Magic: A VLSI Layout System

John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo,
Walter S. Scott, and George S. Taylor

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

Magic is a “smart” layout system for integrated circuits. It incorporates ex-
pertise about design rules and connectivity directly into the layout system in
order to implement powerful new operations, including: a continuous design-
rule checker that operates in background to maintain an up-to-date picture of
violations; an operation called plowing that permits interactive stretching and
compaction; and routing tools that can work under and around existing con-
nections in the channels. Magic uses a new data structure called corner stiich-
ing to achieve an efficient implementation of these operations.

Keywords and Phrases: interactive layout editor, corner stitching, design-
rule checking, routing, stretching, compaction.

Magic: A VLSI Layout System

John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo,
Walter S. Scott, and George S. Taylor

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

Magic is a “smart” layout system for integrated circuits. It incorporates ex-
pertise about design rules and connectivity directly into the layout system in
order to implement powerful new operations, including: a continuous design-
rule checker that operates in background to maintain an up-to-date picture of
violations; an operation called plowing that permits interactive stretching and
compaction; and routing tools that can work under and around existing con-
nections in the channels. Magic uses a new data structure called corner stiich-
ing to achieve an efficient implementation of these operations.

Keywords and Phrases: interactive layout editor, corner stitching, design-
rule checking, routing, stretching, compaction.

Magic: A VLSI Layout System December 2, 1983

1. Introduction

Magic is a new interactive layout editing system for large-scale MOS cus-
tom integrated circuits. The system contains knowledge about geometrical
design rules, transistors, connectivity, and routing. Magic uses its knowledge
to provide powerful interactive operations that simplify. the task of creating
layouts. Moreover, once a layout has been entered, Magic makes it easy to
modify it; this permits designers to fix bugs easily, experiment with alterna-

tive designs, and make performance enhancements.

Magic provides several new operations for its users. Design rules are
checked continuously and incrementally during editing sessions to keep up-to-
date information about violations. When the layout is finished, then so is the
design-rule check. A new operation called plowing allows layouts to be com-
pacted and stretched while observing all the design rules and maintaining cir-
cuit structure. Routing tools are provided that can work under and around
existing wires in the channels (such as power and ground routing) while still

providing the traditional efficiency of a channel router.

Two aspects of Magic's implementation make the new operations possible.
First, the system is based on a data structure called corner stitching which is
both simple and efficient for a variety of geometrical operations [8]. Without
corner stitching, most of Magic's new operations would be too slow for interac-

tive use. Second, designs in Magic are specified using abstract layers, rather

Magic: A VLSI Layout System December 2, 1983

than actual mask layers. The abstract layers represent circuit structures such
as contacts and transistors in a form that appears somewhat like sticks [14]
except that objects are seen in their actual sizes and positions. The abstract
layers incur no density penalty, but they simplify the designer’s view of the

system and provide more explicit information about the circuit structure.

This paper gives an overview of the Magic system. Section 2 describes
the specific problems Magic attempts to solve, and the overall approach of the
system. Sections 3 and 4 describe the data structure and abstract layers used
in the Magic implementation. Sections 5-11 discuss Magic’'s new operations,
and Section 12 presents the implementation status of the system. Three addi-
tional papers in this technical report discuss design-rule checking, plowing, and

routing in detail [2,11,12}.

2. Background and Goals

Our previous layout editing systems, Caesar [5,7] and KIC2 (3], have been
used since 1980 for a variety of large and small designs in several MOS techno-
logies. They are similar to systems currently in use in industry. Although our
systems have proven quite useful, we uncovered a few areas where they (and
most other existing layout systems) are inadequate. The most severe inade-
quacy is in the area of routing, where most systems provide little support. We

estimate that between 25% and 509% of all layout time for our circuits is used

Magic: A VLSI Layout System December 2, 1983

for hand-routing the global interconnections, even though the circuits are

highly regular to begin with. The task of routing is tedious and error-prone.

A more general problem is one of flexibility. Once a design has been
entered into the layout system, it is hard to change. This makes it difficult to
fix bugs found late in the layout process, and almost impossible to experiment
with alternative designs. If designers cannot experiment with and evaluate
alternatives, it is hard for them to develop intuition about what is good and
bad. Routing is the most extreme example of the flexibility problem. It takes
so long to route a circuit that it is out of the question to re-route a chip to try
a new floor-plan. Even small cells are difficult to change: modest changes to
the topology of a cell often require the entire cell to be re-entered. In many
industrial settings, layouts are so difficult to enter and modify that designs are

completely frozen before layout begins.

Our overall goal for Magic is to increase the power and flexibility of the
lavout editor so that designs can be entered quickly and modified easily.
When the system is complete, we hope it will provide order-of-magnitude

speedups for three different parts of the design process:

1) Once a large circuit has been routed, it should be possible to remove the
routing and re-route in a few hours. Even the initial routing should not
require more than a few days for a large custom circuit. With our

current systems, routing requires a few weeks to a few months.

Magic: A VLSI Layout System December 2, 1983

2) The turnaround time for small bug fixes should be less than 15 minutes.
For example, if a bug is found while simulating the circuit extracted from
a layout, it should be possible to fix the layout, verify that the new layout
meets the design rules, and re-extract the circuit, all in 15 minutes. This
process currently requires several hours of CPU time and at least a half-

day of elapsed time.

3) It should not take more than 30 seconds to 1 minute to re-arrange a cell
to try out a different topology. With our current systems this requires

anywhere from tens of minutes to several hours.

Magic meets these goals by combining circuit expertise with an interactive
editor. It understands layout rules; it knows what transistors and contacts are
(and that they must be treated differently than wires); and it knows how to
route wires efficiently. Magic uses the circuit knowledge to provide interactive
operations that re-arrange a circuit as a circuit, rather than as a collection of
geometrical objects. It also performs analysis operations, like design-rule
checking, tncrementally, as the circuit is created and modified. This means
that only a small amount of work must be done each time the circuit is

modified.

Magic: A VLSI Layout System December 2, 1983

3. Corner Stitching

In Magic, as in most other layout editors, a layout consists of cells. Each
cell contains two sorts of things: geometrical shapes and subcells. Magic
represents the contents of cells using a technique called corner stitching.
Corner stitching is a geometrical data structure for representing Manhattan
shapes. It provides the underlying mechanisms that make possible most of
Magic's advanced features. Corner stitching is simple, provides a variety of
efficient searching operations, and allows the database to be modified quickly.
What follows is a brief introduction to corner stitching. See [6] for a more

complete description.

The basic elements in corner stitching are planes and tiles. Each cell

contains a number of corner-stitched planes to represent the cell’s geometries

2777

//)
g

&\\\i

Vo0

Figure 1. Every point in a corner-stitched plane is contained in exactly one tile. In
this case there are three solid tiles, and the rest of the plane is covered by space tiles
(dotted lines). The space tiles on the sides extend to infinity. In general, a plane
may contain many different types of tiles.

Magic: A VLSI Layout System December 2, 1983

—
L

(3)

(b)

Figure 2. Areas of the same type of material are represented with horizontal strips
that are as wide as possible, then as tall as possible. In each of the figures the tile
structure on the left is illegal and is converted into the tile structure on the right. In
(a) it is illegal for two tiles of the same type to share a vertical edge. In (b) the two
tiles must be merged together since they have exactly the same horizontal span.

and subcells; each plane consists of a number of rectangular tiles of different
types. There are three important properties of a corner-stitched plane, illus-

trated in Figures 1, 2, and 3:

Coverage: Each point in the x-y plane is contained in exactly one tile (Figure
1). Empty space is represented as well as the area covered with

material.

Strips: Material of the same type is represented with horizontal strips (Fig-
ure 2). The strip structure provides a canonical form for the data-
base and prevents it from fracturing into a large number of small

tiles.

Stitches: Tiles are linked together at their corners. Each tile contains four

of these links, called stitches {Figure 3).

Magic: A VLSI Layout System December 2, 1983

f L,
‘.; 'y ¢ 'yl
; Lo - L
Gt 1] |
; P :
9% =4, _
- J"l | N
' v L] L
- Y 'y Py
v ba s
-1 ; 4
i* v t,
< :
¥

Figure 3. Each tile is linked to its neighbors with four poiaters, called corner
stitches. The corner stitches provide a form of two-dimensional sorting. They per-
mit a variety of geometrical operations to be performed efficiently, such as searching
an area or finding all the neighboring tiles on one side of a given tile.

The stitches permit a variety of search operations to be performed efliciently,
including: finding the tile containing a given point; finding all the tiles in an
area; finding all the tiles that are neighbors of a given tile; and traversing a
connected region of tiles. The coverage property makes it easy to update the
database in response to edits, and the strip property keeps the database
representation small. To the best of our knowledge, corner stitching is unique
in its abilitv to provide these efficient two-dimensional searches and yet permit
fast updates of the kind needed in an interactive tool. The only disadvantage
of corner stitching in comparison to less powerful data structures is that it
requires more storage space {about three times as much space as structures
based on linked lists of rectangles). Even so, the storage requirements do not
appear to be a problem for chips likely to be designed in the next several

vears.

v

-3

Magic: A VLSI Layout System December 2, 1983

4. Abstract Layers

There are several ways in which corner-stitched planes might be used to
represent the mask geometries in a cell. One alternative is to use a separate
plane for each mask layer; each plane contains space tiles and tiles of one par-
ticular mask type. The disadvantage of this approach-is that many opera-
tions, such as design-rule checking and circuit extraction, require information
about layer interactions (such as polysilicon crossing diffusion to form a
transistor, or implants changing the type of a transistor). With a separate
plane per mask layer, these operations will spend a substantial amount of time

cross-registering the information on different planes.

Another alternative is to place all the mask layers into a single corner-
stitched plane. Since there can be only one tile at a given point in a given
plane, different tile types must be used for each possible overlap of mask
layers. This eliminates the registration problem, but results in a large number
of small tiles where several mask layers overlap. Even though many of the
laver overlaps are pot significant (such as metal and implant), separate tile
types have to be used to represent them. As a result, the database fragments

into a large number of tiles, and the overheads for all operations increase.

The solution we chose for Magic lies between these two extremes. We
decided to use 2 small number of planes, where each plane contains a set of

lavers that have design-rule interactions. If layers do not have direct design-

Magic: A VLSI Layout System

Plane

Tile Types

Poly-Diff

Polysilicon

Diffusion

Enhancement Transistor
Depletion Transistor
Buried Contact
Poly-Metal Contact
Diffusion-Metal Contact-
Space

Metal

Metal

Poly-Metal Contact
Diffusion-Metal Contact
Overglass Via to Metal
Space

December 2, 1983

Table 1. The corner-stitched planes and tile types used to represent the mask infor-
mation for an tMOS process with buried contacts and single-level metal. Since po-
lysilicon and diffusion have design-rule interactions, they are placed in the same
plane. Metal interacts with polysilicon and diffusion only at contacts, so it is placed
in a separate plane. Contacts between metal and diffusion or polysilicon are dupli-

cated in both planes.

rule interactions (such as poly and metal), they may be placed in different

planes. Some layers, such as contacts, may appear in two or more planes. In

our single-metal nMOS process there are two planes: one for polysilicon,

diffusion, transistors, and buried contacts; and one for metal (see Table I).

We also decided not to represent every mask layer explicitly. Instead of

dealing with actual mask layers, Magic is based around abséract layers. The

abstract layers do not include implants, wells, buried contact windows, or con-

tact vias. Instead, the abstract lavers include separate tile types for each pos-

sible kind of transistor and contact. Magic generates the missing mask layers

when it creates CIF files for fabrication. Table I gives the planes and abstract

Magic: A VLSI Layout System December 2, 1983

(c) (d)

Figure 4. In Magic, transistors and contacts are drawn in an abstract form: (a) a
three-transistor shift-register cell, showing actual mask layers; (b) the same cell as it
is seen in Magic; (c) the information in Magic's poly-diff plane; (d) the information
in Magic's metal plane. Contacts are duplicated in each plane.

Bolysilicon

i Metal

Ciffusion
Enhancement~FET
% Oenlet on-FET

g;::- Bur 1ec-Contact

& Diff-Metal-Contect

layers used in Magic, and Figure 4 illustrates how the abstract layers are used

in a sample cell. Abstract layers change the way a circuit looks on the screen,

but they do not incur any density penalty.

-10 -

Magic: A VLSI Layout System December 2, 1883

The Magic design style is similar to sticks and symbolic systems such as
Mulga [13] and VIVID [10], except that the geometries are fully fleshed.
Designers draw the primary interconnection layers and simplified forms of con-
tacts and transistors. Magic fills in the structural details. As in sticks, there
are simple operations for stretching and compacting cells. The advantage of
Magic's abstract-layer approach is that designers can see the exact size and
shape of a cell while it is being edited, and they only work with a single
representation of the circuit. When using sticks, designers go back and forth
between the sticks and mask representation; the final size of the cell is hard to
determine until it has been compacted and fleshed out. The following sections
will show how the abstract layers simplify design-rule checking, plowing, and

circuit extraction.

In addition to the planes used to hold mask geometry, each cell contains
another plane to hold information about its subcells. Subcells are allowed to
overlap in Magic; each distinct subcell area or overlap between subcells is
represented with a different tile in the subcell plane. Each tile contains
pointers to all of the subcells that cover the tile’s area. By using corner-
stitching in this way, it is easy to find subcell interactions and to determine

which (if any) subcells cover a particular area.

- 11 -

Magic: A VLSI Layout System December 2, 1983

5. Basic Commands

The basic set of commands in Magic is similar to the commands in Caesar
[5,7]. Mask geometry is edited in a style like painting: a rectangle is placed
over an area of the layout, and mask layers may be painted or erased over the
area of the rectangle. Additional operations are provided to make a copy of
all the “‘paint” in a rectangular area and copy it back at a different place in

the layout. The corner-stitched representation is invisible to users.

Magic also provides commands for manipulating subcells. Subcells may
be placed in a parent, moved, mirrored in x or y, rotated (by multiples of 90
degrees only), arrayed, and deleted. Subcells are handled by reference, not by
copying: if a subeell is modified, the modifications will be reflected everywhere

that the subcell is used.

