UNIGRAFIX 2.0

User’'s Manual and Tutorial

Carlo H. Séquin, Mark Segal. Paul Wensley

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ABSTRACT

UNIGRAFIX, as the name implies, is a graphics system that runs under the
UNIX operating system. It consists of a descriptive language and various pro-
grams that allow a user to create, modify, and display scenes consisting of
polyhedral objects.

The UNIGRAFIX language is in a terse, human-readable format that allows
scene files of complex objects to be created with little effort. These scene files
may be created manually with use of a text editor, or may be output by special-
purpose generator programs (for more complex scenes). Once created, scenes can
be used as input to the UNIGRAFIX rendering programs. These programs can be
run either as separate functional units, or from within the interactive UNIGRAFIX
environment. Programs are also available to transform and display the scenes
according to user specifications.

The development of the UNIGRAFIX system :s supported
by the Serminconductor Research Cooperative
under grant number SRC-§2-11-008.

UNIGRAFIX MANUAL -2- VERSION 84-2.2

1. OVERVIEW

UNIGRAFIX, as the name implies, is a graphics system that runs under the UNIX* operating
system. It comsists of a descriptive language and several programs that allow a user to create,
modify, and display scenes consisting of polyhedral objects.

The UNIGRAFIX language is in 3 terse, human-readable format that allows scene files of com-
plex objects to be created with little effort. These scene files may be created manually with use
of an editor, or may be output by a special-purpose generator program (for more complex scenes).
Once created, scenes can be used as input i0 the UNIGRAFIX programs. These prcgrams can be
run either as separate functional units, or from within the iateractive UNIGRAIIX environment.
Programs are available to transform and display the scenes according to user specifications.

Typical use of UNIGRAFIX starts with creation of a scene file, which can be transformed with
the ugxform command until satisfactory. Then, the uglook command can be used to determine
the optimum view for the scene interactively on a display terminal. Several different display dev-
ices are supported. When displaying to a CRT terminal, it is advisable to have one with graphics
capability, such as an HP 2648A or AED 512. On “dumb" (i.e. non-graphics) terminals, display
output will be coarser and more difficult to interpret. Finally, ugplot or ugshow may be used to
produce the desired output in hardcopy.

UNIGRAFIX allows a scene to be displayed in different ways. Display of a scene may be in
wire-frame format, where all of the edges of objects appear as lines, or faces may be shown as
shaded areas, with hidden surfaces removed. It is also possible to combine these two types, and
display only edges, but with hidden surfaces removed.

2. UNIGRAFIX SCENE FILES

Input for UNIGRAFIX is in the form of scene files, which contain descriptions about the
objects in the scene. These files are in readable ASCII format, so that it is possible to create and
modify them with any text editor.

Scenes may contain any number of objects, each of which is some sort of polyhedral body.
This means that all objects can consist only of straight lines and planar polygonal surfaces. These
lines and surfaces are defined in the UNIGRAFIX language as wires and faces, both of which pass
through a series of vertices. Vertices are defined in terms of a three-dimensional coordinate sys-
tem. In addition, it is possible to group vertices, wires, and faces together as a definition, which
can then be used in one or more instances or arrays. These constructs permit easy repetition of
objects within scenes. Finally, it is possible to specify sources of illumination to obtain shaded
output.

2.1. The Coordinate System

UNIGRAFIX uses a left-handed coordinate system, with the positive x-axis directed to the
right, the positive y-axis going upwards, and the positive z-axis pointed away from the viewer.
Units in the coordinate system are arbitrary, as the size of the coordinate system is unbounded.
It is possible to have one scene in which all objects lie between -1 and +1 in all dimensions, and
another in which the coordinates range into the millions; both scenes will be scaled appropriately
However, relative sizes of objects within the same scene are preserved.

By default, the origin of the coordinate system is used as the view center, which means that
the axis of a perspective projection will go through this point. The default view direction is along
the z-axis, looking towards positive z (away from the viewer). These parameters may be changed
when the scene is displayed, but it is often convenient to structure a scene so it can be viewed
with the default set-up.

*UNIX is a trademark of Bell Laboratories.

UNIGRAFIX MANUAL -3- VERSION 84-2-2

2.2. UNIGRAFIX Language Description
The UNIGRAFIX language consists of statements for speciflying vertices, edges, faces, etc..

Each of these statements allows a unique identifier (id) to be associated with an object.
For certain objects, an identifier is requ:red; for others it is optional. ldentifiers are string names
of any length, which begin with a letter or sharp sign (“'#"), and contain only letters, digits, sharp
signs, underscores, colons, and periods. (The reasons why several of these characters are included
will be explained later on). Identifiers for objects of each type {e.g. vertices) must be different,
although the same id may be used for objects of different types.
All UNIGRAFIX statements follow these general conventions:

Statements begin with a keyword and end with a semicolon.

White space (blanks, tabs, and newlines) is ignored, except as a delimiter between items.

Statement keywords, string names, and other character items are terminated by white

space.

Numbers (integers and real numbers) are terminated when they stop looking like numbers.
For example, if an integer is needed, and ‘'123a" is the next item, the number 123 will be
used; ‘‘a’’ will be used as the next item.

All characters with special meaning to UNIGRAFIX (“{", “}", *;”, etc.) do not need to be
separated by white space.

In the specifications below, the following additional conventions are used:

Any item listed in boldface type is literal. Items listed in stalics denote values to be speci-
fied by the user.

Item listed within square brackets (*{” and *|"’) are optional.

2.2.1. Vertices
Vertices are the building blocks of UNIGRAFIX scenes; everything else is defined in terms of
them. The vertex statements denote the points through which edges and faces pass:
vidzy:

H
The id is an identifier (described previously) that is different for all vertices in one definition or
scene. The z, y, and z values represent the coordinates of the vertex in three dimensions. These
values may be either integers or floating-point numbers.

Examples of valid vertex statements are:

v origin 000;
v v12 1.2 30 5e-2;

2.2.2. Wires

Wires are line segments or sequences of segments that pass through two or more vertices.

The simple wire statement looks like this:
w [id] (viv2..vn) [Colorld] 3

The v v2 ... vn arguments are the 1d's of the vertices, in order, that the wire is to pass through,
starting at the first vertex listed end ending on the last one. If the wire is to form a closed
polygon, the first vertex should be repeated at the end of the list. If the Colorld argument (see
below) is given and has been previoulsy defined, it will be used when the wire is displayed on a
device that makes use of color. '

All vertices referenced by the wire statement must have been specified previously. No for-
ward references are allowed.

Examples of valid wire statements are:

UNIGRAFIX MANUAL -4- VERSION 84-2-2

w W12 (first_vertex second_vertex);
w closed_loop (v1v2v3v4v5v6vTv8vIvl)
w (origin v12);

Multiple trains of wire, all associated with the same id and color, can be created with multi-
ple sequences of vertex id's. For example,

w tetra (left right top back) { right back left top) red;

creates the ‘red’ wire {rame of a tetrahedron in a single statement.

2.2.3. Faces

A face is a closed polygon whose boundary is defined by three or more vertices. The simple
face statement is:

£ [id] (viv2..vn) [ColorID]| [lightness] | < ABCD >|;

The arguments correspond to those used in the wire statement. One difference is that the list of
vertices is assumed to be closed, so that there is no need to re-specify the first vertex at the end
of the list. For faces, there must be at least three vertices. The Color/D argument is interpreted
as in the case of wires. A lightness value is specified as a number between 0 and 1, and if present
will be used as the lightness of the face, regardless of it’s orientation or light sources.

The remaining arguments are auxiliary fields that need not be specified. They can be used
to achieve special effects and are sometimes helpful in debuggung. Lightness is a light value
forced onto this face. The angle-bracketed arguments denote the coefficients of the plane equa-
tion of the face: Az + By + Cz + D = 0. These may also be left out and the equation will be
computed by UNIGRAFIX.

Some valid face statements are:

f triangle (lower_left top lower_right);
f unusual (v1v2v3v4v5v6) green <0012 >;
f (ABC) 075;

In the second example, the color of the face is green, and the plane equation is defined to be z + 2
= (, regardless of what the coordinates of its vertices are.

