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1. INTRODUCTION.

Most of the qualitative methods of nonlinear analysis consist of reducing
a given equation to a more simple form. One of these methods is a generalization
of the slowly-varying amplitude and phase approach introduced by van der Pol [1].
This method has since been rigorously justified by Krylov, Bogoliubov, Mitropolski,
and others [2-7]. Because this method appears to be rather mathematical and
involved it has not been used by engineers until only recently [8-10]. Our
purpose of this paper is to present a tutorial on this important method and to
apply it to the analysis of some well-known electronic circuits. In particular,
we shall show that many "heuristic" approximation techniques used by engineers in
the analysis of nonlinear "circuits and systems involving some small parameters"
(e.g. parasitic capacitance or inductance) can be given a rigorous foundation via
the method of integral manifolds. _

To illustrate the ideas behind the integral manifold approach, let us consider
the well known van der Pol equation

X =y
(1.1)
y = e(1-x%)y - ng
If € = 0 equation (1.1) becomes linear and all solutions are of the form:
x(t) = p cos(w0t+¢)
(1.2)
y(t) = ~wgP sin(w0t+¢)

where pand ¢ are integration constants depending on initial conditions.
To analyze the case of € # 0 (but small) assume that p and ¢ in (1.2) are
time dependent. Rigorously speaking, we treat (1.2) as transformation of variables.
Since ¢ is time dependent it is more natural to consider the phase:
o(t) A wyt+o(t) i.e., |

X = pCOS B, y=-up sin 6 (1.3)

Applying transformation (1.3) to (1.1) we obtain

. 2 2
8 w+§-{[1-%—]s1‘n 20 - %—sin 40}

(1.4)

: 2 2
) e'g—{l-%—+ cos 29+°Tcos 40}
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Neglecting the terms whose average (in 8) is equal to zero one gets:

6

2 (1.5)
h=eg R -
p 82(-l R4_—)

Since (1.5) is an approximation of (1.4), it is necessary to analyze
how close are the solutions of (1.5) to the exact solutions. Let us first
investigate the geometrical behavior of the solutions of (1.5). The two
equations in (1.5) are independent. The solutions of the first are of
the form 6(t) = wot-+eo, while the latter has for p > 0 the constant
so]ution'p0 = 2. Al11 other solutions (with positive initial conditions)

tend to P = 2. In terms of x and y we get
x(t) = p(t) cos(w0t+60), y(t) = -wop(t) sin(w0t+60)

where p(t) +~ 2 as t + +=,

The phase portrait in the (x,y)-plane is shown in Fig. 1.1(a). If we
consider the trajectories of (1.5) in the (t,x,y)-space, we get the
picture shown in Fig. 1.1(b). Note that the trajectories on the cylinder
2 . y2_ 2
¢ = {{tsXsy) : X7 + &= = g0} (1.6)
W

have the form

[x(t).y(£)] = [ppcoslwgt+ey), -wpegsin(uyt+e,)].

Hence, for initial conditions on this cylinder c, equations (1.5) are

equivalent to:

-

e(t) = (1)0 (].7)

O(t) Sl
We would 1ike to know under what conditions will the behavior of

solutions be similar to that of (1.5). Moreover, for the nonautonomous equation
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x=J (1.8)

e(]-xz)y - ng + B cos wt

y
we would also like to know under what conditions on B and w can (1.7) be
reduced to (1.5).

In general we cannot expect that solutions of (1.4) or (1.8) will be close
to these of (1.5) over the infinite time interval even if they start from the
same initial point. We shall show in Section 3 that for ¢ small (and if either
B or %-is small in (1.8)) equation (1.1) (and also (1.8)) possesses in the
neighborhood of the cylinder (1.6) a surface to which all other solutions must
tend to, and the solutions on this surface are described by the equation:

6= wy + "small perturbation."

2. DEFINITION AND EXAMPLES OF INTEGRAL MANIFOLDS
Consider the equation:

x = X(x,t) ' (2.1)

where x is an n-vector and t € (-»,+o). Throughout this paper we shall
assume that the solutions of (2.1) are defined for t € (-»,+o) and that for any
initial condition x(to) = Xg (2.1) has a unique solution x(t;to,xo).

Definition 2.1. [4,5] A surface § in the (x,t)-space is called an integral
manifold of (2.1) if any solution of (2.1) originating on S will remain on S
for all t.

Let Uc be a og-neighborhood of S:

U, = {(x,t) : dist[x,S] < o} (2.2)

Definition 2.2. An integral manifold S is said to be isolated if there
exists o > 0 such that Uo does not contain any other integral manifold except S.
Definition 2.3. An integral manifold S is said to be stable if for any

0y > 0 we can fix oy > 0 such that any solution of (2.1) which originates in
Uo] at time t = t0 will remain in U00 for t > to and will tend to S as t » +w,
Example 2.1. Consider the circuit shown in the Fig. 2.1. Kirchoff's laws yield:

di 1,

;”‘ ‘]- : (2.3)
vV _ . N

=Tt or



Suppose that the nonlinear resistor v-i characteristic iR = g(v) has the
following properties:
1. g(v) is an odd and continuously differentiable function of v,
2. there exists Vg such that g({v) <0 for 0 < v < Vo> and g(v) is positive and

monotone increasing for v > Vo

It can be shown [5,11] that (2.3) has exactly one periodic orbit in the (v,i)-
plane and that orbit is asymptotically stable. When the solutions of (2.3) are
considered in the (v,i,t)-space then those which pass through the orbit y (in
the (v,i)-plane) form a cylinder S which appears to be a stable integral manifold
of (2.3) as shown in Figs. 2.2(a) and (b).

Example 2.2. Consider the equation

X + ef(x,i)'+'ng =0 (2.4)

This equation is a generalization of (1.1); namely, for f(x;x) = (1-x2)i we get
the van der Pol equation. Also if the nonlinear function in example 2.1 is
small, i.e., g(v) 4 eF(v), then (2.3) can be reduced to (2.4) with x8 v,

28 1/LC, andef(x,X) =ef(v,¥) & L& F(v)v.

“o
The transformation:
X = p cos O
g (2.5)
X = -wop sin ©
when applied to (2.4) yields
5 = £.1, - ;
0 = wy ¥ oy P f(p cos 8, wge sin 8)cos ©
(2.6)
5 =+ = f(p cos 8, ~wgP sin 8)sin ©
“o
Let us consider the following equation associated with (2.6):
® = uw ' (2.7)
0=

€
Z’E fo(p)

2T
where fo(p) é-%; IO f[p cos o, -wgP sin 8]sin o6de

Equation (2.6) can be considered as a perturbation of (2.7). It will be
shown in Section 3 that if there exists pg > 0 such that fo(po) = 0 and

f'(po) <0 (i.e., fo is a constant and asymptotically-stable solution of the
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second equation in (2.7)), then for e sufficiently small, equation (2.6)
has a stable integral manifold in (x,X,t)-space. Moreover the manifold
tends to the cylinder:

2 . 32

= {(x,X,t) : X + X& = pg}

as ¢ tends to zero.
Example 2.3. Consider equation (2.4) withe =0

X+ wdx = 0 (2.8)

This equation describes a lossless LC circuit shown in Fig. 2.3 with x AV,

mg éﬁfg'. A11 solutions of (2.8) are of the form x = A cos(w0t+¢). It is easy
to see that (2.8) has a continuumof nonisolated cylindrical manifolds in the
(x,X,t) space as shown in Fig. 2.4.

Example 2.4. The nonlinear 1lossless LC circuit has a similar structure of
integral manifolds as that shown in Fig. 2.4. Indeed, consider the circuit shown
in Fig. 2.5, and let i = g(¢) be the characteristics of the nonlinear inductor,
such that the "energy function":

6(9) & fi a(6)dp = f: idp = ft fevedt

=00

increases monotonically to infinity when either ¢ + +» or ¢ -+ ~w.f Then all
solutions of the equation:

S-e

=V (2.9)
- ]c g(¢)

<e
n

must lie on nonisolated "cylindrical" manifolds of the form:
2

C
S = {(¢,v,t): —X— + G(¢) = const, t €ER} .

The manifolds aEe cylindrical because G(¢) increases monotonically to infinity with
|¢#|, so that —§— + G(¢) = const does form a closed curve in (¢,v)-plane. Observe

*Phys1ca11y this property means that the magnetic energy stored in the inductor
increases with the absolute value of the -magnetic flux.



that this curve needs no Tonger be an ellipse,.as it is the case with.the previous
example.
Example 2.5. Josephson-junction

The point-contact or micro-bridge junctions can be modeled with the circuit
shown in Fig. 2.6 [12,13]. In terms of dimensionless variables this circuit can
be described by the equation

X =y
(2.10)

BY = a - sin x-y
This equation was discussed in great detail by Andronov, Vitt, and Khaikin
[14]. In particular, they have shown that for a > 1 (or for 0 < a < 1 and B
smaller than some critical value Bo(a)), equation (2.10) has a stable and
2n-periodic (with respect to x) trajectory defined by x(t) and y(t) = p(x(t)).
Hence, in the (x,y,t)-space this equation has an integral manifold

Sg= {(xsy,t) 1y = (x), t €R} (2.11)

as shown in Fig. 2.7. Moreover the motion on the manifold is described by the
equation

x = P(x) | (2.12)

For a moré detailed discussion of this case see [14-16, 9].