8. Incremental Design-Rule Checking

Design-rule checking is an integral part of the Magic system. Our main
goal was to make the checker very fast, particularly for small changes: the
cost of reverifying a layout should be proportional to the amount of the layout
that has been changed, not to the total size of the layout. To achieve this,
Magic's design-rule checker runs continuously in the background during edit-
ing sessions. When the layout is changed, Magic records the areas that must

be reverified. The design-rule checker then rechecks these areas during the

Magic: A VLSI Layout System December 2, 1983

time when the user is thinking. For small changes, error information appears
on the screen instantly (and also disappears instantly when the problem has
been fixed). For large changes (such as moving one large subcell on top of
another), it may take seconds or minutes for the design-rule checker to com-
plete its job. In the meantime, the designer can continue editing. If
reverification hasn’t been completed when an editing session ends, the areas
still to be reverified are stored with the cell so that reverification can be com-
pleted the next time the cell is edited. Error information is also stored with
cells until the errors are fixed. With this mechanism, there is never a need to

check a layout ‘‘from scratch.”

Magic’s basic rule-checker works from the edges in a design. Based on
the type of material on either side of an edge, it verifies constraints that
require certain layers to be present or absent in areas around the edge. There
are several reasons why corner stitching and the abstract layers allow edge
rules to be checked quickly. Each corner-stitched plane can be checked
independently. All the ‘“‘interesting” edges are already present in the tile
structure, so there is no need to register different mask layers. The abstract
layers make it unnecessary to check formation rules associated with implants
and vias. Lastly, corner stitching provides efficient algorithms for locating all

the edges in an area and for searching the constraint areas.

-13-

Magic: A VLSI Layout System December 2, 1983

In addition to a fast basic checker, the incremental rule checker contains
algorithms for handling hierarchy. When a cell in the middle of a hierarchical
layout is changed, Magic checks interactions between this cell and its subcells,
and also interactions between this cell and other cells in its parents and
grandparents. More details on the basic DRC mechar_xism and on Magic’s

hierarchical approach can be found in [12].

7. Plowing

Plowing is a simple operation that can be used to rearrange a layout
without changing the electrical circuit that it represents. To invoke the plow
operation, the user specifies a vertical or horizontal line segment (the plow)
and a distance perpendicular to it (the plow distance). See Figure 5. Magic

diffusion

L

yd

transistor /A/
Y

%%

plow — //j

ok

(before) (after)

Figure 5. In plowing, a horizontal or vertical line is moved across the circuit, push-
ing material out of its way. Design rules and connectivity are maintained.

Magic: A VLSI Layout System December 2, 1983

sweeps the plow for the specified distance, and moves and moves all material
out of the area swept out by the plow. The edges of this material are likewise
treated as plows, pushing other material in front of them. Mask geometry in
front of the plow is compacted as it is moved, and mask geometry'that crosses
the initial position of the plow is stretched behind the plow. Jogs are inserted
at the ends of the plow. The plow operation maintains design rules and con-
nectivity so that it doesn't change the electrical structure of the circuit. Most
material, such as polysilicon, diffusion, and metal, may be stretched or com-
pacted by plowing; transistors and contacts may be moved, but their shape

will not change.

Plowing provides all the operations of a sticks-based system, while still
working with fully-fleshed geometry. If a large plow is placed to one side of a
cell and then moved across the cell, the cell will be compacted. If a large plow
is placed across the middle of the cell and moved, the cell will be stretched at
that point. A small plow placed in the middle of a cell can be used to open up
empty space for new transistors or wiring. Plowing may be used both on low-
level cells containing only geometry, and on high-level cells containing subcells
and routing. Plowing moves each subcell as a unit, without affecting the con-

tents of the subeell.

The implementation of plowing is dependent on corner stitching, abstract

lavers. and the edge-based design rules. Corner stitching provides the fast

15

Magic: A VLSI Layout System December 2, 1683

geometric operations used to search out plow areas. The abstract layers tell
Magic about materials that cannot be stretched or compacted (such as transis-
tors). The edge-based design rules indicate what must be moved out of the
way when a particular edge of material is moved. By working from the same
data structure used for editing and design-rule checking, the plowing operation
avoids- the overhead of converting between representations. See [11] for a

detailed presentation of the plowing operation and its implementation.

8. Circuit Extraction and Cell Overlaps

The Magic da?abase makes circuit extraction almost trivial for individual
cells. Because of the abstract layers and corner stitching, the circuit is almost
completely extracted to begin with. All that is needed is to traverse the tile
structure and record information about what connects to what. There is no
need to register layers or infer the structure and type of transistors and con-

tacts: all this information is represented explicitly.

For hierarchical designs, the situation is complicated when cells overlap.
Each cell uses a separate set of corner-stitched planes, so information from the
separate planes must be combined in order to find out what connects to what.
If arbitrary overlaps are allowed, then transistors may be split between cells,
or may be formed or broken by cell overlaps. In this case, circuits cannot be

extracted hierarchically, since the structure of a cell may be changed by the

Magic: A VLSI Layout System December 2, 1983

way it is used in its parents.

One approach to the overlap problem is to prohibit cell overlaps. This
has two drawbacks, however. First, it makes for clumsy designs, since overlap
areas must be placed in separate cells. This makes it harder to understand
designs and harder to re-use cells. Second, it doesn't eliminate the problems in
circuit extraction, since information will still have to be registered along the
boundaries of abutting cells. For example, a cell abutment can cause two

separate transistors to join together.

Instead of prohibiting overlaps, we decided to restrict them. In Magic,
c?lls may abut or overlap as long as this only connects portions of the cells
without changing their transistor structure. Overlaps and abuttments may not
change the type or number of transistors from what it would be without the
overlap (e.g. polysilicon from one cell may not overlap diffusion from another
cell. since this would create a new transistor). These restrictions can be
verified by using a special set of design rules in the part of the design-rule

checker that deals with cell overlaps.

Our solution still requires information to be registered between subcells,
but it allows the extracted circuit to be represented (and extracted) hierarchi-
cally. The extracted circuit for any cell consists of the circuits of its subcells,

plus the circuit of the cell itself, plus a few connections between the subcells.

- 17 -

Magic: A VLSI Layout System December 2, 1983

9. Routing

Routing is the single most important area where we hope Magic will speed
up the design process. Most of the Magic routing effort has been spent in two
areas: a) creating a channel router that can work around obstacles in the
channel (such as previously-placed interconnections and power and ground
routing); and b) developing an interface between grid-based routers and non-

)

gridded custom designs.

Magic uses a standard three-phase approach to routing. In the first
phase, called channel decomposition, the empty space of the layout is divided
up into rectangular channels. In the second phase, called global routing, nets
are processed sequentially to decide which channels will be crossed by each. In
the third phase, called channel routing, each channel is considered separately
and wires are placed to achieve the necessary connections within the channel.
Magic's channel decomposer (which is not yet implemented) will be based on
the bottleneck approach of the BBL system [1]. Global routing {also not yet
implemented) will use a standard wavefront approach [4]. Both of these will
use corner-stitching to keep track of the channel space. The channel router
has been implemented, and is an extended version of Rivest’s greedy router {9].
Magic does not provide placement tools: in our design style, placement is an

important architectural decision and must be handled by designers.

- 18 -

Magic: A VLSI Layout System December 2, 1983

to

V., V. v
7 {1//(A7

— w e
L]

Figure 8. An example of routing with a single-layer obstacle in the channel. The
router tries to avoid the thickest part of the obstacle if possible.

In order to make the routing tools useable in a custom design environ-
ment, we have developed a channel router that can work around obstacles in
the channels. It is important for designers to be able to wire critical nets by
hand, and to have the automatic routing tools route the less critical nets
without affecting the hand-routed ones. It is also convenient to run power and
ground routing tools as a separate step before signal routing, and have the sig-
nal router work around the power and ground wires. Where there are obsta-
cles in the channels, Magic will route under them if possible, and will route
around those that block both routing layers. For very large obstacles in one
layer, such as a wide metal ground bus, Magic can make interconnections
under the obstacles using river-routing. See [2] for details on how Rivest’s
greedy router has been extended to handle obstacles. Figure 6 shows an exam-

ple of results produced by the Magic router.

- 19 -

Magic: A VLSI Layout System December 2, 1983

The evasive router, combined with plowing and the other editing features,
provides designers with considerable flexibility. Critical signals and power and
ground can be routed by hand. Then the router can be invoked to complete
the rest of the interconnections. If the router is unable to make all connec-
tions, the final ones can be placed by hand. Or, plowing can be used to re-
arrange the placement and the router can be re-run. The plowing operation

will maintain the existing connections.

We have also extended the standard routing approach to handle designs
that are not based on a uniform routing grid. Most channel routers assume a
uniform grid based on the minimum wire spacing: channel dimensions must be
an integral num'ber of grid units, and all wires must enter and leave channels
on grid points. Unfortunately, custom cells are not usually designed with the

router's grid in mind, so the cell boundaries and terminals do not line up on a

Original Cell Boundary

P

[

”_j

: "—'_ Sidewalk
1 -<F :‘

Expanded Cell Boundary

Figure 7. In the sidewalk approach, each cell is enlarged so that its boundary is
grid-aligned. Then connections on the edge of the original cell are routed to grid
points on the outside of the sidewalk.

- 20 -

Magic: A VLSI Layout System December 2, 1983

master grid. We are experimenting with two approaches to this problem,

called sidewalks and flexible grid.

The sidewalk approach is illustrated in Figure 7, and involves a pre-
routing step where all cells are expanded so that their dimensionsn are integral
grid units. This additional cell area is called its stdewalk. In addition, wires
are added to connect the terminals of the cell to grid points on the outer edge
of the sidewalk. After the sidewalk generation stage, everything is grid
aligned so standard routing tools can be used. Magic currently implements the
sidewalk approach. Sidewalks are inefficient because the sidewalk areas can-
not be used for channel routing, even though they usually contain little
material. Sidewalks typically cause the channels to be reduced in size by 2-3

tracks and 2-3 columns.

partial
/ column

/

— *

\ partial
track

(a) (b)

Figure 8. Rather than expand cells to grid points as in the sidewalk approach, the
flexible grid approach modifies the track and column structure of the channel. The
channel is grid-based in the center, but the grid lines jog at the edges to meet up
with non-gridded connections. (a) shows the standard orthogonal channel structure,
and (b) shows a channel whose grid structure has been fexed. The flexible grid ap-
proach can result in tracks or columns that don't extend all the way across the chan-
nel.

Magic: A VLSI Layout System December 2, 1983

The flexible grid approach distributes the sidewalks among the channels
by jogging the track and column structure at the ends to match up with con-
nection points that don't fall on grid lines. This is illustrated in Figure 8. In
the flexible grid approach, wasted space occurs within the channel because
some columns and channels cannot extend all the way across the channel.
However, there appears to be less wasted space in this approach than in the
sidewalk approach. In the worst case, the wasted space is equivalent to two
tracks and two columns per channel. If connection points are sparse, however
(and this is usually the case), the flexible grid approach has almost zero wasted

space. We are still in the early stages of exploring this alternative.

10. User Interface

Magic displays the layout on a color display, and users invoke commands
by pointing on the display with a mouse and then pushing mouse buttons or
typing keyboard commands. Magic provides multiple overlapping windows on
the color display. Each window is a separate rectangular view on a layout.
Different windows may refer to different portions of a single cell, or to totally
different cells. Windows allow designers to see an overall view of the chip
while zooming in on one or more pieces of the chip; this permits precise align-
ments of large objects. Information can be copied from one window to

another.

Magic: A VLSI Layout System December 2, 1983

11. Technoldgy Independence

Although Magic contains a considerable amount of knowledge about
integrated circuits, the information is not embedded directly in code. All the
circuit information is contained in a technology file that Magic reads. This file
defines the abstract layers for a particular technology, the corner-stitched
planes used to represent them, and the assignment of abstract layers to planes.
It tells how to display the various layers and defines the semantics of the paint
and erase operations from Section 5 (for example “if poly-metal-contact is
painted over diffusion, erase the diffusion and place poly-metal-contact tiles on
both the poly-diff and metal planes”). The technology file contains the design
rules used in design-rule checking and in plowing. Lastly, it tells how to fill in
the structural details of transistors and contacts when generating CIF for cir-
cuit fabrication. The technology file format is general enough to handle a
variety of nMOS and CMOS processes. Our technology file for an nMOS pro-

cess with buried contacts and single-level metal contains about 130 lines.

12. Implementation

The implementation of Magic was begun in February of 1983. By early
April 1983, a primitive version of the system was operational. Although the
first system was based on corner stitching and abstract layers, it provided user

features only equivalent to Caesar. During the summer of 1983 implementa-

-923.

Magic: A VLSI Layout System December 2, 1983

Subsystem Implementation Status
"Edge-based DRC Operational 9/1/83
Hierarchical and Continuous DRC Operational 11/1/83

Circuit Extraction Not begun

Plowing Simplified version operational 10/1/83

Full version expected 1/1/84

Net List Editing Operational 5/1/83

Channel Decomposition Expected 1/1/84

Global Router Expected 2/1/84

Channel Router with Obstacle Avoidance Operational 10/1/83
Multiple Windows Operational 11/1/83

Table II. The implementation status of Magic.
tion was begun on the subsystems for routing, multiple windows, plowing, and
design-rule checking. As of this writing, most of the advanced features are
either operational or expected to be operational in the near future. See Table
II. The system has been in use since April 1983 by the designers of a 32-bit
microprocessor [8], and since September 1983 by several dozen students in an

introductory VLSI design class.

Operation Speed
Painting tiles into
corner-stitched database

200 tiles/sec.

Design-rule checking 200 tiles/sec.
Simplified Plowing 100 tiles/sec.

Channel routing (‘*'Deutsch’s
difficult example,” 80 nets)

3 sec.

Table ITI. Some sample measurements of the speed of the Magic system. All meas-
urements were made on a VAX-11/780.

Magic: A VLSI Layout System December 2, 1983

Magic is written in C under the Berkeley 4.2 Unix operating system for
VAX processors. The current implementation works only with AED color
displays with special Berkeley microcode extensions. Altogether, Magic con-
tains approximately 45000 lines of code. Table IO gives a few sample perfor-

mance measurements of pieces of the system.

13. Conclusions

We have not yet had enough designer experience with Magic to evaluate
the system thoroughly, but the initial response has been favorable. The only
major problem encountered so far has been one of education: if designers are
accustomed to working with zctual mask layers, then the abstract layers in
Magic are confusing at first. This problem was exacerbated in the early ver-
sions of the system because the design-rule checker wasn't implemented. With
continuous feedback from the checker, we hope that it will be much easier for
desigﬁers to learn the abstract layers. We expect that the abstract layers will
be easier for designers to work with than the actual mask layers, since they

hide many irrelevant details.

