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. ABSTRACT

This tutorial paper presents a sample of some interesting and practical

results from three fundamental areas in nonlinear circuit theory; namely,

nonlinear circuit analysis, nonlinear circuit synthesis, and nonlinear device

modelling.

The first area covers both resistive and dynamic circuits. The former

includes the following 5 topics: existence and uniqueness of solution, bounds

on solutions, symmetry properties, stationary properties, and geometric properties.

The latter includes the following topics: no finite forward-escape-times,

existence of a unique periodic steady-state response, dc steady-state response of

capacitor-diode circuits, nonlinear dynamics and energy-related concepts.

The second area covers driving-point and transfer characteristics, nonlinear

n-port resistors, mutators, nonlinear algebraic elements, and the Hodge

decomposition.

The third area covers nonlinear model validation and nonlinear model structure
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I. INTRODUCTION

A selection of basic papers on various aspects of nonlinear circuits prior

to 1975 has appeared in an IEEE Press book edited by A. N. Will son, Jr. [1].

Highlights of some of these papers can be found in a comprehensive survey by

the editor [2]. In addition, the following special issues have served a very

useful role in focusing relevant research topics and problems on nonlinear

circuits:

Special Issue dedicated to Professor van der Pol

IRE Transactions on Circuit Theory, December, 1960.

Guest Editors: N. De Claris and L. A. Zadeh

Special Issue on Nonlinear Circuits

IEEE Transactions on Circuit Theory, November, 1972.

Guest Editor: C. A. Desoer

Special Issue on Nonlinear Circuits and Systems

IEEE Transactions on Circuits and Systems, November, 1980.

Guest Editor: R. W. Liu

Special Issue on Nonlinear Phenomena, Modelling, and Mathematics

IEEE Transactions on Circuits and Systems, Part I: Tutorial Papers (August 1983)

and Part II: Contributed Papers (September 1983).

Guest Editor: L. 0. Chua

In line with the expository nature of this centennial issue, this paper

is intended for a broad (non-specialist) audience. Its objective is to sample

a few interesting recent results on three fundamental aspects of nonlinear

circuit theory; namely, nonlinear circuit analysis, nonlinear circuit synthesis,

and nonlinear device modelling. Due to space limitation, only a small subset of

recent advances in these areas can be described. We will focus on those results

which can be easily understood and applied by the lay reader. In particular,

we will present only those tools, methods, and algorithms which can be applied

by inspection, by direct substitution, or by simple graphical construction.

Rather than overwhelming the reader with a deluge of lengthy theorems,

mathematical conditions, and technicalities, we have opted to describe our results

using an informal descriptive style with virtually no mathematical equations.

Most results are not presented in their full generality in order to simplify

their statements. Many examples are given for illustrative and motivational

purposes. We hope this small dose of some interesting aspects of nonlinear

circuit theory will whet the readers appetite for doing research in the many

yet uncharted terrain of nonlinear circuits.
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In keeping with the tutorial nature of this paper, only references closely

related to the topic under discussion are included. Space limitation has

precluded the inclusion of a more extensive bibliography. For example, all

papers pertaining to numerical techniques and algorithms for solving nonlinear

and piecewise-linear equations are excluded. Also papers concerned with the

theoretical and mathematical aspects of nonlinear systems are excluded unless

they contain some circuit examples and applications. We apologize for any

inadvertent omission of any reference related to the topics covered in this paper

as no slight is intended.

For convenience, the following is an outline of the topics presented:

Part I: ANALYSIS

A. RESISTIVE CIRCUITS

1. Existence and Uniqueness of Solution

2. Bounds on Solutions

3. Symmetry Properties

4. Stationary Properties

5. Geometric Properties

B. DYNAMIC CIRCUITS

1. No Finite Forward-Escape-Times

2. Existence of a Unique Periodic Steady-State Response

3. dc Steady-State Response of Capacitor-Diode Circuits

4. The Hopf Bifurcation Theorem

5. Nonlinear Dynamics

6. Energy-Related Concepts

Part II: SYNTHESIS

1. Driving-Point and Transfer Characteristics

2. Nonlinear N-Port Resistors

3. Mutators

4. Nonlinear Algebraic Elements

5. The Hodge Decomposition

Part III: MODELLING

1. Nonlinear Model Validation

2. Nonlinear Model Structure
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PART I: ANALYSIS

A. RESISTIVE CIRCUITS

A nonlinear circuit is said to be resistive iff it is made of only 2-terminal,
3-terminal, and n-terminal resistors, in addition to independent voltage and

current sources.

• An n-terminal resistor is in general characterized by a relation involving

only the terminal voltages and currents; namely,

fj(v1,v2,..-,vn_-1;i1,i2,---,in_1) =0, j =l,2.--.n-l 0)
where v. denotes the voltage from terminal j to an arbitrarily chosen datum node n,
and i- denotes the current entering terminal j.

j

For example, a transistor modelled by the Ebers-Moll equation

'FB \ / "VCB ^h=-y^p if -] J+ aR Icslexp "if ' \
"IB , . r Lp^CB _A (2b)lc =VESlexp^T " M" ^SPP^

(where I-s, Ics, aR, and aF are device parameters and Vj is the thermal voltage)
is a 3-terminal resistor since (2a) and (2b) involve only the 4 terminal variables

iE, ic, vEB and vCBJ
Likewise, ideal multi-terminal elements such as gyrators, ideal transformers,

controlled sources and op amps (modelled by a voltage-controlled voltage source)

are 4-terminal resistors.

There is a sound justification for calling all these elements resistors:

arbitrary interconnection of such elements and independent sources always give
rise to algebraic equations. Concepts and tools for analyzing this class of
circuits are similar. They are distinct from those for analyzing dynamic circuits

in Section B.

1. Existence and Uniqueness of Solution

Even simple nonlinear resistive circuits may have no solution, or multiple
solutions. For example, the circuit in Fig. 1 has no solution for all I > Is;
that in Fig. 2 has multiple solutions for all E1 < E < E2< Since the pioneering
work of Duffin in 1947 [3], a great deal of research has been done on the

existence and uniqueness of solution of various classes of nonlinear resistive

(2a)

V is interesting to note that the inventors of the transistor aptly recognized
the "resistive" nature of this device at dc and decided to christen it a
transfer resistor, or transistor for short.
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circuits. The reader is referred to [1] for a collection of important papers

on this subject over the last 25 years. Here, we will present a sample of some

more recent results.

Theorem 1. Existence of Solution [4]

Let N be a network made of linear passive resistors, 2-terminal nonlinear

resistors, and dc voltage and current sources. Then, except for some pathological

cases, N has an odd number of solutions if the following 2 conditions are

satisfied:

1. Interconnection condition: N contains no loop (resp., cut set) formed

exclusively by nonlinear resistors and/or voltage sources (resp., current

sources).

2. Element conditions:

a. Each nonlinear resistor is characterized by either a continuous function

i = i(v), -» < v < °°, or a continuous function v = v(i), -» < i < °°.

b. Each nonlinear resistor is eventually passive in the sense that vi > 0

for all |v| > k, or |i| > k, for some finite k.

Remarks:

1. The v-i curve of an eventually-passive resistor need not be monotone increasing

nor passive (restricted to the 1st and 3rd quadrants). However, it must lie

in the 1st and 3rd quadrants beyond some finite distance (say k) from the

origin. For example, the resistor described in Fig. 3(a) is not eventually

passive. However, by reshaping the curve so that it eventually lies on the

1st and 3rd quadrants as in Fig. 3(b), the resistor becomes eventually passive.

2. Condition 2b can be generalized to include eventually-passive multi-terminal

resistors, e.g., transistors modelled by the Ebers-Moll equation [4].

3. The circuit in Fig. 1 violates the interconnection condition: the diode and

the current source formed a cut set. Recall that it has no solution if I > Is.

4. A situation is said to be pathological in Theorem 1 if the "number" of solutions

can be changed by an arbitrarily small perturbation of some circuit parameters.

For example, the circuit in Fig. 2 is pathological when E = E-j or E = Eg.
because in either case, we can change from an "even" number (2) of solutions

to an "odd" number (1 or 3) by a small perturbation in E, or E2- Except for
this easily avoided pathological situation, Theorem 1 asserts that N always

has an odd number of solutions.

5. The interconnection condition is always satisfied if we insert a linear

(passive) resistor in series (resp. parallel) with each voltage (resp.,

current) source.
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6. The eventual-passivity condition can be satisfied by connecting a linear (passive)

resistor in parallel (resp., series) with each voltage-controlled (resp.,

current-controlled) resistor which is not eventually passive, provided the v-i

characteristics of all such resistors are bounded. The same holds, mutatis

mutandis, for multi-terminal resistors.

7. Theorem 1 and Remarks 5 and 6 allow us to trivially modify a circuit model

to ensure the existance of at least one solution.

