Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



WL, 8/ERL
M ¥3/51

| 79 Pages

AN MOS-LST AUTOCORRELATION

LINEAR PREDICTION SYSTEM

by

P. J. Hurst

Memorandum No. UCB/ERL M83/51

26 August 1983



AN MOS-LSI AUTOCORRELATION
LINEAR PREDICTION SYSTEM

by

Paul James Hurst

Memorandum No. UCB/ERL M83/51
26 August 1983

ELECTRONLCS RESEARCH LABORATORY

College of Engineering
University of California,Berkeley
94720



An MOS-LSI Autocorrelation Linear Prediction System

By

Paul James Hurst

B.S. (University of California) 1977
M.S. (University of Californmia) 1979

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

Engineering

in the
GRADUATE DIVISION
OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: ..




An MOS-LST Autocorrelation Linear Prédict.ion System

Paul James Hurst

Ph. D.

Robert W. Brodersen
Chairman of Committee

ABSTRACT

Integration of an autocorrelation linear prediction system for speech
analysis will be described. The system is composed of both analog, switched-
capacitor and digital circuitry. A switched-capacitor autocorrelator is the
key component of the system. Accuracy requirements both in the analog and
digital processing domains are carefully considered for the speech applica-

tion. Practical aspects of speech processing are discussed.

The autocorrelator was fabricated on an analog/digital compatible CMOS
process. The design, layout, and fabrication of the integrated circuit are
described. Experimental results are presented for the autocorrelator

integrated circuit as well as the complete linear prediction system.

This research was sponsored by DAPRPA Grant 1-482427-25978.
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CHAPTER 1

INTRODUCTION

Recently, synthetic speech has appeared in many consumer products
such as automobiles, educational games for children, chess games,
microwave ovens, and alarm clocks. The successful integration of speech syn-
thesis algorithms in silicon technology has provided manufacturers with low
cost speech synthesis systems. But the inverse process, speech analysis, hés
remained a task handled by large computer systems or expensive general
purpose signal processing integrated circuits, often not operating in real
time. Vocoders, store-and-forward message systems, and speech recognition
systems will remain prohibitively expensive unless low cost analysis systems

are made available.

A real-time linear predictive speech analysis system is described in this
thesis. The analysis system employs a mix of switched-capacitor analog cir-
cuitry and MOS digital circuitry. The heart of the system is a switched-
capacitor autocorrelation integrated circuit (IC). An automatic gain control
circuit which reduces the dynamic range of the incoming speech precedes
the autocorrelator. A small microprocessor system converts the

autocorrelator's output into linear prediction model coefficients.

The autocorrelator itself was integrated as the final stage of this
research. The chapters follow the design of the system from start to finish,
roughly in chronological order. Chapter 2 covers the speech analysis theory
which forms the basis of the IC. Chapter 3 presents circuits which are used to

implement the system. The operation of the circuits is explained. In chapter



4, the circuits chosen in chapter 3 are discussed in detail. Non-idealities due
to integration of the circuits in MOS technology are considered. Various
system-level design decisions are made. The design, layout, and processing of
the autocorrelator IC are discussed. Chapter 5 presents the results obtained
from the breadboarded system and from the autocorrelator IC. Conclusions

and suggestions are made in chapter 8.



CHAPTER 2

LPC THEORY AND APPLICATIONS

Speech is a verbal form of communication. The rate at which information
is transmitted during a conversation is approximately 100 bits per second [1].
Hence, speech could theoretically be encoded in such a way as to convey all
the information while transmitting only 100 bits per second. One simple digi-
tal transmission scheme used today, 8 bit quantization of speech sampled at
8kHz, requires B4k bits per second. This is 640 times larger than the informa-
tion rate, the discrepancy reflects how ineflicient direct transmission of the

speech time waveform is.

The speech waveform is a sequence of sounds. In the case of vowels, each
sound is a periodic repetition of a distinct waveform. Speech analysis
attempts to eliminate the transmission of the redundant information in the
time waveform. Many different techniques have been applied to speech
analysis, some meeting with more success than others. Mathematical tracta-
bility and automatic implementation of analysis algorithms are very desirable
properties. One analysis method, linear predictive coding (LPC), has these
properties and has been widely applied to the speech analysis problem. Auto-
correlation LPC will be described in detail in the following sections.

2.1. A MODEL FOR SPEECH

To understand speech analysis, we must first understand how we produce

speech sounds. A sound is produced as follows (see figure 2.1):



Air is forced out of the lungs by muscle contraction. As the air passes
through the vocal cords, it is either allowed to flow through unrestricted
(unvoiced sounds), or it is transformed into short bursts of air by the
periodic opening and closing of the vocal cords (voiced sounds). The air
then passes through the vocal tract. The shape of the vocal tract and
position of the lips and tongue determine the resonant frequencies (for-
mants) of the sound. The vocal tract acts as an acoustic filter, spectrally
shaping the air pressure wave as it passes from the vocal cords to the

lips.

A simple model for the speech production process described is shown in
figure 2.1. The unrestricted flow of air at the vocal cords is modeled as white

noise. The periodic bursts of air at the vocal cords are modeled as pericdic

PULSE
GENERATOR
ALL POLE |  SPEECH
FILTER out
NOISE
GENERATOR [©

VOCAL TRACT

GLOTTAL
EXCITATION

Figure 2.1. Cross-section of the vocal tract Sleft) and a simple model for the
speech production process (right



impulses. The period of the impulses is called the pitch period. The vocal

tract is modeled as a time-varying filter.

Most speech synthesizers are realizations of this simple model. The exci-
tation waveform and filter parameters are changed at a rate of 20Hz to
100Hz. Each segment of synthetic speech produced by a given set of parame-
ters is called a frame of speech. The update rate or frame rate corresponds

to the rate at which different sounds occur in conversational speech.

In speech analysis, the inverse process is performed. The continuously
changing speech waveform is broken into pitch and vocal tract information
each frame. There are many different approaches to speech analysis [ 1 ]; one

particular method will be described in detail.

2.2. LPC THEORY

VWith LPC, the present speech sample is modeled as a linear combination
of the past p speech samples plus an unknown input
s(n) = ‘21 as(n—i) + bu(n);
s(n) is the sample of the speech waveform s(t) at time t=nT, (T, is the sam-
pling period), u(n) is the input (glottal excitation), and a; is the i®* LPC
coefficient. In the frequency domain, this prediction equation gives an all-

pole transfer function

S(z) _

_ b
G(z) = u(z) ~ , _ 2%2". (2.1)

S(z) and U(z) are the z-transforms of s(n) and u(n), respectively. For a
given sound, LPC finds an all-pole filter G(z) which models the vocal tract
transfer function. The LPC model can be viewed physically as a cascade of p

acoustic tubes of constant length and differing cross-sectional area [ 2 ]. The



cross-sectional areas are related to the LPC coefficients (see section 2.4). An
LPC transfer function is plotted in figure 2.2, superimposed on the FFT of the
same sound. The LPC all-pole filter attempts to model the resonances of the
vocal tract (see section 2.5). Each resonance modeled requires a complex

conjugate pair of poles. Typically. vocal tract resonances are spaced 1kHz

apart. So if the speech waveform is sampled at a frequency f, = -7—1.—- so that
]

we are modeling the vocal tract from OHz to f—z’-- we need a minimum of
p= 11{}'12 poles to model the vocal tract resonances. One or two more poles

are often included to model the non-flat spectrum of the glottal waveform.

In LPC speech analysis, we are given the speech waveform s(n) and want
to determine the LPC coeflicients, a; 1<i<p. Since we have no prior informa-

tion about the excitation u(n), we predict the present sample s(n) from the

AR rroH (o8

1280 1008 2008 2400 2608 3208 3480 4808

Arogyericy (5.7

Figure 22 LPC fit (solid line) to a speech spectrum (broken line)



past p samples

§(n)=if: a;s{n—i).
=1
The error between the actual speech sample s{(n) and the predicted value
§(n) is the prediction error e(n)
e(n)=s(n)-s(n). - (2.2)

There are various error minimization criterion which might be used to find
the LPC coeflicients. One is to minimize the total squared error £,

E,= ) e¥n)= Y [s(n) -s(n)] (2.3)

no—o n=—ce

)
To minimize E;, we differentiate E, with respect to @, and set a—iL= 0 for

each k, 1sk<p. This yields p linear equations

, 20.; i s{n-i)s(n—k) = i s(n)s(n-k) for 1<sk<p

izl n=-ew no—-o

which can be rewritten

tg:lcm'i'(lc—1;)=1i?(1c) 1<k<p (2.4)
where
R(k) = _i) s(n)s(n-k) (2.5)

is the autocorrelation function of the speech signal s(n). The solution of (2.4)
for the LPC coeflicients requires solution of p linear equations in p unknowns.

This will be discussed in section 2.4.

2.3. WINDOWING

Note that equation (2.3) minimizes the error over all time. If s(n) is a
constant sound, R(k) will be that sound's autocorrelation function and solving
equation (2.4) will give LPC coefficients for that sound. But for conversational

speech, s(n) is a continuously varying sequence of sounds. Therefore, we



would like to compute R(k) separately for each frame (which should
correspond to only one sound if the frame size is chosen properly). Then we
can find the LPC coefficients for that particular frame. To achieve this, we
window the speech waveform. That is, we multiply the speech waveform by a
window function w(n) which weights the present frame more heavily than
other frames. This windowing gives a new time waveform s, (n.j)
su(n.j) = s(nyw(n—)

where j accounts for the positioning of the window. Then this windowed
speech s,,(n,j) is used in the autocorrelation computation, equation (2.5), to
give

R(ed)= ¥ sulnglsu(nks)= T stryun—i)s(n—khwn k). (26)
Since the application of a window results in an autocorrelation function based
on short segments of the speech signal, (2.8) is often referred to as the
short-time autocorrelation function. Since equation (2.8) is the only auto-

correlation function which will be discussed from here on, it will be simply

referred to as the autocorrelation function.

The time window w(n) can be of finite duration (FIR) or infinite duration
(IIR) (figure 2.3). In either case, the window should have no discontinuities,
going smoothly to zero at the window’s endpoints. This minimizes the spectral
smearing of the formants due to the window [ 1 ]. If an FIR window is chosen,
equation (2.8) may be implemented by first computing the sequence
sw(n.j)=s(n)w(n—j), then using the windowed speech in equation (2.8). This
approach is straightforward; requiring permanent storage (ROM) for the
sequence w{n), temporary memory (RAM) for storing the windowed sequence

sy (n.7), a multiplier, and a summer [ 3 ].
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The windowing and summation in equation (2.8) can be implemented as a
filter following a multiplier for both the FIR and IIR windows. This can be seen
by defining a time-reversed version of the window

h(n) = w(-n).
Then (2.6) becomes

Rlej)= 3 s(n)h(i-n)s(n—k)h(G-n+k). (2.7)

ns-—w

If we define

s'y(n) =s(n)s(n-k)

h'y(n) = h(n)h(n+k)
and substitute these into (2.7), we have

R(kg)= 3 saln)ha(n)
We can see that R{k,j) is the convolution of s';{n) with h'x(n). So if we can
produce the time sequence s'.(n) and pass it through the linear, time invari-
ant filter with impulse response A'y(n), the output of the filter at time j will

be the autocorrelation function for lag k, R{k.j).
Producing the sequence s';(n) requires only multiplication and delay. To

find the z-domain transfer function for the fllter with impulse response

R (n) = h(n)h(n+k),
we recall that multiplication in the time domain corresponds to convolution in

the frequency domain. So if we denote the z-transforms of the sequences

h{n)-H(z)
and

h'y(n)-H'(z),
then the shifted sequence h(n+k) has the transform

h{n+k)-2z*H(z).
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Now A',(z) can be found [ 4 ]

' - k =1 Zy, k-1
(2) = H(z)*2*H(z) = 2ﬂ_jfH(‘u)}EI(v—)‘u dv. (2.8)
So once a window w(n)=h(-n) has been chosen, H(z) is determined and

H':(z) can be found by integration in the complex plane (see appendix A).

For example, let us take

3

(1-n)a™ n=<0
= 2.9
w(n) = {0 n>0 (2.9)
where 0<a<1. The corresponding h(n) is
(1+n)a™ n=0

h(n) = [o n<0

with z-transform
S 1
= P —
H(z) .Z-;oh(")z (T-az (2.10)

H(z) is a low pass filter with two coincident real poles. Substituting this H(z)

into (2.8) and evaluating the integral gives

(k+1)o* +(1-k)a*+2z !
(1~a2z71)3
(see appendix A). Note that each value of k corresponds to a different filter.

H‘b(z) = (2.11)

Filter Specifications
73(1)

H'o(1)

k=0 0.8804 -0.9604 1.000000
k=1 0.8804 0.0000 0.999796
k=2 0.9604 0.3201 0.999184
k=3 0.9604 0.4802 0.998215
k=4 0.8604 0.5762 0.956888
k=5 0.9604 0.6403 0.995205
k=6 0.9604 0.6860 0.993216
k=7 0.9604 0.7203 0.990869
k=8 0.9804 0.7470 0.988268
k=9 0.9604 0.7683 0.985309

Table 2.1. Filter specifications for H';(z)

lag  poles zero
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All the filters have three poles at z=a? and one real zero. Barnwell has found
that for an 8kHz sampling rate, =0.98 is the best choice [ 5 ]. This window

gave spectral errors comparable to a 240-point FIR Hamming window. For the
"% (1)

case a=0.98, the pole and zero locations and the relative DC gains H'_(l)-m
0

tabulated in table 2.1. The magnitude response of the filters is shown in
figure 2.4. Note the effect of the zero. For all the filters, the -3dB frequency is
25Hz.

A block diagram of an autocorrelator employing the IIR window of equa-
tion (2.9) is shown in figure 2.5. The autocorrelator requires a p stage delay
line, multipliers, and filters. Note that the temporary memory storage (RAM)
required is only 4(p +1)+p. The muitiplier in the IIR autocorrelator must be
approximately twice as fast as the FIR autocorrelator's multiplier. The IR

autocorrelator outputs values for R(k) every sample, this is useful in some

applications (see section 2.7).
The delay line, multipliers, and filters of figure 2.5 can all be imple-
mented as analog or digital circuits. A mix of analog and digital circuits will

be used in the autocorrelator described in later chapters.

