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ABSTRACT

We present a family of variants of the Simplex method, which are based on a
Constraint-By-Constraint procedure: the solution to a linear program is
obtained by solving a sequence of subproblems with an increasing number of
constraints. We discuss several probabilistic models for generating linear pro-
grams. In a.ll of themn the underlying distribution is assumed to be invariant
under changing the signs of rows or columns in the problem data. A weak regu-
larity condition is also assummed. Under these models, for linear programs with d
variables and m + d inequality constraints, the expected number of pivots
required by these algorithms is bounded by a function of min{m,d) only. In
particular this means that, for a fixed number of variables, the expected
number of pivots is bounded by 2 constant when the number of constraints
tends to infinity. Since Smale’s original model [S1] satisfles our probabilistic
assumptions, the same results apply to his model. We also present some results
for models generating only feasible linear programs, and for Bland's pivoting
rule. We conclude with a discussion of our probabilistic models, and show why
they are inadequate for obtaining meaningful resuits unless d and m are of the

same order of magnitude.



1. Introduction

.

The Simplex Method for Linear Programming, originated by Dantzig in 1947,
is one of the most frequently used algorithms in industry and government. The
ordinary measure of complexity of this method is the number of pivot steps it
requires to solve a linear program, expressed as a function of the dimensions of
the problem. Vast practical experience indicates that this function is linear, or
at most polynomial [D], [KQ]. However, examples have been constructed for
several variants of the Simplex method, showing that in the worst case the
number of pivots may grow exponentially with the dimensions [xM], [J]. [GaS).
[Z], (Mu]. The Ellipsoid Algorithm [Kh] was demonstrated to solve linear pro-
grargs in time which is polynomial in the length of the problem data in the worst

case, but appears to be much slower than the Simplex method in practice.

Recently, several works have tried to explain the efficiency of the Simplex
method by approaching the complexity issue probabilistically: Assuming some
~ distribution of the problem data, this approach tries to show that the average
number of pivots grows siowly with the problem’s dimensions. To quote these
results denote the number of variables in the problem by d and the number of
inequalities by n, and assume & =n. We use ¢ to denote a constant and c{d) to
denote a function of d only. Borgwardt [Bol], [Bo2] showed that a parametric
simplex variant requires an average of at most ¢ -n-d? (d + 1)? pivots for a pro-
babilistic model which generates only feasible linear programs. Smale [S1], [s2]
showed that the parametric Self Dual Simplex requires an average of at most
c(d) (log (n — d))3@*V pivots when the problem data is drawn from a spheri-
cally symmetric distribution. Adler [A] and Haimovich [H] demonstrated that
some parametric Simplex variants require an average of at most d steps once a
vertex of the feasible region is given, but their results do not have immediate

consequences for the full (Phase I - I1) Simplex method.

In this paper we define a family of Simplex variants which are based on a
Constraint-By-Constraint (CBC) procedure: They obtain a solution to a linear
program by solving a seguence of subproblems with an increasing number of
constraints. We present three consecutively more general algoerithms satisfying
this property. We show that under probabilistic assumptions which are weaker
than Smale’s [S1], these algorithms require an average of no more than c{d)
pivots where ¢ (d) is between d- 1.5% and 2%, depending on the algorithm and the
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probabilistic model. In particular, this implies that when d is fixed and m tends
to inflnity, the expected number of pivots required to solve the problem is
bounded by a-constant. All our probabilistic models require that the problem
data satisfy a weak r_egularity condition with probability one. The strongest
model requires that the problem data be generated by a distribution which is
invariant under changing the sense of any subset of the inequalities defining the
problem. Weaker models, which do not require invariance with respect to
changing the signs of the non-negativity constraints (if such are included) are
also investigated. Since Smale's original model [S1] satisfles these assumptions,
this implies that these algorithms require an average of at most a constant
number of pivots for Smale’s model when one dimension of the problem is kept
fixed and the other tends to infinity. We aiso show that Bland’s pivoting rule,
when combined with the ‘Big M’ method, is a special case of a Constraint-By-
Constraint algorithm.

Finally we discuss the consequences of these results. We observe that, in all
these models, there is a very high probability, when m >> d, that a random
problem will be infeasible. The Constraint-By-Constraint algorithms exploit this
property by detecting infeasibility at an early iteration with high probability.
Therefore the good behavior of these algorithms when m >> d results primarily
from the probabilistic models and not from the nature of the Simplex method.
Hence these models are inadequate for obtaining meaningful results unless d

and m are of the same order of magnitude.

2. Preliminaries

For a matrix AzR™*¢, we denote by 4 or 4 . the i-th row of 4, and by 4.
the i-th column of A. If S is a sequence of indices of rows {columns), we denote
by As (A.s) the submatrix obtained by taking only the rows {(columns) in S.

We shall deal with the Linear Programming Problem (LPP) in the form
min ¢’z

(P) st efz=b i=1..m.
z20



wherec, z, a; € R%, by e R.

The constraints of the form afz = b; are called matriz constrainis to be dis-
tinguished from the z; = 0 sign (or nonnegativity) constraints. Define also:

b 0
A= ‘M= [1] b= :1 v . ni=m +4d
= 0| M=) =)o | viE o) BRT o= min(m,d)-

So equivalent presentations of (P) are

. min ¢’z and mincTz
Ar=b Mz =2v
z20

Occasionally we shall deal with LPP in the form

_ minecTz
(P) Az =b

where dimensions are as in (P), but we do not necessarily have nonnegativity
constraints. Here we can identifyn =m, H =4, v = b and refer to both forms

together as min ¢ Tz, Mz = v.

