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ABSTRACT

We present an application of the theory of Arnold diffusion to intercon

nected power systems. Using a Hamiltonian formulation, we show that Arnold

diflfusion arises on certain energy levels of the swing equations model. The

occurrence of Arnold diffusion entails complex non-periodic dynamics and

erratic transfer of energy between the subsystems. Conditions under which

Arnold diflfusion exists in the dynamics of the swing equations are found by

using the vector-Melnikov method. These conditions become analytically expli

cit in the case when some of the subsystems undergo relatively small oscilla

tions. Perturbation and parameter regions are found for which Arnold diflfusion

occurs. These regions allow for a class of interesting systems from the point of

view of power systems engineering.
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1. Introduction

We apply the results on Arnold diffusion of Holmes and Marsden [26] (see also [1, section

4]) to power systems. We note that the results in fact apply to all systems of the forced pen

dulum family such as interconnected power systems employing the swing equations model,

coupled Josephson junction circuits with negligible dissipation, a Josephson junction driven

by a direct current source (plus a small alternating current) coupled to two (respectively

one) nonlinear oscillators, and coupled mechanical pendulums. The precise calculations are

carried out here for a dynamical model of interconnected power systems.

In the dynamical behavior of a large interconnected power system, the question of tran

sient stability is often considered. This concerns the systems behavior following a sudden

fault (such as short circuit) or a large impact (such as lightning). The transient stability is

precisely the Lyapunov stability in a state space formulation of a simplified differential equa

tions model possessing multiple equilibria. Let the dynamics be given by x = f(x) and let Xq

be a stable equilibrium point which is presumably "closest" to the pre-fault equilibrium point

(see [32,9]). The transient stability problem is to determine whether a given point in the

state space belongs to the region of stability of this stable equilibrium point. Thus the tran

sient stability problem leads to an investigation of the region of stability of a given stable

equilibriumpoint [28,33,13,14,18]. Many studies of transient stability [28,33,13,14,18] have

been conducted exploiting a first integral of the differential equation as a Lyapunov (energy)

function.

Kopell and Washburn [29] were the first to show the presence of chaotic motion in the

classical swing equations model of power systems for a 2 degree of freedom system (3 gen

erators). Their work is based on the original Melnikov method for vector fields (see Holmes

[24]) and the energy function was not exploited to locate the energy levels where chaos

resides.

Here we show the presence of Arnold diffusion in the (n > 3)-degree of freedom Hamil

tonian system (with constraints) of the classical model. In the case when (n = 2) only hor-



seshoes are present. This case is analogous to the one obtained by Kopell and Washburn

except that we also specify the energy levels on which chaos resides, an advantage of exploit

ing the energy function.

The paper is organized in the following way. In section 2 we summarize the key result of

Holmes and Marsden [26]. Section 3 contains some motivation and the derivation of the swing

equations model. In section 4 we consider specific choices of parameter ranges to simplify

the model before applying the results of section 2. In this section we also study the Hamil

tonian formulation of the swing equations. They form a 2n degree of freedom system with two

time-independent constraints. In section 5 we show that the conditions of section 2 can be

satisfied for a large choice of parameters. These conditions can be simplified if all but one of

the subsystems undergo small oscillations. This case is discussed in section 6. Conclusions

and suggestions for future work are collected in section 7.

2. Arnold Diffusion in Hamiltonian Systems

In this section we summarize the results of Holmes and Marsden [26] for Hamiltonian

systems with n-degrees of freedom (n S 3). These results extend the work of Arnold [11].

Problem Statement

Consider the unperturbed Hamiltonian system

H°(q.p,x.y) = F(q.p) + G(x.y). (2.1)

where F is a Hamiltonian which possesses a homoclinic orbit ( q,p .) associated with a hyper

bolic saddle point q0,Po (one may similarly consider a heteroclinic orbit). Let h be the

energy constant of this orbit, i.e., F(q,p) = h. The parameters (q.p.x.y) are assumed to be

canonical coordinates on a 2(n+l)-dimensional symplectic manifold P; q and p are real and

x = (xlt .. . ,xn), y = (ylt . .. ,yn) are n-vectors. We assume that in a certain region of the

state space a canonical transformation to action-angle coordinates (/&l ^n^i In) can

be found such that the system (2.1) takes the form



H?(q,pAl) =F(q,p) +2 GA) (2.2)
1=1

where G|(0) = 0 for all j

and

OjOj) = *- >0 for Ij >0 (2.3)
3ii

Applying the reduction procedure (see Holmes and Marsden [25,26]), we solve H° = h for

In, thereby eliminating the action In. We also replace the time variable by the 27r-periodic

angle i3]r Then the equations

Gj(Ij) = h,
*, = QiOjMn +^j(O), j = l,...,n-l (2.4)

q = lo. P = Po

describe an (n-l)-parameter family of invariant (n-1)-dimensional tori T(hx bn-i)« For a

fixed set of hx hn_lt the torus T(hlf . . . .hn.j) is connected to itself by the n-dimensional

homoclinic manifold

GjGj) = hj
4, =QjOjMn +*j°. l^jsn-l (2.5)

q = qK-«. p = p(**-*S)

This manifold consists of the coincident stable and unstable manifolds of the torus

T(h|V . .. .h,^), Le.,

W(T(h, hn_,)) - YTdth, h.-x))
The perturbed problem considered here has the following form

H*(q.p,5.T) =F(q,p) +j^A) +pHl(q.p.*J) (2.6)
1=1

where H1 is 27T-periodic in #lt . . . ,i?n and jm > 0. For sufficiently small /x, KAM theory asserts

that (under non-resonance and non-degeneracy conditions given below) a positive measure

of the (n-l)-dimensional tori T(hlt . . . ,hn^) persists (see Arnold [12, appendix 8]). We

denote these tori by T^(hlt . . . .hn^). Their corresponding stable and unstable manifolds



W(TjJ. respectively W*I(T|J. are Ck close, ka 1. to the unperturbed homoclinic manifold

TOh, h^)) =TT(T(hi h„-i))

Let h > h be the total energy of the perturbed Hamiltonian H** of equation (2.6). Now

consider the n-parameter family of orbits filling the unperturbed homoclinic manifold. Let

(q.p.tfi,...,^ In) = (q(t)ip(t).Ol(I1)t +O? nn(In)t + <&£& In)

be the parameterization of these orbits and select one. Let F.H1} denote the (q.p) Poisson

bracket of F(q,p) and H^q.p.i?!,...,^,!! In) evaluated on this orbit. Similarly let

IlcH1 3H1
' = — —— , k = 1, • • • ,n—1 be evaluated on the same orbit. Then define the Melnikov

vector M(<3°) =(Mt, . . . , MnHLlMn) by

Mk(i>? <h,h! hn_i) := jrJlkiHlJdti k=l,...,n-l (2.7)
and

MnW tfS.h.h, h^) := f F.H^t.
where the integrals above are required to be, in an appropriate sense, conditionally conver-

Ttt

gent. That is, they mean lim f for suitable sequences Sn, Tn -» «.

