Processing on ZM0B,"
IEEE Trunscctions on Computers C-31(10) pp. 943-951 (Oct. 1582).

M. Laurent, “Input-Cutput Ports for the X-Tree Nodes," Master's
Report, UC Berkeley (Nov. 1979).

D. H. Lawrie, ‘*Access and Alignment of Data in an Array Processor,”
IEEE Transactions on Computers C-24(12) pp. 1145-1155 (Dec.
1875).

Y. E. Leland and M. H. Sclomeoen, ‘“Dense Trivalent Graphs for Proces-
sor Interconnection,” JEEE Trensactions on Computers C-31(3) pp.
216-222 (March 1982).

W. E. Leland, "Density and Reliability of Interconnection Topologies
for Multicomputers,” Ph. D. Thesis, Computer Sciences Technical
Report #478, University of Wisconsin, Madison (July 1982).

[LevBi]
[Long80]
[LuB3]

[Mass79]

[McQu74]
[McQu78]
[McQu80]

[Meadso]

[Memm82]
[Merl179]
[Merl80a]
[HerléOb]

[Mitr78]

219

G. F. Lev, N. Pippenger, and L. G. Valiant, ‘'A Fast Parallel Algorithm
for Routing in Permutation Networks,” J/EEE Transactions on Com-
puters C-20{2) pp. 93-100 (Feb. 1681).

S.1. Long, F.S. Lee, R. Zucca, B.M. Welch, and R.C. Eden, **MS] High-
speed Low-power GaAs Integrated Circuits using Schottky Diode FET
Logic," IEEE Trans. Microwave Theory Tech. MTT-28(5) pp. 466-47
{May 1980). .

H. Lu, “High Speed IIR Digital Filters,” Ph. D. Dissertation, in
preparation (1983).

G. M. Masson, G. C. Gingher, and S. Nakamura, ‘*A Sampler of Circuit
Switched Networks,” Computer 12(8) pp. 32-48 (June 19789).

J. McQuillan, **Adaptive Routing Algorithms for Distributed Computer
Networks,” NTIS Report (AD-781 467), U. S. Department of Com-
merce (May 1874).

J. M McQuillan, *“Enhanced Message Addressing Capabilities for Com-
puter Networks,” Proceedings of the [EEE 11) pp. 1517-1527
(Nov. 1878).

J. M. McQuillan, 1. Richer, and E. C. Rosen, '"The New Routing Algo-
rithm for the Arpanet,’” [EEE Transactions on Communications
COM-28(5) pp. 711-719 (May 1980).

C. Mead and L. Conway, Mmtroduction to VLS! Sysiems, Addison-
Wesley, Reading, Mass. (1980). Gov't. ordering no. AD-781 467

G. Memmi and Y. Raillard, ““Some New Results About the {(d,k) Graph
Problem,” JEEE Transactions on Computers C-31(8) pp. 784-791
(August 1982).

P. M. Merlin and A. Segeal!, “‘A Failsafe Distributed Routing Protocol,"
IEEE Transuctions on Communications COM-27(S) pp. 1280-1288
(Sept. 1979).

P. M. Merlin and P. J. Schweitzer, *“Deadlock Avoidance - Store and
Forward Deadlock,” TEEE Transactions on Communications COM-
28(3) pp. 345-354 (March 1980).

P. M. Merlin and P. J. Schweitzer, **Deadlock Avoidance in Store and
Forward Networks 11 - Other Deadlock es,"” JEEFE Transactions on
Communications COM-28(3) pp. 355-360 (March 1980).

S. Mitra and R. Gnanasekaran, ‘‘Block Implementation of Recursive
Digital Filters -New Structures and Properties,” JEEE Transactions
on Circuits and Systerms CAS25 pp. 200-207 (April 1978).

