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Abstract

Although the theory of integral manifolds is well known among applied

mathematicians as a powerful tool in nonlinear oscillations, it is relatively

unknown, let alone applied, among circuit engineers. The purpose of this mostly

tutorial paper is to illustrate the applications of integral manifolds to explain

various nonlinear phenomena widely observed in nonlinear circuits. Numerous

examples and graphical illustrations are included in order to present the theory
with a minimum amount of mathematics.
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1. INTRODUCTION,

Most of the qualitative methods of nonlinear analysis consist of reducing

a given equation to a more simple form. One of these methods is a generalization

of the slowly-varying amplitude and phase approach introduced by van der Pol [1].

This method has since been rigorously justified by Krylov, Bogoliubov, Mitropolski,

and others [2-7]. Because this method appears to be rather mathematical and

involved it has not been used by engineers until only recently [8-10]. Our

purpose of this paper is to present a tutorial on this important method and to

apply it to the analysis of some well-known electronic circuits. In particular;

we shall show that many "heuristic" approximation techniques used by engineers in

the analysis of nonlinear "circuits and systems involving some small parameters"

(e.g. parasitic capacitance or inductance) can be given a rigorous foundation via

the method of integral manifolds.

To illustrate the ideas behind the integral manifold approach, let us consider

the well known van der Pol equation

x = y

(1.1)
/ 2\ 2y = e(l-x )y - u>0x

If e = 0 equation (1.1) becomes linear and all solutions are of the form:

x(t) = p cos(u)nt+(j>)
° (1.2)

y(t) = -oj0p sin(io0t+(t>)

where pand <j> are integration constants depending on initial conditions.

To analyze the case of e + 0 (but small) assume that p and <j> in (1.2) are

time dependent. Rigorously speaking, we treat (1.2) as transformation of variables,

Since <\> is time dependent it is more natural to consider the phase:
6(t) Aw0t +<f>(t) i.e.,

x = p cos 6, y = -oiQp sin 9 (1.3)

Applying transformation (1.3) to (1.1) we obtain

2 2
9 =go +f {[1 -%- ]sin 29 - ^- sin 49}

2 24 (1.4)
p=e•| {1 -£- +cos 29 +£p cos 49}
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Neglecting the terms whose average (in 9) is equal to zero one gets:

e -«0

8•.!(!-£ "•5*
Since (1.5) is an approximation of (1.4), it is necessary to analyze

how close are the solutions of (1.5) to the exact solutions. Let us first

investigate the geometrical behavior of the solutions of (1.5). The two

equations in (1.5) are independent. The solutions of the first are of

the form 9(t) =ojQt +90, while the latter has for p>0 the constant

solution- p0 = 2. All other solutions (with positive initial conditions)

tend to p« = 2. In terms of x and y we get

x(t) = p(t) cos(u)Qt+90), y(t) = -u)Qp(t) sin(u>0t+90)

where p(t) -»• 2 as t -»- +».

The phase portrait in the (x,y)-plane is shown in Fig. 1.1(a). If we

consider the trajectories of (1.5) in the (t,x,y)-space, we get the

picture shown in Fig. 1.1(b). Note that the trajectories on the cylinder

2

c={(t,x,y) :x2 +^= pjb (1.6)

have the form

[x(t),y(t)] =[p0cosU0t+90), -oo0P0sin(w0t+90)].

Hence, for initial conditions on this cylinder c, equations (1.5) are

equivalent to:

9(t) = wn
0 (1.7)

pU) = PQ

We would like to know under what conditions will the behavior of

solutions be similar to that of (1.5). Moreover, for the nonautonomous equation
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0.8)

y = e(l-x )y - WqX + B cos cot

we would also like to know under what conditions on B and co can (1.7) be

reduced to (1.5).

In general we cannot expect that solutions of (1.4) or (1.8) will be close

to these of (1.5) over the infinite time interval even if they start from the

same initial point. We shall show in Section 3 that for e small (and if either

B or - is small in (1.8)) equation (1.1) (and also (1.8)) possesses in the

neighborhood of the cylinder (1.6) a surface to which all other solutions must

tend to, and the solutions on this surface are described by the equation:

9 = tug + "small perturbation."

2. DEFINITION AND EXAMPLES OF INTEGRAL MANGOLDS

Consider the equation:

x = X(x,t) (2.1)

where x is an n-vector and t e (-«,*»). Throughout this paper we shall

assume that the solutions of (2.1) are defined for t e (-~,+oo) and that for any

initial condition x(tQ) = xQ (2.1) has a unique solution x(t;t0,x0).

Definition 2.1. [4,5] A surface S in the (x,t)-space is called an integral

manifold of (2.1) if any solution of (2.1) originating on S will remain on S

for all t.

Let U be a a-neighborhood of S:

Ua = {(x,t) : dist[x,S] <a} (2.2)

Definition 2.2. An integral manifold S is said to be isolated if there

exists a >0 such that UQ does not contain any other integral manifold except S.
Definition 2.3. An integral manifold S is said to be stable if for any

Og >0 we can fix a-| > 0 such that any solution of (2.1) which originates in
UV at time t = tn will remain in U„ for t > t0 and will tend to S as t •»• +».o^l U Qq 0
Example 2.1. Consider the circuit shown in the Fig. 2.1. Kirchoff's laws yield:

dt L (2.3)
dv _ 1 . , 1 .
it - r1 +TnR
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Suppose that the nonlinear resistor v-i characteristic iR = g(v) has the
following properties:

1. g(v) is an odd and continuously differentiate function of v,

2. there exists vQ such that g(v) < 0 for 0 < v < vQ, and g(v) is positive and
monotone increasing for v > vQ.
It can be shown [5,11] that (2.3) has exactly one periodic orbit in the (v,i)-

plane and that orbit is asymptotically stable. When the solutions of (2.3) are

considered in the (v,i,t)-space then those which pass through the orbit y (in

the (v,i)-plane) form a cylinder S which appears to be a stable integral manifold

of (2.3) as shown in Figs. 2.2(a) and (b).

Example 2.2. Consider the equation

x+ ef(x,x) +u)qX =0 (2.4)

This equation is a generalization of (1.1); namely, for f(x,x) = (1-x )x we get

the van der Pol equation. Also if the nonlinear function in example 2.1 is

small, i.e., g(v) = eF(v), then (2.3) can be reduced to (2.4) with x£ v,
ujj ^1/LC, andef(x,x) =erf(v,v) &1^ F(v)-v.

The transformation:'

x = p cos 9
(2.5)

x = -Hup sin 9

when applied to (2.4) yields

e 19 =coQ + -=-• —«f(p cos 9, -coqP sin 9)cos 9
0 " (2.6)

p =+ — f(p cos 9, -tonp sin 9)sin 9coQ u

Let us consider the following equation associated with (2.6):

§=% (2.7)

P= ~ f0(p)toQ

'2tt

0

1 r71"where fQ(p) AW- f[p cos 9, -toQp sin 9]sin 9d9

Equation (2.6) can be considered as a perturbation of (2.7)? It will be
shown in Section 3 that if there exists pQ > 0 such that f0(P0) =0 and
f'(pn) < 0 (i.e., p0 is a constant and asymptotically-stable solution of the
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second equation in (2.7)), then for e sufficiently small, equation (2.6)

has a stable integral manifold in (x,x,t)-space. Moreover the manifold

tends to the cylinder:

c={(x,x,t) :x2 +x =p0}

as e tends to zero.

Example 2.3. Consider equation (2.4) with e = 0

x+ coqX =0 (2.8)

This equation describes a lossless LC circuit shown in Fig. 2.3 with x A v,
2 1 =

^0 = LC * A^ solutl"ons °f (2.8) are of the form x=A cos(u)Qt+<f>). It is easy
to see that (2.8) has a continuumof nonisolated cylindrical manifolds in the

(x,x,t) space as shown in Fig. 2.4.

Example 2.4. The nonlinear lossless LC circuit has a similar structure of

integral manifolds as that shown in Fig. 2.4. Indeed, consider the circuit shown

in Fig. 2.5, and let i = g(<j>) be the characteristics of the nonlinear inductor,

such that the "energy function":

G(<i>) A g(<j>)d<j> = id<j> = i-vdt
JO Jo •'-«

increases monotonically to infinity when either <j> -*• +«> or <(>•-• -<».+ Then all
solutions of the equation:

*=V. (2.9)
v=-£g(<f>)

must lie on nonisolated "cylindrical" manifolds of the form:
Cv2

S = {(<M,t) •— + G(<j>) = const, t e R} .

The manifolds aKe cylindrical because G(<f>) increases monotonically to infinity with
Cv

|(f>|, so that -?p + G(<J)) = const does form a closed curve in (<J>,v)-plane. Observe

Physically this property means that the magnetic energy stored in the inductor
increases with the absolute value of the-magnetic flux.
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that this curve needs no longer be an ellipse,..as it is the case with the previous
example.