The pieces of the Magic system work well together. Corner stitching
appears to be a complete success: it provides all the operations needed to
implement Magic's advanced features, and results in simple and fast algo-

rithms. The design-rule checker's edge-based rule set meshes well with the

Magic: A VLSI Layout System December 2, 1983

corner-stitched data, and is used also for plowing. The abstract layers simplify
the design rules, provide information needed for plowing and circuit extrac-

tion, and simplify the designer’s view of the layout.

We hope that Magic's flexibility will change the VLSI layout process in
two ways. First, we hope that it will enable designers. to experiment much
more than previously. At the cell level, they can use plowing to rearrange
cells quickly and easily. Cells can be designed loosely, then compacted. At
the chip level, plowing and the routing tools can be used together to re-
arrange the floorplan, route the connections, compact or stretch, and try
again. The ability to experiment means that students will be able to develop
better intuitions about how to design chips; it also means that designers will

be able to fix bugs and enhance performance more easily.

Second, we hope that Magic will make it easier to reuse pieces of designs.
To design a new chip, a designer will select cells from a large library, use
plowing and painting to make slight modifications in their shape or function to
suit the new application, and perhaps design a few new cells. Then the rout-
ing tools will be used to interconnect the cells. We hope that this approach

will result in a substantial reduction in design time for large circuits.

Magic: A VLSI Layout System December 2, 1983

14. Acknowledgements

As tool builders, we depend on the Berkeley design community to try out
our new programs, tell us what's wrong with them, and be patient while we fix
the problems. Without their suggestions, it would be extremelf difficult to
develop useful programs. The SOAR design team, and Joan Pendleton in par-
ticular, have been invaluable in helping us to tune Magic. Randy Katz, Dave
Patterson, and Carlo Séquin all provided helpful comments on this paper. The
Magic work was supported in part by the Defense Advanced Research Projects
Agency (DoD) under contract N00034-K-0251, and in part by the Semiconduc-

tor Research Cooperative under grant number SRC-82-11-008.

15. References

(1] Chen, N.P., Hsu, C.P., and Kuh, E.S. *“The Berkeley Building-Block Lay-
out System for VLSI Design.” Memorandum No. UCB/ERL M83/10,
Electronics Research Laboratory, University of California, Berkeley,
February, 1983.

(2] Hamachi, G.T. 2ad Ousterhout, J.K. “A Switchbox Router with Obstacle
Avoidance.” In this technical report.

[3] Keller, K.H. and Newton, A.R. “KIC2: A Low-Cost, Interactive Editor for

Integrated Circuit Design.”” Proc. Spring COMPCON, 1982, pp. 305-308.

Magic: A VLSI Layout System December 2, 1983

(4]

(5]

(6]

8]

[10]

[11]

Lee, C. Y. “An Algorithm for Path Connections and Its Applications.”
IRE Transactions on Electronic Computers, September 1961, pp. 346-
365.

Ousterhout, J.K. “Caesar: An Interactive Editor for VLSI Layouts.” VLST

Design, Vol. II, No. 4, Fourth Quarter 1981, pp. 34-38.

Ousterhout, J.K. “Corner Stitching: A Data Structuring Technique for
VLSI Layout Tools.” Technical Report UCB/CSD 82/114, Computer Sci-
ence Division, University of California, Berkeley, December 1982. To

appear in IEEE Transactions on CAD/ICAS, January 1984.

Ousterhout, J.K. *“The User Interface and Implementation of Caesar.”
Technical Report UCB/CSD 83/131, Computer Science Division, Univer-
sity of California, Berkeley, August 1983.

Patterson, D.A. ed. “Smalltalk on a RISC.” Final reports from CS292R,
Computer Secience Division, University of California, Berkeley, April 1983.

Rivest, R.L. and Fiduccia, C.M. “A Greedy Channel Router.” Proc. 19th

Design Automation Con ference,” 1982, pp. 418-424.

N

Rosenberg, J. et al. ‘A Vertically Integrated VLSI Design Environment.”

Proc. 20th Design Automation Con ference, 1983, pp. 31-36.

Scott, W.S. and Ousterhout, J.K. “Plowing: Interactive Stretching and

Compaction in Magic.” In this technical report.

.98 -

Magic: A VLSI Layout System December 2, 1983
[12] Taylor, G.S. and Ousterhout, J.K. “Magic’s Incremental Design Rule
Checker.” In this technical report.

[18] Weste, N. “Virtual Grid Symbolic Layout.” Proc. 18th Design Automa-

tion Con ference, 1981, pp. 225-233.

[14] Williams, J. “STICKS - A Graphical Compiler for High Level LSI

Design.” Proc. 1978 National Computer Con ference, pp. 289-295.

- 929 -

Magic’s Incremental Design-Rule Checker

George S. Taylor and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences Department
University of California
Berkeley, California 94720

ABSTRACT

The Magic VLSI layout ,editor contains an incremental design-rule checker.
When the circuit is changed, only the modified areas are rechecked. The
checker runs continuously in background to keep information about design-
rule violations up-to-date. This paper describes the basic rule checker, which
operates on edges in the layout, and the techniques used to perform incremen-
tal checking on hierarchical designs.

Keywords and Phrases: design-rule checking, interactive layout editor

Magic ’s Incremental Design-Rule Checker December 7, 1683

1. Introduction

Almost all existing design-rule checking (DRC) programs are batch
oriented [1] [2]. They read in a complete circuit layout and check the entire
design. If the circuit is changed, the only way to find out whether design rules
have been violated is to recheck the entire design, no matter how small the
change or how large the design. For chips with tens of thousands of transis-

tors, batch DRC run may require hours of computer time.

This paper describes a different approach to design-rule checking. As
part of the Magic VLSI layout editor (3], we have built a checker that operates
incrementally. When the layout is modified, Magic records which areas have
changed and rechecks only those areas. While the user continues editing, the
checker runs in background and highlights errors as it finds them. There is no
set-up time because it works from the same data structure used to represent
the layout. Since most changes made with the interactive editor are small and

the checker is fast, it can usually display errors instantly.

The user's view of design-rule checking is a simple one. As he edits the
circuit, small white dots appear over areas that contain layout errors. As soon
as the errors are fixed, the white dots go away. Error informaton is stored
with the design and it will reappear during the next editing session if the viola-
tion has not been fixed. This information is always kept up-to-date, so there is

never any need to run a batch checker.

Magic’s Incremental Design-Rule Checker December 7, 1983

In the next section, we describe Magic's internal representation for a lay-
out and explain how particular features contribute to fast incremental check-
ing. Section 3 describes how the basic checker works from edges in the layout
and how design rules are specified. Section 4 shows how we use the basic
checker for incremental checking of individual cells, and section 5 describes
how hierarchical designs are handled. Section 6 gives measurements of the

checker's speed.

2. Representation of a Layout

In Magic, a layout is represented as a hierarchical collection of cells.
Each cell contains mask information plus pointers to subcells. For now, we
will consider only a single cell at a time (Section 5 generalizes the solution to

handle hierarchical designs).

Magic represents the mask layers of a cell with rectangular ¢iles, which
means that it handles only Manhattan geometries. Each tile indicates the type
of mask layer it represents. Tiles are connected to form planes by a technique
called corner-stitching [2] illustrated in Figure 1. The tiles in a plane are
non-overlapping and cover it completely. Empty areas are covered with tiles
of type ‘‘space.”

Each cell contains several planes of mask information. Mask types that

interact (such as polysilicon and diffusion) are stored together in the same

Magic s Incremental Design-Rule Checker December 7, 1983

=5
« A A A
v L iy [WFS
] - a A
A4 . ey I—--)
“+ I 4]-1 A
v M ! “T A A
Y Y > P
-« - «— A
v v v >
|
“Q
v

Figure 1. An example of a corner-stitched plane. Each plane contains tiles of
different types that cover the entire area of the plane (space tiles are used where
there is no mask material). Each tile contains four pointers that link it to neighbor-
ing tiles at its corners. The pointers make it easy to find all the material in a given
area.

plane, while those that do not interact (such as polysilicon and metal) are
stored in different planes. Contacts between mask types on different planes are

represented in both of them. Our nMOS process has two planes: one for

metal and one for polysilicon, diffusion, and transistors.

Instead of working directly with physical mask layers, Magic uses absiract
layers to represent structures such as transistors and contacts. The abstract
lavers appear in the database as tiles with special types. For example, instead
of representing an enhancement transistor as a polysilicon tile over a diffusion
tile, it is represented with a tile of type “enhancement tramsistor.” A more
complete explanation of the abstract layers is given in {3]. What matters here
is that all the interesting features are represented explicitly: there is no need

to cross-register diffusion and polysilicon to discover the transistors.

Magic ‘s Incremental Design-Rule Checker December 7, 1983

The design-rule checker takes advantage of Magic’s database in three
ways. First, the corner-stitched tiles allow DRC to find material in 2 given
area very quickly. Second, division of mask information into planes allows the
checker to work with one plane at a time, ignoring irrelevant geometry on
other planes. Third, there is no need to extract features by registering layers:
the abstract layers represent the important features explicitly. Because of
these features, there is no need for the checker to manage a separate structure

of its own: it works directly from the layout database.

3. The Basic Checker

This section describes the basic design-rule checking paradigm used to
validate an area of a single corner-stitched plane. Later sections show how

this basic checker is used to perform incremental checks on a single cell, and

then on a hierarchy of cells.

3.1. Edge-based Rules

Magic's design rules are based on edges between tiles. Each rule can be
applied in any of four directions, two for horizontal edges and two for vertical
edges. The rule database contains a separate list of rules for each possible
combination of materials on the first and second sides of an edge. In its sim-
plest form, a rule specifies a distance and a set of mask types: only the given

types are permitted within that distance on the second side of the edge. This

Magic s Incremental Design-Rule Checker December 7, 1983

area is referred to as the constraint region. See Figure 2.

Ouly certain tile types are allowed

in the dashed constraint regions.

A
- d type 1
type 1 |[type 2 1
i M A
¢ t i {
[(1 d
1 ; type 2 |
— e e w m m - e e e = - v
«— 44— “—d—

Figure 2. Design rules are applied at the edges between tiles in the same plane. A
rule is specified in terms of type I and type 2, the materials on either side of the edge.
Each rule may be applied in any of four directions, as shown by the arrows. The
simplest rules require that only certain mask types can appear within distance d on
type 2's side of the edge.

Magic ‘s Incremental Design-Rule Checker December 7, 1983

Unfortunately, this simple scheme will miss errors in corner regions, as
shown in Figure 3. To eliminate these nroblems, the full rule format allows
the constraint region to be extended past the ends of the edge under some cir-
cumstances. See Figure 4 for an illustration of the corner rules and how they
work. Table 1 gives a complete summary of the information in each design

rule.

tile types allowed:

anything but poly

-------- - S
v z L s

poly spaceé 5 \
; poly

constraint

regions

(a) (b)

Figure 3. If only the simple rules from Figure 2 are used, errors may go unnoticed
in corner regions. For example, the polysilicon spacing rule in (a) will fail to detect
the error in (b).

Magic ’s Incremental Design-Rule Checker December 7, 18983

corner typeS’ I cormer extension Dot poly To
B x (ce) LB
“_ types allowed "‘_\’ not poly
type 1|type 2 poly |space
A | A
ey D s 4
d 2
(a) (b)
poly
poly not
poly €77 allowed §
—tpp —tp i poly not
: / allowed
(c) (d)

Figure 4. The complete design rule format is illustrated in (a). Whenever an edge
has type 1 on its left side and type 2 on its right side, the area A is checked to be
sure that only types allowed are present. If the material just above and to the left of
the edge is one of corner types, then area B is also checked to be sure that it con-
tains only types allowed. A similar corner check is made at the bottom of the edge.
Figure (b) shows one of the polysilicon spacing rules, (¢) shows a situation where
corner extension is performed on both ends of the edge, and (d) shows a situation
where corner extension is made only at the bottom of the edge.

Parameter | Meaning
type 1 Material on first side of edge.
type 2 Material on second side of edge.
d Distance to check on second side of edge.
layers List of layers that are permitted
allowed within d units on second side of edge.
corner List of layers that cause corner extension.
types
ce Amount to extend constraint area

when corner types match.

Table 1. The parts of an edge-based rule.

;]

Magic ‘s Incremental Design-Rule Checker December 7, 1983

3.2. Applying the Rules

To check an area of a single plane, Magic must first find all the edges in
that area. This is accomplished by searching for all the tiles in the area. The
corner-stitched data structure is well suited to searches of this sort: see [4].
For each tile, the checker examines its left and bottom sides (the top and right
sides of the tile will be checked by the neighbors on those sides). Since the tile
may have neighbors of different types on the same side, the checker searches
through all the neighbers to divide the side of the tile into edges with a single

material on each side.

To process an edge, the mask types on each side of it are used to index
into the rule table to find the list of rules for that kind of edge. Each rule in
the list is checked, and white dots are displayed for any areas where the con-
straints are not satisfied. For each edge there are two rule applications: left-
to-right and right-to-left (for vertical edges) or bottom-to-top and top-to-
bottom (for horizontal edges). A different list of rules is applied in each direc-

tion, since the layers are reversed.

3.3. Specifying Design Rules

Design rules are specified in a technology file that contains the rules and
other technology-specific information. When Magic starts executing, it reads
this file and builds the rule table. Initially we specified rules in the detailed

torm of Table I, with one line for each edge rule. This scheme proved to be

-R-

Magic ’s Incremental Design-Rule Checker December 7, 1983

unworkable, because there were many rules and it became difficult to convince

ourselves that the rule set was complete and correct.

In order to simplify the process of creating rule sets, Magic now permits
rules to be specified with high level macros for width and spacing. For exam-

ple, the macro
spacing ef DP 1

is expanded into several rules to verify that types e and { (enhancement and
depletion transistors) are always separated from types D and P (diffusion-metal

contacts and poly-metal contacts) by at least one unit. The macro
width pPBef 2

is expanded into the set of edge rules needed to verify that the entire region
containing any of the five types P, B, e, f or p (polysilicon) is always at least

two units wide.