When the parameter B (junction capacitance) is small, another approach for
analyzing (2.10) is also possible. One does expect intuitively that the behavior
of (2.10) should be similar to that of the equation:

X =y

(2.13)
0 =0 -sin x-y
i.e., one expects that the solutions of (2.9) should 1ie on the surface
{(x,y,t) 1y = o - sin x, t € R} and their behavior-is described by:
X = a - sin x (2.14)

This means that we can neglect the capacitance shown in Fig. 2.6.
Assumptions of this kind were often made [16,17], their justification can be
found in [19,4,9,10].



Example 2.6. Tunnel-junction
When Josephson effect is due to a semiconductor tunneling mechanism, we can
no longer assume that the resistance in the circuit in Fig. 2.6 is linear.
A more realistic model in this case is given by
X=y
(2.15)

BX = a - sin x - a(y)

where thé typical g(y) characteristic is shown in Fig. 2.8.*

Since g(y) is a one-to-one function we can expect as before that, for small
B, the solutions of (2.15) will lie near to the surface

S={(x,y,t):y=g'](a-s1‘n X), Xx€ER, t€ER} (2.16)

Motion on the surface S is described by
X =g (a-sin x) (2.17)

3. TRANSFORMATION OF COORDINATES

Our next goal will be to present the conditions under which an integral
manifold is preserved under small perturbations. In order to do this, we shall
introduce a new coordinate system which is especially convenient for studying
the behavior of trajectories in a neighborhood of the original cylinder.

Consider the autonomous system

together with the perturbed equation

X = fo(x) + ef(t,x,e) (3.2)

where fo and f] are smoothffand bounded vector-valued functions, and € is a small
parameter.

Suppose that the autonomous system (3.1) possesses an asymptotically stable
T-periodic solution u(t). This solution gives rise to a closed orbit I' (in

the x-space) and an invariant cylinder S, (in the (t,x)-space) as shown in
Fig. 3.1.

1We would 1ike to thank Professor T. Van Duzer for informative discussions
concerning this subject.

T"'A function is said to be smooth iff it is at least twice continuously
differentiable -8-



Since we are interested in the solutions close to T' (respectively So), it
will be convenient for us to introduce local coordinates in some neighborhood of
I' (respectively So). In terms of these new coordinates the perturbed equation
(3.2) reduces to:

6 = wy + 97(8,0) + €gy(t,8,p.€) (3.3)

p = A(8)p + Ry(8,p) + €Ry(t,0,p,€) (3.4)
Qur approach consists of two steps:
1. We introduce a moving orthonormal system along the orbit T.
2. With this orthonormal system, we introduce new coordinates in which the
perturbed equation will take the desired form.

3.1. Moving orthonormal system [5,20]

Let us parametrize I with 6 A wt, w A %71 s T.e.,
r={xeR":x=ue), s e0,2r))} (3.5)

and let v(8) A Bl B denote the unit vector tangent to T.

In the 2-dimensional case the orthonormal system consists of two vectors

: du".| du

v(8) = [v1(8),v,(8)1" and £(6) = [-v,(6),v;(e)1"

as shown in Fig. 3.2.

For the case n > 2 we can always find a unit vector e € R" such that, for
any 6,v(8) is never parallel to e (i.e., v(0) # e, for 6 € [0,2r)). With a
fixed ey, let us choose €s.. .58 such that €se-0s8y form an orthonormal basis
in R" as shown in Fig. 3.3. Let us then transform, for any 6 € [0,2m), the
whole system so that e coincides with v(e)jﬁ'and denote the transformed vectors
€ps.. .28 S gz(e),... gn(e). The vectors 52(6)...£n(6) span a space orthogonal
to the orbit T, while v(8), 52(6)...£n(e) constitute a moving orthonormal system.

TMore precisely x = {i(g) where u(g) is defined as u(s) é:u(gp = u(t).

~H'This can be done as follows: we fix an n-2 dimensional subspace S which is
orthogonal to both ey and v(6) and then rotate the system along S until e,
coincides with v(e) ' [5,20].



3.2. New coordinates

We are now in a position to introduce new coordinates 6, p = [pl,...,pn_l]
via the formula

x = u(8) + P(8)p (3.6)

where P(6) A [52(3)5---55n(9)]

is an n x (n-1) matrix whose columns are the orthonormal vectors 52(6),...,gn(e).
It can be shown [5] that if fo(x) is smooth and if lpl is small enough, then

the transformation (3.6) is well defined. To obtain equations (3.3)-(3.4) we
apply (3.6) to (3.2):

[u'(8) +P'(8)p]+6 + P(6)p = folu(e) +P(e)p] + ef [t,u(0) +P(6)p,e] (3.7)

_d
T de

For lpl small enough the matrix

. d
where =
[u'(e) + P'(8)p:P(8)] = [u' +PpiEy:... .26, ]

is nonsingular so that p and & can be found from (3.7):
Solving (3.7) for 8 and p we obtain (3.3) and (3.4)

Examples of new coordinate systems:

Example 1(n=2). Consider the circle in R® as shown in Fig. 3.4.

cos 6
u(e) = R0
sin 6
then

-sin 6 -Cos 8
v(e){ ],&;(e)h[ _ J
cos 6 sin 6

T = {(xl,xz) € R2 : Xy = Ry cos 8, x, = Ry sin 8, 6 € [0,2m)} (3.8)

and formula (3.6) takes the form

X-l = RO cos 6 _ cos 6 o (3.9)
Xy sin 8 sin 6
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As long as p < RO’ formula (3.9) gives a one-to-one correspondence between
(x] ,xz) and (8,p). Moreover in this particular case, we can find 6 = e(x] ,xz),

o= p(x],xz) explicitly; namely,

p= R0 -/x$+x§

(12[ forx.l=0,x2>0
3 m for x, =0, x, <0
2 1 > 72
e=<
tan”] X2
an’ " o= for X > 0
1
X
T+ 1:an'1 2 for X] < 0
X
Example 2.

Consider the same circle in R3 as shown in Fig. 3.5(a).

Choose u(8) = Ry [cose,sin_e,o:]T then v(8) = [-sine,cose,o]T

The natural choice of e in this case is e = (o, 0, l]T.

Then e, = [1, 0, 0T, ey = [0, 1, 01" and

$(8) = {(x],%5,%3) € RS [xl,xz,x3]T = [-cos8,-5in8,0]7t, t€R}

. T
[cosze, sin @ cos 8, sin 6]

"

Hence, 52(9)

53(9) [cos 6 sin 6, s1‘n26, - cos e]T as shown in Fig. 3.5(b).

+Exp11’cit formulae for é;j are derived in [5,20]. In particular, we have:

. . =2
g,j =ey- (>\j-i-uj)e.l ¥ [Ajmj(z cos y1-1)]v where; AJ- A cos yq cos vy sin vy,

My A cos Y; sin'zy], and Y; is an angle between e and v, i.e., cos Y3 Y e;v

-11-



Thus the transformation is of the form:

2

X1 cos 6 cos 8 cos 6 sin 8
Xo | = R0 sine | + | sin 8 cos 8 sin2 (] P
Xq 0 sin 6 -cos 6 P2
or equivalently,
Xq = (R0+-p]cos 64-p25in 8)cos 0
Xo = (Roi-p1cos e+§pzsin 8)sin © (3.10)
X3 = p]sin 8 - PoCOS G

Let us come back to equations (3.3-3.4). If e =0 then p = 0 is clearly
a solution of (3.4), and it corresponds to the integral manifold of the
unperturbed system.

We shall ask now for conditions under which this manifold can be preserved
for small €. These conditions can be formulated [5,21] in terms of equations
(3.3)-(3.4). The procedure however, is very long. In this paper, we choose
a different approach based on the Floquet theory [4,5]. We shall reduce
[Appendix A] equations (3.3)-(3.4) to the form:

6

wy + 91(6,p) + €9,(t,0,p,€)
0™ 9 2 (3.11)

.

P

Ap + R;(8,p) + eRy(t,6,p,€)

with A being a constant matrix

In the next chapter we shall preseht theorems on the existence of an integral
manifold for equations in the form (3.11) as well as for some of their generalicsations.