Example 2.5. Josephson-junction

The point-contact or micro-bridge junctions can be modeled with the circuit

shown in Fig. 2.6 [12,13]. In terms of dimensionless variables this circuit can

be described by the equation

x = y
(2.10)

8y = a - sin x -y

This equation was discussed in great detail by Andronov, Vitt, and Khaikin

[14]. In particular, they have shown that for a > 1. (or for 0 < a < 1 and 3

smaller than some critical value 30(a)), equation (2.10) has a stable and
2ir-periodic (with respect to x) trajectory defined by x(t) and y(t) = i^(x(t)).

Hence, in the (x,y,t)-space this equation has an integral manifold

Sq= {(x,y,t) :y =ip(x), te R} (2.11)

as shown in Fig. 2.7. Moreover the motion on the manifold is described by the

equation

x = iMx) (2.12)

For a more detailed discussion of this case see [14-16, 9].

When the parameter 3 (junction capacitance) is small, another approach for

analyzing (2.10) is also possible. One does expect intuitively that the behavior

of (2.10) should be similar to that of the equation:

x = y

0 = a - sin x -y

i.e., one expects that the solutions of (2.9) should lie on the surface

{(x,y,t) :y = a - sin x, t e ]R} and their behavior is described by:

x = a - sin x

This means that we can neglect the capacitance shown in Fig. 2.6.

Assumptions of this kind were often made [16,17], their justification can be

found in [19,4,9,10].

-7-
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Example 2.6. Tunnel-junction

When Josephson effect is due to a semiconductor tunneling mechanism, we can

no longer assume that the resistance in the circuit in Fig. 2.6 is linear.

A more realistic model in this case is given by

x = y

(2.15)
3x = a - sin x - g(y)

where the typical g(y) characteristic is shown in Fig. 2.8.f
Since g(y) is a one-to-one function we can expect as before that, for small

3, the solutions of (2.15) will lie near to the surface

S={(x,y,t) :y =g_1(a-sin x), x e R, t e R} (2.16)

Motion on the surface S is described by

x = g" (a-sin x) (2.17)

3. TRANSFORMATION OF COORDINATES

Our next goal will be to present the conditions under which an integral
manifold is preserved under small perturbations. In order to do this, we shall
introduce a new coordinate system which is especially convenient for studying
the behavior of trajectories in a neighborhood of the original cylinder.

Consider the autonomous system

* = fo(x) (3.1)

together with the perturbed equation

x = fQ(x) + ef(t,x,e) (3.2)

r,,T,

where fQ and f^ are smooth and bounded vector-valued functions, and e is a small
parameter.

Suppose that the autonomous system (3.1) possesses an asymptotically stable

T-periodic solution u(t). This solution gives rise to a closed orbit r (in

the x-space) and an invariant cylinder SQ (in the (t,x)-space) as shown in
Fig. 3.1.

We would like to thank Professor T. Van Duzer for informative discussions
concerning this subject.

'A function is said to be smooth iff it is at least twice continuously
differentiate
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Since we are interested in the solutions close to r (respectively Sq), it
will be convenient for us to introduce local coordinates in some neighborhood of

r (respectively SQ). In terms of these new coordinates the perturbed equation
(3.2) reduces to:

8=u)0 + g-,(9,p) + eg2(t,9,p,e) (3.3)

p=A(e)p + R1(9,p) + eR2(t,9,p,e) (3.4)

Our approach consists of two steps:

1. We introduce a moving orthonormal system along the orbit r.

2. With this orthonormal system, we introduce new coordinates in which the

perturbed equation will take the desired form.

3.1. Moving orthonormal system [5,20]
2ttLet us parametrize r with 9 A wt, o> A -f- »i.e.,

T = {x e Rn :x = u(9), 9G [0,2tt)}+ (3.5)

and let v(9) A du

d9

-1

j^- denote the unit vector tangent to r.

In the 2-dimensional case the orthonormal system consists of two vectors

v(8) =[v1(9),v2(9)]T and 5(9) =[-v2(e) ,v-,(9)]T

as shown in Fig. 3.2.

For the case n > 2we can always find a unit vector e^R such that,for
any 9,v(9) is never parallel to e-, (i.e., v(9) f +e-j for 9€ [0,2tt)). With a
fixed e1$ let us choose e2,...,en such that e1,...,en form an orthonormal basis
in IRn as shown in Fig. 3.3. Let us then transform, for any 9 e [0,2tt), the
whole system so that e-j coincides with v(9),++and denote the transformed vectors
e2,...,eri as £2(9),... £n(e). The vectors S2(9)...£n(9) span aspace orthogonal
to the orbit r, while v(9), £2(9)...£n(9) constitute amoving orthonormal system.

More precisely x = u(9) where u(9) is defined as u(8) A u(—) = u(t).

This can be done as follows: we fix an n-2 dimensional subspace S which is
orthogonal to both e, and v(9) and then rotate the system along S until e-j
coincides with v(9) [5,20].
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3.2. New coordinates

We are now in a position to introduce new coordinates 9, p = [p-,,...,p ,]

via the formula

x = u(9) + P(9)p (3.6)

where P(9) A [£2(9)j...|sn(9)]

is an n x (n-1) matrix whose columns are the orthonormal vectors £2(9),...,Sn(9).
It can be shown [5] that if f0(x) is smooth and if Ilpll is small enough, then

the transformation (3.6) is well defined. To obtain equations (3.3)-(3.4) we
apply (3.6) to (3.2):

[u'(9) +P'(9)p]-9 + P(9)p = fQ[u(9)+P(9)p] + ef1[t,u(9) +P(9)p,e] (3.7)

where dt •'" tie *

For Ilpll small enough the matrix

[u'(e) + P'(9)Pjp(9)] =[u« +Pp:c2E — :Cn3

is nonsingular so that p and 9 can be found from (3.7):

Solving (.3.7) for 9 and p we obtain (3.3) and (3.4)

Examples of new coordinate systems:

Example l(n=2). Consider the circle in R as shown in Fig. 3.4,

then

v(9) =

u(9) = RQ
cos 9

sin 9

•sin 9

cos 9

, S(e) = -
-cos 9

sin 9

T = {(x, ,x9) 6 R :Xi = Rn cos 9, x9 = Rn sin 9, 9 e [0,2ir)}
kl,A2 2 "0

and formula (3.6) takes the form

x
kl B R,

COS 9

sin 9

cos 9

sin 9

-10-
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As long as p < RQ, formula (3.9) gives a one-to-one correspondence between
(x-j,x2) and (9,p). Moreover in this particular case, we can find 9 =9(x, ,x2),

p= p(x-j,x2) explicitly; namely,

J
1 " A2

9 =

P=Rq -A? +Xo

r tt

2

-1 x2
tan' — for x-, > 0x] I

-1 x2
it + tan —- for xn < 0x] I

for x-j =0 , x2 >0

for x-j =0 , x2 <0

Example 2.
3

Consider the same circle in R as shown in Fig. 3.5(a).

Choose u(9) =RQ [cos9,sin9,0]T then v(9) =[-sin9,cos9,0]T

The natural choice of e^ in this case is e1 = [0, 0, 1] .

Then e2 =[1, 0, 0]T, e3 =[0, 1, 0]T and

S(9) ={(XpXg.Xj) € : [xpx2,x3^T =[-cos9,-sin9,0]Tt, t 6R}

Hence,+ £2(9) =[cos29, sin 9cos 9, sin 9]
2 T

So(9) = [cos 9 sin 9, sin 9, -cos 9] as shown in Fig. 3.5(b).

Explicit formulae for £. are derived in [5,20]t In particular, we have:
J . -2Cj =e. -(x.+u,)e1 + Uj+yj(2 cos Y]-1)]v where: Xj A cos Y] cos Yj sin y-j »

y. A cos y. sin" y-j »and y. is an angle between e. and v, i.e., cos Yj k ejv

-11-



Thus the transformation is of the form:

-t i- 2
cos 9

sin 9 cos 9

sin 9

xl COS 9

x2 = R0 sin 9 +

x3 0

or equivalently,

xl = (Ro +Plcos e+P2sin Q)cos 9

x2 = (Rq +p-jcos 9+p2sin 9)sin 9

x3 = P-|Sin 9 - p2cos 9

cos 9 sin 9
. 2

sin 9

-cos 9

pl

p2

(3.10)

Let us come back to equations (3.3-3.4). If e = 0 then p = 0 is clearly

a solution of (3.4), and it corresponds to the integral manifold of the

unperturbed system.