In some cases, faces with “holes” in them are useful. As in the case of wires, multiple
sequences of vertex id's can be used. Each sequence in parentheses is interpreted as a separate
closed polygonal edge. Thus, one can define an ‘“inside edge” of a face with a hole by reversing
its orientation. For example,

f square_ with_ triangular_ hole (outl out2 out3 out4) (inl inZ in3 J;

It is possible to put other edges inside a hole, creating new pieces of the face, and so on. Even
slits with only two vertices and poiat holes to pass wires through are allowed:

f face_with_slit_and_pinhole (01020304)(sAsB)(p.h);

Some care must be taken when defining fzces. First of all, the order ip which a face’s ver-
tices are listed deflines which side of the face is the “inside,” or visidle side. The tule for determin-
ing the “inside” of a face is that any contour traced in the clockwise direction encloses a visible
portion of the face, while any material not enclosed by such a contour is an “outside”, or invisible
portion of the face {either the area outside the face, or a hoie).

Secondly, the face's vertices should all lie in one plane. This is necessary so that the face
can be described with one plane equation, with no unexpected consequences. UNIGRAFIX may com-
plain a great deal if faces are not planar. Newell’s algorithm is used to determine face normals; it
averages face normals across the vertices defining the outside contour of the face. Therefore, the
first set of vertices should define an outside contour, insuring correct detcrmination of the
pormal’s sign.

UNIGRAFIX MANUAL -5- VERSION 84-2-2

In accordance with the rule that defines insides and outsides of faces, the vertices on the
inside contour of a hole (e.g inl - in$ in the above face) must be listed in counterclockwise order.

2.2.4. Light sources

If scenes are to be shown as shaded faces, there should be some illumination present in the
scene. The light-source statement creates sources of light to be used for this purpose:

1 [id] intensity [zyz [R] |3
The values of infencity and =z, y, z, and A, are integers or floating-point pumbere. There ore
three types of light scurces: ambient sources (those with no illumination vector specified), direc-

tional sources (those with z, y and z values specified), and (in the future) point light sources
(those with the homogeneous coordinate value h specified and not equal to zero.

Ambient light sources cause equal effects on all faces, regardless of their orientations. Each
face will receive the full intensity of the source. Since the lightness value for a face can only
range from O to 1, the most meaningful values for intensity lie in this range. Values outside this
range will be clipped to either 0 or 1. For directional sources, the z, y, and z arguments define a
vector which points from the origin towards the source of the illumination. This vector need not
be normalized. The effect of a directional illumination source upon a face is computed by finding
the angle between the illumination vector and the normal vector of the face (derived from the
plane equation). The face will receive the full intensity of the source if this angle is zero (i.e. the
source is perpendicular to the face), and will receive no illumination from the source if the angle is
90 degrees or greater.

The format makes future extension to point light sources possible. Point light sources are
assumed to lie at coordinates (z/h, y/h, 2/h). Their intensity is characterized by the intensity
received by a point at distance one from them. They are not yet implemented in UNIGRAFIX.

When there are multiple light sources for the same scene, the effects on a particular face are
cumulative. For each light source, the effect upon each face is calculated, and added to the
current illumination value for that face.

Examples of valid light-source statements are:

] sun .7 10 30 -100;
1 glow .2;
11;

2.2.5. Color

Color can be introduced into scenes by using the color statement. Color images can then
be produced on devices which have color capabitilies. The color statement creates color identif-
iers which can be applied to faces, edges and higher level objects. The format of the statement is:

¢ id lightness | hue | saturation |translucency]]];

The statement associates the given color specifications with the identifier; the identifier can then
be used to specify color for various objects. The color system used is the same as Smith's HSV
model. The first three parameters define o point in color space. Cclor space is defized to be a
cone with saturated hues lying on the perimeter of the circie at the base of the cone. Moving into
the circle decreases the saturation and adds more gray to the colors. Colors become dimmer (less
intense) as one moves towards the tip of the cone. The tip of the cone is black.

Lightness should fall in the range zero to one. Zero represents black; a value of one places
the color somewhere in the circle lying at the base of the color cone (as defined by hue and satura-
tion). Values outside this range will be clipped to this range. Hue should be a number between 0
and 360, signifying the position on the color circle of the hue. 0 (and 360) is defined to be red; the
circle progresses from red through yellow to green to cyan to blue to magenta and back to red. If
hue is not in the specified range, its value mod 360 will be used. Saturation should also fall in
the range zero to one; zero is unsaturated (gray) and onme is complete saturation. Translucency

UNIGRAFIX MANUAL -6- VERSION 84-2-

refers to the property of a color when an already colored object is recolored in an instance state-
ment. A translucency of 0 means the new color covers the underlying one completely. The other
extreme is the value 1 where the underlying color shines through unchanged. Currently, transiu-
cency is accepted but ignored; the mixing process has not yet been implemented.

Not all values need be specified. If only one value is specified, it is interpreted as a gray
value on a colorless face. If lightness and hue are present, the color will be assumed to have a
saturation of 1. The default translucency is 0.

When a colored object is displayed on a color output device, color and illuminaticn are com-
bined to produce a snaded objeci. Therefore many shades {more correctiy, lighiness values) will
usually appear in a displayed object even if only one color is defined.

Although an infinite palate of colors is specifiable, real devices can only display a fixed
number of colors. UNIGRAFIX takes whatever color has been specified, and after combining it with
illumination, rounds it to the nearest color in the device's color map. The rounding method is
device dependent and is currently not accessible to the user. On devices incapable of color
display, the only color field which has any meaning is lightness; hue and saturation are ignored.
In later versions, this should be modified, since some hues (yellow) appear lighter than others
(blue).

2.2.6. Definitions

Much of the power of the UNIGRAFIX language comes from the use of the deflnition state-
ment. It allows objects to be grouped together and given a common name. After definition, the
instance and array statements can be used to place copies of the definition in any location in
the scene. The statement itself is very simple:

def name;
statements ...

end;
The name of the definition may be anything that would be a valid identifier. The statemenis
may be anything except definition statements (so mesting of definitions is not allowed), and
light-source statements (‘‘local’” illumination will be ignored and a warning message printed).
All the objects created by the statements become part of the definition; they do not actually
become part of the scepe until an Instance or array statement calls for that definition. In a
sense, the definltlon statement creates a “‘macro’ that can be used as many times as desired.

The following is an example of a definition statement that defines a simple cube. Each

face of the cube is assigned a letter name (f for “front,” b for ‘‘back,” 1 for “left,”” r for “right,”
u for “‘up.” and d for “down”). The names of the vertices are derived from the three faces adja-
cent to it.

UNIGRAFIX MANUAL «7- VERSION 84-2-2

def cube;

Itd -1-1-1;

fu -11-1;

rfu 11-1;

rfd 1-1-1;

thd 1-11;

rbu 111;

Ibu -111;

Ibd -1-11;

f (1fd lfu rfu rfd);
d (Ibd 1fd rfd rbd);
b (rbd rbu Ibu Ibd);
u (lfu Ibu rbu rfu);
1 (1bd Ibu lfu Ifd);
r (rfd rfu rbu rbd);

'

< < < < <4 < <

OL ™% =% = = = = <&

2]
-]

2.2.7. Instances and Arrays

Once a definition has been created, the instance and array statements can be used to
place copies of the defined object into the scene. An instance is a single copy of the defined
object, possibly with some transformations applied to it. An array is a multiple copy of the
object, also with optional transformations, and specifications of how to separate the copies. The
statements look like this:

1 [id] (defname | ColorID| [transformations])s

a [id] (defname |ColorID| [transforms]) size [transforms] ;

The id is an identifier for the instance or array, while the defname refers to the name used for
the object in the definition statement for that object. The two may be identical.

The color field, if specified, forces every face and wire in the object to be of that color, mix-
ing in the object’s original coloring if the specified color’s translucency is greater than 0.

2.2.8. Transformations

Transformations allow an object to be scaled (changed in size in any or all dimensions),
translated (moved in any direction), rotated, or mirrored. Rotation is by degrees about a given
axis of the coordinate system. When rotation of objects is specified, the following cyclic conven-
tions are used (assuming a left-handed coordinate system): Positive rotation about the x-axis is
from the positive y-axis to the positive z-axis. Rotation about the y-axis is from the z-axis to the
x-axis and rotation about the z-axis is from the x-axis to the y-axis. An easier way of remember-
ing this is that positive rotation about any axis appears clockwise when viewed from the positive
side of the axis, looking towards the origin. Mirroring is always performed about a specified axis.
The formats to be used for the transformations field are:

-s? scale_ factor for scaling

-t? translation_ amount for transiation

-r? rotation_ angle for rotation

-m? for mirroring

-M3 828 Matriz for linear 3-dimensional transformation
-M4 {z4 Matriz for homogeneous 3-D transformation

The ? should be replaced with x, y, or 3 to denote in which dimension to scale, mirror, or
translate, or about which axis to rotate. As a shorthand way of specifying scaling or mirroring in
all dimensions, the ? can be replaced with a, for “all.” This construct is not valid for translation
or rotation.

