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ABSTRACT

We study systems containing one memoryless nonlinearity. We show that

two such systems have the same I/O operator only when they are related by

simple scaling, delay, and loop transformations. The theory is applied to one-

port networks containing one nonlinear element.

1. Introduction

In [l] the authors considered systems consisting of a memoryless nonlinearity sandwiched

between two linear time-invariant (LTI) operators. We showed that if two such systems have the

same I/O operator then one can be got from the other by scaling the LTI operators and memory

less nonlinearity, and possibly redistributing some delay between the LTI operators. Thus such

systems are essentially unique, in the sense that the I/O operator determines the nonlinearity

and the pre- and post- LTI filters up to scaling and delays.

In this pe.per we continue our study of systems which are interconnections of LTI and

memoryless operators. We consider systems containing one nonlinearity, possibly in a feedback

loop, and show that these systems too are essentially unique, in this case modulo scaling, delays,

and loop tranformations (theorem 3). Using this fact we show that the I/O maps realizable with

some common structures for nonlinear systems (we have called these the cascade, Lur'e, and

complementary Lur'e structures) are completely disjoint. This raises the possibility of deter

mining internal structure from I/O measurements.

In section 7 we apply the theory to one-port networks containing one nonlinear element and

show that two such networks are equivalent, that is, look the same from the external port, only if

they are related in a simple way (theorem 4).

2. Notation and Foundations

In order to easily accomodate memoryless nonlinearities we extend the usual Volterra

series formalism slightly to allow measures as kernels. This will allow memoryless operators as

well as operators like

Au(t) =fu(t-T)zh(r)dT
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which are called 'Volterra-like' by Sandberg [6,7], and arise in interconnections of memoryless

and LTI operators. In fact the operators we allow are included in even more general formalisms,
e. g. that of DeFigueiredo and Dwyer [8,9].

Let <a> be a sequence where the nth term On is a symmetric bounded measure supported
on(R+)n. Define

Rad<a> = [limsup||an||1/n ]"1

where 110*11 =|an|(i?+n). Then if Rad<a>=p>0, <a> defines an operator 4 on Bp. the open ball of
radius p in Lmt into Lm given by*

A*(0= S/' ••/u(*-T1)...tt(t-TB)ddB(T1 Tn) (2.1)
n=l

Unless otherwise stated, we will only consider operators of the fcrm (2.1). We call a^ the nth

time domain kernel of A; we'll use more often its Laplace transform

4i(si sn) =/- ' • /exp-(s,T1+...+snT»)ddn(T1 rn)

which is analytic and bounded in (C*)n =\ s|ReSfc>0, l^fc^n J. An will be called the nth kernel

of A, and we will use the notational convention that whenever, say B is an operator of the form

(2.1), Bn(s 1,...,sn) will denote its nth kernel.

A is LTI if A„, = 0, n>l and in this case we write its only nonzero kernel Ai(s) as A(s). For

example e"®7* will denote both an analytic Junction and the T— second delay operator. Con

versely if A\ = 0 then we say A is strictly nonlinear.

The part of (2.1) due to the masses or 'delta functions' at the origin in the On will be called

the memoryless part of A; formally MPA is the operator defined by

<MPiO»=o»00i)

We develop some of the properties of MP in the appendix. If MR4 -A then we say A is memory-
d

less, and then we'll also use A() to denote the associated function :R-*R given by A{x) =2jAi:pn

(the An are constants here).

/ is as usual the identity operator with kernels

1 n = l

0 n>l

If A is memoryless and LTI, it has the form al for some real constant a; we will simply write it as

a. For example aB@ is the operator defined by

(*B(i)u =aB(pu)

*Just as convolution with a bounded measure is a bounded map from LP into IP or Cr ' into C* ', A also maps Bp in
CS ' into CS ', if youpreferthese signal spaces.



6~U

where a and p are just real numbers on the right hand side.

In the sequel H will always denote a LTI operator, F a memoryless operator, and TV a

memoryless strictly nonlinear operator.

Finally, we list a few facts we'll use in the paper. If A and B are operators, then:

Fact 1: A = B if and only if An=Bn for all n. Note that A-B asserts equality of operators,

whereas An=Bn asserts equality of functions analytic in (C+)n. This is sometimes called the

uniqueness theorem.

