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Abstract

It is well known that the parameter error as well as the model-piant

mismatch error in a model reference adaptive scheme tends exponentially

to zero iff a certain sufficient richness condition holds for signals

inside the time-varying plant control loop. In this paper we give con

ditions on the reference signal (the exogenous input to the adaptive

loop) - namely, that it have as many spectral lines as there are unknown

parameters, in order to guarantee parameter convergence.
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Section 1. Problem Statement

In recent work [1,2,8] on continuous time model reference adaptive

systems, it has been shown that under a suitable choice of adaptive con

trol law the output of the controlled plant yp asymptotically tracks

the output yM of a stable reference model, despite the fact that the

parameter error vector may not converge to zero (indeed, it may not

converge at all). Consider, for example, the case when r(t) is a step.

In this case it may be shown that the parameter error vector converges,

not necessarily to zero but to a value such that the (asymptotic) closed

loop plant transfer function matches the model transfer function at

D.C. (Orad/sec). This observation suggests the following intuitive

argument: assuming that the parameter vector does converge, the plant

loop is "asymptotically time invariant." If the input r has spectral

lines at frequencies v-., ..., v^, we expect yp will also; since

y„ •»• yM, we "conclude" that the asymptotic closed loop plant transfer

function matches the model transfer function at s = jv-,,... ,jvN. If N

is large enough, this implies that the asymptotic closed loop transfer

function is precisely the model transfer function so that the parameter

error converges to zero. It is the purpose of this paper to make this

intuitive argument formal.

Results that have appeared in the literature on parameter error

convergence (notably [3,4,5,13]) have established the uniform asymptotic

and (equivalently) the exponential stability of the adaptive schemes

under a certain sufficient richness condition. As is widely recognized,

the principal drawback to this condition is that it applies to a certain

vector of signals w(t) appearing inside the time varying feedback loop
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around the unknown plant. As a result, it is presently impossible to

determine a priori whether a given reference input will result in a

sufficiently rich w(t) and subsequent parameter error convergence to

zero. In this paper, we remedy this deficiency. Specifically, we

show that when the reference input (which is the exogenous input to

the adaptive system) has as many spectral lines as there are unknown

parameters, then the output error yp - y» and parameter error converge to

zero exponentially. We also sketch how prior parameter and plant-model

state error bounds can be used along with the methods of [4] to give an

estimate of the rate of exponential convergence.

We agree with the authors of [12] that the issue of parameter con

vergence is important, not just for its own sake, but as a first step

in tackling important questions like robustness to unmodelled dynamics,

slowly-time varying plants, etc. that have recently been raised (e.g.

[9,10]).

The organization of the paper is as follows: Section 2 briefly

describes the model reference adaptive system; in Section 3, we state

and prove our main result for the relative degree 1 case, in Section 4,

we discuss the extension to the higher relative degree cases. Section 5

contains concluding remarks.

Section 2. The Model Reference Adaptive System

To fix notation, we briefly review the model reference adaptive

system of Narendra, Valavani, et al. [1,2]. The single-input single-

output plant is assumed to be represented by a transfer function
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Us)

Wp(s) =kp/7T (2-1}drt(s)

where n (s), d (s) are relatively prime monic polynomials of degree m,

n respectively and k is a scalar. The following are assumed known

about the plant transfer function:

(Al) The degree of the polynomial d , i.e. n is .known.

(A2) The relative degree of W , i.e. (n-m) is known.

(A3) The sign of k is known (say, + without loss of generality).

(A4) The transfer function W is assumed to be minimum phase, i.e.,

n is Hurwitz.

Remark: (Al) may be replaced by the weaker assumption that an upper

bound on the degree of d is known. We use (Al) here for simplicity.

The objective of adaptive control is to build a dynamic compensator

so that the plant output asymptotically matches that of a stable refer

ence model WM(s) with input r(t), output yM(t) and transfer function

W»(s) =k"3TT (2'2)dM(s)

where rL, dM are monic polynomials of degree m*, n* respectively kM >0.