Most of the rules for our processes are simple width and spacing checks,
so these two macros considerably simplify the writing of rule sets. Our nMOS
rule set contains 8 width rules, 6 spacing rules, and 9 of the detailed edge rules
for situations that cannot be handled by the width and spacing rules (e.g.
transistor overhangs). Magic expands these 23 high-ievel rules into 126
detailed edge rules. The complete high-level rule set for nMOS is given in the

Appendix.

Magic s Incremental Design-Rule Checker December 7, 1983

The width and spacing macros make Magic’s checker more efficient
because the width and spacing rules are symmetric. If layers x and y are too
close together, the violation can be detected from either an edge of x or an
edge of y. This means that it is unnecessary to check the rules from both
edges. Magic takes advantage of this symmetry by checking width and spac-
ing rules in only two directions (left-to-right and bottom-to-top). In addition,
symmetric rules mean that corner extension is only necessary on one end of
each edge. Since most of the detailed edge rules come from the width and

spacing macros, this speeds up the checking process by almost a factor of two.

4. Continuous Design-Rule Checking

This section shows how the basic checker is used to provide continuous
ineremental rule validation. As in the previous section, we consider only

single-cell designs here.

In order to perform DRC incrementally, Magic maintains two extra kinds
of information with each cell, stored in the same form as mask layers. First,
Magic keeps information about rule violations that have been detected but
haven't been corrected. The violations are represented by error tiles that
cover the areas where rule constraints are not satisfied. The second kind of
information consists of tiles describing the areas of the circuit that need to be

reveriied. The error tiles and the reverify tiles are stored in separate corner-

- 10 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

stitched planes. Each cell contains its own error and reverify planes.

When a designer changes a cell, Magic creates reverify tiles that cover the
area modified. The design-rule checker runs in background while Magic is
waiting for the designer to enter the next command. DRC first searches for
reverify tiles. Then it invokes the basic checker over the area covered by each
tile found. The basic checker reverifies the area on each of the cell’s planes,
updates error tiles, and erases the reverify tile. Changes to the error informa-

tion are reflected immediately on the graphics screen.

If the designer invokes a command while the checker is running, the
checker stops so that the command can be processed without delay. After the
command finishes, the checker resumes by starting over on the area that it
was working on just before the interruption. Large reverify tiles are broken
up into small ones before checking, in order to reduce the amount of work
that might have to be repeated. When there are large areas to be reverified,

Y

the checker works across the design in a style like “Pac-Man,” gobbling up

reverify tiles and spitting out error tiles.

If incremental checking is done carelessly, errors may not be detected
when new violations are introduced, and error information may be left in the
database even after the violations have been corrected. Figure 5 illustrates the
problem and Magic's solution. When an area is modified, error information

may be affected in both the area that was modified and in the surrounding

-11-

Magic ‘s Incremental Design-Rule Checker December 7, 1983

area (for example, material in area A may be too close to something in the sur-
rounding area B). We call the surrounding area the halo. Its width is equal to
the largest distance in any design rule. Error information must be recomputed
in the modified area and its halo. However, errors in the halo don't necessarily
involve the inner modified area. They may come from interactions between
the halo and a second halo outside it. To regenerate errors in the first halo

correctly, information in the second halo must be considered.

If area A of Figure 5 were modified, Magic would recheck it by deleting
all error information in A and B. The checker would then generate new error
information in both areas by invoking the basic checker over areas A, B and
C. Any errors found during this process would be clipped to the area of A and
B, so that error information outside the region where errors were erased would

not be affected.

first halo "'—_\“ B .

w
o
o
o
=]
a.
=
L3
o

Figure 5. If area A is modified, the design-rule checker erases existing error infor-
mation in both A and B. Errors in B could have come from information in A, B or
C, so all three areas must be checked to regenerate all of the errors. The width of
the halos B and C is equal to the largest distance in any design rule.

Magic’s Incremental Design-Rule Checker December 7, 1983

The reverify and error tiles are stored with cells so that they are not lost
at the end of an editing session. Normally, there will be no reverify tiles left at
the end of a session, but if a large area has been changed recently, it is possi-
ble that it won't have been reverified when the session ends. In this case, the
reverify tiles are written to disk with the cell. When the cell is read in during
the next editing session, the design-rule checker will notice the reverify tiles
and continue the reverification process. The reverify and error tiles are identi-
cal to the tiles used to represent mask layers, except that they are not manipu-

lated directly by the designer.

5. Hierarchical Checking

Most of the layouts created with Magic consist of hierarchical cell struc-
tures rather than single cells (Figure 6). Each cell may contain subcells, and
the subcells may overlap other subcells or mask information in the parent. A

subcell may be appear any number of times in any number of parents.
In hierarchical designs, errors can arise in any of three ways:
a) the mask information of an individual cell may be incorrect;
b) a subcell may interact incorrectly with another subcell: and
¢) asubcell may interact incorrectly with mask information in its parents.

Magic's incremental checker includes facilities to detect all of these errors.

Overlapping subcells are no more difficult to handle than subcells that merely

- 13-

Magic s Incremental Design-Rule Checker December 7, 1983

abut, because interaction errors are possible in either case.

5.1. Simple Checks and Interaction Checks

Two overall rules guide the hierarchical checker. First, the mask infor-
mation in every cell is required to satisfy the design rules by itself, without
consideration of subcells. Second, each cell and its subcells must together
satisfy all the design rules, without consideration of how that cell is used in its
parents. If the layout is viewed as a tree structure, the first rule means that
each node of the tree must be consistent, and the second rule means that each

subtree must be consistent.

Figure 8. Circuits are defined by cells arranged in a hierarchy. If mask information
is changed in a low-level cell, Magic checks to be sure that the cell is consistent by
itself and that there are no illegal interactions in parents or grandparents.

- 14 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

The overall rules result in two kinds of design-rule checking. The first
rule is verified by runmning the basic checker over the planes containing mask
information for each ceil; this is called a simple check. The second rule is
verified with an interaction check which considers interactions involving sub-
cells. Each cell uses separate planes to hold its mask information, so interac-

tion checks must combine information from different planes.

To make an interaction check on an area, the hierarchical structure is
“Hattened’’ to produce a new set of corner-stitched planes that combines all
the information from all cells in the area to be checked. This includes mask
information from the parent cell, plus mask information from subcells and
sub-subcells, and so on. Once all the mask information in the area has been
collected into a single set of planes, the basic checker is invoked on these
planes in the standard fashion (halo expansion is performed as described in
Section 4). Errbrs arising from the interaction check are placed in the parent

cell.

Interaction checks are more expensive than basic checks, since they
involve attening a piece of the hierarchy. Fortunately, interaction checks can
often be avoided. For example, if an area contains no subcells, then there is
no need to perform an interaction check on that area. A simple check will
find all errors. The interaction check can also be avoided if there is only a sin-

gle subcell in an area, with no other subcells or mask information nearbv. In

Magic ‘s Incremental Design-Rule Checker December 7, 1983

this case any errors must come from within the subcell, and those errors will
be found by checks made within that cell. Interaction checks are necessary
only in areas where a subcell is within one halo distance of mask information
or another subcell. Even then, we only need to check the the arez around the

interaction.

5.2. Checking Upward in the Hierarchy

When a cell is modified, simple checks and interaction checks have to be
performed within that cell, and also within its parents in the hierarchy. For
example, suppose mask information has been edited within a cell. Then a sim-
ple check must be performed within that cell, as well as an interaction check if
there are subcells near the modified area.. However, these two checks are not
sufficient. If the modified cell is a subcell of other higher-level cells, then the
change may have introduced interaction problems within the higher-level cells.
For each parent of the modified cell, an interaction check must be performed
over the area of the modification. Interaction checks must also be performed
in grandparents, and so-on up to the top-level cell in the hierarchy. In the cell
that was modified, both simple and interaction checks must be performed. but

in the parents and grandparents only interaction checks are necessary.

Magic uses two kinds of verify tiles to handle the two kinds of checks.
When a cell is modified, “verify-all”" tiles are placed in that cell to signify that

both simple and interaction checks must be nerformed. At the same time,

- 16 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

“verify-interactions’ tiles are placed in parents and grandparents to indicate
that interaction checks have to be performed. The background checker keeps
track of which cells in the database contain verify tiles and performs each kind

of check wherever necessary.

In the worst case, the hierarchical algorfthm could result in the modified
area being rechecked once at each level of the hierarchy above the cell that
was changed, with a separate flatten operation required for each check. How-
ever, in deep hierarchies most of the interaction checks are avoidable: in cells
far above the modified one, the modified area will almost certainly appear in
the middle of a single subcell with no mask information or other subcells
nearby. Unless there are many large subcell overlaps, any given area of mask
information is likely to require an interaction check at only one point in the

hierarchy.

5.3. Arrays

One other form of hierarchical check arises because Magic has an array
construct. To simplify the creation of cell arrays, Magic contains a special
array facility: each subcell may consist of either a single instance or a one- or
two-dimensional array of identical instances. Because of the array construct,
there is actually a third overall rule that guides the hierarchical checker: each
array must satisfy all the design rules, independently of other information in

the parent containing the array. Whenever a change is made to an array, the

.17 -

Magic 's Incremental Design-Rule Checker December 7, 1983

areas to be checked

surround overlaps

by one halo

Figure 7. An array is internally consistent if the three dotted areas satisfy the
design rules. All possible interactions between elements of the array are identical to
the ones that occur these three regions.

array structure is reverified by checking the three areas shown in Figure 7.

6. Implementation and Performance

The design-rule checker is written in C. Its 2000 lines of code are divided
into roughly equal thirds for building the internal rule table from the technol-
ogy file, implementing the basic checker on one plane, and providing for

hierarchical checking.

The incremental checking system has just recently become operational
We've made preliminary measurements on single cells with the untuned sys-
tem. The basic checker processes 200 tiles per second on a VAX 11/730 run-

ning Unix. To compare Magic's performance with that of other systems, we

- 18 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

state their speeds in terms of transistors checked per second in Table 2.

A typical change to a circuit involves only a few tiles, so the cost of incre-
mentsl reverification is dominated by the size of the halos. From this, we esti-
mate that roughly 50 tiles have to be checked per command in an nMOS

design. This requires about one-fourth of a second of CPU time.

The average number of edges found per tile is 2.5, but only 1.8 of these
have different mask types on the two sides of the edge. An average of 1.7

rules are applied per non-trivial edge.

7. Conclusions

Magic's design-rule checker demonstrates that incremental checking is
feasible. We think that circuit designers will find that continuous feedback
reduces the time needed to create new designs or modify existing ones. The
key to the incremental checker is low overhead: the ability to run from the
same database as the interactive editor, the ability to find important edges in

the lavout quickly, and the ability to find nearby material quickly. The two

System Transistors / second
Lyra 2] 2

Baker [1] 3

Mart [5] 6-3

Magic 10-15

Table 2. Performance of several design rule checkers. All of the programs were run
on a VAX 11/780.

- 19 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

features of Magic's database that reduce overhead are the corner-stitched tile
planes and the abstract mask layers. Extending the checker to work in
hierarchical designs frees the designer from tedious reverification of interac-

tions when subcells are revised.

8. Acknowledgements

Gordon Hamachi, Bob Mayo, and Walter Scott all participated in discus-
sions that led to the incremental checker and provided many useful comments

on drafts of this paper.

The work described here was supported in part by the Defense Advanced

Research Projects Agency (DoD), under Contract No. N00034-K-0251.

9. References
1] C. M. Baker and C. Terman, “Tools for verifying integrated circuit

designs,” Lambda (now VLSI Design) Vol. 1, No. 3 {1980), pp. 22-30.

2 M. H. Arnold and J. K. Ousterhout, “Lyra: A New Approach to
Geometric Layout Rule Checking,” Proc. 19th Design Automation

Con ference, June, 1982, pp. 530-36.

(3] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott and G. S.
Taylor, *“Magic: A VLSI Layout System,” included in this technical

report.

- 20 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

4]

J. K. Ousterhout, “Corner Stitching: A Data Structuring Technique
for VLSI Layout Tools,” Technical Report UCB/CSD 82/114, Com-
puter Science Division, University of California, Berkeley, December,
1982. To appear in I[EEE Transactions on CAD/ICAS, January,

1684.

B. J. Nelson and M. A. Shand, “*An Integrated, Technology Indepen-
dent, High Performance Artwork Analyzer for VLSI Circuit Design,”
Technical Report VLSI-TR-83-4-1, VLSI Program, Division of Com-

puting Research, CSIRO, Eastwood, SA 5063, Australia, April, 1883.

Magic s Incremental Design-Rule Checker December 7, 1983

10. Appendix

To illustrate how Magic is programmed for a particular technology, this
section lists the design rules for an nMOS process with buried contacts and a
single level of metal. Most rules are specified using width and sp;cing macros
which Magic expands into detailed lower-level rules. Detailed edge and four-
way rules may also be specified directly. Table 3 gives the abbreviations that

we use for the names of mask types.

Poly /Diffusion plane: space

diffusion

polysilicon
diffusion-metal contact
polysilicon-metal contact
buried contact

enhancement transistor

~ 0o WUDU o @

depletion transistor

Metal plane: space
metal

metal-diffusion contact

~< %3 °

metal-polysilicon contact

Table 3. Single letter abbreviations for the names of mask types.

The rules in Table 4a defne minimum line widths and feature sizes. The
first three rules are for the line widths of diffusion, metal and polysilicon. The
last five rules define the sizes of contacts and transistors. The types field may
include one or more mask types. Magic creates a detailed edge rule for all
combinations of one member of the types field, and one of the mask types in

the same plane that is not included in the ¢ypes feld.

Magic’s Incremental Design-Rule Checker December 7, 1983

types d reason
width dDBef 2 diffuamion
width pPBef 2 polysilicon
width mXY 3 metal
width D 4 di ff/retal contact
width P 4 palyfinetal contact
width B 2 buried contact
width e 2 et
width f 2 dfet

Table 4a. Width rules.

Table 4b contains spacing rules. We distinguish between spacing rules for
types that can never be adjacent and spacing rules that apply only when two
pieces of material are separated. In either case, Magic creates a number of

detailed edge rules in a manner similar to that for width rules.