Consider the following conditions:

(CI) F possesses a homoclinic orbit (q(t).p(t)) connecting a saddle point (q0.Po) to itself. Let

h be the energy of this orbit.

(C2) fyy = Gj'Oj) >0 for j = 1 n.

(C3) The constants Gj(Ij) =hj, j = l,...,n are chosen such that the unperturbed frequencies

Oi(Ii) Qn(In) satisfy the non-degeneracy conditions (i.e., Qj'(Ij) ?* 0, j = 1,. . . ,n ) and

the non-resonance condition, i.e., the equation



a.

^kiQiOi) = 0, where kj are integers, implies kj = 0 for ail l^i ^n.
1=1

(C4) The multiple 27r-periodic Melnikov vector M : Rn •* Rn has at least one transversal

zero, i.e., a point (i>J°, . . . ,$£) such that

Mw fl = o

and

det[DM(i>;° tf;°) *0.
where DM is the nxn Jacobian matrix of the vector M with respect to the initial phases

(*? *2).

We can now state the main result.

Theorem 2.1 [ Holmes & Marsden ]

If conditions (C1)-(C4) hold for the perturbed system (2.6) then, for jj, sufficiently small,

the perturbed stable and unstable manifolds W(T^) and "n (T^) of the perturbed torus TM

intersect transversally. Moreover, a finite transition chain of such tori TM T^ can be

chosen such that ^(TJj^W*(T^1) and W^T^TfiW^Ti) , l*j*k-l.

( 7n denotes transversality of the intersection) The transition chain of tori are responsi

ble for the occurence of Arnold diffusion. Holmes and Marsden suggest that these transition

tori can survive certain positive and negative damping, employing a technique which they

had developed in [25].

An example which illustrates Theorem 2.1 is that of a simple pendulum linearly coupled

to two nonlinear oscillators. Its perturbed Hamiltonian function can be written as follows

(with the two oscilators in action-angle variables ),

W=\- ~COS(l +GiOi> +G*(l*> +<f>
i_ l.

((2I1)2sint>1 - q)2 + ((2I2)2sinfl2 - q)2

One shows that conditions (C1)-(C4) are satisfied for this systems by direct computation.
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3. The mathematical model

We introduce the simplest model of a power system. The equations resemble a system of

differential equations describing a set of coupled pendulums with constant forcing. Recently

[9,10,16,17,32] this model has been subjected to serious theoretical analysis to assist in
understanding its dynamical behavior.

The model consists of three main components: generators, a transmission network and

loads (fig 1). We assume that the transmission network has (n+m) nodes numbered

l,...,n,n+l,...,n+m with 0 as a reference (datum). Agenerator is connected to each node 1

through n. while an impedance load is connected to every node (fig :i).

We perform a standard network reduction on the network, retaining as nodes only the

internal nodes of the n generators. The swing equations which express the generator dynam

ics under the assumptions of constant rotor winding flux, constant mechanical torque, and

the absence of voltage regulaters are as follows (see [6,19,32] for derails).

Mi dT"1 + Di "i =Pnd - PeL i = 1 n
where

Mjf : inertia constant

Djc : damping constant

Pmk : constant mechanical power (torque) input

Pek •* electrical power (torque) output demanded by the network

<5k : the angle of the internal complex voltage or the torque angle of the k^ machine.

«k : the rotor angular velocity of the k111 machine

Or : the reference frequency of the power system (usually wr = 27r60 rad/sec)

The electrical power output is a function of the angle differences as follows,



Pei := G„Ef + jEjEiYijCosOy - a, +<5j), i =1 n

where Gy, Yy, 0^ and Eit are all constants, defined as follows,

Et : the magnitude of internal complex voltage (the magnitude of voltage behind the

transient reactance).

Yij : the transfer admittance magnitude between internal nodes i and j.

0q : the transfer admittance phase between internal nodes i and j.

Gjj : the total admittance at the internal node of generator i.

Assume 0jj = — and assume also that the damping constants D| = 0.

If we define Pj (:= P^ —GuEi2 ) to be the exogenous specified mechanical input power and

denote the constant quantity EjEjYjj =: y^, then we may write the swing equations for machine

i as

$i = Qi-WR (3.1.i)

Mjw, =Pi - 2yy sulfa, - tfj) (3 2jj

We note that the system of equations (3.1), (3.2) describe an n-degree of freedom Hamil

tonian system with the energy function:

i=l c i=l i<]

This energy function is Hamiltonian on the covering space R2n, but only locally Hamiltonian

on the "true" space RnxT™ where the ^-are considered modulo 2n.

The energy function "W" has been utilized as a Lyapunov function to determine an esti

mate of the region of attraction of a stable equilibrium point of the swing equations (see Wil-

lems [41], El-Abiad and Nagapan [18], Fouad [19], Pai [32]).

Assume that the mechanical power produced is totally absorbed by the network, i.e..
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n

,?,Pl =°- (3-3)
Summing up equations (3.2.i) gives

1=1 1=1

Integrating with respect to time gives

n

2Mi«iCt) =Cj (constant) (3 4)

which when evaluated at the initial time t=0 equals

JCM^O) =d.
i=i

Using equations (3.1) and the constraint (3.4), one obtains

£llA(t) =C, - ajR^Mi. {3 5)
1=1 lKl V ' '

Let us define the total inertia of the system to be the sum of the individual inertias, i.e.,

M-fjMi.
i=i

Integrating the constraint equation (3.5) with respect to time, we obtain

t^A(t) =Cxt - (wRM)t +C2. (3>6)
Rewriting the constraints (3.4) and (3.6) and replacing the constants by their values one gets

SM,fi),(t) =JltoCO) (3.7)
i=i 1=1 v '

JL n

S^iW = EMA(°) +1 2*^(0)-Mwr
1=1 1=1 li=i

Equations (3.7) and (3.8) are time-dependent constraints. We make a coordinate change to

transform these constraints to time-independent constraints, thus simplifying the system of

equations. These constraint equations reduce the space of the dynamical motion by one

degree of freedom or two dimensions, as is seen below.

Define the following transformation.

(3.8)



1 n

Mj=l

6\-* 6*i = <5j + t «R - fEM^j(°)
Mj=i

where we have employed the so called center-of-angle reference frame without transforming

9

to center-of-angle coordinates. Our transformation is analogous to the one utilized by Kopell

and Washburn [29] except for the factor of (1/M),

With this transformation and dropping the overbars we can summarize the autonomous

swing equations with constraints as follows:

<5i = «, (3.9.i)

n

M^, = Pj - 2>qsin(d| - <5j). 1< i <; n, (3.10.i)
1=1 v '
J*

with the time-invariant constraints

SMiSi = 0 (3.11)
i=i

2^1"! = 0 (3.12)
l=i

and the energy (Hamiltonian) function

W=2 hn^f - fjPA - SSviJcos(5i - *j) (3.13)
i=ic i=i i< j

From the constraint equations (3.11) and (3.12) it is observed that the system can be

reduced by one degree of freedom. This procedure of eliminating a degree of freedom by

making use of a conservation law is a special case of the procedure of reduction; see Abra

ham and Marsden [4, ch.4].