When specifying a transformation in matrix form, from 1 to 9 numbers (for -M3) or from 1
to 16 numbers (for -M4) may be specified. The numbers specified replace the entries. by rows, in
a unity matrix of degree 3 or 4, respectively.

Transformations are applied to the defined object in the order given. Arguments may be
icteger or floating-point numbers. Care should be taken when mirroring or scaling by a negative
number, since the orientation of vertices around a face may change as well. For mirroring,
besides negating the appropriate coordinate value. the order of vertices in all affected faces is
reversed. This is not true for nezative scaling: the original order is maintained. Thus, a3 boady
mighi be turned “inside-oui’ if you do a5 odd number of pegative scaling operations.

For the array statement, the size and second set of transformations must also be speci-
fied. The size is an integer that says how many copies of the object are desired. The second set
of transformations is applied incrementally between individual copies. The first set of transfor-
mations is applied before the copies are made.

Examples of the use of instances and arrays are:

i bigrotcube (cube -mz -sa 10 -rx 20 -ry -50) ;
a rowof3cubes (cube -tx-10) 3 -tx 10;
a (cube)10-sa0.5;

The first example creates an instance of the previously defined object cube, mirrors it in the 2z
dimension (mirrors about the xy-plane), makes it larger by a factor of 10 in all three dimensions,
rotates it around the x-axis by 20 degrees, and then around the y-axis by -50 degrees, and then
adds the resulting object to the scene. The second example uses the same cube, but makes three
copies of it. Each of the copies is separated by 10 coordinate units in the x dimension. The initial
translation by -10 has the effect of centering the new object (rowofScubes) at the same place
where the original definition was centered. This is often useful, in order to keep a scene centered
about a fixed point, usually the origin. The last example creates 10 concentric. scaled down
copies of a cube.

2.2.9. Hierarchies of Instances, and Arrays

It is possible to create a hierarchy of more than one level by placing instance and array
“statements within definitions. For example, to put together three of the rowofScubes defined in
the previous section, the following can be done:

def rowof3cubes;
a rowof3cubes (cube -tx-10) 3 -tx 10;
end;
a squareof9cubes (rowof3cubes -ty -10) 3 -ty 10:

This stacks the rows in the y direction to form a square.

As a rule, definitions must be self-contained. This means that all faces and edges within a
definition may reference only those vertices within that definition.

2.2.10. Including Files

The include statement is a way of aliowing modularity in UNIGRAFIX scene files. The for-
mat is:

include filename ;

When this statement is encountered, the contents of the file filename are used as input. When
end-of-file is reached, input continues at the line following the Include statement. Included files
may be nested, to a maximum of 16 levels. Recursive file loops are not checked for, and should
be avoided. UNIGRAFIX recognizes the file metacharacter ‘”’. If a file is not found in the current
directory, then the UNIGRAFIX library is searched. If a file is not in either place, a syntax error
results.

UNIGRAFIX MANUAL -9- VERSION 84-2-2

2.2.11. Comments

Comments may be placed in UNIGRAFIX scene files anywhere that white space may occur.
This includes almost every possible place except within identifiers or other names. Comments are
surrounded by curly braces (“{” and *“}"), and may contain any characters. Comments follow
pesting rules, so that if two left-braces are used, two right-braces are necessary to end the
comment. Examples:

{ This is a simple comment }
{ This is also a { more complicated } legal { using nested {}'s } comment }

3. UNIGRAFIX BATCH PROGRAMS

Unigrafix includes a series of programs that allow scene files to be displayed and modified
until satisfactory output is achieved. These programs are batch programs, in that there is no user
interaction after the program has been started with the proper parameters. Input to the
programs comes from standard input, which in most cases will be redirected from a UNIGRAFIX
scene file.

3.1. Ugxform and ugexpand

Both these programs make global transformations on the whole scene file read. Ugxform is
a fast stream editor which carries out all specified transformations on the top-level commands and
passes all other commands unaltered. Ugexpand instanciates all instance and array commands
and outputs a hierarchically flat description of the scene with unique identifiers for all elements.

Both programs take all of the following options:

-tx amount

-ty amount Translate scene by amount in the specified direction.
-tz amount

-rx Z::gjz Rotate scene around specified axis by angle (in degrees).
Ty g Direction of rotation is described in section 2.1.

-rs angle

-8x factor
-8y factor Scale the scene by factor in the appropriate dimension.
-82 Jfactor

-sa factor Scale the scene by factor in all three dimensions.
-mx Mirror x-coordinates. (Mirroring about yz-plane).
-my Mirror y-coordinates. (Mirroring about zx-plane).
-mg Mirror z-coordinates. (Mirroring about xy-plane).
-ma Mirror all coordinates. (Mirroring about origin).

-M3 S8z8 matriz From one to nine numbers as transformation matrix.
-M4 4z4 matriz From one to sixteen numbers as transformation matrix.
Matrix elements specified replace entires in an ideuiily inatrix

row by row.
-x1 Transform coordinates of light sources as well.
-px Print (to stderr) the list of specified transformations.
-pm Print (to stderr) the total transformation matrix.
-pl Print (to stderr) the list of all light sources.
-fe filename Use file filename to find command-line options.
-l flename Use file filename as standard input.

-fo filename Write standard output into file filename.

UNIGRAFIX MANUAL -10- VERSION 84-2-2

-ol Omit ail include files and print transformation matrix after
include filename. The default is to do this only for the cases
where top-level include files do not exist; the programs then also
print a warning and continue with the processing of the calling
file.

The transformed scene files go to standard output. so it is probably best to redirect it to a
file. Output from the -px or from the -pm options conceras zll transformations ia effect ot the
time when one of these nntions is read. Both of thece antions cutput to standard error.

Vertices and illumination sources are the orly top level objects that have coordinate values
and thus can be transformed explicitly. Vertices will always be transformed; illumination sources
will only be transformed if the -x! option is given.

Arguments to transformations may be integers or floating-point numbers. Again, care
should be taken when scaling by a negative number or mirroring.

3.1.1. Use of ugxform

These examples are intended to show some possible uses of the ugxform command and its
various options.

ugxform -sx 10 -ry 23 -mz < scene > newscene

This takes the description in file scene, scales the x dimension of all vertices by 10, rotates around
the y-axis by 23 degrees, mirrors the z-coordinates, and puts the resuling scene into newscene.

ugxform -fc commandfile -xl -fi scenefile |ugplot -dv

This uses the options specified in commandfile to transform the description in scenefile. Because
-x] is specified, illumination sources are transformed as well. the result is then piped to the
rendering program ugplot.

ugxform -fc optfilel -px -fc optfile2 -px -fiinfile -fo outfile.

In this example, two transformation option files are used to transform the scene in infile. The
result is written into outfile. The two calls of the -px option will print to standard error (presum-
ably the terminal) the current list of transformations at the times when they are encountered.

Instance and array commands are transformed in the same way that given definitions are
transformed in instance or array calls. The specified transformations are appended in the speci-
fied order to the transformations already present in each instance command.

For arrays there is an additional difficulty. Since there is no field that permits the sperifica-
tion of a global transformation, GT, that works on an array as a whole, the originai transforma-
tion, OT. of the first instance as well as the incremental transformation, IT, between instances
need to be modified according to the following formula:

a array (defname OT GT) size GTinv IT GT;

If the inverse, GTinv, of the transformation GT does not exist, top-level array commands must be
broken into their compoznesnts, and the specified transformation GT is then appended to each indi-
vidual instance cail.
In addition to the options already listed, ugxform also takes the following options:

-cm Coalesce transformations to one matrix on instances and arrays.

-oc¢ Omit comments in output file.

The -cm option helps to clean up instance siatements and prevents the accumulation of long lists
of transformation steps.

UNIGRAFIX MANUAL -11- VERSION 84-2-2

3.1.2. Use of ugexpand

Ugexpand expands instances and arrays into vertices, wires and faces but leaves the
described scene basically unchanged. It copies all top-level elements to the output and converts
all Instance or array statement into their constituent parts. Include files are expanded and
placed into the output. This program can also calculate the illumination on each surface, and
record it there for subsequent use by a display program.

In addition to the general options already listed, ugexpand also takes the following options:

-nl New labels. The program creates new, short, sequential names for
all items.