2.4. LPC COEFFICIENT COMPUTATION - DURBIN'S RECURSION

Once the autocorrelation values for a particular frame have been com-
puted, the set of linear equations (2.4) must be solved to determine the LPC

coeflicients. The equations can be compactly written in matrix form
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[ R(0) R() RE@) ..ReE-1]|* [rRQ)
R(1) RO R(1).. . a2l |R(2)
R(2 R() RO .. . as| _ |R(3) (2.12)
Re-1) R@-d . .. RO ||n| k@)

or
R-a=r
where R is the pxp autocorrelation matrix, a is the px1 vector of LPC
coefficients, and r is the px1 vector of autocorrelation values. In equation
(2.12), the relation R{k)=R(—k) has been used, and the time dependence of
R(k) has been dropped for simplicity. The a4's could be found by inverting
3
the R matrix and multiplying both sides by R™!. This would require ?:’3—-+ 0(p?
operations {multiplications or divisions) and p? storage locations. For-
tunately, the autocorrelation matrix is syrmhetric. and the elements along
any diagonal are identical. Such a matrix is Toeplitz, and Levinson and Durbin
derived efficient recursion relations for solving such linear equations [ 8 ],[7].
The Durbin algorithm is the faster algorithm, requiring p? + O(p) opera-
tions and 2p storage locations.
Durbin's recursive solution to {(2.12) is
start: Eg=R(0)
m=0
loop: m=m+1

R(m)+S aPr-'R(m—i)
- =1
aal Em-1

an=km
a*=a* l=kpom}  1<ism-1
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s(n) s(n-k)

(1-k) a ¥*2

Figure 2.5. Block diagram of autocorrelator employing the IIR window of
equation (2.9)
En=(1-kR)Em -, (2.13)
if(m<p) go to loap;

else stop;
al" is the i** LPC coeflicient for an m-pole model. The loop evaluates the LPC

coefficients for all models of order less than or equal to p. The algorithm ter-
minates when the model of order p has been found. E,, the total squared
error {equation (2.3)), is computed in the Durbin algorithm (equation (2.13)).
The algorithm computes the LPC coefficients as well as the reflection
coefficients (the k;'s). The reflection coeflicients have a physical interpreta-
tion. As was mentioned in section 2.2, the LPC model of the vocal tract can be
viewed as a cascade of p acoustic tubes of equal length and differing cross-

sectional area. If the i acoustic tube of has area 4;, then
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A1 -4

ki = ————
CT AtA
In low-bit rate transmission of speech, the reflection coefficients are quan-
tized and transmitted because the LPC model is less sensitive to quantization

of the reflection coefficients than to quantization of either the autocorrela-

tion values or the LPC coefficients.

The LPC analysis fails to give a stabk; all-pole filter when |&;| >1 for any i
[ 2] If |&|>1, then ;<0 which contradicts the definition of E; as the total
squared error which must always be non-negative (see equation (2.13)). In
terms of acoustic tubes, |k;|>1 corresponds to either 4 <0 or 4;_;<0; neither
makes sense physically. It has been shown that the autocorrelation method
always produces a stable filter if all computations are performed with infinite
precision [ 8 ). In practice, the use of finite precision arithmetic can result in

an unstable filter.

At this point, it is worth noting that the solution of (2.12) for the LPC
coeflicients is not affected if all the autocorrelation values (k) are scaled by
a non-zero constant. For example, if we replace each k(k) in (2.12) with
cR(k), then the ¢ factors out to give cRa=cr which reduces to Ra=r. This

observation is of interest in later chapters.

The gain in the LPC model (b in equation (2.1)) has not been determined
because it is associated with the input u(n) which is unknown. But we may
assume the input u(n) is either an impulse §(n) (for voiced speech ) or sam-
ples of a white noise process (for unvoiced speech) with the property that the
energy in «(n) is unity. With that constraint, and the reasonable requirement
that the energy in the LPC model equal the energy in the speech, it can be
shown [ 8 ] that
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b2=E, = R(0)+~g‘a.)?(lc).

2.5. FREQUENCY DOMAIN INTERPRETATION OF LPC

The popularity and success of LPC is due to LPC’'s accurate modeling of
the resonances of the vocal tract. Early experiments determined that the
spectral peaks were perceptually far more important than spectral valleys [s]
The LPC.error criterion will now be considered in the frequency domain

where the reason for the accurate resonance modeling can be seen.
Recall the definition of the prediction error in equation (2.2)

e(n) = s(n)-5(n) = s(n)-Bas(ni)

which transforms to

E(z) = 1-2::‘3'* S(z) = A(2)S(z)
- 431

where A(z) is the denominator of the vocal tract model (equation (2.1))

G(z) = b _ . b .
A(z) - -€
. ‘ga‘z

Now the total squared error of (2.3) can be evaluated in the frequency domain
by invoking Parseval's Theorem

B = § ofn) = AJ 1) 140 = Ao 1517 A Yo

ns—=

which can be rewritten

2" juy| 2
E, = %;[n%:?%l?do (2.14)

From this equation, we can see that £, depends on the integrated ratio of two
spectra. Points where | G| is smaller than | S| make a larger contribution to
the total error than points where |G| is larger than | S|. Therefore, the error

minimization (2.14) can be viewed in the frequency domain as one which
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weights the modeling of spectral peaks more than valleys. So LPC models the

resonances of the vocal tract very well.
2.6. PRACTICAL CONSIDERATIONS IN SPEECH ANALYSIS

2.6.1. PRE-EMPHASIS

The speech production process was explained earlier. A long-time spec-
trum for continuous speech shows a roll-off of approximately -8dB/octave
above 500Hz [ 10 ]. This is typical of voiced sounds. The speech spectrum is
the product of the excitation's spectrum, the vocal tract transfer function,
and the lip-to-air radiation transfer function. The glottal excitation for voiced
sounds has a -12dB/octave slope at high frequencies. The vocal tract has
unity transfer gain at each resonance and the lip-to-air radiation has a
+8dB/octave characteristic at high frequencies. The net effect is a

-6dB/octave roll-off at high frequencies as shown in figure 2.8,

To achieve the most a;ccurate model of the spectral peaks, it is advanta-
geous for all spectral peaks to have the same magnitude. Otherwise, the LPC
error criterion will cause the lower arn'plitude peaks to be modeled much
more poorly that the higher amplitude peaks. Therefore, the speech
waveform is pre-emphasized before LPC analysis is begun. The pre-emphasis
is in the form of a simple, one zero filter (zero at 500Hz) which removes the
-8dB/octave roll-off present in typical voiced speech spectra. Pre-emphasis

reduces the likelihood of instability in the LPC model G{z) [ 2 ].

Ideally, pre-emphasis is applied only to voiced speech since unvoiced
speech does not have the -8dB/octave roll-off characteristic (because the
excitation for unvoiced speech doesn’t have the -12dB/octave roll-off). But

usually a constant pre-emphasis filter is used for all speech, voiced and



19

up SPEECH

-
EXCIYATIO'.‘ VOCAL TRACT p» RADIATION -

Time Domain

mm-—-

Figure 2.8 Construction of the speech wavefofm in time and frequency
domains
unvoiced. The main reason is that unvoiced speech has a very simple spectral
shape associated with it, hence modeling is fairly simple and is not hampered
by pre-emphasis. Furthermore, the voiced/unvoiced decision is not an easy
one; and the modeling error resulting from not pre-emphasizing a voiced seg-
ment of speech is much larger than the error resulting from pre-emphasizing
an unvoiced segment. Also, adaptive pre-emphasis requires additional

analysis of the speech to determine the optimal pre-emphasis fliter.

2.8.2. DYNAMIC RANGE

Another concern is the dynamic range of the incoming speech. With a
particular speaker, the speech has a dynamic range on the order of 30dB.
When different speakers and slight variations in the speaker-to-microphone

distance are allowed, the dynamic range increases to 40dB. If the incoming
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speech is quantized by a linear analog-to-digital converter (ADC), 7 bits of
resolution would be necessary. More bits would be used in practice to minim-

ize clipping and quantization noise; a 10 or 12 bit ADC is commonly utilized.

To eliminate the need for a 10 or 12 bit ADC at the input, an automatic
gain control (AGC) circuit should be used. A properly designed AGC would
decrease the dynamic range of the speech considerably without affecting the
speech’s spectral characteristics and thereby relax the ADC requirements. An
8 bit ADC is sufficient if an AGC is employed (see chapter 4). The AGC would
scale all the speech samples in a given frame and hence the frame's auto-
correlation values R(k). As was noted in section 2.4, scaling all the autocorre-

lation values does not change the resulting LPC coefficients.

2.6.3. ANTI-ALIAS FILTER

Before sampled-data processing can begin, the speech must be bandlim-

ited to -'L- If the bandlimiting filter causes a large attenuation of the speech

8
2
spectrum below sz— some of the LPC parameters will be wasted modeling this
% This is undesirable. So a high order filter or elliptic

S

filter with a sharp roll-off characteristics and cutoff frequency close to —2'-'—13

attenuation near

preferred. Unfortunately, such a filter introduces significant phase non-
linearity. But as can be seen from equation (2.14), the LPC error criterion
depends only on the magnitude of the spectrum of the incoming speech - not

on the phase.
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2.7. OTHER APPLICATIONS OF THE AUTOCORRELATOR

Autocorrelators have many uses in speech processing. In addition to LPC
analysis for speech transmission, some speech recognition systems use an
autocorrelation-based LPC distance measurement between sounds. The
Itakura-Saito measure [ 11 ] requires storage of a reference template for
each sound, the template is the sound’s LPC coeflicient vector an, (see equa-
tion (2.12)). When an unknown sound is uttered, its autocorrelation matrix R
is found (see equation (2.12)), and the distance between the unknown sound
and each reference template is computed as

alsRany | (2.15)
a’Ra

a’ is the transpose of a The denominator is the minimumn LPC error E,

d= 1010g[

achievable for a p-pole model of the unknown frame (see equation (2.3)) [ 8 ].
The numerator represents the total error £'p obtained if the unknown frame
of speech is modeled by the stored template a,,,. Therefore the numerator
will always be greater than or equal to the denominator, so the ratio is
greater than or equal to one and therefore d=0. This distance measure will
equal zero only if a,,=a. i.e. when the unknown speech and the reference

template have identical LPC spectra.

Pitch detection is an extremely difficult problem, and pitch detection
errors are more often responsible for poor quality synthetic speech than are
vocal tract modeling errors. The best pitch detectors rely on a variety of
pitch detection techniques, one technique is the autocorrelation technique
[12]. The autocorrelation function, if computed over a time much larger than
the pitch period, will be periodic with period equal to the pitch period. This
periodicity is easily measured; a simple peak-to-peak distance measurement

on the autocorrelation function reveals the pitch period. The autocorrelation
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function should be computed every sample to find the pitch period, and an IIR
autocorrelator is an excellent choice for such an application. Accuracy of the
autocorrelation values is not crucial, so simpler filters (e.g. one pole filters)

for A',(z) could be used.

The voiced/unvoiced/silence decision used in pitch detectors, speech
recognition systems, adaptive pre-emphasis subsystems, and telephone mul-
tiplexing systems can be made very accurately using the first few autocorre-

lation values R(0), (1), R(2) and a zero-crossing detector [ 13 ].



CHAPTER 3

CIRCUITS FOR THE AUTOCORRELATION LPC SYSTEM

Circuitry for implementing a nine pole autocorrelation LPC analysis sys-
tem will be described in this chapter. The autocorrelator employs the IIR win-
dow discussed in chapter 2. The system is a mix of analog and digital circui-
try. A completely digital implementation of the LPC system - excluding the
input antialias filter - would be possible, either by designing a custom
integrated circuit (IC) or by programming a general purpose digital signal
processor. But combining analog MOS switched-capacitor techniques and digi-
tal MOS circuitry potentiaily offers a lower power, smaller area integrated cir-

cuit approach.

In this chapter, circuits are presented for each major block of the sys-
tem, and their operation is described. So as not to cloud the functional
descriptions, non-idealities associated with the IC implementation are not

considered until next chapter.

3.1. SYSTEM OVERVIEW

A block diagram of the complete system is shown in figure 3.1. The
‘speech first passes through a bandlimiting, low pass filter. The filter is a fifth
order elliptic which has a -3dB cutoff frequency of 3.4kHz, 1dB of passband
ripple, and includes a zéro at 500Hz for pre-emphasis. The bandlimited,
pre-emphasized speech passes through an automatic gain control circuit
(AGC) and then to the autocorrelator where the autocorrelation values for the
present frame are computed. The ten autocorrelation values are

transformed to LPC coefficients by a small microprocessor system. The

23



Figure 3.1. LPC system block diagram

speech is sampled at a rate of f,=8kHz the autocorrelation values are sam-

pled at a frame rate of 80Hz.
3.2. THE AUTOCORRELATOR

3.2.1. CIRCUIT OPTIONS

An autocorrelator using the IIR window of equation (2.9) requires delay,
multiplication, and flitering. An analog delay line of length p can be con-
structed by cascading p switched-capacitor (SC) sample-and-hold circuits.
Such a delay line requires p operational ampliflers (op amps). Time multi-
plexing of one op amp and p capacitors to implement a p stage delay is possi-
ble [ 14 ]. If the signal to be delayed is available in digital form, a RAM of p

words will function as a p stage delay line.
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Fast, accurate multiplication of signals is another requirement of the
autocorrelator. A digital multiplier provides exact multiplication of two digital
numbers. Multiplication speed can be directly traded for IC area - a parallel
multiplier is faster and larger than a serial multiplier. A multiplying digital-
to-analog converter (MDAC) provides accurate multiplication of a digital sig-
nal with an analog signal; the product is in the form of an analog output vol-
tage. The time per multiply for an MDAC is dependent on the speed of the op
amp used and the type of MDAC (e.g. serial or parallel). Analog continuous
time multipliers which multiply two analog signals and produce an analog pro-
duct as output are also available. The digital multiplier is compatible with a
digital delay line, the MDAC with either a digital or analog delay line, and the

analog multiplier with an analog delay line.