We shall ask now for conditions under which this manifold can be preserved

for small e. These conditions can be formulated [5,21] in terms of equations

(3.3)-(3.4). The procedure however, is very long. In this paper, we choose

a different approach based on the Floquet theory [4,5]. We shall reduce

[Appendix A] equations (3.3)-(3.4) to the form:

9 = Wq + g-,(9,p) + eg2(t,9,p,e)

p=Ap + R](9,p) + eR2(t,9,p,e)
(3.11)

with A being a constant matrix?
In the next chapter we shall present theorems on the existence of an integral

manifold for equations in the form (3.11) as well as for some of their generalizations

Note that g. and R^, k = 1,2 and are different from those functions in
(3.3)-(3.4). However, they play the same role and hence it is more logical
to use the same notation.
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4. EXISTENCE AND STABILITY OF INTEGRAL MANIFOLDS

4.1. Main theorem
t

Assume that

9 = wn + gi(9»p) + eg?(t,9,p,e)
and u ' L (4.1)

p= Ap + R-,(9,p) + eR2(t,9,p,e)

satisfy the following hypotheses:

HI. Functions g-,, g2, R-j, R2 are continuous and bounded for t e ]R ,
9e ir and Ilpll <6q, where 6Q is an arbitrary constant.

H2. These functions are-2tt-periodic in 9.

H3. gi(9,p) =O(llpll), R^e.p) «0(llpll2).++t
H4. g-j, g2, R,, R2 are Lipschitzian in both-9 and p with Lipschitz

constants which tend to zero with e -»• 0.

H5. Eigenvalues of A have nonzero real parts.

Theorem 4.1. [22,4,5] If hypotheses H1-H5 are satisfied, then there

exists a function h(t,9,e) continuous in all variables and 2Tr-periodic in 9,

bounded by D£, and Lipschitzian in 9 with a Lipschitz constant A , where
D -»• 0,-A + 0 with e -»• 0, such that the surface:

S£ ={(t,9,p) : p=h(t,9,e), t € R, 9e IR } (4.2)
is an integral manifold of (4.1)

Behavior of solutions on this manifold is obtained by solving the system:

8=Wq +g1(9,h(t,9Je)) +eg2(t,9,h(t,9,e),e) (4.3)

with arbitrary 9Uq) = 9q.
Moreover:

(a) If g2 and R2 are periodic (respectively almost periodic) in tso is h(t,9,e).
(b) l^ 9-j >92» R-j and R2 are smooth,so is h(t,9,e).

Observe that (4.1) is the same as (3.11).
tt n 2 1/2

For p = [pr..pn], Ilpll A( I pk)

tt+We say that f(x,a) =0(an), if f(x,a)/an remains (uniformly in x) bounded
as a -»• 0.
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(c) If all the eigenvalues of A have negative real parts then the manifold

S is stable.
e

4.2. Generalizations and remarks

1. Theorem 4.1 remains valid also when 9(t) is a vector-valued function:
T k9 = [9-|..9k] e IR . In this case H2 requires that g-j, g2, R-j, and R2 are

T"+periodic functions with a vector-period TQ = [Tq,,...»TqiJ . Obviously (4.3)
is in this case a k-vector equation with caQ =[toQ, ,...a)Qk]T. As an example,
consider a system of weakly-coupled oscillators (example 5.2 in Section 5).

2. Theorem 4.1 remains valid if o)Q (respectively a vector [o)01,...»WqiJ )
continuously depend on e.

3. Theorem 4.1 holds also for equations of the form:

9 =% + g-|(9>x,y) + eg2(t,9,x,y,e)

x =Ax + X1(9,x,y) +eX2(t,9,x,y,e) (4.5)

y =eBy +eY1(9,x,y) +e2Y2(t,9,x,y,e)

where hypotheses H1-H4 hold for X], X2, Y1, and Y2 (instead of R-, and R2), and
H5 holds for A and B. In this case there exist h(t,9»e) and f(t,9,e) (with the

properties stated in Theorem 4.1) which define an integral manifold:

S£ = {(t,9,x,y), x =h(t,9,e), y =ef(t,9,e), t e IR , 9 € IR } (4.6)

Integral manifolds are also preserved under perturbation which average to
zero in the following sense: Consider

e =ajo+ g-i(9»x,y) +eg2(t,9,x,y,e) +g3(t,9,x,y,e) (4.7a)

x =Ax + X1(9,x,y) +eX2(t,9,x,y,e) (4.7b)

y=eBy +eY1(9,x,y) +e2Y2(t,9,x,y,e) +£Y3(t,9,x,y,e) (4.7c)
where

1 fT ifT
1lmT J 93(t+T>8+a)oT'X,y,£)dT =0'limT Y3(t+T,9+w0T,x,y,e)dT =0 (4.8)

Without loss of generality one can assume that TQ1 =TQ2 =... - TQk =2tt.
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and Y3(t,9,x,y,e) and g3(t,9,x,y,e) have continuous second partial derivatives
with respect to 9 and y. Other hypotheses are the same as before. In this case

ojq (respectively: [^nV•••'^Ok^ ^may a^so dePend on e but there must exist
a positive constant d (independent of e) such that cdq. >_ d for i = l,...,k.
For more subtle results, see [22, p. 140].

4.3. Outline of the proof

The proof of theorem 4.1 consists of defining a family of candidates for

integral manifold together with an appropriate transformation which maps this

family into itself. An outline of this proof can be found in [22]. The detailed

proof is given in [23,4] and, (for more general case) in [5]. For our purpose, •

it suffices to know that the transformation of the family of candidates depends

on the matrix A, and that it is a contraction mapping. The integral manifold is

obtained as a fixed point of this transformation via successive iterations.

The case when 9 is a vector and when a vector y is present as in (4.5), is

proved in exactly the same way. The proof of (4.7) is based on the so called

Krylov-Bogoliubov transformation which replaces a function proportional to e and
p

with a zero average by a function proportional to e . In example 5.1 below we

shall illustrate another application of this trick.

Let us note that in general the matrix A of (4.1) which was obtained via

Floquet's theorem is not known explicitly. Thus neither the function h(t,9,e) (and

f(t,9,e) for (4.5) and (4.7) nor the right hand side of (4.3) are explicitly

known.- It is, however, possible to obtain important qualitative properties of

the system without knowing the exact form of the right hand side of (4.3). (See

examples in Sections.)

Let us note also that in some important cases (examples 5.3-5.6 of Section 5)

we can find explicitly the matrix A (and matrix B for (4.5) and (4.7)) and

consequently also the manifold h(t,9,e) (approximately at least) and the

equation (4.3).

5. ILLUSTRATIVE EXAMPLES

In this section we shall show how theorem 4.1 can be applied to various

systems. In each example we shall prove that an integral manifold exists.

Discussions on the behavior of the trajectories are postponed to Sections 6 and 7.

Examples 5.1 and 5.2 are of a general character. Second-order systems are

discussed in Examples 5.3 a,b,c. Examples 5.4 and 5.5 show how the method works

in higher-order systems. The circuit structure in the first example allows us to

apply directly to theorem 4.1. (In the second example some additional

transformations are required. Examples 5.6 and 5.7 are of a slightly different
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character. Here the integral manifold arises not from a closed orbit but from

an unbounded trajectory which is "periodic on a cylinder."

5.1. Theorem on averaging

The method to be outlined below was invented by Krylov and Bogoliubov [2]

to give a mathematically rigorous justification of van der Pol's intuitive

approach [1]. Further development of their approach has given rise to the method

of integral manifolds. Here we present their result as a special case of theorem 4.1

Consider the equation:

x = eX(t,x) (5.1)

Suppose that X(t,x) is T-periodic in t and can be expanded in a Fourier series

(uniformly in x)

X(t.x) - I Xn(x)e T
n=-»

Assume that the equation Xq(x) =0 has a solution xQ such that all eigenvalues of
ax0
3x

V_Y have nonzero real parts.

A r 1 v^"T*Define now the function W(x,t) = T —-*- Xn(x)e . Note that
ntf) jn ^ n

W(x,t) has the property that |~ =X(t,x) -XQ(x).
Applying the transformation

x = 5 + eW(C,t) (5.2)

to (5.1) we get

k=eXQ(5) + "small" terms (5.3)
3X,

which is equivalent to (4.7) with 9 and xabsent, y £ £-xn and B=ttt
3C

o a periodic trajectory which remains

the constant solution x(t) = XQ

t

Thus, the manifold S reduces to a periodic trajectory which remains close to

The theorem on averaging and the transformation (5.2) were first given by
Krylov and Bogoliubov [2] in 1934. The version presented here is due to
Bogoliubov Mitropolski [3] it remains valid even if X(t,x) is not periodic and

A l fTXq(x) is defined as: XQ(x) ^ I1ra| X(t,x)dt.
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Example 5.2. Weakly coupled oscillators

Consider the system

x. +u).xk =-efk(t,x1...xn,x-j.. .xn) k=l,2,..n. (5.4)

Applying the transformation

xk := pkcos 9k, xk = -(x)kPksin 9k (5.5)

to (5.4) yields

§k =\ +̂ fk(t,xr..xn,xr..xn)cos 9k

Pk =^fk(t'xVxn'xVxn)sin0k
(5.6)

If the limit

A 1 fTfk(Pr.Pn) " 1im j ^[tp-jCOsJ^t+gQ^,... Pncos(o)nt+90n),-cj1p1sin(o)1t+901),
|-rOO J Q

j(o).t+9n.)
..., -VnsinKt+60n):i e dt

exists and does not depend on 9oi«..eQn ^or a^ ^ = l>"->n> tnen (5.6) can be
represented as

§k=uk +ijrReTk(<V-pn>+e9(t,P)
K k (5.7)

pk =̂ Im7k(pl"pn> +e^t«P)
where f(t,p) and g(t,p) denote terms with zero time average. Hence,

if there exist pQ = [p0-| >...Pgn] such tnat Imfk(p01"" ,p0n^ =° and p0n * ° for
k= l,...n and the Jacobian matrix frr— Im fk(pQ)] has eigenvalues with nonzero
real parts then (5.7) is a special case of (4.7) with 9 e Rn, p = y e 3Rn, and with
the vector x absent.