Let us now turn to a most remarkable and useful existence and uniqueness

theorem due to Nielsen and Will son [5] which is valid for any circuit made of

linear passive resistors, npn and pnp transistors and dc voltage and current

sources.

Definition 1. Feedback Structure

The above circuit is said to contain a feedback structure iff the set of

connections involving two transistors shown in Fig. 4 is present when some

combination of short and open circuits replaces all resistors, when each

independent voltage source is replaced by a short circuit, when each independent

current source is replaced by an open circuit, and when all but two of the

transistors are replaced by one of the open and/or short circuit structures

shown in Fig. 5. The transistor-like symbol used in Fig. 4 is meant to denote

a transistor which can assume either of the two possible orientations with

respect to its collector and emitter terminals.

Theorem 2. Existence and Uniqueness of Solution [5]

Let NT denote any circuit made of linear passive resistors, npn and/or
pnp transistors (modelled by the Ebers-Moll equation), and dc voltage and

current sources. Then Ny has a unique solution for all values of the circuit's
resistors and all values of the transistor parameters (0 < ot^, ar < 1) if Ny
possesses no feedback structure.

Example 1

Consider the Widlar-type [6] transistor voltage reference circuit shown in

Fig. 6(a). This circuit is easily seen to contain a feedback structure formed

by Q3 and Q4 in Fig. 6(b) upon performing the following operations: a) short
circuit the battery E, b) short circuit resistor R2, c) open circuit resistors
R.|, R3, and R4 and d) replace transistors Q1, Q2, Q5, and Q6 by the structure
in Fig. 5(a).

It follows from Theorem 2 that this circuit could have multiple solutions for

some circuit atid transistor parameters. Indeed, for the parameters R-j = 200 ft,
R2 =7 Kft, R3 = 500 ft, R4 = 4.5 Kft, and E = 1.3 V, two distinct solutions are
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found by computer simulation using the SPICE program, Version 2G-5A [7].2
Example 2. The transistor circuit shown in Fig. 7(a) consists of an emitter-

coupled pair with an active load [6]. To search for the presence of a feedback

structure, we short all batteries and open the current source IEE» to obtain the
simplified circuit shown in Fig. 7(b). We leave it to the reader to verify that

it is impossible to obtain a feedback structure in Fig. 7(b) by replacing any

two of the four transistors by any combination of the open and/or short circuit

structures specified in Fig. 5. It follows therefore from Theorem 2 that this

circuit has aunique solution for all possible values of V«j, Vg, V ,and I£E,
and all possible transistor parameters.

Remarks:

1. Theorem 2 gives a sufficient (but not necessary) condition for a unique

solution. It is a Corollary of the Nielsen-Will son theorem which asserts

that the non-existence of a feedback structure is both necessary and sufficient

for the associated equation A£(g) + §x, = g to have a unique solution, provided

the n-vector g is allowed to take any; values. Since g represents the

contribution due to the independent sources, it may not be possible to set

c to an arbitrary value by adjusting the values of the independent sources

in a particular circuit. In other words, even if a circuit is found to

contain a feedback structure, it may still possess a unique solution for all

circuit and transistor parameters.

2. The feedback-structure condition in Theorem 2 becomes both necessary and

sufficient if one is allowed to introduce additional independent sources

(not present in the original circuit) at strategic locations.

3. Theorem 2 can be generalized to allow both bipolar transistors and FET [8].

Since most nonlinear multi-terminal devices (e.g., SCR, GaAs FET, op amp,

etc.) can be realistically modelled by a circuit containing only 2-terminal

nonlinear resistors and linear controlled sources [9], it is most desirable

to derive general existence and uniqueness criteria which allow controlled

sources. Unfortunately, nonlinear circuits containing controlled sources often

exhibit multiple solutions over a wide range of controlling coefficients.

For example, consider the circuit shown in Fig. 8(a). Replacing the linear

one-port to the right of the nonlinear resistor by its Thevenin equivalent

resistance R = (l-a)R, we obtain the equivalent circuit shown in Fig. 8(b).

2

The transistor parameters in the program are chosen as follow: Q, and Q2:
Bf =20, Is =10"14; Q4: &f =50, I$ =10"10, Q3, Qg, and Q6: $f =50, I$ =10~14.
All other parameters are assigned default values.
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Since R < 0 for all a > 1, the load line in Fig. 8(c) has a positive slope,
eq

Note that there are 2 operating points even if the nonlinear resistor is

characterized by a strictly-monotone increasing vR-iR curve.
The above example, as well as numerous others, tend to support the belief

that it is impossible to derive general existence and uniqueness criteria which

are independent of the circuit parameters for circuits containing controlled

sources. A recent breakthrough on this problem, however, proves otherwise.

We have succeeded in deriving a general topological criteria which give the

necessary and sufficient conditions for a circuit containing strictly-monotone

increasing 2-terminal nonlinear resistors and all 4 types of linear controlled
sources (i.e., current-controlled voltage source, voltage-controlled current

source, current-controlled current source and voltage-controlled voltage source)

to have a unique solution for al]_ circuit parameters and positive controlling

coefficients [10].

To simplify the statement of our topological criteria, we will consider only

the special case where the circuit contains only pne_ type of controlled sources;

namely, current-controlled current sources (CCCS). Each CCCS is represented

in the directed graph G of the circuit by two disconnected branches, as shown

in Fig. 9. The two branches are labelled k and t, respectively,
for the kth controlled source. Hence, the controlling branch k is called the

input branch and the associated controlled branch fc is called the output branch.

Like Theorem 2, our topological criteria depends on the absence of a

particular topological structure defined below.

Definition 2. Cactus Graph

A connected graph G associated with a circuit made exclusively of CCCS is

called a cactus graph iff every loop in G is made exactly of 2 branches labelled

k and k+1, where k = l,2,«-»,n, and n+1 = 1 (see Fig. 10(b)). Here k denotes

the input (controlling) branch of the kth controlled source, £ denotes the
associated output (controlled) branch, and n denotes the number of controlled

sources in G.

Remarks

1. We can visualize a cactus graph as the boundary of a cactus plant made of

leaves (shaded area) hinged at the top and bottom only. For example, the

cactus graph in Fig. 10(b) is associated with the cactus plant in Fig. 10(a).

2. Definition 2 requires that the branches in a cactus graph be labelled in the

prescribed way. Not* that the two branches k and £ associated with the kth
controlled source must appear in two different leaves (see Fig. 10(b)).
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Violation of this labelling scheme disqualifies a candidate for a cactus

graph.

Our topological criteria requires that we systematically simplify a given

graph G using the following 4 graph operations to obtain a reduced graph GQ:
Operation 1. Replace each independent voltage source by a short circuit and

each independent current source by an open circuit.

Operation 2. Replace each resistor by either a short circuit or an open circuit.

Operation 3. Replace the input (controlling) branch of some (possibly none)
controlled sources by a short circuit and the associated output

(controlled) branch by an open circuit.

Let GV denote any graph obtained after applying operations

1, 2, and 3 to G. Clearly, G' contains only branches associated

with controlled sources. The simplified graph G* is said to have

a complementary tree structure iff both the input branches

(labelled l,2,«--,n) and their associated output branches (labelled

t,2,•••,n) form a tree of G*.

Operation 4. For each simplified graph G' having a complementary tree structure,

replace the input branch of some (possibly none) controlled sources

by a short circuit (or an open circuit) and the associated output

branch by an open circuit (or a short circuit).

Theorem 3. Existence and Uniqueness of solution [10].

Let N contain only 2-terminal linear passive resistors, 2-terminal nonlinear

resistors (characterized by strictly-monotone-increasing v-i curves such that

|v| -»• » as |i|'+»), independent voltage and current sources, and current-
controlled current sources'(having positive controlling coefficients ). Then

N has a unique solution for all values of linear resistors and independent

sources, and all (positive) controlling coefficients if and only if G can not be

simplified by the above 4 graph operations into a cactus graph GQ containing an
4

even number (including zero) of similarly-directed loops.

Example 1

Consider the circuit shown in Fig. 11(a) and its associated graph in

Fig. 11(b). Note that we did not assign a direction in the branches corresponding

3If a controlling coefficient is negative, we simply transpose the two terminals
of the controlled source to obtain a positive coefficient.

4A loop in a cactus graph is said to be similarly-directed iff both^branches are
directed in the same direction. For example, only loops {1,2}, {3,4}, and {4,5}
in Fig. 10(b) are similarly directed.
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to the battery and resistor because they are irrelevant in the criteria. Note

also that the direction of branch 1 is opposite to the arrow head in Fig. 11(a).