+Note that 9 and Ri» k =1,2 and are different from those functions in

(3.3)-(3.4). However, they play the same role and hence it is more logical
to use the same notation.
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4. EXISTENCE AND STABILITY OF INTEGRAL MANIFOLDS
4.1. Main theorem
Assume that+

De
Ll

= wy + 91(8,p) + €9,(t,0,p,¢)
and 0 1 2 (4.1)
Ao + Ry(6,p) + eRy(t,0,p,€)

pe]
1}

satisfy the following hypotheses:

H1. Functions 915 99> R], R2 are continuous and bounded for t € R,
6 € R and lpl <60,-H' where &, is an arbitrary constant.

H2. These functions are-2m-periodic in o.

H3. gq(8.p) = O(lpl), Ry(6,0) = Q(Iph?).TTF

H4.. 91> 9o» R], R2 are Lipschitzian in both.-6 and p with Lipschitz
constants which tend to zero with € -~ 0.

H5. Eigenvalues of A have nonzero real parts.

Theorem 4.1. [22,4,5] If hypotheses H1-H5 are satisfied, then there
exists a function h(t,6,e) continuous in all variables and 2w-periodic in @,
bounded by D.s and Lipschitzian in 6 with a Lipschitz constant Acs where
D8 > 0,-Ae + 0 with € -+ 0, such that the surface:

S, = {(t,8,0) :p = h(t,0,e), tE€ R, 6 € R} (4.2)

is an integral manifold of (4.1)
Behavior of solutions on this manifold is obtained by solving the system:

8 = wy + g1(6,h(t,8,€)) + gy(t,6,h(t,0,¢),€) (4.3)

with arbitrary e(to) = 83-

Moreover:
(a) If 9, and R, are periodic (respectively almost periodic) in t so is h(t,8,e).
(b) If 91> 99> Ry and R, are smooth,so is h(t,0,e).

Tobserve that (4.1) is the same as (3.11).
++ n o, 1/2
For.p = [p]...pn], ol A (kz1 pk)

e say that f(x,a) = 0(a"), if f(x,a)/a" remains (uniformly in x) bounded
as o+ 0.
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(c) If all the eigenvalues of A have negative real parts then the manifold
S8 is stable.

4.2. Generalizations and remarks
1. Theorem 4.1 remains valid also when 6(t) is a vector-valued function:
g = [e]..ek]T € H!k. In this case H2 requires that 97> 9 R1, and R2 are

periodic functions with a vector-period T0 = [TOI""’TOk]T'+ Obviously (4.3)
is in this case a k-vector equation with wy = [w01""w0k]T‘ As an example,
consider a system of weakly-coupled oscillators (example 5.2 in Section 5).

2. Theorem 4.1 remains valid if wy (respectively a vector [wo],...,wOKJT)
continuously depend on €.

3. Theorem 4.1 holds also for equations of ‘the form:

é = wo + g](e,X,,Y) + €92(t,6,x,y,e)
X = AX + X1(8,%,y) + eXy(t,0,X,y,€) (4.5)
y = eBy + eY](e,x,y) + eZYZ(t,e,x,y,e)

where hypotheses H1-H4 hold for X1s X5, Y95 and Y, (instead of Ry and Rz), and
H5 holds for A and B. In this case there exist h(t,6,e) and f(t,06,e) {with the
properties stated in Theorem 4.1) which define an integral manifold:

Sc = {(t,8,x,y), x = h(t,08,e), y =ef(t,0,e), tER, 6 ER} (4.6)

Integral manifolds are also preserved under perturbation which average to
zero in the following sense: Consider

6 =Wp+ gy(8,x,y) + €9,(t,0,x,y,e) + g3(t,8,X,y,€) (4.7a)
X = Ax + X](e,x,y) + exz(t,e,x,y,e) (4.7b)
y = eBy + eY](e,x,y) + eZYz(t,e,x,y,e) + eY3(t,9,x,y,€) (4.7c)
where
1 (T 1 (7
1im T.[O 93(t+T,6+w0T,X,y,€)dT =0,}:2 T'fo Y3(t+1,6+w0T,x,y,€)dT =0 (4.8)

1'l»h'thout loss of generality one can assume that TO-I = T02 = ... 3 Ty = 2m.

-14-



and Y3(t,e,x,y,e) and g3(t,e,x,y,e) have continuous second partial derivatives
with respect to 8 and y. Other hypotheses are the same as before. In this case
Wy (respectively: [wOI""’“Ok]T) may also depend on e but there must exist

a positive constant d (independent of €) such that Wo o >d for 2 =1,...,k.

For more subtle results, see [22, p. 140].

4.3. Qutline of the proof

The proof of theorem 4.1 consists of defining a family of candidates for
integral manifold together with an appropriate transformation which maps this
family into itself. An outline of this proof can be found in [22]. The detailed
proof is given in [23,4] and, (for more general case) in [5]. For our purpose,
it suffices to know that the transformation of the family of candidates depends
on the matrix A, and that it is a contraction mapping. The integral manifold is
obtained as a fixed point of this transformation via successive iterations.

The case when 6 is a vector and when a vector y is present as in (4.5), is
proved in exactly the same way. The proof of (4.7) is based on the so called
Krylov-Bogoliubov transformation which replaces a function proportional to € and
with a zero average by a function proportional to 52. In example 5.1 below we
shall illustrate another application of this trick.

Let us note that in general the matrix A of (4.1) which was obtained via
Floguet's theorem is not known expiicit]y. Thus neither the function h(t,6,e) (and
f(t,0,e) for (4.5) and (4.7) nor the right hand side of (4.3) are explicitly
known.. It is, however, possible to obtain important qué]itative properties of
the system without knowing the exact form of the right hand side of (4.3). (See
examples in Section5.)

Let us note also that in some important cases (examples 5.3-5.6 of Section 5)
we can find explicitly the matrix A (and matrix B for (4.5) and (4.7)) and
consequently also the manifold h(t,8,e) (approximately at least) and the
equation (4.3).

5. ILLUSTRATIVE EXAMPLES

In this section we shall show how theorem 4.1 can be applied to various
systems. In each example we shall prove that an integral manifold exists.
Discussions on the behavior of the trajectories are postponed to Sections 6 and 7.

Examples 5.1 and 5.2 are of a general character. Second-order systems are
discussed in Examples 5.3 a,b,c. Examples 5.4 and 5.5 show how the method works
in higher-order systems. The circuit structurg in the first example allows us to
apply directly to theorem 4.1. (In the second example some additional
transformations are required. Examples 5.6 and 5.7 are of a slightly different
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character. Here the integral manifold arises not from a closed orbit but from
an unbounded trajectory which is "periodic on a cylinder."

5.1. Theorem on averaging

The method to be outlined below was invented by Krylov and Bogoliubov [2]

to give a mathematically rigorous justification of van der Pol's intuitive

approach [1]. Further development of their approach has given rise to the method

of integral manifolds. Here we present their result as a special case of theorem 4.1.
Consider the equation:

x = eX(t,x) (5.1)

Suppose that X(t,x) is T-periodic in t and can be expanded in a Fourier series
(uniformly in x)

. 2m
40 t
- i
X(t,x) = _E X, (x)e
n=-c
Assume that the equation Xy(x) = 0 has a solution Xg such that all eigenvalues of

aX
0
5§_'x=x0 have nonzero real parts.

i . A ] in 'ZTTL t
Define now the function W(x,t) £ ¥ —= Xn(x)e Note that
n#0 jn T
W(x,t) has the property that %% = X(t,x) - Xp(x).
Applying the transformation
x =g + el(g,t) (5.2)
to (5.1) we get
£ = eXo(E) + "small" terms (5.3)
. . . . A A aXO +
which is equivalent to (4.7) with 6 and x absent, y © E-Xg and B £ — .
9§ E=x0

Thus, the manifold Se reduces to a periodic trajectory which remains close to
the constant solution x(t) = XO'

TThe theorem on averaging and the transformation (5.2) were first given by
Krylov and Bogoliubov [2] in 1934. The version presented hgre is due.to.
Bogoliubov Mitropolski [3] it remains valid even if X(t,x) is not periodic and

T
Xo(x) is defined as: Xo(x) 8 ]rlulxo-—]r- IO X(t,x)dt.
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Example 5.2. Weakly coupled oscillators
Consider the system

ik + wixk = -efk(t,x]...xn,i1...in) k =1,2,..n. (5.4)
Applying the transformation

to (5.4) yields

. - .l E L[] L]
B = w * EPB—k- fk(t,x-l...xn,x]...xn)cos Oy

(5.6)
Bk = my fk(t aXy . ,x1 )s1n O

If the 1imit

T
fk( 1+ +Pn )y = & 1im %.JO fk[tp]cos(w]t+eo]),... pncos(wnt+60n),-w]p]sin(w]t+60]),