The filters required for the autocorrelator are third-order low pass flilters
with a cutoff frequency of 25Hz. Digital filtering is required if a digital multi-
plier is chosen to multiply the speech signals. If either the MDAC or analog
multiplier is chosen, the signal to be filtered will be analog. Either continuous
time or discrete time analog filters can be used, but a 25Hz cutoff frequency
would require a much larger chip area in a continuous time (resistor-
capacitor) implementation. SC filters are discrete time filters and hence are
described by z-domain transfer functions, so they can accurately realize the
transfer functions H'p(z), 0<k<9, required for this system (see equation
(2.11)). With a sampling rate of 8kHz, the 25Hz low pass filters can be
integrated as SC filters in a reasonable amount of silicon area. (For further

discussion of analog circuits for signal processing, see appendix B.)
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3.2.2. THE SELECTED CIRCUITS

The autocorrelator must provide adequate accuracy for speech analysis.
Also, the goal of integrating the autocorrelator onto an IC must be con-
sidered. The above discussion breaks down to three basic choices - fully ana-
log, fully digital, or some combination thereof. The fully analog autocorrela-
tor - analog delay line, continuous time analog multiplier, and SC ﬁlter; -
could be constructed with only four op amps using muitiplexed op amps for
the fllters and delay line. An ADC would be required to digitize the analog
autocorrelation values for the microprocessor which implements the Durbin
algorithm. A fully digital approach would require an ADC to digitize the incom-
ing speech for processing. Previous work on autocorrelation LPC with finite
word length arithmetic recommends 16 bit by 16 bit multipliers and 32 bit
intermediate results to minimize the eflects of quantization and truncation
[15].[ 18 ]. A fast parallel multiplier could be multiplexed to handle all compu-
tations. Such a digital autocorrelator would essentially be a custom designed
digital signal processor with a hardware multiplier and very limited instruc-
tion set. A hybrid approach - consisting of an MDAC, digital delay line, and SC
filters - could be constructed with only three op amps because the MDAC can
be incorporated into one of the SC filter sections as a variable input capacitor
(see chapter 8 for more on this). Again, an ADC is required to digitize both

the incoming speech and the autocorrelation values.

The hybrid approach potentially offers the lowest power, smallest area IC
of the three options, as well as high accuracy and simple control logic. This
approach was chosen for integration of the autocorrelator. Circuits for the
MDAC and filters are considered below. Accuracy and circuit limitations are

discussed in the following chapter.
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The speech is sampled at an 8kHz rate, so the time between samples is
125useconds. This is a very long time when compared to typical op amp set-
tling times which are on the order of microseconds. Therefore it is possible
and advantageous to employ time multiplexing of the MDAC and filters for the
computation of the autocorrelation values. Time multiplexing results in the

most efficient use of integrated circuit area.

The autocorrelator block diagram is shown in figure 3.2. The pre-
processed speech is sampled at f,=8kHz and held for the analog-to-digital
converter (ADC) and multiplying digital-to-analog converter (MDAC). The digi-
tized sample sgz(n) (i.e. s(n) digitized) is stored in RAM along with past sam-
ples sy(n-k), 1=k<9. The 125usecond sampling period is broken into ten
12.5usecond time slots. During the k** time slot, the sample sq4(n—k) is read

out of RAM and presented as the digital input to the MDAC where it is

SPEECH __ DIGITAL DELAY
IN ~» A/D H LINE (RAM)

S.C S.C. S.C.
L.PF Y JLPFE ] JL.PF

Figure 3.2 Autocorrelator block diagram
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multiplied by the MDAC's analog input s(n). The analog output of the MDAC,
s(n)s¢(n—-k), is multiplexed to the k** SC filter (with transfer function
H'x(z). equation (2.11)) which implements the windowing and summation for
the computation of R(k). This procedure is carried out for each of the ten

time slots, 0sk<9; then the process is repeated for the new sample s(n +1).

3.2.2.1. MDAC

A four-quadrant SC MDAC for the autocorrelator is shown schematically
.in figure 3.3. The MDAC is "parallel” rather than “serial” - multiplication
occurs in one clock cycle for B bits rather than B cycles for B bits. The ana-
log input V¥, is connected to the analog sample-and-held voltage s(n). The
digital input word s4{(n—k) in offset-binary format controls the switches S,
through Sg. The MDAC is controlled by two non-overlapping clocks ®; and &,

RESET
o
s G=C =2%c
L P I
CQ'ZC
Vm _Kos___sz/o__l p—
l fn . — Vout
= .
_s.a/o.—l
Cgﬂz Cc
Vin—o .

Flgure 3.3. Four-quadrant switched-capacitor MDAC
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(i.e. ®,-$,=0, see figure 5.8.) During &,, the reset switch is closed and switch
S; is connected to ground, so the feedback capacitor Cy, and the offset capa-
citor G, discharge. The digital input word is presented, with switch S; turning
on and connecting capacitor C; into the circuit if the j th bit By is alogical "1".
The input switch S;, connects ¥, to one side of the selected capacitors; the
other side of the capacitors is held at zero volts because the op amp iﬁverting
input is a virtual ground. So the selected capacitors charge to ¥,. On §,, the
reset switch across Cy, opens and switch Sy, connects the selected capaci-
tors to ground, forcing the stored charge onto Cj,. Simultaneously, C; is con-
nected to Vi, forcing a charge @=C; Vi, onto Cpy. The output voltage after

the op amp settles is

f%%‘ﬁ
i=1

Cre

V.
n

VM =

which reduces to

i@?-? [ I
Vous = =2 o5 Via = Lngjzj-B - 1JV,-,.

for a binary weighted capacitor array. As can be seen from the above equa-
tion, capacitors C; through Cp with Cyy act as a variable gain amplifier, the
gain being controlled by the digital word s;(n—k). Capacitor C, is switched
out-of-phase with the other capacitors, thereby providing the half-scale offset

required for a four-quadrant MDAC.

3.2.2.2. FILTERS

Switched-capacitor filters are analog, sampled-data filters. For the auto-
correlator, sampled-data fllters are required as discussed in chapter 2. The
z-domain transfer function for the filters was given in equation (2.11). There-

fore, the filters can be implemented in SC technology once an appropriate
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configuration has been found.

The filters required each have three real poles at z=a? and a real zero at

z= %az. O=ks=p. A SC filter which implements a real pole and real zero is

shown in figure 3.4. The circuit is controlled by two non-overlapping clocks &,
and &, (i.e. $,"$,=0.) On §,, the switches are connected as shown in the figure.
On &, the switches are flipped to the other positions. Writing charge transfer
equations at two consecutive sample times, n and n+1, gives the time-

domain relation

Ve (n#1) = -bf!fc'—vm(nn%%un(mn--cﬁfvh(n) @.1)

assuming that V,,, is sampled on §; and that ¥, changes only on the rising

edge of §,. Transformation of (3.1) into the z-domain gives

L1

C, Ces
= —

[
1

C"_QI,L 2

Figure 3.4 Switched-capacitor fllter, real pole and real zero

Vin e=deQ




31

Veut(2) . G+G — G+G

= - : (3.2)
Vin(2) Cro+G - Cp
Cro+G
Css N
Note that the pole location is ;— the zero location is ————— and the DC
P CrtG G+
Vo (1
gain is L“S—)—c —i. Since passive capacitor values are non-negative, the
Vin (1) G

pole and zero locations for this configuration are in the interval [0,1]. There-
fore, this filter can realize H';(z) for any k>0 (see table 2.1). The case k=0
requires a negative real zero which can be achieved by reversing the switch
phasing of §. If the phasing of ( is reversed, the sign of the § term in equa-
tion (3.2) is inverted:

Cro —-G+G G
Vo(n+1) = =LV (n)+ —=—2V (n +1) ==V (n),
or in the z-domain
G
1-———2"!
Vin(2) CotG G
Cro+Cr
The pole location is the same as the previous circuit. The difference is the
C.
zero location which is now T _’ o The zero can be any real value excluding
t

the interval [0,1]. So the two circuits, identical except for the switch phasing

of ¢, offer zero locations over the entire real axis.

A circuit with a transfer function identical to equation (3.2) but with
different switch timing than figure 3.4 is shown in figure 3.5. This circuit
switches the feedback capacitor Cpy out of the feedback loop rather than ..
Likewise, C; is switched out of the circuit rather than §. On $,, the reset
switch resets the op amp, (; is connected to ground, and G, and C, are float-

ing. On §,, the reset switch is open, (; is connected to the input, and Cp, and
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C; — Vout

Figure 3.5 Switched-capacitor filter, one pole and one zero, different switch-
ing scheme

C, are connected into the circuit. Again, notice that by simply inverting the
phasing on the input switch for , the input voltage Vi;(n+1) is introduced
with a sign inversion. This changes the transfer function of the filter from
(3.2) to (3.3).

Time multiplexing of the op amp of figure 3.5 for multiple filters is now
possible since Cy, and G hold the state of the filter (figure 3.6). When Cpy,

and G, are floating, a different pair of capacitors, Cy,, and G, . may be
switched into the circuit so that another filtering function can be performed.
Each pair of capacitors, Cry, and C,, form one channel of the multiplexed
filter section. There are ten channels per op amp to implement the ten fllters

required for the autocorrelator. Three multiplexed fllter sections must be

cascaded to implement the 3 pole, one zero transfer functions required
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(H(z) of equation 2.11 ).

For the purpose of illustration, let §,=%5=%; and RESET=9, in figure 3.8.
The timing is as follows: during ,, the reset switch is closed and discharges
G, all Cpy and C; capacitors are floating. During ®;, the reset switch is open,

the input switch changes position, and one set of capacitors C,,,. and C’c are

connected into the circuit. § and C; transfer charge onto Cy, +G.. The filter

transfer function is

1o
—
Veut(2) _  CatG CatG
Vin (2) Cﬂ.‘l-C',. Cfbk -1 '
-
C,.,.+C,.

and Cyy,,, are connected into the cir-

This clocking repeats, but on $,, Gt

cuit. G, and Cy,, are now floating. If ten sets of capacitors are stacked on one

$¢8 $A $A ¢8
2 o

RESET
/o

IN——L“_ |
[ "7

Figure 3.8. Multiplexed version of figure 3.5
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Capacitor Ratios for SC Filters

log transfer pole sero L0 &
function G G

=0 equation (3.3) 0.9604 -0.9604 24.25 0.4899
=1 equation (3.2) 0.9604 0.0000 24.25 0.0000
k= equation (3.2) 0.9604 0.3201 24.25 0.4708
=3 equation (3.2) 0.9604 0.4802 24.25 0.9238
k=4 equation(3.2) 0.9604 0.5762 24.25 1.3596
k= equation (3.2) 0.9604 0.8403 24.25 1.7801
k= equation (3.2) 0.9804 0.6860 24.25 2.1847
k=7 equation(3.2) 0.9604 0.7203 24.25 25753
k=8 equation (3.2) 0.9604 0.7470 24.25 2.9526
=9 equation(3.2) 0.9604 0.7683 24.25 3.3159

Table 3.1. Capacitor ratios for implementing H',(2)

op amp, one pole-zero pair for the ten filters H',(z), 0sk=<9, have been real-
ized. If the C, capacitors are eliminated, one pole for ten fliters is realized.
The filters A'.(2) can be efficiently constructed using one multiplexed pole-
zero section followed by two multiplexed pole sections. As noted earlier,
changing the switch phasing of § during the k=0 time slot results in a sign
reversal of the ( term in the transfer function. This is necessary to imple-

ment the negative real zero for filter H'y(z).

The capacitor ratios for the filters H',(2z) are listed in table 3.1. Since all

channels of a multiplexed filter section share the same (. and G, all have the

same DC gain which is %{1):—%: As was noted in chapter 2, the DC gain
tn

for the filters H'.(z) is different for each k. Rather than have a different §



35

for each fliter, the different DC gains are implemented by scaling in the

microprocessor (see section 4.1.7).

3.3. DURBIN RECURSION MICROPROCESSOR

The analog autocorrelation values output by the autocorrelator must be
transformed into LPC coeflicients or reflection coeflicients by the Durbin
recursion algorithm (see section 2.4). For a 9 pole LPC model, the recursion
involves 100 operations (multiplications or divisions) each frame. Accuracy
considerations necessitate digital processing. Previous investigations have
reported a need for 18 bit muiltiplies and 32 bit intermediate results in the
recursion algorithm to minimize error due to finite word arithmetic [ 16 1,[15].
Given this, only 18 bit microprocessors with a multiply instruction were

considered, and the Intel 8088 was chosen.

The microprocess& system is shown in figure 3.7. To digitize the analog
autocorrelation values, an ADC is included. The memory requirements of the
Durbin algorithm are minimal and are easily handled by a 256 by 8 bit RAM.
The program size was estimated to be less than 1k bytes, so a 1k byte EPROM
was chosen. Speed, word length considerations, and the program will be dis-

cussed in the following chapter.

3.4. AN AUTOMATIC GAIN CONTROL CIRCUIT

Ideally, the input speech would generate an R(0) (analog voltage) equal to
the ADC's full scale input at every frame; this would minimize the error due to
the quantization of the autocorrelation values. The magnitude of R(0) has
twice the dynmaic range of the speech because R(0) is the short-time energy
of the speech waveform which is proportional to the speech amplitude
squared. The dynamic range of the input speech is typically 30dB, resulting
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PROGRAM
ROM

MICROPROCESSOR

Figure 3.7. Block diagram of 8088 system

in a 80dB range for R(0). To minimize the dynamic range of R(0), and
thereby reduce errors due to quantization of the autocorrelation values, scal-

ing of the input speech at each frame is necessary.

An automatic gain control circuit (AGC) for this purpose is shown in
block diagram form, figure 3.8. The speech passes through two paraliel paths.
The upper path delays a frame of speech while the lower path computes an

estimate of VR(0) for the frame. Then, as the speech passes out of the delay

. . 1
line, it is scaled by g =< s
¢

The lower path est;imates VR{0) rather than compute it exactly. An
exact computation might seem in order, but the IIR window used in the auto-
correlator overlaps multiple frames and therefore exact computation is nei-
ther possible nor worthwhile. Furthermore, the square root operation is not

easily realized. To simplify matters, VR(0) is estimated using the absolute
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=(n)
DELAY LINE

LPF
b(n)

Figure 3.8 Block diagram of autornatic gain control circuit (AGC)

value function and filtering,

W= L lsm)win=g)= 3 Ist)lrG-n).
where w(n) is the same two pole window function as is used in the autocorre-
lation computation, equation (2.8), and w(-n) = h(n) as in chapter 2. The
use of the same window function should generate an estimate of VX{0) which
is fairly Accurate since R(0) and ¥, are based on the same weighted speech

segment.

¥, must be scaled to give an estimate of VZ(0). To find the scaling fac-
tor, we make use of statistical data on the amplitude distribution of speech.
Speech has an amplitude distribution which is very closely approximated by
the Laplacian distribution [ 17 ]
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_ 1 V2|s| l
P(S) - V‘go’ exp[ 0,
where o, is the root mean square value of speech. If we take the expected
value of ¥,

E(%)= ¥ E(ls()DhG-n) = E(ls(m)]) & a(-n) = E(|s(n)])H(1)

nS~m n=-w

because i h(j—n) is the DC gain of the filter H(z), A(1) (DC or OHz

NS~

corresponds to z=1), E(|s(n)|) is found by integrating

Os

E(ls())) = flslp(s)as = Z
If the speech signal is assumed ergodic over a frame (12.5msec), then

VR0, so £(¥)»YEOAW).