4. Perturbation and Scaling Parameters

We begin by choosing "transfer" parameters for the swing equations model.
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4.1. Transfer susceptance parameters

Choose the coupling parameters y^, i,j = 1,2, . . . ,n-l to be very small (i.e., weak cou

pling) of order e , s >0, (how small emust be, is determined later). Let (recall yn =y^)

yjj = eBjj 1 ss i,j «s n-l i * j
and

vin = Bin 1 sS i s n-l.

Then our system of equations becomes

»

5k = uk 1-sk^n (4.1.k)

(4.2.i)

n-l

MjWi = Pi - e 2 BijSin((5i - <*j) - B^sin^ - t5n) 1 «s i < n-l

n-l

Mn<yn =Pn - 2 BnJsin((5n - (5j) (4>2>n)

with time-invariant constraints

EM,<J, =0. or (Jn=-,g1^Ltfj (4.3)
1=1 1=1 Mn ' K '1=1 Js

2M,«, = 0, or on = - 2 Ir WJ
1=1 j=i Mn

and the Hamiltonian

^ <*i **»!. ••••»J = 2 l-Mjwf +±Mnug - 2 Pj<5j - Pn<5n
i=i * « j=i

- e2 Bijcosfo - <Jj) - 2lBjncos((5j - tfn)
i<] J=i

4.2. The case of uncoupled machines

Consider the case e = 0. This corresponds to machines l,...,n—1 are connected to

machine n but not to each other. From (4.3), (4.4) and (4.5),

WVi «n-i."i «n-t) ="f |-mjUj2 +i-M. -"s lr*k
J=l « 2 I k=l Mn .

(4.4)

(4.5)



"r1 n-l Mv I n~l

1=1 U=iMn J i=i
*i + S ir«k

k=l %

11

(4.6)

Our next main concern is to evaluate the effect of the two states <5n and on on the rest of the

system. These states are functions of the rest of the states subscripted 1, .. . ,n-l via equa

tions (4.3) and (4.4) and thus they produce the coupling of equation (4.6).

wn and 6n shall be restricted to be periodic with small amplitude. This implies that the

coupling Hamiltonian of equation (4.6) shall be of the same small order and hence one

obtains the Hamiltonian formulation q?. Arnold diffusion as in section 2 (see also [26] and

[1]). In the power systems context this amounts to considering the effect of the largest

(infinite) machine on the system.

4.3. Determination of the Critical Set

We now locate the critical points of the energy function "Vv . They must satisfy the fol

lowing equations.

ifa

a(Mjt)j) " Mj
dwn

M^ + Mn„n—- = 0

36, =-Pi +Binsin(i5J-(Sn) + d6r

d<5U

n-l

-Pn- 2BinSin(«5!-5n)
1=1

= 0.

n-l

Recall from section 2 that Pn = - 2 Pj , so we may write the critical set equations as follows.

dlf x« Mk

— =-Pj+Bjnsm(tfj+2—tfk)-^

or in a matrix form

1=1

(4.7.J)

= 0

(4.B.J)



[_alU
a(M,«j)
aWl

4 o

0 5
wj

n=l Mr,
- Pj +Busing + Ett^A)

ksl^

with the elements of A given by

= 0

M, Mk
ajj =* + g"" and ajk = jj- for all j,k and j*k.

Similarly, the elements of B are

Ji = M Jk = M for aU J'k and J* k*

Therefore the 2(n-l)x2(n-l) matrix

A 0

0 B

is nonsingular with determinant > 1. Thus equations (4.7) and (4.8) are equivalent to the

following simpler conditions:

12

"1 =° (4.9.i)

n-l Mi,
P, - Binsin(5i + 2 TT6*> =°» 1^i^ n-L (4.10 i)

k=l Mn v '

t . . *£$ Mk
Let A, := di + 2 T7^ok, and define

k=lMn

to be the mod-(27r) constant "angle" such that (4.10.i) is satisfied for all i = l,...,n-l. Assume

that the point ((Af.O), i = 1 n-l) is a local minimum of the energy function W (or a stable

point of the differential equation, see [8,16,37] for a detailed treatment of the critical set).

One can verify that every point of the critical set is non-degenerate (the Hessian matrix of

it is nonsingular).

We remark that the Af, i= 1 n-l, uniquely determine the 6$, k = l,...,n-l, i.e., the

matrix defining the linear map (<5f. . . . ,6^) ->(Af. .. . .A^-J of (4.11) is invertible.



Let us now define as new state variables (jl,li) where

jl = (<jlt .... an-i) , with ak = <5k - 6% 1 ^ k <: n-l. and

£1 = (wlf . . . ,o;n_j) is the same as before. Then we rewrite the Hamiltonian as follows

He*.*) =2 TMirf +jp*1=12 k=lMn

-^Vi +Pn
i=l k=lMn

n-l

i=i

with H(0,0) = 0.

cos((T, + 2 TT-ffk + -V) - cos(Afl
k=lMn

13

4.4. The Choice of Constants (Parameters)

Suppose Mn_! « Mlt . .. ,andMn_2 « Mn. Let us express this condition by introducing a

nonzero small parameter a such that

Mn := -j~, Mn_! :=Mn_lf and M, := -~
CL a

1 ^i^n-2

where the overbarred quantities are of the same order ( 0(1) ) and M~ is large. Denote

J"i = 1 <> i *? n-2

M„-i
A*n-i = a/^n-i = «•

Mr

Note that for an infinite machine (i.e., Mn or M^ -» « ), we have ^ -» 0, 1 ^ i ^ n-l. We

further require that each "large" machine is connected to the n-th machine via a "strong'

line (see fig 2), i.e., we let

Bi
Bin = —. 1 ^ i ^ n-2 and Bn_l#n = B^

Correspondingly let

Pn ="f. P,= 5". l*i*n-B and Pn_, =p,.,.
Let/i = (/t, fjn-n.jin-i). and rewrite the Hamiltonian function as



G*.«)
H =ili2-T^+2-M^^ +F^

n-« P4 „ p

- 2 "fffl - Pn-l^n-! +-f-
1=1 a a

n-l

2 «Wk
k=l

n-l

« 2^k^k
k=l

rl ai=l

n-i

cos(oi + a 2 Wk + Aft - cos(Ais)
k=i

-Bn-i
n-l

costal +«2Wk +A".!) - cos(A^_1)
k=l

14

(4.12)

One may observe from (4.12) that the coupling between subsystems 1 n-l is due to

the states <Jn and wn of the n-th machine. That is, if M~ = » then the parameters

/i,k = 0, k = l,...,n-l and one obtains the decoupled ('unperturbed') Hamiltonian. For nota-

tional simplicity let fit = • • • = /x^ = JIn_1 = M.