T

. MCRY
ces -wnpns1n(wnt+60n)] e dt

exists and does not depend on 901"‘60n for all k = 1,...,n, then (5.6) can be
represented as
. 1

ek = we """I'("; Re fk( 1° ) + ef(t,p)

Py = :_k Im?k(pl“pn) + 8%(1"’0)

where ?( o) and g(t,p) denote terms with zero time average. Hence,
if there exist o0 = [po], pOn] such thatInlfk(pO], pOn) 0 and py, # 0 for
k =1,...n and the Jacobian matrix [ap Im fk(po)] has e1genva1ues with nonzero
real parts then (5.7) is a special case of (4.7) with ¢ € R", p = y € R", and with
the vector x absent.
Let us consider now some important special cases of example 5.2:
Example 5.3(a). Simple nonlinear oscillator
The simplest circuit model of a nonlinear oscillator which is considered
in Example 2.1 is shown in Fig. 2.1. This model is described by

v+ t-g "(v)v + JE =0 (5.8)
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Suppose now that-% g'(v) can be represented as ef(v) where f(v) is bounded and

€ is a small parameter, while i%—é=wg does not change with e,+ thus (5.8) is

special case of (5.4) with k =1, x &y, wg 8 f%-, ef(t,x,x) é-% g'(v)v
= ef(v)v and it can be reduced to the form
8 = wg + ef(p cos 8)sin & cos o
(5.9)
b = ef(p cos 8)p sinZ o
where v = p cos 6.
If we take the time++average of (5.9) thenit will reduce to:
0 =wy » 0 = ef(p)
where Ui
f(p) = %-I f(p cos 8)p sinZede’ T (5.10)
0

I[f the nonlinear resistor characteristic has an "N" shapeg, then the function
T(p) can be easily found; namely, it is zero at p = 0, decreases for p > 0
until it reaches its minimum, and then increases to +» as shown in Fig. 5.1(b).
Thus there exists Py # 0 such that'7(p0) = 0. The transformation y A P-Pg
“reduces (5.9) to (4.7) with 6 ¢ B%l, y € El;, B ='é%'?(po), and with the vector
X absent.

It follows from theorem 4.1 that (5.9) has an integral manifold:

S¢ = {(t,y,v): v = [p0 + h(8,e)]cos 9,

(5.11)
v = -wglpy + h(6,e)]sin 6, 6 € [0,27], t € R}
Motion on this manifold is described by:
8 = wy + ef{lpy + h(6,e)]cos B}sin 6 cos 6 (5.12)

.t.

We can either change both L and C to keep %—sma]] and f%-constant, or change the

slope of the nonlinear characteristic to obtain a small g'(v).
+*More exactly we put 9 = wor+¢ and average (5.9) with respect to .

f*f§ince f(6 cos8) sin 6 cos 6 is an odd function, its integral over a
2r-interval is equal to zero.

§ s .

More exactly we require g'(v) to decrease monotonically for v < 0, increase
monotonically for v > 0 and to be negative at v = 0 (as shown in Fig. 5.1(a)).

Note that the van der Pol equation with g'(v) = -1+v2 satisfies these requirements.
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Since (5.9) is autonomous the integral manifold does not depend on time.
Moreover, since h(6,c) is small the manifold lies close to a cylinder of radius
pg in the (t,v,v)-space (as shown in Figs. 5.2(a) and (b)). Observe that the
van der Pol equation considered earlier in Section 1 is a special case of (5.9).
Thus theorem 4.1 justifies using the approximate formula v(t) = 2 COS(th+¢0),

, 3
which can be obtained from (5.11) and (5.12) with € = 0 and g(v)=-v + 3%—.
b. Nonautonomous case

Consider the same circuit with a periodic current source (as shown in Fig. 5.3)
described by

o o1 . .
Vit zg'(vlv+ f%-v = %-é%-Ts(wt) (5.13)

Suppose, as before, that %—g'(v) can be represented as ef(v), wg é=€f , and

moreover %-é% is(wt) can be represented as ewAp(wt). Introducing dimensionless

time t A wt we obtain:
2

v o+ %-f(v)v' + (%8) v = gAp(T)

d
' —
where v' A It V.

Now, we can apply transformation (5.5) (with x, x replaced by v, v') to
obtain:

€

0

w

0" + E-f(p cos 6)sin 6 cos 8 - %-Ap(r)cos ;)

(5.14)

f(p cos 8)p sin - eAp(t)sin 6

g|m

p

If ¢ is small enough with respect to w (and the nonlinear resistor characteristic
has the same properties as those in example 5.3a) then theorem 4.1 holds and
(5.13) has an integral manifold:

S, = {(t,v,v): v = [og + h(wt,8,e,A)Jcos 6,

v = -wo[p0'+ h(wt,8,e,A)]sin 6, 6 € [0,2r], t € R} (5.15)

Observe, that if w is large then 5-15 small and so is %? . It follows from
Remark 4 of Section 4 that theorem 4.1 may not hold in this case (unless
e << wo).

A similar situtation also occurs in some autonomous system as shown in

the following example.
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c. A counterexample: Wien-bridge oscillator
A Wien-bridge oscillator and its' circuit model are shown in Figs. 5.4(a)
and (b). The circuit can be described by:

1
(RC)

=0 (5.16)

v +'§E (3-F'(v))v + 5V

One is tempted to treat é%-both as the small parameter e and the frequency w
(wo =g = ﬁ%) when applying theorem 4.1. Unfortunately w, decreases to zero with
e and the theorem cannot be apph’ed.1~

d. A counterexample: Lossless LC oscillators

Observe that theorem 4.1 does not apply for circuits considered in Sections
2.3 and 2.4. Indeed these circuits possess families of -nonisolated manifolds.
The standard transformation (5.5) reduces (2.9) to

4
®(p,0)

§

p=0
Hence, "the matrix A" is zero, hypothesis H5 is not satisfied and we cannot
expect the manifolds to be preserved under small perturbation.

Example 5.4. Nonlinear oscillator weakly coupled with a linear dissipative
" circuit.
Consider the circuit shown in Fig. 5.5. This circuit is described by:

L
o ° 'l . :
CV + g'(v)v + v = -Bw sin wt - Ri
L]L-Mz LL]-MZ 1 (5.17)
MM LR,
T AT 2

1 1
Assume that both the nonlinearity and the "perturbations" are small. More
precisely, assume that we can introduce the following representation

1 W A_M M
ef(v) & Zg'(v),ead B, b 8 .
¢ c -t
ab _R__R o2, b1
Lt b0 S ey

+Equation (5.16) possesses, however, an integral manifold, the existence of which
can be proved via phase-plane methods [11,5].

TtIn the case of the linear equation (2.8) we have g(¢) = ¢/L and ¢(p,e)==m01é

2
/LC
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where € can be made arbitrarily small while a, b, A and wy» €ven if dependent on
e, remain bounded (as functions of €) both from below and from above by positive
constants.

In terms of the new notation, equation (5.17) assumes the form:

U+ ef(v)V + wdv = -caw sin wt - eb i,

di]
i A'i-l - ebv

(5.18)

Let us denote i] A x and introduce the standard transformation v = p cos 6,
v = ~wgP sin®in (5.18) to obtain:

6 = wg + ef(p cos 8)sin 8 cos 8 - — (aw sin wt + b B'x)cos 8 (5.19a)
wyP c
o = ef(p cos 8)p sinze - £L»(aw sin wt + b %-x)sin 8 (5.19b)
0
X = AX - ebp cos © (5.19¢)

Ifw# Wy then the time average of the r.h.s. of (5.19b) reduces to
4
ef(p) = %—I f(p cos e)sinzede and (5.19a,b,c) can be represented in the form
0
. a N d =
(4.7) with y := -0, (where f(po) =0, % f(po) #0,p70)B A aE-f(po)
where x and 6 are scalars. .

Example 5.5: Colpitts-type oscillator
This oscillator can be represented by the circuit shown in the Fig. 5.6. It
is described by

1 1 .
V=-s—v+ i
RC, T,
V= - galv) - (5.20)
d . _ 1 1
i S
4
Suppose that g(v) = ﬁEE v - LC]f(v) so that (5.20) assumes the equivalent form:
d 1 1 . :
- V= e = Vv + = 1 (5.2]3)
dt RC2 C2
d . _ .,
e (5.21b)
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¢+, ) (5.210)
i' = - =i + ef(v it
LC]CZ

4

dt

The form of (5.21) suggests that we are considering an oscillator in which
the variable v has only a weak influence. However we cannot apply the theorem 4.1
directly because the "influence of i on v" is not "weak." In particular, (5.21a)
is not in the form of (4.7b).