Fact 2r. A+B and AB (composition of A and B) are operators with kernels (A+B)n =An + Bn and

(AB)n =SYM £ [ £
m=1 *i W*1

Am(sl +...+Sil Sn+l-t^+'-.+sJ-

where SYM symmetrizes a function on (C*)n:

SYM/=(n!)-> £ /(*<ri *m)
oeSn

The n in SYM can be determined by context; it is the order of the kernel on the left hand side of

the equation. When one of the operators is LTI the composition formula simplifies to:

(AH)n(Sl O = ^(s, s.WsJ • • • H(sn)

(HA)n(s1 sn) = //(s1+...+sn)4(s1 sn)

Fact 3: If A is strictly nonlinear, 7+4 has an inverse (near 0) which is an operator in our sense.
In particular, Rad[(/+i4)_1] >0.

3. Problem Set-up

We will be concerned with systems which are stable interconnections of various LTI opera
tors Hk(s) and one memoryless nonlinear operator F() (see figure 1). Specifically, we assume
that the linearized system (F() replaced by Fx) is internallystable* Under this assumption we
may extract N, the strictly nonlinear part of F, collect the rest of the system into a 2-input 2-
output LTI operator H, and redraw figure 1 as figure 2. Here

H =
Ryu Hyd

and the overall I/O operator 5 is therefore

5 = ifyu + HydNil-H^N)'1^ (3-1)

♦By internally stable we mean that if we inject a signal U into a summing node placed anywhere in the system, and pick
off an output y from anywhere in the system, the resulting map §'.u-*y is LTI in our sense (in particular

$(s)f«(1-s)-1, s.etc.).



input u

Typicol linear operator
in system

output y

U6L

The (only) memoryless nonlinear
operator in system

/»ST/."System which is interconnection of various LTI operators Hk(s) and one memoryless nonlinear opera-

Incidently this form is a special case of the class of systems Sandberg considers in [6,7]**. We
now ask the question, under what conditions could two systems of this form have the same I/O
operator?

4. System Transformations

We first describe three system transformations which leave the I/O operator S unchanged,
scaling, delay, and loop transformations.

Scaling transfonnations: Let a and p be nonzero real constants. Consider the system shown in
figure 3. It clearly has I/O operator 5 independent of a and p. That is. if

^* FN*

Hya = Hyu Hyj, = pHyi

Hzu = &Hxu Hzd ~ aPHzd

N = p^Na-1

then 3 = 5.

Proof: Obvious from figure 3, or more formally:

5 =H^ +pHydP^Na-id-apH^r^CL-^aHn
••This form occurs whenever a systemis decomposed intotwosubsystems, one of which is linear, m the notation of [6,7],
we consider the special case whereall the operators are SISO, N is memoryless strictly nonlinear, and A, B, C, and D
aregiven by convolution withbounded measures. Not all LTI bounded causal operators://"-*/.80 aregiven by convolution

with bounded measures, though all the ones of engineering interest are.



input u

">

H(s)

LTX

N(-)

memoryless
strictly nonlinear

-O
11+

V 0

output y

fj-9-2: (a) System redrawn as 2-input 2-output LTT operator H(s ) and strictly nonlinear memoryless operator
N{'). (b) Block diagram.

= Hyu + HyiNiU-CLHrtNcC1)*)-1*!!^

since p commutes with Hy* and H& and B'lA"x = (AB)-1 generally. Carefully distributing the a
we get

= H^ + HyiNioL-aHrtN)-1*!!^

= #yu + HyiNU-H^NyHzu = S

after extracting the a on the left and using C4#)-1 = B~lA~l again.

Delay transformations: When T is such that

J5L. = e-s5P#2 #«f = e"r/Xyd yd
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Fig. 3 (a)

Hyjs)-

HJs)- *
•-I

NM /r +-+• 1T\ [H^-^y

H^- 0

Fig. 3(b)

Hyjs)

t-- i H»„W e-*
+

N(«) e* Hyd(s)
+! ;

ro »y

Hxd(s)

./ig.5: (a) Scaling transformation ofsystemin figure 2. The I/Ooperatoris independent of a and p. (b) Delay
transformation: any time delay in H^ and Hy(i canbedistributed arbitrarily between them.

are operators of the form we consider (i.e. still causal), then

^ydNil-H^N)-1!}^ =HytNU-HrtN^Hzu

(See figure 3b.) This follows from the time invariance ofNil-H^N)'1 and is trivial to verify.

loop transformations: Let A: be any real constant and consider the feedback subsystem shown in

figure 4. The I/O operator of the subsystem shown in figure 4b is independent of A:, that is, if

Bzd = Hzd+k N = N(I+kN)~l

then

R(i-Bsdfi)-1 = nU-h^n)-1

and thus S = 5 if Ryu =Hyu, H^ =//«*. and Byt =//yd. Note that the transformed subsystem
has the same structure: a strictly nonlinear memoryless operator with LTI feedback around it.