Since our interest in this paper is in parameter convergence we will

assume n* = n, m* = m. We do not, however, need n» and dM to be

relatively prime. If we denote the input and output of the plant u(t)

and yp(t) respectively, the objective may be stated as: choose u(t)

such that as t •*• » yp(t) - yM(t) + 0.
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2.1. Relative Degree 1 Case

By suitable prefiltering, if necessary, we may assume that the

model W«(s) is strictly positive real. The adaptive scheme in this case

is as shown in Figure 1.

The dynamic compensation blocks F,, F« are identical one input,

(n-1) output systems, each with transfer function

(sI-A^b; A€R(n-1)x(n-1}, b*^"-1)

where A is chosen so that the eigenvalues of A are the zeros of rL. We

assume that the pair (A,b) is in controllable canonical form so that

(si-a)"1!,--^
nM(s)

(2.3)

n-2

n 1
The adaptive gains c € R " are in the pre-compensator block for

the purpose of cancelling the plant zeros and replacing them by the
n—1

model zeros, d €1R ,dQ €IR in the feedback compensator for the purpose

of assigning the plant poles. The adaptive gain cQ adjusts the overall

plant gain. Thus, the vector of 2n adjustable parameters denoted e is

eT =[cQ,cT,d0,dT].

If the signal vector w e 1R is defined by

wT =[r,v<yD)V(2>T] (2.4)

we see that the input to the plant u is given by
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u=6Tw. (2.5)

It may be verified that there exists a unique constant e* €lR2n such

that when e = 6*, the transfer function of the plant plus controller

= WM(s). Further, it has been shown that under the update law

e = - e^ (2.6)

then lim e-j(t) =0 provided r(t) is bounded. Further, all signals in
t_>co (1) (9)the loop, viz. u(t), vv ;(t), vv '(t), yp(t), yM(t) are bounded. Define

the parameter error <J> = 0 - e*. Then we have from [1] that

<j> € L n L°°5 <j> 6 L°° and <j> ->• 0 as t -»• °°

However, we cannot say anything as yet about the convergence of (J>(t)

and hence of 0(t).

2.2. Relative Degree 2 Case

In this case WM cannot be chosen positive real; however, we may

assume (using suitable prefiltering, if necessary) that ] L(s) = (s+6),

with 6>0 such that WML is positive real. The scheme of Figure 1 is

modified (see [1]) by replacing each of the gains 6.., viz. cQ, dQ* c, d
1 ~ ^-1

by the gains L8..L which in turn is given by

Le^L"1 =9i +^.L"1 i=1, ..., 2n.

We now define the signal vector

CT(t) =[C-V.C"1»<1).f1yD.C-1»(2)] (2-6)

A is now chosen to be an exponentially stable, with the zeros of nM a
subset of the eigenvalues of A.
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9 = - e^ (2.7)

yields thate-|(t)-> 0 as t -*• ~ provided r(t) is bounded.

2.3. The Case of Relative Degree > 3

As in Section (2.2), pick a stable Hurwitz polynomial L so that

LWM is positive real. The trick used in Section 2.2, namely, to replace

each 9^ by L9.L is no longer possible since L9_.L~ depends on second

and (possibly higher) derivatives of 9.. To obtain a positive real

error equation we retain the original configuration of Figure 1, and

augment the model output by

WML[0,L '-L V]w

as shown in Figure 2. In addition to obtain <J> € L and thereby prove

stability of the adaptive scheme, we add an additional quadratic term

to y to get the total augmented model output ya
<* a

ya =WML{[9TL"1-L"19T]w-acTc} (2.8)

where a > 0 and c is defined in (2.6). The update law

9 = - e-jC (2.7)

yields that as t + «, e](t) •*• 0, y&(t) ^ 0 so that yM(t) -»• yp(t). As
before, the parameter error <j> satisfies