The unperturbed Hamiltonian (/z = 0) is

H(0.a) n-2 i M, _ n-2 p, n-2 R r ,
=2 J-±°? - S 7T"' " 2 ~t 00.(01 +Aft - oos(if) +

i=l 6 a 1=1 a 1=1 a l J

(4.13)

g-^n-l^n-i - Pn-l^n-1 - Bn-i ^cos(orn_1 +b*_x) - cos^-i) '

We note that the perturbation affects the critical set: the unperturbed system has the point

(A? A5-1.-Q-) as a critical point. But after perturbation this critical point is transformed to

the point (<Sf. . . . ,6£-vn.) via equation (4.11). Thus it is necessary to use the Melnikovversion

developed by Holmes and Marsden [26].

The perturbation parameter is /z, and the purpose of the parameter a is explained as fol

lows. The unperturbed (i.e., fi =0) Hamiltonian system describes a system of pendulums with

constant forcing. The phase portrait of each of its subsystems is thoroughly discussed in

Andronov and Chaikin [7, p.293]. Under the assumptions that Pj <Bj, 1<j<n-l, one

obtains the phase portrait for each subsystem j as in fig (3).

The parameter a is selected to boost the energy values of the level curves of subsystem

i, 1 s* i^ n—2, compared to the energy values of the level curves of the subsystem n-l. More
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precisely let the energy constant of the separatrix (or homoclinic orbit) of subsystem n-l be

h. Then one chooses a small enough such that the total (system's) unperturbed Hamil

tonian, with an energy constant h > h and h close to h, possesses solution curves which are

cross products of one homoclinic orbit (that of subsystem n-l) and (n-2) closed orbits (those

of subsystem i, 1 ^ i <1 n—2).

As a consequence of this choice of parameters, the Hamiltonian system will satisfy the

first three conditions of section 2 (Le., (Cl)-(C3) ). Also note that the combined subsystems

i, 1^ i^ n-2 admit, implicitly, action-angle coordinates (see Arnold [12, pp. 285]).

We now scale the perturbed Hamiltonian H^-a\ (equation 4.12), by multiplying through

by (=-), where Mj: 1 as j <; n-l are of the same order (0(1)) (for clarity, assume all M, are the
Mj J

same). We expand in powers of the small perturbation parameter jj, to obtain the following

(expanded) Hamiltonian.

H* =2 J"!2 -Pi*i " ft[cos(<j, +Af) - cos(Ais)]
»

jT^!-! -Pn-l^n-1 -fti-llcosfan.! +A^) - COs(A£_!)]+ a

+a^F
n-2

2«i + awn--1
1=1

n-2

+ o/i2ftsin((j1fA18)
i=i

+ ajj,
n-2

i=l

n-2

2°k + a<rn-i
k=l

+ 0(a2/Lt2)

+ 0(aV)+ aV0n-i sin(an_1 + A^-i)
n-2

2<Tk + a<7n-l
k=l

(4.14)

where pk = Ffc/Mip /Jk = Bk/Mk and so on.

At this point one may identify the subsystems as follows:

(A) The subsystem (n-l),

aF(ffn-l.ttk-l) =«(-&>*_! -Pn-^n-! - /Sn-lfcosfa^ +AJ-j) - COsfA^J])

(the Hamiltonian of a pendulum with constant forcing), which possesses the homoclinic orbit

denoted (an_!, a^) and shown in fig(4). Let ¥(0^,0^) =h.



(B) For each i, i = 1, . . . ,n-2, the subsystem(i)

Gifo,^) =—«i2 -pl0i -/3i|cos((Ti +Af) -cos(Aia)l
which is a nonlinear oscillator with amplitude-dependent frequencies (this is a property of

the closed orbits of a pendulum phase portrait (see fig 5 )). Denote a solution curve of the

oscillator i, which is a projection of a homoclinic orbit of the total unperturbed system on

the subspace i, by ((fySJi).

(AB) Finally we identify the terms of order fj, as a perturbation energy function, H\

Rl =ia
n-2 12
2 "i + a Wn-!

1=1

+ a

n-2

2pn0i + apno-n_1
i=l

n-2

+ a2Asin(ai + Ai8)
1=1

n-2

2ffk + a*n-l
k=l

+ cfo-^sinfo-! + AJ-0
n-2

2^k + aCTn_!
k=l
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5. The Existence of Arnold Diffusion

We now investigate whether the conditions of section 2 can be verified. First one notes

that the solutions of each subsystem i, 1 ^ i^ n-2, are all closed orbits. Thus the solutions of

the combined (n-2)-subsystems lie on (n-2) dimensional tori and a transformation to action-

angle variables is possible. In fact for each subsystem i the action is

TBBflC, _

(8.1.1)
i r — i*~Ii(hi) = — / 2(hi +pi(7i +ftcos^ + Aj8) 2dcTj

jSuL

where

h, := h, - cos(Ai8) , h, < -p^TT-Afl + ftcos(Ai3)

hi is the energy constant such that Gi(o,i,wi) = h|

^W^W^ is the maximuni (minimum) value of at at which the energy level curve,

Gi(o"i, wj = ht crosses the a^-axis.

If Pi = 0, the integral (5.1.i) may be transformed into an elliptic integral which can be

looked up in Integral Tables.
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Secondly, the frequencies fy of the closed orbits of each subsystemi, 1£ i < n-2, are

ampUtude dependent. Therefore one may select energy constants Gifo,^) =hit 1^ i <= n-2,

such that these frequencies are rationally independent. Thus the first three conditions of

section 2( (Cl), (C2) and (C3) ) are clearly satisfied. Now we seek to satisfy condition (C4),
so we compute the Melnikov integrals.

Using the perturbed Hamiltonian H* eqn. (4.14), and evaluating the integrals along a
homoclinic orbit (&l ^.s^ u^). one obtains

ff mA ili-J G„H dt =/-c3i a( - ftcosfo + Ai8)

+ a

'n-2
^Pj-ftsin^j +Af)

n-2_
2 ffk + a^n-1

k=l

+a2(pn-i - /?n-i sulfas +A^_i)j)

+ a

n-2_
2"k + awn_1

k=l
[pi-/?iSin(ai+Ais)]dt

(5.2.i)

We note that onlya product of the oscillators variables (subscripted i, 1ss i «s n-2) with

the homoclinic orbit variables (subscripted (n-l)) would produce nonvanishing terms.