By applying only operations 1 and 2 (short-circuiting the battery E and resistor

R,, and open circuiting the resistor Rj we obtain the cactus graph shown in

Fig. 11(c). Since this cactus graph has "zero" (hence even) similarly-directed

loops, it follows from Theorem 3 that this circuit has multiple solutions for

some values of E, R2 > 0, and a > 0. Indeed, simply choose E =0 and a > 1 and
the circuit reduces to that shown in Fig. 8(a).

Example 2

Consider the circuit shown in Fig. 11(a) but with the controlled source

terminals interchanged. In this case, operations 1-4 will reduce the associated

graph G to a cactus graph containing an odd number (one) of similarly-directed

loops. Since it is impossible to obtain a cactus graph with an even number of

similarly-directed loops in this case, it follows from Theorem 3 that this

modified circuit has a unique solution for all values of E, R2 >0 and
a > 0. This conclusion can be independently verified by noting the Thevenin

equivalent resistance R = O+oORo > ® for a^ a > ®* Hence tne ^oacl 1"'ne in
Fig. 8(c) must be drawn with a negative slope, thereby intersecting the strictly-

monotone-increasing Vn-iR curve at only one point.
Example 3

Consider the circuit shown in Fig. 12(a) containing 3 CCCS's. Applying

operations 1, 2, and 3,- we obtain the cactus graphs in Figs. 12(b) and (c) which

contain an odd number (one) of similarly-directed loops. However, unlike Example 2

which contains only one controlled source, we can not rush to conclude that

this circuit has a unique solution because other combinations of operations 1-4

may give rise to a cactus graph with an even number of similarly-directed loops.

Applying operations 1 and 2 we obtain the graph G' shown in Fig. 12(d),
/\ /s /\

which has a complementary tree structure (since {1,2,3} and {1,2,3} both form

a tree). Applying operation 4 to G',we obtain the two distinct cactus graphs shown

in Figs. 12(e) and 12 (f) respectively. Note that the cactus graphs in Figs. 12(e)
and (f) have an even (zero) number of similarly-directed loops. It follows from

Theorem 3 that this circuit has multiple solutions for some circuit paremeters.

Example 4

Consider the circuit shown in Fig. 12(a) but with the terminals of each control

led source interchanged. The reader can. easily verify that no combination of

operations 1-4 can reduce G to a cac;us graph with an even number of similarly-

directed loops. It follows from Theorem 3 that this modified circuit has a unique
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solution for all values of E, I, a-i > 0, gu > 0, and a3 > 0.
Remarks

1. Theorem 3 can be generalized to allow all 4 types of linear controlled

sources [10].

2. Existence and uniqueness criteria analogous to Theorem 3 can be derived for

circuits containing operational amplifiers modelled by a nonlinear voltage-

controlled voltage source [11].

3. The criteria in Theorems 1,2, 3 are strictly topological in the sense that

they do not involve any numerical calculations. For simple circuits, these

criteria can often be applied by inspection.

2. Bounds on Solutions

Since equations associated with nonlinear circuits can not be obtained in

closed form in general, the next best thing that can be done is to derive

bounds on the solutions. This information is particularly useful in computer

simulation [9] where a good initial guess of the solution can greatly reduce

the computation time.

One might conjecture that the voltage solution in a resistive circuit can not

exceed the sum of the power supply voltages, a situation commonly observed in

electronic circuits. Unfortunately, this conjecture is false even for linear

resistive circuits: simply apply a voltage source E across port 1 of an ideal trans
former and observe that the voltage across port 2 is greater than E if the turns

ratio n2/n1 >1. On the other hand, many circuits do satisfy the above property
and it is convenient to give it a name.

Definition 3. No-gain Property [12-15]

A circuit N made of 2-terminal, 3-terminal, •••, n-terminal resistors and

independent voltage and current sources is said to have the no-gain property

iff each solution of N satisfies the following 2 properties:

1. the magnitude of the voltage between any pair of nodes in the network is

less than or equal to the sum of the magnitudes of the voltages appearing

across the independent voltage and current sources.

2. the magnitude of the current flowing into each terminal of every element is
less than or equal to the sum of the magnitudes of the currents flowing

through the independent voltage and current sources.

Theorem 4. No-gain. Criterion [15]

A resistive circuit N has the no-gain property if and only if each

n-terminal resistor (n = 2,3,»*«) in N satisfies the following criterion:
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For each dc operating point

{vQ.iQ)A[VV"'vn-r1rI2'"-'W (3)
satisfying the resistor characteristic (1), there exists a connected n-terminal
circuit NQ containing n-1 linear positive resistors which has the same operating
point.

An n-terminal resistor satisfying the above criterion is called a no-gain

element.

For example, consider a strictly passive resistor characterized by v^ > 0,
except at origin, as shown in Fig. 13(a). Note that for each operating point Q,
the nonlinear resistor in Fig. 13(b) and its associated linear resistor Rg in
Fig. 13(c) have the same operating point. It follows that every 2-terminal
resistor is a no-gain element if and only if it is strictly passive [12].

Remarks

1. A strictly passive n-terminal resistor may not satisfy the no-gain criterion
if n > 2. Consequently, the elegant proof of the no-gain criterion given by

Wolaver [12] can not be generalized for n > 2.

2. The first rigorous proof of the no-gain criterion for n = 3 is given by
Will son [14]. Because it depends on geometrical arguments, Will son's proof
can not be generalized for n > 3. The lengthy proof for the n > 3 case is

given in [15].
3. Equivalent analytical conditions for testing the no-gain criterion are given

in [14] for n = 3 and [15] for n > 3.

4. An n-teriminal circuit made of arbitrary interconnection of no-gain elements

is also a no-gain element.

5. Transistors, FET, op amps, and most electronic devices modelled by a resistive
circuit model are no-gain elements. Hence, most electronic circuits satisfy

the no-gain property.

Corollary 1. Maximum and Minimum Voltage-node Property [15]

Let N be a connected resistive circuit made of 2-terminal, 3-terminal, •••

n-teriminal no-gain elements and independent dc voltage and current sources. Then

the highest potential node (resp. lowest potential node) must necessarily be

connected to either a voltage, or a current source.

Corollary 2. Bounding Region for Voltage Transfer Characteristic [15]
Let N be a connected resistive circuit made of 2-terminal, 3-terminal, •••

n-terminal no-gain elements and independent dc voltage sources as shown in
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Fig. 14(a), where nodes b and d are not necessarily connected to each other.

Then:

a. The vQ versus v. transfer characteristic must lie within the shaded region
shown in Fig. 14(b), where EQ denotes the sum of the voltage magnitude of
all internal voltage sources.

b. "If all internal sources of N, as well as terminals b and d , are grounded

in Fig. 14(a), then the transfer characteristic shrinks to within the shaded

region in Fig. 14(c), where E and -E • denote, respectively, the maximum

and minimum node-to-ground voltage of the internal voltage sources.

3. Symmetry Properties

By exploiting various forms of symmetry in nonlinear elements and circuits,

one often achieves drastic simplifications in the ensuing analysis. For example,

one-port and 2-port resistive circuits made of complementary symmetric [16]

elements (e.g., linear multi-terminal elements, npn and pnp transistors, n-channel

and p-channel FET, op amps, etc.) exhibit an odd symmetric driving-point and

transfer characteristic, respectively. Moreover, many practical circuits are

deliberately made symmetrical (e.g., push-pull and complementary symmetric

amplifiers) to achieve some desired properties, such as 2nd-harmonic cancellation.

Using simple group-theoretic techniques a unified theory of symmetry in resistive

nonlinear circuits has been developed in [17-18].

4. Stationary Properties

Maxwell was the first person to recognize that the solution of a circuit

made of linear 2-terminal resistors and dc voltage sources coincides with the

stationary point of an associated scalar potential function [19]. This property

has been generalized by Millar [20] and Duinker [21] for circuits containing

2-terminal nonlinear resistors. A further generalization to allow reciprocal

n-terminal nonlinear resistors (n>2) is given in [22]. Some applications of

these properties are given in [23].

The stationary property of nonlinear resistive circuits has been exploited

by Dennis [24] and Stern [25] to solve linear programming and quadratic programming

problems by simulating the inequality constraints with ideal diodes. A

generalization of this approach for solving any nonlinear programming problem

has been achieved recently [26]. This generalization allows an engineer with

virtually no nonlinear programming background to solve nonlinear optimization

problems with nonlinear inequality constraints with the help of a circuit

simulation program [27], such as SPICE [7].
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5. Geometric Properties

A deeper understanding of resistive nonlinear circuits requires a careful
study of the geometrical properties of the characteristics of the nonlinear
resistors and the circuit in which they are imbedded. For example, the driving-

point and transfer characteristics of even simple nonlinear resistive circuits
can be extremely complicated: they are generally multivalued as in Fig. 15(a)

(corresponding to a voltage-controlled resistor and a current-controlled resistor

in series) and may contain several branches as in Fig. 15(b) (corresponding to
two voltage-controlled resistors in series [28]. How do we interpret and classify
these bizarre characteristics? How do singular elements such as nullator and

norator fit into a unified theory of resistive nonlinear circuits? Under what

conditions are the solutions structurally stable in the sense that their geometrical

properties are preserved under small perturbations of circuit parameters? All of
these fundamental questions can only be resolved with the help of differential
geometry and topology. Readers interested in this subject are referred to

[29-31].