By facts 2 and 3 of section 2, N has a positive radius of convergence. We leave to the reader the
proof that N is strictly nonlinear and that the transformed subsystem has the same I/O opera
tor.



rr N(.)

Hxd(s)

(a)

+
"SI

d
i

1 i ~y
N(«)

+ <

k

U t*\ j. Lp
•xin3' T *

(b)

ZZL

/ig.4.- Loop transformation of the feedback subsystem. The transformed subsystem in (b) has the same form
as the original subsystem: a strictly nonlinear memoryless operator with LTI feedback around it.

It will be convenient to say that the subsystem in figure 4a is normalized if MP//xd - 0.

Since MP/?*,* =MP//^ +A;, any subsystem of the form in figure 4a can be brought to an
equivalent normalized subsystem by a loop transformation with A: = -MP//zd. This normalization

has an intuitive interpretation: a normalized Hxd has some sort of response 'delay' or 'smooth

ness': its step response is continuous at t =0.

5. Statement and Proof of Main Theorems

In this section we will show that if two systems as in figure 2 have the same I/O operator,

then the systems are related by a scaling, delay, and loop transformation. Thus the transforma

tions described in the last section are the only transformations which preserve the I/O opera

tor. We first develop some results concerning the feedback subsystem shown in figure 4a.

Lemma 1: Let G= N(l-HN)-\ where H is LTI. MP// = 0, and N is memoryless strictly nonlinear.

Then MPG = N.

Intuitively, there is some 'delay* in the feedback loop (the subsystem is normalized), so that

only the feedforward path N contributes to the memoryless part of the closed loop operator G.

Proof: Deferred to appendix.

We will need to explicitly compute a few kernels of the subsystem:

Lemma 2: Let G= N(I-HN)~l, where H is LTI and N is memoryless with first nonvanishing term
Nk. that is, Ni = 0, 1-si <A:, Nk * 0. Then:
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Gi= • • • =Qb-i = 0

Qb = Nk, • • G^-z-Nzk-z

Gzk-i = JVab-i + kNkzSYVLH(sl+...+sk)

Thus the first 2A:-2 terms of the closed loop operator G are simply those of N, as if the feedback

were not present. We have to look at the kernel of order 2A:-1 to even detect the presence of

the feedback//.

Proof: Deferred to appendix.

We are now ready to state and prove

Theorem 1: Suppose two normalized systems of the form (3.1) have the same I/O operator. For
mally, suppose

Byu +Bydft(I-BzdN)-lBzu = Hyu + HydNd-HnN^Hzu (5.1)

where the //*s are LTI, the N's are memoryless strictly nonlinear, MP#xd = MP//^ =0, and S is
not linear.

Then there are real constants T and nonzero a and p such that

•"yu = #yu Hyd = pes Hyd

#*u = «e"s7,.#xu Hxd = apHgd

N = p-tNa.-1

Proof of theorem 1: From lemma 2 Bynftd-BzdNyBzu and HvlN{I''HxdNYlHxu are strictly
nonlinear so the first kernel of (5.1) is:

Jiyu = "yu

Subtracting this term from (5.1) yields

By^d-BxdftyBzu =Hy^il-H^NyHtu (5.2)

N is not zero, for then 5 would be linear, so suppose Nk is the first nonzero term in N. Then by

lemma 2 the first nonzero kernel in (5.2) is:

Byd(sl+...+sk)NkHZu(sl)...Hxu(sk) =Hyd(sl+...+sk)NkHxu(sl)...Hxu(sk) (5.3)

In particular, jv* also starts at the A:th term. Since S is not linear (5.3) is not identically zero.
We claim there are real T and nonzero p, a with