The Paramaetric Objective Function LPP is the problem

min(c +A&)Tz c,.ZeR%, AeR
Mr =v

where the optimal solution for A=0is given, and we wish to find the optimal solu-
tion for all values of the parameter A. Here ¢ is called the odjective function
and & the co-objeciive.

The Parametric problem can be solved by a well-known Phase II Simplex
variant called the Parametric Objective Algorithm [GaS]. Under some non-
degeneracy assumptions that will be described later, this algorithm has the fol-
lowing properties:

(1) It starts at a given vertex of the feasible set F:= {z | Mz = v} which is
optimal with respect to ¢’z in F.
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(2) When A is increased, the optimal solution may change, generating a con-
nected one-dimensional path, following vertices and edges of F. This pathis
called the efficient path generated by the algorithm.

(3) The path may terminate in a vertex of F, in which case that vertex is
optimal for all A greater than some A. It may also terminate in an
unbounded ray of F, in which case the solution is unbounded (i.e. the objec-
tive function is unbounded from below over the feasible set) for A greater
than some A.

(4) The same phenomena happen when A is decreased from zero. The con-
nected union of the paths for A = 0 and A < 0 is called the co-optimal path.

Every inequality of the form Mz =v; can be considered as a halfspace in
R% determined by the hyperplane M;z =14 and a sign (or orientation) choice
with respect to that hyperplane. The opposite sign choice would yield the ine-
quality #; =z < ;. Given k hyperplanes in R%, k =d, every one of the 2* sign
choices determines a constraint set or an instance. A non-empty instance is
called a cell. Under a nondegeneracy assumption (to be described later) every

cell is d~-dimensional. In that case we say that the hyperplanes form a d-
arrangement. '

When the parametric algorithm is used on each of the cells of a
d—-arrangement with the same objective and co-objective, a co-optimal path is
generated in each cell Assuming non-degeneracy, these paths have the follow-
ing properties [A], [H]:

(1) Bach vertexis optimal with respect to¢ Tz in exactly one cell.
(2) Each vertex is on exactly (d + 1) co-optimal paths in cells incident on it.

We shall denote by pr{4.5,c) the number of pivot steps required to solve
LPP with that data by algorithm ['. Assuming a specific probabilistic model over
the data, we shall denote

pr(m.d) := E[pr(4.b.c)]

where the averaging is done over all AgR™*% b e R™, c ¢ R* according to that
specific probability model. )



3. The Parametric CBC Algorithm

We now describe an algorithm for solving linear programs. The algorithm
solves a sequence of subproblems, each one containing one more constraint
than its immediate predecessor. (We call algorithms satisfying this property
Constraint-By-Constraint (CBC) algoritbms). In each subproblem we start at a
vertex supplied by its predecessor, and foliow an efficient path until either feasi-
bility with respect to the new constraint is obtained, or infeasibility is demon-
strated. If the problem is feasibie, the last efficient path provides the required
solution. Since the Parametric Objective Algorithm is used in every subproblem
we call this algorithm the Parametric-CBC (PCBC) algorithm.

In order to state the algorithm formally, define
X®) :=izzR%|z=0 and a/z=b; for i=1,..k] k=0 1l..m

X = X\m)

el :=(L1....1) e R?

Statement of the PCBC Algorithm:
Stage 0: (For X® = R%, O minimizes eTz)
Z « 0: Go tostage 1.
Stagek (1<k <m). (StartswithZ minimizing e Tz in X%~1)
It ol £ = b, go to stage k + 1 (Z is also optimal in X®*7).

Else use the Parametric Objective Algorithm to solve the

parametric linear program
mineTz -8 alz

z e X®-1

The algorithm starts at £ and generates an efficient path of edges

and vertices in X*~Y.
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Case 1: Let £ be the first point along the path which satisfies
alZ = by. (Z is a feasible vertex of X*) and minimizes e’z
in X®)). Gotostagek + 1 with ¥ « Z.

Case 2: If the path terminates without reaching such z -Stop, the

problem is infeasible.

Stage m + 1: (Starts with Z minimizing eTz in X).

Use the parametric objective algorithm to solve

mineTz + 8¢z

zeX

The algorithm starts at £ and the end vertex (or ray) of the

efficient path provides the required solution.

4. Proof of Validity

In order to prove that the algorithm is valid we have to verify it recog-
nizes infeasibility, unboundedness and optimality correctly. This will be
" established if we justify the claims in cases (1) and (2) in the description of
the algorithm.

We only need to consider the case where the starting point Z of stage
! satisfles ol £ < b;. In that case the algorithm produces in step l a con-
nected path following edges and vertices of X¢-1, stopping at the first
point Z on that efficient path satisfying afz = b;. By the continuity of oy =
along the path, at that point Z, afZ = b;.

Denote the corresponding value of the parameter by 3. By efficiency
of T with respect to e — 3 o we know that

(e -3)Tz = (e -3q)7z for all z e X~V
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hence

e’z <elz + 3(afZ —afz) foralzext?
Every point -z £ X® satisfles also Tz = b; = afz. Hence

aTz<eTz for all z £ X®

this justifies the statement in case (1).