B. DYNAMIC CIRCUITS

A circuit N is said to be dynamic iff it contains at least one resistor

and a capacitor, or inductor, and is nonlinear iff N contains at least one

nonlinear element. The elements may be 2-terminal, 3-terminal, or multi-terminal.

An n-terminal resistor is described by (1), i.e., by a relation involving only

the terminal voltages and currents. An n-terminal capacitor is described by a

relation involving the terminal voltages and charges; namely,

fj(Vq2'*#-'qn-l; W^'Vl* =°' j =1»2»",«n-l <4)
where i, A a.. An n-terminal inductor is described by a "dual" relation involving

j j

the terminal current and fluxes; namely,

fjUr<l>2.#'*»Vl; 1r12,,",in-l^ =°» ^ =1'2»#",n-1 (5)
where vi A <J>..

j j

Dynamic nonlinear circuits are much more untractable and difficult to

analyze than resistive nonlinear circuits. Research on dynamic nonlinear circuits

began in earnest in the early sixties with the main attention focused almost

entirely on the formulation of a system of nonlinear state equations for various

types of nonlinearities [28, 32-37] and their geometrical interpretations

[38-42]. As a result, a solid foundation on this basic sibject is now firmly

in place. It is but natural that recent research on dynamic nonlinear circuits
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has focused on the extremely rich qualitative properties and nonlinear dynamics

exhibited by nonlinear state equations. A survey of the main results of this

research activity prior to 1980 is given in [41], Readers interested in more

details are referred to [43-49]. In the following sections, we will sample a

few recent results.

1. * No Finite Forward-Escape-Times

Consider a IF linear capacitor in parallel with a nonlinear resistor

described by a square-law characteristic iR =-vR. It has a well-defined state
equation

vr =v* (6)
c c

The solution of (6) with an initial capacitor voltage vc(0) = IV is given by

vc(t) =Trt ,t>0 (7)

Since this solution blows up at a finite time (called a finite forward-escape-time

in the literature) t = 1, the above circuit model is clearly defective and must be

remodelled in order to obtain a more realistic answer.

Rather than wasting time blindly simulating such non-physical circuits in a

computer, it is important to derive simple criteria which rules out such non-

physical situations. The following result is a case in point.

Theorem 5. No Finite Forward-escape Time Criteria [44]
Let N be a circuit made of 2-terminal resistors, inductors, capacitors, and

independent voltage and current sources. Then N has no finite forward-escape-

time if the following conditions are satisfied:

a. There are no loop and no cut set made exclusively of inductors and/or

capacitors.

b. Every voltage source (resp., current source) is in series (resp. in parallel)
with a linear positive resistor.

c. Each inductor (resp., capacitor) is characterized by a differentiate <|>-i

(resp., q-v) curve with positive slopes.

d. Each resistor is eventually passive.

Remarks

1. Theorem 5 is a Corollary of a much more general theorem proved in [44].

2. The square-law resistor in the above example is not eventually passive and

therefore violates condition d.

3. The four conditions in the above criteria are satisfied by most realistic

circuit models.
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2. Existence of a Unique Periodic Steady-State Response [45]

Consider the RLC circuit shown in Fig. 16(a), driven by a periodic voltage

source vg(t) =y cos 3t. Its state equation is given by:

vc = iL (8a)

iL =iL-| i*l-vc+cos 3t (8b)

Depending on the initial condition, (8) has at least 3 distinct periodic

solutions at ^ of the input frequency; namely,

vc(t) =sin(t +| kir) , k=0,1,2 (9a)

iL(t) =cos(t +| kir) , k=0,1,2 (9b)

Since the "output" frequency is smaller than the "input" frequency, we say

the circuit has at least 3 distinct subharmonic solutions.

In many applications (e.g., circuits in a power substation, amplifiers,
transducers, etc.) it is important that the circuit have a unique periodic

steady-state solution having the same frequency as the input. The following '

criteria can be used for this purpose.

Theorem 6. Unique Periodic Steady-state Response Criteria [45]

Let N be a circuit made of 2-terminal resistors, inductors and capacitors,

and let N be driven by a periodic voltage or current excitation of frequency co.

Then N has a unique periodic steady-state response (independent of initial
conditions) with the same frequency w if the following conditions are satisfied:

a. There is no loop (resp. no cut set) formed exclusively by capacitors,

inductors, and/or voltage sources (resp., current sources).

b. All inductors (resp., capacitors) are linear with a positive inductance

(resp., capacitance)

c. Each resistor is characterized by a differentiable v-i curve with positive

slopes.

Remarks

1. Theorem 6 is a Corollary of a more general theorem proved in [45].

2. The non-monotonic resistor in Fig. 16(b) violates condition c.

3. If the input is a quasi-periodic signal made of several incommensurable

frequency components, then Theorem 6 still holds with the frequency spectrum

of the unique steady-state response made up of only harmonics anJ inter-

modulation components of the input frequencies.
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4. Theorem 6 is valid even if oj = 0; i.e., when the circuit is autonomous.

In this case, the criteria guarantee that the circuit has a unique and hence

globally-asymptotically-stable equilibrium point.

3. dc Steady-State Response of Capacitor-Diode Circuits

Consider next the circuit shown in Fig. 17(a) where the diode vR-iR curve
iR = g(vR) is shown in Fig. 17(b). Its state equation is given by

vc =g(E sin t - vc) (10)

Since g(vR) >0, the current charging the capacitor can never be negative. Hence
the capacitor voltage either remains constant (if i'c = 0) or increases,
monotonically. Now observe that if vc(0) > E, then the capacitor voltage will
remain constant at E volts for all times t > 0. Hence, this circuit has infinitely

many distinct dc steady-state responses to the same periodic excitation; namely,

one for each initial condition Vq(0) > E.
In applications involving capacitors and diode circuits (e.g., voltage

multipliers) the capacitors are usually at zero initial condition before the

input is applied. The following theorem illustrates how the solution of certain

classes of dynamic nonlinear circuits can be calculated by inspection.

Theorem 7. dc Steady-State Response [46]

Let N be a circuit containing linear positive capacitors and diodes modelled

by the vR-iR curve shown in Fig. 17(b). Let Nbe driven by a sinusoidal voltage
source Esin cot and assume the following topological conditions are satisfied:

a. The voltage source and the capacitors form a tree.

b. The voltage source and the diodes form a tree

c. The voltage source and the diodes form a cut set.

d. The diodes, possibly with the voltage source, form a similarly-directed path.

Assuming the capacitors are initially uncharged, N has a unique dc

steady-state solution. Each steady-state capacitor voltage is given explicitly

by

vr = k.E (11)
Lj J

where k. is the number of diodes contained in the fundamental loop defined by
j

capacitor C with respect to the voltage-source-diode tree, provided the

reference polarity of vc is aligned with the diode's forward direction.
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Example

Consider the circuits shown in Figs. 18(a) and (b). Note that conditions

a-d are satisfied in each case and hence the dc steady-state voltage across

each capacitor can be determined by inspection, as indicated in Figs. 18(a) and

(b).

4. 'The Hopf Bifurcation Theorem

Electronic sinusoidal oscillators are usually designed as a feedback circuit

made of locally active saturation type nonlinear devices (e.g., transistors,
op amps, etc.) and phase shifting elements. The circuit parameters are so chosen

that the linearized circuit has a pair of complex conjugate poles which is

slightly to the right of the imaginary axis. It is argued that thermal noise will
start an oscillation whose amplitude will grow until limited by the nonlinear

devices. The oscillation frequency is taken to be the frequency Wq at which the
pole crosses the imaginary axis when some parameter (such as the loop gain)
varies [57]. This approach, called the Barkhausen Criterion [58], usually works

but is obviously not rigorous. Indeed, counterexamples exist where the circuit

will not oscillate.

The famous Hopf bifurcation theorem [59] gives rigorous conditions for

oscillation that are almost the same as the intuitive design method we have

just described. The theorem deals with the appearance and growth of a limit

cycle as a parameter is varied in a nonlinear system. (The parameter may be,

but does not have to be, a natural system parameter: one can always introduce

it artificially if necessary).

The original Hopf bifurcation theorem as stated in the time domain (in
terms of a system of nonlinear differential equations) requires an excessive

amount of numerical calculations and is impractical for circuit applications.

The following is a reformulation of this theorem in the frequency domain in a

form reminiscent of the familiar Nyquist criterion.