Not only should the AGC scale the speech in an attempt to give R(0)

equal to the ADC's full scale input, it should set the gain so as to minimize
clipping at the ADC. Clipping of the speech generates errors in large ampli-
tude samples which heavily contribute to the autocorrelation values. Under
the Laplacian distribution assumption, speech has the property that the
amplitude is greater than 40, only 0.357% of the time because

“’
Prob[|s(n)|>40,]=1-Prob[-40,<s(n)<4o,]=1- f p(s)ds=0.0035.
)

. N 1_ A1) yl . .
S 3
o if the gain is set to 5—:4 \/EV{, 1o, the speech will be clipped about

0.35% of the time, so the error due to clipping will be negligible.

If the analyzed speech is to be reconstructed, the AGC gain should be
stored and transmitted for use in the synthesizer. For such situations, an ADC
is included to quantize the present scale factor g. Then, to handle the scaling
of the speech, an MDAC is employed in the feedback loop of an op amp to
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implement division. Only a small number of bits of resolution is required to
give adequate performance in the AGC; five or six bits is sufficient [ 18 ]. A
companding ADC with logarithmic transfer characteristic is preferred rather
than a linear ADC. In any case, the AGC gain should be changed at the frame

rate of 80Hz.

A feedback AGC system, without the delay line, was considered for this
application. This would greatly simplify the AGC and make an IC realization
much easier and smaller in area. A feedback AGC uses the last frame's
energy, R(0), to estimate the scaling factor for the present frame. If the sig-
nal does not vary rapidly from frame to frame, this would work very well.
Unfortunately, speech changes very rapidly from frame to frame. To illus-
trate this point, let us consider a segment of background noise proceeding
the word 'peat’. The background noise fills frame 1, and the /p/ sound begins
at the start of frame 2. The energy in the frame of background noise will be
very low, so the feedback AGC will set the gain to be very large for frame 2.
The result is excessive clipping of the /p/ sound as it is scaled by the AGC.
This causes a large error in the computation of the autocorrelation values for
frame 2, resulting in an incarrect LPC model or an unstable model. When syn-
thesized, the /p/ sound cannot be distinguished from a /b/ or /ee/, and the
word 'peat’ can not be distinguished from 'eat’ or ‘beat’. This is a common
occurrence - plosives are transient in nature and are heavily clipped by a
feedback AGC. Setting the gain for frame 2 based on the average energy in
frame 2 eliminates this problem.

An AGC of the type described would be very useful as a speech pre-

processor, whether the subsequent processing is analog or digital. The AGC

reduces the bit requirement of the following ADC and minimizes quantization
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error at the ADC which might generate unacceptable errors in computation.



CHAPTER 4

DESIGN OF THE SYSTEM

In the last chapter, circuits were chosen for implementing the autocorre-
lator, the AGC, and the Durbin recursion algorithm; but many design details
such as the number of bits in the MDAC and the op amp design were not con-
sidered. The design details fall into two groups. Decisions such as the number
of bits in the MDAC and the quantization of the autocorrelation values are
speech related. On the other hand, design of the op amp and the SC circuits is
independent of the speech processing application; the SC circuits should be
designed to give accurate voltage transfer and fllter characteristics. Com-
puter simulation was used extensively during the design phase. The op amp
and other analog circuits were simulated on the circuit simulation program
SPICE [ 19 ]. Speech related simulations were done by running sentences of
digitized speech through specially written programs.

4.1. SPEECH RELATED DESIGN

4.1.1. SIMULATIONS

A high quality microphone {Shure model SM-10) and 12 bit ADC were used
to digitize sentences spoken by a variety of speakers. The sentences and
speakers are listed in appendix C along with the source code for the speech
simulation programs. The main program, Generateauto.c, simulates figure
3.1. This program takes speech as input and generates the autocorrelation
values for each frame. It also features optional control of various aspects of

the autocorrelator design such as AGC pre-processing, quantization of the

41
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MDAC input, and quantization of the autocorrelation values.

After the speech is analyzed, it can be synthesized and played back by
the program Speakpitch.c which is a direct-form LPC synthesizer (all compu-
tations in Speakpitch.c use floating-point arithmetic). For synthesis, the pitch
periods are estimated by a Gold-Rabiner pitch detector { 20 ]. Intelligibility is
a subjective but important criterion which is applied to the synthesized
speech to determine the quality of the analysis. Alternatively, the autocorre-
lation values can be compared to a reference set of autocorrelation values
using the Itakura-Saito spectral distance measure, equation (2.15). The pro-
gram spec_dev.c computes the spectral distance between two sets of auto-
correlation values. This spectral distance measure, or spectral deviation from
the reference, is extensively employed below to quantify the effect of quanti-
zation and other modifications to the LPC analysis discussed in chapter 2.
Spectral deviation and the number of unstable frames are plotted versus
design variables. This is an objective method of measuring errors. A spectral
deviation of 3dB is considered to be the acceptable limit. Unfortunately, spec-
tral deviation is not directly related to perceived errors. Large spectral devi-
ations at high frequencies are not as objectionable as the same amount of
spectral deviation at lower frequencies (especially near the first resonance).
Nonetheless, 3dB of spectral deviation is generally considered tolerable
(slight perceptual error); 1dB of spectral deviation is usually undetectable
[21).(22]

Occasionally the LPC analysis results in an unstable fliter modeling the
vocal tract due to errors in computation (e.g. quantization and truncation).
The effect of an unstable frame on the quality of the synthesized speech is not

easily determined. If an unstable frame is isolated (i.e. surrounded by long
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spans of stable frames), it can be replaced by a stable LPC model either by
repeating the last stable frame or by interpolating the reflection coeflicients
of the neighboring frames. If a string of consecutive unstable frames occurs,
it is difficult to find a stable model to replace them, and the result is an audi-

ble discontinuity in the synthesized speech.

4.1.2. DOWNSAMPLING

Each filter A';(z) (equation (2.11)) is realized by cascading three first
order low pass filter sections; each section has a cutoff frequency of 50Hz. As
such, the third low pass fllter section is presented with an input signal with
very little signal power above 50Hz. This makes downsampling at the third
filter section an attractive possibility. Downsampling reduces the computa-
tional workload in a digital approach and reduces capacitor ratios - and hence
chip area - in a SC ﬁlt;r approach. This is a modification to the system which

seems worthwhile.

A downsampling factor of ten was considered because it is convenient to
implement. If the speech signal is spectrally flat, downsampling by a factor of
ten would introduce aliases in the filter's passband (OHz - 50Hz) that are 47dB

below the baseband signal.

The simultation program includes an option for downsampling in the
third filter section. This was used to test the effect of downsampling by a fac-
tor of ten. The results are tabulated in table 4.1, row 1. The units of spectral
deviation are millibels (mB), 1mB = 0.01dB. Note that the errors contributed

by downsampling are extremely small and are perceptually undetectable.

The downsampling by a factor of ten means the third fliter section

operates at a sampling rate of 800Hz. To achieve the desired cutofl frequency

of 50Hz, the capacitor ratio -%-Lis only 2.04. This is much smaller than the



Spectral Deviation Results
test condition mean standard number total
(mB) deviation of number
(mB) unstable of
frames frames

downsampling by factor of
10 at third filter section 0 6 0 4239

AGC pre-processing 6 19 0] 4239

AGC pre-processing and
truncation of R(k) to 11 32 55 4239
nearest integer

Truncation of R(k) to
nearest integer without 143 184 2527 4239
AGC pre-processing

Table 4.1. Spectral deviation results for various test conditions

ratio required for the first two filter sections which operate at an 8kHz sam-

pling rate - they have %”—:24.25.

4.1.3. EFFECT OF AGC ON STABILITY

An AGC is very important in this system - it relaxes the bit requirement
of the MDAC and the ADCs. But an AGC can cause instability in the LPC model
if the AGC changes its gain too often and/or too much, resulting in a time
waveform which is difficult to model. The effect of the AGC was simulated, and
the results are presented in table 4.1, row 2. Note that the AGC works very
well because the spectral deviations are very small. The scaled speech (out-
put of the AGC) was played back through loudspeakers and found to be
extremely intelligible, only lacking the dynamic range of the original speech.

If the autocorrelation values are truncated to the nearest integer prior
to the Durbin recursion algorithm, as is the case in this LPC system, the

results are not as good (table 4.1, row 3). The larger spectral deviations and
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the unstable frames are caused by quantization of the autocorrelation values.
Such quantization is unavoidable because the autocorrelation values must be
digitized for the microprocessor which handles the Durbin recursion algo-
rithm. Still, the number of unstable frames is fairly small, only amounting to
1.2% of the frames analyzed. This should be contrasted with the results
obtained without the AGC but including the integer truncation (table 4.1, row
4). Without the AGC, the large dynamic range of the speech results in a large
dynamic range for R(0). Small values of F(0) result in heavy quantization of
all the autocorrelation values and can cause large errors or instability in the
LPC model. Figure 4.1 shows the distribution of R(0) with and without AGC
pre-processing. A comparison of the graphs clearly demonstrates that the

AGC is beneficial.

4.1.4. MDAC BITS

The number of bits required in the MDAC should be minimnized since for a
SC MDAC the area of the capacitor array roughly doubles for each bit
required. So, from an area standpoint, a minimum number of bits is desir-
able. Also, the RAM delay line size increases as the number of bits increases.
Furthermore, the ADC is simplified and conversion time is reduced as the
number of bits in the MDAC decreases. A good AGC reduces the number of
bits required by keeping the signal amplitude large.

The simulation program Generateauto.c provides optional control of the
number of bits in the MDAC. Due to quantization of the speech onto the com-
puter, the MDAC is simulated by a 12 bit by B bit multiply where 1sB5<12.
This is not the same as the MDAC which multiplies an analog voltage (ideally
represented as a floating point quantity) and a finite length word. But quanti-

zation of both the multiplier and the multiplicand in the computer simulation
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does provide an upper limit on the error due to quantization in the MDAC.
Let's consider the problem of quantization in the computation of

R{k)= i s(n)s(n—k)w(n)w(n-k). Since the delayed speech is quantized

ne—w
prior to multiplication in the MDAC, s{(n—k) should be replaced by
s¢(n—k)=s(n—k)+q(n—k) where g{(n —k) is the quantization error due to the
ADC. For an ADC which rounds the analog input to the nearest quantization

level, g{n) bhas a uniform probability distribution over the interval

—-2—13-sqs-2-13—. If this quantized value is used in the autocorrelation computa-

tion, we get an approximation to R(k):

Ry(k) = i s(n)sqg(n—k)w(n)w(n-k)

N =—e
o

= ) s(n)[s(n—-k)+q(n—k)w(n)w(n-k)

n=-e

= f: s(n)s(n-k)w(n)w(n-k)+ i s(n)g(n-k)w(n)w(n-k)

nI—w n=—o

= R(k)+ 3 s(n)g(n—k)w(n)wln—k)

nA=—w

where R,(k) is the approximation to R(k). The quantization error g is a ran-

2—-83

dom variable with E(g)=0 and Var(g)= 3 Furthermore, assuming the

speech waveform traverses many quantization levels, g(n) is independent of
g(m) for m#n and q is uncorrelated with s [ 4 ]. If we assume a given
speech waveform {s(n )|, then only g is a random quantity. The random vari-
able R,(k) has expected value

E[Ry(k)] =E[R(Ic)+ f: s(n)g(n—k)w(n)w{n-k)

ns—w

= R(lc)+ELi s{n)q(n —k)w(n)w(n-k)]

=—
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=R(k)+ 3 s(n)E[g(n—k)hwinywn-k)

nx~w

= R(k),
so Ry(k) is unbiased, and variance

Var[Ry(k)] = Var|R(k)+ Y s(n)q(n—k)w(n yw(n—k)

ns—ew

= WwLi s(n)g(n—k )w(n)'w(n—k)]

S~

= 3 Ver[s(n)g(n—k)w(n)w(n-k)]

ne—..

= f: s¥(n)var[q(n—k)]win)wn—-k)

n=—w

= Varlg(n—k)] & s*n)uwi(n)w?n—k) « Var(q)R(0).
The proportionality stems fro':'n the observation that the final summation
looks just like the expression for R(0) if w(n) is replaced by w(n)w(n —k)
(see equation (2.8)). So the final summation expresses the computation of
R(0) when a different window, w(n)w(n-k), is used. The standard deviation
of Ry(k) is
08, = VTG (R) « VTGO

and the ratio of the desired output, R(0), to the standard deviation of the

actual output, OR, is
R(0) o R(0) = VR(0)
or,  VVar(g)R(0) VVar(q).

This ratio, which is similar to a signal-to-noise ratio, increases as R(0)
increases, so a large R(0) is desirable. Scaling the input speech by using an
AGC is one possible way to achieve a consistently large R(0). The ratio also

2-23
3

increases if Var(g)= decreases, this occurs if the number of bits B in

the ADC is increased.
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Spectral Deviation Results
MDAC bits mean standard number total
(mB) deviation of number
(mB) unstable of
frames frames
4 368 338 1302 4239
5 205 251 1105 4239
8 118 173 820 4239
7 65 128 383 4239
8 34 94 170 4239
9 14 89 41 4239
10 5 34 5 4239
11 2 24 0 4239
12 1 17 0 4239

Table 4.2 'Spectral deviation results versus MDAC bits

Simulations with the number of MDAC bits as the independent variable
were performed on all the sentences in the data base to determine the
minimum number of bits acceptable. The results are tabulated in table 4.2
and graphed in figure 4.2. In the uﬁper graph, the mean spectral deviation is
plotted versus the number of MDAC bits with a solid black line; the mean plus
three times the standard deviation of the spectral deviation data (mean +30)
is plotted on the same graph with a dashed line. By Tchebychev's inequality
{23] at least 89% of all the data lies below the dashed line. As can be seen
from the graphs of figure 4.2, 8 bits (7 bits + sign) is acceptable.