-me | epsilon | Merge edges. All edges within epsilon of each other are cut to be
a single contour. If epailon is not specified, it defaults to le-6.

-ae Attach plane equation to each face statement.

-al Attach computed light value on each face.

-fw zy:zdld2 Fade against white background in interval d1-d2.
-fb zyzdld?2 Fade against black background in interval d1-d2.
z, y and z specify the eye-point;
d1 and d2 are distances from the eyepoint.

3.2. Ugisect

Uglsect reads a UNIGRAFIX file and cuts up any intersecting faces and wires to produce a
scene description with no intersecting elements. Each existing intersecting element is partitioned
into several pieces. The default is to keep all these pieces together in a single statement with
multiple contour groups.

Instances of definitions that are intersecting are expanded to the next lower hierarchical
level, where all components are again checked for intersection.

Ugisect will normally have to create many new vertices. These vertices are given
suquential numerical names of the form v#n, where n is a number. Therefore, UNIGRAFIX files
should not contain vertices with names of this form.

Upon termination, ugisect will print out some statistics concerning the number of
intersecting elements. Eventually ugisect will allow some method for specifying the removal of
collections of object intersections; in this way a file describing the results of geometric operations
such as union or intersection of various objects can be created.

3.3. Ugshow and ugplot

Ugshow is the original display program of the UNIGRAFIX system. Ugplot is a newer
program created for the UNIGRAFIX2 system. Both can render a stored scene on various devices.
The default is to output to the terminal from where the commands originate. This works even
from a ““dumb” terminal, but the output will be coarse and difficult to understand.

The difference between the two programs lies primarily in the algorithms used for hidden
surface eiiminstivn and in the internal data structures. There are a few enbancements io
UNIGRAFIX2 for which the oider ugshow has not yet been upgraded.

With both programs, there are quite a few options available, and they will be discussed in
three groups of commands that belong together connceptually. However these options can occur
in any order on the command line. The viewing parameters are geometrical specifications that
affect the direction and manner in which the scene is viewed. The display modes determine what
aspects of the scene (e.g. edges, faces) will be shown. The rest of the options are those that do
not fit into either of the first two groups.

UNIGRAFIX MANUAL -12- VERSION 84-2-2

3.3.1. Viewing Geometry

These options specify whether or not perspective is desired, and from what direction and
under what angle the scene is to be viewed.

-ep zY: Eye point location; implies perspective view from this point.

-ed zy: Eye direction; z, y, and z define a vector (of arbitrary length) from
the origin to the viewer's eye. The view of the scenme is an
orthogonal (non-perspective} projection from this direction,
Orthogonal view is a default, and without this option the eve
direction will be (0, 0, -1), which means the view is a paraliei
projection {rom the negative z-axis.

“ve Y2 View center; specifies the point in the scene that will become the
center of the display. Works for either perspective or orthogonal
views., Defaults to the origin.

-vr angle View rotation; specifies what direction will be “up” in the displayed
scene. By default, the y-axis points up, but specifying an angle (in
degrees) causes the displayed scene to be rotated counterclockwise.

-vs factor Zoom. The default zoom factor is one, which fits the picture in the
specified display size. The -vs option allows respecifying this
constant. Zoom factors greater than one will blow the picture up,
causing objects expanded off the screen to be clipped, while zoom
factors less than one will cause the picture to shrink. The picture’s
centering on the screen remains constant regardless of the zoom
factor, except Varian and Versatec which are positioned to the upper
left corner of the page to save paper.

-va angle View angle. This option is only valid with a perspective view. It
defines the maximum angle of a square-based viewing pyramid in
which the scene is viewed, anchored at the eye point. Everything
outside this viewing pyramid is clipped. The angle should be
between 0 and 180, exclusively. Default is to find the smallest angle
within which the entire scene will fit. However, if the computed
angle for the whole scene exceeds 90 degrees, the scene will be
clipped to 90 degrees.

-ft epsilon Face Tolerance. (Ugplot only) Change the tolerance for rejecting
faces that are close to being back faces. Useful when faces are
slightly warped and viewing them edge-on results in a self-
intersecting face which will be plotted with varving results. Epsilon
defaults to le-2 and should be between O and 1.

It is an error to specify both perspective and orthogonal views {i.e. use both the -ep and -
ed options) at the same time. Furthermore, for a perspective view, the center of view and the eye
point may not be the same point. For an orthogonal view, the eye direction vector may not be of
zero length.

The viewing specifications determine the set of transformations applied to the scene in world
coordinates; the erd resvlt of these transformaticns is a sceme or 2n output device. Iirst =
translation is applied to the scene which moves the viewcenter to the middle of the viewing space,
and thus to the center of the final viewport. The view direction is determined from the eye
direction or from the vector from the eye point to the view center. Then the view rotation is
taken into consideration. Finally, the view angles or zoom factor are used to determine the extent
of the displayed part of the scene, and the scene is mapped to device coordinates.

The viewcenter typically maps to the center of the viewport. If it is not explicitly specified,
the origin is used for the case of perspective projections and, in the case of parallel projections,
the average of the minimum and maximum coordinates of the picture.

UNIGRAFIX MANUAL -13- VERSION 84-2-2

3.3.2. Display Mode Optlons

These options set the rendering style and specify what features of the scene are to be
displayed:

-se Default. Show edges only, i.e. wires and borders of displayed faces.
-sf Show only faces without edges. (Implies -ho).
-sa Show all features (faces and edges). (Implies -ho).

-ab Add backfaces

-hn Default. Hide nothing, make no visibiiivy checks.

-hb Hide back-faces, i.e. faces wiih face normal pointing away from eye.
-ho Hide ovelaps; remove all features hidden by overlaps.

-hd Hidden lines dashed (currently only for Gremlin files).

-lv Label vertices (currently only for HP, AED, Vectrix, Imagen and dumb terminals).
-1t Label faces (currently only for HP, AED, Vectrix and dumb terminals).

-lw Label wires (currently only for HP, AED, Vectrix and dumb terminals).

-la Label all (currently only for HP, AED, Vectrix and dumb terminals).

-fw xy zdl d2 Fade against white background in interval d1-d2.
-fb xyzdl d2 Fade against black background in interval d1-d2.
z, y and z specify the eye-point;
d1 and d2 are distances from the eyepoint.

Default is output in wire-frame format. This is usually very fast, since the costly hidden-
surface elimination process need not be performed.

If contradictory -s options are specified (e.g. -se and -sf, -sa), the last one overrides any
previous ones. :

When faces are shown (with -sf or -sa options), the -hb and -ho options are implied.

Rendered faces will be shaded (or colored, for some devices) according to that face's
ligthness value. Edges appear in their given color (if on a color device), with maximum
illumination in all cases.

When labels are specified, the names of labeled objects are output at the appropriate
locations. The name that is used for each obeject is the object’s identifier, which may be quite
long after expansion of instances or arrays. Because of this, it is possible to use only part of the
id as a label. If a sharp sign (“‘#") is included within an object’s id, only the part of the id that
SJollows the sharp sign will be output as a label. For example, if a vertex in a definition has an id
#vertl, and that definition is used in inst284, the label displayed for the corrsponding vertex will
be vertl, even though the expanded id is insi 234.fvertl. This feature also permits identical iabeis
to be printed for several diflerent objects. For example, three vertices with id's A#top, B#top,
and C#top will all be labeled with top.

3.3.3. Input / Output Options
Other options available for the programs ugplot and ugshow are:

-fc emdfile Resd options from flec emdfile.
-fi input fie Read input from file inputfile.
-wg gremlinfile Write an output file in Gremlin format (implies -gi -se),

(currently only line drawings can be produced); the number and
type of edges shown depends on the -h? option chosen.

-dv Output device is Varian plotter.
-dw Output device is Versatec plotter.
-dm Output device is Imagen printer.

-da Output device is AED 512 color display (set GRTERM).

UNIGRAFIX MANUAL -14- VERSION 84-2.-C

-dx Output device is Vectrix color display (set GRTERM).

-dr Output device is IRIS graphics terminal (set GRTERM).

-di Output is for Ikonas frame bufler. A raster file called “rast.iv”
will be created. This can be sent to the lkonas with the lv
program.

-8X number Plot is sized so that x-dimension fits in number inches. Default is
to make the picture as large as the width of the display device.

-8y number Plot is sized so that y-dimensicn fits in number inches. Default
is to make picture os iarge as the beight of the display device.

On the Varian and Versatec plotters, the default is 8 and 36
inches, respectively. For these plotters only, the specified y-
dimension may be as much as twice the default.