Theorem 8. Frequency Domain Hopf Bifurcation Theorem [47,53]

Consider the single loop feedback system shown in Fig. 19(a), where G(jw)

denotes a scalar transfer function and f(«) denotes a continuously differentiable

(at least 4 times) nonlinear function which may depend on some parameter u.

Consider the following graphical algorithm:

Step 1. Solve the nonlinear equation

6(0) f(y) + y = 0 (12)

for the equilibrium point (i.e., dc operating point) y«.
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Step 2. Define the linearized open-loop transfer function

X(joj) AG(jaj) f'(yQ) (13)

where f'fyn) denotes the first derivative at y = y*.

Step 3. Sketch the "Nyquist Loci" r of X(jaj) in the Im X(jio) versus Re X(jw)

plane, as shown in Fig. 19(b). Identify the "resonant frequency" wR where
r intersects the real axis; i.e., Im X(joiR) = 0.

Step 4. Calculate the closed-loop transfer function

H(s) As(,)ftflq)+1 (u)
at s=0 and s= j2wR to obtain H(0) and H(j2u)R).

Step 5. Calculate the number

C(«R) AG(Jo)R){f"(yQ)2[l H(0) +£H(j2a)R)] -£f"' (yQ)} (15)

where f" and f"'denote the 2nd and 3rd derivative of f, respectively.

Step 6. Draw a vector through the point -1+jO in the direction specified by

the (generally complex) number c(wR).
Conclusion. If the above vector intersects r at a point (with frequency

w =Wq) sufficiently close to -1+jO and points outwards as shown in Fig. 19(b),
then the feedback system has a stable almost sinusoidal oscillation at a frequency

nearly equal to caQ, and an amplitude A nearly equal to

A=/B/|c(o)R)| (16)

Example

Consider the tunnel diode circuit shown in Fig. 20(a) and the VD-ID curve
shown in Fig. 20(b). The state equations are given by

iL = (i/L)vc , vc = (l/c) [g(vB-vc)-iL] (17)

The feedback system in Fig. 19(a) is described by the same state equations provided

we choose

\ simple procedure is given in [47] for transforming any state equation into an
equivalent feedback system.
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G(s) kt^— and f(y) k -g(u-y) -y (18)
sN-s+1

Here, u A VB is a parameter to be adjusted in this example, and L = 1, C = 1.
To apply the above graphical algorithm, we first solve G(0) f(y) + y = 0 to

obtain the equilibrium point yQ = 0. The Nyquist loci r defined by

*(*.) -[g'OO -i] \—%—1 =-'-M1^2) (19)L(i-2)+*.J {1^2,v
is sketched in Fig. 20(c) for the parameter u =uQ (corresponding to the maximum
point in Fig. 20(b). Note that r intersects the real axis at wR = 1 in this case.

Next we calculate

H(0) -[G(0)f• (uQ) +ir^tO) =0, H(j2) =[G( j2)f' (uQ) +l]"1G(j2) =-j § (20)
and

f"(0) = -g"(u0), f-'(O) - g" (uQ) (21)

Substituting (19)-(20) into (15), we obtain the complex number

Ctwfc) - C(D • G(jl)|g"(y0)2[| (0) +I (-j |)]- ^g- (uQ)}

--fffl"(wo)"ltfl"^)2 (22)
This is a vector pointed towards the 3rd quadrant. Translating it to the

point -1+jO, we obtain the picture shown in Fig. 20(c) with B = 0. It follows

from Theorem 8 that this circuit will begin to oscillate at a frequency o)q = 1
when VB = uQ (with a "zero" amplitude).

Repeating the above graphical algorithm for several other values of u, we

obtain the corresponding pictures shown in Figs. 20(d), (f), (g) and (h). It fol

lows from these pictures that the tunnel diode circuit has a stable nearly sinusoidal

oscillation with a frequency ojq (where the vector intersects r) whenever

^0 < VB < Wr
Remarks

1. Theorem 8 is a corollary of a much more general theorem which is applicable

for any transfer function matrix G(jai) and any nonlinear vector function

f [47,53].

2. The Nyquist locus in Fig. 20(b) can be measured experimentally, as is

common in the design of microwave oscillators.
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3. Theorem 8 can be interpreted as a "nonlinear" Nyquist criterion.

4. Using degree theory [60], it is possible to derive an explicit formula for

calculating the oscillation frequency a)Q and amp!itude A[51].

5. Nonlinear Dynamics

Circuits containing modern microwave devices, such as Gunn diode, IMPATT,

and'Josephson junction, are often imbued with extremely complex and exotic dynamics.

Indeed, many experimentally observed phenomena are so bizarre that no satisfactory

explanations—let alone a rigourous analysis—are yet in sight. Remarkable

progress on nonlinear dynamics, however, has been achieved during the last decade

and a powerful toolkit [61] for nonlinear analysis is now available.

Using these modern tools, the Josephson constant-voltage-step phenomenon which

has baffled engineers and physicists alike since its discovery has finally

yielded to a rigorous analysis [48, 54].

Likewise, the elusive synchronization phenomenon, which has not been well

understood previously, has been proved to be chaotic in a typical threshold triggered

oscillator [56].

Roughly speaking, a circuit is chaotic iff its solution is neither a periodic

(possibly constant) nor an almost periodic function. Such solution waveforms

are characterized by a broad frequency spectrum [62,66]. Many chaotic circuits

and systems have been reported during the last 5 years [52, 56, 66-70] and the
list is certain to grow at a rapid rate in the coming years. It is now widely
believed that a large class of practical nonlinear circuits can become chaotic

if the circuit parameters are allowed to drift beyond some "failure" boundary.

The goal of research in chaotic circuits is to determine such failure boundaries.

6. Energy-Related Concepts

Linear n-ports such as ideal transformers, gyrators, circulators, hybrid

coils, etc., are said to be non-energic because the instantaneous power entering

the n-port is zero at all times and hence they are incapable of storing energy.

Are there any non-energic nonlinear n-ports? If so, what are their characteristic

properties? Linear time-invariant n-port capacitor and inductors can not be

non-energic. Are there any non-energic nonlinear capacitors or inductors? The

answers to all these foundational questions are given in an exhaustive study on

non-energic n-ports [71].

The concepts of passivity and losslessness are the corner stones of linear

passive circuit theory. Indeed, the discipline of circuit theory fluorished

only after Brune's classic research on the synthesis of linear passive one-ports.

The generalization of Brune's work, and others, on linear one-ports to the

linear n-port case was accomplished by the early sixties. What are the analogs
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of these results for dynamic nonlinear n-ports?

Research on this fundamental question began in earnest in the early

seventies. Due to the uncovering of many disturbing anomalies in the original

definitions of passivity and losslessness (when applied to nonlinear n-ports),
we went through a lengthy period of intense debate and soul searching, hoping
to patch up a few holes in these defective definitions. It took 5 years before
all parties involved in the deliberations were convinced that the old definitions
had to be junked in favor of a totally new definition before any self-consistent
criteria can be derived. The results of this concerted joint research project

are well documented in a series of provocative and exhaustive papers [72-76].

PART II: SYNTHESIS

Research on nonlinear circuit synthesis is motivated by two areas of

applications in practice. One area calls for the design of nonlinear circuits
with an optimum performance (e.g., minimization of switching times, nonlinear

distortion, switching speed, slew-rate, etc.). Since the finished product in
this case is an operational piece of hardware, the synthesis techniques are

acceptable only if the circuit elements used in the synthesis are either
available commercially, or can be built with available components or state-of-

the-art integration technology (for applications involving large volume

productions).

The second area calls for the synthesis of nonlinear circuit models (of
devices, machinery, or systems) to be used in a (digital) computer simulation
[9]. Since the finished product in this case is a circuit diagram on paper,

any circuit element that is included in the repertoire of elements in the computer

simulation program is acceptable. For example, a negative capacitance would be
quite acceptable in modelling applications but would be rejected as impractical

in the first area.

In Part II, we sample some basic results on nonlinear synthesis from both

areas of applications.

1. Driving-Point and Transfer Characteristics

The most basic problem in nonlinear synthesis is the practical realization
of a one-port having a prescribed v versus i driving-point characteristic, or

a 2-port having a prescribed vQ versus vin voltage transfer characteristic.
It is not surprising therefore that the early research on nonlinear synthesis
had focused on this problem [16]. The following is a sample of some of these

results.
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a. Monotone-increasing characteristics: they-can be realized using only passive

components (e.g., positive resistors, pn junction diodes and zener diodes)

[16]. If a tight tolerance is called for, they can be realized with great

precision using a combination of concave resistors (defined in Fig. 21(a))

and convex resistors (defined in Fig. 21(b)) [16]. These two fundamental

building blocks can be accurately built using simple op-amp feedback

circuits [77].

b. Non-monotone characteristics: Using the Nielsen-Willson theorem [5,8], it is

possible to systematically generate a large number of passive one-ports

having a type N (Fig. 22(a)) or type S (Fig. 22(b)) v-i characteristics

using only positive resistors and two transistors (bipolar and/or FET)

[78-79]. Combinations of these passive one-ports would generate more

complicated non-monotonic characteristics.