To justify (2), note first that we cannot terminate in a 72y in stage !
without obtaining feasibility with respect to the !l -th constraint. This is
true since if for 4 » = also eTz —8afz - — = on some ray in Xx4-n, t:.he
fact that 7z = 0 on X¢~! implies that afz -~ = on that ray in X¢-1), hence

the [ -th constraint a,rz > b; must be satisfled at that point on that ray, so
X » @,

So we know that in case (2) we must terminate in an optimal vertez Z,

satisfying

eTz -gafzselz -8a/z wze XD w3=3.

and g T < b;.

Assume X # &. Then there exists T ¢ X), satistying ofz = b >af Z.
Hence for sufficiently large ¥ eTZ -8afZ < eTZ -9 af% and zext Y, a
contradiction.

Several comments can be made on the algorithm:
(1) The choice of e £ R% as the starting objective is quite arbitrary. In
fact, any vector u ¢ R% for which min{uTz | z e X%} is finite will do.

So we can replace ¢ by any non-negative vector.

(2) The algorithm is valid for every LPP, even if the data is degenerate. In
that case we need only to introduce some anti-cycling device into the

perametric algorithm we use in every stage (e.g. [D]. [Bln]).
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(3) The algorithm solves every LPP in any form, since by a proper

transformation every LPP can be presented in an equivalent form (P).

5. The Probabilistic Models

Let us now define the basic ingredients which we use in our probabilis-

tic models.

Let a linear programming problem in form (P) be given by the data
(A,b,c). We call the data Vertez-Distinct (VD) if all bases generated by the

d + m hyperplanes correspond to distinct vertices. This condition is

satisfied if for every d x d submatrix Mg of M = {‘}} with rank d, rank

[ ]
lﬁi ::Jsl =d + 1 for all j £5. Note that this condition depends only on A

and 5.

For the same data with an additional co-objective & £ R3, call the data
Path-Unique (PU) if the co-optimal paths generated by the parametric
algorithm in each cell are uniquely defined. This condition is satisfled if for
every d x d non-singular submatrix Ms. (¢ +Ag)T M5! has at most one
zero coordinate for any real A. Usually we shall use ¢ £ R% as the second
. objective, and we mention & only when its identity is not obvious. Note

that this condition depends on A.¢c.% but not on b.

If the data is both VD and PU we call it Weakly Regular (WR). We also
say that (4,b,c.C) are in weakly regular position. If both (A,b,c,8) and
(AT.c,b,b) are WR [VD] we say that the data is Twice-#R (TWR) [twice-VD
(TVD)].

A probabilistic model for the generation of the data which produces
weakly regular (or VD, or PU) instances with probability one is called a
Weakly Regular (or VD, or PU) Model. ‘

A distribution of the data (4,b,c) will be called Column Sign muarianl

(CSI) if it is invariant under changing the signs of every subset of the
o erl

columns of 4. If it is invariant under sign changes of columns of l A } we
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call it Extended-CSI (ECSI). If it is invariant under changing the signs of
every subset of the rows of [4,b] we call it Row Sign /nvarient (RSD).

A distribution which is both RSI and CSI [ECSI] will be called Sign
fnvariant (SI) [Extended-SI (ESI)]. Note that Sign Invariance does not
imply any condition on the objective ¢, but ESI does. Note also that the
primal data is RS] if and only if the dual data is ECSL

The advantage of the various sign invariant models to our work is that
their probabilistic analysis can be done in essentially combinatarial tech-
niques. Similar models were used by May and Smith [MS] for investigating
random polytopes, and by Adler and Berenguer [AB1], [AB2] for investigat-

ing several issues in random linear programs.

A measure over sets of rays in R™ is called a Spherically Symmetric
Measure (SSH) if for each set S its measure is u(S nB™-') where B™! is
the unit sphere in F® and u is the normalized uniform measure on 5*”1. A
measure over sets of vectors in R™ is called SSM if by identifying every
vector with its corresponding ray (i.e. by ignoring the radial parts of the
vectors) the resulting measure over rays in R™ is SSM.

A distribution of the data (4,b,c) is called Spherically Symmetric if A

assumes a SSM in B™*% and independently (b7, ¢ assumes SSM in R™*4,

The models used by Adler [A] and Haimovich [H] are Twice Weakly
Regular and Extended Sign Invariant. (In fact, they require CSI in the

¢0
matrix |¢ 0| and assume that ¢ and & are also randomized).
Ab

The model used by Smale [S1] is Twice Weakly Regular and Spherically
Symmetric. Note that Spherical Symmetry implies Extended Sign Invari-
ance, since a spherically symmetric measure is invariant under reflections
of coordinates. So Smale’s model is also ESL

The model used by Borgwardt [Bol],[Bo2] is Weakly Regular and
T
c

requires that the rows of |& T| are i.i.d. and assume spherically symmetric

measure in 2% — {0]. Hence this model is Extended-CSI but not RSL
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8. Analysis of the WR-RSI Model

Consider a (fixed) data 4,b.c satisfying the Weak Regularity condi-
tions. The 2™ LP instances obtained from that data by flipping signs of the
matrix inequalitiés are equiprobable under the Row-Sign Invariance model.
The same is true for the 2* sub-instances obtained by using only the first k&
matrix inequalities together with the sign inequalities as we do in the PCBC
algorithm. Note that in all sub-instances d more sign constraints are

present, but their signs are kept fixed.