Thus before applying theorem 4.1 we must reduce (5.21) to the appropriate

1-

form:’' Define first:

C,+C

) a1 2 172

a®s—,b 2 —,wn & (5.22)
RC, Cy 0 LC]CZ

Note that for € = 0 the right-hand side of (5.21) is linear and its eigenvalues
are equal to a, jwo, and-ﬂwo. Note also that the transformation

ab_ . b .\ Al 1 . Al . 1 .,
22l v ol VXt et gyt 0 X372 Ty (5.23)

)
XI-V'I'

reduces (5.21) to the form:

.Y Ny ) - _b 1
X a o0 0 X :
1 1 aZﬁDS
Xo | =10 0 -y X |t f(v) iﬁa (5.24)
]
X 0 w 0 X -5
_ 3 _ 0 JL 3.d 8 Zwo 3
b(aw,+1) b(awy-1)
where v = 3 - ———-xy - —9 7= xg
wo(wo-l-a ) wo(w0+a )

The remaining procedure is standard; we introduce the "amplitude" p and the

"phase” & as follow: x, A pC0s8, x5 A p sin 6. In terms of p and 6, (5.24)
becomes

+Computations to this example were done by Mr. Mojaddad-Shahruz Shahram.
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5 = uy - ‘3-2-?% £(v)(cos & + sin )

* _ E .

P =5 f(v)[cos 6 - sin 6] (5.25)
0

K = axy + =y (V)

a+w0
Assume that there exists fo # 0 such that ?(po,o) = 0 and g%-?(po,o) < 0, where *

f(p,x) A f f[x] - —53-0PCOS B -—5 =0 sin 6](cos 6 - sin 8)de
-T wo(wo+a ) wo(w0+a )

(5.26)

With y := p-py and B := 4= F(0g,0), equation (5.25) is of the form (4.7) and
theorem 4.1 holds. Hence, there exists an integral manifold

S
€

{(t,0,p,x): p = p0-+eh](e,e), X = hz(e,s); t€R, 6 €[0,2r]} (5.27)

The solutions of (5.21) which 1ie on S are of the form:

bog*ehy (8(t),
v(t) = hz(e(t),s) - [p0+€ ]; (2) e [(aw0+1)cos e(t)-—(awo-l)sin a(t)]
wp(wg*a”)
i(t) = [py + ehq(0(t),e)1(cos 6(t) + sin o(t)) ' (5.28)
i'(t) = 5’16 [og + chy(8(t),€)1(cos 8(t) - sin o(t))

In other words, the behavior of the solutions on the integral manifold is
completely described by the phase 6(t) which can be determined from

2 _ 1 € g .
? = wg - po+eh](e,e) 2“0 f(v)(cos 8 + sin 6) (5.29)

where v is given by the first formula of (5.28).

Example 5.6. Josephson junction circuit [9]

The circuit shown in Fig. 2.6 is governed by the equation

2
d 1 do . 4me _ :
¢ ﬁ” Rt t e sin(5= ) = Iyo + I sin vt (5.30)
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This equation can be transformed into the dimensionless form:

X =y
(5.31)

By =a -sin x -y + e sin wr

It can be shown [14,15,9] that if ¢ = Of then for any B > 0 there exists a
unique number ao(e) € (0,1] such that for a > ao(s) (and € = 0) equation (5.31)
has a stable invariant surface in the (t,x,y)-space (Fig. 2.7)

Sy = {(t,x,y): y=v(x), x€ER, t € R}

Moreover, if ¢ # 0 is small, the surface persists and remains stable. To prove
this we introduce new coordinates (see Fig. 5.7):

xA6 -y'(8)p

(5.32)
yAvu(e) +p
In terms of these coordinates (5.31) assumes the form:
é = lp(e) + G(T,G,D,E)
(5.33)
p = A(8)p + F(1,8,p,€)

Note that (5.33) is not in the form of (4.7). However (5.33) can be simply

6
reduced to this form by introducing a new phase variable ¢(g) 2 I ﬁi%y-dr
such that 0

b= %6 = ooy [v(6) + Glradupac)] = 1+ 5oy 6(r.000) 05¢)

The transformation ¢ -~ ¢ is one-to-one due to the fact that y(e) is a positive
periodic function. .
Now we have the equations

&) =1+ G—(T,cb:pse) (5 34)
E) = T\-(q:)p + T:-(T’(b,p’ﬁl)
- . s s . 2m ds

where A(¢) is To-periodic with Ty = IO o(sT

Te is a dimensionless number equivalent for Iac'
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Hence, we can apply the Floquet transformation as described in Appendix A. Since
in this-particular case the "matrix" A(¢) is actually one-dimensional, it is
possible to find the transformation explicitly; namely, the fundamental solution
of

%§-= A(d)p
is

ne>

To
] —_—
B T I A(s)ds
oo
and o : TO_
[ A(s)ds - TF-I A(s)ds
0

0 0

P(¢) & . (5.35)

Defining the new amplitude
T

(o 4 _
| ws)es- [ Kisyas (5.36)
r=plp)p=e0"0 0

we obtain

1+ G(T,0,rs€)

S
n

. (5.37)
Br + F(1,9,r,c)

ke
1}

where
G(T,0,r,) = G(T,0,0.€) .

and _ T0
Flesdursc) o™ () F(os,03) + 6(r,0,0,0)[R(8) - 1= [0 A(s)ds]

are "small."

Example 5.7. Josephson junction (general case) [10]

Most Josephson weak-1link junctions are described by the simplified
equation (5.30). However, theoretical justification of this equation is far
from complete. It is known for example that although the Josephson supercurrent
is a periodic and odd function of the phase difference, it need not be sinusoidal
[25,26]. Similarly, in metal junctions, we cannot assume the normal current to
depend linearly on the voltage drop. Moreover, in general, it depends also on
the phase difference.
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Thus let us consider the more realistic equation:
BX + f(x,Xx) = o + ep(ut) (5.38)

where f(x,i)* is smooth and 2rn-periodic in x. The constant o and the periodic
(almost periodic) function p(wt) represents an external excitation.
In the important particular case of (5.38), we have f(x,x) = x + s(x) i.e.,

BX + X + s(x) = a + ep(wt) (5.39)

where s(x) is a smooth, odd, and 2w-periodic function of x.

Without loss of generality we can assume that a > 0 and that the time
average of p(wt) is equal to zero.

We shall establish now conditions under which equation (5.38) and (5.39)
possesses an integral manifold for "small" €. Our approach will be similar to
that of Example 5.6: first we find an invariant surface for an associated
autonomous equation (i.e., for € = 0). Next we apply theorem 4.1 to prove that
this surface persists under small perturbations. The autonomous equations of

this type were studied in [27,28]. Our approach will follow that of Barbashin
and Tabueva [28].

Consider at first (5.39) with € = 0.

Lemma 5.7.1 [28]
If e =0 and s(x) < a for all x, then for all 8 > 0 (5.39) has a stable
invariant surface '

Sg = {(tsxsy): y =u(x), xER, tER} (5.40)

where y(x) is smooth, positive and 2m-periodic. Moreover this surface is unique.
(See Fig. 2.7.)

-

Lemma 5.7.2.[28] If é%;liﬂ s(x)dx < o and the equation s(x) = o has (in the interval
[0,27)) exactly two solutions X1 and x, such that s'(x]) >0, s'(xz) < 0, then

there exists a critical value Bg such that for g > Bo equation (5.39) has a

unique invariant surface described by (5.40).

+f(x,i) includes the normal and quasiparticle currents, and the supercurreht.
In the original Josephson paper it was calculated to be of the form:
f(x,y) = oly) sin x + [c](y) + cz(y)cos x]y. In the metal junction described

in Section 2.6 f(x,y) = sin x + g(y).
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T that f(x,y) is

monotonically increasing in y and such.that for any x we have (possibly equal

to +») 1im f(x,y) > 0 and 1im f(x,y) < 0, The following lemmas hold:.
Yoo yr-e

Lemma 5.7.3 [28] If f(x,0) < a for all x then equation (5.31) has,

for € = 0, a unique and globally stable invariant surface Sy described by (5.40).
=4

In a similar way we shall discuss (5.38). Assume

Consider now the case when.f(x,0) = o has n solutions in [0,2n7); namely,
02X < Xg < vvun < Xop g < Xop < Zw:rfSuppose that g% f(xi,O) #0i1i=1..,2n.

To be specific let us assume that g%-f(xi,o) > 0 for i = 2k-1 and g% f(xi,o) <0
for i =2k k = 1,...,n. It can be easily shown [28] that the solution at points
(x2k,0) are saddles while (X2k-1’0) are sinks. The neighborhood of each saddle
is shown in Fig. 5.8, i.e., there are two separatrices converging toward it,

one from below and one from above. Consider the separatrix from above (denoted
Soy in Fig. 5.11).

Lemma 5.7.4.[28] If none of the separatrices tends to +» as t+-= (see Fig. 5.9(a))

and if there exists a trajectory which originates in the lower half plane

(y<0) and does not converge to any of the equilibrium points (see Fig. 5.9(b)).

