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ABSTRACT

Even simple circuits containing only one op amp and linear resistors can

have multiple dc operating points. Using a realistic nonlinear dc op-amp

model which includes the saturation characteristics, this paper gives the

necessary and sufficient conditions for an arbitrary op-amp circuit (contain

ing op amps, linear resistors, strictly-increasing nonlinear resistors, and

independent sources) to have a unique solution for all values of circuit para

meters. These conditions are remarkable because they are couched strictly in

topological terms. For many op-amp circuits (e.g., those containing only one

op amp), the necessary and sufficient conditions can be checked by inspection
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1. INTRODUCTION

This paper gives several criteria for testing a nonlinear op-amp circuit

to have a unique solution for all circuit parameters. The following circuit

elements are allowed: (1) dc voltage and/or current sources, (2) positive

linear resistors, (3) nonlinear resistors characterized by strictly monotone

increasing v-i curves, and (4) op-amps modelled by a realistic nonlinear dc

model. In general such a circuit may have a unique solution, multiple solu

tions, or no solution depending on the circuit parameters. However, circuits

having certain topological structures have a unique solution for all circuit

parameters. For example, Nielsen and Willson gave a necessary and sufficient

topological condition for a transistor circuit to have a unique solution [1].
According to [1], any circuit containing transistors, linear passive resistors

and dc sources has a unique solution for all circuit parameters if and only if
it contains no feedback structure. Our objective in this paper is to derive

analogous (but different) topological criteria for op-amp circuits.

In this paper the op-amp in Fig. 1(a) is modelled by a nonlinear voltage-

controlled voltage source (VCVS) in Fig. 1(b). Here the function f(v-,) is
described by the "saturation" characteristic shown in Fig. 2, or Fig. 3. In

Fig. 2 we assume that

(1) f is a continuous and strictly monotone-increasing function.

(2) f'(0) = «> where the prime denotes the derivative of the function.

(3) f(0) = 0.

In practice, we can replace (2) by

(2') f'(0) is sufficiently large.

Furthermore we assume that:

Assumption: One of the two output terminals of each op amp is grounded. (1)

Although satisfied by most practical op-amp circuits, this assumption is
nevertheless not essential. Indeed all theorems except for the last Corollary

in Section 3 hold without this assumption.

Throughout this paper we refer to an op-amp modelled by Fig. 2 or Fig. 3

as Model C ("C" means "continuous") or Model D ("D" means "discontinuous"),

respectively.

Our criteria are graph theoretic and can be applied by inspection for
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many simple circuits. For example, consider the circuit in Fig. 4(a). The
graph 6 associated with this circuit is shown in Fig. 4(b). Here edges 1
and 1* represent the input and output port of the op-amp. Theorems 3 and 4 in
Section 3 assert that this circuit has a unique solution for both Model C

and Model D op-amps. For, G can be reduced by graph-theoretic operations (to
be described in Section 2) to the graph shown in Fig. 5, but not Fig. 6. If

the polarity of the input port of the op-amp is reversed, we will show the

reduced graph is as shown in Fig. 6. Our theorems then assert that in this

case the circuit does not have a unique solution.

Our main theorems are stated in terms of a new topological structure

called a "cactus graph" to be defined in Section 2. For the moment, we simply

state that the graphs in Figs. 5 and 6 are the simplest examples of cactus

graphs.

Section 3 presents the main existence and uniqueness theorems along with

many illustrative examples. Since the detailed proof of the theorems is

rather long, we give only the main steps of the proof in Section 4. Addi

tional details are given in the Appendix in terms of lemmas and their proofs.

Reader interested only in applications may skip this section.

2. GRAPH REPRESENTATION, GRAPH OPERATION AND SPECIAL GRAPHS

In order to state the various topological criteria in this paper simply,

and without ambiguity, it is essential that all notations, symbols, and graph

operations be defined precisely. We will collect all of them here so that

readers who have forgotten them can turn quickly to this short section for

reference. To help the reader in remembering some of the more commonly used

notations and terminologies, we have carefully chosen mnemonics for decipher

ing them.

A. Associated Graph of a Circuit

An associated graph, denoted by G, of a circuit is obtained from the

circuit as follows:

This example will be treated in Section 3 in more detail.

2
Exact definition will be given in Section 2.
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(1) Each independent voltage (resp., current) source is short-circuited

•(resp., open-circuited).

(2) Each 2-terminal resistor (linear or nonlinear) is represented by a non-

directed edge.

(3) Each op amp in Fig. 1(a) is represented by a pair of directed edges whose
3

directions are specified as shown in Fig. 1(c). These two edges are

labelled by the same number with a hat •""" added to that of the output

edge. For example, edges 3 and 3 denote the input and output edges of

op-amp #3, respectively.

Without loss of generality G is assumed to be connected.

B. Graph Operation

The topological criteria in Section 3 require the given graph G to be

reduced into various simpler graphs via a combination of the following graph

operations:

1. Open-circuit Operation 0(»).

Given an edge k, the operation 0(k) deletes the connecting line but leaves

the node intact as shown in Fig. 7(a).

2. Short-circuit Operation S(»).

Given an edge k, the operation S(k) deletes the edge and coalesces the

2 nodes into one node as shown in Fig. 7(b).

3. Open/Short Operation 0/S(«).

(a) Given a resistor edge R, the operation 0/S(R) = 0(R) or S(R), i.e.,

replace R by either Fig. 7(a) or Fig. 7(b).

(b) Given a pair of edges associated with an op-amp OA, the operation

0/S(OA) consists of open-circuiting one edge (either the input or out

put edge) and short-circuiting the second edge, as shown in Fig. 8.

4. Zero Operation Z(«).

This operation sets an op amp, OA, to zero in the usual way: Let a

pair of edges associated with the op amp OA be (k,k). Then Z(0A) means 0(k)

Note that the edge associated with a + and - sign is directed from + to -.
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and S(k) as shown in Fig. 9.

C. Cactus Graph and Graph with a Complementary Tree Structure

These two graphs contain only the input and output edges of the op-amps

and play a very important role in this paper. Denote the n pairs of edges

associated with the op-amps by (k,k) (k=1,2,...,n) and denote a connected

graph (to be defined later) containing these edges by GQ.

1. Cactus Graph

To help visualize a cactus graph, consider a typical cactus plant shown

in Fig. 10(a), consisting of leaves (shaded area) "hinged" between the top and

the bottom only. The graph GQ made up of the boundaries of the leaves, as
shown in Fig. 10(b), is called a cactus graph iff it satisfies the following

properties:

1) every loop is made of exactly 2 edges, k and k+1 (k= 1,2,...,n;

n+l = l).