-k . Keep raster files. Valid oply with «dv or -dw. Useful if you
want to run off several copies of something. The raster file is of
the form “/usr/tmp/ugXZXXXX."” The name of the created raster
file will be printed to standard error.

Any options to ugplot, including viewing parameters and display modes, may be put in a
file and then called with the -fe option. Input and output files can also be specified with the -fi
and -fo optiops rather than by redirection.

If no -d? option is given, output goes to the terminal from which the program was invoked.
For display terminals which are generally used for display only where commands are typed on a
different terminal { i.e. our set up for the AED and Vectrix), the shell environment variable
'"GRTERM' should be set using the 'setenv’ command. The value of this variable should be the
output display’s device file name, usually something like '/dev/tty??".

The options -sx and -sy specify the size of the viewport on a display device or the size of
the iotal fiame of a hardcopy output on one of the plotters. The command
ugplot -sx 4 -sy 2 < scene

will produce output that fits into the frame of 4 inches by 2 inches. The scale of the picture will
be chosen to meet the tighter constraint. By default this viewport will be centered on the screen
of a display device. On hardcopy devices the plot will only be centered in the x direction but will
be started immediately with the first scan line in the y direction in order to conserve paper.
Exactly what appears in the viewport will depend on the viewing parameters.

3.3.4. Tutorial on Use of the Optlons

Viewing Parameters

These examples demonstrate how different views of scenes may be obtained by setting the
viewing parameters. A default rendering on the user’s terminal is obtained with:

ugplot < easy

This displave the scene in easy with an orthogonal projection, viewing from along the a
he cntire scepe will be scaled evenly to St the display. A specific view

3
v
0Q
-
..2.
.)
~N
1

-1 cseo ez -y e e
axis towards the origin.

can be specified with:
ugplot -ed 111 -ve 0500 -vr 90 < special

Again, parallel projection is used, but this time the view direction is along the vector (-1, -1, -1).
The entire scene will be displayed. The point (0, 50, 0) is forced to become the center of the
displayed scene. Note that this does not change the view direction; it just forces an offset of the
displayed scene in the y direction. And finally the y-axis is no longer pointing upwards, but has
been turned 90 degrees counter-clockwise.

UNIGRAFIX MANUAL -15- VERSION 8

To display only part of the scene, one may use the zoom option:
ugplot -vc 10200 -vz 4 < close_look

Now the scene is clipped to only include what lies around the specified viewcenter.
An easy way to obtain a perspective view is with the command:
ugplot -ep 0 0-100 < perspect
This places the eye at point {0, 0, -100). The viewing pyramid will be scaled until it jusi
surrounds the scene, while the axis of the viewing pvramid is kent ~nina through the arigin. If the
coordinates in the scene file are much smaller than the distance to the eye point (in this case,

100), then the view approaches an orthogonal projection. If the viewing pyramid exceeds 90
degrees, the scene is clipped. The command:

ugplot -ep 0 0-100 -vc 100 00 -va 5 < narrowview

produces a view from the same point, but centered on (100. 0, 0). This is equivalent to looking 45
degrees to the right. In addition, the view angle is explicitly stated to be only 5 degrees.
Whatever is visible within a viewing pyramid of 5 degrees will be displayed.

Display Mode Options

The six figures A through H show the same object with the same view but with different
display mode parameters:

L1

Z=— ./

d [‘M—_“‘
3:7

. =\ K =l
A) ugplot < cubes B) ugplot -hb < cubes
Default wire-frame Back-faces eliminated

C) ugplot -ho < cubes D) ugplot -sf < cubes
Overlapping features removed Shaded front faces

UNIGRAFIX MANUAL - 16 - VERSION 84-2-2

Ej} ugplot -sa-ho < cubes F) ugplot -sa-ab-ho < cubes
Faces & edges, overlaps removed Two-sided faces, overlap removed

T ‘C:S“

| AN | E——
G) ugplot -ho -wg gremfile < cubes H) ugplot -hd -wg gremfile < cubes
Gremlin format Dotted hidden lines

Input / Output Options

For the case of parallel projection, the 2-D image of the scene will normally be scaled and
translated so that it touches two opposite sides in the dimension that is more constraining; it is
symmetrically centered in the other dimension. However, if the -vc option is used, the projection
of view center is forced to appear in the middle of the viewport, and the extent of the 2-D image
is checked in all four directions to determine the most stringent constraint and to derive the
necessary scale factor.

For the case of a perspective view, the transform that moves the eye into the origin of the
viewing coordinate system is carried out first. In this state the clipping is carried out against the
viewing cone with 3 90 degree opening. If nothing is clipped by this cone, then it is narrowed to
the maximum angle under which any one of the vertices is seen {rom the eye-point. If the view
angle was specified, the corresponding scaling in x and y is performed before the clipping
operation, and no further cealing is performed. The perspective view has no celf centering option
a5 exists [o7 the paranc) projection. If the view center is badly chosen, e.g. drastically outside the
scene, there will be nothing on the display. Care must also be taken with wrap around: if the
eye-point moves too close to the scene, so that the viewing angle exceeds 180 degrees, points from
behind the viewers eye may get wrapped around into their counter points on the other side of the
origin, which may lead to very strange displays.

UNIGRAFIX MANUAL -17 - VERSION 84-2-2

4. INTERACTIVE UNIGRAFIX

More often than not, several attempts must be made before a satisfactory display of a scene
is achieved. Since each one of these attempts involves running at least one Unigrafix batch
program, much processing time will be spent reading in and possibly writing out scene files. The
overhead incurred with this approach is often restrictive, especially for large scenes, or ones with
multi-level hierarchies.

In order to speed up this iterative modify /display process, an interactive UNIGRAFIX shell has
been created. A scene is read into this shell as one or more files, the internally stored scene can
then bLe trapsformed, illuminated, and displayed repeatedly from diflerent viewpoinis. At ibe end,
the scene in its final state can either be written back into a file in a flat format or a script of all
the modifications made to the scene can be obtained. With this script and the original starting
scene it is then possible to directly recreate the final view.

NOTE: This interactive program has not yet been converted to the UNIGRAFIX2 system. It
is still changing, and the section here is more a preview of what we are aiming for. Consult later
editions of this manual to get the most up-to-date information.

4.1. Interactive Commands

When you enter the interactive Unigrafix environment with the command
ugl
you will see a prompt that looks like this:
ug>

You may now enter a command. Command names are single words, which may be abbreviated
by any amount, down to a single letter. For example, read, rea, re, and r are all valid forms of
the read command.

The following sections discuss each of the available commands.

4.1.1. Read
The read command is used to read in scenes from files. The syntax of the command is:
read filenamel filename?

All of the specified filenames are read in and added to the current scene. You should be careful
when reading in multiple files to avoid naming conflicts between files. Since everything becomes
part of the same scene, an object in one file should not have the same id as an object of the same
type in another file. We are contemplating creating an additional implicit level in the hierarchy
that corresponds to the individual files read in.

4.1.2. Xform
The xform command can be used to transform the current scene. Its syntax is:
xform options
The available options and their effects are identical to those of the batch ugxform program.

4.1.3. Illum

This command modifies the illumination for the current scene, or illuminates faces in the
current scene. Additionally, it can be used to tell you what illumination is present in the scene.
The command looks like:

fllum options

This command was implemented in Unigrafix 1, but because of changes in how illumination is
performed, it has yet to be implemented in Unigrafix 2.0. The exact number and form of the
options has not yet been defined either.

UNIGRAFIX MANUAL - 18- VERSION 84-2-2

4.1.4. View
This command has the form
view options

It is used to set the viewsng parameters for the current scene. Once set, the parameters remain in
effect for the rest of ihe session, unless reset by another view command. They can also be
temporarily overridden by using options on the plot or show commands, as explained in the next
sections.

The opticns for this commend are all those avallnlie to the Lol ugplct command thut
affect viewing parameters. These are -ep, -ed, -ve, -vr, -va, -vz, -fw and -fb. Additionally, if

view -p

is entered, a list of the current viewing parameters will be printed on the terminal.

Viewing parameters not changed by the command remain the same, with one exception. If
you switch from a perspective view to an orthogonal view {or vice-versa), all parameters that are
no longer valid for the new view are ignored. For example, if the current viewing parameters are

-ep 0 100 -300 -va 85
and you enter
viewparams -ed 111

the view is no longer a perspective projection, and the view angle specification (-va 85) no longer
has any effect.