Then (5.39) (with €=0) possesses an invariant surface described with (5.40).

Moreover all the solutions tend either to this manifold or to equilibrium points. g
Observe that all Lemmas (5.7.1)-(5.7.4) imply the existence of a surface

S0 given by formula (5.40). It should be noted, however, that the parametrizing

function y = ¢(x) (and so the surface) is different in each lemma. Now once the

conditions for the existence of S0 have been established, we can proceed exactly

as in the previous example because the only properties of y(x) that we need are

smoothness, periodicity, and positiveness.

6. EQUATIONS ON THE INTEGRAL MANIFOLD
6.1. Introduction

One of the main advantages of the integral manifold theory is that the
original equation can be reduced to the first-order scalar equation:

1'These assumptions are natural generalization of the Josephson formula (see the
previous footnote).

++Since f(x,0) is smooth and periodic there must be an even number of these
solutions.
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§ = wy + 91(8,h(t,0,€)) + egy(t,8,h(t,8,€) €) (6.1)

In general all that we know about h(t,0,e) is that it exists, is periodic
in 6, and is periodic (almost-periodic) in t. We shall see, however, that it
is enough to obtain a Tot of important qualitative information on (6.1) even
without knowing its exact form.

The significance of (6.1) is that if the manifold is globally stable, then
any steady state trajectory of the original system must 1ie on it, and
consequently must be a solution of (6.1).

6.2. Applications of rotation number
We shall discuss now some qualitative properties of (6.1) which, we shall
rewrite, for the sake of simplicity in the form

6 = wy + 9(t,8,¢) (6.2)

where g A gyteg, is smooth* (in all the variables), T-periodic in t, 2w-periodic
in 6, and sup [g(t,8,e)| - O when € ~ off

]

Case 1.

Consider at first the case when g(t,6,e) in (6.2) does not depend on

time++T and when 6(t) is scalar valued, i.e.,

5= gy + g(0,¢) (6.3)

(a) If there exists a 8y such that® g(eo,e) = -wg then 8, is a constant

solution of (6.3). Its' stability properties can be found from the sign of
(e-eo) [mo + g(0,e)] for o # 8g but close to it (see Fig. 6.1). Let us note
that in terms of the original equations (3.2)§§ the constant 60 corresponds to

the constant solution.of (3.2)

1'A function is said to be smooth iff it is at least twice continuously
differentiable.

Msince g](e,p) = 0(p), it follows .that g1(e,h(t,e,e)) tends to zero whenever
h(t,8,e) tends to zero. '

1ﬁ"§3y?tions of autonomous sytems have such a form (see Examples 5.3a,

SRecall that, w, may depend (continuously) on €. Theorem 4.1 also holds for

(4.5) if wg decreases to zero with €. However, when (4.7) is considered, we
must also assume € to be much smaller than mo'(see Examples 5.3(b) and (c)).

§§In the case considered f1 is independent of t, thus we have
X = fo(x) + ef](x,e) and p(t) = h(e(t),e).
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xg = u(8y) + P(8g) h(8,.¢) (6.4)

(b) If w remains "large" with respect to € (which is usually the case)
then for € small enough the right-hand side of (6.3) is positive. It can be easily
shown [Appendix C] that in this case the solutions of (6.3) assume the form:

8(t) = 2 ¢ + q(t) (6.5)
€

2m
. TR _ de
where q(t) is Te periodic with TE = IO T G . In terms of the 6 and p

coordinates, this means that the "phase" 6 is increasing, while the "amplitude"
p = h(e(t),e) is T_-periodic in t.
Thus the original variable assumes the form

x(t) = ulZE £ + q(t)] + PIET £ + q(£)] hIET € + q(t)] (6.6)
€ € €

and is also Te-periodic in t. Hence, in an autonomous system the solutions on
the manifold exhibit two different behaviors:

Statement 6.1 (Fig. 6.2(a), (b))
a. If there exist at least one 6, such that w0+g(eo,e) = 0, then some solutions

are constant and all the other solutions (onthe manifold) tend to them either for
t++o, or for t—+-m,

b. If w0+g(e,e) # 0+ for all e, then all solutions on the manifold are Te-periodic,

2w o
where Ia = [0 aa;azgjgy .
Case 2. Forced oscillations

Consider now an important case where 6 is scalar valued and g(t,0,e) is
T-periodic in t and 2m-periodic in 6. In this case (6.2) can be considered as
an equation on a torus and the important concept of rotation number can be
introduced [9,11,24].

Let us consider an arbitrary solution e(t,eo) of (6.2) such that ee(o,eo) =0
and define the limit

8(t,6,)

A T .. *Y0

U= 5= lim —— - (6.7)
21rtl t

TThe case wy * g(6,e) < 0 can be discussed in the same way as wg + g(e,e) > 0.
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It can be shown [11,24] that this 1limit ex1sts and does not depend on eo

Suppose now that the right hand side of (6.3) continuously depends on a parameter
a*. The rotation number is said to be stable [24] if it remains constant under
small changes of o It can be shown [24] that if u is an irrational number then
it can never be stable. (If it is rational, it can be stable provided that some
additional conditions hold [24]). Thus a typical graph of u as a function of o
will be as shown in Fig. 6.3.* The above properties of rotation number can be
used to explain the strange a.c.-characteristic observed in Josephson-junction
circuits [9,10].

Statement 6.2. [11,24]
a. If the rotation number is rational (i.e., there exist integers M, N such that
u = %), then (6.2) has at least one solution of the form

o(t) = u gt + q(t) (6.8)

where q(+) is Nt-periodic. =

Other solutions on the manifold are either of the form (6.8) (with q(t)
possibly different but NT-periodic) or tend to some solution of the form (6.8)
when t + 4+~ (and also when t + -x)

b. If u.is an irrational number then any solution on the manifold is of the form

2w

a(t) = Tt 60 + s(t,u %1 t+ 60) (6.9)

where s(t,0) is T-periodic in t and 2m-periodic in 8. Thus, for irrational u,
s(t,u %- t + 80) is an almost-periodic (but not per1od1c) function of t.

Note that if we put u = M-ln (6.9) then s(t, N %. t + 60) is NT-periodic
in t. Hence (6.8) can be cons1dered as a special case of (6.9)

Recall that the original variables are of the form-

x(t) = u(e(t)) + P(s(t)) h(t,6(t).e)

It follows that
(a) if u is rational, then x(t) is an NT-periodic function of t;
(b) if u is irrational, then x(t) is almost-periodic with basic frequencies

21 2m
T—andu—f-.

1'u[;ﬁ]known to be a continuous but not necessarily Lipschitzian function of
a
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If case (a) holds we say that the solution is synchronized with a period
of oscillations equal to some multiple of the period of the external forcing
frequency.

The above properties of rotation number (see Fig. 6.3) explain what happens
when some parameter is slowly varied. Namely there appear synchronization zones
(constant steps in the Fig. 6.3) of varying Tengths sandwiched between zones
where the oscillation frequency (or basic frequencies) changes with the parameter.

Remark: The problem of crucial importance is to determine whether a given
rational rotation number is stable. This problem can be answered only partially:
there are criteria of stability of ﬁ which can be expressed in terms of the
so called "Poincaré map" [24], however it is impossible in general to express
this criterion in terms of the r.h.s. of the differential equation. The only
case where this can be done is when some small-parameter assumptions are
satisfied. We shall discuss this case in Section 6.3.

6.3. Synchronization via the -theorem on averaging
Throughout this section we assume that € is small with respect to wg and
that equations (6.2) can be rewritten in the form:

§ = wy + eg(t,0,e) (6.10)

Since g(t,0,e) is T-periodic in t and 2wm-periodic in 6, it can be expanded into a
Fourier series

g(t.,6,e) = oJ (mut+n6)

m,n

Im.n (6.11)

2T
where wé—.r— .

Without loss of generality we can assume 990 = 0. If this is not the case
we can include €99 into wy SO that W, 4 wy + €9yq and discuss (6.10) with W, .

Take now integers M and N** such that %-w-wo islof the order e, let us
write it as

m0=%m+w (6.12)

s , . '
Since g(t,0,e) is smooth in ¢ and g(t,0,0) = 0 we can represent it as g(t,6,e)

;Teg(t’e’”e) where ne € (0,e), i.e., we can represent g(t,8,e) in the form (6.10).
For discussion of their existence see the Remarks in this section.
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Introduce the new variable

o &o-Rut (6.13)
which satisfies the equation:

¢ = ela + g(t, %-wt + ¢,e)] (6.14)
Taking the time average of (6.14) we obtain

¢ = ela + 3(9)] | (6.15)

e -3LN¢
with §(¢) EQLM1-LNe

Suppose that there exists ¢0 such that
A+ g(gg) =0 and ' (sy) < O (6.16)

Then it follows from the theorem on averaging (Section 5.1) that (6.14) has a
stable NT-periodic solution ¢(t) which remains close to ¢ for t € (-=,+») and
is unique in some neighborhood of ¢g- Thus 8(t) = %-wt + ¢(t) and the original
solution

x(t) = ulj ut + 6(t)] + PR wt + o(t)] h(t, Mut + o(t) e) (6.17)

is NT-periodic. Hence, our system has synchronized steady-state oscillations.