In stage k + 1 of the algorithm k matrix-constraints and d sign con-

straints are present, generating at most [k ;d] vertices. The algorithm fol-

lows efficient paths in all feasible instances (cells) generated. By Weak
Regularity each vertexis on the co-optimal paths in exactly d + 1cells [A],
[H]. So an upper bound on the number of pivots performed in stage E+1

is [I‘ ;d] (d + 1).

Every feasible subinstance in stage k + 1 may be completed in om=-k
different ways to form an instance of the original problem, all of which are
equi-probable. So the total number of pivots contributed in stage k+1lto

solving full instances is at most [k ;d] (@ + 1) 2™~*,

Surnming over all stages we get that the total number of pivots per-

" formed in all the instances is bounded by

k+d
21[ +d] (g + 1) 2m

Hence the average number of pivots per instance is bounded by

—n k+d . = k+d] 5-(k+d) ¥
2 21[4](44-1)2'“ (d+1)2¢§1[d]zus(d+1)2“

Where the last inequality follows from Lemma A in the Appendix. Since this
result is independent of the data and requires only that it satisfles WR we

can conclude:
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Theorem 1: For a model satisfying the Row Sign Invariance and Weak
Regularity with probability one, the PCBC algorithm requires an average of
at most (2 + 1) 23*! pivots, independent of m.

Corollary 1:  Under the above model when d is fixed and m - = the aver-

age number of pivots is bounded by a constant.

Corollary 2  For a TWR, ESI model
preac(m,d) < (A + 1) 2% where A= min (m,d)
Proof: Apply the Parametric CBC Algorithm either to the primal or to

the dual, depending on whether m = d or d >m. Since both problems
satisfy the conditions of Theorem 1, the corollary follows.

We shall improve this last result in the next section.

7. Analysis of the WR-SI model

In the previous section we did not use the fact that only vertices in
the positive orthant may contribute pivot steps at any stage. We now use

that fact in a model which is Column Sign Invariant.

Lemma 1: Let (4.b,c) be VD and assume that it is drawn from a
Column-Sign-Invariant distribution. Then the probability that a vertex gen-
erated by (4,b) is in the positive orthant is 27, where ! is the number of

tight matrix constraints at that vertex

Proof: Let Z be a vertex determined by the d equations

AA!Z = bA1

25, =0 with | A ] + | A | =d. | A =L, Bp:= §1,....d) ~le
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Denote B:= A:f. the L x | submatrix of A determinec by the rows in A and

the columns not in Az ¥:= by, 2:= Zg,. Then the above system is Bz = v

and we ask what is Pr[z = 0] assuming B is taken from Column-Sign-
Invariant distribution.

Changing signs of columns in A may be presented by multiplying it by an
l x | sign matriz J satisfying

[+t -1 iti=j
¥ =10 otherwise

BJ is the matrix obtained from 5 by flipping the signs of those columns k
s.t. Jie = — 1. There are 2 different sign matrices, and they all satisfy
J = J-'. Hence Bz = viff B(JJ™") z =v, or (BJ) (Jz) = v

As all sign inversions of columns BJ are equi-probable, so are all Jz
obtained from them. Since (B,v) is VD Z:= B~'v satisfles Z; # 0.

Hence Pr[Jz e S]= L. for every orthant S of R
2

Corollary 3:  For VD data (4,b,c) satisfying CSI, the expected number of
vertices in R% is i [T] [d‘i I.] 2~

=0
Consider now a model which assumes Weak Regularity, Row Sign
Invariance as well as Column Sign Invariance. The reasoning of the previ-

ous section obviously holds and by the above corollary we can replace

[Ic ; d] by 20 [lf] [dd—L] 2~ as the expected number of vertices which

contribute pivots in stage k& + 1.

Hence the average number of pivots is bounded by

@ B (BB

k=1 |1=0
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And using Lemma B (see Appendix) we get that this sum for m - = is equal
to 2(d + 1) - 1.5%. So we conclude:

Theorem 2:. For a model satisfying Weak Regularity and Sign Invariance,
the average number of pivots required by the PCBC Algorithm is bounded
by 2(d + 1) 1.5%, independent of m.

Corollary 4  For a model which is TWR and ESI

presc(m.d) = 2(A + 1) 1.58 where A = min (m,d).

8. Analysis of a Feasible Model

Let us now turn to a model which generates only feasible linear pro-
grams. This model generates problems of one of the forms used by

Borgwardt [Bo3], namely

_where AcR™*¢, eT:=(L1....1)¢R™.

Instead of solving (P') which is always feasible since z = 0 is feasible, we
shall solve its dual

mineTy
(py ATy=c

y=0

This program has a bounded solution for all 4,¢ for which it is feasible,

since the objective function value is bounded below by O.

We use the PCBC Algorithm to solve (D'). The only difference is that
stage d + 1 is unnecessary since if we reach that stage we already have a
vertex of X optimal with respect to e Tz.
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Since our choice of objective function e in the first m stages of the
PCBC Algorithm was made especially in order to guarantee boundedness of
the solution, nothing is changed in our analysis from the previous sections

and we conclude:

Theorem 3:- For a model of feasible LPs of the form (P’) which is Dual
Weakly Regular and Extended Column-Sign Invariant, the PCBC Algorithm

requires an average of at most (m + 1) 2™ +! pivots, independent of d.