Let us consider now some important special cases of example 5.2:

Example 5.3(a). Simple nonlinear oscillator

The simplest circuit model of a nonlinear oscillator which is considered

in Example 2.1 is shown in Fig. 2.1. This model is described by

V+J- g'(v)v +i v=0 (5.8)
-17-



Suppose now that p- g'(v) can be represented as ef(v) where f(v) is bounded and
12 +

e is a small parameter, while rr 4 ^n does not change with e, thus (5.8) is

special case of (5.4) with k=1, x £v> w2 4^ §£f(t,x,x) AI g'(v)v
= ef(v)v and it can be reduced to the form

9 =ujq + ef(p cos 9)sin 9 cos 9
• .9

p = ef(p cos 9)p sin 9

where v = p cos 9.

If. we take the time average of (5.9) then it will reduce to:

9 = o)q ,p= ef(p)

(5.9)

where

f(p) -I
7T

rTT

0
f(p cos e)p sin29d9+t+ (5.10)

If the nonlinear resistor characteristic has an "Nu shape , then the function

f(p) can be easily found; namely, it is zero at p = 0, decreases for p > 0

until it reaches its minimum, and then increases to +°° as shown in Fig. 5.1(b).

Thus there exists pQ t 0 such that f(pQ) = 0. The transformation y A p-pQ
reduces (5.9) to (4.7) with 96R ,y6R1, B=^^(Po)» and witn tne vector
x absent.

It follows from theorem 4.1 that (5.9) has an integral manifold:

Sc = {(t,v,v): v = [pn + h(9,e)]cos 9,
e ° (5.11)

v = -wQ[pQ + h(9,e)]sin 6,6 6 [0,2ir], tG 3R }

Motion on this manifold is described by:

9=o)q + ef{[pQ + h(9,e)]cos 9}sin 9 cos 9 (5.12)

We can either change both Land Cto keep 1small and ^ constant, or change the
slope of the nonlinear characteristic to obtain a small g'(v).

More exactly we put 9 =o)qT+(j> and average (5.9) with respect to t.
Since f(9cos9) sin 9 cos 9 is an odd function, its integral over a

2ir-interval is equal to zero.
§

More exactly we require g'(v) to decrease monotonically for v < 0, increase
monotonically for v > 0 and to be negative at v = 0 (as shown in Fig. 5.1(a)).
Note that the van der Pol equation with g'(v) = -l+v2 satisfies these requirements

-18-



Since (5.9) is autonomous the integral manifold does not depend on time.

Moreover, since h(9,s) is small the manifold lies close to a cylinder of radius

Pq in the (t,v,v)-space (as shown in Figs. 5.2(a) and (b)). Observe that the
van der Pol equation considered earlier in Section 1 is a special case of (5.9).

Thus theorem 4.1 justifies using the approximate formula v(t) = 2 cos(u)Qt+(j)Q),
3

which can be obtained from (5.11) and (5.12) with e=0and g(v)=-v +^- .

b. Nonautonomous case

Consider the same circuit with a periodic current source (as shown in Fig. 5.3)

described by

V+£g'(v)v +1JrV-l£ls(u>t) (5.13)

1 2 1Suppose, as before, that jr g'(v) can be represented as ef(v), o)q A j-q ,and
moreover -^ -nr i (cot) c
time t A a)t we obtain:

moreover ^ -pr l'(oot) can be represented as eu)Ap(cDt). Introducing dimensionless

v" +| f(v)v' +(5-) v- eAp(x)
where v' A -j- v.

Now, we can apply transformation (5.5) (with x, x replaced by v, v') to

obtain:

0» = _" + £ f( cos e)sin Q CQS Q _ £ Ap(T)C0S e
w w . P (5.14)

p' =w f^p C0S 0^p sin " eAP(T)sin e

If e is small enough with respect to go (and the nonlinear resistor characteristic

has the same properties as those in example 5.3a) then theorem 4.1 holds and

(5.13) has an integral manifold:

S£ ={(t,v,v): v a [pQ +h(o)'t,9,e,A)]cos 9,

v =-ioq[p0 +h(o)t,9,e,A)]sin 6,6 6 [0,2tt], t € R} (5.15)

Observe, that if w is large then — is small and so is — . It follows from

Remark 4 of Section 4 that theorem 4.1 may not hold in this case (unless

e « Wq).
A similar situtation also occurs in some autonomous system as shown in

the following example.
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c. A counterexample: Wien-bridge oscillator

A Wien-bridge oscillator and its' circuit model are shown in Figs. 5.4(a)

and (b). The circuit can be described by:

v +± (3-f'(v))v +—Ur v =0 (5.16)
RC (RCr

One is tempted to treat ^ both as the small parameter e and the frequency ojn
(wq =e=4c) when applying theorem 4.1. Unfortunately ojq decreases to zero with
e and the theorem cannot be applied.

d. A counterexample: Lossless LC oscillators

Observe that theorem 4.1 does not apply for circuits considered in Sections

2.3 and 2.4. Indeed these circuits possess families of nonisolated manifolds.

The standard transformation (5.5) reduces (2.9) to

e = $(p,e)

p = o

Hence, "the matrix A" is zero, hypothesis H5 is not satisfied and we cannot

expect the manifolds to be preserved under small perturbation.

Example 5.4. Nonlinear oscillator weakly coupled with a linear dissipative

circuit.

Consider the circuit shown in Fig. 5.5. This circuit is described by:

Cv +g'(v)v +—i-y v =-Boj sin cot ^—5- Ri,
L^-M2 LLrMZ ' (5.17)

dil - M _. LR .—TT * 9- V - -=—K" 1-j

Assume that both the nonlinearity and the "perturbations" are small. More

precisely, assume that we can introduce the following representation

w„x A 1 n./w\ a A B . A M Mef(v) * — g (v), ea = — , eb = j * t-t—
c c LLrr LL1

A 4 LR R 2 . Ll 1
2 n 17 * w0 = 777; 717 * LCL^L-Vr *-l U~C(LL1-Mt)

Equation (5.16) possesses, however, an integral manifold, the existence of which
can be proved via phase-plane methods [11,5].
t+In the case of the linear equation (2.8) we have g(<|>) = 4>/L and $(p,9) =u>0 A—

AC
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where e can be made arbitrarily small while a, b, A and coQ, even if dependent on
e, remain bounded (as functions of e) both from below and from above by positive

constants.

In terms of the new notation, equation (5.17) assumes the form:

• 2 Rv+ ef(v)v + ojqV = -eaco sin cat - eb £ i-j

di
(5.18)

= Aii - ebv
dt n,l

Let us denote i-, A x and introduce the standard transformation v = p cos 9,

v = -ojqP sin9in (5.18) to obtain:

9 =ojq + ef(p cos 9)sin 9 cos 9 (aw sin cot + b - x)cos 9 (5.19a)

p=ef(p cos 9)p sin 9 - — (aco sin cot +b £ x)sin 9 (5.19b)OJq c

x = Ax - ebp cos 9 (5.19c)

If co + ojq then the time average of the r.h.s. of (5.19b) reduces to

eT(p) =|
rT!

f(p cos 9)sin 9d9 and (5.19a,b,c) can be represented in the form
0

(4.7) with y := p-pQ (where f(pQ) =0, ± f(pQ) f 0, pQ f 0) BA^ f(pQ)
where x and 9 are scalars.

Example 5.5: Col pitts-type oscillator

This oscillator can be represented by the circuit shown in the Fig. 5.6. It

is described by

Suppose that g(v) = «=- v- Lt^ffv) so that (5.20) assumes the equivalent form:

^i -1' (5.21b)
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^' =-rE^-i +efM (5.21c)

The form of (5,21) suggests that we are considering an oscillator in which

the variable v has only a weak influence. However we cannot apply the theorem 4.1

directly because the "influence of i on v" is not "weak." In particular, (5.21a)

is not in the form of (4.7b).

Thus before applying theorem 4.1 we must reduce (5.21) to the appropriate

form:+ Define first:

a A 1

RC,
, b A _1_ 2 A Cl+C2

" c2 >"0 " LClC2 (5.22)

Note that for e = 0 the right-hand side of (-5.21) is linear and its eigenvalues

are equal to a, jcoQ, and-jcoQ. Note also that the transformation

b ,, .. A 1 , . 1x £ v + ab
1 V .2, 2 i +

2 2
a+w0

X2 2 1+2co0 n
a +uy

0

reduces (5.21) to the form:

•

xl

x2 =

^

a 0 0~ ~xl" r b i
a2* 2a -Ho0

0 0
""b x2 + f(v).