Now if the paramerer sz is slowly varying, then the solution ¢(t) may also change
slowly but it remains NT-periodic as long as the conditions (6.16) hold. In other
words, the system remains synchronized as long as (6.16) are satisfied. This

kind of behavior was already discussed in the previous section and it is illustrated
by constant steps in Fig. 6.3. The last result says that we shall remain on a
constant step as long as (6.16) is satisfied.

6.4. Trajectories outside of the manifold

In the previous sections we have discussed trajectories on the manifold.
Let us now consider (4.1). It can be shown [4,5] that if the hypotheses H1-H5
20ld and if the eigenvalues of A have negative real parts, then all trajectories

1‘11’ 3'(¢) # 0 for some ¢ = %01 such that A + §(¢01) = 0 then it follows from the

continuity.and periodicity of g(¢) that there exists (at least one) ¢gp # 901

such that A + §(¢02) = 0. .
Tt applies also to any parameter on which the right hand side of (6.14) depend
continuously.
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close to the manifold tend to it as t + ». Moreover for each such trajectory T,

there exists a trajectory Ty on the manifold such that T - P] as 't » =,
The typical situations for the autonomous and the forced (not necessarily
synchronized) case are shown in Fig. 6.4.

7. EXAMPLES OF EQUATIONS ON MANIFOLDS
7.1. Simple oscillator
Let us return to the circuit of Example 5.3 which is described by:

V + ef(v)v + wgv = cAwp(wt) (7.1)

Under the conditions stated in Section 5.3, equation (7.1) has an invariant surface.
a) Autonomous case A = 0
If the forcing term is absent then the manifold is a "cylinder" (Fig. 5.3(b))
and the motion on it is described by (5.11) i.e., by an equation of the form:

8 = wy + eg(0,€) (7.2)

Since ¢ is "small" with respect to wg the theory presented in Section 6.2
(case 1(b)) can be applied. Thus the phase 6 is of the form

a(t) = wt + q(t) (7.3)

where q(t) is g— -periodic- and w, > wyas e >0 (compare (6.5)). Thus for
initial cond1t1ons picked on the man1fo]d the vo]tage is a~§— -periodic funct1on
of the form ‘e

v(t) = [ + h(u t+a(t),e)] cosut + q_(t)] (7.4)

If initial conditions are chosen outside the manifold then the corresponding
solution tends (as t + «) toward a function of the form (7.4)

b) Weakly-forced oscillation A # 0, €A "small"

If € is small, then (7.1) has an invariant manifold (see (5.15)) the motion
on which is described by:

%
= — + ¢g(1,0,¢) (7.4)

el

w
where T 4 wt and 8 & %g s
T
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A
p0+h(‘t',9 sE 3A)

g(t,0,e) = %-f{[po + h(t,6,e,eA)] cos 6}sin 6 cos 6 + p(t) cos @
and h(t,8,e,A) is given by (5.15).

It follows from Section 6.2 that the solution of (7.4) is of the form (6.9)
i.e., it is either periodie with a. frequency %-w (commensurate with the forcing
frequency), or almost periodic with basic freauencies<uanduw where p is an
irrational rotation number. We shall now apply the results of Section 6.3 to
check which solutions are stable.

As in the previous section we introduce

W
eAéEO--% and ¢(t) £ 8(t) v-%'r.

In the new notation (7.4) takes the form:

6' = eb - eg(t, § T+ 0,) (7.6)

Consider now the solutions of the averaged equation (7.6). Note first that.

g(t,6,0) = %'f[pocos 8]sin © cos © - é%-p(r) cos 6

and that the average of the first term is zero, while the average of the second
term is nonzero only if N = 1 (in both cases 6 = %-T+¢ and the averaging is with
respect to time t).

Thus the constant solutions of the averaged equation (7.6) can be found from

A

A=%

P cos(¢-a) (7.7)
where P and o denotes amplitude and phase of the M-th harmonic of p(t), i.e.,
p(t) = 2 pme‘]m't and Py = P ed%. Thus as long as A is "large enough" (AP>ApO)

m

equation (7.7) has in the [0,2r) interval a pair of solutions, one of which
approximates 2mli-periodic and stable solution of (7.6). The second solution
of (7.7) approximates the unstable solution of (7.6). Thus if N =1,

Py = Pej“ # 0 and AP > Pgd then the equation on the manifold (7.4) has a stable
solution of the form:

o(t) = Mt + ¢(1) (7.8)

1'Existence of which is granted by the theorem on averaging (Section 5.1).
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where ¢(t) is M2n-periodic,

Thus under the above assumptions, there exists a pair of M %? -periodic
(in real time t) solutions of (7.1) one of which is stable and the other is
unstable. Both solutions are of the form

v(t) = Pp * h[t, 6(wt), ,A]cos 6(wt) (7.9)

where 6(wt) is given by (7.8).

A11 other solutions originating either on the manifold or outside of it
tend toward (7.9) (the stable one) as shown in Fig. 6.4(b).

Note that the inequality AP > pO]Al has a simple physical interpretation;
name]g eaP is the amplitude of the M-th harmonic of the forcing term, where

2) provides a measure of the amount of detuning between the M-th

harmonic and the self-frequency. The inequality AP > pOIAl says that, as long
as theory from the previous section is applicable, the amount of detuning must
be "small" and that it can increase with the amplitude of the forcing term.
The dashed zones in Fig. 7.1 shows zones in the (w,A)-parameter plane where the
theorem on averaging is valid and where synchronization holds.

Let us summarize our results:
a) If the forcing term is absent (A=0) then the integral manifold is a cylinder
and all trajectories on it are of the same form (Fig. 6.2(b)).
b) If the system is forced then the integral manifold is periodic in time. There
may appear stable synchronized oscillations on it.- In particular, it is the
case when wo-Mm is "small" and py # O (Fig. 6.4(b)).

el =

Example 7.2. 0Oscillator weakly coupled to the dissipative circuit

Consider the circuit in Fig. 5.5, discussed earlier in Section 5.4. Equation
(5.17) has an integral manifold. Moreover, the equation on the manifold (5.19(a))
with x and p replaced by x = g(t,8,e) and p = g * h(t,8,e)) is similar in form
to (7.4), and the same results, as in the previous example, hold: if the forcing
term is absent then the integral manifold is cylindrical and all solutions on it
differ only by a phase-shift (Fig. 6.2(b)).

If the forcing term is present (and it has only one harmonic in the case
considered) then the integral manifold is periodic in time. Moreover, if
wg-w is "small," then tere exists a (unique) synchronized solution (Fig. 6.4(b)).
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Example 7.3. Colpitts-type oscillator

The autonomous system in Fig. 5.6 has a cylindrical manifold. The dynamics
on the manifold is described by an equation of the form (7.2) and is shown in
Figs. 6.2(a) and (b). A1l solutions which originate outside of the manifold S
tend to S as shown in Fig. 6.4(a).

Example 7.4. Josephson-junction circuits
Consider (5.38):

B% + x + s(x) = o - ep(at) | (7.10)

Equation (5.30) which describes the circuit shown in Fig. 5.8 is a particular
case of (5.38).
As before we can consider the autonomous (e=0) and forced (e#0) circuits
and the theory presented in Sections 6.1 and 6.2 is immediately applicable.
If € = 0, then the.equation on the manifold is of the form

8 = y(e) (7.11)

It can be shown [14] that y(8) is positive thus 8(t) = ut + q(t),
moreover u can be shown [9] to be a strictly increasing function of a.as shown
in Fig. 7.2(a).

If € #0, e(;) is described by (6.2) and 6(t) = pwt + s(t,umt+eo) + 8.
Here, u also increases with o but now (at some rational value) it can remain
constant as a function of a as shown in Fig. 7.2(b).

The relationship between u and o predicted above was. first observed

experimental]y.+ The above analysis provides a rigorous explanation of this
exotic phenomenon.
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APPENDIX
A. Flogquet transformation
Consider

8 = wn + g(t,0,p,¢)
0 (AT)

P

A(8)p + f(t,0,p,€)

where A(6+T0) = A(9).