In the autocorrelator, the MDAC is followed by a low pass fliter H';(z)
with very narrow bandwidth. Therefore, ADC/MDAC non-linearities can be
tolerated in moderation because they generate harmeonic distortion at higher

frequencies which will be attenuated by the filters.
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§pectra1 Deviation Results
R(k) quantization mean standard number total
(bits) (mB) deviation of number
(mB unstable of
frames frames
] 57 95 479 4239
7 35 79 268 4239
8 18 87 147 4239
9 10 38 71 4239
10 5 27 18 4239
11 2 11 9 4239
12 1 8 ] 4239
13 0 5 1 4239
14 0 1 0 4239
15 0 0 0 4239
18 0 0 0 4239

Table 4.3 Spectral deviation results versus R(k) quantization

4.1.5. QUANTIZATION OF THE AUTOCORRELATION VALUES

Since the analog autocorrelation values must be quantized prior to the
Durbin recursion algorithm, the effect of such quantization must be investi-

gated. Quantization can lead to large spectral errors or even instability.

The simulation program Generateauto.c provides optional control of the
quantization of the autocorrelation values. At each frame, the autocorrelation

values are computed exactly using floating point arithmetic. Then, for quanti-

zation to B bits (B-1 bits + sign), all R(k) are scaled by the factor }2?'_}0_—“‘1

truncated to the nearest integer. This results in R(0)=22-1, Table 4.3 and
figure 4.3 show the results of such quantization. Quantization to the 10 bit

level is acceptable, the number of unstable frames rapidly increases below 10
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bits.

4.1.8. DC GAIN OF FILTERS

Due to the filtering, the maximum signal amplitude at the output of each
filter section is smaller than its maximum input signal amplitude. To main-
tain maximum output voltage and.therefore the maximum R(0) possible,
each filter section has a DC gain larger than one. The gain was determined by

running speech through the system. The main concern was to avoid clipping.

The filters are a cascade of first order sections. The one pole, one zero
filter section was positioned first, followed by a one pole section which is in
turn followed by the final one pole section which operates at the lower sam-

pling rate. The selected gain values are 2.5, 1.38, and 1.3 respectively.

4.1.7. THE 8088 MICROPROCESSOR AND DURBIN'S RECURSION

The Durbin recursion algorithm transforms the quantized autocorrela-
tion values into LPC coefficients a; and reflection coeflicients k;. In a
microprocessor implementation, the algorithm mus;t. be implemented with
fixed point arithmetic. The two goals of the microprocessor system are real
time computation while generating negligible modeling errors due to the
integer arithmetic. The two requirements are conflicting in nature; increasing
computational accuracy requires longer word lengths which means longer
multiplication and division times. The design strategy was to first find word
lengths at every step in the algorithm which produce negligible errors. Then
this program was run on the microprocessor system to see if it was fast
enough for real time analysis. Due to the availability of 8 bit and 18 bit mani-
pulations with the 8088 instruction set, word lengths of 8, 18, 24, and 32 bits

were considered.
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The program spec_dev.c was modified to check the effect of finite length
arithmetic in the Durbin algorithm. The flexibility of the C programming
language, which allows manipulation of bits by shifting and masking, was very
helpful.

Durbin's recursive solution of equation (2.12) is listed below, and the
number of bits assigned to each variable is listed in Table 4.4. The real
number 1.0 is scaled to ONE =2 in the 8088 program. After reading a set of
autocorrelation values R(k), O<k <9, each R(k) is shifted left until there is a
'1" in bit 14 of R{0). so that 2¥<R(0)<2!%. Each R(k) is treated as a 16 bit
integer. Since |k;|<1 for a stable model, |k;| <ONE in the 8088 program, so
k; is stored as a 18 bit number. The ¢;'s do not have a theoretical bound, as
do the kq, but they do have a practical bound for speech modeling; a practical
bound of |g;|<8 was determined experimentally. In the 8088 program,
|a;| <8-ONE and therefore the largest g; will require 18 bits; so each g is
stored as a 24 bit word for convenience of manipulation. Also, it was found
that the magnitude of the product a; R(m —i) never exceeds 23 (32 bits)
despite the fact that a; is an 18 bit integer and R{(m —i) is a 18 bit integer.
Therefore the product can be stored as a 32 bit integer. Likewise, the product

knaRZ! never exceeds 32 bits. The 8088 program includes a subroutine for

 Word sizes for the Durbin algorithm
variable name bit length
R{k) 16

m 8

km 16

a™ . 24
a*'R(m~1) 32

K am 2 32

£, 16

Table 4.4 Word size at different points in the Durbin algorithm.
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multiplying an 18 bit word (@;) by a 18 bit word. This multiplication time is
reduced, on the average, by checking the top two bits of the 18 bit integer
because if the top two bits are just a sign extension, a 18 bit by 16 bit multi-
plication will suffice.

The microprocessor also must modify the output of the SC filters before
beginning the Durbin recursion. Each SC fliter has an undesirable DC offset
voltage which adds to the autocorrelation value. Also, the SC filters all have
the same DC gain (see section 3.2.2.2). But the gains should be slightly
different as can be seen in table 2.1. The 8088 program goes through an ini-
tialization phase during which the autocorrelator’s input is zero. This allows
the 8088 to sample the DC offsets of the filters and store them. Then the
microprocessor begins execution of the main program. Each frame, a new
set of autocorrelation values are read. For each autocorrelation value, the
corresponding offset voltage is subtracted and the difference is scaled by the
relative DC gain of table 2.1. The result is the autocorrelation value which is

used in the Durbin recursion algorithm:
start: Ey=R(0)
m=0

loop: m=m+1

R(m)-i-:g:a["“}?(m —i)
Fm = Em-l

B =km
af*=al* '~kpamy 1sism-1
Em=(1-kR)Em 1

if{(m<p) go to loap;

else stop;
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Spectral Deviation Results
MDAC bits mean standard number total
(mB) deviation of number
(mB) unstable of
frames frames
4 28 60 246 4239
5 18 48 117 4239
6 15 43 79 4239
7 14 42 49 4238
8 13 41 ' 52 4239
9 12 40 51 4239
10 12 37 82 4239
11 12 37 52 4239
12 13 38 51 4239

Table 4.5. Spectral deviation results versus MDAC bits with all modifications

The final version of the 8088 program required 120 bytes (960 bits) of
RAM to store all the variables. A 256 by 8 RAM was chosen; this allows 138
bytes for the program stack which was more than necessary. The stack is

only used to save a few registers temporarily during a subroutine call.

4.1.8. TOTAL ERROR FROM ALL MODIFICATIONS

As might be expected, inclusion of all the modifications discussed in sec-
tions 4.1.2 through 4.1.7 results in an error which is larger than the error due
to any one modification alone but less than the sum of the individual errors.
The results of downsampling, MDAC quantization, R(k) truncation to the
nearest integer, and AGC pre-processing all simultaneously in effect are tabu-
lated in table 4.5 and graphed versus MDAC bits in figure 4.4. Using an 8 bit
MDAC results in acceptable performance. Auditioning synthesized speech
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confirmed this decision. If an 8 bit MDAC was used in the analysis, the syn-
thesized speech was easily understood although occasional minor flaws could

be detected.

4.2. ANALOG IC DESIGN

To demonstrate the feasibility of the analog/digital hybrid approach, the
SC circuits for the autocorrelator were integrated on a single CMOS chip. The
digital circuits for the autocorrelator are simple ciruits (i.e. small RAM, con-
trol logic) and were not included on the chip. MOS was chosen because it
accommodates SC circuitry and is compatible with digital circuitry; CMOS,
rather than NMOS or PMOS, was chosen because it offers more flexibility as
well as more gain per amplifier stage. The IC design was a two part job, one
being MDAC and SC filter design to minimize parasitic related errors, the
other the design of the' op amp. One parasitic, MOSFET channel charge redis-
tribution during turn-off, is not well understood and hence it is not modeled
properly in circuit simulators such as SPICE [ 24 ]. So reliable computer
simulation of these charge effects was not possible. Therefore, a breadboard
version of the autocorrelator was built for experimentation. Op amp design

was done exclusively on SPICE.

4.2.1. THE PROCESS

For integration of the IC, a reliable metal-gate CMOS process was chosen.
A P-type substrate, 1000 angstrom gate oxide thickness, and 30V oxide break-
down voltage are characteristics worth noting. The minimum drawn line width
is 10um which results in 8um channel lengths after out-diffusion of the source
and drain. The gate-to-drain and gate-to-source overlaps are 1 to 2 microns

for the NMOSFET, but only 0.1 to 0.2 microns for the PMOSFET due to a self-
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aligning P+ implant. Capacitors are MOS capacitors (metal-oxide-N+). The
threshold voltages are typically 1V for the NMOSFET and -2V for the PMOSFET.
Since the substrate is P-type, the NMOS transistors are used as switches;
PMOS transistors must be placed in an N-well so they are ineflicient from an
area standpoint unless a number of switches can be grouped into one well. A
more detailed description of the process can be found in appendix D as well

asin[ 14 ].

4.2.2. A SIMPLE MODEL FOR THE MOSFET

For analog circuit design, simple equations which model the MOSFET are
useful. Equations for an N channel MOS transistor are given below, and all
parameters are defined. The P channel MOS transistor follows the same equa-
tions if the direction of positive drain current is changed. Typical values for

the parameters are listed in table 4.6.

If the transistor is in the linear region of operation (ie. if a continuous
channel extends from drain to source), the MOSFET acts as a resistance of

value

Typical Values for MOSFET Model Parameters
Parameter SPICE Symbol = NMOS PMOS
Ven VvTO 1.0V -2.0V
K KP gl qud

12 7
A LAMBDA 0.01v"!  0.005V"!
Nsug NSUB 1.6x10%5  1.0x10'€
| 2oz TOX 0.1u 0.1u

Table 4.8 Model parameters for SPICE simulations
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R = 1 N 1
on = W . g
Yo

The approximation is valid if Vpz—V;>> The parameters are

5
k = uC'yz,
4 = the mobility of the channel charge,
C'sz = the gate to channel capacitance per unit area,
W = the width of the active area,
L = the length of the active area,
Vs = the gate to source voltage,
V& = the drain to source voltage,

Vip = the threshold voltage of the transistor.
The transistor is in the linear region if both Vg3 > W, and Vyg>Vip. If V> Vi

but V4 <V, then the transistor is in the saturation region (i.e: the channel is

pinched off at the drain), and the transistor follows the relation

kW
s = 5 7AVu—Vin (1 4\ V)
where

I4 = the drain to source current,

A~! = the Early voltage of the transistor.
The threshold voltage ¥, is dependent on the source to substrate voltage

V= Vino+7 VTV T¥2T5; T-VET; ]
where
Viao = the threshold voltage measured with V,; =0,
7 = the body eflect parameter,
Vos = the substrate to source voltage,

@y = the Fermi level of the substrate.
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The capacitances associated with thie MOSFET are shown in figure 4.5. The
N+ source and drain diffusions in the P substrate form dicde junctions which
are always reverse-biased and have an associated non-linear junction capaci-
tance. The gate metal overlaps the source and drain diffusions slightly, giving
rise to overlap capacitances C,,. These overlap capacitances provide an
undesirable coupling between the gate and source and between the éate and
drain when the transistor is off. The total gate to source, gate to drain, and
gate to substrate capacitances are complicated functions of the terminal vol-

tages[ 25 ].

4.2.3. OPERATIONAL AMPLIFIER

Since all circuits employing the op amp are SC circuits, the op amp load-

ing is capacitive. A simple transconductance amplifier which uses the capaci-

Nenmnil
Nty

wtx D

B
Figure 4.5. Capacitances associated with a MOSFET
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tive load for compensation was designed. Important design goals are settling
to 0.1% in 3useconds, open loop gain greater than 1000, large output swing
and low noise. Low power dissipation and small area are desirable but not cru-

cial due to the multiplexing of each op amp.

The op amp schematic is shown in figure 4.6. Current source M14 biases
the input differential pai-r M1-M2. VWilson current mirrors M3-M4-M5 and M6-
M7-M8 provide current gain as well as high output impedance. The drain
current of M4 is mirrored to the output by cascode current mirror M9-M10-
M11-M12. The op amp has a differential mode transconductance of G,

LN ¥s ||

_1 Lg |, 1 Ls || Ln |
Gn = 29ma | o T+ 29w Ws || oo |

Lg Lg || Lo
Img, =9Im,=Im, is the transconductance of the input transistors M1 and M2. If

the lratios are as shown in figure 4.6, G, reduces to

L
Wg Hs
Lg Lg r—
Gn=gmh WO =gm‘,‘ WS '_"gmhAI“ Ibi@
I Iy

4r is the current gain of the Wilson mirrors M3-M4-M5 and M8-M7-M8, 4;=2.5 in
figure 4.8. The differential mode voltage gain is just 4,=G,, R, where R, is
the output impedance of the Wilson mirror M6-M7-M8 in parallel with the out-
put impedance of the cascode mirror M9-M10-M11-M12.

“\/ 16;1.6",,,%:-

ArheAr ], A

Rous (Wilson) N 7,9(gmeTos) =
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Figure 4.6 CMOS op amp schematic (%ratios next to transistors)
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3
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Ry = Ry (Wilson)| IRM(Cascoda)x],,;%
giving
A = G Rowt = Voma I, = 11—
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So the low frequency voltage gain is inversely proportional to bias current.
But reducing the current to achieve higher gain reduces bandwidth and

increases the noise [ 26 ].

Since the CMOS process uses a P-type substrate, the PMOS transistors sit
in an N-well and therefore have a higher output resistance than the NMOS
transistors. So the PB'JOS transistors were chosen for the simple current
source for biasing the input stage. The input transistors M1 and M2 are large

area devices to minimize the op amp's noise [ 28 ].

The op amp is employed in a shunt-shunt feedback configuration with its
non-inverting input grounded. In such a configuration, the common mode
input signal is very small so a large common mode rejection ratio is not
required. Nonetheless, the symmetry of the op amp should provide a very

large common mode rejection.

4.2.4. SPEED AND COMPENSATION

The op amp is basically a one stage design. As such, it should provide a

wide bandwidth. All nodes internal to the op amp have an low frequency

impedance of 'gi_' the highest impedance node is the output node. G, has

two non-dominant poles due to the total capacitance at the drains of the
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input transistors M1-M2 interacting with the equivalent resistance looking

into the Wilson mirrors

_9m _ Im

Prd TG T THGL G
(C,, is the gate overlap capacitance, C; is the junction capacitance associated

with the source and drain diffusions). The dominant pole is at the output
node due to the large output resistance R, interacting with the feedback

and load capacitors.

Compensation is only meaningful in the context of feedback circuits. In
the SC autocorrelator, the op amp is subjected to numerous feedback
configurations. In all cases, the feedback is shunt-shunt (i.e. voltage output,

current input).