The width and spacing macros can be used to specify most symmetrical
constraints for a particular technology. The detailed edge rules created from

the width and spacing macros are applied only from left-to-right across

can be
types 1 types 2 d adjacent? reason

spacing ef DP 1 no transistor — contact
spacing e f 3 no efet = dfet
spacing B e 3 no huried contact ~ efet
spacing . dDBef dDBef 3 yes diff-diff
spacing pPBef pPBel 2 yes poly ~ poly
spacing mXY mXY 3 yes metal ~ metal

Table 4b. Spacing rules.

.93 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

vertical edges in the layout, and from bottom-to-top across horizontal edges.

These edge rules always check one corner, also.

To specify asymmetrical constraints and constraints that apply alongside
edges but not in corners, we use the explicit edge and fourway rules listed in
Table 4c. The fourway rules are applied in both directions across all edges in
the layout. They also trigger corner checks on both ends of every edge. The
edge rules in Table 4c are similar to the ones derived from the width and spac-

ing macros, but could not be written conveniently in either of those forms.

layers corner

type 1 type 2 d allowed types ce reasan
edge d spP 1 s spP 1 &iff - paiy spacing
edge p sdD 1 s sdD 1 4iff - poly spacing
edge D sp 1 s sp 1 & ff - paly spacing
-edge P sd 1 s sd 1 diff — paly spacing
fourway ef 3 1 0 0 0 trans can? toush spoce
fourway B dD 4 sdpDPBf sdpDPBef 3 b.c — ¢fet epacing
fourway [B 3 B 0 0 b.¢ next to dfet must be ¢
fourway ef p 2 pP o 2 poly overhang transistor
fourway ef d 2 dD d 2 $ff overhang anastor

Table 4c. Edge and fourway rules.

- 24 -

Plowing:
Interactive Stretching and Compaction in Magic

Walter S. Scott and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

The Magic layout editor provides a new operation called plowing, for stretch-
ing and compacting Manhattan VLSI layouts. Plowing works directly on the
~ mask-level representation of a layout, allowing portions of it to be rearranged
while preserving connectivity and layout-rule correctness. The layout and
connectivity rules are read from a file, so plowing is technology indepencent.
Plowing is fast enough to be used interactively. This paper presents the plow-
ing operation and the algorithm used to implement it.

Keywords and Phrases: interactive layout editor, stretching, compaction.

The work described here was supported in part by the Defense Advanced Research Pro-
jects Agency (DoD) under Contract No. N00034-K-0251

1. Introduction

Plowing is a new operation provided by the Magic layout editor
[OHMST 84] for stretching and compacting Manhattan VLSI layouts. It
allows designers to make topological changes to a layout while lmaintaining
connectivity and layout rule correctness. Plowing can be uséd to rearrange
the geometry of a subcell, compact a sparse layout, or open up new space in a
dense layout. In a hierarchical environment plowing also allows cell placement
to be modified incrementally without the need for rerouting. To avoid depen-
dence on a particular technology, plowing is parameterized by a set of layout

and connectivity rules contained in a technology file.

{'——' diffusion

E
’

A
i/

°

OSSN

AN
Caa

|

AN

:—0

A S SSSEEREERSOSNSENANNNAN

N

plow distance—=+

LS

AR RN

NN NN NRR R RRRNY

T EEENEERESASSEANSNNAN

NN
NN

{before) (after)

Figure 1. Plowing opens up new space in a deanse layout. Geometry is pushed in
front of the plow, subject to layout-rule constraints. The connectivity of the original
layout is maintained. Jogs are inserted automatically where necessary.

Plowing December 2, 1683

Conceptually the pfowing operation is very simple. The user places either
a vertical or a horizontal line segment (the plow) over some part of a mask-
level representation of the layout, and then gives the direction and the dis-
tance the plow is to move. Plowing can be done up, down, to the left, or to
the right. (The rest of this paper will assume plowing to the right.) The plow
is then moved through the layout by the distance specified. It catches vertical
edges (boundaries between materials) as it moves and carries them along with
it. Since only edges are moved, material behind the plow is stretched and
material in front of the plow is compressed. Figure 1 shows how plowing can
be used to open up new space. Figure 2 shows how it can be used for stretch-
ing. Plowing can be used to compact an entire cell by placing a plow to the

left and plowing right, then placing a plow at the top and plowing down.

diffusjon — "

transistor &

v ‘ ! ‘
! ot S A
tj y // s ,{
24 [goly
ECENE! NN | T K
L A i j
V% 7
;/{] =N T / =
TN ——ﬁ-,————-—-’f v RN NN
1 A '
L L

(before) (after)

Figure 2. Material to the left of the plow is stretched. Material to the right is
compressed. Objects such as transistors do aot change in size.

[]

Plowing December 2, 1983

Plowing is so named because each of the edges caught by the plow can
cause edges in front of it to move in order to maintain connectivity and
layout-rule correctness. These edges can cause still others to be moved out of
the way, recursively, until no further edges need be moved. A mound of edges
thus builds up in front of the plow in much the same manner as snow builds

up on the blade of a snowplow.

Section 2 of this paper discusses plowing in the context of previous work.
Sections 3 and 4 introduce the plowing algorithm for a single mask layer. Sec-
tion 5 extends it to multiple mask layers and hierarchical designs. Finally,
Section 6 presents performance measurements and our experience with plowing

in the Magic system.

2. Backgiound

VLSI lavouts are difficult to modify. Because of this, designers are often
committed to the initial choice of implementation, rather than being able to
experiment with alternatives. Existing cells often cannot be re-used in subse-
quent designs because they don’t quite fit; it is typically easier to redesign a
new cell from seratch than to modify an old one. Bugs in a dense layout are

hard to fix, leading to a debugging cycle which can take days.

Many of these difficulties stem from the fact that seemingly small changes

to a layout can have disproportionately large effects. Sometimes this is for

Plowing " December 2, 1983

electrical reasocns. For example, in ratio logic such as nMOS, changes in the
size of one transistor may necessitate changes in the sizes of others. However,
even purely topological changes—those which preserve the electrical properties
of the layout—can require much more work than the size of the change would
suggest. As Figure 1 illustrated, merely opening up new space in a layout can
cause effects which ripple outward over a much larger area. Rearranging the
internal geometry of a.cell or modifying the placement of cells in a floor plan
can be similarly expensive because of the need to maintain ccnnectivity with

the surrounding material.

Previous attempts to cope with the re-arrangement problem have used
symbolic design or sticks [RBDD 83, West 81, Will 78]. In the symbolic/sticks
approach, designers enter layouts in an abstract form containing zero-width
wires, contacts, and transistors. The sticks form is then run through a com-
pactor to generate actual mask information. As part of the compaction, the
circuit elements are moved as close together as the layout rules permit. In a
sticks design style, cells can be designed loosely without worrying about exact
spacings, since the spacings will be determined by the compactor. However, it
is not necessarily easy to make major changes to a sticks cell once it has been
entered. Virtual grid systems like Mulga and VIVID provide mechanisms for
adding new grid lines uniformly across a cell, but it is still difficult to make

large topological changes.

Plowing December 2, 1983

Tﬁe plowing approach has all the advantages of sticks. It allows cells to
be designed loosely and then compacted. In addition, plowing can be used to
rearrange cells or open up new space, either across the whole cell or in one
small portion. Small changes can be made in one area without having to
recompact the entire cell (a global recompaction may potentially shift every
geometry in the cell). The plowing approach lets the designer see the final
sizes and locations of all objects as he is editing; in the sticks approach, it is
hard to predict the final structure of a cell from its abstract form, so compac-

tion must be used frequently to see the results of a change to the sticks.

3. Simple plowing algorithm

Plowing works by finding edges and moving them. An edge is 2 boun-
dary, parallel to the plcw, between material of two different types. When an
edge moves, the material to its left is stretched, and the material to its right is
compressed. In this section we will describe how plowing works when only a
single mask layer is present. This material wiil be assumed to have a
minimum width of w, and a minimum separation of s. Edges will always be

boundaries between this material and “‘empty’ space.

The fundamental step in plowing is to move a single edge. This step
involves determining which other edges must move as a consequence of this

motion. The following discussion presents plowing as though it moves a given

Plowing December 2, 1983

edge by first recursively sweeping all other edges out of its way, and then slid-
ing the edge into the newly opened space. Section 4 will present a better

scheme for ordering edge motions than this depth-first recursion.

3.1. Finding edges

Figure 3 depicts a trivial layout consisting of three unconnected pieces of
diffusion. The edge labelled e is to be moved to a final position indicated by
the arrowhead. This could be either because e was caught by the plow, or
because it is being moved to make room for some edge to its left. At a very
minimum, the rectangular area labelled A must be swept clear of any material
before the edge can be moved. However, because of the spacing rule, any

material inside area B would then be too close to the newly moved edge. Con-

diffusion

\T
N
le——1

N

N
\\\\
«\1
\\

— violation

AN

N
N
!
AN
NN

N\

I T

AN

“ONON
N\
Y

N

..............

NN
AR
\
\

Figure 3. When the edge e moves, all edges in area A (the area swept out by ¢}
must be moved (a). Moving only these edges results in edge f/ moving but not edge
g. This leaves a layout-rule violation (b) between e and g. Searching area B as well
as area A avoids this problem. The two areas are referred to collectively as the um-
bra of edge e.

Plowing December 2, 1983

sequently, the area to be swept includes both areas A and B. The union of

these two areas is referred to as the umbra of the edge e*.

Plowing must also search above and below the umbra to prevent the edge
from siiding too close to other edges above or below it. Figure 4a shows why
this is necessary. If material were moved out of the umbra alone, as in Figure
4b, the result is electrical disconnection. To avoid this, plowing must also

move edges out of the areas above and below the umbra. The correct result 1s

“«—E —>

v

NN

.

%
7z
(a) (b)

Figure 4. When the edge ¢ moves (a), edges in its umbra must be moved to the
right. If ooly edges in the umbra are moved, however, the result can be electrical
disconnection (b). To avoid this, plowing also moves edges in the penumbra to the
right, giving the correct result shown in (c). This has the effect of inserting jogs au-
tomatically. The height of the penumbra is w, the minimum-width for diffusion. If
diffusion had been to the left of e instead of to the right, the height of the penumbra
would have been s, minimum-separation.

MR

N\

* In a solar eclipse, the umbra is that portion of the moon's shadow from which the sun
appears to be completely eclipsed. The penumbra is the part of the shadow surrounding the
umbra from which the sun appears only partially eclipsed. In plowing, the umbra contains
edges directly in the path of an edge being moved. while the penumbra coatains edges not in
the path but nonetheless too close.

-1

penumbra

Plowing December 2, 1983

shown in Figure 4c. The areas above and below the umbra are referred to col-
lectively as the penumbra. Jog insertion is an automatic consequence of
searching the penumbra. Moving edges out of the penumbra also prevents
electrical shorts, as can be seen by reversing the roles of material and space in

Figures 4a-4c.

The left-hand boundary of the penumbra is not always aligned with the

edge being moved. Instead, this boundary is formed by following the outline

-f

R ‘ /é 7

(b)
v
V/
A —5 A sk

(c) (d)

Figure 5. If ¢'s penumbra included all of area .4, as shown in (a), then edge f would
be found and moved, resulting in (b). This is undesirable, since f need not move in
order to preserve layout-rule correctness and connectivity. A better definition of the
penumbra would be area 3 only, as shown in {c). Searching this area would result in
only the edge 7 being found and moved, as is necessary to preserve layout rule
correctness.

Plowing | December 2, 1983

of the material forming the edge, as illustrated in Figure 5. This insures that
the penumbra contains only those edges which must move in order to preserve
lavout rule correctness and connectivity. The umbra and penumbra of an
edge are collectively referred to as its shadow. The shadow of e contains all

the edges which must move as a direct consequence of moving e.

3.2. Sliver prevention

The rules described in Section 3.1 guarantee that plowing never moves
one vertical edge too close to another. However, they do allow violations to be
introduced between horizontal segments that are formed when material is
stretched. These violations take the form of slivers of material or space whose
height is less than the minimum allowed. Eliminating such slivers requires
that their left-hand edges be moved, as illustrated in Figure 6. The left-hand
edge of each sliver lies along the left-hand boundary of the penumbra, <o it

can be found when tracing the outline of the penumbra.

— ////

- 2

4 — violation '

«—»n —»

N
v

\\\\\f

(a) (b) (c)

Figure 8. When the edge ¢ moves (a), a sliver of space is introduced below the hor-
izontal segment 4, as shown in (b). To correct this, the left-hand edge of this sliver,
7. is moved along with e, but only as far as the right-hand end of the segment A {c).

Plowing December 2, 1983

N

N
N

1 (& 3

7
1 /// 4,4// 147/
37

N

31

ASNNN

N

SN
N
N
\,_

PN

N

Figure 7. This lattice structure causes exponential worst-case behavior in the
deptb-first plowing algorithm when edges in the shadow are processed from top to
bottom. The objects (A, B, etc.) must be incompressible to cause this worst-case
behavior. Object B is moved once when object A moves, then slightly farther when
object C moves. The numbers to the left of each object show how many times each
of its edges is moved.

4. Breadth-first vs. Depth-first Search

In the previous section, plowing was described as a depth-first search in
which all edges to the right of a given edge were moved before the edge itself.
While this approach is conceptually clear, it has poor worst-case behavior. An
N-tier lattice structure as illustrated in Figure 7 requires on the order of 2V
edge motions, because plowing performs the recursive search to the right of an
edge each time the edge is moved. If, as in the example, each edge must be
moved once for each of its two neighbors to the left, the edges at the right-
hand side of the lattice are moved a number of times that is exponential in the

number of tiers.

- 10 -

Plowing December 2, 1983

Instead, plowing waits until the final position of an edge is known before
it performs the search to the right of that edge. This strategy causes the
number of edge motions to be linear in the number of edges in the lattice. (A

detailed explanation is given in [Oust 84].)

A simple way to insure that edges are moved only once their final posi-
tions are known is to use breadth-first search. Magic maintains a list of edges
to be moved, sorted in order of increasing z-coordinate. On each iteration, the
leftmost edge is removed from the list and the shadow to its right is searched.
Any edges discovered by this search are placed in the list along with the
amount they must move. Since the final position of an edge can .only be
affected by .edges to its left, the final position of the leftmost edge in the list is

always known.

The depth-first algorithm allowed the layout to be modified incrementally
as plowing progressed, since an edge was never moved until the area into
which it was moving had been cleared. Incremental modification is impossible
with breadth-first search, since edges to the right will not be moved as long as
there are queued edges to the left of them waiting to be moved. Instead of
actually updating the layout as it progresses, the breadth-first version of plow-
ing stores with each vertical edge segment the distance it moves. When the
shadows of all edges have been searched. and the distance each edge moves

has been determined, plowing invokes a post-pass to update the layout from

- 11 -

Plowing December 2, 1983

the information stored with each edge.