[Nage75]
FNass‘?g]
b- [Nass81)
[NassB2!
[Nathsa]

[Parks0]

[Patesi]
[Pattgo]

[Patt82]
[Peas77]

[Pouz76]

[Pouz78]

[Pouz81]

[Pradso]

220

L. W. Nagel, "*SPICE2: A Computer Program to Sirnulate Semiconduc-
tor Circuits,” Ph. D. Thesis (ERL-M520), University of California,
Berkeley (1575). ,

D. Nassimi and S. Sahni, *Bitonic Sort on a Mesh-Connected Parallel
Computer,” JEEE Transcctions on Computers C27(1) pp. 2-7 (Jan.
1979).

D. Nassimi and S. Sahni, ‘A Self-Routing Benes Network and Parallel
Permutation Algorithms,” JEEE Tronsaciions on (Compuiers C-
30(5) pp. 332-340 (May 1981).

D. Nazseimi and S. Sahni, “Parallel Algorithms to Set Up the Benes
Permutaticn Network,' JEEE Transactions on Comnputers C-31(2) pp.
148154 (Feb. 1982).

D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, "Efficient VL3I Net-
works for Parallel Processing Based on Orthogonal Trees,” JEEE
Transactions on Computers C-32(6) pp. 569-581 (June 1983).

D. S. Parker, ““Notes on Shufflle/Exchange Type Networks,” IEEE
Transactions cn Computers C-29(3) pp. 213-222 (March 1580).

J. H. Patel, ""Performance of Processcr-Memory Interconnections for
Multiprocessors,” JEEE Transactions on Computers C-2G{10) pp.
771-780 (Oct. 1981).

D. A. Patterson and C. H. Séquin, "Design Considerations for Single-
Chip Computers of the Future,” JEEE Transactions on Compulers
C-29(2) pp. 108-118 (February 1980).

D. A Patterson and C. H. Séquin, *"A VLSI RISC,”” Computer 15(S) pp.
B-21 (Sept. 1982).

M. C. Pease, '“The Indirect Binary n-Cube Microprocessor Array,”
IEEE Transcctions on Computers C-26(5) pp. 548-573 (May 1877).

1. Pouzin, "Flow Control in Data Networks - Methods and Teols,”
Proceedings of the Third International Conference on (ompuler
Commurications, Toronto, Cancda, pp. 467-474 (August 1978).

L. Pouzin and H. Zimmerman, “A Tutorial on Protocols,” Proceed-
ings of the JEEE 66(11) pp. 1346-1370 (Nov. 1978).

L. Pouzin, "Methods, Tools, and Observations on Flow Control in
Packet-Switched Data Networks,” /FEE Tronscciions on Communi-
cations COM-2%(4) pp. 413-425 (April 1581).

D. X Pradhan and K. L. Kodandapani, “A Uniform Representation of
Single- and Multistage Interconnecticn Networks Used in SIMD

[Pradsz)
[Prep8i]
[Prep83]
[Reeds3]

[RileB2]

[Rind77]
[Sega77]
[SegaB1]
[Sequ78]

[Sequs2]

[Shoc80]

[Sieg79a)

221

Machines,” IEEE Transactions on Computers CR%9) pp. 777-791
(Sept. 1980).

D.K. Pradhan and S.M. Reddy, A Fault-Tolerant Communication
Architecture for Distributed Systems,”” IEEE Trans. on Compulers
C-81(9) pp. 863-870 (Sept. 19823'.S

F. P. Preparata and J. Vuillemin, **The Cube Connected Cycles: A Ver-
satile Network for Parallel Computation,” Communications of the
ACHM 24(5) pp. 300-309 (May 1981).

F. P. Preparata, “A Mesh-Connected Area-Time Optimal VLSI Multi-
plier of Large Integers,” IEEE Transactions on Compulers C-
32(2) pp. 194-188 (Feb. 1983).

D. A. Reed and H. D. Schwetman, **Cost-Performance Bounds for Mul-
ticomputer Networks,” IEEE Transactions on Computers C-32(1) pp.
B3-95 (Jen. 1983). :

D. D. Riley and R. J. Baron, "Design and Evaluation of a Synchronous
Triangular Interconnection Scheme for Interprocessor Communica-
tions)." IEEE Transactions on Computers C-31(2) pp. 110-118 (Feb.
1982).