4.1.5. Display
This commard. like ugplot or ugshow, displays the current scene. The syntax is:
display options
Options may include any of those available for the two rendering programs ugshow and ugplot.

If no viewing parameters are changed on the command line, the ones specified with the most
recent viewparams command are used. If any are changed, the effect is only for this one
display, and the parameters are reset to their previous values when the display is finished.

All other (non-viewing parameter) options are in eflect only for one display. If you want to
see only shaded faces, for example, you must specify

display -sf

each time.

4.1.8. Write

If you want to save the current scene in a file, vou can use the write command. Its syntax
is:

write options filename

The two possibie options are «f for “fatteped” owtpui or a4 for “svmbohe™ (default) output. If
both are speciiied in the same command, only the last one wiil have eflect. (To write out the
scene both ways, use the command twice).

When a write is done, the current scene will be written to the named file. If the -f option is
specified, the flattened version of the scene will contain current illumination values on all faces, if
illumination was calculated, either by an illum command, or a display with faces visible.

If the -8 option is used, a file describing the scene will not be output. Instead, a shell script,
consisting of UNIGRAFIX commands that produce the current scene from the original, is written out
to the named file. This file can then be run by the shell to produce the ‘‘saved’ scene on standard
output, which can then be sent to a rendering program.

UNIGRAFIX MANUAL -19- VERSION 84-2-2

4.1.7. Help
The help command prints a brief list of available commands.

4.1.8. Run

Apother planned extension that makes it possible to run one of the generator programs!
from within the interactive UNIGRAFIX shell. Thus it will be possible to use simple scenes as a
base to create more complicated objects such as worms, trees, and stairs without leaving the ugi
program.

5. DISPLAY OUTPUT

Although UNIGRAFIX is designed to be as device-independent as possible, there are some
device-dependent details that do exist. Because of the varying natures of the different output
devices, total uniformity is not possible. Therefore, this section describes bow each type of device
is treated. Currently, UNIGRAFIX supports these devices:

) Non-graphics (‘“dumb’’) terminals

° Hewlett-Packard 2648A Graphics Terminal
. SUN Workstation

] IRIS graphics terminal

° AED 512 Color Graphics/Imaging Terminal
® Vectrix Color Graphics Terminal

) Imagen Laser Printer

. Varian 11-inch plotter

. Versatec 3-foot wide-body plotter

[} Ikonas Frame Buffer

The unique properties of display on each type of device are discussed in the remainder of this
section. Some of the material is subject to change.

The following is a table of the supported devices and some of their salient characteristics.
The defaults referred to are the sizes that UNIGRAFIX will normally fit a picture into; these can be
overriden by using the sizing options with ugplot or ugshow (see Section 3).

Horizontally Vertically
Device pixels/ inch | maximum | default | lines/ inch | maximum | default
pixels pixels lines lines
Dumb 80/ 8 80 80 24/ 5.5 24 24
2648A 720/ 12 720 720 360/ 6 360 360
SUN 1024/ 12 1024 1024 780/ 10 780 TR0
IRiS 1024/ 14 1024 1024 767/ 12 767 767
AED 512/ 14 512 512 512/ 14 512 512
Vectrix 672/ 10 672 672 | 480/7.5 480 480
Varian 200 2200 2200 200 3400 1600
Versatec 200 7200 7200 200 14400 7200
Imagen 120 1020 1020 120 1320 1320
Ikonas 512/ 12 512 512 512/ 12 512 512

UNIGRAFIX MANUAL -20- VERSION 84-2-2

5.1. Non-graphlcs (*Dumb’’) Terminals

Display may be sent to a terminal, even if it is not recognized as a graphics terminal, In
such a case, the curses package 2 is used. In order for curses to know the type of terminal you
are using, the TERM variable should be set in your shell.

Output to 2 dumb terminal is rather crude. Eight levels of shading are used, simulated by
varying-intensity characters (the characeters used are: N X Y < !:, . and (space)). Edges are
displayed with the edge character ““*"'.

5.2, Hewleti-Packard 28484 CGraphics Termins:

UNIGRAFIX makes {ull use of the graphics capabilities of the HP 2648A. Wire-{rame dispiay
uses the line-drawing facilities. Shaded faces (and edges with hidden surfaces removed) are drawn
with lines in the appropriate area fill pattern.

Shading is approximated by using a range of sixty-five cluster-pattern stipples. A lighter
face will appear as being whiter on the screen, and vice-versa. Maximum illumination on a white
face will appear solid white on the screen. Any face with zero illumination, or a face of pure
black, will not be visible unless edges are shown. Edges are always displayed as pure white.

When using an HP 2648A for display, be sure your terminal type is set to “hp2648a’ so that
UNIGRAFIX can recognize your terminal.

5.3. SUN Workstation

Display on the SUN worksations is much like that on the HP. Shaded faces and/or lines are
possible. The stipple patterns used are the same as those for the HP.

5.4. IRIS graphics terminal

The IRIS is capable of displaying objects in color, much like the AED 512. UNIGRAFIX is
capable of sending the IRIS visibie polygons which the IRIS fils locally, UNIGRAFIX meed uui
output explicit scanlines, resulting is faster dispiay. The color map is set up iike that of the AED
512.

5.5. AED 512 Color Graphics/Imaging Terminal

The AED is one of the supported devices capable of coior graphics. Therefore, stipple
patterns are not used; objects are colored by controlling the intensities of the red, green, and blue
guns. Edges are always displayed in their given color (actually, the nearest color available); edges
are not shaded. The AED is capable of 256 colors (drawn from a much larger palate): currently
these colors are divided up into 16 intensities of 16 fully saturated hues. The user has no choice
in how the AED's color palate is selected: hopefuily this will change in laier versions.

5.8. Vectrix Color Graphies Terminal

Vectrix support is similar to that of the AED. The color scheme is currently the same as

that of the AED.

5.7. Varlen and Versatee Plotters

Hard-copy output on these devices is achieved through creation ol a temporary raster file,
which contains the image of the display. This file will be sent to be printed on the plotter, much
like any other file.

5.8. Imagen Printer

Output on the Imagen is very similar to that on the Varian and Versatec. However,
polygons, lines and labels are sent as primitives to the imagen graphics routines. Stipple patterns
are used to simulate shading.

UNIGRAFIX MANUAL -21- VERSION §4-2-2

The shading scheme used for the plotters is the same as that used for the HP 2648A. The
same stipple patterns (with finer resolution) are used to create shading. Edges are output as solid
black lines.

5.9. Ikonas Frame Buffer

Current implementation of display on the Tkonas uses low-resolution (512 X 512 pixels)
mode, with 256 available colors. The color map used is the same as that for the AED. The
Ikonas is capable of far more colors, so hopefully this will change.

The output for the lkonas is in the form of a raster file that is suitable for use with the lv
(Ikonas view) program. The raster file that is created is called ‘“rast.iv’ and is placed in the
current directory.

6. ERRORS AND ERROR-HANDLING

There are four types of errors that may occur when you are using Unigrafix. These are
command-line errors, input errors, scene errors, and system errors. Each if these types is
handled differently, but all result in a message being sent to standard error (presumably the
terminal).

8.1. Command-line Errors

Since the Unigrafix programs allow specification of many options on the command line, there
is much room for error. Some of these include:

° Invalid option. Either the wrong letter, or a3 missing hyphen.
. Bad or missing arguments to an option.
. Conflicting arguments (especially for the ugshow and ugplot programs).

Most of the time these errors will be detected before any other processing occurs, but this is
not always the case. For batch programs, execution ends as soon as a command-line error is
found. For the interactive version, you will be prompted for the next command.

8.2. Input Errors

Input errors may occur when scene files are read in. They result from problems with the
Unigrafix language statements that specify the scene. Some common input errors are:

. Statements starting with an unknown keyword.

. Unexpected items in a statement, often because of a wrong number of arguments, or a
missing semicolon.

° Badly-formed numbers or transformation specifications.

° Unterminated comments.

. Garbage characters in the scene file.

) Duplicate identifiers for the same type of object.

. Referencing an as yet undefined vertex id or definition name.

° Less than three vertices in the first contour of a face, or less than two in a wire
segment.

° Improper statements within definitions.

° Recursive definitions.

(34
©
.

UNIGRAFIX MANUAL - VERSION 84-2-2

° Unterminated definition in a scene file.

Input errors do not cause immediate termination of execution. If an error occurs in the
middle of a Unigrafix language statement, the statement is flushed up to the mext semicolon.
Read-in continues, checking the remainder of the scene file is checked for more errors.