Byd =0esTHvd I}** = ae-9THwu (5.4)

This is proved in Boyd and Chua [1], so we will give an abbreviated argument here. Find an open

ball D in (C+)n in which (5.3) does not vanish. In D define



Q(slt...tsn) = In •sKL(s1+...+sB)
nyd

= ln
H,
— (Sj) ' • • ~ (Sn)7C—

From (5.5) and (5.6) we have

82g
9Sj0Sg

Thus in D and therefore in all of (C+)

In
// yd

//,v«*

'(Sl+...+sn) = 0

In y*

//,v«*

(sl+...+sn)=7(s1+...+sn) + T

for some constants y and 7\ Hence

Hyd(s)=pesTHyd(s)

where p = expy. Substituting this back into (5.3) yields the other half of (5.4).

We now claim that (5.2) and (5.4) imply

Nd-Bzdft)-1 = p-'Nd-H^N)-1*-1

(5.5)

(5.6)

(5.7)

which is what we would conclude if we pre- and post- operated on (5.2) with H^ and B^},
respectively. To see that (5.7) is true even when $}yd and Bm are not invertible, consider the
nth kernel of (5.2). Find an open ball in (C+)n where Hyd(sl+...+sn) and //xu(si)—^xu(sn) do not
vanish. Then in that ball we have, using (5.4):

Nd-BzdN)-1} (Sl sn) = p~la~n Nd-HxiN) -l (Sl.-.Sn) (5.8)

Consequently (5.8) holds in all of (C*)n and the nth kernels of (5.7) agree. This is true for all n,

so (5.7) follows.

Now we look at the memoryless part of (5.7); by lemma 1

MFiffd-S^N)'1] = N = HPip-iNd-HrtN)-1^1] = p-'Na-1

By the last part of lemma 2 and (5.7)

Nzk-i +kNk2SrU.Rxd(s1+...+sk) = p-1al-Zk[NZk..l+kNk2SmHxd(sl+...+sk)]

Cancelling #i-afe=/3~1a2fc~1./V2fc_1 and dividing by kNg yields

SYM#xd(s1+...+sA.) = .. * gSYM//gd(s1+...+sjl.) =apSYUHsd(sl+...+sk)
par* xNk

For s t C+. we evaluate this last equation at $!=...=Sj. =s/ k to get



which completes the proof of theorem 1.

In the next section we'll need

Remark: Under the hypotheses of theorem 1, Bzd =apH^ and det// = ctpdetH.

Tlieorem 2: Suppose two systems of the form in figure 2 have the same I/O operator. Then there
are real constants a, /?, T, and y such that (using previous notation)

Hyu = Hyu Hyd = Pe' Hyfi

Bzu = ae -^//^ #xd = apH* +7

N = p^Na^d+yp^Na-1)-1

That is, the two systems are related by a scaling, loop, and delay transformation.

Proof: We first normalize the systems by loop transformations. Let k = -T£PHxd and k = -}&PHzd.
Then theorem 1 applies with H^ replaced by B^+k, N replaced by /V(/+ArA0_1. and similarly
for the tilde'd expressions. Three of the conclusions above pop out immediately from theorem 1;
we also conclude

Bri+k =a/S(//„t+A:) (5.9)

Bd+fcN)-1 =P~lNd+kN)-*a-1 (5.10)

Letting y=apk-lc in (5.9) yields the fourth conclusion of theorem 2. To get the last conclusion
requires some work. In general if B = Ad+A)~l then A= 5(/-5)_1, so from (5.10) we have

%N =%p-1Nd+kN)-la-ltl-%p-1Nd+kN)-la-1]-1

Dividing byE and carefully moving the (/+A:7V*)~1a"1 into the bracketed expression we get

ft = p-iNla+akN-lcp^N]-1

= p-Wa-iU+akNa-i-lcp-iNa-*]-1

= prWa-^I+yp-iNcr1]'1

which is the last conclusion of theorem 2.