Stability and settling time can be determined from the phase margin of
the loop gain [ 27 ]. The loop gain of the shunt-shunt feedback circuit figure

4.7 is

(Gn—yr)yy
(vi+yr Yy +yp)
where the reverse transmission through the op amp has been neglected - it is

T(s) =

(4.2)

assumed to be much smaller than |y, | at all frequencies of interest (appen-
dix E). All terms of (4.2) are functions of the complex frequency s. The loop
gain T(s) can be simulated directly on SPICE using the configuration of figure

4.8. The op amp with feedback element y, across it has a voltage gain

%o _ _(Gu=yr)
Ve (Ya+yy)

The voltage divider has the transfer function

L/
Vo (wtyy)’
The cascaded gain is the loop gain
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Figure 4.7. Shunt-shunt feedback circuit
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% _ Yo Vo (Gnyrly
Vo VeVo (wityr)wotyy)’

This provides a very simple means of simulating the loop gain directly.

This is important in circuits which have frequency dependent feedback such
as those in the autocorrelator. Exact simulation of loop gain is discussed

further in appendix E.

Once an acceptable phase margin was found using filgure 4.8, the step
response of the feedback circuit was simulated. The worst case for stability
occurs in the reset configuration. Settling times for MDAC and multiplexed
filters are tabulated in table 4.7, The SPICE model parameters which were
used are listed in table 4.8. These are conservative model parameters based

on data from previous experiments [ 28 ].

§ettling Time Simulation Results

Circuit Switch Load Settling Time
(ﬁgfig;“‘“ed Phasing Gorly  Capacitance  t00.1%
%g;“g. 3) resetswitch  ci=0.1pF  OpF 2.2usec
%glAg 3) lc;eﬂset switch C,=0.1pF  OpF 1.3usec
?‘ﬁ‘ggﬁ;“d fiter Leget on G.=0.22pF 10pF 1.2usec
Multiplexed filter  pooqy o G.=0.22pF 10pF 1.9usec

| (fig 3.6)
Table 4.7. Settling time results from SPICE for different configurations
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4.2.5. EFFECT OF PARASITICS ON MDAC AND SC FILTERS

To implement the SC circuits of chapter 3, an N channel MOSFET is used
wherever a switch is needed. But the MOSFET is not an ideal switch. Aside
from finite on-resistance and gate capacitance, the gate overlap capacitance
and channel charge introduce error charge in the signal path of the SC cir-
cuits. In some configurations, this error charge is signal dependent which
causes distortion. These non-idealities must be considered and their effects

minimized during the design phase.

In SC circuits, the finite on-resistance of the MOSFETs slows the charging
of the capacitors. For a capacitance C and MOSFET on-resistance £,,, the
associated time constant is T=R,, C. To charge the capacitance to within 0.1%
of its final value requires seven time constants (77). Charging time does not
present a problem in this system because the largest time constants are a
few hundred microseconds, so 77<lusec which is much less than the smallest
time allowed for charging (which is 4usec). If the charging time were a prob-
lemn, the time constant could be reduced by decreasing C or by decreasing

Fon. The on-resistance can be decreased by increasing gate drive voltage

(Vg =Vaa) or increasing the transistor's %(see equation (4.1)).

For the SC MDAC of figure 4.9, the input switches S, through Sp and S,
can be considered to be ideal switches. This can be understood by noting that
the MDAC operates by transferring charge from the input capacitor array C,
through Cp onto Cp, on &3 The Gaussian surface, shown as the dotted line in
figure 4.9, represents the charge transfer region. As long as the reset switch
is open, the charge inside the surface must remain constant. Since the
switches 5, through Sz are outside this surface, they do not contribute to the

charge transferred and therefore have no effect on the output voltage. The
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Figure 4.9. SC MDAC

only error charge is contributed by the reset switch which provides DC stabil-
ity and therefore breaks the Gaussian surface. As the reset switch turns off,
some fraction of its channel charge will be trapped on the inverting nocde.
Also, the reset clock is coupled to the inverting node through the gate overlap

capacitance (. The output voltage due to these sources can be approxi-

mated as
Vo 0 Sy, 4 Tchamnet
C}Q Cfb

where AV, is the amplitude swing of the clock signal
Qcnannat =Cos WL(Vgg=Vin) is the charge accumulated in the channel when the
transistor is in the linear region, and 0<r<1 is the fraction of channel charge
dumped onto the inverting node when the transistor turns off. Fortunately,
prior to each multiplication, the MDAC is in the reset mode. So the

feedthrough causes a constant DC offset voitage at the MDAC output. The
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clocking scheme resuits in the op amp’s offset voltage ( V,”,,,) being sampled
onto the input capacitor array each reset period. So the op amp's offset vol-
tage is not multiplied by the variable gain of the MDAC, but it does appear
directly at output. The total DC output voitage is

Cov T Cenannel .

V. N Vo 4 ———— 4.3
oulpe Klluc“'——ﬁq N at Crs (4.9)

This offset passes through the SC filters and is subtracted digitally in the

microprocessor as discussed in section 4.1.7.

Finite op amp gain results in a gain error in the MDAC. This gain error
occurs for all products and therefore scales all autocorrelation values by the
same factor. Since the LPC model is not changed by a uniform scaling of all
autocorrelation values (see section 2.4), gain error is of no consequence in
this application.

The diode junction composed of a capacitor's N+ diffusion and the P- sub-
strate is always reverse biased, so it has an associated non-linear capacitance
and reverse-bias leakage current. For the binary capacitor array, the N+
diffusions of the capacitors are connected to the input switches S, through
Sp. This eliminates problems due to the non-linear capacitances because
they are driven by the input source. For Czs. the diflusion is connected to
the output of the op amp. The non-linear junction capacitance associated
with Gy, does present a non-linear capaciti;re load to the op amp which helps

to compensate the op amp.

When all the switches S, through Sp are on, the leakage currents for the
diode junctions of C, through Cp are supplied by the source driving V,. and
the leakage current for the diode on the output of the op amp comes from
the output stage of the op amp; therefore the leakage currents have no
effect. (Actually, the leakage current flowing through the MOSFET switch
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drops a negligible voltage /o R,n.) The leakage current associated with a
junction does present a source of error if any of the switches S, through Sp is
open. If input switch Sj is open, a leakage current due to Cj's backplate diode
flows through it and onto Cp,. This leakage dominates the small leakage
current associated with the drain diffusion of the MOSFET switch S;. The
maximum error due to leakage currents occurs when all switches S, through
Sp are off (i.e. all bits in the digital word are '0*). Then the error is roughly

_ Dhearht o Jiaa

AVpg = .
ot Cre Cloz
which equals 38ulblts in the worst-case (At=125useconds and

Jieak =100$. This error is negligible for an 8 bit MDAC with a 5Volt full

scale output.

As was mentioned above, the op amp's offset voltage is sampled on the

input capacitors during the reset phase and therefore the offset voltage is not

R
J

quency noise which can be viewed as a slowly varying offset voltage, the 11,—

multiplied by:the MDAC gain. Since the noise of the op amp is a low fre-

noise also appears directly at the output of the MDAC and is not multiplied by
the MDAC's gain.

4.2.8. FILTERS

The filters suffer from many of the same errors as the MDAC. Unique to
the SC filters are the multiplexed capacitors C, and (. To investigate
different switching schemes, MOSFETs are included on both sides of each
capacitor (see figure 3.8) [ 29 ]. The multiplexing could be accomplished with
output side switches only, but this would introduce undesirable signal-

dependent error as can be seen from the following: Assume only the output
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side switches are used (all switches connected to the op amp’s inverting input
are shorted). The MOSFET output switch turns off when Vg —V;=0. Since
Vg =Ver—Vous, the charge transferred onto Cj, due to (, would be
@=Cou(AV;; —Voue —Vin) and the charge transferred onto Cp, from the channel

of the MOSFET switch is

Q=7 @enannat =TC oz WL (Vg =Vip )=7C"oz WL( Vetyyy= Vour — Vin)

where 0O=r<1 is the fraction of channel charge dumped onto Cy, when the
transistor turns off.  is a function of clock rise/fall times and loading on the

source and drain of the transistor. If the loading at the source and drain is

identical, rﬁé—. Note that these charge quantities are dependent on V., so

the errors are signal dependent and cause distortion. To eliminate such sig-
nal dependent charge transfers, a MOSFET switch is also included on the input
side of each rnultiplexéd capacitor. The input side switch is turned off before
the output side switch is turned off. Since the input side switch is connected
to the inverting input of the op amp which is a virtual ground, the charge
transferred onto C(;, when an input side switch turns off is
@=C (AVz; ~Vin )+T@:hannes- This error charge is dependent on V,, only
through r since the loading on the output side of the switch is dependent on
Vow -

Switching only on the input side is not possible due to bootstrapping. To
illustrate this problem, let's consider the case of +7.5V clocks and V=1V.
Then, if Cyy, is floating and has -5V stored on it and the output during time
slot k+1 is -5V, the input side of Cyp, would be at -10V. If MOSFET S has its
gate at —7.5V, S will turning on thereby connecting Cy,, into the circuit in
parallel with Cf”h o This alters the charge on both Gy, and Gy, + and ruins

the multiplexing. This bootstrapping problem could be eliminated by reducing
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the output signal swing or by increasing the clock amplitude or by adding the
output side switches. Reducing the output swing reduces the dynamic range
of the filters. Increasing the clock amplitude increases the amplitude of clock
related errors and may not be possible if clocks are generated on chip. So the
output switches eliminate bootstrapping problems and also reduce the capa-

citive loading on the output of the op amp.

To minimize the signal dependent errors, the following switching
sequence is recommended for the multiplexed fllters: 1) reset switch on, all
other switches off, 2) reset off, 3) input side switch for channel k on, all other
switches off, 4) output side switch for channel k on, input side switch still on,
all others off, 5) input side switch turns off, output side switch still on, all oth-
ers off, 8) output side switch turns off, all other switches off. Repeat cycle for

channel k+1. . '

By discharging & at the start of each time slot, channel to channel
crosstalk through (. is eliminated. By connecting the capacitor's N+
diffusion on the output side of the op amp, problems due to non-linear junc-
tion capacitance and junction leakage current are avoided. The non-linear
capacitance is driven by the output of the op amp. The junction leakage
current flowing when the output side switch is on is supplied by the op amp
output stage. When the multiplexed capacitors is out of the circuit, the leak-
age current will still low. But it does not effect the filter at all. This can be
seen by considering the Gaussian surface of figure 4.10. The analysis is
simplified if the switches and op amp are assumed ideal, so we shall do so. We
will look at one channel, channel k. In figure 4.10, if we start with V,, =0V and
Vaug =0V, the reset switch open, and the other switches on, each of the capaci-

tors in the Gaussian surface have zero charge on them. The total charge
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Figure 4.10. One channel of multiplexed fllter showing junction leakage
current ’
inside the Gaussian surface must remain constant since there is no current
flowing into or out of this node. This total charge & is initially zero. Then the
switches are turned ofl. While channel k's switches are open, the other chan-
nels are connected into the circuit. When the switches for channel k are once
again turned on, we have Vi, =0 and the op amp’s inverting input is a virtual
ground, so the charge on ( is zero and the charge on the op amp's input;
capacitance is zero. So the charge on Cy and G, (C'ﬂ, +G) Vyue» must equal
zero because the total charge & must remain constant. Therefore ¥,,; =0V so
the leakage current had no effect whatsoever. (The reset switch does break
the Gaussian surface and therefore does inject charge into the surface. This

causes a DC offset voltage but does not invalidate the above argument.)

During the reset period, the DC ofIset voltage of the multiplexed fiiter
section is equal to the offset voltage of the op amp. Otherwise, the DC output
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voltage depends on the time slot. To find the the DC output voltage, we will

consider the op amp and all switches except the reset switch to be ideal

Given this assumption, the DC output voltage can be found by writing charge

transfer equations for a given time slot. For time slot & and sample n+1,
(Croy + G, Vous (R +1) = Cp, Vous (1) +7 @eamnat + Gou B Vg

To find the DC output voltage, we take the limit as n goes to infinity. This

gives

(Cro, +G,) Vous (=) = Cpo, Vous (=) + 7 @engnnat + Cov AVey
which reduces to

Vot = Vot () = v T hment (e4)

The interesting result is that the DC output voltage depends only on the loss
capacitor G and not on Cy,. This makes sense because, for a given filter, Cy,
is always connected into the circuit and acts like an open circuit for DC sig-

nals.

The finite gain of the op amp causes a slight reduction of the magnitude
of the filter's pole location. If the op amp gain is infinite, the pole is

2z =C—Q§CT= If the op amp has an open loop voltage gain of a, the pole moves
10

to
1
Cpy 1+a.
CrotC G
a Cf°+a'4

For @ >1000, the shift in the pole location is negligible.

The op amp’s }1-'-noise and op amp's offset voltage are sampled onto §
during the reset period. Then, when the reset switch opens, { retains the

sampled -l-noise and offset voltage. Since the l-m:ise changes very slowly

4 J
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and the offset voltage is constant, both are effectively canceled. The
autocorrelator’'s output noise is dominated by the third filter section due to

the low sampling rate.

4.3. IC LAYOUT

The layout was made as compact as possible while maintaining isolation
between analog signal paths and clock signals wherever necessary. The op
amp layout is shown in figure 4.11. The input transistors are the large
polygons. Ideally, the input transistors would be circular. This assures good
matching independent of mask alignment errors in either the X or Y direc-
tion. The polygons are an approximation to a circle; we could not make cir-

cles with our mask making equipment. The op amp occupies 450mil® of area.

To minimize the area of the layout, the switches in the SC circuits were
realized with NMOS transistors. The layout of an NMOS transistor can be seen
in the op amp layout. The gate metal was extended on both sides of the active
area to minimize any leakage currents between the source and drain (this is
important when the NMOS transistor is used as a switch). To be safe, P+ isola-
tion diffusions are placed between any two N+ diffusicns which are not con-
nected. This costs area but was strongly recommended by former users of

this CMOS process [ 28 ].