2) every cutset is made of exactly 2 edges.

Formally, a cactus graph is defined by a fundamental loop matrix having the

following structure.

1 3 ... n

B =

Vi°

/\ /\ A. As

1 2 3 ... n

(2)

where e.= ±1. Several cactus graphs are shown in Figs. 10(c)-(e). It follows

from Assumption (1) (i.e., one output terminal of each op amp is grounded)

that all cactus graphs encountered in this paper are of the form shown in

Fig. 10(c). However, if we don't assume (1), we would encounter other cactus

graphs, such as those shown in Figs. 10(b) and (e). Note that each leaf of

The edges should be labelled as shown in Fig. 10(b). Note that the 2 edges

k and k+1 pertain to 2 different op amps: edge k denotes the input edge of
the kth op amp, whereas edge k+1 denotes the output edge of the (k+l)th op amp
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a cactus graph consists of 2 edges labelled consecutively (except the last

number or when the graph has only 2 edges), one pertaining to an input edge of

one op-amp, the other to the output edge of another op amp. These 2 edges

form a loop. In the following topological criteria, each loop associated

with a leaf of a cactus graph is said to be similarly directed iff the 2 edges

are directed in the same direction (clockwise or counter-clockwise).

2. Graph with a Complementary Tree Structure

The graph GQ alluded to above is said to have a complementary tree struc
ture if and only if both the input edges {k|k=1,2,...,n} and the output edges

{k|k=l,2,...,n} form a tree of GQ. For example, the graph shown in Fig. 11
has a complementary tree structure. For, both input edges 1,2,3 and output

/\ /N *

edges 1,2,3 form a tree of the graph.

3. TOPOLOGICAL CRITERIA BY INSPECTION

In this section we present several toplogical criteria for determining,

by inspection, whether a given op-amp circuit M has a unique solution for all

circuit parameters. The circuit M may contain dc voltage and/or current

sources, positive linear resistors, nonlinear resistors whose v-i characteris

tics are represented by strictly monotone-increasing onto functions g (y=l,2,...),
and op amps (Model C or Model D). Throughout this paper, the phrase "for all

circuit parameters" means for any_ choice of positive resistance for the linear
resistors, an^ value of dc sources, an^ strictly-increasing onto function g^
satisfying g (0)= 0 for the nonlinear resistors, and an^ output saturation

voltage for the op amps. Furthermore dc sources are allowed to be connected

at any location in the circuit.

The following criteria are applied to one or more simplified graphs

obtained from the associated graph G by various graph operations described

in Section 2.

A. Circuits Containing One Op Amp

We consider two cases where the op amp is described by either Model C

or Model D. Consider first the Model C case.

Theorem 1. (One Model C Op Amp)

Let W contain one Model C op amp. Then N has a unique solution for all

circuit parameters if and only if the associated graph G does not contain any
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loop that includes both the input and output edges (associated with the op

amp) in opposite direction.

Example 1. Consider the circuit in Fig. 4(a) again. The associated graph G

in Fig. 4(b) contains only one loop Lwhich includes both edges 1 and 1 (op
amp edges). However, L includes them in the same direction. It therefore
follows from Theorem 1 that the circuit has a unique solution (for the Model

C case).

We can also verify this conclusion analytically as follows. From Fig.

4(a) we have the circuit equations:

v1 = -g^i) -E (3a)

f(vx) + vx
R2 = 1 (3b)

where the function f(-) as defined in Fig. 2. Substituting (3b) into (3a) we obtain

f(vx)+v.

7 '
/f(v1)+vn

<h Hr1)+ v -E (4)
Since both ftv^+v^ and g, are strictly increasing continuous onto functions,
(4) has a unique solution for any value E, as predicted by Theorem 1.

Next consider the circuit shown in Fig. 12(a), which is obtained from

Fig. 4(a) by reversing the polarity of the input port of the op amp. The

associated graph G is shown in Fig. 12(b). The graph G contains a loop which

includes both edges 1 and 1 in opposite direction. It therefore follows from

Theorem 1 that the circuit does not have a unique solution (for some circuit

parameters).

Example 2. Consider the circuit in Fig. 13(a) and its associated graph G in

Fig. 13(b). The graph G contains a loop L (consisting of edges 1, R1, 1, R3,
R«) which includes edges 1 and 1 in opposite direction. Therefore we conclude

that the circuit does not have a unique solution.

Note that Theorem 1 tells us that the circuit will have a unique solution

5Hereafter the phrase "for some circuit parameters" will be omitted for
simplicity.
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if either of the following two conditions is satisfied.

(i) At least one of the edges R-j, R«» R3 is open-circuited,
(ii) Either Rg or R7 is short-circuited.

Example 3. Consider the circuit shown in Fig. 14(a) and its associated graph

in Fig. 14(b). There exists no loop containing both edges 1 and 1 (op amp

edges) in the associated graph. Thus we conclude from Theorem 1 that if the

op amp in the circuit is described by Model C, then this circuit has a unique

solution. We can verify this conclusion analytically as follows:

We have the following circuit equations:

v1 = -g3(i)

g2(i) +g3(i) -E (5)
v2 = f(vx)

where the function f(*) is as defined in Fig. 2. Since g2 and g~ are strictly
monotone-increasing onto functions, and f is a bounded continuous function, it

follows from these equations that, for each E, all voltages and currents in the

circuit are uniquely determined.
Our next result applies to the case where the op amp is described by

Model D.

Theorem 2. (One Model D Op Amp)

Let W contain one Model D op amp. Then W has a unique solution for all

circuit parameters if and only if the associated graph G satisfies the follow

ing two conditions (let the input and output edges associated with the op amp

be denoted by (1,1)):

1) G does not contain any loop that includes both edges 1 and 1 in opposite

direction.

2) G contains at least one loop that includes both edges 1 and 1 in the same

direction.

Example 4. Consider the circuit in Fig. 4(a) again. The associated graph G

obviously satisfies conditions 1) and 2) above. It therefore follows from

Theorem 2 that even in the case where the op amp is described by Model D, the

circuit has a unique solution.

Comparing Theorem 1 with Theorem 2, we conclude that if the circuit in

which the op amp is described by Model C does not have a unique solution, then
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the circuit in which the op amp is described by Model D also does not have a
unique solution. Therefore the circuits in Figs. 12(a) and 13(a) do not have
a unique solution for the case where op amp is described by Model D.

Example 5. Consider the circuit shown in Fig. 14(a). The associated graph in
Fig. 14(b) does not satisfy condition 2) in Theorem 2. It therefore follows
that the circuit does not have a unique solution for the case where the op amp

is described by Model D. To verify this, it suffices to observe (5). If we
set E= 0 in (5), we would obtain i=0 and v1 =0. However, the value of f at
the origin cannot be determined uniquely. Hence, this circuit does not have

a unique solution, as predicted by Theorem 2.