J. Rinde, “Routing and Control in a Centrally Directed Network,"”
AFIPS Conference Proceedings, National Computer Conference
46 pp. 603-608 (1977).

A Segall, “The Modelling of Adaptive Routing in Data-Communication
Networks,” IEEE Transactions on Communications COM-25(1) pp.
85-95 (Jan. 1977).

A Segall, “Advances in Verifiable Fail-Safe Routing Procedures,"”
IE'EE; Transactions on Communications COM-29(4) pp. 491-497 (April
1981).

C. H. Séquin, A Despain, and D. Patterson, *‘Coemmunications in X-
Tree, A modular Multiprocessor System,” Conference Proceedings,
ACH, (Dec. 1978).

C. H. Séquin and R. M. Fujimoto, “X-Tree and Y-Components,” in
Proc. Advanced Course on VLSI Architecture, Univ. of Bristol, Eng-
land, ed. P. Treleaven, Prentice Hall, Englewood Clifs, New Jersey
(1982).

I. Shoch and J. Hupp, “"Measured Performance of an Ethernet Local
Network,” Communications of the ACHM 23(10) pp. 711-721 (Dec.
1880).

H. Siegel, “'Interconnection Networks for SIMD Machines,” Computer
12(6) pp. 57-65 (June 1979).

[Sieg81]

[Sieg79b]

[Spro8i]

[Steis3]

[Ston71]
[Ston72]

[Stor70]

[Strisg]

[SwanT7a]

[Swan77b]

[Swars2]

[Tafi77]

[Tenesi]

222

H. Siegel and R McMillen, *The Multistage Cube: A Versatile Inter-
connection Network," Computer 14{12) pp. 85-76 {Dec. 18281).

H. J. Siegel, **A Model of SIMD Machines and a Comparison of Various
Interconnecticn Networks,” JEEE Transactions cn Compulers C-
25(12) pp. 9G7-217 (Dec. 1979).

D. Sproule and F. Mellor, **Routing, Flow and Congestion Control in
the Datapac Network,” JEEE Transcctions on Communications
COL-25(4) pp. 386-391 (April 1981).

D. Steinberg, *Invarian: Properties of the Shuffle-Exchange and a
Simplified Cost-Effective Version of the Omega Network,” IZEE Trun-
sactians on Computers C-32(5) pp. 444-450 (May 1983).

H. S. Stone, *"Parallel Processing with the Perfect Shuflle,” [EFEE
Transactions on Computers C20(2) pp. 153-161 (Feb. 1971).

H. S. Stone, “Dynamic Memories with Enhanced Data Access,” [EEE
Transactisns on Computers C-21(4) pp. 359-386 (April 1272).

R. M Storwick, ‘‘Improved Construction Techniques for {d.k)
Craphs,” IEEE Trecnsactions on Comnputers C-19 pp. 1214-1216 (Dec.
1970).

L. Stringa, “EMMA: An Industrial Experience on Large Multiprocess-
ing Architectures,” Proceedings of the 10th Annual Sympostum on
Computer Architecture, Stockholm., Sweden 11(3) pp. 325-333 (June
1883).

R J. Swan, S. H. Fuller, and D. P. Siewiorek, “CM*—A Modular, Multi-
microprocessor,” Proceedings of the National Computer Confer-
ence, Dallas, Tezas, pp. 637-843 (June 1977).

R. J. Swan, A. Bechtolsheim, K. Lai, and J. K. Ousterhout, **The Imple-
mentation of the CM* Multi-microprocessor,” Froceedings of the
National Computer Cenference, Dullas, Tezas, pp. 645-655 {(June
1977).

E. Swartzlander Jr. and B. Gilbert, "‘Supersystems: Technology and
Architecture,”” JEEE Transactions on Computers C-31(5) pp. 399402
(May 1582).