Proof:  Apply Theorem 1 to the dual of (P') which has data (AT,c,e) with
AT £ RI*m,

Note that we cannot replace here m by min (m,d) as we did in Corol-
lary 2, since we do not have here the choice between solving (P') and (D).
However we can improve the exponent if we assume that the data is also
RSL

Theorem 4: For a feasible model which is dual WR, ECSI] and [4] is also
RSI

presc(m.d) < 2(m + 1) 1.5™

independent of d.

Proof:  Apply Theorem 2 to the dual of (P).

9. The CBC Algorithm .

We now define a new algorithm to solve the Linear Programming Prob-
lem. This algorithm uses the Constraint-by-Constraint idea, but it allows
one to use any primal algorithm at every stage. It turns out that this very
general algorithm (which we call the CBC Algorithm) is also analyzable in
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our probabilistic models.

Statement of the CBC Algorithm:

Stage 0:  (Z =0 is a feasible vertex of X®)
Set T « 0; Go to stage 1.

Stagek (1<k=<m): (Z is afeasible vertex of Xx®-1y
Use any primal algorithm to solve max {alz | z £ X*~V] starting at
E.
If the optimum does not satisfy af z = by, - Stop. X*¥) =4 so X=49.
Otherwise choose any vertex £ of X'*) obtained along the path. Go to
stepk + 1 with £ « Z.

Sagem + 1: (Z is a feasible vertex of X)
Use any primal algorithm to solve minjcTz | z £ X} starting at Z.
The optimal vertex (or ray) generated provides the required solution.

The proof that the algorithm is valid is obtained from the following invariant

assertions:
(i) Imaxialz|zeX*Ni<b, then X™*) = &.
(i) If max{afz |zeX® V}=b, then X*) 2 & and every primal algo-

rithm starting at £ reaches a feasible vertex of X*),

Proof: (i) is immediate. To prove (i) note that either in the beginning of
stage k + 1 aJZ = b, and then Z is a vertex in X®), or at some point along the

path af Z increases to a value of bg, and hence Z is a vertex in X,

10. Analysis of the CBC Algorithm

The only crucial proper{:y of the CBC Algorithm in order to carry out the
analysis is that in every subproblem we follow only Jeasible vertices of the

corresponding set. Assuming non-degeneracy each vertex of the feasible set
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may be used in at most one pivot. So, the average number of pivots in each
stage is bounded by the average number of feasible vertices per instance in

that stage.

In stage £ + 1 the k +d hyperplanes generate at most [k ; d] vertices.

Under the Vertex Distinctness assumption each vertex is incident on exactly 2°
instances. Hence at most [k ; d] 2% pivots are performed in that stage. Under
the RSI assumption all 2% instances generated at stage k + 1 are equi-probable.
So the average number of pivots in stage k + 1is at most [k ; d] 2% 27%, and

the average number of pivots summed over all stages is bounded by

2420 [Ic ;d] ok =224';g:[£] oi < p2d+1

where in the last inequality we used Lemma A from the Appendix. So we con-
clude:

Theorem 5: Under a model which satisfles Vertex Distinctness and Row-Sign
Invariance, every variant of the CBC Algorithm requires on the average at most

224+1 pivots, independent of m.

It we add the Column-Sign Invariance assumption we can improve the

bound using Lemma 1 and the following

Lemma2: Let Z be a vertex generated by the d hyperplanes

qz = b i
z,-=0 i

won
—
-
o~

Then out of the 2% cells generated around £ by those hyperplanes, exactly 2

are in R%.

Proof: The 24 cells are generated by replacing the equality signs by inequali-
ties in all possible ways. However, in R% the last 4 —1 signs are restricted to
z; = 0. Under that restriction all 2¢ cells generated by the other inequalities

are in R$. -
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Assurming CSl, from Lemma 1 and 2 we get that the total number of pivots
performed in stage k + 1 in the positive orthant is bounded by

$E e =L B (E)=17

i=0

Hence the expected number of pivots is bounded by

ﬂ [k ;d] 2—)::24';2:[&] 2-j52:i+!

k=0

where the last inequality uses Lemma A. So we get the following result:

Theorem 8:
(1) For a VD, SI model pcac (m.d) < 2d+!

(2) For a Twice-VD, ESI model pegc (m.,d) S 28+1,

For the feasible model (P') we can apply all our arguments to the dual (D)
as in section 8. Since we did not make any assumptions on the objective func-
tion distribution in order to obtain Theorems 5 and 6(1), these resuits hold

when the objective function in (D) is kept positive. So we get:

Theorem 7: For a feasible model of the form (P') if it is Dual-VD and ECSI
then

pesc (m,d) = 27!

Theorem B8: For a feasible, Dual-V¥D, ESI model

pcsc (m,d) < 2m+i
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11. Linear Programs Without Non-negativity Constraints

We now want to consider linear programs of the form

mincTz
(P) Az =b AeR"*% n=d

It is well known that such a problem, which does not include sign constraints,
can be presented in equivalent form (P) with sign constraints. We shall show
that the Row Sign Invariance assumption on (P) is equivalent to ESI on (B).

This will enable us to use the results of previous sections.