Other specialized techniques using rotators [80-82], ref1ectors [81-83],

scalars [83], linear transformation converters [84-86] and related techniques

[87-90] are useful in many occasions. An ingenious approach using analog

multipliers which make use of linear circuit synthesis techniques is described

in [91]. However, by far, the most practical and accurate technique is the

piecewise-linear approach described in [77].

Not included in the above survey are the important research programs

spearheaded by Professor Eugen Philippow and his students [92] at the Technical

University at Ilmenau of the German Democratic Republic, and by Professors

J. Cajka, F. Kouril, and K. Vrba [93] and their students at the Technical University

of BRNO, Czechoslovakia. An impressive list of publications on nonlinear synthesis

covering more than 10 years of their research have appeared in Ilmenau and BRNO.

Unfortunately, they are not available in English.

2. Nonlinear N-Port Resistors

The second most basic problem in nonlinear synthesis is the realization of

an n-port resistor having a prescribed voltage-control1ed representation

2 = l(y), current-controlled representation y = y(i), or hybrid representation

y = y(x), where x. = v. (or i.) and y. = 1. (or v.), j = l,2,**-,n. Two basic

approaches are available:

a. Canonical Piecewise-Linear Approach: This approach assumes the n-port is

specified in terms of a multi-dimensional canonical piecewise-linear

representation [94-95].
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y = a + Bx+ I c.
i =1

<a1, x> - 6i (23)

where a, c., a. are n-vectors, B is an nxn matrix, $. is a scalar, and <•,•>- -i -i - g i
denotes the vector dot product between g. and x.

The most remarkable property of this representation is that it involves only

one nonlinearity; namely, the absolute -value function. In the 1-dimensional

case, any continuous piecewise-linear function can be represented by (23),

namely [96],

y = a +bx+ l c. |x - B. |
i=l 1 n

(24)

While not all n-dimensional piecewise-linear functions can be represented by (23)

if n > 1, it is shown in [95] that all n-ports made of 2-terminal piecewise-

linear functions can be described by (23). This observation makes it possible

to develop a unified theory of nonlinear circuits in terms of the canonical

piecewise-linear representation. It also allows a much more practical computer

implementation of several fundamental piecewise-linear algorithms [97-98].

Any n-port described by (23) can be synthesized by the technique described

in [77].

If the n-port is reciprocal (i.e., when the Jacobian matrix 3i(y)/3y or

3v(i)/3i is symmetric), it can be synthesized by the method in [99]. This

approach uses only 2-terminal piecewise-linear resistors, independent sources,

and a (p+q)-port transformer [100] .

b. Sectionwise-Piecewise-Linear Approach: This approach assumes the n-port is

specified in terms of a multi-dimensional Sectionwise piecewise-linear

representation [96]

f(x
n n n ii

1 l * n k1=l k2=l kn=l ' c J j=l J J
(25)

This global analytical representation completely overcomes the main objection of
multi-dimensional piecewise-linear functions; namely, bookkeeping the matrices
and vectors for each polyhedral region and their equally cumbersome boundary
specifications.
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where ^

^(Xj) - 1

♦2(Xj) =Xj

*3(xj} = lxj"xjll > (26)

♦n(xjJ = lxj'xjN-2l
J

and a(k,,k2,»«-,k ) denotes a constant coefficient. Any continuous nonlinear
function g(x,,x2,»«-,x ) can be approximated arbitrarily closely by (25).
Again, the only nonlinearity in (26) is the absolute-value function. Unlike

(23), however, the argument of each absolute-value function in (26) consists of

only one variable. In other words, (25) consists of sums of products of functions

of only one variable. This remarkable property is reminiscent of the well-known

Kolmogoroff's representation [101]. Unlike Kolmogoroff's representation,

however, which is computationally impractical, the coefficients a(k-j ,k2,-»»,kn)
in (25) can be efficiently estimated by multiple regression or other optimization

technique.

Any n-port described by (25) can be synthesized by the techniques described

in [102]. Another method can be found in [103].

3. Mutators

Let X and Y denote two distinct types of 2-terminal circuit elements. For

example, X can be an inductor and Y a capacitor. A linear time-invariant 2-port

is called an X-Y mutator iff element X can be realized by connecting an element

Y across port 2, as shown in Fig. 23(a).

Mutators can be built using only op amps and linear passive resistors and

capacitors [83]. The unique transformation property of an L-R mutator has been

measured and the relevant oscilloscope tracings are shown in Figs. 23(b) and (c),
respectively. Note that Fig. 23(b) "mutates" a nonlinear resistor (R) with a
v-i curve into a nonlinear inductor (L) with an identical characteristic in

the (j^-i-j plane. Likewise, Fig. 23(c) "mutates" a nonlinear inductor described
by a hysteresis loop into a nonlinear resistor described by the same hysteresis

loop in the v2-i2 plane. Note also that an L-C mutator is just a gyrator.
Mutators play a fundamental role in nonlinear circuit synthesis: it reduces

the general nonlinear element realization problem to the synthesis of 2-terminal

nonlinear resistors [104].
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4. Nonlinear Algebraic Elements

Resistors, inductors, and capacitors are only three among many other distinct

types of ideal circuit elements which are essential to the development of a
unified theory of nonlinear circuits. Some of the less familiar circuit elements

which have appeared in the literature include the traditors [105], the FDNR [106],
the charge store element [107], etc. Do these elements differ from each other,

or are they just fancy examples of nonlinear resistors, inductors, or capacitors?
From the modelling and circuit-theoretic points of view, it is essential that

each circuit element be classified in a consistent and scientific manner.

Just as circuits are logically classified into two classes—resistive or

dynamic—circuit elements can also be logically classified into algebraic or

dynamic elements. Since a dynamic element is any circuit element which is not

algebraic, it suffices for us to define an algebraic element.

Definition. Algebraic Element

An n-port N is said to be algebraic iff it is described by an algebraic

relation involving at most 2 port variables vy*' and i;.e' for each port
/n\ J J

j, j = l,2,--«,n, where v;. ' denotes the ath time derivative of v. if a > 0,
J (Q>)

or the ath time integral of v.. if a < 0. Likewise, up/ denotes the 3th time
~~- J J

derivative of i_. if 3 > 0, or the 3th time integral of i. if 3 < 0.
j j

Remarks

1. The 2 variables associated with each port must be of a different type in the

sense that one is associated with the port voltage,, the other with the port

current.

2. The integer "a" (as well as 3) associated with two distinct ports may be

distinct.

3. The relation defining a resistor, inductor, or capacitor involve only the

pairs (v(0)f1(0)).(v){"l,,1(0)), and (v(0),1("l)), respectively.
Example 1

A 2-terminal element characterized by a relation f(<j>,q) = 0 between the

two variables v^~ ' A <j> and v" ' Aq is an algebraic one-port. This element is
called a memristor (contraction of memory resistor) because it behaves like a

resistor with memory [108].

Example 2

A frequency-dependent negative resistance (FDNR) [106] defined by

i =md2v/dt2 is an algebraic 1-port involving only the variables (v^ ',v ').
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Example 3

A 2-terminal element described by the relation i = q is not an algebraic

element because the two variables i and q are not derived from v and i,

respectively (Remark 1). It is therefore a dynamic element. Indeed, it is
. 3

described by a differential equation in q; namely, q = q .

Example 4

The L-R mutator described by (j)-, =v2 and i-, =-i*2 [83] is an algebraic

2-port because only the variables (v\~}\ ij0^) and (v£0', i£0') are involved.
Example 5

The unconventional element called a charge store widely used in the modelling

of diodes and transistors [107] is actually a 2-port defined by v-j =0 and
i0 = kq,, where q, is the charge in the "short-circuited" port 1; namely, a

(0) (0)charge-controlled current source. Since only the variables (vj ;,q£ y) and

ii ' are involved, this element is also an algebraic 2-port.

Example 6

Consider a type I traditor defined by [105] v-, = -Aq2i*3, v2 =-Aq-ji3, and

<J>3 =Aq^. Since only the variables (vj0',^"1'), (v£°',i2 '). and

(v3 '*3 ' are lnvolved» tnis element is an algebraic 3-port.
It follows from the above examples that the class of algebraic elements

includes not only resistors, inductors, and capacitors, but many unconventional
elements which in the past have baffled and confused many circuit engineers.

The readers are referred to a more detailed study of the interconnection

properties of these elements in [104]. Although these elements are presently
more relevant to the study of nonlinear device modelling, they can be synthesized,

if necessary, with the help of appropriate types of mutators [109].