However, if the layout is not modified until all edges have been processed,
special care must be taken to avoid the generation of slivers. Figure 8 illus-
trates the problem. To process each edge correctly, it is important to know
what other edges have been already been processed and what their final posi-
tions will be. In general, the plowing algerithm must consider edges whose
final positions will be in the shadow, rather than those whose initial positions
are in the shadow.

The success of the breadth-first algorithm depends on the fact that left-

to-right plowing never changes the order of edges along any horizontal line,

and never changes any vertical coordinates. Furthermore, edge has stored

f (initial) f (eventual) violati
iolation

Figure 8. When processing an edge in the breadth-first approach, it is important to
use information about the final positions of edges that have already been processed.
In (a), it has already been decided to move edge f, but the edge will not actually be
moved until all other edges have been processed. If edge ¢ is processed without con-
sidering the new position of f, a sliver will result as shown in (b). Instead, the plow-
ing algorithm must comsider the eventual positions of edges that have already been
processed, to produce the result of {c).

.12

Plowing December 2, 1983

with it the distance it is going to move. As a comsequence, plowing can use
the initial layout structure for searching, and yet can easily find all objects

whose final coordinates fall in a given area.

5. Extensions for real layouts

This section extends the simple plowing algorithm of the previous two sec-
tions to handle multiple mask layers. Plowing is also extended to handle
features, such as transistors and contacts, whose size should not be changed,
and to allow noninteracting mask layers, such as metal and polysilicon, to slide
past each other. Finally, since layouts in Magic may be hierarchical, this sec-

tion closes with a description of how plowing handles hierarchy.

5.1. Multiple mask layers

The simple version of plowing assumed that the shadow extended to the
right of the final position of a moving edge by either w (the minimum-width
rule) if material lay to the right of the edge, or s (the minimum-separation
rule) if material lay to the left of the edge. This insured that the shadow
included all edges directly in the path of the edge being moved. Since the
same lavout rule applied between the edge being moved and any other edge,

all edges found during the search of the shadow would have to move.

With more than one mask layer there may be more than one layout rule

to apply for a given edge. For example, in our aMOS process, the minimum

- 13-

Plowing December 2, 1983

separation between diffusion and polysilicon is 2 microns, while that between
two pieces of diffusion is 8 microns. Both of these rules apply at an edge

between diffusion and empty space.

To insure that the shadow contains all edges which must move, the sha-
dow must extend beyond the area the edge sweeps out by the worst-case lay-
out rule distance applying to that edge. As Figure 9 illustrates, however, not
all of the edges found in the shadow search will actually need to move. Each
edge found must be checked for its minimum allowable separation from the
edge being moved. Fortunately, this can be done very quickly using the same

techniques as those used in Magic’s incremental layout-rule checker [TaOu 84).

4 microns

’—— polysilicon "

7 — polysilicon
/ >

/ My

oy f / /

// 7 gy

s » :

4 : e

Zn M

s /// e \" -

S | T

Y ; i — diffusion

Figure 9. The area of a shadow search is determined by the worst-case layout rule.
However. not all edges in that area will have to be moved. Edge [must move, be-
cause the separation between two polysilicon features must be 4 microns and edge ¢
approaches to within 2 microns of f. Edge g need not move since the minimum
separation betweena polysilicon and diffusion is only T microns.

- 14-

Plowing

AN

December 2, 1983

AN

penumbra for B

Figure 10. An edge between two different types of material has a penumbra for
each. The spacing rules for material of type A are applied in A’s penumbra. The
minimum-width rule for material of type B is applied in B’s penumbra. The sizes of
each penumbra may be different because of the different layout rules applied in each.

If the edge being moved has material on both sides, there is really a

penumbra for each type of material. The layout rules applied while searching

each penumbra will in general be different. Slivers must be prevented along

the boundaries of both penumbra. See Figure 10 for an example.

2
70

.
N7
(2)

Il I
//é/é} | %v// — =
AL [T]

F—

3

4
.

Nz

|
1
|

(b) b (c)

Figure 11. If edge e is plowed, material A may disconnect from B and C. To
prevent this, 3 minimum-width segment of edges f and g is dragged along with e.
The edge 7 is moved not to maintain connectivity (which would have been achieved
by moving k), but to prevent C from being uncovered. In (c), m1 is the lesser of the
minimum widths for A and B, m2 is the minimum width for B, and m& is the

minimum width for C.

Plowing December 2, 1983

Multiple mask layers require extra caution to maintain connectivity with
material above and below an edge being moved. In the single-layer scheme,
the penumbra search guarantees that the material does not become discon-
nected. However, the penumbra search follows the outline of a single type of
material, so it will not by itself guarantee that two adjacent materials of

different types will remain connected (see Figure 11).

Special actions must be taken during the penumbra search to handle hor-
izontal edges between different materials. First, if two materials share a hor-
izontal edge, then Magic guarantees that one material does not slide past the
end of the other: it maintains a minimum-width connection between the two
(this is the case between materials A and B in Figure 11). Second, if one
material completely covers the edge with another material (for example, the
A-C edge in Figure 11), Magic plows the other material as much as is needed
to maintain complete coverage. This ensures, for example, that transistors

don't get uncovered by plowing polysilicon off one side.

5.2. Inelastic features

Certain features in a layout should not be stretched or compacted.
Transistors, for example, have sizes chosen for electrical reasons, as do con-
tacts. Our discussion of edge motion has assumed that the material forming
both sides of the edge was stretchable. When material is inelastic, both its

left-hand and right-hand edges must be moved in tandem. In particular, if the

- 186 -

Plowing December 2, 1983

SR AKX ~ " X X X KA
S +
KX -
XX K KD X X X >) (X
‘j{‘\j}.::\: e — ;j\::\.j}\:t
< e <
<€ d 'S « d »
s —_—
(a) (b)

Figure 12. When inelastic objects are present, plowing may have to cope with cir-
cular dependencies. Material B is inelastic, and A and C are both minimum-width.
When edge e moves by distance d in (a), object B must move by the same distance
to prevent A from being uncovered. To prevent C from being uncovered, C’s left-
hand edge must move, finally causing edge f to move by distance d. Edge eis in f's
shadow as a result, but should not be moved a second time.

right-hand edge of a piece of inelastic material moves, its left-hand edge must

move also.

A consequence of inelasticity is that moving an edge can cause motion of
edges to its left, possibly resulting in a circular dependency. The example in
Figure 12 illustrates such a dependency. The depth-first plowing algorithm is
completely incapable of resolving such a dependency. The breadth-first algo-
rithm resolves it by comparing the amount an edge is supposed to move with
the motion distance already stored with the edge. If the stored motion dis-

tance is greater, the edge need not be moved a second time.

If the distance d between edges f and e in Figure 12 is less than s, the
minimum separation allowed (ie, there is currently a layout rule violation),

looking at the motion distance of e is insufficient. When the shadow of fis

- 17 -

Plowing December 2, 1983

searched, plowing is supposed to move all edges found far enough away so that
they cause no rule violations with the newly moved f. This would mean that
edge e would have to move by d+s-r, which is more than the motion distance
stored with the edge. As a result, the plowing algorithm loops infinitely, each
time moving edge e by an additional s-r. To avoid infinite walks, plowing
pever moves a shadowed edge {eg, e) more than the edge causing the shadow
(eg, f). This technique prevents infinite looping, but preserves layout rule vio-

lations existing in the original layout.

5.3. Noninteracting planes

Section 4 explained that the order of vertical edges along a horizontal line
is unchanged by plowing. Thus material being plowed can never slide over
other material in its path. There are cases, however, where it is desirable that
certain materials in a layout move independently. Metal, for example, does
not interact with either polysilicon or diffusion except at contacts, so it should

be able to slide over them.

To allow sliding, Magic segregates the mask information in a layout into a
collection of non-interacting planes. Material in one plane is free to slide past
material in any other plane. The nMOS technology, for example, has two
planes: one to hold metal wires, and one to hold polysilicon, diffusion, and

transistors.

Plowing December 2, 1983

contact

metal

contact _""'—, 5

{ L ; L L ;

T

polysilicon)
(a) (b)

Figure 13. A contact is duplicated on each plane it connects. When an edge of a
contact is moved on one plane, it is moved on all other planes as well.

The plowing algorithm operates on each plane independently. The only
interaction between planes occurs at contacts, which are duplicated in each
plane that they connect. When an edge of a contact is moved in one plane,
the corresponding edge of the contact in all other planes is moved by the same
amount, as illustrated in Figure 13. This also moves whatever the contact

connects to in the other planes, thus preserving connectivity.

5.4. Subcells and hierarchy

One approach for plowing a hierarchical Jayout, such as that shown in
Figure 14a, is to treat it as though it were non-hierarchical and propagate
edge motions inside subcells. This might be workable when no subcell is used
more than once. Howevér, Magic instantiates subcells by reference, so a
change in one instance of a subcell is reflected in all its other uses. Situations
in vhich a subcell is used more than once can produce unsatisfiable sets of

c.ostraints. as Figure 14b illustrates.

- 19 -

Plowing December 2, 1983

I | 7
1 i iz, Y
teA 7K : %; ! %u
71 i T Y
178 A : ﬁ :M%:
;; B A B
(before) (alter)
.
i
I é:é:
T
VA |//|
L’; __J.B_I
r—-" 7T~ =
| |
! |
(b) (before) : : (conflict)

Figure 14. Plowing in the presence of hierarchy. (a) Plowing might treat hierarchy
as though it were invisible to the user. Each of cells 4 and B would be modified. (b)
Cell C is used twice, once flipped left-to-right and once in its normal orientation.
Both uses refer to the same master definition of C. Moving edge ¢ to the right is im-
possible, because it requires e to move to the left in order to keep out of its own
path. The more edge ¢ is moved to the right in the left-hand use, the worse the vio-
lation becomes.

Magic takes a simpler approach, which is to view subcells as black boxes
‘o which connectivity must be maintained by plowing, but whose internal

structure should not be modified. A consequence of Magic’'s approach is that

- 90 -

Plowing December 2, 1983

plowing can be used to modify the placement of cells at the floor plan of a

chip, since it only changes the location of subcells, not their contents.

When any mask geometry that abuts or overlaps a cell is moved, the
entire cell must move by the same amount. Conversely, whenever a subcell
moves, all mask geometry and other subcells that abut or overlap it must also
move by the same amount. The net effect is that a cell behaves like flypaper,
causing all geometry over its area to ‘“stick” to it and move as a whole when

any part of it is required to move.

In addition to preserving connectivity with subcells, when plowing moves
other geometry it must avoid introducing any lahout rule violations with the
geometry inside a subcell. On'e approach for dealing with this is to define a
protection frame [Kell 82] for each cell, an outline around the cell into which
no material may be plowed. Magic uses an extremely simple form of protec-

tion frame: it assumes that the cell contains all types of material right up to

the border of its bounding box.

For example, in our aMOS rule set, the worst-case layout rule involving
diffusion is the diffusion-diffusion spacing rule of 6 microns. An edge with
difusion to its left can be plowed to within 6 microns of a subcell before that
subeell will itself have to move. The worst-case rule distance involving polysil-
icon is 8 microns, so polysilicon can only be plowed to within 8 microns of a

subcell before the cell must move. Since the contents of subcells are con-

Plowing December 2, 1983

sidered unknown, the closest one subcell can be plowed to another before the
other will have to move is the worst-case layout rule in the entire ruleset,
which in our ruleset is 8 microns. Of course, if the user wishes to overlap two

cells, he can still do that using other editing operations beside plowing.

8. Results and experience

Plowing has been implemented as part of the Magic VLSI layout system.
It is written in C under the Berkeley 4.2 Unix operating system for VAXes. A
simplified version of plowing (corresponding to that described in Sections 3

and 4) has been operational since October of 1983.

While the full implementation of plowing has not been completed, meas-
urements on the simple version indicate that it is fast enough to be used
interactively. An example similar to that presented in Figure 1la, consisting of
48 parallel bars of polysilicon each separated by 4 microns {the minimum
separation), took 3.2 seconds of VAX-11/780 CPU time to produce a result
similar to that in Figure 1b. Only 1.0 seconds were spent computing the edge
motions; the remainder of the time was spent in the post-pass which actually

updates the layout.

(2]
(8]

Plowing Dccember 2, 1983

7. Acknowledgements

Gordon Hamachi, Robert N. Mayo, and George Taylor all contributed to
the discussions out of which the plowing algorithm arose. In addition to the
above people, Randy Katz, Ken Keller, and Steve and Jean McGrogan all pro-

vided helpful comments on early drafts of this paper.

The work described here was supported in part by the Defense Advanced

Research Projects Agency (DoD) under Contract No. N00034-K-0251

8. References

[RBDD 83] Rosenberg, J., Boyer, D., Dallen, J., Daniel, S., Poirier, C.,
Poulton, J., Rogers, D., Weste, N. “A Vertically Integrated
VLSI Design Environment.” Proceedings, 20th Design Auto-
mation Con ference, 1983, pp. 31-38.

[Kell 82] Keller, K., Newton, A. “A Symbolic Design System for
Integrated Circuits.” Proceedings of the 19th Design Automa-
tion Con ference, June 1982.

[Oust 81] Oustercout, JK. ‘“‘Caesar: An Interactive Editor for VLSL"
VLSI Design, Vol. II. No. 4, Fourth Quarter 1981, pp. 34-38.

[Oust 84] Ousterhout, J.K. ‘“Corner Stitching: A Data Structuring
Technique for VLSI Layout Tools.” To appear in IEEE Tran-
sactions on CAD/ICAS, Vol 3, No. 1, January 1984.

[OHMST 84] Ousterhout, J.K., Hamachi, G., Mayo, R.N., Scott, W.S., and
Taylor, G.S. “The Magic VLSI Layout System.” In this
technical report.

[TaOu 84] Taylor, G.S., and Ousterhout, JK. “Magic’s Incremental
Design Rule Checker.”” In this technical report.

-93.

Plowing December 2, 1983

[West 81 Weste, Neil. “Virtual Grid Symbolic Layout.” Proceedings,
18th Design Automation Con ference, 1981, pp. 225-233.