Az
g:zeTAT! A:= AA7T' b:i=ba- AzATlb,

] ]
Define first A =: [AI] b=: g;] where A,eR%*3%, b,eR% m:=n —~d

Then the equivalent LP is:

minc?rz

(&) Az=b AgRmx*d
z=0

Lemma 3: A model of (P) is RSI if and only if the corresponding model on
(P)is ESL

Proof: Let us use the notation of sign matrices, introduced in section 7. Let
J, e R3*8, Je R™*™ be sign matrices. Let B (Jy, J2) be the problem P with

the corresponding sign assignment to the rows:
min ¢ Tz

PWyJs) T4z =200,
JzAgz = ngg

The first set of inequalities is equivalent to

Jio Az —u=Jd, for some w ¢ B¢, u=0.
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or, since J, = J1}

z=A{ by + ATV Jyu, u=0
Introduce z into .the second set of inequalities to get:

Jadz[AD! by + ATV Jyu]=Jab2
or

JaAd Jiu=Jzb
And using the expression for z in the objective function,
eTz =cT[AT by + AT Ty u]= gT J, u + constant.
So P (/;, J2) is equivalent to
min &7 J, u

P(/y. J2) JaAJ u=Jzb
=0

Under the RSI assumption for (P), all the 2" instances P (J,, Jg) are equi-
probable. So by the equivalence just established all the instances P(J,, J2) are

also equi-probable. So P is ESL. The converse follows in the same way.

By the above discussion we see that the problems without sign constraints can
be deait with in the same manner as those discussed earlier. In particular

Lemma 3 and Corollary 4 imply:

Theorem 9: For a model of LPPs of the form (P), assuming TWR, R3]

preac(n,d) = 2(6 + 1) 1.5% where 6 :=min(n —d,d)

And Lemma 3 and Theorem 8(b) imply: -
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Theorem 10: For a2 model of LPPs of the form (P) assuming TVD, RS1

pesc (n,d) < 204! where 6 :=min(n -4,d)

= 7l
Since (P) is ES! if and only if the matrix [f bl is RSI, this section just
clarifies that the sign constraints do not play any special role in either the
model of the algorithm.

12. A Generalized CBC Algorithm

We now present and analyze a generalized version of the CBC algorithm. In
the PCBC Algorithm we allowed only efficient basic solutions to be used in every
stage. In the CBC Algorithm we allowed ail primal feasible bases to be used. In
the Generalized CBC (GCBC) Algorithm presented below we relax that require-
ment and allow the use of both feasible and infeasible bases in each stage. The
only requirement we make is that the algorithm should proceed in a
constraint-by-constraint manner, hence reaching the k —th subproblem only if
the (k — 1)* is feasible.

We shall show that under our probabilistic models the GCBC Algorithm still
maintains an average of constant time when 4 is fixed for any m. We also show
that the "Big M" method for Phase I together with Bland's rule are a special
case of the GCBC.

Statement of the GCBC Algorithm:

Stage 0:  Let & be the unique basis of X'7.

F is also a feasible basis. Go to Stage 1.

Stagek (1<sk=m):
Scan bases (both feasible and infeasible) of X until either

(1) afeasible basis § of X*) is found. GotoStagek + 1, or
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(2) Infeasibility of x(*) is demonstrated. Stop. X=2

Sagem + 1

Scan bases of X to find an cptimal or unbounded solution.

Analysis for the ESI Model:

reached only if X%~ is feasible. The probability of x*-1 peing

Stage k is
+ f - 1]. If that stage is reached, 2

feasible is [AB2]: o= (k+d=1) i [k t most all

vertices in that d —arrangement can be pivoted on, and their number is [k ; }

Hence an upper bound on the expected number of pivots is:

nﬁl [k +d] o +d=1) é [k +d -1]

=i 1=0

Partition the sum on ktok =1,..dandk = d + 1,...,m. The first sum gives:

i [k +¢} o (k+a-1) i [Ic +d -1]52 i [k + d] o~ (6 +d) {24} (@ +1) = 0(VE - 2%

k=1 d

The second sum gives:

[k £ d) v e+ d- 1)

+1 [k ; d] o= (k+d=1) i [k +d - 1] <2(d +1) "E:

k=d+1 i=0

1 2
=2(d + 1) E: ( } o-(k ——
gl d k+d

<2(d + 1) "ﬁl {é]z 2-t = 0(2*%)

i=2d+1

where the last equality follows from Lemma C in the Appendix.

So we conclude:

Theorem 11: For TWR, ESI model

peese (m. d) = O(Z‘A)
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Analysis of a RSI Model:

Recall that in this model we have d fixed nonnegativity constraints, and
only the m matrix ingqualit.ies change their directions. So there are 2* subin-
stances in the subproblem containing k matrix inequalities and d nonnegativity
constraints. Observe that the nonnegativity constraints can only eliminate
some of the cells generated by the matrix constraints but they cannot add new
feasible cells. So the total number of cells in stage k is bounded by the total

number of cells generated by the matrix inequalities. This number is 2k if

k<dand i [’:] if £ = d [Bu]. So we conclude:
=0

: 1 fksd
P, := Pr [aninstance in stage k is feasible] =

In stage k& + 1 there are [k + g + 1] vertices, and the GCBC algorithm may
yisit' them only if X*! is feasible. Hence

pm(m.d)s”’g& [k +d 1) $ & +§+1]+m1 & +d+1) g s (€] =

k=0 +1 ia0
T It e R RNt i Ly
L2 ee [ een @en () R I e ee &)=

oy s ot 2e e d ) Y () zts12 @+ 1)

k=2d+1
= 0@ 2¥) + (@ + 1) 2 b3 [’;]2 ok = 0(d - 24 + o - 2% 2 d7) = 0(2%)

k=24 +1

So we conclude:

Theorem 12  In the WR, RSl model pocac (m.d) = 0(2%%).
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Relation to Bland's Algorithm:

Let us now investigate the relation of the GCBC algorithm to Bland's rule.
Bland's algorithm [Bln] maintains primal feasibility and in every iteration the
next variable chosen t:o enter the basis is the one with the least index which has
a negative reduced cost coefficient. In other words, if € is the current reduced
cost vector, then minfi| G < 0} is the index of the entering variable. So vari-
able ¢t + 1 enters the basis only if the subproblem

*
has an optimal solution.
The corresponding dual subproblem is

max b’y
D) Al Y Sck E=1..t
y=0

So in terms of the dual problem Bland’s algorithm maintains dual feasibil-
ity and proceeds in a constrai.nt-by-constraint manner, reaching subproblem
p&+1) onty if D) is optimal.

In the above discussion we did not specify how the Bland's algorithm is ini-
tialized. In fact, Bland does not specify that himself, since he describes a pivot-
ing rule which may be implemented in any algorithm maintaining primal feasi-
bility. One possible way to obtain initial feasibility is by introducing an artificial

variable:

min Mzg+c'Z
P(H) zge + Az =0
zg 220 zo. MeR, e .=(L.1,....1) €K™

A starting feasible solution for solving P(M) is (zo, 2) = (Brs Q) where

b, = max by. (We assume that b <0, since otherwise z = O is feasible and no
L 3
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artificial variable is needed). If M is sufficiently large, a finite solution to P(M)
with zg > O implies that P is infeasible, and an unbounded solution with zg >0
implies P is unbounded. This method is known as the "Big M" method [D], [Ch].

Assume now that the "Big M" method is used for initialization, and the Bland
rule is used for pivoting. The dual subproblem is stage k is:

max b7y
alTy< M

DA Al ysc, k=1..t
y=0

If we assume that the dual data is sampled from a RS] distribution, then the
situation is very similar to that analyzed in the previous subsection. The only
difference is that the extra constraint eTy < M is present in all subproblems.
Since all instances satisfy ¥ =0 in this model, then the same constraint
eTy < M can be used to bound all instances. Also, by choosing M sufﬁcxently
large, no feasible cells in D®) are eliminated in D{f}. So we can carry the same
[Ic+§+1] by [k+g+2]

analysis replacing , and the same upper bound is

obtained. Summarizing the above we get:

Theorem 13: The Simplex variant obtained by "Big M" initialization and
Bland's pivoting rule has the following properties:

(1) It performs a sequence of pivots corresponding to a special case of the
GCBC algorithm (with an extra bounding constraint) in the dual problem.

(2) If the data is dual-WR and ECSL then it requires on the average no more
than O(2°™) pivots, independent of d.

Note that a better bound may be obtained for the Big M-Bland algorithm by
taking into account the fact that only dual feasible bases can be pivoted on.
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13. Summary and Discussion

We bhave presented a family of Simplex variants which proceed in a
constraint-by-constraint manner, and have described three successively more
general algorithms within this family. The main features of these algorithms

are summarized in the following table:

Primal Free Choice within

Feasibility
PCBC preserved preserved Starting cbjective
CBC preserved not preserved | Any primal algorithm can

be used in every stage.

GCBC not preserved | not preserved | Any vertex following algorithm
can be used in every stage.

Table 1: Propertias of the algorithms within every stage.

The probabilistic models we used required certain weak regularity condi-

tions and sign invariance properties. The sign invariance requirements for the

models are summarized in the following table:

Invariance with respect to all
The Nodel sign changes in
ﬁlw
cx columns of A

fc r
ECSI columns of [ A

RSI rows of [4,b]
s cclumns of A, rows of [4,5]

T
Bl columns of ch ] rows of [A, b]

Table 2: Sign invariance properties of the prodabilistic models
(Invarignce is stated for fized data A.b,c inducing the LP
minclz, Az=b,z20).

The upper bounds obtained for the expected number of pivots performed

by each algorithm under each model are surnmarized in the following table:



-29-

Model | Algorithm PCBC CBC | GCBC
S M ——s
RS (d + 1) 29! grd+l | p(2%4)
S1 2(d + 1) 1.5% 2d+1 0(2%4)
B 2(A + 1) 1.5 24+1 0(24)

feasible, ESCI (m + 1) 2™+t | 22! -

feasible, dual-SI | 2(m + 1) 1.5™ | 2™*! -

_——————___

Table 3: Upper bounds on p(m,d) under several probabilistic madels.

Leaving aside the feasible models for a moment, we see that all three algo-
rithms require a number of pivots bounded by functions of 4 only. These func-
tions vary with the algorithm and the model, but they are all exponentxal ind.