Let the matrix ¢(e,eo) be the fundamental solution of

& = Ao)x (h2)

Since A(8) is periodic and ¢(e+T0,eo) is a matrix solution of (A2), there
exists a nonsingular constant matrix C such that

¢(9+T0990) = C¢(9,90)
On the other hand, C = ¢(6+T0,6) = ¢(T0,0). Since C is nonsingular, there exists

BT0

a matrix B such that e = ¢(T0,0). Let us define

P(e) & ¢(9,0)e7B® (A3)

Note that P(e+T0) = P(9) and that the transformation x 4 P(6)z when applied
to (A2) yields

dz _
aa = Bz .

We shall apply now a similar transformation to equations (Al):

o & Lpe)r (A4)
wo
Thus
.1 d R | .
P = g @ P(0)-6+r + = P(0)F

J [%% e-Be - ¢,Be-89][w0 + g(t,0,p,e)] r + £6 p(e)}

and from (A1)
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5_ P(6)r = A(B)-P(B)-r + f(t,0,p,&)
0

- w‘—o [A(e)oe® - 9Be™B%] [wy + g(t,8.0.e)10r
It follows that

r=Br + F(t,0,r.e)

where
F(t.0,r,e) A mOP'](e) f(t,o, -u]— P(8)r.c)
0

- P 1) [A(0)0e B0 - 9Be7B07 g(t,e, w‘—o P(8)r,e)er

= uP1(6) £(t,0, “]—o P(6)r,e)

- 17" @ (e)R(e) - B a(T.e, L P(O)re)r

thus (A1) can be reduced to:

é wo + g(t,esrgE)

r = Br + F(t,8,r,c)
with the constant matrix B.

B. Reduction of (3.2) to (3.3) and (3.4)
Consider:

[u' () + P'(8)038 + P(8)p = Fylu(e) * P(8)o] + efy(t,u(6)+P()p,e)

To obtain an equation on § let us project both sides of (B1) onto v(8):

v (8) u'(8) + v(0)P" (8035 + vT(6)P(0)5 = v"(8)F[ule) + P(s)o]

+ svT(e)f](t,u(e) + P(8)p,e).

Note that by definition v(g) = u](e)/lu](e)|, P(6) = [gps.-.-28,]
vT()u'(e) = [u'(8)]

and
vI(s) P(e)

n
o
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Define a(0,p) 2 [lu'(e)] + VT(B)P'(B)D]

S0
6 = %'(T_e(%%y fo[u(e) + P(8)p] + e &l‘ée’—g’- f1(t,u+Pp,€) (B2)
Since
o0 Lo
and 0 0
v(8) = u'(8)/|u(e)]
" we get
vT(8) u'(8) = Ju(e)|
and
Ju(@)] =g vT(6) folu(e)) -
Thus

a(8,0) = |u'(8)] = vI(8)u' () = —i—lfo(u(e)

: folu(e)+P(8)o)  fy(u(e))
__(L__T fO u(8)+P(8)p) = wy * V ( ) a(6.p) - a(e,o):J

Hence, equation (B2) assumes the form:

§ = ) + 9](9,9) + 592(13’9,9’5) (B3)
e (u(e)+P(8)p) (u(e))
fa(u(e)+P(0)p fAlu(d
T 0 0

and
v' (8)
9,(t:8,p,€) —(ﬁ—ya 8,57 T1(t:ule)+P(6)o.e)

In a similar way we can obtain an equation on p: we project both sides
of (B1) onto P(g):

PT(e) 2 ()6 + PT(e) P'(8)pd + P (s) P(e)6==pT(e) folu(e)+P(6)p) (84

+ &P (8) ;(t,u(e)+P(6)p,e)

Since gz( 8), ... g,(6) are mutually orthonorma] and orthogonal to u'(e) = —-fo(u(e)),
we get P (8) P(e) I, pl (e)u'(s) =0, P (e) fo(u(e)) = 0. Hence, equat1on
(B4) reduces to
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5 = -P'(8) P'(0)0d + PT(8)[fy(u(8)+P(0)p) - Fo(u(8))] + €P'(8) F1(t,u(6)+P(8)p.c)
Replacing 6 by the r.h.s. of equation (B3), we get
p = A(8)p + Ry(8,0) + eRy(t,8,¢) (B5)

where

A(e) & PT(0)I4: fo(u(8)) P(8) - wgP'(6)]
Ri8,0) & PT(6)[Fy(u(e)+P(8)p) - Folu(e)) - S fo(u(e)) Pe)

- P*(8)p+g1(8,0)] = 0(lpl?)"

Ry(t,6,¢) 8 PT(G)[f](t,u(e)+P(B)p,e)'+ P'(8)pgp(t,0,0,€)]

T
= pT(e)[x - P'(8)p %é%:lf](t,u(e)w(e)p,e)

C. "Running Periodic" Solutions
Consider

5 = () (c1)

where f(0) is a positive, continuous and 2m-periodic function. Let e(t;eo) be
a solution of (Cl) satisfying the initial condition 6(t0;60) = 8-
Observe that e(t;eo) is strictly increasing {since 8 > inf f(6)>0) and
’ ¢

there exists a finite time T such that e(t0+T;60) =6y + 2m. Moreover T does

2m+6
T+t T+t, 2 0 2m
= 0, _ 0_6dt _ dé de
not depend on 90 or to. Indeed T -}' dt -Jt -1-,-—(—6-)- *J ?(F)— - JO ?m .
0

t
0 60
Define now q(t) 8 e(t,eo) --%1 t. Clearly q(t) is T periodic and 8(t) = Eg-t + q(t).

.1.

fa(u(e)+P(e)p) fa(u(s))
Ql(e;p) 8 VT(G [: 0 a(6.p) b - g(e,O) ~is the same as in equation(B3).
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FIGURE CAPTIONS

Phase portrait of equation (1.5) (a) in the (x,y)-plane,

(b) in the (t,x,y)-space.

A simple nonlinear oscillator.

The stable integral manifold of the nonlinear oscillator

(a) in the (x,y)-plane, (b) in the (x,y,t)-space

A Tlossless LC circuit.

A family of manifolds of the LC circuit.

A Tossless circuit with a nonlinear inductor.

A Josephson-junction circuit model.

An integral manifold of the d.c. Josephson-junction circuit.
A typical normal-current characteristic for metal junction.
(a) A periodic orbit I in R".
(b) An invariant cylinder So in
The moving orthonormal system in the 2-dimensional case.-

The moving orthonormal system in more than two dimensions.

The new coordinate system for u(8) Ro[cos 8, sin e]T.

The new coordinate system for u(e) = R [cos 6, sin 8, 0],

(a) the orbit T and "hyperplane" S(8),

(b) the moving orthonormal system. |

Nonlinear functions (a) the required shape of g'(v) (b) the resulting
graph of f(p).

An integral manifold of an autonomous system

(a) T is an intersection of manifold with the t = 0 plane.

T = {(v,v): v = [po + h(e,e)]cos 6, v = -wo[po + h(6,e)]sin o6}

r. lies close to Ty = {(v,v): v = ppCOS 05 V= ~wgpgsin o}.

(b) The manifold S€ in the (t,v,v)-space.

A periodically forced oscillator.

A Wien-bridge oscillator and its circuit model.

RN,

A nonlinear oscillator weakly coupled with a linear dissipative circuit.

A circuit model of a Colpitts-type oscillator.
For each point with coordinates (xo,yo) near the curve y = y(x) there
exists a unique pair (eo,po) and vice-versa, having the geometrical

relationship indicated. Note that 8o is equal numerically to the

x-coordinate of the intersection point PO,-and o is just the
vertical distance from P0 to 30.
A.neighborhood of a saddle point.
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5.9.

6.1.

6.2.

6.3.

6.4.

7.1.

7.2.

Various phase portraits of (5.38) with separatrices bounded for

t > +

(a) A1l trajectories originating in the lower half-plane tend to
equilibrium.

(b) There exists a trajectory y which originates in the lower half
plane and does not converge to any equilibrium.

Constant solutions of (6.3). For each of constant solutions B>

k =1, we introduce Yk(e)'.= (Q-ek)[wo + g(6,e)]. Observe that: |

61 and 6, are unstable and y1(e) is positive about 8, while yz(e)
changes its sign, 63 is stable and y3(e) is zero about 85, 6, is
asymptotically stable and y4(e) is negative about 64.

Possible trajectories on an integral manifold of an autonomous system.
(a) Case of "small" Wy 3 (b) Case of "large" Wy

The rotation number p as a function of o - Constant "steps" appear at

- rational values of. u.

Trajectories on and outside the manifold

(a) An autonomous system; (b) A periodically forced system.

Possible synchronization zones in the (w,c)-plane. Note that if

the forcing frequency w is "small" then the forcing "amplitude" & must
also be "small."

The rotation number u as a function of a d.c. forcing term o. in the
Josephson junction circuit. (a) the autonomous case. (b) the case

when also a small a.c. forcing term is present.
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