5. The Hodge Decomposition

Every linear n-port N characterized by an admittance matrix Y can be

decomposed into a parallel connection between a reciprocal n-port N, and an

anti-reciprocal n-port N2, as shown in Fig. 24 for the 2-port case. What is the
analog of this fundamental result for the nonlinear case?

It was shown in [110] that only a very small subclass of nonlinear n-ports

can be similarly decomposed into a reciprocal ani anti-reciprocal nonlinear

n-ports. Hence, the next best thing that can be done is to relax the
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requirement of N2 while still requiring N-. to be reciprocal. It is desirable
to keep N-j reciprocal because its synthesis would require only reciprocal elements
[99]. The basic problem is therfore to identify the structure of N2 so that
every voltage-controlled n-port can be decomposed as shown in Fig. 24.

This problem was solved in 1975 for the n = 2 case where an explicit

decomposition formula was given in [110]. Solution for the n > 2 case turns

out to be much harder and the problem was not solved until 3 years later. The

answer is that N2 must be solenoidal in the sense that if N2 is described by
1 = g(v), then

agi(v) ag2(v) 3gn(v)
div g(v) A „ ~ + * " + ••• + „ ~ = 0»v*/ = 3v1 3v2 3vn

We summarize this basic result as follow:

Theorem 9. Hodge Decomposition [111]

Every voltage-controlled nonlinear n-port described by a smooth vector

function i = i(v) can be decomposed into a parallel connection between a

reciprocal nonlinear n-port resistor and a solenoidal nonlinear n-port resistor.

Remarks

1. Theorem 9 is a corollary of a more general theorem proved in [111].

2. Theorem 9 is related to a deep result from Algebraic geometry due to

Hodge [112], hence the name Hodge decomposition.
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PART III: MODELLING

Research in nonlinear circuits would become academic without a parallel

development of nonlinear device modelling. Since modern electronic devices are

generally nonlinear and rich in high-frequency dynamics, they must be replaced

by realistic nonlinear circuit models before any meaningful analysis is possible.

The goal of research on nonlinear modelling is to develop a systematic

methodology for synthesizing and validating nonlinear circuit models for modern

devi ces.

Two basic approaches to device modelling have been pursued in the past:

the physical approach and the black box approach. Examples of several

electronic devices modelled via a physical approach include the pn junction diode

[113], the IMPATT [114] , the Gunn diode [115], the SCR [116] and the GaAs FET

[117]. Examples modelled via a black box approach include the hysteresis

phenomenon in an iron-core inductor [118-119], memristive devices [108,120],

and the analog multiplier [121]. Space limitation precludes even a cursory

description of these models, each one interesting and illuminating in a different

way. A summary of some of these models is given in a recent state-of-the-art

survey article [104]. In this final section, we will describe the highlights on

two important aspects of nonlinear modelling.

1. Nonlinear Model Validation

Every model is an approximation. A useful circuit model, however, must

have some predictive ability independent of the circuit to which it is connected

and the excitation applied. Although the solution waveforms obtained by computer

simulation will seldom if ever match those actually, measured in the laboratory,

they must be "close" quantitatively and "similar" qualitatively. Otherwise,

engineers will have no confidence in any design based on such models. In other

words, regardless of the approach used in deriving the model, it must be tested

for its predictive ability before being declared valid.

Unlike linear systems, the predictive ability of a nonlinear model can not

be ascertained from its response to a simple set of testing signals, say steps

of different amplitudes. Indeed, it is easy to contrive several distinct nonlinear

circuit models which have identical responses to this set of testing signals

but yield different responses to other signals.

For example, consider the following 2 discrete-time nonlinear systems with

input u and output y:

System N,: y(n) = u2(n) + u(n)u(n-l) -u (n-1)
System N2: y(n) = u (n)
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Note that the output y of both N1 and N2 to step inputs of level a is just a
step of level a ! However, the responses of N, and N2 to the signal u(k) = 0,
k < 0, u(l) = 1, u(2) = -1, u(k) = 0, k > 2 are different. This example shows

that any model which merely matches the response of a device to steps of all levels
has no predictive ability—here in fact it confuses a memory!ess system (N2) with
a dynamic one (N,)!

On the other hand, every nonlinear device that has a Vol terra series

expansion

y(t) =f h^) u(t-T1)dx1
J-00

I I hgd^Tg) U(t-T.,) uft-TgJdT^Tg
J -OO J —00

+

.00 J —00

+ • • •

,00 ,00

+

(uu .W .WW

I '*' h (T1,T2,«--Tn)u(t-T1)u(t-T2)-*-u(t-Tn)dT1dT2««'dTn
-00 J -00 J -00

(27)

+ •

is associated with a unique set of (symmetric) Vol terra kernels h^t^, h2(t.,,t2),

•••, nn(trt2'#,*'tn^ "** about a dc °Peratin9 point.
The n-dimensional Laplace transform

J -oo J -oo J -oo /9Q^

of h (tn,t0»*-'»t ) is called the nth order transfer function because it has a
n I l n —

natural circuit interpretation in the frequency domain [128-130].
For example, consider the nonlinear system shown in Fig. 25(a) where the

output of the two linear filters H^s) and H2(s) are multiplied to obtain y.
The 2nd-order transfer function for this system is simply equal to the symmetrical

product of H^s,) and H2(s2) [129-130]. Hence, if we choose H^s) to be a

7The literature on Vol terra series is immense and we refer to three recent
textbooks [122-124] for a good introduction. Readers interested on the mathematical
foundation of Volterra series are referred to a recent series of fundamental
research paperr by Sandberg [125], de Figueiredo [126] and Fliess [127].
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lst-order low-pass filter and H9(s) to be a Ist-order high-pass filter, then
~~• s*> ^

2r
0),H2(Sl,s2)=SYM ^ ^ (29)

(1+-J-)(1+-^)

where SYM f(s1 ,s2) A\ fUj.SgJ+y f(s2,s1).

Similarly, if we choose H^s) to be a 2nd-order bandpass filter and H2(s) to be
a ls_t-order high-pass filter, then

sl s?

H2(srs2) =SYM *-y± (30)

0+—+tOO+—)x oo, o)27 x aw

Just like the frequency response of a linear system, much physical insight

is gained by plotting the magnitude of H2(s, ,s2) in the f-|-f2 plane, where
s-j = j2?rf1 and s? = j2irf2. The 2-dimensional surface |H2(f.|,f2)| corresponding
to (29) is plotted in Fig. 25(b) with ^ =u>2 =1. That corresponding to (30)
is plotted in Fig. 25(c) with go, =oj2 =1.

Since every nonlinear device having a Volterra series expansion has a unique

set of (symmetric) nth order transfer functions H^s^), H2(s-| ,s2) ,•••, Hn(si»s2j
•••,s ) about a dc operating point, it follows that a nonlinear model has

predictive ability if and only if its associated nth order transfer functions are

"close" to those measured from the device.

Unfortunately, up until only recently, no practical and reliable method

exists for measuring the higher-order transfer functions. However, a recent

breakthrough for measuring 2nd-order transfer functions has been achieved [131].
This practical and robust measurement scheme consists basically of generating a

multi-tone probing signal made of a sum of many sinusoids (typically more than 15)
whose frequencies are generated by a simple algorithm which guarantees that no

two pairs of input frequencies give rise to the same intermodular on

frequency. Since this signal must be of extremely high quality, it can not be
generated by an electronic function generator. Rather, it is generated by a
microcomputer and a D/A converter. Since high precision D/A's and crystal

clocks are readily and cheaply available, generating these intricate signals is

no problem.
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To measure the 2nd-order transfer function of a nonlinear device or system,

the above probing signal is applied to the device at several amplitude levels

and its output sampled and collected. The resulting data is then processed in

accordance with a numerically robust algorithm described in [131].

The above measurement approach has been calibrated against several nonlinear

circuits (with a 2nd-order part like that shown in Figure 25(a)) whose 2ndrorder

transfer function can be calculated exactly. In each case, the measured transfer

functions are virtually indistinguishable from those calculated by exact formulas,

such as (29) and (30).

The 2nd-order transfer functions of several nonlinear devices and systems

have been successfully measured by the above scheme. Figure 26(a) shows the

spectrum of the probing signal applied to a high-quality pressure transducer used

in our bioengineering laboratory. The spectrum of the response is shown in

Fig. 26(b). The associated 2nd-order transfer function calculated automatically

by a dedicated micro-computer is shown in Fig. 26(c).

2. Nonlinear Model Structure

For nonlinear devices and systems whose internal operation, mechanism, and

composition are not well understood (e.g., amorphous devices [132] and biological

systems [133]), it is essential to resort to a black box modelling approach. In

this situation, one of the most difficult and fundamental problems is to

determine what cirucit topology or system structure best describes the real device

or system. In other words, from input/output measurements alone, is it possible

to identify a unique model topology or structure?