B. Circuits Containing Any Number of Op Amps

For simplicity a circuit is said to be Model C (resp., Model D) if each

op amp in the circuit is described by Model C (resp., Model D).

Theorem 3. (Model C Op-Amp Circuit)

Let W be a Model C op-amp circuit. Then W has a unique solution for all

circuit parameters if and only if the associated graph G satisfies the follow

ing two conditions:

(I) G contains neither loop made exclusively of op-amp output edges nor

cutset made exclusively of op-amp input edges.

(II) G cannot be reduced to a cactus graph with an even number (including

zero) of similarly-directed loops by applying the following three graph

theoretic operations.

(a) Apply 0/S(*) to each resistor edge

(b) Apply Z(«) to some (possibly none) op amps

(c) For each reduced graph after operations (a) and (b) having a com

plementary tree structure, apply 0/5(0 to some (possibly none)

op amps.

Remark 1.

Let

k = number of op amps

r\~ = number of resistor edges

n1 = number of op amps whose input (resp., output) edges are open-
circuited (resp., short-circuited) in operations (b) and (c).
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n2 = number of op amps whose input (resp., output) edges are short-
circuited (resp., open-circuited) in operation (c).

n3 = number of remaining op amps
(= k-n.,-n2)

As the result of operations (a)-(c) in Theorem 3, we obtain n(not necessarily

distinct) graphs, in general, where

k k

nr-0 n2=0 \nlMn2 /
(6)

n, +n2 <k

The number n is extremely large even for a small-size circuit. It appears that

it is rather tedious to verify whether the conditions in Theorem 3 are satisfied

or not. Note however that we are concerned only with cactus graphs and

that the number of cactus graphs among those n graphs are usually very few

compared with n. As seen from the following examples, we can easily apply

this theorem to many practical circuits.

To see this, consider the circuit in Fig. 4(a) again. For this circuit,

we have n= 4. If we apply operation (a) to Fig. 4(b) in all possible combina

tions6, we would obtain 4graphs in Figs. 15(a)-(d). However, among these 4
graphs only the one in Fig. 15(c) is a cactus graph. We notice immediately that

operation S(R,) or 0(R2) need not be applied.

As another example, consider the circuit in Fig. 13(a) again. For this

circuit, n is given by n=2 =128. Among these 128 combinations of operation

(a), it suffices for us to consider the following two combinations only:

(i) S^), 5(R2), S(R3), 0(R4), 0(R5), 0(R6) and 0(R?)
(ii) 0^), S(R2), 0(R3), 0(R4), 0(R5), S(Rg) and S(R?).

For, we can verify by inspection that the other combinations do not give rise to

any other cactus graph. Combination (i) (resp., (ii)) gives rise to the
cactus graph in Fig. 6 (resp., Fig. 5). Since the graph in Fig. 6 has zero

(hence even) similarly-directed loops, the same conclusion as before follows

from Theorem 3.

6Note that if there are m resistor edges, then operation (a) has 2 combina
tions.
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Remark 2.

To show a circuit does not have a unique solution is"usually much easier

than to show it has a unique solution: all we need to do is to exhibit one dis

allowed cactus graph, and this can often be found by inspection.

•We will now illustrate the conditions in Theorem 3 in more detail with

the help of some examples. Note that when we apply Theorem 3, our first step

is to find all_ graphs with a complementary tree structure by applying opera

tions (a) and (b). Some of them may be cactus graphs. For each reduced

graphs having a complementary tree structure which is not a cactus graph, we

must apply operation (c).

Example 6. Consider the circuit shown in Fig. 16(a) and its associated graph

in Fig. 16(b). Applying operations (a) and (b), we obtain many reduced graphs.

Among them only three graphs, shown in Figs. 16(c)-(e), have a complementary

tree structure. For example, the graph in Fig. 16(c) is obtained by applying

operations 0(R.j), S(R2), 0(R3) and S(R4). Similarly the graph in Fig. 16(d) is
obtained by operations 0(R-j), S(R2), 0(R3), S(R-), 0(2) and S(2). Note that
we need not consider other graphs, since they do not exhibit a complementary

tree structure. Note also that the graph in Fig. 16(c) is not a cactus graph

because the edges are not labelled in accordance with Fig. 10. Applying

operation (c) to Fig. 16(c), we obtain the cactus graphs in Figs. 16(d) and

(e). No more cactus graph other than those in Figs. 16(d) and (e) can be

obtained. Since the cactus graphs obtained above are allowed (they have an

odd number of similarly directed loops, namely, one), it follows from Theorem 3

that this "Model C" circuit has a unique solution.

Example 7. Consider the circuit in Fig. 17(a) and its associated graph G in
3

Fig. 17(b). Among 2 (=8) reduced graphs obtained by applying operation (a),

only one graph, shown in Fig. 17(c), has a complementary tree structure. It

is a 2-1 eaves cactus graph with one similarly-directed loop, and is obtained

from G by applying operation 0(R.j), S(R2), and 0(R3). Furthermore applying
operations (a) and (b) to G, we obtain another complementary tree structure

graph (1-leaf cactus graph) shown in Fig. 17(d). Since both reduced graphs

are already cactus graphs, we don't need to apply operation (c) in this example

Since both cactus graphs obtained above are allowed, it follows from Theorem 3

that this "Model C" circuit has a unique solution.
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Note that we can obtain the disallowed graph shown in Fig. 17(e) by

applying operations S(2), 0(2), 0(R^), 0(R2), and S(R3) to G. However, this
particular simplification is not allowed in Theorem 3 because operation (c)

can be applied only to a graph with a complementary tree structure.

Example 8. Consider the circuit shown in Fig. 18(a) and its associated graph

G in Fig. 18(b). By applying operations (a) and (b) to G, 2 reduced graphs

with a complementary tree structure are obtained. They are shown in Figs.

18(c) and (d). Applying operation (c) to Fig. 18(d), we obtain the "disallowed"

cactus graph in Fig. 18(e). Hence, we conclude that this "Model C" circuit

does not have a unique solution.

Note that if the polarity of the input port of op amp #1 is reversed, then

the circuit has a unique solution.

Example 9. Consider the circuit shown in Fig. 19(a) and its associated graph

G in Fig. 19(b). Applying operations (a) and (b) to G, we obtain 4 graphs
with a complementary tree structure. They are shown in Figs. 19(c)-(f).
Since Fig. 19(f) is not a cactus graph, we apply operation (c) to obtain a
new cactus graph in Fig. 19(e). Since all of the above cactus graphs are

allowed, it follows that the "Model C" circuit in Fig. 19(a) has a unique

solution.