If any errors have been found, the program (whether batch or interactive) is terminated,
after the whole scene file bas been read.

8.3. Scene Errors
Scene errors are all user errors discovered during the fuithier provessing of ine fead-in dle.
Some of these are:

. Perspective view so far away that view angle is zero (due to rounding eflects).

Scene errors always result in immediate termination of the program.

6.4. System Errors

System errors are problems originating from the Unigrafix programs. The various
algorithms are more or less sensitive to inconsistent information about the scene. Such
inconsistencies, e.g., non-planar faces, may appear as the result of arithmetic inaccuracies.3

References
1. CH. Séquin, “Creative Geometric Modeling with UNIGRAFIX,” Tech. Report (UCB/CSD
83/162), U.C. Berkeley (Dec. 1983).

2. K. Arnold, “Screen Updating and Cursor Movement Optimization: A Library Package,” CS
Tech. Report, U.C. Berkeley (198?).

3. C.H. Séquin and P.R. Wensley, “Fast Visible Polygon Return {iom an Cxiiended Cross Algo-
rithm,” Submitted to SIGGRAPH 84, (Jan. 1884).

Appendix A - Manual Pages
This section contains the most up-to-date manual pages for the programs discussed in the
main part of this report.

UGXFORM(UG)

NAME

UNIGRAFIX User's Manual UGXFORM{UG!

ugxform - make fast global transformations of a scene

SYNOPSIS

ugxform | arguments, options | < oldscene > newscene

DESCRIPTION

Ugzform transforms the read scece 2s a whole according to the transformation arguments given.
Only tep-level statemants are transformed; all other statements are copied to the output. Valid

arguments and options are:
-tx, -ty, -ts amount

—-rx, -ry, -rs angle

—-8x, -8y, -88 factor
—sa factor

-mx, -my, -ms
-ma

~-M3 9z8 matriz
-M4 fz4 matriz
—m

-x1

-pl

~fc filename

-l filename
—fo filename

—of

-0c

EXAMPLE

Translate scene by amount in the specified direction.

Rotate scene around specified axis by angle.
(degrees CCW when viewed in direction of positive axis).

Scale the scene by factor in the appropriate dimension.

Scale the scene by factor in all three dimensions.

Mirror specified coordinates.
Mirror all coordinates about origin.

Use one to nine numbers as transformation matrix.
Use one to sizteen numbers as transformation matrix.

Coalesce transformations into single matrix on 1, a.
Transform coordinates of light sources as well.

Print (to stderr) the list of specified transformations.
Print (to stderr) the total transformation matrix.
Print (to stderr) the list of all light sources.

Use file filename to find command-line options.
Use file filename as input file.
Write output into file filename.

Omit all include files and print transformation matrix
after include filename. The default is to do this only for
the cases where top-level include file do not exist; the
programs then also print a warning and continue with
the processing of the calling file.

Omit comments.

ugxform -sa 3 -tx -10 -oc < inputfile > shifted_big_scene

FILES
“ug/bin/ugxform
“ug/src/ugce
SEE ALSO

ugexpand {UG), ugplot (UG)

BUGS

Does not handle arrays correctly

AUTHOR

Looking for a volunteer to fix it

Release 1984

1983-12-30 1

UGEXPAND(UG) UNIGRAFIX User's Manual UGEXPAND(UG)
NAME
ugexpand - flatten the hierarchy of a scene description
SYNOPSIS
ugexpand | arguments, options | < oldscene > newscene
DESCRIPTION

Ugerpand expands all instances and array statements so that the resulting scene descriptinn hus
onlv top-level statemeats and no more comments. A global transformation can be carried out at
the same time as with ugzform. The following arguments can be used:

-tx, -ty, -tz amount

-rx, -ry, -rs angle

—ax, -8y, -8% factor

-sa factor

-mx, -my, -m3
-ma

~M3 89z8 matriz
-M4 4z{ matriz
-xl1

..p]

-nl

-mv

-ae
-al

-fw xy zdld2
-fb xy zdl d2

~fc filename
-fi Alename
—fo filename

Translate scene by amount in the specified direction.

Rotate scene around specified axis by angle.
(degrees CCW when viewed in direction of pos. axis).

Scale the scene by factor in the appropriate dimension.
Scale the scene by factor in all three dimensions.

Mirror specifies coordinates.
Mirror all coordinates about origin.

Use one to nine numbers as transformation matrix.
Use one to sizteen numbers as transformation matrix.

Transform coordinates of light sources as well.

Print (to stderr) the list of specified transformations.
Print (to stderr) the total transformation matrix.
Print (to stderr) the list of all light sources.

New labels. The program creates new, short, sequential
pames for all items.

Merge vertices. All coinciding vertices are combined into
a single one which is given the name of the first one
encountered at that position.

Attach plane equation to each face statement.
Attach computed light value on each face.

Fade against white background in interval d1-d2.
Fade against black background in interval d1-d2.
z, y and z specily the eye-point;

d1 and d2 are distances from the eyepoint.

Use file filename to find command-line options.
Use file filename as input file.
Write output into file filename.

Omit all include files and print transformation matrix
after include filename. The defauit is to do this oniv ior
the cases where top-level include file do not exist; the
programs then also print a warning and continue with
the processing of the calling file.

ugexpand -ma -ae < inputfile > mirrored_scene_with_planeeqn

—ol
EXAMPLE
FILES
“ug/bin/ugexpand
“ug/src/uge

Release 1984

1983-12-30 1

UGEXPAND(UG) UNIGRAFIX User’s Manual UGEXPAND (UG}

SEE ALSO
ugxform (UG), ugplot (UG)

DIAGNOSICS
Checks input file for syntax errors and duplicate names.

BUGS
Not all options are implemented yet.

AUTHOR
Looking for a volunteer to fix it

) Rele e 198 1983-12-30 2

UGISECT(UG) UNIGRAFIX User’'s Manual UGISECT(UG)

NAME
ugisect — convert intersecting faces and wires into non-intersecting objects

SYNOPSIS
uglsect [options ? | < inputfile > outputfile

DESCRIPTION
Ugizect reads a UNIGRAFIX file and cuts up aay iniersecting faces and wires to produce a scexne
description with no intersecting elements. Each existing intersecting elemeut is partitioned into
several pieces. The defauit is to keep all these pieces togetner in a singie statement with muitipie
‘contour groups.
Instances of definitions that are intersecting are expanded to the next lower hierarchical level,
where all components are again checked for intersection.

EXAMPLE
cat “ug/lib/illum “ug/lib/two_cubes | ugisect | ugplot -ed -2 1-5-sa -dv -sy 3

FILES
“ug/bin/ugisect
“ug/src/uge
SEE ALSO
ugexpand (UG), ugxform (UG), ugshow (UG), ugplot (UG)
DIAGNOSTICS
Upon termination ugisect will print out some statistics concerning the number of intersecting ele-
ments.
BUGS
So far, works only for flat UNIGRAFIX files.

AUTHOR
Mark Segal

Release 1984 1983-12-12 1

UGSHOW (UG)

NAME

UNIGRAFIX User's Manuai UGSHOW (UG}

ugshow - rendering of a scene on screen or plotter

SYNOPSIS
' ugshow [arguments, cptions] < scene

DESCRIPTION

Ugehow produces a rendering of a scene on many possible output devices. Viewing geometry and
displav style are specified with the following arguments:

Release 1984

—ep
—ed

-se
—sf

-sa
-ab

-hn
-hb
-ho
-hd

~fe
-fi

-ws

-dv
—dw
—dm
—da

—dr
—di

Ty: Eye point for perspective view from tais point.
Ty:z Eye direction for parallel projection. Default is ed=(0, 0, -1), ie., an
orthogonal projection from the negative z-axis.

zy:z View center; i.e., the point in the scene that will become the center of the
display. Defaults to the origin.

angle View rotation. By default the y-axis points up; displayed scene is rotated
CCW by angle degrees.

factor Zoom. The default zoom factor is one which fits the picture in the
specified display size. The -vz option aliows respecifying this constant.
Zoom factors greater than one will blow the picture up, causing objects
expanded off the screen to be clipped, while zoom factors less than one
will cause the picture to shrink. The picture’s centering on the screen
remains constant regardless of the zoom factor.

angle View angle for 3 perspective view; must be between 0 and 180,
exclusively. It defines the maximum angle of a square-based viewing
pyramid, anchored at the eye point. By default the scene will be clipped
to 90 degrees.

Default. Show edges and wires only.

Show only faces without edges. (Implies -hb).
Show all faces and edges. (Implies -hb).