1
2cort

0

0 % 0 x3
1

L" 2"0 J
b(aojQ+l) b(acoQ-l)

where v = x-, - x« -

1 u^+a2) 2"o>0(u)2+a2) *3

The remaining procedure is standard; we introduce the "amplitude" p and the

"phase" 9 as follow: x« A pcos9, x3 A psin 9. In terms of pand 9, (5.24)
becomes

x AI 1 - -x3 2 n 2co,̂ i»
0

tComputations to this example were done by Mr. Mojaddad-Shahruz Shahram,

-22-
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9 = con --o^- f(v)(cos 9 + sin 9)0 p 2u>q '

p = —- f(v)[cos 9 - sin 9] (5.25)

xl = axl + 2 2 f̂a +o)q

Assume that there exists pQ i 0 such that f(pQ,0) =0 and •—- f(p0,0) < 0, where *

_ •, fir b(au>Q+l) b(aojQ-l)
f(P»x) 4 2i" ftxi 2—2~ Pcos e 1—2" p sin e^(cos e ' sin e^de

J-tt wo^wO+a ^ a)0^a)0+a ^

With y := p-pQ and B:= •£- f(p0,0), equation (5.25) is of the form (4.7) and
theorem 4.1 holds. Hence, there exists an integral manifold

S£ ={(t,9,p,x): p =pQ+ 6^(6,6), x =h2(9,e),- t S R, 9 e [0,2tt]} (5.27)

The solutions of (5.21) which lie on S are of the form:

b[pn+eh1(9(t),e)]
v(t) =h2(9(t),e) L2—2 [(aw0+l)cos 9(t) - (acoQ-l)sin 9(t)]

wQ(ojQ+a )

i(t) = [p0 +eh-|(9(t),e)](cos 9(t) +sin e(t)) (5.28)

i'(t) =J- [pQ +eh1(9(t),e)](cos 9(t) - sin 9(t))

In other words, the behavior of the solutions on the integral manifold is

completely described by the phase 9(t) which can be determined from

6=uo "p0^h](e,e) ^ f^c0s 9+s1n 9> (5-29)
where v is given by the first formula of (5.28).

Example 5.6. Josephson junction circuit [9]

The circuit shown in Fig. 2.6 is governed by the equation

^ift^e^T^-Idc*1.*'1"* (5-30)
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This equation can be transformed into the dimensionless form;

x - y
(5.31)

$y = a - sin x - y + e sin cot

It can be shown [14,15,9] that if e=0f then for any 3>0 there exists a
unique number aQ(0) € (0,1] such that for a>aQ($) (and e=0) equation (5.31)
has a stable invariant surface in the (t,x,y)-space (Fig. 2.7)

S0 = {(t,x,y): y = i|/(x), x€ R ,te R}.

Moreover, if e f 0 is small, the surface persists and remains stable. To prove

this we introduce new coordinates (see Fig. 5.7):

x A 9 - i|>'(9)p
(5.32)

y A ip(0) + p

In terms of these coordinates (5.31) assumes the form:

9 = ^(9) + G(T,9,p,e)

p = A(9)p + F(T,9,p,e)

Note that (5.33) is not in the form of (4.7). However (5.33) can be simply

reduced to this form by introducing a new phase variable <j>(9) ^
such that

♦ - Je -fleyWe) +G(T^,P,e)] =l +̂ - G(T.eto).P,e)
The transformation 9 -»• cj> is one-to-one due to the fact that ^(9) is a positive

periodic function.

Now we have the equations

*=y 5(T,*,P,e) (5<34)
p = A((j>)p + F(t,(|>,p»£)

— f27r dswhere A(<j>) is TQ-periodic with TQ =
Wf *

+

e is a dimensionless number equivalent for I.
ac

-24-
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Hence, we can apply the Floquet transformation as described in Appendix A. Since

in this particular case the "matrix" A(<J>) is actually one-dimensional, it is

possible to find the transformation explicitly; namely, the fundamental solution

of

is

•4>
A(s)ds

,9) = e

Hence,

A(s)ds

'o J

T0
A(s)ds

0
and

Pfo) - e

f*_ 1
A(s)ds - J-

Jo l0 J

Defining the new amplitude

r- P"1^

1

)p =eT°J
rT°

A(
0

A(s)ds- A(s)ds
0

we obtain

$ = 1 + G(x,p,r,e)

r = Br + F(x,(J),r,e)

G(i,<j),r,e) = G(x,((),p,e) .

where

and

F(x,(|),r,e)=oJnP"1l((t)) F(T,*,p;e) +G(x,(|>,p,e)[A(<()) -J-U Iq

are "small."

(5.35)

(5.36)

(5.37)

rT0
A(s)ds]

Example 5.7. Josephson junction (general case) [10]

Most Josephson weak-link junctions are described by the simplified

equation (5.30). However, theoretical justification of this equation is far

from complete. It is known for example that although the Josephson supercurrent

is a periodic and odd function of the phase difference, it need not be sinusoidal

[25,26]. Similarly, in metal junctions, we cannot assume the normal current to

depend linearly on the voltage drop. Moreover, in general, it depends also on

the phase difference.
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Thus let us consider the more realistic equation:

8x + f(x,x) = a + ep(cot) (5.38)

* *f*
where f(x,x) is smooth and 2ir-periodic in x. The constant a and the periodic

(almost periodic) function p(cot) represents an external excitation.

In the important particular case of (5.38), we have f(x,x) = x + s(x) i.e.,

ex + x + s(x) = a + ep(cot) (5.39)

where s(x) is a smooth, odd, and 2ir-periodic function of x.

Without loss of generality we can assume that a >_ 0 and that the time

average of p(cot) is equal to zero.

We shall establish now conditions under which equation (5.38) and (5.39)

possesses an integral manifold for "small" e. Our approach will be similar to

that of Example 5.6: first we find an invariant surface for an associated

autonomous equation (i.e., for e = 0). Next we apply theorem 4.1 to prove that

this surface persists under small perturbations. The autonomous equations of

this type were studied in [27,28]. Our approach will follow that of Barbashin

and Tabueva [28].

Consider at first (5.39) with e = 0.

Lemma 5.7.1 [28]

If e = 0 and s(x) < a for all x, then for all 3 > 0 (5.39) has a stable

invariant surface

S0 = {(t,x,y): y = ij/(x), xe ]R ,te 1R} (5.40)

where iJj(x) is smooth, positive and 2Tr-periodic. Moreover this surface is unique.

(See Fig. 2.7.)

1 f27rLemma 5.7.2. [28] If — ]. s(x)dx <aand the equation s(x) =a has (in the interval
[0,2ir)) exactly two solutions x-j and x2 such that s'(x-j) >0, s'(x2) <0, then
there exists a critical value 6Q such that for 3 > $0 equation (5.39) has a
unique invariant surface described by (5.40).

f(x,x) includes the normal and quasi particle currents, and the supercurrent.
In the oriqinal Josephson paper it was calculated to be of the form:
f(x,y) =a\y) sin x+ [a,(y) + a2(y)cos x]y. In the metal junction described
in Section 2.6 f(x,y) = sin x + g(y).
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4.

In a similar way we shall discuss (5.38), Assume1 that f(x,y) is

monotonically increasing in y and such that for any x we have (possibly equal

to +«>) lim f(x,y) > 0 and lim f(x,y) < 0. The following lemmas hold;.
y-»- l-oo y->—oo

Lemma 5.7.3 [28] If f(x,0) < a for all x then equation (5.31) has,

for e = 0, a unique and globally stable invariant surface SQ described by (5.40).
n

Consider now the case when f(x,0) = a has n solutions in [0,2ir); namely,

0< x-j < x2 < < x2n-1 < x2n < 2ir. Suppose that -^ f(x1- ,0) f 0 i= l..,2n.

To be specific let us assume that ^ f(xisO) >0for i=2k-l and -^ f(x1,0) <0
for i = 2k k = 1,...,n. It can be easily shown [28] that the solution at points

(x2J<,0) are saddles while (x2k_-j»0) are sinks. The neighborhood of each saddle
is shown in Fig. 5.8, i.e., there are two separatrices converging toward it,

one from below and one from above. Consider the separatrix from above (denoted

Spj^ in Fig. 5.11).

Lemma 5.7.4. [28] If none of the separatrices tends to +<» as t->--«> (see Fig. 5.9(a))

and if there exists a trajectory which originates in the lower half plane

(y<0) and does not converge to any of the equilibrium points (see Fig. 5.9(b)).

Then (5.39) (with e=0) possesses an invariant surface described with (5.40).