Similarly, we can show that the "Model C" circuit in Fig. 20(a) has a
unique solution. The graphs obtained by applying operations (a)-(c) are
shown in Figs. 20(c)-(e).

Theorem 4. (Model D Op-Amp Circuit)

Let W be a Model D op-amp circuit. Then W has a unique solution for all

circuit parameters if and only if the associated graph G satisfies the follow
ing condition (III) in addition to conditions (I) and (II) in Theorem 3:

(III) Let Kq denote any proper subset of op amps in the circuit and let G-j be
a graph obtained from G by applying operation Z(-) to each op amp
belonging to KQ (henceforth abbreviated as operation Z(Kq)). Then there
exists a combination of operation (a) such that applying the operation

(a) to G1 gives rise to a graph with a complementary tree structure.

7Note that the graph obtained by applying operations 0(R-|), 0(R2) and S(R3)
does not have a complementary tree structure (see Fig. 17(f)).
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We will illustrate condition (III) by some examples.

Example 10. Consider first the circuit shown in Fig. 21(a) and its associated

graph G in Fig. 21(b). Since the circuit contains 3 op amps, we have to

consider 7( =23-l) cases for KQ. If KQ={op amp #1}, then we choose as
operation (a) S(R1) and 0(R2). Applying Z(KQ) and the above operation (a)
to G, we obtain the graph in Fig. 21(c), which has a complementary tree struc

ture. Similarly, if Kg =0, {op amp #2}, {op amp #3}, or {op amps #1, #3},
then we choose as operation (a) S(R-j) and 0(RJ again. If KQ={op amps #1, #2}
or {op amps #2, #3}, then we choose as operation (a) 0(R-|) and S(R2). In any
case we obtain a graph with a complementary tree structure by applying opera

tion Z(Kq) and operation (a) chosen above. We therefore conclude that the
circuit in Fig. 21(a) satisfies condition (III).

Example 11. Consider the circuit shown in Fig. 17(a) again. First we consi

der the case where Kq =0. In this case we choose as operation (a) 0(RO, S(R2)
and 0(R3). Applying Z(Kq) and the above operation (a) to G, we obtain a
complementary-tree-structure graph in Fig. 17(c). Next consider the case

where KQ={op amp #1}. Applying operation z(KQ) and operations S(R,), 8(R2),
6(R3), we obtain another complementary-tree-structure graph in Fig. 17(d).
Thirdly we consider the case where K0={op amp #2}. In this case, however,
the application of operation z(KQ) gives rise to a cutset consisting of only
one edge 1(see Fig. 17(g)). Therefore any combination of operation (a) does

not give rise to a graph with a complementary tree structure. That is, the

circuit in Fig. 17(a) does not satisfy condition (III). It follows from

Theorem 4 that the "Model D" circuit in Fig. 17(a) does not have a unique

solution (cf. Example 7).

Example 12. Consider the graph shown in Fig. 20(b). Let KQ={op amps #2, #3}.
Since the application of operation z(KQ) results in a self-loop (edge 1), we
cannot obtain a complementary tree structure in this case. We therefore con

clude that the graph in Fig. 20(b) does not satisfy condition (III). This

means that the "Model D" circuit in Fig. 20(a) does not have a unique solu

tion (cf. Example 9).

Similarly, we can verify that the graphs in Figs. 19(b) and 14(b) do not

satisfy condition (III). This corresponds to the previous result in Example 5.

Finally, note that the graphs in Figs. 4(b) and 16(b) satisfy condition

(III). Since they also satisfy conditions (i) and (ii), we conclude that the
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circuits in Figs. 4(a) and 16(a) have a unique solution even if the op amps

are described by Model D.

Corollary 1.

If a "Model C" circuit does not have a unique solution, then the corres

ponding "Model D" circuit also does not have a unique solution.

In many practical applications the following condition is satisfied.

Assumption: One of two input terminals of each op amp is grounded. (7)

Corollary 2.

If Assumption (7) is satisifed, then, in Theorems 3 and 4, we don't need

to apply operation (c).

Proof: See Appendix 1.

This corollary greatly simplifies the application of Theorems 3 and 4 in

practice. In many cases, the conclusions can be obtained by inspection.

4. PROOFS OF THEOREMS

Since Theorems 1 and 2 are special cases of Theorems 3 and 4, respectively,

we will give the proofs of Theorems 3 and 4 only. Since the proofs are rather

long and involved, we give only the major steps of the proof so that the

reader can separate the trees from the forest. This is achieved with the

help of many lemmas. Proofs of some of the non-trivial lemmas are given in

the Appendix.

We start with the following lemma:

Lemma 1. Condition (I) in Theorems 3 and 4 is necessary for the solu

tion to be unique.

Proof: See Appendix 2.

4.1 Analytical Condition for the Solution to be Unique

Consider a circuit W with k op amps and m nonlinear resistors. Suppose

for the moment that each op amp is replaced by a nonlinear VCVS defined by

the function in Fig. 22(a) or Fig. 22(b). Here, the function f in Fig. 22(a)

satisfies the following conditions:
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1) f is a continuous and strictly-increasing function.

2) f'(0) = a and 0 < f'(v) < a for v t 0.

3) f(0) = 0.

Let this modified circuit be denoted by Nvcv$. Let the VCVS's and the nonlinear
resistors in N„cvs be extracted across alinear passive resistive (2k+m)-port
Nq, as shown in Fig. 23. Here NQ includes all dc sources. Denote the port-
currents and the port-voltages by i and v (y = 1,2,*»«,2k+m), respectively, and

let

~h~ ~vl~

h- •

•

•

_1k_

Va ""

v2
•

•

•

Vi ~Vi

h-
•

•

• Vb
=

•

•

•

-.l2k- _v2k.

^k+1 v2k+l

!c =
•

•

• Vc
=

•

•

•

_12k+m_ _ v2k+m-

The characteristics of the VCVS's and the nonlinear resistors are represented

by

I.-°

Vb = F(Va)

•Ic = fi(vc)

where

-15-
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f2(v2)
9l<v2k+l>

F(Va) = and G(VC) =
92( 2k+2

^(^k+m)

Here, f (y = l,*»*,k) are functions represented by Fig. 22(a) or 22(b), and
g (y = l,*««,m) are continuous and strictly-increasing function mapping R'

onto R'.

Suppose for the moment the following assumption is satisfied.