Values for the capacitors on the chip were chosen as small as possible to
minimize total chip area. But small capacitors make parasitic charge transfer
errors more noticeable (see section 4.2.5). For the MDAC, C,=0.1pF was
chosen. For the multiplexed filters, (.=0.22pF for section 1 and 2 and
(.=0.66pF for section 3. The third filter section operates at a lower clock
rate than the other two sections {(800Hz rather than 8kHz) and therefore

requires smaller capacitor ratios to achieve the desired low frequency cutofl.
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To allow for experimentation with different clocking schemes, all the
gates of the multiplexed filter switches must be controllable from off chip.
This would amount to 80 control lines if all switch gates were brought out
separately. By using a multiplexer of PMOS switches, the number of pins is
reduced. A plot of the IC layout is shown in figure 4.12. The four opamps can
been seen lined up in a column down the center of the chip. The top op amp is
for the third multiplexed SC filter section. The capacitors for the third filter
section are in the upper right. The second op amp is for the MDAC; its binary
capacitor array is in the upper left. The third op amp is for the first SC filter
section - the section which implements a pole and a zero for each channel.
The feedback and zero capacitors for section one can be seen to the right of
the third op amp. The bottom op amp is for the second SC filter section. Its
capacitors are in the lower left. Note the difference in size between the feed-
back capacitors of sections three and two. The difference is due to the lower
sampling rate used in the third filter section. The chip dimensions are 148mil
by 133mil, the area is 18,700mil2.

4.4. THE AUTOMATIC GAIN CONTROL

The AGC is a crucial element of this system. The AGC used was a bread-
board circuit consisting of commercially available parts. The breadboard will

be described and circuits for an IC implementation are given.

4.4.1. AGC BREADBOARD

For the breadboard, a Reticon SAD512 258 stage bucket-brigade device
(BBD) delay line was used. The delay line should hold one frame of speech
which is 100 samples for this system. By operating the BBD at a 18kHz sam-
pling rate, the number of samples held is 128 which is as close to the desired
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value as is practically possible with the available BBDs. Since the speech was
bandlimited to 4kHz prior to the AGC, the signal out of the BBD hes no
significant signal in the 4kHz to 8kHz region and therefore the output of the
BBD can be sampled at BkHz without filtering. A one pole low pass RC filter
(cutoff frequency = 4kHz) with gain was placed after the BBD to filter noise
output of the BBD and to boost signal amplitude to 5V peak.

The absolute value function is performed by two op amps and two diodes,
the output of which is fed to a cascade of two simple SC one pole filters which

implement H(z) of equation {(2.10). The output of the second filters is scaled
by 14;;_\(/_12de then digitized by an 8 bit MDAC. The digital value is used to con-

trol a divider circuit (MDAC in an op amp's feedback path [ 30 ]) which sets
the gain of the upper path. The delayed speech is scaled by this divider cir-

cuit, and the gain is changed each frame.

4.4:2. An MOS AGC

The ADC, MDAC, BBD delay line, and filters can all be integrated easily on
an MOS IC. Simulations on the number of bits necessary for the AGC's MDAC
were performed [ 18 ], and 5 bits of linear coding was found to be sufficient.
So a 3 or 4 bit logarithmic ADC would serve adequately. These low speed, low

resolution ADCs are easily implemented in a small silicon area [ 31 ]. The

scaling of the filter output by ﬂcan be accomplished simply by scaling
H(1)

down the ADC's voltage reference. Simple SC filters can be used to approxi-
mate H(z).
The absolute value function is the only element of the AGC that can not

be directly copied from the breadboard onto an IC because floating diodes are

not available in a standard CMOS process. Therefore, diode-connected
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enhancement-mode NMOS transistors are used instead. A full wave rectifier
circuit (absolute value circuit) is shown in figure 4.13. It requires matched
resistors and an op amp with low offset voltage, but the requirements are not
strict since the AGC scaling need not be exact. Resistor matching of a few

percent and SOmV of offset are adequate.

\Y%

Figure 4.13. MOS absolute value circuit



CHAPTER 5

EXPERIMENTAL RESULTS

To test the system prior to integrating the autocorrelator, a breadboard
was built. The breadboard was used extensively, both to test the SC multi-
plexed filters and to test the system's ability to function as an LPC speech
analyzer. Then the SC autocorrelator IC was fabricated with a metal gate
CMOS process and tested. For comparison, two sets of multiplexed fliters were
integrated on a polysilicon gate CMOS process. Results are given for the
breadboard system, the IC autocorrelator, and the poly gate multiplexed
filters.

5.1. THE BREADBOARD SYSTEM

5.1.1. AUTOCORRELATOR

An autocorrelator was constructed of commercially available parts to
test various aspects of the design prior to integration of the autocorrelator.
This was a necessary phase of the design since SPICE does not accurately
model the MOSFET channel charge redistribution during turn off (see section
4.2.5). For the breadboard, capacitors were hand measured to assure better
than 17 ratio accuracy. For all filters, switches were included only on the

output side of the multiplexed capacitors (figure 3.8).

Electrical data taken from the breadboard is tabulated in table 5.1. The
autocorrelator did provide adequate accuracy for speech analysis despite the
large amount of adjacent channel crosstalk in the rnultiplexed filters. The

crosstalk is due to stray wiring capacitance on the breadboard which couples

82
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Autocorrelator Breadboard Data

parameter measured value
Total system S/N ratio

(ADC, MDAC, and fllters) 64dB

MDAC bits 12

Cutof frequency of each fllter section 50Hz

Cutof! frequency of fliter sections cascaded 25Hz

Adjacent channel crosstalk of multiplexed filters -36dB
(1V peak sine wave at 10Hz)

Output swing for HD,=1% £5V

(10Hz sine wave input

Full scale value of R(0) 5V

Clock frequency (10 channels) 80kHz
Power supply +BYV, £15V

Table 5.1. Data from autocorrelator breadboard

the adjacent signal paths. The dynamic range of 64dB was sufficient for
speech analysis; the noise was due to analog noise sources and digital noise
coupling into the analog signal lines on the breadboard. To test the bread-
board with speech input, the breadboard was fed constant vowel sounds and
the analog autocorrelation values output by the breadboard were digitized by
a 12 bit ADC and stored on a mini-computer. The LPC spectrum for the auto-
correlation values was plotted against the fit of the vowel sound to check for
errors. As long as R(0) was large enough so that quantization errors due to
digitization of the autocorrelation values were negligible (i.e. R(0) greater
than 0.4V), the results were very good as can be seen in figures 5.1 through
5.4. In each figure, the upper plot is the LPC spectrum generated from data
taken from the breadboard, and the lower plot is the LPC spectrum generated
by computer simulation of the autocorrelation LPC algorithm. The LPC spec-
trum is plotted with the solid line, the fIt of the sound with a broken line.



ARoNIrvoe (k)

] 480 309 12688 - 1669 2088 2480 2880 3288 3680 4080

Frogyearcy (527

AN s rvo® o8/
2
—vm

] 400 L1 1209 1669 ZUIOO 2480 2899 * ;208 3689 4800
Areoggeorrees CAL/

Figure 5.1. top: LPC fit to /ee/ sound, from breadboard data
bottom: LPC fit to /ee/ sound, computer simulation



AZonsrrvot o8/

AQorrvor ro8/

85

] 480 850 1280 1600 2080 2400 2800 3200 3680

Areoguercey /4/

4000

] 488 80 1280 1660 2088 2400 2000 3200 3680

AP rrees /s

Figure 5.2 top: LPC fit to /eh/ sound, from breadboard data
bottom: LPC fit to /eh/ sound, computer simulation

4060



do} §°c sy

woyeq

uonyeuns J33ndurod ‘punos /33/ 03 19 Od11
VUp pIeoqpealq woJdj ‘punocs /I3/ 03 g 3d'1

ALY VX P

/". l/

eezec 0082 esrz eope 8091 eezt (2] [ ]

009t

ARowrrvot rok/

-

]

- [}

[ [ ]
4

o on 00

eser

q -
reesreeed 9=
4 93~

1 TTTTTTY- PP PRPE-PRRRe

) PPN,

2998 082¢ 0062 -} 12 (11 2998 21

(1114

Ao rrvoe 1o/

as»

eQeessrsvenane




87

i & &

&
[ ]

AZons rvoe /o8/

| Q;. U;l l;l. l.;l 3;.' 20"0 28.00 ' 82.80 36..0 4880
Arogyerrcey A/

é

AP r 1o (oB8/
8

] 480 e 1289 16.’. ZOAIB 21‘00 28.!0 32;0 36.00
Areogaerrees 5/

4000

Figure 5.4 top: LPC fit to /ah/ sound, from breadboard data
bogtom: LPC fit to /ah/ sound, computer sirnulation



88

As a further check of the breadboard analyzer, the autocorrelation
values were used to synthesize speech. First, vowel sounds were analyzed,
synthesized, and then played back. The synthesis was compared to the origi-
nel and found to be indistinguishable. Then, sentences were fed through the
analyzer and then synthesized. Due to occassional unstable frames (caused
by excessive quantization of the autocorrelation values) and a poor pitch
tracker, the synthetic speech sounded much worse than the original.
Nonetheless, all synthetic speech was understandable and considered accept-
able by the listeners. A better pitch tracker would have greatly improved the
quality of the synthetic speech.

5.1.2. THE DURBIN RECURSION MICROPROCESSOR

The only question remaining in the microprocessor design was the speed
of execution of the Durbin algorithm. The system frame rate is 80Hz which
allows 12.5msec for execution of the algorithm. The execution time was found
to be in the range of 10msec to 1imsec when the 8088 clock frequency was
5MHz. The execution time varies from frame to frame depending upon the
number of calls of the 24 bit by 18 bit multiplication routine, which is depen-
dent on the data and the number of a; which exceed 16 bits. Since 8088s
which operate with an 8MHz clock are now available, the execution time could
be cut to less than 7msec without changing the system at all. Frame periods
are typically 10-50msec so the simple 8088 system (or equivalent) is adequate
for all applications.

5.1.3. THE AGC

The AGC was constructed as discussed in chapter 4 - bucket-brigade
delay line, full-wave rectifler, SC fllter, ADC, MDAC. The AGC was found to work
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very well, giving a constant autocorrelator output over an input range of
32dB. The dynamic range of the AGC was limited by the BBD delay line noise.
The BBD delay line had a dynamic range of only 34dB (18kHz sampling rate).
1f the BBD noise had not been a factor, the autocorrelator with the AGC would
have had a useful input range of roughly 80dB (32dB from the AGC plus 31dB
from the autocorrelator). Without the AGC, the autocorrelator’'s input range
was limited by the autocorrelator’'s dynamic range to 31dB. But the value of
R(0) varies 82dB as the input varies 31dB due to the squaring of the input sig-
nal. Therefore small input signals result in very small R(0) values which are
heavily quantized by the following ADC. So the autocorrelator's useful input
range for LPC speech analysis without the AGC was actually about 10dB. So
the AGC was a very important addition to the system because it increased the
useful input range for speech signals from 10dB to 32dB.

As was mentioned in the previous chapter, the BBD delay line held 128
samples which is 28 more than one frame. ‘This is unfortunate but acceptable.
A 100 stage BBD could be integrated or the frame length could be changed to
128 samples (frame rate=82.5Hz). This was not done because the AGC was
added to .the system after the autocorrelator and microprocessor systems
had been built, so the frame length was already set at 100 samples.

§.2. AUTOCORRELATOR IC RESULTS

The MDAC and muitiplexed SC fllters for the autocorrelator were
integrated on a metal gate CMOS IC. Po allow flexibility in testing, all outputs
and inputs were brought out to pins on the IC package so that the MDAC and
each fliter section could be tested individually. The IC was fabricated in the
integrated circuit laboratory at U.C.!Berkeley (see appendix D for process
schedule). The yield was very poor, only & few working chips were available
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for testing after numercus runs in the fabrication lab.

5.2.1. MDAC

The MDAC was tested, and the data is presented in table 5.2. The integral
non-linearity was larger than expected. This can be attributed to oxide gra-
dients (the layout does not employ concentric placement of the capecitor
array). parasitic capacitances, and rough metal edges (metal defined the
capacitors in the MDAC). This non-linearity could be eliminated by more care-
ful layout [ 32 ].

The reset feedthrough, which contributes to the DC output offset voltage
of the MDAC, was also larger than expected. When the reset switch turns off
(see figure 3.3), its channel charge must go somewhere. The charge can flow
to the op amp output node, to the op amp inverting input node, or to the sub-
strate. It was expected that most of the charge would go to the op amp output
node, but this was not the case. In fact, most of the channel charge flowed
onto the inverting node, as can be seen‘from the following calculations: The

DC output voitage due to channel charge is (from equation 4.3)

MDAC Data
parameter measured value
Integral non-linearity 21SB
Differential non-linearity 0.9LSB
Settling time (0.1%) 2usec
Reset feedthrough at cutput  30mV
Output swing +3V,-5V
S/N ratio 686dB
Load capacitance &SpF
Clock frequency B80kHz
Power supply £7.5V
Power dissipation 15m WV

Table 5.2 Data for the 8 bit SC MDAC
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paring these results, we see that the observed feedthrough at the output
(30mV) is mainly due to channel charge from the reset switch being trapped
onto the op amp’s inverting node. From the experimental data, we can esti-
mate r~0.75. The value of r is dependent on the impedance at the output of
the op amp as well as the clock fall time (the reset clock line was driven by a
74C08 CMOS AND gate). A value of r near zero would be desirable, but any
value of r is acceptable since the feedthrough is the same every cycle and

therefore only contributes to the DC output voltage.

Figure 5.5 shows oscilloscope photos of the MDAC output. The top photo
shows the MDAC squaring a triangle wave (upper trace), thereby producing a
parabola wave output (lower trace). The lower photo shows the MDAC output

(lower trace) settling to its final value during clock phase &, (upper trace).

5.2.2. MULTIPLEXED SC FILTERS

The fliters were tested individually. All three filter sections are different -
section one implements ten poles and ten zeros, section two implements ten
poles, section three also implements ten poles but with different capacitor

ratios due to downsampling.

The clocks which were used for testing the filters are shown in figure 5.8.
In figure 3.6, the switch phasing is shown as §4; and ¢p. This labeling is used

rather than 9, or $§; or 3 because the best switch phasing was not known
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Figure 5.5 top: MDAC squaring a triangle wave
bottom: MDAC cutput settling
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before the circuit was fabricated although the phasing $,=%3 and &5 =, was
suggested in chapter 4. Note that 3, (reset) and &, are non-overlapping
clocks, and &3 goes low before &, goes low. The clock amplitudes are +7.5V

(+7.5V is a logic Hl level and turns on an NMOS switch).