Add backfaces

Default. Hide nothing, make no visibility checks.

Hide back-faces, i.e. faces with face normal pointing away from eye.
Hide ovelaps; remove back-faces and all features hidden by overlap.
Hidden lines dashed (currently only for Gremlin files). '

Label vertices.

emdfile Read options from file cmdfile.
input file Read input from file snputfile.

gremlinfile Write an output file in Gremlin format (implies -gi -se), (currently
only line drawings can be produced); the number and type of edges
shown depends on the -h? option chosen.

Output device is Varian plotter.

Output device is Versatec plotter.

Output device is Imagen printer.

Output device is AED 512 color display (set GRTERM).

Output device is Vectrix color display (set GRTERM).

Output device is IRIS graphics terminal (set GRTERM).

Output is for Ikonas frame buffer. A raster file called “rast.iv’ will
be created. This can be sent to the Ikonas with the iv program.

1983-12-30 1

UNIGRAFIX User's Manual UGSHOW(UG;

x-size of plot is adjusted to fit into numter inches. Default: width of
the display device.

y-size of plot is adjusted to fit into number inches. Default: height of
the display device. On the Varian and Versatec plotters, the default
is 8 and 36 inches, respectively. Specified y-size can be up to twice
the default.

Keep raster file. Valid only with -dv or -dw. Useful if you want io
run off several copies of comething, The raster file is of the form
“[ust/tmp/ugXOXXXX."” The name of the created raster file will be
printed to standard error.

ugshow -sa -ep -1 2-10 -va 30 -dv -sy 4 < scenefile

UGSHOW(UG)
—8x number
-8y number
-kt
EXAMPLE
FILES
“ug/bin/ugshow
“ug/src/UG1
SEE ALSO

ugexpand (UG), ugisect (UG), ugplot (UG)

BUGS

Trouble with horizontal border lines.
Sometimes wrongly orderes faces at points such as concave corners.

AUTHOR

Looking for a volunteer to take charge of it.

Release 1984

[=]

1983-12-30

UGPLOT (UG)

NAME

UNIGRAFIX User's Manual UGPLOT!UG)

ugplot - rendering of a scene on a screen or plotter

SYNOPSIS

ugplot | arguments, options] < scene

DESCRIPTION

Ugplet can render a sceme on many possible output devices. The viewing geometry and the
display style are specified with the following arguments:

—-ep
—ed

-se
—sf

-sa
-ab

-hn
-hb
~ho
-hd

-lv
!
-lw
-la

~fec
-fi

—~dv
—dw
—dm

Rele: 1984

Tyz Eye point for perspective view {rom this point.
Tyz Eye direction for parallel projection. Default is ed=(0, 0, -1}, ie. an

orthogonal projection from the negative z-axis.

zy: View center; i.e., the point in the scene that will become the center of the

display. Defaults to the origin.

angle View rotation. By default the y-axis points up; displayed scene is rotated

CCW by angle degrees.

factor Zoom. The default zoom factor is one which fits the picture in the

specified display size. The -vs option allows respecifying this constant.
Zoom factors greater than one will blow the picture up, causing objects
expanded off the screen to be clipped, while zoom factors less than one
will cause the picture to shrink. The picture’s centering on the screen
remains constant regardless of the zoom factor.

angle View angle for a perspective view; must be between 0 and 180,

exclusively. It defines the maximum angle of a square-based viewing
pyramid, anchored at the eye point. By default the scene will be clipped
to 90 degrees.

epsilon Face Tolerance. Change the tolerance for rejecting faces that are close

to being back faces. Useful when faces are slightly warped and viewing
them edge-on results in a self-intersecting face which will be plotted with
varying results. Epsilon defaults to le-2 and should be between 0 and 1.

Default. Show edges and wires only.

Show only faces without edges. (Implies -hb).
Show all faces and edges. (Implies -hb).

Add backfaces

Default. Hide nothing, make no visibility checks.

Hide back-faces, i.e. faces with face normal pointing away from eye.
Hide ovelaps; remove back-faces and aii features hidden by overlap.
Hidden lines dashed (currently only for Gremlin files).

Label vertices.
Label faces.

Label wires.
Label all.

cemdfile Read options from file cmdfile.
inputfile Read input from file snput file.

gremlinfile Write an output file in Gremlin format (implies -gi -se), (currently

only line drawings can be produced); the number and type of edges
shown depends on the -h? option chosen.

Output device is Varian plotter.
Output device is Versatec plotter.
Output device is Imagen printer.

1983-12-30 1

UGPLOT (UG)

—da

—dr
—di

—8x number

-8y number

-kf

EXAMPLE

UNIGRAFIX User's Manual UGPLOT(UG)

Output device is AED 512 color display (set GRTERM).

Output device is Vectrix color display (se¢ GRTERM).

Output device is IRIS graphics terminal (se¢ GRTERM).

Output is for Ikonas frame buffer. A raster file called ‘“‘rast.iv’’ will
be created. This can be sent to the Ikonas with the 1v program.

x-size of plot is adjusted to fit into number inches. Default: width of
the display device.

y-size of plot is adjusted to fit into number inches. Default: height of
the dispiay device. On the Varian and Versatec plotters, the defauit
is 8 and 36 inches, respectively. Specified y-size can be up to twice
the default.

Keep raster files. Valid only with -dv or -dw. Useful if you want to
run off several copies of something. The raster file is of the form
“[usr/tmp/ugXDXXXX.” The name of the created raster file will be
printed to standard error.

Ugplot -sa -ep -1 2-10 -va 30 -dv -sy 4 < scenefile

FILES
“ug/bin/ugplot
“ug/src/uge
SEE ALSO

ugexpand (UG), ugisect (UG), ugshow (UG)

BUGS

Sometimes faces at points such as pyramid tops get wrongly sorted.
Gets confused by non-planar faces and by accidental coincidences of vertices in 3D space.

AUTHOR
Paul Wensley

Release 1984

1983-12-30

[™)

UNIGRAFIX MANUAL

-B- VERSION 84-2-2

Appendix B - Unigrafix Language Summary

A Unigrafix file consists of statements, starting with a keyword and ending with a semicolon.
Statements consist of lexical tokens, separated by commas, blanks, tabs, or newlines. The basic
statement types are:

vertices:
color:
wires:
laces:

definitions:

instances:
arrays:

lights:

include files:

comments:

Y

def

end;
i
a

1

include

{

ID zy:z;

colorID intensity | hue | saturation [translucency|]] s
[ID] (wlve..vn)(..)[colorID]}

[ID] (viv2..vn)(..)[colorID]}

defID

non-def-commands

[ID] (defID |colorID | |transformations]) ;

[ID] (defID |colorID | [transforms]) size [transforms];
| ID] intensity [z y z [h]]3 l

filename | transformations |

| anything {nesting is OK} but unmatched { or }] }

UNIGRAFIX MANUAL

VERSION 84-2-2

Appendix C - Formal Syntax Deflnition

This is an explanatory definition of the Unigrafix language. It is not an exact description of
what the language parser will and will not accept.

ugFile
command
primCommand

vertexCommand
wireCommand
faceCommand

lightCommand
colorCommand
definitionCommand
defStartCommand
defEndCommand
instanceCommand
arrayCommand
includeCommand
comment
emptyCommand
semi

id

Colorld

defsame

stringvar

illum
bhomogVector
3dVector
transformations

pumber
commentChar

{ command }
primCommand semi | definitionCommand semi

vertexCommand | wireCommand | faceCommand |
lightCommand | colorCommand | instanceCommand |
array Command | includeCommand | commeni |
empty Command

v id 3dVector

w [id] (id id {id}) { (id id {id}) } [colorld]

£ [id] (ididid {id}) { (id {id})} [colorld] |ilum] | <
homogVector > |

1 [id] intensity | 3dVector [number] |

¢ id pumber | number [pumber | number | | |
defStartCommand semi {primCommand} defEndCommand
def defname

end

1 id] (defpame [transformations})

a [id] (defname [transformations]) integer [transformations]
Include filename

{ {commentChar} [comment] {commentChar} }

9

stringvar

stringvar

stringvar

letter | sharpsign

{ letter | digst | underscore | sharpsign | period | colon }
number

3dVector number

pumber number number

-ax pumber | -sy number | -ss number | -sa number | -rx
number | -ry number | -rs number | -tx number | -ty number
| -tz npumber | -mx | -my | -ms | -ma | -M3 1 to 9
pumbers | M4 1 to 16 numbers

integer | real

any character except { and }