Assumption 1. The (2k+m)-port NQ has an admittance representation.
The case where Assumption 1 does not hold will be treated in Section 4.4

Then NQ can be represented by

flal
h =

Jc

Y Y Y
aa ab ac

Yba Ybb Ybc
Y Y Y
'ca cb cc

Va Ha

vb + °b

VcJ IJc
Substituting (8) into (9) we obtain

0 Y Y Y
aa ab ac "Va " Ja

lb = Yba Ybb Ybc F(Va) + Jb

-G(VC)
» —

Yca Ycb Ycc
i— _

Vc Jc
L. -J

The second equation of (10)can be regarded as the equation for determining Ib
Therefore it is unnecessary to consider the second equation of (9) in our

subsequent discussions.

Let

A =

J =

Y Y
aa ac

LYca cc

B =
Yab °

LYcb 1

-16-
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Let

Then (10) can be rewritten as

"V."l fF(Vaf
LVcj

+ B

l_G(V.

DF =diag[dfl,df2,-",dfk]

Dg =diag[dgl,dg2,...,dgm]

~Dp 0~
D = _0 DG_

J

A A |A + BD|

Yaa + YabDF» Yac

Yca + Yct>DF> Ycc + DG

+ J = 0 (ID

(12)

(13)

Lemma 2. Suppose the circuit Nvcvs satisfies condition (I) in Theorem 3. Then,
for any given values of linear resistors, Equation (11) has a unique solution for

all circuit parameters if and only if

A i 0 for all D satisfying (15) or (16). (14)

1) In the case where f is represented by Fig. 22(a):

0< dfy <ay (y =l,2,---,k)

0<dgy <^(=00) (y =1'2'##"'m)
2) In the case where f is represented by Fig. 22(b):

0^d^, £a„ & ° 1.2,... ,k)'fy y

0< dgy <yy (=°°) (y = l,2,---,m)

Proof: See Appendix 3.

Until now we have assumed the function f are described by Fig. 22(a)

or 22(b). Hereafter we will use the limiting characteristics shown in

Figs. 2 and 3. To do so, it suffices to set

ay = °° (y = 1,2,....k)
-17-
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in the equations (15) and (16).

Let K be a set of numbers {l,2,---,k} and let K-j and K2 be a partition
of K. That is, K= K-| u K2 and K-j n K2 = <J>. Either K1 or K2 may possibly be
the null set. Set

aa ab ac

LYca Ycb Ycc+DGJ
= [p1p2*-*pk:q1 '••• qk-r1 ••• rj (18)

(19)

(20)
qy for y€ K2

Lemma 3. Condition (14) is equivalent to the following condition (21) (resp„(22))

when (15) (resp.,(16)) is satisfied.

Aoo =° for ill dg and for ^- Partlti°n of K (21a)

Aw ^0 for some Dg and for at least one partition of K (21b)

\> >0"f°r all Dg and for an^ partition of K (22a)

A^ f 0 for some Dg and for an^ partition of K (22b)

Proof: See Appendix 4.

Using Condition (I), we can easily verify that

A^ >0for K-, =K, K2 =<J> and Dg -* «,.8 (23)

Hence, condition (21b) is always satisfied. Therefore it remains to investigate

only conditions (22a) and (22b). (Note that (21a) is the same as (22a)).
In the following we investigate the topological conditions for A^ > 0,

L = 0 or A < 0.
00 00

5 Ds •*• » means that each diagonal element of Dg is sufficiently large

-18-



4.2. Analysis of the Linear Network

We will now investigate when condition (21) or (22) holds for all values of

linear resistors and for all Dg. Let

Y =

Yaa Yab Yac

Yba Ybb Ybc

L. Ca Ycb Ycc+DG

(24)

Equation (24) is the admittance matrix of the (2k+m)-port in Fig. 24 where NQ is
the network obtained from NQ by short-circuiting the dc voltage sources and
open-circuiting the dc current sources, and y (y = l,»«-,m) denotes linear

(positive) resistors. In order to investigate conditions (21) and (22), it

suffices to consider Y.

The associated graph 6 of the network in Fig. 24 is defined as the graph

obtained by replacing each resistor (including yu)» each port y (y = l,'*-,k),
each port k+y (y = l,---,k) and each port 2k+y (y =l,«-«,m), respectively, by

oriented edges R , a , b and c . The direction of R is arbitrarily chosen.

Edges a , b , and c are directed from the + sign to the - sign in Fig. 24

(See Fig. 25), and are called R-, a-, b-, and c-edge, respectively. The graph

G is connected, by assumption. We further stipulate that

Assumption 2. G has no cutset consisting exclusively of a-, b-, and c-edges.

The case where Assumption 2 does'not hold will be treated in Section 4.4. Let

mQ =nullity of G- total number of a-, b-, and c-edges (25)
i

From Assumption 2 it follows that mQ > 0.
We can modify G by adding nu d-edges d (y = l,2,»",m^) so that all the

a-, b-, c-, and d-edges form a cotree, T, of G. For simplicity, we denote

hereafter the modified graph by the same symbol G. Let the fundamental loop

matrix of G with respect to the cotree T be

T T

B=[BT|1]

and let the rows of B be arranged in the order of a-, b-, c- and d-edges. The

submatrix By will henceforth be referred to as the main part of the fundamental
loop matrix B. Without loss of generility we will choose

-19-



K, = {1,2,-..,^}
and (0 < k, < k) (27)

Kg ={kyH. — Jc} , = ' =

for A^ in (19) and (20).
Set

k2 =k-k1 . (28)

Then Bj can be written as in Fig. 26 where M={l,2,--*,m} and Mq ={1,2,-«*,mQ}.
In addition aK1 means the set of a-edges a (y € K-j), and aK , cM, dM are defined
in a similar way. Let

H=BT ® Bj (29)

where the prime means the transpose of a matrix and ® is a diagonal matrix
whose diagonal elements are the values of the linear resistors (including y in

Fig. 24).

Lemma 4

kk

4„= (-D ZM~\ (30)
where 6Q is the determinant of the submatrix shaded by oblique lines in Fig. 27.
Proof: See Appendix 5. ^

Since |H| > 0, it is sufficient for us to consider the sign of (-1) 6Q.
By using (29), we can rewrite 60 as

«0 = IBT1 ® ftfel (31)

where BT1 (resp., Bj2) is the submatrix of By in Fig. 26, shaded by oblique
(resp.» vertical) lines.

Let (0)o denote an arbitrary set of k+m R-edges and let 6-j (resp.,62) be
the determinant of the submatrix of BT1 (resp, By2) consisting of all the rows of
BT1 (resp.,BT2) and the columns corresponding to ®Q (See Figs. 26 and 28). Let

kk

6-(-D ^62 . (32)

Then we have:

Lemma 5. We can choose the values of resistors so that

-20-



A < 0 (33)
00

if and only if there exists a (fl)0 such that

6 < 0 . (34)

Proof: See Appendix 6.