The Melnikov integral measures the separation between the stable and unstable mani

folds bymeasuring the energy differences along two curves which are, respectively, asymp

totic to the invariant torus as t -* « and t -> -«. Because these curves need not be close on

the torus, the limits of integration must be chosen carefully. Such terms arise from products

of oscillator variables in (5.2.i). These terms are zero when the appropriate limits are

chosen, and so may be omitted from (5.2.i) - see appendixA (A similar phenomena occurs in

the pendulum oscillator example of Holmes and Marsden [26] although they did not discuss

it]). Hence the integral of (5.2.i) above reduces to



M, =/ y»2
— a

-«2

^-[pi-Asin^,+ Ais) *n-i +a2 [Pi - ftsinfo +Ai")

a2[pn-i - ^n-isin^.i +A^Jc*

«n-l
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One may divide by a8 to obtain the Melnikov integral independent of the (scaling) param-
/N*

eter a. Letting Mi = —~,

Mi =/ ~-[pi - ftsin^CWt - ti)) +Af) ffn-ift.)

Pi - fcsinfa(0,(t - ti)) + Af) S^t)

" [Pn-i - fc-i sin(crn^(t) +A8_1)]wi(Qi(t - tj))
where the variables ait ^ are periodic in t, and with (amplitude dependent) frequency Qj.

Note that a^t) = — a^t). Similarly, along the same homoclinic orbit

((7j. .. . tWn^i,cSit . .. .SJn_i) one confutes

Mn-,: dt

dt

=/F.H'

=/ - aSn-i |a2( " Ai-i cos^.! +A8.!))
n-2_
2 °k + aCTn_!

k=l

+ a*

+ ex<

n-2

^Pj-ftsinfaj +Af) +«3(pn-i -/3n-i sin(an_1 +A8-!))

n-2

2 "k + awm
k=l

a(Pn-i - fti-i sinfe-! +A8-!)]dt.

(5.3.i)

(5.4)

As before, products of oscillator variables can be omitted and so only a product of variables

of subscripts (i = l,...n-2j and {n-lj contribute to the evaluation of the integrals. Hence the



Melnikov integral reduces to

fiL
to >

-a3

-a3

+ a3

^-[Pn-l - Pn-1 Sin(orn_! +A£_i)j

1-2 / \

2 [Pj -ftsin(aj +AfJj&Jn-!
n-2

2

n-2

2*k
k=l

n-2

2 (Pn-1 - fti-1Sin(ffn_! + A^-J) Qk
k=l

dt
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which shows that the Melnikov function can be made independent of ci, (a does not affect the
/s*

transversal zeros), we therefore scale the Melnikov integral as follows. Let Mn_! = —Tp-, so
afc

Mn-i =2/ - ^[pn-i -/?n-i sin(an_1 +A8_0] ak(Ok(t-tk))

+[Pn-i - 0n-l Sin^-! +A^_1)pk(nk(t - tk))

- [pk - 0kSin(ak(Ok(t - tk) +Afi ]wn_x(t) dt
We may now state the following result.

(5.5)

Theorem 5.1 : Let h > h be such that the subsystems i, 1 ^ i ^ n—2, possess closed orbits only.

If the Melnikov integrals defined by equations (5.3) and (5.5) possess at least one transversal

zero, then, for a sufficiently large machine Mn (i.e., for jj. sufficiently small), Arnold diffusion

arises on the energy level h.

Following remark 4 on p. 672 of Holmes and Marsden [26] (which is due to Weinstein) it is

noted that transversal intersection of the perturbed stable and unstable manifolds of the

invariant tori occurs for almost all Hamiltonian vector fields. We note that our system has a

specific vector field even though there is a freedom to change parameters (e.g. pj, fy, etc.).

Thus we must test explicitly if the Melnikov integral equations possess transversal zeros.

Remark: One may consider the Fourier expansion of the closed curves ak,wk. k = 1, . . . , n—2,

up to any integer J, as



ak(nk(t-tk)) m2ajCos(jnk(t -tfc))

and

J r

« 2»j cos(jOkt) cos(jnktk) +sin(jQkt) sin(jQktk)
j=i l

<3k(0k(t-tk)) « 2 -jnkajSin(jQk(t -tk))

J r i* 2(-JaPk)[sin(jnkt)cos(jnktk) -staGCWkJcosGOkt)].
3=

This expansion seems useful for computational purposes when the unperturbed solu

tions ffk ,wk are not available in a closed analytic form. Of course one should obtain an upper

bound on the error for this approximation to be meaningful. In the case when the amplitude

of the periodic solutions are very small one can approximate these solutions by the first

terms of the Fourier expansion, with some small error term. This is treated next.

8. A Restricted Case to Small Osculations

If one requires that the solution orbits of each unperturbed subsystem if 1 £ i «5n-2, is of

a sufficiently small order of :3iagnitude, then one can derive explicit conditions for a

transversal zero.

Consider the original Hamiltonian equation (eqn. 4.12) (before scaling in a). Assume

that a is sufficiently small and that the closed unperturbed solutions of each subsystem i,

1 £ i «; n—2, is of order a in magnitude, Le., one may substitute aai (respectively, a^ ) for

ai (respectively, «, ) for all 1 -S i *? n-2. Let^.j. juk = fj., k = 1 n-2. After cancella

tions and collections of terms we obtain.

n-2 1 n-2

H£ =a2~M,<y? + <x2
1=1 a i=i

t —

-~cos(Ai8)<7i2

+a2^ BiCos(Ai8) ((Ti^Vk) +0(aV)
1=1 k=l

+ jlln-ifi&i -Pn-i
n-l

*n-l +a 2^^k
k=l

20



-B»-,
n-l

cos(an_1 +A8.!) -cos(A8_1) -a2( 2 M*k) sinfo-! +A8_t) +0(*V)
k=i

+|-a2Mn
n-l

2M"k
k=l

where 1 = 1 and s = 2. We may write the Hamiltonian in a scaled form.

it2i _ n-2/ %~.2nZ? 1 - n-K / \ ar

H£ =a2 |-*>i2 +a2 UnC°sA,8R-
i=i * i=i*• ' *

n-2

a22 ^m°os(Ai8) (m cr^ ak) +0(aV)
1=1 k=l

^ 1 Z+ —^l-! -pn_3
n-l

*n-l +«M2(Tk
k=l

-/?n-l.n

n-l

cos(an_1 +A8^) -cos(A^_1) -a2(/.i 2 *k) sinfo., +A8^) +O(aV)
k=i

+^-aV
n-l

k=l
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(6.1)

This formulation is particularly interesting since it resembles Arnold's first example of

"Arnold diffusion" (see Arnold [11]). We shall show that the Hamiltonian, H£will meet all the

requirements of section 2.

One may consider /zasa perturbation parameter which couples the Hamiltonian system,

and a as a small (nonzero) parameter which measures the "size" of the neighborhood of the

stable equilibrium point of the decoupled (ji = 0) subsystem i, 1 =? i ;S n—2, within which solu

tions are restricted.

For a fixed a > 0 set fj. = 0 to obtain the decoupled system. We note that the nonlinear

oscillators are amplitude dependent due to higher order terms in a.