¥. Tajibnapis, ‘A Correctness Proof of a Topology Maintenance Pro-
tocol for a Distributed Computer Network,” Communicctions of the
ACH 2%(7) pp. 477-485 (July 1977).

A S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., Englewcod
Cliffs, New Jersey (1981).

[Than81]
[Thom80]

[Toue79]

[Tyme81]

[Wagn83]

[Widdso]

[Wing80]
[wittB1]

[WongB81]

[WuB0a]
[Wusob]

[WuB1a]

[Wulf72]

[WuB1b]

223

S. Thanawstien and V. P. Nelson, ‘Interference Analysis of
Shufile/Exchange Networks,” IEEE Transactions on Computers C-
S0(8) pp. 545-558 (August 1981).

C. D. Thompson, **A Complexity Theory for VLS]," Ph. D. Dissertation,
Computer Science Dept., Carnegie-Mellon University, Pittsbugrh, Pa.

" (August 1980).

S. Toueg and K. Steiglitz, *The Design of Small-Diameter Networks
by Local Search,” JEEE Transactions on Compulers C-28(7) pp. 537-
542 (July 1979).

L. Tymes, "Routing and Flow Control in TYMNET," IEEFE Tronsactions
on Communications COM-2%(4) pp. 392-398 (April 1981).

R A Wagner, “The Boolean Vector Machine (BVM)," Proceedings of
the 10th Annual Symposium on Computer Architecture, Stockholm,
Sweden 11(3) pp. 59-66 (June 1983). :

L.C. Widdoes, “'The S-1 Project: Developing High-Performance Digital
Computers,” Proc. COMPCON, pp. 282-291 (Feb. 1980).

0. Wing and J. W. Huang, “'A Computational Model of Parallel Solution
of Linear Equations,” /EEE Trunsactions on Compulers C-29(7) pp.
832-638 (July 1980).

L. D. Wittie, "Communications Structures for large Networks of
Microcomputers,” IEEE Transactions on (Computers C-30(4) pp.
264-273 (April 1981).

R Wong, *'Serial Communications in X-Tree,” Master's Report, UucC
Berkeley {(June 1981).

C. Wu and T. Feng, “On a Class of Multistage Interconnection Net-
works," IEEE Transactions on Computers C-29(8) pp. 6894-702
(August 1980).

C. Wu and T. Feng, “The Reverse-Exchange Interconnection Net-
work." IEEE Transactions on Computers C-29(9) pp. 801-811 (Sept.
1980).

C. Wu and T. Feng, “The Universality of the Shufflle-Exchange Net-

. work,”” IEEE Trcnsactions on Computers C-30(5) p. 324 (May 1981).

W. A. Wulf and C. G. Bell, ‘'C.MMP--A Multi Mini Processor,' Proceed-
ings of the AFIPS Fall Joint Computer Conference, Montvale, N. J.
41 pp. 765-777 (1972).

S.B. Wuand M. T. Liu, A Cluster Structure as an Interconnection
Network for Large Multimicrocomputer Systems,”” JEEE

[YewB1]

[YuB4]

[ZemaB1]

{Zimm8C]

224

Transactions on Computers C-30(4) pp. 254-264 (April 1581).

P. Yew and D. H. Lawrie, “An Eesily Controlled Network for Fre-
quently Used Permutations," JEEE Trcnsactions on Comgputers C-
S0{4) p. 295 (April 1981).

W. Yu, “LU Decomposition on a Multiprocessing System with Com-
munication Delay,” Ph. D. Dissertaticn, in preparation {(1984). '

]. Zeman and A Lindgren, “Fast Digital Filters with Low Round-Off
Noise," JEEE Transactions on Circuil end Sysiens CASLEB pp. 716~
723 (July 1981).

H. Zimmermann, “0S] Reference Model — The 1ISC Model of Architec-
ture for Cpen Systems Interconnection,” IEEE Tronsaciions on
Communicutions COM-28(4) pp. 425-422 (April 1580).