Moreover all the solutions tend either to this manifold or to equilibrium points, a

Observe that all Lemmas (5.7.1)-(5.7.4) imply the existence of a surface

Sq given by formula (5.40). It should be noted, however, that the parametrizing
function y = ^(x) (and so the surface) is different in each lemma. Now once the

conditions for the existence of SQ have been established, we can proceed exactly
as in the previous example because the only properties of ip(x) that we need are

smoothness, periodicity, and positiveness.

6. EQUATIONS ON THE INTEGRAL MANIFOLD

6.1. Introduction

One of the main advantages of the integral manifold theory is that the

original equation can be reduced to the first-order scalar equation:

These assumptions are natural generalization of the Josephson formula (see the
previous footnote).
++

Since f(x,0) is smooth and periodic there must be an even number of these
solutions.
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9=o)q + g-,(9,h(t,9,e)) + eg2(t,9,h(t,9,e) ,e) (6.1)

In general all that we know about h(t,9,e) is that it exists, is periodic

in 9, and is periodic (almost-periodic) in t. We shall see, however, that it

is enough to obtain a lot of important qualitative information on (6.1) even

without knowing its exact form.

The significance of (6.1) is that if the manifold is globally stable, then

any steady state trajectory of the original system must lie on it, and

consequently must be a solution of (6.1).

6.2. Applications of rotation number

We shall discuss now some qualitative properties of (6.1) which, we shall

rewrite, for the sake of simplicity in the form

6=coq + g(t,9,e) (6.2)

+where g A g-i+eg2 is smooth (in all the variables), T-periodic in t, 2ir-periodic
in 9, and sup |g(t,9,e)| •»• 0 when e -»• 0+t

t,9
Case 1.

Consider at first the case when g(t,9,e) in (6.2) does not depend on

time and when 9(t) is scalar valued, i.e.,

9=o)0 + g(9,e) (6.3)

(a) If there exists a 9Q such that g(9Q,e) = -coQ then 9Q is a constant

solution of (6.3). Its1 stability properties can be found from the sign of

(9-9q) [coq + g(9,e)] for 9 f 9Q but close to it (see Fig. 6.1). Let us note
that in terms of the original equations (3.2)§§ the constant 9Q corresponds to
the constant solution of (3.2)

A function is said to be smooth iff it is at least twice continuously
differentiate.
++Since g-j(9,p) = 0(p>, it follows that g-|(9,h(t,9,e)) tends to zero whenever
h(t,9,e) tends to zero.
4-4-i.

'Equations of autonomous syterns have such a form (see Examples 5.3a,
5.5).

Recall that, coQ may depend (continuously) on e. Theorem 4.1 also holds for
(4.5) if coq decreases to zero with e. However, when (4.7) is considered, we
must also assume e to be much smaller than coQ (see Examples 5.3(b) and (c)).
8 8

In the case considered f, is independent of t, thus we have

x = fQ(x) + ef-,(x,e) and p(t) = h(9(t),e).

-28-



x0 =u(9Q) + P(90) h(90,e) (6.4)

(b) If coQ remains "large" with respect to e (which is usually the case)
then for e small enough the right-hand side of (6.3) is positive. It can be easily

shown [Appendix C] that in this case the solutions of (6.3) assume the form:

- 2tt

£

d9

9(t) =f^t +q(t) (6.5)

where q(t) is T -periodic with T =

where T =
£

r2lT

0 oo0+g(9,e) *
coordinates, this means that the "phase" 9 is increasing, while the "amplitude"

p = h(9(t),e) is T -periodic in t.

Thus the original variable assumes the form

x(t) =u[|^ t+q(t)] +P[|^ t+q(t)] h[f^ t+q(t)] (6.6)
e e e

and is also T -periodic in t. Hence, in an autonomous system the solutions on

the manifold exhibit two different behaviors:

Statement 6.1 (Fig. 6.2(a), (b))

a. If there exist at least one 9Q such that coQ+g(90,e) = 0, then some solutions
are constant and all the other solutions (onthe manifold) tend to them either for

t ->-+«>, or for t -»--<».

+b. If coQ+g(9,e) ? 0 for all e, then all solutions on the manifold are T£-periodic,

r27r d9
0 wQ+g(9,£) '

Case 2. Forced oscillations •

Consider now an important case where 9 is scalar valued and g(t,9,e) is

T-periodic in t and 2ir-periodic in 9. In this case (6.2) can be considered as

an equation on a torus and the important concept of rotation number can be

introduced [9,11,24].

Let us consider an arbitrary solution 9(t,90) of (6.2) such that Q£(0,9q) =0
and define the limit

AT,. e(t>60) ,c 7,

In terms of the 9 and p

The case ojq + g(9,E) <0 can be discussed in the same way as co0 + g(9,£) >0.
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It can be shown [11,24] that this limit exists and does not depend on 9Q.
Suppose now that the right hand side of (6.3) continuously depends on a parameter

a . The rotation number is said to be stable [24] if it remains constant under

small changes of a. It can be shown [24] that if u is an irrational number then

it can never be stable. (If it is rational, it can be stable provided that some

additional conditions hold [24]). Thus a typical graph of u as a function of a

will be as shown in Fig. 6.3. The above properties of rotation number can be

used to explain the strange a.c.-characteristic observed in Josephson-junction

circuits [9,10].

Statement 6.2. [11,24]

a. If the rotation number is rational (i.e., there exist integers M, N such that
M

u = tt), then (6.2) has at least one solution of the form

8(t) =u^t +q(t) (6.8)

where q(«) is Nt-periodic. n

Other solutions on the manifold are either of the form (6.8) (with q(t)

possibly different but NT-periodic) or tend to some solution of the form (6.8i)

when t -»• +» (and also when t •* -°°)

b. If y .is an irrational number then any_ solution on the manifold is of the form

8(t) =y^ t +9Q +s(t,u Q t +90) (6.9)

where s(t,9) is T-periodic in t and 2iT-periodic in 9. Thus, for irrational u,
2tt

s(t,u -j- t + 9n) is an almost-periodic (but not periodic) function of t.
Note that if we put y =jq- in (6.9) then s(t, jq- ~ t +9Q) is NT-periodic

in t. Hence (6.8) can be considered as a special case of (6.9)

Recall that the original variables are of the form

x(t) = u(e(t)) + P(9(t)) h(t,9(t),e)

It follows that

(a) if u is rational, then x(t) is an NT-periodic function of t;

(b) if u is irrational, then x(t) is almost-periodic with basic frequencies
2tt „j 2ir-j- and |i y- .

t
y is known to be a continuous but not necessarily Lipschitzian function of

a [24].
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If case (a) holds we say that the solution is synchronized with a period

of oscillations equal to some multiple of the period of the external forcing

frequency.

The above properties of rotation number (see Fig. 6.3) explain what happens

when some parameter is slowly varied. Namely there appear synchronization zones

(constant steps in the Fig. 6.3) of varying lengths sandwiched between zones

where the oscillation frequency (or basic frequencies) changes with the parameter.

Remark: The problem of crucial importance is to determine whether a given

rational rotation number is stable. This problem can be answered only partially:

there are criteria of stability of y which can be expressed in terms of the

so called "Poincare* map" [24], however it is impossible in general to express

this criterion in terms of the r.h.s. of the differential equation. The only

case where this can be done is when some small-parameter assumptions are

satisfied. We shall discuss this case in Section 6.3.

6.3. Synchronization via the theorem on averaging

Throughout this section we assume that £ is small with respect to coQ and
that equations (6.2) can be rewritten in the form:

9 =co0 + eg(tf9,e) (6.10)

Since g(t,9,£) is T-periodic in t and 2ir-periodic in 9, it can be expanded into a

Fourier series

g(t.e.e)- I gmneJ^t+ne) (6.11)
m,n '

2-jr
where co A y- .

Without loss of generality we can assume gQ0 =0. If this is not the case
we can include £gQ0 into ojq so that co£ - wQ + £gQ0 and discuss (6.10) with co£.

+ + MTake now integers Mand N such that ir co-ojq is of the order £, let us
write it as

coq = m- co + £A (6.12)

Since g(t,9,£) is smooth in £ and g(t,9,0) = 0 we can represent it as g(t,9,£)
= £g(t,9,nj where ri € {0,e\ i.e., we can represent g(t,9,£) in the form (6.10).
ft

For discussion of their existence see the Remarks in this section.
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Introduce the new variable

A M4> £ 6 - Jfwt (6.13)

which satisfies the equation:

<f> =e[A +g(t, ^cot +<}>,£)] (6.14)

Taking the time average of (6.14) we obtain

* = e[A + g(<J>)] (6.15)

-jLN<f>with g(*) =£gLMrLNe"
Suppose that there exists <J> such that

A+g(<j>0) =0 and g1 ((J>0) <01* (6.16)

Then it follows from the theorem on averaging (Section 5.1) that (6.14) has a

stable NT-periodic solution 4>(t) which remains close to <j> for t e (-oo,+00) and

is unique in some neighborhood of <t>Q. Thus 9(t) =jj cot +<|>(t) and the original
solution

x(t) =u[^cot +<J>(t)] +P[^cot +<J>(t)] h(t, ^cot +0(t),£) (6.17)

is NT-periodic. Hence, our system has synchronized steady-state oscillations.
++

Now if the paramerer £ is slowly varying, then the solution <j>(t) may also change

slowly but it remains NT-periodic as long as the conditions (6.16) hold. In other

words, the system remains synchronized as long as (6.16) are satisfied. This

kind of behavior was already discussed in the previous section and it is illustrated

by constant steps in Fig. 6.3. The last result says that we shall remain on a

constant step as long as (6.16) is satisfied.