Again one may identify the subsystems as follows.

(a) the subsystem n-l with Hamiltonian

*W-i."n-i) := |-«£-i -Pn-i^n-i ~^.^[cos^.j +A8_t) - cos(A8_1)|
possesses a homoclinic orbit ( an-i, «„_!) of energy level Ffo-j. wn-i) = h. and



(b) each subsystem i, i = l,...,n—2, with Hamiltonian

Gi(di.«i) =a(|^ +(/3inCos(Ai8)) ^L) +0(a2)
is a nonlinear oscillator. Note that 0(a2), which is independent of /*, is responsible for the

amplitude dependent frequencies of which

(ftnCos(A?)f
is the first term of the Taylor expansion.

(c) The coupling Hamiltonian is the following function of fi and a

n-2 n-l

H» = fill1 = a2 2/^inCos(Ai8)ai 2 *k
1=1 k=i

_ n-l n-l

- own-! 2 °k + aV2 *k /?n-ijisin(crn_l + A^_i)
k=l k=l
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+i«V 2«k
k=i

+ o(«y)
si J

where s = 2 and 1 = 1.

We now compute the Melnikov integrals along a homoclinic orbit (Z)lt . . . ,Z?n_i ,T?i» • • • »3n-i )•

S)% =f GfrHUdt(i

=/ c1'
k=l

Ol- -^toCos(Af)2»k + 0>i

+Sj. [pn-i - /Jn-1 jxSintffn-j +A^)

n-l
+ (25k)(AnCOs(Ai8)iji)

k=l

dt

-n2ftnCos(Aj8)jj
J=l

(6.2.i)

Integrals of products of oscillators (subscripted 1 ^ i <? n—2) vanish as before, so (6.2.i)

reduces to (see appendix A)

% =f ((/3inCOs(AJ3)) [- Sjffn-! +©n-^i +B|[pa-i - $n-\jL*^n-\ +̂ -l) ]]dt

Noting that Oj = Aksin(Qit) + 0(a), first substitute in the Hamiltonian equation (6.1), then



rewrite the Melnikov integral as

i =7JG1,H1|dt

f=(AnCOs(Ai8) [(cJn-iAicos(nit)]^ cosfiiti +[ffn_1Aisin(nit)]^>sinniti

/v, -QiAjSinQit dt cos(niti)

/Vr -QiAiCosO^t dt sin^ti)

where we have used

d__ ^__

and

vi = -2(/?incos(Ai8)an-1 +pn_j - fc-uxsin^^! +A^).

Similarly, one computes the following Melnikovintegral

F.H1
i 4

S>n-l

dt(2)1^., =/

OB

~ /?n-i.nCOs(an_1 +Ll-X) 2 Ok - 2 (ftnCOsAf) ffj
k=l J=i

+ (Pn-l - fti-i, sulfa.* +A8^)

n-l

- ( 2 «k). (Pn-l ~ jSn-l.nSinfa-! + A8_x)
k=l

which, with pn_, := pn_x and /?n-1 := 0n_l#n , reduces to (see appendix A)

-§[• [Pn-i "Ai-iSinCzfa^ +A8_j)] Z7k

- [Pn-i -&-1sulfas +A8-!)]^ - /3knCOs(A0£Jn_1CTk] dt
by direct computations and noting that ak(t -tk) =Akcos(t-tk). one obtains

[n-2 • t
n-l -S/

k=l-»

dt
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(6.3.i)

(6.4)



Kln-i = 2 [|Pn-i -fti-isinfa.i +A^.J AkCOsOfct] cosnktk
k=l Vl ' *

+([Pn-i - Ax-isinfa.! +Ll-i) AksinOkt]_wsinQktk

+ 2 /[Pn-i -^-.isinfa.j +A8.!) QkAfeSinQktdt

- 2/[Pn-l - /?n-lSinfa-l +An-OjOfcAfcCOSpfctdt

- |/(^knCos(AkO)&>n-iAkcos(nkt)dt

00

/(^knCos(Aa)Sn_1 Ak sin(Qkt)dt

From appendix (A) and eqn. (6.3.i) one obtains

Kli(ti) = aucosQiti + biisinQiti

cos(Qktk)

sin(nktk)

cosQktk

sinOktk
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(6.5)

(6.6.i)

where an, bfX are nonzero constants for all except a discrete set of frequencies fjj. Thus, Mi

has isolated zeros in tj (two in each period 2(-pr-)) Also at these (isolated) discrete zeros,
"i

6%
dtt

&0. Indeed, we set Mi = 0 in (6.6.i) to obtain

tan(njt;) = - an

Let us define sin(Qiti*) = — an

M + bg]*

n,t,* = - tan-Kr1") +mod(7r)
Dii

Thus

. Eqn (6.7.i) gives

i /a. ♦

dtj
(V) = —auniSinQiti* + 0^0080^*

^•(O-ftlVSirTEIj^o

(6.7.i)

(6.8.i)



•c^ dM*
Therefore, for almost all frequencies Qit Nli(t!) = 0 and -zrHXi) * ° on the set

04

ti*eR I (6.8.i) is satisfied
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(6.9.i)

From appendix A and equation (6.5) it follows that

Bn-ifti. •••.^-3.^-2) =2 an-ijccos(0ktk) +bn.l>ksin(nktk) (6.10)
k=l

where an_1#k , bn_ltk are nonzero for all k, 1 ^ k ^ n—2.

To obtain a transversal zero for the (n-2)-vector M we observe that

$£(ti ^.a) =(fflj ftn-J5L-J
has the Jacobian determinant

det[Dffl] =li3#.#^- (8.11)
k=l 9tk OtjiHg

This follows since Mk is a function only of tk, k =1 n-3, hence the Jacobian matrix DM

is a lower triangular matrix. Thus, if a transversal zero tk of each Mk , k = 1 n-3 is substi

tuted into (5.10), then one would only require that the Melnikov function of (6.10) possess a

transversal zero in the variable tn_i. In this way, (6.11) will be trivially satisfied and it then

follows that the vector M has a transversal zero.

To establish these claims, First substitute in (6.10) the transversal zeros t^.tg, . . . ,t^_3

of Mk , k = l,...,n—3 and obtain

k=l M, +bft)«
where we have used the following two equalities obtained from equation (6.7),

sin(Qktk) = — j- and cos(Qkt]J) = + — -
0*+bfe>« Mi + b&)«



Thus for Mn_! = 0, one requires

' ""' (afc + bft)*
Taking derivatives of (6.10) with respect to t^,

n-3

= 2
k=l

_ aklbn-lJc -bklan-lJc
~~ 1

To ensure that (6.13) does not vanish, we require that

cosnn_2tn_2

sinCk-aVg

c°s0n-2ta-2
sinfin-2tn-2 **i

where kjcR, thus

Theorem 6.1 :If equations (6.12) and (8.14) are satisfied for some (t^) then, for a

sufficiently large n-th machine (MJ, Arnold diffusion arises in the Hamiltonian system (6.1)
on every energy level h > h and h is near h.