These results seem "strong” when m >> d, and specifically when d is fixed
and m tends to infinity, since in that case p{(m.d) is bounded by a constant.
However, we believe that all these models have a basic problematic characteris-
tic, which underscores these results: When m > d {d > m) all but a vanishing
fraction of the problems generated by the models will be infeasible
(unbounded) [AB2]. So in those situations we are essentially counting the
number of pivots performed until infeasibility or unboundedness of the problem
is demonstrated. It seems that detecting infeasibility or unboundedness is an
easier problem than solving a comparable linear program which has an optimal
solution. The reasoning is that while there are many bases which demonstrate
infeasibility (or unboundedness) in an infeasible (unbounded) problem, there
may be a unique optimal basis in an optimal problem, and it may take longer to
find it. Hence the relevance of these results to the observed good performance
of the Simplex method is questionable. It is still possible, of course, that for
the same models and the same algorithms better bounds will be obtained
(perhaps polynomial rather than exponential in d) rendering the results more
meaningful.*

*See the final note to this section.
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Another interpretation of the results, closely related to the above discus-
sion, is the following: The seemingly good behavior of the algorithms is mainly
due to the probabilistic models we used, and not due to the Simplez method.
The CBC and the GCBC algorithms are very general procedures, and can be
viewed as enumeraﬁ;n algorithms. The GCBC is more of a "reductio ad absur-
dum” than a practical algorithm, since it satisfies only the Constraint-by-
Constraint idea. Namely, it may scan all bases of P%®), but it will do that only if
p®-1) ig feasible. After about d? constraints the probability of an instance
being feasible is minute, and it decreases with k¥ more rapidly than the number
of bases grows with k [AB2]. So the contribution to the expected number of
pivots by additional constraints is negligible, and even an enumeration algo-
rithm yields an expected number of pivots bounded by a function of d only.
Again this does not exclude the possibility of improved analysis for the PCBC
algorithm, reflecting on the nature of the Simplex method rather than on the

model*

We should mention here that the same drawbacks are present in Smale’s
results. Our models generalize Smale’s original probabilistic model [S1], but do
not apply to his second, more general model [S2], which assumes symmetry
with respect to cocrdinate permutations, rather than symmetry with respect to
rotations. However, Smale's results for both medels have been obtained for
fixed d and m - =, and it was later demonstrated by Blair [Blr] that in that
case most of the “good behavior” of the algorithm is due to the small chance of
a column to be in any basis generated by the algorithm. So again this is still a

reflection more on the model than on the Simplex variant used.

Let us now turn to the feasible modeis: The resuits we obtained for the
feasible models depend only on m, the number of matrix constraints. When m
ig fixed and the number of variables increases in these models, almost all
instances will become unbounded. This raises the same difficulty with inter-
preting our results as before. Borgwardt [Bo2], however, gets a result of order
d* - m for another feasible model. By fixing & and increasing m the probability
of the problem being both feasible and bounded in his model tends to one.
Hence Borgwardt does get a linear bound for this case which we consider more
difficult.

3ee the final note to this section.



-31-

The fact that Bland’s rule can be viewed as a dual Constraint-By-Constraint
procedure is also interesting. We suspect that some other Simplex variants
may also have this property "in disguise”, and recognizing this property may
facilitate their probabilistic analysis. Borgwardt's full (Phase I-II) algorithm is
also a variable-by-varialble algorithm, presentable as a CBC-like algorithm after
dualizing. However, his algorithm was presented only in the context of linear
programs without nonnegativity constraints for which the zero vector is feasi-
ble, and it cannot be used to solve general linear programs which do not

assume these properties.

A Final Note

There have been several interesting developments since the completion of
this work:

1. Megiddo [Me1] showed that the Self-Dual Simplex variant requires on the
average at most &(d) pivots, under the same probabilistic assumptions made
by Smale in [S1]. So his result is of the same type as ours. The constant & (2)

he gets is, however, superexponential in d.

2. We managed to show [AKS] that the PCBC Algorithm, when used with a
special starting objective (rather than with e, as presented here), maintains an
average number of pivots which is at most quadratic in min{m,d), under the

ESI model with slightly stronger regularity conditions.

3. At the same time, under the same probabilistic assumptions, Todd [T]
and Adler and Megiddo [AM] obtained an O(min (m,d)?) bound on the expected
number of pivots for the Self-Dual variant of the Simplex algorithm with a spe-
cial kind of initialization.

4. After the completion of these three investigations, Megiddo [Me2]
observed that, although the PCBC algorithm and the Self-Dual algorithm are in
general quite different, the special initialization schemes used in the analyses
result in the execution of exactly the same sequence of pivots in both algo-
rithms. Thus all three investigations are concerned with the same Simplex

variant.
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Lemma A: For every.integert ? é—[l] =2.
=1

Proof: By induction on i:

Fori=0 i

A1 1
ok 2*
. = o k
Fori=1 2 —21?-[?]:2 ?=2°

7Y

k=1 k=1
, . o 1 fk
Assume that fori  F(i):= -l =2,
=% (¢
Then
= 1 ( k = 1 [(e—-1), k=11
F’:+1= em— = — +
( ) ,§+lzt[v-+1] ,§+12~l[z+1] [1, ]]
1 & 1 f(e-1),L % _t
-zh—zlaak—\ ["'+1]+2k§m2k-l
= -;—F'(i 1)+ -;- 2 by the induction hypothesis
So

-é—-F(ii-l):l + Fli+1)=2.

Lemma B: 21 J_}ijc [‘;] [’;] o-i g* <2 1.5%

with equality for m - =.

e 8672 -

k=1 j=0
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- 12
=2.g,,.2 [?nn]zm+l'm+2"'2m+L! o
=0 m+1 m+2 m+j |

N 2m +7 . , 2m +35 _ 4
Note that g <2forallj,andforj =2m -;#-5-3—. So