[Will 78] Williams, J. “STICKS- A Graphical Compiler for High Level
LSI Design.” Proceedings of the 1978 NCC, May 1978, pp.
286-295.

-04.

A Switchbox Router with Obstacle
Avoidance

Gordon T. Hamachis
John K. Qusterhout

Computer Science Division
Department of Electrical Engineering
and Computer Sciences
University of California
Berkeley, California 94720
(413) 642-9716, 642-0865

ABSTRACT

This paper presents a new switchbox router developed as part of the Magic
layout system. Based on Rivest and Fiduccia's ‘‘greedy” channel router, the
Magic router is capable of routing channels containing obstacles such as preexist-
ing wiring. It jogs nets around large obstacles and multi-layer obstacles such as
contacts. Where unable to avoid large single-layer obstacles, it river-routes
through them. It combines the effectiveness of traditional channel routers with
the flexibility of net-at-a-time routers.

Keywords and Phrases: channel routing, physical design aids, layout, VLSL

1. Introduction

Previously placed wires such as power and ground routing form obstacles in
routing areas. We have developed a new switchbox router as part of the Magic
layout system [OHM], capable of routing channels containing such obstacles. The
router's novel aspect is its ability to both avoid obstacles and consider interactions
between nets as channels are routed. It thus combines good features from net-at-

a-time routers and traditional channel routers.

The Magic router is an extension of Rivest and Fiduccia's “‘greedy” channel
router [RiF]. It performs a column by column scan of a rectangular routing
region. At each column it applies a series of rules controlling the placement of
vertical jogs within the column.

Figure 1 shows the solution to a simple routing problem. Figure 2 shows the

same routing problem with an obstacle in the routing area. It illustrates some

basic principles of obstacle avoidance. As the router extends nets from left to

A Switchbox Router with Obstacle Avocidance December 7, 1983

N
2 PNy s
A
4 r\: e e e
3 R -
1 g -

Figure 1. A simple channel routing problem. Numbers around the border of the
channel represent pins associated with signal nets. Pins with identical net numbers are
connected by the router using a left to right, column by column scan.

right, it tries to avoid large obstacles in the columns ahead by jogging around
them. If nets can not jog around large single layer obstacles they river route

through the obstacles, switching layers if necessary.

1 9
1 1 1 1 l “l” 1 : i J,
1 3 ST -
o _ \x \\Sf:‘:’:’ N
9 AN X -
N - N
4 -f’\\ i \\ T
N o
3 -S : \\4 :
1 s X

Figure 2. The problem from Figure 1 with obstacles in the channel {drawn with
heavy outlines). The router tries to cross obstacles at narrow points. If necessary it
river-routes through obstacles.

Section 2 motivates the problem of obstacle avoidance and describes the
Magic router’s goals. Section 3 summarizes the “*‘Greedy” router, upon which our
work is based. Section 4 presents our colutions to a number of problems encoun-
tered in adapting the greedy channel router to avoid obstacles. In section 5 we
present extensions for routing switchboxes. Section 8 provides a detailed view of

the router. Section 7 describes a channel splitting mechanism. The paper

A Switchbox Router with Obstacle Avoidance December 7, 1983

concludes with a discussion of the router’s implementation and performance.

2. Motivation

Automated routing systems typically divide the routing of chips into three
steps: channel definition, global routing, and channel routing. In the channel
definition step, empty areas between cells are divided into non-overlapping rec-
tangular channels. The global routing step selects the sequence of channels
through which each signal net will be routed to make the desired connections.
The channel routing step assigns physical locations to the wires in each channel,

realizing the signal routings specified in the global routing step.

A standard model for channel routing assumes a grid of two independent
layers of minimum width wiring. Horizontal tracks are wired in one of these
layers, while vertical columns are wired in the other layer. Connections between
lavers are made with contacts; where no contacts appear, lavers may cross over

each other.

Routers generally assume that channels start off completely free of wiring.
Thus, it is impossible to use an automatic router with pre-routed wires. This is a
serious limitation since certain signals such as power, ground, and clock lines have
special restructions on width, layer, and length which existing channel routers fail

to handle.

Because channel routers do not tolerate the presence of obstacles, designers
must either accept inferior results generated by automatic routing systems or try
to hand patch the router output. Hand patching is difficult because automatic
routers leave little room to add wires or to move wires to different layers. Also, if

the chip has to be rerouted, the hand patching must be completely redone.

Chanpel routing systems that do handle obstacles have done so in restricted
ways. The PI system [Riv] has the notion of “sovered channels’” -- areas wired
with metal for power and ground routing, through which other signals may be
river routed in polysilicon. It fragments large channels containing metal power
and ground wiring into many smaller covered and uncovered channels each of
which must be routed individually. The problem of routing one large channel is

thereby reduced to the problem of routing several smaller, more constrained

A Switchbox Router with Obstacle Avoidance December 7, 1933

channels.

The BBL system [Che], [CHK] handles prewiring from a separate power and
ground routing phase. It routes power and ground signals near the edges of chan-
pels. BBL then ignores the power and ground routing areas except to bridge
other signals across them. It routes all other signals using only the clear parts of

the channels. BBL does not allow any hand routing.

Routers using maze [Lee][Hig] routing methods are able to avoid obstacles on
multiple layers. The problem with these routers is that they consider only one net
at a time. Since they completely route a single net before considering the next
net, they cannot consider interactions between nets as a channel is routed. For
this reason these routers are inferior to true channel routers for channel routing of

general layouts [Sou].

The Magic router provides a general obstacle avoidance capability that com-
bines the advantages of the above approaches. It allows designers to prewire criti-
cal nets, putting them at any position and in any layer. The Magic router routes

around these prewired nets.

The router considers interactions between nets. Routing decisions are based
on an overall strategy rather than on a net-at-a-time basis. Considering tradeoffs

between alternatives improves the overall quality of the resulting wiring.

Magic uses single-layer obstructed areas to do useful routing. Since large,
looselv constrained areas are easier to route, it avoids fragmenting these

obstructed areas into small, highly constrained, hard to route areas.

Particularly in interactive design environments nearly optimal results
obtained quickly are more useful than optimal results obtained after long compu-

tation. Our router is fast, and produce good results.

3. The Greedy Router

Since the greedy router algorithm is the starting point from which our algo-
rithm was developed, we start with a brief overview of its operation. Three
features of the greedy router are of particular importance. First, the greedy
router makes a column by column scan of the routing area. It completely wires

the current column before extending active tracks into the next columun. Second.

A Switchbox Router with Obstacle Avoidance December 7, 1883

it uses a list of rules to control the placement of vertical wiring in a column.
Rules are applied in order of importance, to a) avoid ‘‘getting stuck”; and b) to
make subsequent columns easier to route (Figure 3). The list of rules can easily
be modified. Third, unlike constraint graph approaches, the greedy router allows
split nets, nets that occupy more than one track at a time. Split nets give the
router the flexibility to evaluate alternatives and choose the one that is best for

the overall routing problem.

Column wiring begins by bringing the nets of a column’s top and bottom pins
(if any) into the first tracks that are either vacant or already assigned to the nets.
Deferring this to a later step might allow vertical wiring to block a net, prevent-

ing it from being brought into a vacant track.

N KN
- TV IR -
N j/
2= 3 i '// -4
N 7
0= _
\'
]=rovoi -
3 -
Z
?/
T
3

Figure 3. Three columns wired by the greedy router. In the first columo net 2 makes
a collapsing jog and net 3 makes a falling jog. [n the second column pet 4 enters the
channel, preventing net 1 from making a collapsing jog; however. net 1's lower track
makes 1 jog to reduce the range of tracks assigned to this split aet.

Bringing a net into the first available track may leave it split on multiple
tracks. Split nets can fill up the channel, making it impossible to bring in addi-
tional nets. The greedy router thus makes collapsing split nets its next priority.
Since conflicting vertical wiring can make it impossible to collapse all split nets in
a particular column, the router collapses split nets in the pattern that frees up the

most empty tracks for use in the next column.

Vertical wiring conflicts may prevent the router from collapsing all split nets.
The router simplifies the routing of these remaining split nets by reducing the

range of tracks occupied by these nets. It jogs each split net’s highest occupied

A Switchbox Router with Obstacle Avoidance December 7, 1983

track downward and its lowest occupied track upwards. The remaining problem

is easier because collapsing can be done with shorter jogs.

Next, unsplit rising and falling nets are jogged upward or downward toward
the edge of the channel with their next pin. This step anticipates the split nets
that will be created when upcoming pins’ nets are brought into the channel. It
attempts to reduce the range of these split nets before they are created. This step
prevents split nets if the rising or falling net can be jogged into what would other-
wise be the first vacant track seen by a net as it enters the channel from a top or

bottom pin.

The bandling of split nets and rising and falling nets are examples of deci-
sions based on interactions between nets. Among conflicting alternatives (a jog to
raise a rising net may block a jog to lower a falling net) the router chooses the

one that does the best job of simplifying the remaining overall problem.

4. Extending the Greedy Router

In modifying the greedy router to avoid obstacles we had to solve a number
of problems. The result was an augmented set of rules for placing horizontal and
vertical wiring. In the following discussion, an area with a single layer obstacle is
called an obstructed area. The Magic router river-routes through obstructed
areas. An area is blocked if it contains a double layer obstacle. No routing may

pass through blocked areas.

As it scans a channel from left to right, the greedy router expects that it can
always extend a track into the next column if necessary. The router must avoid

extending tracks into blocked areas (Figure 4).

We solve this problem by anticipating upcoming obstacles and attempting to
jog nets out of their way. We do this by identifying areas near obstacles: these
areas are called obstacle thresholds. A preprocessing step searches the routing
area, marking obstacle thresholds. Tracks extending into these marked areas
make vacating jogs to tracks outside these areas.

Another important issue is the tradeoff between horizontal and vertical wir-

ing. Magic has to decide whether to route horizontal wires or vertical wires over

single layer obstacles. It can not do both of these, since an obstacle and a wire

A Switchbox Router with Obstacle Avoidance December 7, 1983

! L
; Y g ' B

TR

\\\\\\\\\i\%[c

T Y e a—

Figure 4. Tracks can not extend into blocked areas {drawn in dotted lines). Note
that two adjacent areas of different layers (B) form blocks because there is no place to
put contacts to bridge from one area to the other.

crossing it block both routing layers. A thin vertical wire should be bridged hor-
izontally by tracks. Likewise, a thin horizontal wire should be bridged vertically

by columns. Intermediate cases are harder to classify (Figure 5).

v

AN

%
2
%

v

bt eed

(3) (b)
Figure 5. Thin width vertical wires should be bridged horizontally by tracks f{a).

Thin width horizontal wires should be bridged vertically by columas (b). Intermediate
cases are harder to classify.

We solve this problem by always giving priority to horizontal wiring. If vert-
ical wiring is not done in the current column it may be done in some later
column. Horizontal wiring is more important: if the router needs to extend
tracks but can not, it fails.

Although horizontal wiring gets priority over vertical wiring, we attempt to
avoid extending tracks into large single layer obstacles. When tracks do extend
into single layer obstacles the Magic router tries to jog them out of these areas,
into unobstructed tracks. It is important to do this because a single track running
through an obstructed area blocks all columns that might cross the obstructed

area (Figure 8).

A Switchbox Router with Obstacle Avoidance December 7, 1983

]] 1 I

]

\\\\\R\\\\\\&\N
MMLHNNS
T T T Elﬁl l T ‘l
3 2

.

7A/1/4777 R

Ll

N

-

Y
N A/ 777

NN

=

AR

H

Figure 8. Nets avoid obstructed tracks wherever possible. Failure to do so may
create blocked areas. Since net 2 is in an obstructed area, net 3 is forced to make a
long detour.

The greedy router assumes that it can make vertical column wiring anywhere
the channel is not blocked by vertical wiring it previously placed. The Magic
router has to know not only when to place vertical column wiring, but also how to
do this. It has to know when areas are blocked, and when to place contacts to

switch layers.

Given our wiring model, contact placement is simple. If a contact needs to
be placed to allow a layer switch, there is only one place where that contact can
go: immediately adjacent to the obstacle. For vertical wiring contacts may be
placed immediately above or below the obstacle. For horizontal wiring the loca-

tions are immediately to the left and right of the obstacle.

Our wiring model allows horizontal and vertical wiring in either layer; how-
ever, only onme layer of horizontal wiring and one layer of vertical wiring is
zllowed at any point. There is a preferred layer in each direction; horizontal
tracks and vertical column wires may run in the opposite layer only to bridge an
obstacie. Since poly is the preferred vertical layer, a vertical run may bridge a
metal obstacle without placing contacts, but contacts need to be placed to bridge
a poly obstacle. If the track immediately above the poly obstacle is vacant, then
the contact can be placed. If the track is occupied by horizontal wiring, the pre-
ferred layer policy says that it must be in metal. The metal/poly boundary
blocks the vertical run, since there is no space to bridge the metal track in poly

and place a contact before running over the poly obstacle (Figure 7).

The greedy router assumes that channels can be arbitrarily expanded and

that terminals on the left and right edges of the channel can “float” up and down

A Switchbox Router with Obstacle Avoidance December 7, 1983

1 ! |] l 1

{<]

4

,,,,,,, A -

)
|\

w Y
RRRS

N -
1

|

3
Figure 7. The outlined areas (A) above and below the obstacle (B) are reserved for
column contacts necessary if the obstacle is to be bridged vertically. The router tries
to keep the areas clear of wiring. Note that the horizontal metal run prevents both

the poly (2) and the metal (3) vertical runs from bridging the obstacle, because there is
no room to place contacts.

as long as their relative positions remain the same. Tracks may be inserted wher-
ever the router gets “stuck’”. The Magic router assumes that channels have a
fixed number of tracks and that terminals have fixed positions on the edges of the
channels. Accordingly, the Magic router omits the greedy router’s channel widen- '
ing step, reporting failure if a net could not be brought into the channel from

some top or bottom pin.

5. Routing Switchboxes

The greedy channel router handles pins on at most the top, left, and bottom
sides of a channel. To make it a switchbox router, the Magic router contains
additional rules to make connections on the right edge of the channel. Further-
more, the Magic router removes the assumption that nets have at most onc pin on

each end of the channel.