6. Structural Uniqueness

Theorems 1 and 2 allow us to determine under what conditions two systems (or one-port

networks) containing one nonlinearity have the same I/O operator (port (v,i) pairs). These sys

tems are often described, perhaps after simplification such as lumping together cascaded LTI

operators, by a simple structure like those in figure 5. Of course these systems can be put in

the general form considered in the last section, but a structure like those in figure 5 is usually a

more natural description. Indeed the individual boxes often correspond to parts of the actual



Hpre(S) F(.) Hpost(s)

(a)

Hpre(s) fcj Hfb(s) Hpost(s)

FC)

(b)

Hpre(s) F(*) Hpost(s)

Hfb(s) J

(O

fig.5: Three structures for systems with one nonlinearity. (a) Cascade structure, (b) Lur'e structure, and (c)
Complementary Lur'e structure. Except for trivial cases, the I/O operators of these structures are complete
ly disjoint. From I/O measurements we could determine which structure such a system has.

physical system being modelled. So we now rephrase our original question in terms of these

structures: when can two systems as in figure 5 have the same I/O operator? We'll now show that

except for the trivial case when the system is linear, the realizable I/O operators for these

different structures are completely disjoint, that is, no system with one structure can have the

same I/O operator as a system with a different structure.

In fact we could expand the list of structures in figure 5, for example, by taking the output

(via Bpost) from the output of F() in (5b) or the input of F() in (5c): we only intend the next
theorem to illustrate what we call structural uniqueness.

Tlieorem 3: Consider the three structures shown in figure 5, where F is memoryless and the B's

are as usual LTI. Suppose F and Bp, are not constant, Hpn and B^t are not identically zero,

and Bp, is strictly proper, that is ///b(°°) = limi/«,(s) =0.

Then two such systems each with structure (a), (b), or (c) have the same 1/0 operator if and
only if

(I) they have the same structure; and furthermore
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(H) the corresponding operators are related by scaling, and possibly shuttling some delay
between Hp„ and Bpo8t.

Proof: We transform the systems into the form considered in the previous section and apply

theorem 1. Let N =F-Fit the strictly nonlinear part of F, and let K(s) = (l-/r1///b)~1. Then in
the notation of section 3 the systems of figure 5 have nonlinearity TV and //—matrices

#(<*) =

B^) -

#(c) =

Bpre^lBpost
& pre

//,post

0

Bprg BfbKBpoat KBfbBpost
B-nraKB*'•pre post KBfb

BpreFlKBpast KBpoSt
BpreK KBfb

Note that the strict properness of the B^ guarantees that these systems are normalized, so by
the remark after theorem 1 we have:

[A] any system with the same I/O operator as (a) has Bxd = 0, and

[B] any system with the same I/O operator as (b) has det// = 0.

Thus a system with structure (b) or (c) could have the same 1/0 operator as (a) only if B^ or
Bjnst were zero, a contradiction. If a system with structure (c) has the same I/O operator as (b),

then by [B] telB(c) =BpreBpoatK:zQ, again a contradiction. This establishes conclusion [I].

Conclusion (II) for the stucture (a) is the main theorem of Boyd and Chua [l] and follows

immediately from theorem 1 applied to B(ay so we omit the proof. The proofs for the other two

structures are similar, so we'll just give the proof of (II) for (c). Assume two systems with struc

ture (c) have the same 1/0 operator. Then from theorem 1 there are a, p, and T such that:

" post FiKBprg Bpost K
BprgK BfhKlft>

sTBpost^iKBprg pes BpostK

ae-'TBpnK <xPBp>K

ft = p~xNa~l

Thus ByuB^ByiB^)-1 is:

BjbF1 = BfbFi

so K = K. Cancelling K from (6. l) yields

ft fr ft ft•**post r l-1*pre "post

B.pre B p>

Bpost-FiBprg pes Bpost

ae-'TBpn apBj, ,

So?, = a'lp'1Fl. Coupledwith ft =p-*Na~l this implies

T = frlFarl

(6.1)
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andwe've shown the systems differ only byscaling and shuttling delay between Bp^ and Bp^t •

Theorem 3 has implications for black box modelling of systems having a structure like those

in figure 5. It implies that from I/O measurements alone it is possible, in principle, to deter

mine which internal structure such a system has. Furthermore we can determine the internal

blocks Bp,*, N(), etc. up to scaling and possibly delay factors. From lemma 2 and the proof of
theorem 3 we could construct explicit probing signals which distinguish the structures.