The answer to the above question is clearly "no" for a linear device or

system. Indeed, given any linear one-port N, there exist many equivalent one-

ports having distinct circuit topologies which are not distinguishable from

input/output measurements alone. For example, the Thevenin and the Norton

equivalent one-ports are indistinguishable in this sense.

However, this lack of uniqueness does not carry over to nonlinear devices

and systems. As it turns out, the same complexity which makes nonlinear systems

difficult to represent, analyze, and design (e.g., noncommutativity, non-

distributivity,*-*) also allows much more information about the internal structure

to be extracted from input/output measurements.

This rather surprising observation is the culmination of many years of

futile effort at deriving equivalent nonlinear circuit structures analogous to

the many well-known results in Linear Circuit Theory. For example, much effort

has gone into deriving an analogous A-Y transformation theorem for nonlinear
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circuits. The only results that have been obtained so far are applicable only

to resistive nonlinear circuits [32,134]. The extremely stringent conditions

imposed in [32, 134] already portend even more stringent conditions for the

dynamic case. What is ironic, however, is that it took nearly 20 years for the

following definitive theorem to see the light of day.

Theorem 10. Uniqueness of Model Structures [135-136]

Consider the three common system structures shown in Figs. 27(a), (b), and

(c), where F(-) denotes a memoryless nonlinearity and the H's denote linear time-

invariant systems. Suppose F(-) and Hxu(s) are not constant, H (s) and

H t(s) are not identically zero, and Hfb(°°) A lim H~(s) = 0. Then two such
systems each with structure (a), (b), or (c) are equivalent (i.e., have

identical input/output measurements) if and only if:

1. they have the same structure.

2. the corresponding F(-) and H'(s) are related by scaling, and possibly

shuttling some delay between H (s) and H t(s).

Remarks

1. Although conjectured nearly 3 years ago, we did not succeed in proving this

theorem until only very recently. The complete proof is given in [136].

2. In its present form only one scalar nonlinearity is allowed although we

strongly believe similar results hold also for the multiple nonlinearity

case. Even then, this theorem already has profound consequences, some of

which are stated in the following corollaries.

Corollary 1 [136]

If two dynamic one-ports containing a 2-terminal nonlinear resistor are

equivalent, then their respective resistor v-i characteristics, as well as their

associated linear 2-ports, are "similar" in the sense that they can differ by at
p

most a scaling and possibly a delay transformation.

Corollary 2 [135]

Every algebraic 2-terminal element defined by a nonlinear relation

f(v(a), i(6)) =0 (31)

between v'a' and i'^' (as defined earlier in Section 4, Part II) is unique in the
sense that its order (a,$) and its characteristic curve f(x,y) = 0 are unique,

g
that is, such elements have only one description as algebraic elements.

8
See [136] for t!ie explicit transformation formulas.

g
Corollary 2 implies that whereas only 3 basic linear 2-terminal circuit elements

(R,L,C) are adequate in linear circuit theory, an infinite number of distinct
2-terminal nonlinear algebraic elements [104] must be defined in a general theory
of nonlinear circuits.
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Corollary 3 [135]

Given any system N having at least two non-zero Volterra kernels, the only

linear time-invariant systems which commute with N are delays (or delays and

negation if N has only odd-order Volterra kernels).

Corollary 4 [135]

The two common model structures shown in Figs. 29(a) and (b) can never be

equivalent.

We close this paper on a lighter note by giving a mundane application of

theorem 10.

Consider a communications system consisting of N cable-repeater sections

(Fig. 30(a)), each with frequency response R(s) (Fig. 30(b)). Suppose the output

stage of the kth repeater drifts off bias and starts distorting slightly.

To locate the faulty repeater we could tap into the system at various

points, possibly at great trouble. But a much simpler mehtod is to recognize

the system in this case can be modelled by the structure shown in Fig. 27(a).

If we let f(«) denote the nonlinear output stage, then the faulted system can be
N-k k

described by R f(-)R • It follows from Theorem 10 that from input/output

measurements alone (of the whole system), we can locate the faulty repeater.

It is remarkable to note that this method would not work for a linear fault:

suppose an element in the kth repeater amplifier drifts in such a way as to

say, halve the bandwidth of the repeater The kth repeater in this case is

still linear but with frequency response R(s). Since the system's linear

(and only) frequency response is R(s) R(s), no matter where the fault is, no

input/output measurements alone can locate this fault.
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Figure Captions

Fig. 1. This pn-junction diode circuit has no solution if I> Is.
Fig. 2. This tunnel diode circuit has 3 solutions if E,< E<E«.

Fig. 3. Of the 2 v-i curves, only (b) is eventually passive.

Fig. 4. A feedback structure.

Fig. 5. Open and/or short-circuit structure used to replace transistors.

Fig. 6. A transistor circuit containing a feedback structure.

Fig. 7. A transistor circuit which does not contain a feedback structure.

Fig. 8. (a) Circuit containing a CCCS (b) Equivalent circuit (c) Load Line

method yields two operating points.

Fig. 9. Directed graph associated with a CCCS. Note the output branch is

directed opposite to the arrowhead inside the diamond-shape symbol.

Fig. 10. Example of a cactus graph.

Fig. 11. A circuit having an even (zero in this case) number of similarly-

directed loops in the reduced cactus graph.

Fig. 12. A circuit containing a reduced cactus graph (e) containing an even

(zero) number of similarly-directed loops.

Fig. 13. Illustration of the no-gain criterion for a 2-terminal resistor.

Fig. 14. Bounding region for vQ versus v. transfer characteristic.
Fig. 15. (a) A voltage-controlled v«-i, curve 1 in series with a current-

controlled v2-i2 curve 2 gives rise to a multivalued v-i curve,
(b) A voltage-controlled v,-i\ curve 1 in series with another

voltage-controlled v2-i2 curve 2 gives rise to 2 disconnected
branches in the resulting v-i curve.

Fig. 16. A nonlinear RLC circuit having 3 distinct (subharmonic) steady state

responses.

Fig. 17. A circuit having infinitely many distinct dc steady.state solutions.

Fig. 18. Two capacitor-diode circuits satisfying the 4 topological conditions

in Theorem 7.

Fig. 19. (a) Single loop feedback system (b) The intersection of the Nyquist

loci r with the vector drawn through -1+JO having the direction

C(wd) gives the oscillation frequency.

Fig. 20. A tunnel diode circuit and its associated Nyquist loci for various

values of u A Vn drawn with L = 1 and C = 1.



Fig. 21. (a) Symbol and v-i curve defining a concave resistor: they are

uniquely specified by two parameters, the slope G (in V) and the

voltage intercept E. (b) Symbol and v-i curve defining a convex

resistor: they are uniquely specified by two parameters, the reciprocal

slope R (in Q) and the current intercept I.

Fig. 22. (a) A type-N voltage-controlled characteristic, (b) A type-S current-

controlled characteristic.

Fig. 23. (a) An X-Y Mutator transforms a type Y 2-terminal element into a type

X 2-terminal element, (b) Oscilloscope tracings of the v-i characteristic

of a nonlinear resistor on the right and an identical <J>-i characteristic

on the left, (c) Oscilloscope tracings of the "hysteretic" <j>-i

characteristic on the left and an identical v-i characteristic on the

right.

Fig. 24. Decomposition of a 2-port N into two 2-ports N, and N2 in parallel.
Fig. 25. (a) Simple nonlinear system made of two linear filters and a multiplier,

(b) Surface representing [H^f^f^! when H^s) is a lst-order low
pass filter and H2(s) is a lst-order high-pass filter, (c) Surface
representing |H2(fpf2)| when H^s) is a 2nd-order band pass filter
and H2(s) is a lst-order high-pass filter.

Fig. 26. (a) Spectrum of probing signal to pressure transducer, (b) Spectrum

of output signal from pressure transducer, (c) 2nd-order transfer

function of pressure transducer.

Fig. 27. Three common model structures: F(«) denotes a scalar nonlinear function,

HDre(s), HD0St(s) and Hfb(s) are linear time-invariant transfer
functions (usually referred to as the pre-filter, post-filter, and

feedback filter respectively).

Fig. 28. Every dynamic one-port whose only nonlinear element is a 2-terminal

nonlinear resistor R is equivalent to a linear 2-port terminated in a

nonlinear resistor Rrtrt, where R and R „ are related by a scaling transformation
eq eq

Fig. 29. These two model structures are completely disjoint.

Fig. 30. (a) Section consisting of a cable and a repeater (b) A long communication

chain of N cable-repeaters, each section modelled by a linear transfer

function R(s). (c) A nonlinear fault at the nth repeater reduces the

linear system to a nonlinear one having the structure shown in Fig. 27(a).

(d) Corresponding situation but with a linear fault.
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