Suppose that (34) holds for some ®Q. Since 6] and 62 (and therefore 6)
depend only on the rows a» ,bK and dM and the columns ©q of By, we define

BJ°) as shown in Fig. 28. Then 61 (resp.. 62) is the determinant of the submatrix
shaded by the oblique (resp. vertical) lines in Fig. 28. By carrying out the

following operations (i)-(iii)

(i) Multiply some columns by +1

(ii) Add the above columns to other columns

(i ii) Interchange columns.

appropriately, we can transform BJ0' in Fig. 28 into Bj'' in Fig. 29, where r1
and r2 are nonsingular diagonal matrices whose elements are +1 and

Q = -l. (35)

Since

«i -elrJIrJlPl'1 *IM

62 =(-i)klk2e|r1i|r2L||Q

=(-1) }2 Ze\T}\\T2\
e = +1 ,

we have by (36) and (32)

6 = |P| . (37)

Set

(36)

bK, aK,
1 ^2

B(2) =aK C P !1] . (38)
*2

(2)
4.3. Graph Theoretical Interpretation of Bv '

Lemma 6. Let G^ ' be the graph obtained from G by the following operations:

-21-



(i) Apply 0(«) to each c-edge and S(«) to each d-edge

(ii) Apply 0(*) to all R-edges belonging to ®Q and S(-) to the
remaining R-edges

(iii) Apply O(-) to each a-edge belonging to aK and S(-) to each b-edge
belonging to bK .

Then g'2' is a connected graph with a complementary tree structure and has
a fundamental loop matrix B*2' in (38) if and only if 6 f 0.

Lemma 7. Let Pn denote an arbitrary principal submatrix of P in (38). Then there
0 " to) (3)

exists an operation (b) in Theorem 3 which operates on Gv } to produce a Gv

having the following fundamental loop matrix:

b(3) -CPn:M
(2)

4.4. Further Considerations on G

We will derive the graph-theoretic conditions for

|P| <0 .

Henceforth we assume (40). Then we can find a principal submatrix PQ of Pwhich
satisfies the following conditions:

1) |P0I <0
2) Each principal minor (except for |PQ|) of PQ is positive or zero.

Suppose that some principal minor of PQ is positive. Then we can choose a
principal submatrix P-j such that:
1) IP^ >0

2) Each principal minor (except for \P}\ and |PQ|) of PQ which includes P]
in it is zero.

Without loss of generality we can rewrite PQ as

pl P12

P21 P22
po =

Set

P2 = P22 - P21P1 P12

Lemma 8. P2 in (44) has the following properties:
1) |P2| <0

-22-

(39)

(40)

(41)

(42)

(43)

(44)



2) Each principal minor (excluding |P2|) is zero.
3) There exists a graph g' 'whose fundamental loop matrix is given by

B(4) -[P2 |1] . (45)

Lemma 9. g' ' in Lemma 8 is a cactus graph with an even number of similarly
directed loops.

Lemma 10. The process of obtaining PQ and P1 corresponds to the operation (b)
and that of obtaining P2 corresponds to the operation (c) in Theorem 3.
Lemma 11. Theorems 3 and 4 hold under Assumptions 1 and 2.

Finally we get

Lemma 12. Theorems 3 and 4 holds without Assumptions 1 and 2.

The lengthy proofs of Lemmas 6-12 are omitted because they can be constructed

using similar (but not identical) techniques given in [3].

5. Conclusion

Topological necessary and sufficient conditions for op-amp circuits to have

a unique solution are given. The theorems given in this paper can be generalized

to allow circuits containing all 4 kinds of nonlinear controlled sources

described by Model C or Model D.
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Appendix 1. Proof of Corollary 2

If a circuit satisfies Assumptions (1) and (7), then any reduced graph with

a complementary tree structure can be drawn as shown in Fig. A.l. Here, one of

two edges forming each loop in Fig. A.l is an input edge of an op amp and another

one is an output edge. We therefore conclude that if we can obtain a graph from

the graph in Fig. A.l by applying operation (c), then we can obtain it by operation

(b), too.
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Appendix 2. Proof of Lemma 1

Suppose that an associated graph G contains a loop £ made exclusively of

output edges of the op amp's. For example, see Fig. A.2(a), where edges

K (k = !,•••,4) denote the output edges of the op amps. If we insert into £
a voltage source whose value is sufficiently large, then the circuit obviously

Q

has no solution because the output voltage of each op amp is bounded.

Next suppose that G contains a cutset C made exclusively of input edges of

the op amps. See, for example, Fig. A.2(b) where edges 1, 2, 3 denote input

edges of the op amps. In this case we cannot connect any dc current source J

as shown by the dotted line in Fig. A.2(b). This contradicts the assumption.

g
Remember that any dc source can be inserted at any location in the circuit
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Appendix 3. Proof of Lemma 2

Let
^ V.

x =

F(x) =

F(Va)

LG(Vj
Then (11) can be written as

Q(x) = Ax + BF(x) + J = 0 (A2.1)

We will show that (14) is necessary and sufficient for (A2.1) to have a unique

solution for each vector J.

Necessity: To show that (14) is necessary for uniqueness, we prove that if (14)

is not satisfied, then (A2.1) has more than one solution for some vector J.

Suppose that

A= |A + BDQ| =0

for some D = DQ = DF0 ° satisfying (15) or (16). Then there exists a

nontrivial solution x

(0) =0(A+BD0)x'

We can verify the following from the observation of Fig. A.3:

There exist a point x'1' and a sufficiently small positive number 6 such that

F(x(1W0)) - F(x(^) =D06x(0> (A2.4)
Let J satisfy

Ax(1) +BF(x(1)) +J =0 (A2.5)

(0)
'GO

such that

Figure A.3 is drawn only for the case of Fig. 22(b)
figures for the case of Fig. 22(a).