(f> € L n L°°, <f> € L°° and <j> -*• 0 as t -»• ~

Again, nothing can be said about the convergence of <J>(t).
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Section 3. Spectral Lines and Sufficient Richness in the Relative
Degree 1 Case

Consider the adaptive system of Section 2.1 for the case of relative

degree 1. We noted that the control law of (2.5) with the adaptive law

of (2.6) yield that

lim e,(t) = 0
t-*» '

provided r(t) is bounded. Without additional conditions, however, we

cannot guarantee

lim 9(t) = 9*
t-*»

(or in fact that 0 converges at all). It has been shown by Morgan and

Narendra [3], Anderson [4] Kreisselmeier [5] that e-j(t) ->• 0, 9(t) •*• 9*

exponentially iff the signal vector w(t) is sufficiently rich, in the

following sense: ] 6>0, a >0 such that V s € 1R+

rS+<5

Js
w(t)wT(t)dt >al. (3.1)

Recall from the definition of w(t) in (2.5) that it contains signals

v^'(t), v^2'(t), yp(t) generated inside the time varying feedback loop
around the unknown plant. Conditions on the reference input r(t)

required for (3.1) to hold are to our knowledge so far, unknown. In the

remainder of this section we will show that if r(t): has 2n spectral

lines (in the sense that will be made precise), then we have exponential

convergence of e-j(t) to 0 and 8(t) to 9*. The proof is in two steps.

Step 1 consists of transcribing the condition (3.1) into an
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analogous condition for the model, which is a linear time-invariant

system.

Step 2 consists of showing that the condition analogous to (3.1)

for the model is obtained when the reference signal r(t) has 2n spectral

lines. We now discuss these steps in detail:

For Step 1, redraw Fig. 1 as shown in Fig. 3 with the model

represented (in non-minimal form) as the plant with dynamic compensator

and 9 = 9*. The signal vector w 6 IR in the model-loop is given by

wT =[r v(1) v v(2)]WM Lr,vM ,yM,vM J

We have that as t -*- °°, w.. •* w. Hence, it seems reasonable to

expect that if w is sufficiently rich then so is w... The foregoing is

indeed true if w and w» are bounded. However, we will use no supplementary

assumptions on w, wM but rather the conclusion from Narendra-Valavani

[1] that w(-) -wM(«) cL. Further, it follows from their proof

(specifically, Equations 16, 17, 18 of [1]) that

l|w(-)-wM(Oll2 <K0(lie(o)-e*||+||xM(o)-Xp(o)||+||v(1)(o)-vj1)(o)||

+l|v(2)(0)-vj2)(0)||) (3.2)

where xM, xp are the state variables in minimal representations for the

plant in the model loop, plant loop respectively. Hence, from prior

bounds on the parameter error, and initial state errors a bound on the

L2 norm of w(-) -wM(») is obtained. Further, from [1], it follows that

3^ such that

llw(t)||, ||wM(t)|| < K2 Vt. (3.3)
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The bound Kg depends as before on ||0(O)-0*||, ||x (0)-xp(0)||

l|v(1)(0)-vj1)(0)||, ||v(2)(0)-vj2)(0)||. We now have

Theorem 3.1

Suppose ||w(t)||, ||wM(t)|| < K2 and ||w(-)-wM(-)ll2 =^ <~. Then,

w(t) is sufficiently rich ~ wM(t) is sufficiently rich.

Proof: The argument is symmetric between w and wM. Hence, we only show
M'

. w
2nsufficiently rich implies that ] a, 6 >0 such that V s e 1R+, z <= F

zT[
•S+6

T Tww dt]z >. az z

Iterating on (3.4) p times we get that V p € Z+

zT[
S+p6

ww dt]z =
s+p6

(zTw)2dt >opzTz

Now, note that

(zTw)2 - (zTwM)2 =zT(w-wM).zT(w+wM) <zTz.2K2||w-wMH

Hence

rs+p6 s+p6
(zTw)Z - (zTwM)zdt <zTz 2K2 ||w-wM||dt

is * s

But, by Cauchy-Schwarz

s+p6
l|w-wMl|dt < (p6) 1/2

s+p6
|w-wMH2dt <K^pe) 1/2

Using (3.7) in (3.6), and (3.4), we have that V p € Z+,
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T fS+p6 - _ -.-
z'[ wMw'dt]z >z,z(ap-2K2K1(p6),/':).