Of course, the differences in the I/O maps of the different structures may be subtle, or in

some cases unmeasurable. For example if a system is very nearly second order, that is, its third

and higher order kernels are very small, then it may as well be modelled by the cascade struc

ture of figure 5a, since we need to measure the kernel of order three to observe the effects of

the feedback (lemma 2). Asimilar statement holds for odd systems with unmeasurable fifth and
higher order kernels.

7. Application to Circuit Theory

Suppose we have a one-port network N which contains one nonlinear element, say a voltage
controlled nonlinear resistor R with characteristic i=£*(v;?). as in figure 6a. We extract the

incremental conductance g at 0 of R and partition N into a linear two-port Na„ and a strictly
nonlinear resistor Bgni, as in figure 6b. The network equations are then:

Vi = Znix + Zl2i2

v2 = ZZiii + Z&iz

iz = -G(v2)

where [Zi;] is the impedance matrix of Niin and i = G{v) - tR(v)-gv is the constitutive relation
of Ksni- These equations have the same form as those describing the system we have already stu
died: the I/O operator 5 corresponds to the (nonlinear) impedance operator $ of our network N,
and the matrix B corresponds to the impedance matrix of the linear two-port fy^.

If Z is an operator in our sense, theorem 2 applies and we have:

Theorem 4: Suppose two one-ports Nand H as in figure 6 have the same (v,i) pairs, and are not
linear. Then there are a, p, T, and r such that

1 0 1 0 0 0

0 ae-*T
1

Z 0 pesT +
0 -r0 ae-*T Z 0 fi°sT + n -*• C7-1)

j 1

and the strictly nonlinear resistors are related by

£ = p-lGoTld+rp~l Ga-1)-1 (7.2)

For the case 7=0 this has the interpretation shown in figure 7.

If in addition Nt<n and N^ are reciprocal (for example, if they contain only two terminal ele
ments and transformers) then 7=0 and a=/3 in (7.1). In figure 7 the scalors are then



OSA

nonlinear resistor

(o)

strictly nonlinear resistor Rsnjg

(b)

fig. 6: (a) One-port network N containing one nonlinear element, a resistorR in this case, (b) N partitioned
into a LTI 2-portN^ and a strictlynonlinear resistor 1^^.

transformers and the networks are related as in figure 8. Proof: If N and ft have the same (v,i)
pairs, they have the same impedance operator: (7.1) and (7.2) are the conclusions of theorem 2.

Suppose the two-ports are reciprocal. Then (7.1), Z-ZT, and 2f=2r imply

ae-TZ12(s)=pesTZl2(s)

Since Zl2 is not identically zero, ap~l =exp(2s7), hence 7=0 and a=p.

Of course by using another representation (say, admittance) for Ntin we can handle current

controlled resistors. Similarly if the original resistor R had been a flux-controlled inductor with

* =H(<p) we could rewrite the network equations as*

♦S Zgi is sometimes not an operator in our sense,

vx = Zuix + Zizi2

sense, and in fact the same can be said for Zo\ itself. But the previous
theorems still hold with relaxed assumptions onByu, Bgu,andByd; theycanbe e.g. S or S .



fi£ in

scalor

VN*in

r0
-vw—

^ _ _ _

scalor

oris

l£

W

^g.7: Relation between one-ports as in figure 6 which are port-equivalent. A (7,5) scalor is denned by
Vout =yVin and \ut = ~^n (see [12]).

-r0
-WNr-

V /

•e

Njfin / \ Rsatf

/t0.0; IfNifrt and Ntf„ are reciprocal, the relation offigure 7 simplifies to that shown here.

Rsnj?

(pz = s~^Z2\i\ + s~lZ22i2

iz = S((p2)

where S() is the strictly nonlinear part of %L. The conclusions of Theorem 4 then hold with G
and £ replaced by S and 3f.

We will continue our study of uniqueness in nonlinear circuits in a future paper.
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Appendices

Al. The Memoryless Part of an Operator

The main purpose of this section is to prove lemma 1. While a direct proof is possible we

think the approach here is more interesting. We start with a theorem which gives an intuitive

interpretation to MPA.

Theorem Al: Suppose u(t)=0, t<0, limu(t) exists (we'll call this limit it(0+)), and ||u||<RadL4.

Then (Au)(Q+) exists and 04u)(O+) = (MR4)(u(O+)). Thus MPA is the part of A which 'reacts
instantaneously'.