-26-
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Obviously x^ ' is a solution of an equation

Ax + BF(x) + J = 0 . (A2.6)

Furthermore we can see that x^ + 6x^0' is also a solution of (A2.6). For,

.A(x{1)+6x^)+BF(x(1W0).)+3

=Ax(1) +A6x(0) +B[F(x(1)) +D0]6x(0) +3

=[Ax(1) +BF(x(1)) +3] +(A+BDQ)6x(0)
= 0. (A2.7)

Thus for J =3 the equation (A2.1) has at least two solutions.
Sufficiency: Suppose that (14) is satisfied. We will prove the uniqueness and

existence of the solution of (A2.1) as follows:

1) Uniqueness

Suppose that (A2.1) has two solutions x* ' and x* '. Then we have

A(x(1)-x(2)) +B(F(x(1)) -F(x(2))) =0 (A2.8)

It follows from the observation of Fig. 22 that there exist diagonal matrices Dp
and Dg satisfying both (15) or (16) and

F(x(1)) -F(x(2)) =D(x(1) -x(2)) (A2.9)

Substituting (A2.9) into (A2.8), we have

(A+BD)(x(1)-x(2)) =0 . (A2.10)

From (A2.10) and (14) we conclude that x^ =x^.
2) Existence of a solution

We will show that there exists an MQ such that

x'Q(x) >0for all xsatisfying DxB =M>Mg11 (A2.ll)
If (A2.ll) holds, then (A2.1) has a solution [2]. Let

(A2.12)

TT

Throughout the Appendix, the "prime" means the "transpose" of a matrix.
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Consider first the quadratic form p. It follows from condition (I) that Yaa is
a positive-definite matrix. Therefore all eigenvalues of Yaa are positive. Let

the smallest eigenvalue be XQ and let

x =

} k

} m

,-1Then since Y„ -Y„aY 'Y.„ is a positive semi-definite matrix, we have
cc ca aa ac

P = x"
1 0

Y Y"1 1
L ca aa ,

1 0

-Y.Jll 1_ ca aa j l.

1 -Y-1Y
aa ac

,-1
a

0 1

1 Y"'Y
aa ac

x +y;!y x.
a aa ac b

. xb j

ir~

VY2Yacxaaa

,-V0 Y -Y„aY *Ya„
cc ca aa ac.

-1
± V'xa +Ya"aYacxlT

There exists a $ such that

,-1
,,YaaYabxb»±e»xb»

Now we evaluate p, q, and r for x satisfying

llxll = M .

We consider two cases:

(i) llxall >2B llxbll

In this case we have

txa + YaaYabxb» 1 ^ YilYabV

TtThroughout the Appendix, the "prime" means the "transpose" of a matrix.
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>llxall - 3 llxbll

>llxall -3^llxai

-ynxaii

Since

M2 =Hxll2 =||xall2 +llxbll2 <Hxall2 +-\llxall2 ,
43'

we have

lx.„2>^M2.
a —

1+43

By (A2.14), (A2.18), and (A2.20) we have

P>-^-o ^
1+43^ U

On the other hand we have

q =

"xa"

-Xb_

1

~Yab°~ -F(xa)~

_G(xb)_

" xaYabF(xa> + xbYcbF<xa> + xbG(xb>

(A2.18)

(A2.19)

(A2.20)

(A2.21)

(A2.22)

Since each element of F(-) is bounded, the first and the second terms of the

right-hand side of (A2.22) are of order 0(M). The third term is clearly non-

negative. Furthermore, r = x'J is of order 0(M).

From the above development and from (A2.21), we conclude that there exists

a positive number MQ such that for M > MQ

x'Q(x) > 0 (A2.23)

(ii) llxall < 23 llxbll (A2.24)
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Since A is nonnegative, we see that

p > 0 .

Consider the quadratic form q. Since

M2 =llxll2 =Ilxall2 +||xbll2 <432 llxbll2 +Ilxbll2

we have

HxJI2 >—UrM2 .
D 1+43^

(A2.25)

(A2.26)

(A2.27)

Therefore the largest among the absolute values of the elements of xb is equal
to or greater than

1

^l+432)
M .

Define a scalar function 9m,-n(y) by

9min(y) = mi.n U9i(y)l» Is^-y)I.•••. |gm(y)l» |gm(-y)|]

Then we can easily verify that

M Mx£G(xb) >
i/m(l+432) i^l+432) t

(A2.28)

(A2.29)

(A2.30)

Since 9ml-n(y) approaches infinity as y tends to infinity, we can choose a positive
number M, such that for M > M-,

q + r > 0 . (A2.31)

This follows from the observation that the first and the second terms of (A2.22)

and r are of order 0(M), and that there exists a positive number 3q such that

the first term + the second term + r| < 3qM . (A2.32)
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From (A2.25) and (A2.31) we conclude

x'Q(x) > 0 (A2.33)

Thus (A2.ll) holds.
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Appendix 4. Proof of Lemma 3

From condition (I), it follows that

Yaa is a positive-definitive matrix. (A3.1)
aa

Hence,

|Yaa| >0 . (A3.2)

Since A>0 for Dp •* 0 and Dg •* «>, (14) implies that A>0 for all DF and all
Dg satisfying (15) or (16). (A3.3)

To prove Lemma 3, we need the following lemma:

Lemma A.l Let f(x) =f(xrx2,... ,xn) be afunction of degree one in each variable
x (u =1, 2,...,n). Let Sbe aset of points such that S={x|ay <xy <3y (u =
1, 2,...,h); a < x < 3 (y = h+l,...,n)}. Here h may possibly be 0 or n. Then

T~ " r*

f > 0 for all x e S (A3.4)

if and only if the following three conditions are satisfied:
1) The function f evaluated at the "boundary" points where xy =ay or 3y

(y = 1, 2,...,n) is nonnegative.

2) At least one of them is positive.

3) For any combination xy =ay or 3y (y =1» 2,...,h) there exists a combination
x = a or 3 (y = h+1,...,n) such that f > 0.

Proof of Lemma A.l: By the assumption of Lemma A.l, f can be written as

f =(x, - ct^fQ +(3t - x^f, (A3-5)

where

f0 =f0(x2,x3,...xn) =3-i- f(3rx2,x3,...xn)
1 ' ) (A3.6)

fT " f^W^ =3^7f(al,X2'X3'""xn)
-32-



Similarly fQ and f-j can be written as

f0 = (x2-a2)f00 + (32-x2)f01

f, = (x2-a2)f10 + (32-x2)f11

where

f00 = f00^x3'x4*

f01 = f01^x3'x4'

f10 = f10^x3,x4'

fll = fll(x3,x4'

•xn} =3^f0(B2'x3>'"xn>
-xn) =3^f0(a2'x3'—xn)
'xn> =3^fl(32'x3'-xn)

"xn> =3^fl(a2'x3'-'xn)

^

J

Continuing this recursive procedure, we finally obtain

f =(xr^)(x2-a2)...(xn-an)f00.#.0

+ (xroc1)(x2-a2)...(xn.ran.1)(3n-an)f00...01

+ •••

+(31-x1)(32-x2)...(3n-xn)f11...1

(A3.7)

(A3.8)

(A3.9)

where f is a constant and is obtained by replacing x by a (whene1,e2«-«en J K 3 u J y

e = 1) or 3 (when e = 0). It immediately follows from (A3.9) and (A3.4) that

all of f must be nonnegative and that at least one of them must be
eTe2*#,en

positive. In addition we can easily see that the condition 3) is necessary.