We note that equations (6.12) and (6.14) are in fact satisfied by discrete values of tn_2.

If one requires that the sum in (6.12) vanishes, one obtains the following condition,

^-13-2

bjx-lA-8

cosfin-atn-*
sinQn_atn_2 = k8 bn.-l.n-2

~"an-l,n-2
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(6.12)

(6.13)

(8.14)

where k2 is a nonzero real constant. Then equation (6.13) becomes

0®£n-i r, „ i-Jt^- =k20n-2[<bn-l.n-2)8 +fa-^)2] *0

Therefore a sufficient condition for the Melnikov vector fit to possess a transversal zero is

nf? akl bn-1Jc - bkl an-tM

k=1 <afi+b£)*
or equivalently (using equation (6.12) )

tan(nn>2tn_2) = -

We state the following
bn-l.n-2

(AA)

(BB)
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Corollary: If equation (AA), (or (BB)), holds, then for sufficiently large machine (Mn), Arnold

diffusion arises in the Hamiltonian system(6.1) oninfinitely manyenergylevels h > h.

7. Conclusions

Theorems 5.1 and 6.1 can be extended to the case when the small parameter s (see sec

tion 4.) is nonzero. This is possible as long as e is in the order of fj* (i.e., 0(e) = 0{fJLz)) and

thus it will have no effect on the existence of transversal zeros. This follows since the Melni

kov method respects only the first terms of a perturbed solution expansion in a power series
in. fi.

Our results ensure the presence ofhorseshoes (andhence chaotic orbits) in the special

case of the two degree of freedom swing equations (three machines). This is similar to the

case considered by Kopell and Washburn [29].

Holmes and Marsden [26] have developed a technique which maybe employed to show

that, on certain energy surfaces, Arnold diffusion can survive suitable positive and negative

damping perturbations. It would be interesting to see if this technique can be applied in the

case of the linear damping of the swing equations (i.e., Di * 0).

We finally summarize our conclusions and suggestions for future work in the following.

(A) Theoretical work: (1) In Melnikov integrals for n degree of freedom systems terms due

only to products of oscillators may arise. These terms are not a measure of the separation

between stable and unstable manifolds. They, rather, measure asynchronous distance

between the oscillators. This phenomena, found by the presentauthors, needs to be explored
more systematically.

(2) The Melnikov approach can be extended to consider more terms in the approximation of

the separation between the stable and unstable manifolds. This seems appropriate from

applications point of view since it is tuned for computations.

(3) Allowing for certain positive and negative damping in the theory ofArnold diffusion has

been mentioned in Holmes and Marsden [25,26]. The affects ofdamping needs to be explored
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for the case of the classical model of power systems.

(B) Applications: (l) Many model systems in the physical sciences and engineering exist

which satisfy the conditions of the theorems on chaotic behavior or Arnold diffusion. One

needs to test for the presence of complicated dynamics of these models. For example, a

study of the Josephson junction circuit (with negligible damping) can be conducted on simi

lar lines to our approach.

(2) Computer simulations would verify the presence of complex irrugular dynamics in

the swing equations under the conditions provided in section 4. Moreover they would display

these dynamics for possible further studies. In the case of periodic but not necessarily small

oscillators, tests dan be conducted computationally.

(3) The effects of a small amount of damping should be studied. This allows for a more

realistic modeling of many engineering systems.

(4) For large perturbations (large jj,) one can get many other effects, such as collision of

non-resonant tori (see [l] and the references therein). The systematic exploration of these

would be useful for many engineering systems in general and power systems in specific.

8. Appendix A

The simplification of the Melnikov integrals
for small amplitude oscillations

We perform explicit calculations to first show that the integrals of a product of variables

of oscillators over the infinite integral domain vanish. Second we show that integrals of pro

ducts of oscillator variables with the homoclinic orbit variables (subscripted n-l) result in

equations (6.6.i) and (6.10).

Equation (6.6.i) Case 1 Products of Oscillator Variables

From equation (6.2.i) we note that the products of oscillator variables are composed of

the following basic integral.
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* =/"i(t-ti)ak(t-tk) dt (A.!)

where the bar denotes the unperturbed solutions given by

affk(t) = aAfcCos^t + 0(a2)

a«i(t) = -aAAsinnit + 0(a2)

where a is sufficiently small. Performa change of integration variables on (A.1) and obtain

* =/«i(r+tk-ti)ak(r)dT

For i=k. tk = tj and so

* =fuiMokir) dr = f -A|nksin(nkr)cos(nkr)dT

=Ck/|-sin(2nkT)dT =Jim -^-[cos(L) -cos(-L)] =0
Note that we have substituted the first terms of the expressions for the unperturbed solu

tions. The error terms, 0(a2) are included in the higher order terms that do not affect the

Melnikov integrals. To see this, first substitute the small oscillation variables in the Hamil

tonian function and thus the 0(a2) term will be collected with the higher order terms. Now

rewrite the Melnikov integrals.

TPnr u-^iJ let tj* = tk - tif then

L

* =/ - AiA^sinn^r +tj*) cos(nkr) dr
—L

="" 2k ^[sin[(Qi +Ok)r +£}&•] +sinbi -0k)r +O^dr
To obtain conditional convergence and for a fixed i and k, write

. . Qi* = AiAk— hm cosftflj + Qk)r + n^]
I-L

Pi + Oi

cos^-n^r + n^]

Let



- _ cos[(ni + nk)T + ck^]
*l 5T^ u

and

_ cos[(Qi - QQt + CI&]
*2 = 0,-* '=*•

We claim that there is a sequence 1^ of values of Lconverging to « such that * =0.

To see this, write

*i =
(Oi + Ok)

- (cos[ -(nt +Qk) LjcosOiti* - sin[ -(0, +Qk) L] sin^t/]

-2sin[(0i + at)L]ainQ,t,*

cos[(n, +O^IJcosOjti* - sin[(n, + Q^sinGiti*

(Oi + Ok)
Similarly

*8 =(Qi „n ) cos[(ni - Qk) L]cosO,tj* - sinKn, - Ok)] sinCW

- [cos[ -(Oi - Qk) Ijcosftt,* - sin[ -(n, - 0k) L] sinflit;]
4

-2sin [(0j - Gk )L] sinfiitj*;
(Oi-Ok)

Then consider

¥ = (01 +0^-0*)*

= A< (Oi - Qk) sin[(0i + fik) L] +(G, + Ok) sin[(Qj - nk) L]

* = Asinfljti* (Qi - Qfc) [sinQiLcosnicL +cosQiLsinQfcL]

+(Dj +nk) IsinfljLcosQkL - cosOiLsinQkL]|

♦ =AsinQjti* JsinQiLcosnicL (fy - Qj, +Q, +Qk)

sinQit/
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+ cosOjLsinf^L(Q,- Qk- fy - Ok)

= 2AsinOiti* ^(sinQjLcosnjjL) - ^(cosOiLsinQicL)

Consider the quantity in braces

OjSinOjLcosnkL - QjcCosQiLsinQitLl

which we equate with zero and obtain

tan(QjL) =^ tan(QkL).