6.4. Trajectories outside of the manifold

In the previous sections we have discussed trajectories on the manifold.

Let us now consider (4.1). It can be shown [4,5] that if the hypotheses H1-H5

hold and if the eigenvalues of A have negative real parts, then all trajectories

fIf g'(<J>) f 0 for some <f> =^ such that A+g(<J>01) =0 then it follows from the
continuity, and periodicity of g(<t>) that there exists (at least one) <J>02 f <f>01
such that A + §(<J>q2) = 0.
t+It applies also to any parameter on which the right hand side of (6.14) depend
continuously.
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close to the manifold tend to it as t •» °°. Moreover for each such trajectory r,

there exists a trajectory T-j on the manifold such that r -*• I\ as t •> ~.
The typical situations for the autonomous and the forced (not necessarily

synchronized) case are shown in Fig. 6.4.

7. EXAMPLES OF EQUATIONS ON MANIFOLDS

7.1. Simple oscillator

Let us return to the circuit of Example 5.3 which is described by:

• 2v+ £f(v)v + coqV = £Acop(u)t) (7.1)

Under the conditions stated in Section 5.3, equation (7.1) has an invariant surface

a) Autonomous case A = 0

If the forcing term is absent then the manifold is a "cylinder" (Fig. 5.3(b))

and the motion on it is described by (5.11) i.e., by an equation of the form:

9 = 030 + £g(9,£) (7.2)

Since £ is "small" with respect to coq the theory presented in Section 6.2
(case 1(b)) can be applied. Thus the phase 9 is of the form

6(t) =co£t + q(t) (7.3)

where q(t) is ~ -periodic and co£ •»• ojq as £•*• 0 (compare (6.5)). Thus for
initial conditions picked, on the manifold the voltage is a — -periodic function
of the form e

v(t) =[p0 + h(uet+q(t),e)] cos[co£t + q£(t)] (7.4)

If initial conditions are chosen outside the manifold then the corresponding
solution tends (as t -*- «>) toward a function of the form (7.4)

b) Weakly-forced oscillation A i 0, cA "small"

If £ is small, then (7.1) has an invariant manifold (see (5.15)) the motion
on which is described by:

6' = — + eg(T,0,e) (7.4)

where x Aat and 9 &^i ,
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g(x,9,£) =-f{[pQ +h(x,9,£,£A)] cos 9}sin 9cos 9+p+h(T^9,£,A) p^ cos e

and h(x,9,£,A) is given by (5.15).

It follows from Section 6.2 that the solution of (7.4) is of the form (6.9)
M

i.e., it is either periodic with a frequency -rf co (commensurate with the forcing
N

frequency), or almost periodic with basic frequencies coandya) where y is an

irrational rotation number. We shall now apply the results of Section 6.3 to

check which solutions are stable.

As in the previous section we introduce

£AA^-j£ and *(x) A e(x) -|Jx.
In the new notation (7.4) takes the form:

<j>' =£A -£g(x, j£x +<j>,£) (7.6)

Consider now the solutions of the averaged equation (7.6). Note first that-

g(x,9,0) =- f[pncos 9]sin 9cos 9-•£- p(x) cos 9
u) U Pq

and that the average of the first term is zero, while the average of the second
M

N

M
term is nonzero only if N = 1 (in both cases 9 = rr x+<{> and the averaging is with

respect to time x).

Thus the constant solutions of the averaged equation (7.6) can be found from

A=^-P cos(<j>-a) (7.7)
p0

where P and a denotes amplitude and phase of the M-th harmonic of p(x), i.e.,

P(T) =IPmeJmT and Pm =PeJa* Tnus as long as Ais "lar9e enoiiQh" (AP>ApQ)
m

equation (7.7) has in the [0,2ir) interval a pair of solutions, one of which

approximates 2rrM-periodic and stable solution of (7.6). The second solution

of (7.7) approximates the unstable solution of (7.6). Thus if N = 1,

PM =PeJa f 0and AP >pQA then the equation on the manifold (7.4) has astable
solution of the form:

9(x) = Mx + <j>(x) (7.8)
+

Existence of which is granted by the theorem on averaging (Section 5.1).
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where $(x) is M27r-periodic.
2tt

Thus under the above assumptions, there exists a pair of M periodic

(in real time t) solutions of (7.1) one of which is stable and the other is

unstable. Both solutions are of the form

v(t) =Pq +h[t, e(wt), £,A]cos 9(cot) (7.9)

where 9(cot) is given by (7.8).

All other solutions originating either on the manifold or outside of it

tend toward (7.9) (the stable one) as shown in Fig. 6.4(b).

Note that the inequality AP > pq|a| has a simple physical interpretation;
namely £AP is the amplitude of the M-th harmonic of the forcing term, where

VM
£A = —— provides a measure of the amount of detuning between the M-th

harmonic and the self-frequency. The inequality AP > pQ|A| says that, as long
as theory from the previous section is applicable, the amount of detuning must

be "small" and that it can increase with the amplitude of the forcing term.

The dashed zones in Fig. 7.1 shows zones in the (co,A)-parameter plane where the

theorem on averaging is valid and where synchronization holds.

Let us summarize our results:

a) If the forcing term is absent (A=0) then the integral manifold is a cylinder

and all trajectories on it are of the same form (Fig. 6.2(b)).

b) If the system is forced then the integral manifold is periodic in time. There

may appear stable synchronized oscillations on it.- In particular, it is the

case when ojq-Mco is "small" and pM f 0 (Fig. 6.4(b)).

Example 7.2. Oscillator weakly coupled to the dissipative circuit

Consider the circuit in Fig. 5.5, discussed earlier in Section 5.4. Equation

(5.17) has an integral manifold. Moreover, the equation on the manifold (5.19(a))

with x and p replaced by x = g(t,9,c) and p= pQ + h(t,9,£)) is similar in form
to (7.4), and the same results, as in the previous example, hold: if the forcing

term is absent then the integral manifold is cylindrical and all solutions on it

differ only by a phase-shift (Fig. 6.2(b)).

If the forcing term is present (and it has only one harmonic in the case

considered) then the integral manifold is periodic in time. Moreover, if

coq-co is "small," then tere exists a (unique) synchronized solution (Fig. 6.4(b)).
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Example 7.3. Colpitts-type oscillator

The autonomous system in Fig. 5.6 has a cylindrical manifold. The dynamics

on the manifold is described by an equation of the form (7.2) and is shown in

Figs. 6.2(a) and (b). All solutions which originate outside of the manifold S

tend to S as shown in Fig. 6.4(a).

Example 7.4. Josephson-junction circuits

Consider (5.38):

3x + x + s(x) = a - £p(cot) (7.10)

Equation (5.30) which describes the circuit shown in Fig. 5.8 is a particular

case of (5.38).

As before we can consider the autonomous (£=0) and forced (e?0) circuits

and the theory presented in Sections 6.1 and 6.2 is immediately applicable.

If £ = 0, then the.equation on the manifold is of the form

e = *(e) (7.n)

It can be shown [14] that ip(e) is positive thus 9(t) = yt + q(t),

moreover y can be shown [9] to be a strictly increasing function of a.as shown

in Fig. 7.2(a).

If £ f 0, 9(t) is described by (6.2) and 9(t) =ycot + s(t,ycot+9Q) + 9Q.
Here, y also increases with a but now (at some rational value) it can remain

constant as a function of a as shown in Fig. 7.2(b).

The relationship between y and a predicted above was. first observed
+

experimentally. The above analysis provides a rigorous explanation of this
exotic phenomenon.
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a.

The rotation number is proportional to the average voltage across the junction,
and this voltage was experimentally measured.
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APPENDIX

A. Floquet transformation

Consider

9 = coQ + g(t,9,p,£)
(AT)

p = A(8)p + f(t,9,p,£)

where A(9+TQ) = A(9).