Proof: Let y(t) =(Au)(t). Theny(t)= £>n(0 where
n=l

2/n(0 =/• • • fu>(t-T1)...u(t-Tn)dan(Tl,...Tn)

=oJIOJMO* +/ •• • fu(t-Tl)...u(t-Tn)dan(TU...Tn)
JR*n-M

Hence

y(t) =UPA(u(t)) + S / ' ' ' fu(t-Tl) ' ' *W(* -T^dOniTi T„) (Al.l)

Now the sum in (Al.l) is bounded by

EIMM«J((M]») (A1.2)
n

Since the the summand in (A1.2) is summable and decreases as £-»0+, monotone convergence
tells us that (A1.2) tends to zero as *-»0+ and hence the sum in (Al.l) also converges to zero as
t -»0+. Since JSPA is analytic near 0,

\imy(t) = MR4(u(0+))
t-o

Theorem A2: MP(4+B) = JSPA + ISPB and ISP(AB) = MP4 MP5.

Thus MP maps dynamic operators into memoryless ones, preserving addition and composition.
This generalizes the fact that ju->/x((0J) is an algebra homomorphism of the bounded measures on

/?+ with convolution into R. We should mention that causality is crucial here, and also that the
analogous theorem for discrete time operators is obvious.

Proof: For |a| small (<min(RaiL4,Rad£)) let u(t)=al(t)1 a step of height a. Then from
((A+B)u)(0+) = Au(0+) +Bu(0+) and theorem Al

VP(A+B)(a) = MP4(a) + MP5(a)

which proves the first assertion; similarly Bu[0+) = MPB(a) so ABu(0+) = MP4(MP5(a)). By

theorem Al AEit(0+) =KP(AB)(a), hence



1/ o —

MP(i45)(a) = MPAMP5(a)

establishing theorem A2.

Theorem A3: If A is invertible. then MPU"1) = (MPM)"1.

Proof: / =MP/ =HP(A4"1) = (MPA)(MPU"1)). hence MPU"1) = (MPM)"1.

Now we can give

Proof of lemma 1: In lemma 1 we have G= Nd-BN)~1, where B is LTI, MP/f=0, and N is

memoryless. By theorems Al and A2 VLP(I-BN)=I', now using theorems A3 and A2 we have

VFiNd-BN)-1] =VPN = N.

A2. Proof of lemma 2

Recall that G=Nd~BN)~l, where B is LTI and N is memoryless strictly nonlinear with first

nonvanishing kernel Nk. We first derive a recursive expression for Gn. Since BN is strictly non

linear, I-BN is invertible (Rad[(/-#7V)_1]>0), hence so is G= Nd~BN)~1. Taking the nth ker

nel of Gd-BN) = N yields

[Gd-BN)]n = Nn

Expanding the left expression using the composition formula:

Nn =SYM £
m=l

Gm^i+.-.+S^ Sn+1_im+...+Sn)-

(I-BN)il(sl Sil) • •• d-BN^is^^ sn)

For n = l this gives GX=Q, hence the m = l term doesn't contribute. The m=n term is simply

Gn(sl sn); rearranging the equation above we get a recursive formula for G^ given by

n=\

Gn(si sn)=Nn -SYM 2
m=2

K,+...+tITl=n

Gm(s1+...+s<l sn+1_i?n+...+sn)-

•(/-/•MOi^i *,) • ••d-BN^Js^.^ sn)

We can now prove lemma 2.

Proof of lemma 2: From the recursive formula for G^ we see that if Q=0, i<nt and JVn=0, then

6^=0. Thus Gft=0, n = l...A:—1. The outer sum can therefore start at m=k. Now we claim that

the smallest n for which sum doesn't vanish is n=2A:-l. By hypothesis,

d-BN)t = '
1 i=k

0 Ki<Jb

The product d~BN)it • • •d~BN)im will vanish unless each y is one or Ssfc. Since at least one



S i£ Z.

ij >1, the smallest n = ^ij for which the sum can contribute occurs when m=fc, one ij is k, and

the others are 1. Thus n-m—1+A: = 2A:—1. The sum then contains only the A: derangements of

(fc(i,...l), so Gi = Ni, i<2-land

Gzt-\ - N&-X + kNkzSYVB(sl+...-rsk)

using Qe=Nk and d"~BN)k = -//(sj+.-.+s^)^. So lemma 2 is proved.
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