A simple sketch of these functions shows that there exist a sequence Lq of time, L^ -+ «,

values at which the equality holds. (Rational independence of the frequencies is sufficient

for the existence of this sequence).

Case 2 A product of a homoclinic and oscillator variables

The basic product components of the Melnikov integral (6.2.i) are as follows

/wiOr-tOcJn-xMdT

/wn-iMo-iOr-tiJdT

/^(T-tiJin-jMdT

where tj is the initial phase.

(A.2c) = lim
r iL ^
p^T-t^w^^r)]^ - /wi^n-! dr
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(A.2a)

(A.2b)

(A.2c)

Noting that limcjn_1(±L) = 0 (the velocity component of the saddle of the homoclinic orbit

equals zero), then

(A.2.c) = lim - faiUn-idT
—L i



= lim -
1L " ^

5i(r -1,#) an^(T)]_L - /—Wi(r-t;) ffn-^rjdr
—L

Again the first limit goes to zero. First note that

^(t-O = -AAsin^r-t/))

= c5i(r) cos^ti*) + Q|?i(r) sinO^*

and

ffiCT-O = Aicos(0i(r-t,*)) = cr^r) 003(0,0 + o-WiMsin^iO
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where we neglested the error terms which do not affect the Melnikov integrals. Then the first

term of (A.2c) becomes

H+£

lim^T^r-tO |LL =-Q2 jima^W^T-t;) | .g^.

H-

= jjniAiAi

JI-

= limAi cos(M) ffn-i( —^ ) "" °n-i( 7i ) cos( ~M)
Oi Oi

«a-l ( —7^ ) -ffn-l ( « ) cosM
Ot ' -»-** 0,

where we wrote AjCosOjt for 9j(t). Note that an-i is the component of the homoclinic orbit

such that

lpffn-i( ±M) = an-i(±«)=(jr^A^),

where the saddle point is (tt—2A2_i,0), and hence (A.3) vanishes. Therefore,

(A.2C) = f-T-Vi(T-td(Jn-l(T)dT = -0? /^(T-tjJffn-^rJdT

= -Of (A.2a).

Thus the basic terms are those of (A.2a) and (A.2b).

The integral of (A.2b) is treated the same way,

fun-M ^(t-O dr =hmffn-^r) ^(r - t,*) | lN

<k

(A.3)



33

- f^n-l(r)Qi(T -O dT (A.4)

where the first term vanishes (see A.3) and hence (A-4) reduces to (the negative of) the

integral in (A.2a). Thus

(A.2a) =/Sjd-O^-iWdT = /^n-l(r)Wi(T)dT cosOit/

sinOitj*Oi/ffn-i(T)ai(r)dr
""" 4

where each integral in the braces is well-defined and is a nonzero constant for all except a

discrete set of fy (see Kopell and Washburn [29] or Holmes and Marsden [27]).

Collecting terms and noting that the coefficients of these integrals are different due to

the different parameters Mj.Bj etc., one obtains the following

fit^tj) = ajjcospiti* + bn sinOjt,*

where a41 and b^ are nonzero constants for all except a discrete set of CV

Agnation (6.10)

The terms of the integrand of equation (6.4) are composed of the following expressions.

a. r^[/On-i-Ai-LnSinfo.! +An\_1)jgn_1

_d_
dt

Pn-i -0n_j.n sinta-! +AS-j) jcfk lsk^ n-2

"n-l <Tk 1 «S k <5 n-2

[Pn-l-^n-LnSin^-j +An,_1)JOn_1
Pn-i-^n-LnSin^^ + A^_t) 5Jk = (©n-l)©,,

(A.5.a)

(A.5.b)

(A.5.c)

(A.5.d)

(A.5.e)

We first consider the terms with vanishing integrals over the infinite domains; namely

(A.5.a) and (A.5.d).

Consider the integral of (A.5.a) and perform integration by parts.
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a.r/d7l^-l~0a-l*Sin(°n-l +An-l) ffn-! dT

- /[Pn-l -^n-ljxSin^n-lW +A5-1 ifcn-lM dT
—L *

The first term vanishes asN-»« since

lim [p^j -fc-^sinfa^N) +AJ^)) =Um ^(N) =0.
where ^^(i**) is a component of the saddle

(On-l(±~) , 5n-l(±«)) =(aa-i(±:«) ,0).

Thus the term of eqn (A.5.a) is the same (except for aminus sign) as the term of eqn (A.5.d).
Consider now the integral of (A.5.d)

jT[Pn-i -fti-i.nSinfo.! +AS-Ojwn-itodr

=/Sn-iWViWdT = —UmaJ^^W 14=0.
2n:

That is, the 'kinetic ' energy at the saddle, referenced to itself, is equals to zero. Hence the

terms of (A.5.a) and (A.5.d) produce vanishing integrals.

The term ofeqn.(A.5.c) is the same as the one in equation (A.4). The terms of (A.5.b) and
(A.5.e) are the same if one performs integration by parts on (A.5.e).

Thus it is left only to consider the term (A.5.b) for a given k, 1<; k <; n-2,

* OB

/(A.5.b)dr =/^- Pn-i-fe-ijisinfa.! +AS-ijWt-tjJdt
OS - .

=jT^-pn-lpk(t-tk)dt.
Noting that

ffk(t-tk)=AkcosOk(t-tk)

=Akj cosOktkcosOktk +sinOksinOktk
then the integral becomes



jf(A.5.b)dr = d ,^Ak/^r( Wn-i) cosOktdt
dt

d ,_^Ak/ 5J" (wn-i) sinQktdt
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cosQktk

sinQktk

We note that no cancellations between the intergal terms in eqn. (6.4) can occur since the

coefficients of the integrals are different for different parameters. Define

an-iJc = Afc / — (S>n_!(t) )cosQkt dt

and

" dbn-Uc =bcf-^i&n-M) sinQktdt

where an.l#k and bn_1>k are well-defined and vanish only for a set of discrete values of Qj. This

follows from the analyticity of the integrals in 0k with the rate of acceleration term (i.e.,

—Sn-^t)) is nonvanishing along the homoclinic orbit (see Kopell and Washburn [29] or

Holmes ar.d Marsden [27]).
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figure Captions

FiS 1 Asample power system; generators, transmission network, and loads.

FiS 2 The power system diagram(our model).

FiS 3 The phase portrait of a pendulum with constant forcing.

FiS ^ Ahomoclinic orbit ( subsystem n-l). -

FiS 5 Closed orbits ofa pendulum ( subsystem i, 1 «£ i ^ n-2).
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Fig, 2 The power system diagram (our model).
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