Choose p0 sufficiently large so that

a := apQ - 2K2K1(pQs)1/2 >0

and define 5 = pQ6. Then we have that V s €F+,

s+6 T
wMwMdt^ 1 ctl (3.8)

Thus w„ is sufficiently rich. n

Remark: We have shown that we have exponential convergence of parameter

error and e^t) provided that wM is sufficiently rich (i.e., (3.8) holds)

This completes Step 1.

Step 2. We now give conditions on r(t) so that wM(t)!is. sufficiently

rich, using the classical concept of a spectral line (see Wiener [6]).

Definition 3.2. A function u(t): 1R+ *]Rn is said to have a spectral

line at frequency v of amplitude u(v) € tn iff

1
s+T

u(t)e"JVLdt
s

-JvtH+ (3.9)

converges to u(v) as T -> ~, uniformly ins. When u(v) f 0 we will say

u has a spectral line at v.

Remark: u does not have to be almost periodic to have a spectral line
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at frequency vQ; for example (3.9) need not converge for v f vQ.

The following lemma is immediate:

Lemma 3.3. Let u(t), y(t) be the input and output, respectively, of a

stable linear time-invariant system with transfer function L(s) (and

arbitrary initial condition). If u has a spectral line at frequency

V then so does y, with amplitude

y(v) = L(jv)u(v) (3.10)

Remark: Since the initial condition contributes a decaying exponential

to y(t) it does not appear in (3.10). y(v) in (3.10) may be zero if

L(s) has a zero on the imaginary axis.

The second lemma is key to our main result:

N
Lemma 3.4. Let x(t) € ]R have spectral lines at frequencies

v-i, v2, ..., v*.. Further, let (x(v-j), x(v2), ..., x(vN)} be linearly

independent in (D . Then, x(t) is sufficiently rich, i.e., ] a, 6 > 0

such that V s 6 IRL

rs+6 T
xx dt >. al.

s

Proof: Define the NxN matrix X(s,6) by

X(s,6) := j
s+6

e"JV xT(t)dt.

-JvNt

-11-
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and the NxN matrix XQ which is the (uniform in s) limit of X(s,6) as

6 -*• a>

XQ :- ^T/ \x (v^

xT(vM)

By hypothesis XQ is non-singular. Hence for 6.sufficiently large X(s,6)

is invertible and nxfs.e)"1!! <2||X~1|| for 6 >6* and all s. Now for
N

z € R with ||z|| = 1, and any v € R we have

s+6

(xTz)2dt -1
s+6

xTze"jvtl2dt

>|| J xTze"Jvtdt|2 (by Jensen's inequality)
(3.12)

Using (3.12) for v =v.,, v2, ..., vN we have

P^/J^ l N, ,1 fS+6.J -jVk*,2
(xz)dt^JJi x ze dt

k=l u Js

=1 ||X(s,6)z||2

>jjHX(sf«rY2 for 8 >6*

>M^f2

Equation (3.11) now holds with 6=6* and a=-^ HX'V2 >0. a
We now apply Lemmas (3.3), (3.4) to prove the main result of this

section.
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Theorem 3.5

Suppose r(t) has spectral lines at v^ v2, ..., v^. Then wM(t) is

sufficiently rich.

Remark: Once we have shown wM(t) sufficiently rich, Theorem (3.2)

guarantees that w(t) is also sufficiently rich which in turn guarantees

exponential convergence of e-j(t) to 0 and 0(t) to 0*.