The Magic router deals with switchbox connections by introducing the notion
of reserved tracks. A track is reserved if it is needed by some net to make a con-
nection on the right edge of the channel. When approaching the end of the chan-
nel the router makes vacating jogs to clear reserved tracks and then jogs the
appropriate nets into these tracks (Figure 8). Additionally, after nets with only
one right sdge pin have made their last top and bottom pin connections, their

right edge tracks become reserved. nther nets vacate these tracks, and the router

A Switchbox Router with Obstacle Avoidance December 7, 1983

1

3 - A -1

2 - B ~ 2
1- —

- c +~ 3

i 1 ! 1

3 3
Figure 8. The outlined areas are reserved for nets making connections at the end of

the channel. Any other pets entering these areas make vacating jogs, allowing the re-
quired nets to occupy the tracks.

tries to jog nets into their final tracks. Vacating reserved tracks uses the same

mechanism provided to vacate obstructed tracks.

If a net has more than one pin on the right edge of the channel, the router
needs to split the net to connect to them. Split nets occupy tracks that could oth-
erwise be used to help route the channel. Therefore splitting to make multiple
end connections is only done when the router gets close to the end of the channel.
Close is a parameter the user sets to control net splitting. A typical value is two

columns.

- b)
[Rww =
- 1
.
- . \V: - 2
- X~ 1
Pl e ‘
- AN
........ o<
i 1 11] v i
3

Figure 9. As the router approaches the ead of the channel, nets with all of their pins
on the right edge of the channel require tracks to be assigned to the nets. This is done
if at least two tracks can be allocated and joined with vertical wiring.

Nets with all of their pins on the right edge edge of the channel are another

- 10 -

A Switchbox Router with Obstacle Avoidance December 7, 1983

complication. As the router nears the right edge of the channel it has to decide
when to first assign tracks to these righ¢ edge nets. Since there are no connections
to previous pins, a right edge net is introduced into the channel only if it can be

assigned to at least two tracks that can be joined by vertical wiring (Figure 9).

We carry this one step further. Groups of two or more tracks for a particu-
lar right edge net may be introduced into the channel, even if the groups them-
selves can not immediately be joined. The task of joining these groups is easier,
since the top track of one group need only be connected to the bottom track of a

-
net’s higher group.

8. The Magic Routing Algorithm

The Magic router operates in three phases. It begins by making a pre-
routing scan of the routing area, identifying obstacle thresholds. After identifying
obstacle thresholds, the router extends nets from left edge pins into the routing
area and routes it using the column-by-column scan. After routing the channel
the Magic router invokes a post processing step to maximize metal and reduce

vias.

6.1. Finding Obstacle Thresholds

Obstacle thresholds are generated for all multi-layer obstacles and some sin-
gle layer obstacles. Multi-layer obstacles such as contacts, crossings, and
poly /metal edges must always be avoided as tracks extend from left to right, since
it is not possible to bridge these obstacles in any layer. Single layer obstacles
extending horizontally for more than one column’s width also generate threshold
areas. Single layer obstacles extending horizontally for only one column’s width
do not generate thresholds since the vertical wiring gained in the obstructed area

is offset by the vertical wiring wasted in jogging around the obstacle.

Depending on the height of the obstacle, many nets may have to be jogged
around it. Not all nets can make vacating jogs in the same column because the
ver:ical wiring for one vacating jog blocks another net from making its vacating
jog. On the other hand, vacating tracks long before they near obstacles wastes

channel routing area. In recognition of this, the Magic router makes vacating jogs

.A Switchbox Router with Obstacle Avoidance December 7, 1983

around an obstacle depending on how far away and how high the obstacle is.
Higher obstacles, which block more tracks, cause nets to start vacating jogs
farther away, while shorter obstacles can be approached more closely before
vacating jogs commence. The width of the threshold is the product of a parame-
ter, obstacle threshold constant, and the height of the obstacle. This parameter
allows some control over how soon the router attempts to vacate obstructed

tracks. A typical value for this parameter is 1.

yeeamasmescsncmsvsmanean

| | 1 i } i |

Figure 9. Taller obstacles may require more nets to vacate their thresholds; therefore
taller regions have wider thresholds.

The obstacle threshold also extends one track above and below the obstacle.
Nets do not get assigned to these tracks unless no other track is free. This allows

contacts to be placed if vertical wiring has to switch layers to bridge the obstacle

{(Figure 7).

8.2. Wiring Rules
This section presents the set of rules the Magic router uses to control the
placement of contacts and vertical jogs. The following discussion omits details
that are identical in the greedy router. The rules are:
a. Place Track Contacts: As the first step in wiring a column, place a contact
in each unobstructed track, if either the next column or the previous column
has an obstruction in the preferred horizontal track layer. The contact

serves one of three purposes: {a) it switches the net from the preferred

- 12-

A Switchbox Router with Obstacle Avoidance December 7, 1983

09

horizontal track layer (metal) to the alternate layer (poly) when the net
enters a river-routed region; (b) it switches the net from the alternate layer
back to the preferred horizontal layer when the net leaves a river-routed
region; or (¢) it switches the track to the preferred vertical layer in prepara-

tion for jogging the net to another track.

Make Minimal Top and Bottom Connections: Do not bring a net into an
unobstructed track that is blocked in the next column. This step may bring
a net into an obstructed track. If this occurs, step (f) will attempt to jog the
net to an unobstructed tracks. Report failure if some net could not be

brought into the channel.
Collapse Split Nets.
Reduce the Range of Tracks Assigned to Split Nets: Do not move a net from

a free track to a track that needs to be vacated.

Raise Rising Nets and Lower Falling Nets: Do not jog from a free track to

one that needs to be vacated.

Vacate Obstructed Tracks: Identify tracks from which nets should be
vacated. These are tracks which are either in the threshold of an obstacle or
are reserved to make some end connection. Try to vacate to the nearest
empty, unobstructed track. Do not vacate to another obstructed or reserved
track unless the source track is blocked (ie. runs into a multi-layer obstacle)
and the destination track is not blocked. Give preference to vacating jogs
that move rising and falling nets closer to their next pin.

Split Nets to Make Multiple End Connections: If within channel end con-
stant columns of the end of the channel, attempt to split nets to make multi-
ple connections at the end of the channel. This is the opposite of the collaps-

ing step ¢ above. The best pattern is that which splits the most tracks.

Exrtend Active Tracks to the Next Column: Report an error if some track is
prevented from extending into the next column by the presence of a multi-

laver obstacle that could not be avoided.

A Switchbox Router with Obstacle Avoidance December 7, 1983

8.3. Metal Maximization

%A

Zxx

A

(f)

Figure 11. A postprocessing step maximizes metal. This may delete or move vias.
It may also introduce vias.

After the subchannels are routed, the Magic router concludes with a metal
maximization step. (Figure 11). Since the router already routes metal horizon-
tally wherever possible, this step replaces vertical wiring in polysilicon with verti-
cal wiring in metal, subject to constraints imposed by obstacles in the channel.

Vias are deleted wherever they become unnecessary.

7. Channel Splitting

The Magic router also extends the greedy router by including 2 channel split-
ting feature. It splits a channel in two at a point of maximum density, assigns
tracks to nets crossing the split, then routes both subchannels outwards from the
column of the split. The intent of channel splitting is to improve the routability
of the two resulting subproblems by (1) assigning tracks to the nets crossing the
split to remove conflicts between vertical wiring, and (2) removing split nets at
the column where the channel is divided, to guarantee that there are enough
available tracks to accommodate the nets that must cross this column Channel
splitting is done if the length in columns of each of the resulting subproblems is
greater than or equal to the parameter minimum channel size, and if the density
of the routing problem is close to the rize of the channel. If the channel can not
be split, then the router routes it from left to right or from right to left. at the

discretion of the user.

- 14 -

A Switchbox Router with Obstacle Avoidance December 7, 1883

A
v
e

A

6 7 6 3 7
Figure 12. To increase the routability of the two subchannels the router assigns

tracks to nets crossing the split. Nets are ordered based on their rising/falling status
and the distance to their closest left and right pins.

Channel splitting is not recursive -- it is done at most once. The idea is to
route away from the point of maximum density. Splitting each subchannel at its
point of maximum density would result in subchannels routing from one highly

constrained region to another.

After deciding where to split the channel, the Magic router assigns tracks to
the nets crossing the split. The ranking procedure assigns each net a ranking
number which is the average of the distance from the center track of the channel
to the net’s target tracks in the left and right subchannels. The top tracks go to
nets which rise to pins on the top edge of both subchannels. The bottom tracks
are assigned to nets which fall to pins on the bottom edge of both subchannels.
All other nets, including those rising or falling an intermediate distance, and those

steady in both subchannels, get distributed between the first two groups.

Another discriminator is used among nets rising to the top or falling to the
bottom of both subchannels. A net a ranks above another net b if both a’s
nearest left pin and its nearest right pin are closer to the split column than b's
corresponding pins. If the distances overlap (ie. a's left pin is closer than b’s, and
b’s right pin is closer than a’s), then the net with the smaller sum of distances is
placed above the other. A similar procedure is used for falling nets. The intent is
to order the nets to eliminate crossings wherever possible. If nets must cross, this

procedure favors the net traveling the shorter distance.

A Switchbox Router with Obstacle Aoidance December 7, 1983

8. Implementation and Performance

For channels without obstacles the Magic router produces results similar to
those produced by other good channel routers such as the hierarchical router
[BuP], the greedy router [RiF}, and Algorithm #2 [YoK]. In spite of omitting the
track insertion step from the greedy algorithm, it routes Deutsch’s difficult in the
same number of tracks as the the greedy router. The results are summarized in
Table 1.

Router Tracks | Vias | Wire Length | Time Machine
(sec)

Magic 20 376 4099 1.5 DEC VAX 11/780
(no obstacles)
Magic 20 376 4099 3.0 DEC VAX 11/780
(with obstacles)
Algorithm #2 20 - - 2.1 DEC VAX 11/780
Greedy 20 347 4150 7.93 | DEC KA-10
Hierarchical 19 270 3983 24 IBM 370/3033

Table 1. Router Results for Deutsch’s Difficult Example

Most of the numbers in Table 1 were taken from [BuP]. The first table entry
refers to our implementation of a modified greedy switchbox router before obsta-
cle avoidance was added. The reported number of vias for the Magic router does

not show the results of metal maximization.

The table shows that the Magic router is competitive with other channel
routers on conventional routing problems. It produces nearly optimal solutions
quickly, which may be more valuable in practice than programs such as the
Hierarchical router which produce slightly better results after significantly greater
computation. Adding obstacle avoidance nearly doubled the running time of our

router.

Our figures provide a good comparison between Yoshimura and Kuh's Algo-

rithm #2 and Rivest and Fiduccia's greedy router. Rivest and Fiduccia’s router

- 16 -

A Switchbox Router with Obstacle Avoidance December 7, 1983

was implemented in LISP on a KA-10. The Magic router without obstacle
avoidance (which is almost identical to the greedy router) is implemented in the C
programming language. Algorithm #2 is implemented in FORTRAN. Poth the
Magic router (without obstacie avoidance) and Algorithm #2 run on VAX
11/780s running Berkeley Unix. The early version of our router runs faster than
the already fast Algorithm #2, and produces a result using the same number of

tracks.

Experience with channel splitting has so far been disappointing. It has
turned out to be useful mostly for assigning crossings in river routed regions. In
other cases splitting the channel typically increases the number of tracks required
to route the channel. Better rules for order:mg the nets crossing the boundary
between the subchannels might change this. Another idea would be to use dif-

ferent criteria to decide where to split the channel.

Figure 13. The Magic router river-routes in areas completely blocked in 3 single
layer.

As an example of the range of problems handled by the Magic router, Figure
13 shows a channel completely covered with metal. Our router does a reasonable
job of routing this problem.

Postprocessing to increase metal and remove vias appears to significantly

improve the quality of the routing.

17 -

A Switchbox Router with Obstacle Avoidance December 7, 1683

g. Conclusions

Our obstacle avoiding channel router adds flexibility to our design environ-
ment. It allows designers to route critical signals by hand or with separate rout-
ing steps. After critical signals are routed, the router makes the remaining con-
nections.

The Magic channel router provides this obstacle avoiding capability, while
also considering tradeoffs and interactions between nets. It accomplishes this
using a rule based, column sweep routing algorithm which is simple, flexible, and
fast. The simplicity of this approach makes it an attractive vehicle for further

experimentation.

10. Acknowledgements

Robert Mayo, Walter Scott, and George Taylor all participated in discussions
resulting in this work and provided comments on drafts of this paper. Mark Hill,
Randy Katz, Carlo Sequin, and David Wallace also reviewed drafts and provided
helpful comments. The work described here was supported in part by SRC under
grant number SRC-82-11-008.

11. References

[BuP] Burstein, M., and Pelavin, R., “Hierarchical Channel Router”, Proc. 20th

Design Automation Con ference, Miami (1983)

[Che] Chen, H., Private communication with authors.

[CHK] Chen, N. P., Hsu, C. P., and Kuh, E. S., “The Berkeley Building-Block
Layout System for VLSI Design”, ERL memo UCB/ERL M33/10,
University of California at Berkeley, {Feb. 1983).

[Lee] Lee, C. Y., “An Algorithm for Path Connections and its Application”,
IRE Transactions on Electronic Computers, pp. 248-385 (September
1961).

(Hig] Hightower, D., ““A Solution to the Line Routing Problem on the Continu-
ous Plane"”, Proceedings Design Automation Workshop, pp. 1-24, (1969).

'OHM] Ousterhout. J. K.. Hamachi, G. T.. Mavo, R. N., Scott, W. S, and Tay-

lor, G. S., "Magic: A VLSI Layout System™. In this technical report.

- 1R -

A Switchbox Router with Obstacle Avoidance December 7, 1983

[Riv]

[RiF]

[Sou]

[YoK]

Rivest, R. L., “The ‘PI' (Placement and Interconnect) System”, Proc.
16th Design Automation Con ference, Las Vegas (1982).

Rivest, R. L., and Fiduccia, C. M., “A Greedy Channel Router”, Proc.
19th Design Automation Con ference, Las Vegas (1982), pp. 418-424.
Soukup, J., “Circuit Layout”, Proceedings of the IEEE, Vol. 69, No. 10
(Oct. 1981), 1281-1304.

Yoshimura, T., and Kuh, E. S., “Efficient Algorithms for Channel Rout-
ing”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems”, Vol. CAD-1, No. 1, (Jan 1982).

19