Let the matrix <J>(9,9q) be the fundamental solution of

dx

d9 = A(6)x (A2)

Since A(e) is periodic and <j>(9+Tq,9q) is amatrix solution of (A2), there
exists a nonsingular constant matrix C such that

4>(9+T0,90) = C(J)(9,90)

On the other hand, C= <fr(e+T0,e) = <J>(Tq,0). Since C is nonsingular, there exists

BT0amatrix Bsuch that e u=<f>(TQ,0). Let us define

P(9) 4 4>(9,0)e-Be (A3)

Note that P(9+TQ) = ?{q) and that the transformation x - P(9)z when applied
to (A2) yields

4* = R7
d6 Bz '

We shall apply now a similar transformation to equations (Al):

Thus

P = 77- P(6)r (A4)U)Q /

=̂ [^e e"B9 "*-Be"B9^uo +9(t.e.p.e)] r+J- p(e)f
and from (Al)
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-f- P(8)f =A(9)-P(9)-r +f(t,9,p,£)

- J- [A(9)<j>e"Be - <J>Be-B6] [coQ +g(t,e,p,e)].rWq u

It follows that

f = Br + F(t,9,r,£) (A5)

where

F(t,9,r,£) AcoqP"1^) f(t,9, J-P(9)r,£)
w0

- P-1(9)[A(9)4)e-Be - (f>Be"Be] g(t,9, -f-P(9)r,£).rOJq

=^P'He) f(t,9, J-P(9)r,£)U U)q

- [P~](e)A(9)P(9) - B] g(T,9, J-P(9)r,£)r ,
0)q

thus (Al) can be reduced to:

9 =coq + g(t,9,r,£)

f = Br + F(t,9,r,£)

with the constant matrix B.

B. Reduction of (3.2) to (3.3) and (3.4)

Consider:

[^(9) +P\e)p3 +P(9)p=fQ[u(9) +P(9)p] +£f1(t,u(9)+P(0)p,£) (Bl)

To obtain an equation on 9 let us project both sides of (Bl) onto v(9):

[vT(9) u^e) +vW^pB +vT(9)P(9)a - vT(9)fQ[u(9) +P(9)p]
+£VT(9)f-,(t,u(9) +P(6)p,e).

Note that by definition :v(e) =u1(e)/|u1(0)|, P(e) =[C2-----:?n]
vT(9)u](9) = |u](9)|

and

vT(9) P(9) = 0.
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Define a(9,p) = [|u'(9)| +vT(9)P'(8)p]

so

Since

and

5=iSrix Vu<9>+ p<e)pJ+ ej& 'i<t-u+p«>-e>

u'(8) a 3s- = 3J 3£ a :r~ u a :r- fn(u)_ du = du dt = J_ .. - J
d9 dt d9 co0 ooq '0'

v(9) = u»(9)/|u(9)

we get

and

Thus

and

vT(9) u'(9) =|u(9)|

=lvT,03q

a(9,0) =|u' (0) | =vT(9)u'(9) =vJ9lf (u(9))
COq u

"f0(u(9)+P(9)p) f0(u(e)V

u(9)| =J-vr(9) fQ(u(9))

|^lrf0(u(9)+P(9)p)=aJo +vT(9) a(9,p)

Hence, equation (B2) assumes the form:

9 =coq + g-,(9,p) +£g2(t,9,p,£)

*f0(u(9)+P(9)p) f0(u(9))"
with

and

Me'p> AvT(0) aTOT aTF^T

g2(tje'P»e) h$kr fi(t>u(e).+P(e)p»e)

= o(ilp«)

a(9,0)

In a similar way we can obtain an equation on p: we project both sides

of (Bl) onto P(9):

PT(9) u'(9)9 +PT(9) P'(9)p9 +PT(9) P(9)p =PT(9) fQ(u(9)+P(9)p)

+£PT(9) f1(t,u(9)+P(9)p,£)

Since £2(0)> ••• ^n^ are mutual^y orthonormal and orthogonal to u'(9) =^- f0(u(9)),
we get PT(9) P(9) =I, PT(0)u'(9) =0, PT(9) fQ(u(9)) =0. Hence, equation
(B4) reduces to
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p=-PT(e) P'(6)Pe +PT(e)[f0(u(8)+p(e)p) -f0(u(e))] +epT(e) f^t.uteJ+PCeW)

Replacing § by the r.h.s. of.equation (B3), we get

p=A(8)p + R^e.p) + eR2(t,9,e)

where

A(e) A PT(e)[^-f0(u(9)) P(e) -»0P'(e)]

Ri(e.p) * PT(e)[f0(u(e)+p(e)p) -f0(u(e)) -£.f0(u(e)) P(e)

2xt- P,(e)-p.g1(e,p)] - o(lpl')

A DTR2(t,e,e) s P'(e)[f1(t,u(e)+P(e)p,e) + P'(e)'p-g2(t,e,p,e)]

= PT(6) I - P'(6)p sfch**.-
C. "Running Periodic" Solutions

Consider

9 = f(9)

(9)+P(9)p,£)

(B5)

(CI)

where f(9) is a positive, continuous and 2ir-periodic function. Let 9(t;9Q) be
a solution of (CI) satisfying the initial condition QUq^q) = 9Q.

Observe that 9(t;9Q) is strictly increasing (since 8 > inf f(9)>0) and
9

there exists a finite time T such that 9(t0+T;90) = 9Q + 2tt. Moreover T does
T+tn fT+t„ x .. r27r+60Jrt r27r

not depend on 9Q or tQ. Indeed T = '0
dt =

'0 9dt

t. ^ • ;
d9 p" d9

2ttA 2ttDefine now q(t) * 9(t,9Q) --y- t. Clearly q(t) is T periodic and 9(t) =-y- t+ q(t)

g^eip) AVT(9)
f0(u(e)+P(e)P) f0(u(9))

a(9,p) a(9,0)
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FIGURE CAPTIONS

Fig. 1.1. Phase portrait of equation (1.5) (a) in the (x,y)-plane,

(b) in the (t,x,y)-space.

Fig. 2.1. A simple nonlinear oscillator.

Fig. 2.2. The stable integral manifold of the nonlinear oscillator

(a) in the (x,y)-plane, (b) in the (x,y,t)-space

Fig. 2.3. A lossless LC circuit.

Fig. 2.4. A family of manifolds of the LC circuit.

Fig. 2.5. A lossless circuit with a nonlinear inductor.

Fig. 2.6. A Josephson-junction circuit model.

Fig. 2.7. An integral manifold of the d.c. Josephson-junction circuit.

Fig. 2.8. A typical normal-current characteristic for metal junction.

Fig. 3.1. (a) A periodic orbit r in lRn.
n+l

(b) An invariant cylinder SQ in K
Fig. 3.2. The moving orthonormal system in the 2-dimensional case.

Fig. 3.3. The moving orthonormal system in more than two dimensions.

Fig. 3.4. The new coordinate system for u(9) = Rq[cos 9, sin 9] .
Fig. 3.5. The new coordinate system for u(9) = R [cos 9, sin 9, 0],

(a) the orbitT and "hyperplane" S(9),

(b) the moving orthonormal system.

Fig. 5.1. Nonlinear functions (a) the required shape of g'(v) (b) the resulting

graph of f(p).

Fig. 5.2. An integral manifold of ah autonomous system

(a) r is an intersection of manifold with the t = 0 plane.
£

T£ ={(v,v): v =[pQ +h(9,£)]cos 9, v =-ojq[p0 +h(9,£)]sin 9}
r lies close to rQ ={(v,v): v = pQcos 9, v = -oj0p0sin 9}.
(b) The manifold S in the (t,v,v)-space.

Fig. 5.3. A periodically forced oscillator.

Fig. 5.4. A Wien-bridge oscillator and its circuit model.

Fig. 5.5. A nonlinear oscillator weakly coupled with a linear dissipative circuit

Fig. 5.6. A circuit model of a Colpitts-type oscillator.

Fig. 5.7. For each point with coordinates (x0,y0) near the curve y =ip(x) there
exists a unique pair (9q,pq) and vice-versa, having the geometrical
relationship indicated. Note that 9Q is equal numerically to the
x-coordinate of the intersection point Pq, and pQ is just the
vertical distance from Pq to Pq.

Fig. 5.8. A.neighborhood of a saddle point.



Fig. 5.9. Various phase portraits of (5.38) with separatrices bounded for

t ^ +»

(a) All trajectories originating in the lower half-plane tend to

equilibrium.

(b) There exists a trajectory y which originates in the lower half

plane and does not converge to any equilibrium.

Fig. 6.1. Constant solutions of (6.3). For each of constant solutions 9k,

k= 1, we introduce yk(6) = (0-ek)[°Jo + 9(e»£)-l- Observe that:
9-j and 0« are unstable and y,{Q) is positive about 9-j while y2(6)
changes its sign, 93 is stable and y^W is zero about 93, 9^ is
asymptotically stable and yAQ) is negative about 9^.

Fig. 6.2. Possible trajectories on an integral manifold of an autonomous system,

(a) Case of "small" coQ; (b) Case of "large" coq.
Fig. 6.3. The rotation number u as a function of a • Constant "steps" appear at

rational values of u.

Fig. 6.4. Trajectories on and outside the manifold

(a) An autonomous system; (b) A periodically forced system.

Fig. 7.1. Possible synchronization zones in the (co,£)-plane. Note that if

the forcing frequency co is "small" then the forcing "amplitude" £ must

also be "small."

Fig. 7.2. The rotation number u as a function of a d.c. forcing term a in the

Josephson junction circuit, (a) the autonomous case, (b) the case

when also a small a.c. forcing term is present.
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