Proof: Recall that wj(t) is [r,v^T,yM,v(2)T]. We derive the transfer
function from r(t) to wl(t); using (2.3)

V \ 5 / L « » * * * »/\ /*> » • • • » /\ ^ 9 «M, /s , • • • , /\Wp nM Wp n„ Wp n„ M n„ n„

= Si ckpnpdM ^ dsn"2 knn kn knsn"21
p p M

(3.13)

Since the plant is minimum phase and the model is stable the transfer

function Q(s) in (3.31) is stable. Neglecting the initial conditions

(which do not, anyhow, contribute to the spectral lines of wM(t)) we

have

wj =QTr(t).

Now, the (n+1)th entry of Q has numerator polynomial n nM with n„ of

degree (n-1). Further the first entry of Qhas numerator polynomial ndM

with dM of degree n. Compare these terms with the last (n-1) entries of

Q» viz., n , ..., n sn~\ Using constant row operations then we can
r r

write

-13-



WM = Tw = T* -
p M

V
n_

* n-2

"pS

p

~ n

lV .

r(t) (3.14)

for some T€R nx n, a non-singular matrix. It follows that wM is suffi
ciently rich iff w is sufficiently rich. Now by Lemma 3.3 w has spectral

lines at v-j, .... v» of amplitude

dp(jv.)
1 •

•

dp(jv.)(jv.)n-2
nptiv^tfy)

np(jv.)
•

•

•

_np(ovi)(jv.)n

i = 1, ..., 2n

By Lemma (3.4) we need only show that these vectors are linearly indepen

dent. If not, ] a row vector [e:y] with 6T €R11"1, yT *Rn+1 such that
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[e:y] fyJV

dpUv^fjv^

np(jv.,)

n (Jv.jMjv.j)"

n-2

• • • V^zJ

dp(jv2n)(jv2n)

"p(JV2n}

n-2

np(jv2n)(jv2n)n

= 0

n-1Defining B(s) =e, + 62s + ... + 8n iS and y(s) =y-j +Y2S +

... +Yn+-|Sn, we may write (3.15) as

§(s)d (s) +y(s)n (s) =0at s=jvr ..., jv2n

The polynomial in (3.16) has degree (2n-l) so we conclude that it

is identically 0 and

Bdp = - ynp.

(3.15)

(3.16)

But, since n and d are coprime (by assumption) the zeros of 8 must
r r

include those of n . But this is impossible since 6 has degree n-2 and
P

n has degree (n-1). This establishes the contradiction. Thus w and

hence w.. are sufficiently rich. c

Comments: (1) We say that r(t) is persistently exciting at frequencies

v-,, ... v2 if it has spectral lines at these frequencies. We have

shown that when the reference input is persistently exciting at as many

frequencies as there are unknown parameters, then w(t) is sufficiently
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rich resulting in exponential parameter and error convergence.

(2) r(t) does not have to be almost periodic [7] to satisfy the condi

tions of Theorem 3.5. It need only have spectral lines at 2n frequencies.

Further the strength of the spectral lines figures only in an estimate

of the rate of exponential convergence (which may be derived using the

techniques of [4]). In particular a low intensity persistently exciting

signal (i.e., having 2n spectral lines) may be added to the r(t) that

needs to be tracked in the model to guarantee parameter convergence -

see also remark 6 below.

(3) It is not widely appreciated in the literature that parameter

convergence may not occur (even to an incorrect value), unless the signal

w(t) is sufficiently rich. If it were known that lim 0(t) exists, a more
t-*»

elementary proof can be given - though the convergence proven need

not be either exponential or uniform.

(4) The hypothesis of the theorem can be weakened. For instance, we

do not need r(t) to have spectral lines at v^ ..., v2 ;it is adequate
that

i rS+T -jv.t
lim sup|y r(t)e N dt| >0 uniformly in s

Js

for k = 1, ..., 2n.

(5) Most periodic functions (specifically, those having at least

2n non-zero Fourier coefficients) for r(t) yield exponential parameter

convergence.