Conversely, if one of three conditions is not satisfied, then f can be

made negative for some x € s. This completes the proof of Lemma A.l.

Lemma A.l holds even if some a and 3 are not finite, as demonstrated in

the following:

Example A.l. Let

f(xrx2) = all+bllxl » a12+b12x2
aoi+boiX-i , a9o+b99x
l2ru21Al 22'rD22*2

(A3.10)

The function f satisfies the condition of Lemma A.l. Let S be a set such that

S = {x|0 < x < »; y = 1,2}. Then f > 0 for all x e S if and only if
y -33-



an ai2

a21 a22

bll a12

b21 a22

> 0 ,

>0 ,

all b12

an b22

bll b12
b21 b22

> 0

(A3.11)

> 0

where at least one of the above equalities does not hold.

Example A.2. Consider (A3.10) again. Now let S be a set such that

S = {x|0 < Xi < «; 0 < x« < »}. In this case condition 1) implies (A3.11) and

condition 3) implies that for x, = 0 either

b

all* a12

a21' a22

b

or
all b12
a21 b22

must be

positive, and that for x, = » either
11 a12

21 a22
Continuation of Proof of Lemma 3: Consider A in Eq. (14) as a function of a

(y = l,2,«««,k) satisfying (15a) or (16a). Applying Lemma A.l to A, we obtain

Lemma 3.

or
11 b12

b21 b22 must be positive.
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Appendix 5. Proof of Lemma 4

Let us first derive the relationship between the matrix H in (29) and

the admittance matrix Y of the network in Fig. 24.

In order to calculate Y, we connect voltage sources U to each of the a-, b-,

c-, and d-edges. Here, the elements of U are arranged in the order of a-, b-, c-

and d-edges and

U =

'1

u
2k+m

0

2k+m
(A4.1)

m,

Let the current vector of the voltage source U be J. Then we have the standard

loop equation

-HJ = U. (A4.2)

(The minus sign in (A4.2) is due to the fact that the positive directions of the

voltages are taken opposite to those of the current sources.) From (A4.2) it

follows that Y is given as the upper left (2k+m) x (2k+m) principal submatrix of
-1

H

Next consider A^ for K1 and K2 in (27). Clearly, A^ is equal to the
determinant of the shaded submatrix of Y in Fig. A.4. We can relate A^ with a

minor of H by the following well-known lemma.

Lemma A.2 [4]. Let A be a nonsingular matrix of order n. If B = A , then for

arbitrary

1 <
i, < i« < ••• < i

P<n
h, < h2 <

(-1)

h1h2-.-hp

< h.

i +) h

0,2,
1,2,

fhjh£---hl J
i -I i A• • • i

n-p

1'2

,n

,n

where in < i0 < ••• < i and ij < ii < ••• < i' form a complete system of
1 z pit n-p

of indices l,2,«*«,n, as do h-. < h2 < ••• <h and h] < h£ < ••• < h' .
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Since A^ is a minor of H ,we can apply Lemma A.2 to A^. By setting

A = H

n = 2k + m + mQ

P = k + m

iy =y(y =1,2,..-,k)

ik+y =2k+y (y =l,2,---,m)

hy =y(y =l,2,...,k-|)

nk,+y =k+kl+>1 (v =1»2»*"»k2)

h. .,= 2k+y (y = l,2,---,m)

1

'k+y

we have

4." H) ^Hf^Q • (A4*4)
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Appendix 6. Proof of Lemma 5

Suppose that we calculate 6Q in (31) by using the Binet-Cauchy's formula [4].
Since 6-j and 62 depend on the choice of ®Q, we write them temporarily as
S-|((B)0) and 52((H)0). Let the principal minor of ® corresponding to ®0 be
h((H)q). Then Binet-Cauchy's formula says that

60 -25,(00) 62(®0) n(®0) (A5J)

where the summations are taken over all possible combinations of ®Q. Note that
n"1(®0) is positive. If 6>0 for each ®Q, then we have by (31), (30) and
(A5.1) Aro>0.

Conversely suppose that there exists a ®Q such that 6 <0. Then by (A5.1)
we can make A^ negative by choosing the values of resistors included in ®Q
sufficiently small and those of all other resistors sufficiently large. This

completes the proof.
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Figure Captions

Fig. 1. Op amp, its model and its graph representation

Fig. 2. Characteristic of "Model-C" op amp

Fig. 3. Characteristic of "Model-D" op amp

Fig. 4. Simple op-amp circuit and its associated graph

Fig. 5. A graph contained in Fig. 4(b)

Fig. 6. A disallowed graph

Fig. 7. (a) Open-circuit operation k -• 0(k)

(b) Short-circuit operation k -*S(k)

Fig. 8. Applying operation 0/S(«) to an op amp (k,£)
Fig. 9. Applying operation Z(*) to an op amp (k,k)

Fig. 10. Cactus graphs

Fig. 11. Graph with a complementary tree structure

Fig. 12. An op-amp circuit which does not have a unique solution

Fig. 13. Circuit for Example 2

Fig. 14. Circuit for Example 3

Fig. 15. Graphs obtained from Fig. 4(b) by applying operation (a)

Fig. 16. Circuit for Example 6

Fig. 17. Circuit for Example 7

Fig. 18. Circuit for Example 8

Fig. 19. Circuit (I) for Example 9

Fig. 20. Circuit (II) for Example 9

Fig. 21. Circuit for Example 10

Fig. 22. Two characteristics of nonlinear voltage-controlled voltage source

Fig. 23. Circuit containing "k" VCVS's and "m" nonlinear resistors

Fig. 24. Linear resistive (2k+m)-port corresponding to Y in (24)

Fig. 25. Graph representation of each port

Fig. 26. Main part of the fundamental loop matrix of the graph G.

Fig. 27. The coefficient matrix H associated with the loop equation in (A4.2)

Fig. 28. Submatrix of BT in Fig. 25. This is identified as the main part of
(0)

the fundamental loop matrix of the graph Gv '

Fig. 29. Matrix obtained from BJ '
Fig. A.l. A complementary-tree-structure graph obtained from a circuit which

satisfies Assumptions (1) and (2)

Fig. A.2. Loop maoe exclusively of output edges of op amps and cutset made

exclusively of input edges of op amps.



Fig. A.3. Illustration of (A2.4)

Fig. A.4. Admittance matrix Y of the network in Fig. 24.
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