(6) Our estimate for the rate of convergence of the parameter error

given the magnitude of the spectral line would (in principle) proceed as

follows: use the estimates of Lemma (3.4) to obtain the a, 6 in the
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definition of sufficient richness for w... Then, use the prior bounds

on parameter and initial error to bound the L2 difference between w and

wM, and obtain using Theorem (3.1) the a, 6 in the definition of suffi

cient richness for w. From here, the techniques of [4] may be used to

obtain a (conservative!) rate of convergence estimate.

Section 4. Parameter Convergence when the Relative Degree >. 2

Consider first the relative degree 2 Case of Section 2.2. In this

case, the sufficient richness condition for exponential parameter and

error convergence is on the signal vector s(t) of (2.6), i.e. ^a, 6 > °>

V s 6 R
+

rS+6

s

«Tdt I al. (4.1)

Even though the adaptive scheme has changed, redraw the model exactly as

in Figure 3. Now define from the wM of the model the signal vector

rT-rMr L-\WJ L'\ L-V2)T1 (4 2)CM-LL r,L vM ,l yM >lm vM j v*.*;

i.e. cM is obtained by filtering each component of wM through the stable

system with transfer function L"1. Now, if r(t) has 2n spectral lines

we have by Theorem 3.5 that ^(v^), wM(v2), ..., wM(v2n) are linearly

independent. From the definition of £M in (4.2) and the fact that
^-l
L (s) is stable, it follows that

^M(vi} =TT^^i5 i="•' •••' 2nLtjv^

are linearly independent. Hence cM is sufficiently rich.
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2
Further, the stability proof [1] yields that ;(•) - cM(*) €L ,so

that c is sufficiently rich thereby guaranteeing exponential parameter

convergence.

Now consider the scheme of Figure 2 for the relative degree 2: 3

case. Redraw the model as in Figure 3 and define C» as in (4.2) above.

The same argument, as above, yields that when r has 2n spectral lines

then cM is sufficiently rich. Further since (see [2] for the proof)

w(.) - wM(-) € L2

and L(s) is stable, it follows that

C(-) -CM(0 €L2

so that c is sufficiently rich as well. This guarantees parameter error

convergence.

Thus, we see that for each of the model Reference Adaptive Schemes

of [1,2] it follows that r(t) has 2n spectral lines * exponential

parameter convergence. Further, given prior bounds on the parameters

and plant states, an estimate of the rate of convergence can be given.

5. Concluding Remarks

We have shown that continuous time MRAS systems exhibit parameter

convergence when the reference input r(t) has 2n spectral lines. The

same result also holds for the discrete time algorithm of Narendra-Lin

[11] as well, with the obvious modification in the definition of spectral

lines for discrete-time signals.

Further, we feel that the machinery of generalized harmonic analysis
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will be useful in other problems in adaptive control as well, indeed

it is well suited to the analysis of asymptotically linear line invariant

systems. We conclude by proving the following interesting proposition:

Proposition 5.1

Let A €Rnxn, b€Rn be acontrollable pair and let the input uto

the system

x = Ax + bu

have n spectral lines. Then, if A is exponentially stable, x is suffi

ciently rich.

Proof: By suitable change of coordinates we may assume that (A,b) are

in controllable canonical form so that the transfer function from u to x

is

1

1

P(s)
with p(s) = det(sI-A)

n-1

Since A is exp. stable, so is this transfer function. If u has spectral

lines at v,s ..., v then so does x. The spectral amplitudes are

x(v.) -^r-i-
1 P(JV

(3v.)

i = 1, ..., n.

n-1

But the x(v.) are linearly independent since
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det

(jv1)
n-1 (jvn)n-1

= ± it (jv.-jv.) + 0
i<j J

By Lemma 3.4, then, x is sufficiently rich. d
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Fig. 1. The adaptive system for the relative degree 1 case.
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Fig. 2. Schematic of the adaptive system when relative degree _> 3.
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Fig. 3. The adaptive system of Figure 1 with a new representation for

the model.
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