To find the best clocking scheme, the fllters were tested with the follow-
ing clocking schemes: 1) $,=¢3 and $5=3%; 2) $,=H/ and $5=%, and 3)
$4=%; and ®5=HI. The results using clocking schemes (1), (2), and (3) were
practically identical except for the DC outpgt voltages. Also, with clocking
scheme (3) the first two fllter sections did not work properly, probably due to
the excessive capacitive loading on the op amp output from all ten feedback
capacitors’ backplate diodes. But section three did work with clocking
scheme (3). The measured data is listed in table 5.3. Distortion and crosstalk

figures were measured with a 10Hz sine wave input signal. For the crosstalk

$,

(resct)

¢

4

v
A
y

channel 0 channel 1

Figure 5.8. Clocks for testing the multiplexed filters
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measurement, the channel being tested had its input grounded and all other
channels were fed a 1V peak sine wave.

For all cases (except switching scheme (3) for fliter sections 1 and 2), the
filter characteristics were very accurate, see flgure 5.7. The frequency
response of the different channels matched well (better than 0.2dB) due to

the use of repeated unit capacitors in the layout.

For a given clocking scheme, the DC output voltage for fliter section 3 is
smaller than for sections 1 and 2 because £,.=0.22pF in sections 1 and 2 and
G, =0.88pF for section 3 (equation 4.4). As with the MDAC, the DC offset vol-
tage of the fliters was mainly due to the transistor's channel charge. For all
filter sections, the DC offset voltage for clocking scheme (3) is smaller than
that of scheme (1) or (2). With schemes (1) and (2), the channel charge for
the input side switches is provided by the output of the op amp. The charge
flows through the reset switch during the reset period. Then, when reset goes

! Measured Filter Characteristics gmetal gate process)
parameter fliter sections 1 & 2 filter section 3
' (zeros off)
-SdBO frequency 50Hz 50132
utput swing for HDp=1% £1V +4

S/N ratio 68dB 70dB
Adjacent channel crosstalk -44dB -484B
Clock frequency (10 channels) 80kHz 8kHz
Sampling rate for each channel 8kHz 800Hz
Average DC output voltage of
all channels (input grounded)
Q‘ =Qa. §3=§g 2.8V 0.7v
$4=HI, dp=¥, 2.3V 0.4V
$,=%s, § s=HI 0.4V -0.18V
Ramge of DC output offset
voltages, all channels
$ =0y Bp=d; 440mV 40mV
b,=HI, $p=9, 200mV 18mV
$4=0, 3p=HI 50mV 20mV

Table 5.3 Multiplexed Filter Characteristics, Metal Gate Process
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low, the reset switch’s channel charge is trapped on the op amp input node
and contributes to the DC output voltage. With scheme (3), the reset switch's
channel charge which is trapped on the op amp inverting node when reset
goes low is used to form the channel for the input side switch when it turns
on, thereby giving a first order cancellation of the channel charge and a lower

DC output voltage.

The harmonic distortion is a function of the output signal level and DC
output voltage of the fllter. The harmonic distortion is caused by channel

charge redistribution which is signal dependent.

An unexpectedly large adjacent channel crosstalk was measured.
Crosstalk should be negligibly small because the reset period between chan-
nels eliminates the main crosstalk path which is through C,.. The crosstalk is
either due to poor isolation between nearby N+ diffusions, charge pumping
through the substrate to the nearby switch transistors, dielectric absorption
in G., or signal coupling onto Cy, through the overlap capacitances of the off

switches.

6.2.3. OPERATIONAL AMPLIFIER

The op amp was tested alone to compare its performance with the design
goals. It met or exceeded all requirements of the system. Data for the metal

gate op amp is given in the second column of table 5.4.
5.2.4. THE IC AS AN AUTOCORRELATOR

Figure 5.8 shows the IC operating as an autocorrelator. The upper trace
is the output of the MDAC. The ten products can be clearly seen. The lower

trace is the output of the filters. The output is a constant autocorrelation

waveform. R(0) is at the left, R(9) is at the right. In both traces, the reset
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Measured Op Amp Characteristics
parameter Metal Gate Poly Gate
Gain 8,000 V/V 1,000 V/V
Maximum output swing +5.5V +1V,-3V
Noise 100nV/vVHz 580nV/vVHz
Noise 1/f corner frequency  700Hz 1kHz
Power Supply + 7.5V + BV
Ipns 150uA 300uA
Power Dissipation 10mW - 1BmW
Number of transistors 14 14
Size 450 mil? 460 mil?

Table 5.4. Op Amp Data, Metal Gate and Poly Gate Processes

2 V/div

| el i, S e Rt
| V/div e R e

L
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TIME (12.5uS/D1V)

Figure 5.8 SC autocorrelator output with sine wave input

period can be seen between channels. The input signal is a 1kHz sine wave, so

the output autocorrelation function is samples of a sine wave.

Unfortunately, the IC autocorrelator did not provide enough accuracy for
analyzing speech due to the.excessive crosstalk in the fllters and the MDAC

non-linearity. Also, due to low yield, no chip was found which had a fliter sec-



tion 1 with all 10 zeros functioning. Speech was passed through the IC auto-
correlator, but the autocorrelation values usually yielded an unstable LPC
model. Nonetheless, the autocorrelation function was fairly accurate, and the
IC could have been used for voiced/unvoiced decision making or other low

accuracy applications.

5.3. A SECOND TEST CHIP

Since excessive crosstalk and offset voltages were measured and since
the zeros were not all functional, a second IC consisting of two multiplexed
filter sections was constructed. (The two multiplexed fliter sections will be
refered to as A and B to avoid confusing them with filter sections 1, 2, and 3 of
the autocorrelator IC.) Each section has four multiplexed feedb‘ack capacitors
and zero capacitors. Section ‘A’'s capacitor ratios were chosen to give a 50Hz
cutofl frequency at an 8kHz sampling rate (similar to the first and second
filter sections of the autocorrelator IC). Section B's capacitor ratios were
chosen to give the 50HZ cutoff at an 800 Hz sampling rate (similar to the third
filter section of the autocorrelator). As in the autocorrelator, section A uses a
minimum unit capacitor for C,, section B uses 3 unit capacitors for C.. In
this IC, all switch gates are brought out to pins to allow maximum flexibility
during testing.

The layout of the second IC is shown in figure 5.9. The chip was fabri-
cated on a digital CMOS process with N type substrate, polysilicon gate, with
poly:poly capacitors. The op amp is practically identical to the op amp
described in chapter 4 with all devices replaced by their complement. This
was done to assure that current sources were implemented by NMOSFETs
because they are in a well and have a higher output impedance than the

PMOSFETs. For the filters, PMOSFETs were used as switches since they do not
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Figure 5.8. Layout of the poly gate multiplexed filters



100
require a well.

§.3.1. RESULTS

The poly gate ICs were extensively tested. The yield was excellent for
these chips (9 out of 10 worked). This reflects the clean, reliable processing
done in industry. Again, to check the eflects of various switching schemes,
the multiplexed fliters were tested with all possible clocking schemes. The
clocks used are an inverted version of those shown in figure 5.8 because the
switches are PMOS. (A logic HI level is taken to be the voltage required to turn
on a switch, so HI is -8V for this IC.) The measured data for the poly gate
filters is tabulated in table 5.5. The most striking differences between the
poly gate fllters and the metal gate fllters are the lower output offset voltages

and lower crosstalk measured for the poly gate filters. The lower offsets are a

Measured Filter Characteristics (poly gate process)

parameter fllter section A _ filter section B |
(zeros off)

-3dB frequency 50Hz 50Hz

Output swing for HD,=1% 0.7V v

Dynamic range 62dB 68dB

Adjacent channel crosstalk -78dB -80dB

Clock frequency (4 channels) 32kHz 3.2kHz
Sampling rate for each channel 8kHz 800Hz

Average DC output voltage of
all channels (input grounded)

d4=9g $5=9, <750mV -130mV
$,=HI, $5=%; -50mV -45mV
$,=%5, $p=HI 180mV 40mV
$,4=5, bp=9, 200mV 55mV

Range of DC output offset
voltages, all channels

$a=dg, $p=9, ) 500mV 50mV
$4=HI, dp=%, 60mV 20mV
®,=%;, $p=HI 340mV 120mV
$4=%, $p=%, 400mV 110mV

Table 5.5. Data for the multiplexed filters, poly gate process
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direct consequence of the smaller gate area and overlap capacitances of the
self-aligned poly gate transistor. The lower adjacent channel crosstalk is as
expected, and the cause of the crosstalk in the metal gate fllters is not clear.
Possibly the crosstalk comes from coupling onto Cj, through the off transis-

tors’ overlap capacitances which is much larger in a metal gate process.

The harmonic distortion rapidly decreases as the output swing decreses.
Typically, HD,=1% for an output swing of 1V, HD,=0.1% for an output swing of
0.25V, and HD, is buried in the noise for any output swing less than 0.1V. The
barmonic distortion only varied a few dB as the different clocking schemes
were tried. There was a larger variation in distortion from one chip to another
for a given clocking scheme than there was for different clocking schermes on
a given chip.

The frequency response for filter section A without the zeros is shown in
figure 5.10. In figure 5.11, the frequency response of section A with a zero is
shown.  Note the difference in the frequency response when the switch phas-

ing for § is reversed. These responses agree with the transfer functions

derived in chapter 3 (equations 3.2 and 3.3).

5.3.2. OP ANP

The op amp characteristics were measured and are included in the last
column of table 5.4. The output swing of the op amp was limited to +1.25V,
-3V due to the large body effect of the process.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

An autocorrelation LPC analysis system was built with commercially
available parts. The system consisted of an anti-alias/pre-emphasis fllter,
automatic gain control, SC autocorrelator, and microprocessor. The system

did analyze speech in real time with sufficient accuracy to generate useful

LPC model parameters.

The switched-capacitor components of the autocorrelator (i.e. MDAC and
multiplexed filters) were integrated on a metal gate CMOS IC. While the MDAC
and filters were fully functional, problems such as MDAC non-linearity and
crosstalk in the fllters limited the accuracy of the autocorrelator to less than
required for LPC analysis. The MDAC non-linearity can easily be reduced by a
more careful layout of the capacitor array. The crosstalk in the metal gate
filters is believed to have been caused either by the large overlap capaci-
tances of the metal gate transistors coupling signal onto the feedback capaci-
tors or by signal retained on capacitor G after the reset period (dielectric
absorption). A second IC consisting of two multiplexed filter sections was
fabricated on a polysilicon gate CMOS process. Both the crosstalk and DC out-

put offset voltage of the multipiexed fiiters were greatly reduced on this poly
gate IC.

The results gathered from the fabricated ICs verify that multiplexed SC
filters can be integrated with performance which matches or exceeds that of
the breadboarded filters. By combining these filters with an accurate 8 bit SC

MDAC, an autocorrelator with sufficient accuracy for speech analysis can be

104
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integrated. (SC MDACs of 10 bit accuracy have been successfully integrated
[32]. s0 an 8 bit SC MDAC can be integrated.)

The complete autocorrelator in integrated form would include an 8 bit
ADC, 8 bit MDAC, digital delay line (RAM), SC multiplexed filters, and control
logic. With a modern polysilicon gate CMOS process with 3um line widths, it is
estimated that the entire autocorrelator would it on a 10,000 mil2 chip.

8.1.1. IMPROVEMENTS AND MODIFICATIONS

The system could be modified to give improved performance. The occas-
sional unstable frames which are caused by course quantization of the auto-
correlation values could be eliminated if the ADC which quantizes the auto-
correlation values has an adjustable reference voltage which is set to R(0) or
a voltage slighty greater than R(0) each frame. (This is possible because
| R(k)|<R(0D) for all Ié.) This would make more effective use of the ADC's bits.
But the DC offsets of the filters would have to be canceled prior to the ADC or
the microprocessor would have to know the reference voltage each frame so

it could properly subtract the offset voltages.

The op amp associated with the MDAC could be completely eliminated by
making G of filter section 2 or 3 a binary weighted capacitor array and using
the digital word s(n—k) to select the capacitors and to determine the switch
phasing.

If an LPC model with more poles is desired, the system is easily expanded
to produce more autocorrelation values. The number of autocorrelation
values which could be generated by the MDAC and multiplexed fliters is lim-
ited by the settling time of the op amp.
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The major drawback of the system is the need for muitiple ADCs - one in
the AGC, one to digitize the speech in the autocorrelator, and one to digitize
the autocorrelation values for the microprocessor. Time sharing of these
ADCs is possible since the autocorrelation values and AGC gain value are sam-

pled at the frame rate which is much less than the sampling rate.

The AGC was very effective and could be more so if a quieter analog delay
line were available. Other modifications to the AGC were considered and
analyzed in[ 18], .

It is possible that a simpler window could be used in the LPC autocorrela-
tor. This would reduce the area required for the multiplexed filters. For
instance, the zeros in the transfer functions have little effect and possibly
could be eliminated altogether. This is worth investigating.

6.1.2. IC LAYOUT AND MODULAR DESIGN

The layout of the metal gate IC was a long, slow process. From start to
finish, the layout took about six months. Learning how to use the layout pro-
gram, poor graphics (a small black and white screen), and painful plotting
(two tape transfers between three computers) contributed to the slow layout.
Also, a great deal of time was spent experimenting with the layout to achieve
the minimum total area. And, as problems came to light, circuit simulations

were perforrned.

In contrast, the time required to lay out the poly gate IC was only three
days! The layout was greatly simplifled because building blocks (op amp,
switches, and capacitors) had already been layed out by other students and
were available. A new layout program with color graphics had been developed
[ 33 ], and a plotter was available on the computer which was being used for
layout. The total area of the chip was determined by the need for 40 bonding
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pads, so there was no reason to worry about saving area during layout. The
great reduction in layout time reflects an improvement in layout tools and

the usefulness of pre-designed circuit building blocks.

6.1.3. ANALOG VS. DIGITAL PROCESSING

In most applications, the words "signal processing"” are proceeded by the
word "digital”. Analog signal processing is dominant m high frequency applica-
tions where digital circuits are not fast enough to perform the required com-
putations. But with switched-capacitor technology, all the basic building

blocks necessary for analog signal processing are available (appendix B).

Digital processing has an advantage in that layout is not as critical for
digital ICs as it is for analog ICs where parasitics must be taken into con-
sideration. Many digital building blocks (or cells) have been developed, and
they make for a quick and easy IC layout. But in digital processing, quantiza-

tion, area, and power dissipation can be a problem.

Analog signal processing should be considered whenever signal process-
ing tasks are to be performed. There are times when analog signal processing
will result in a smaller, lower power integrated circuit and is worth the time

and effort to design.



APPENDIX A

FINDING THE FILTER TRANSFER FUNCTION

A derivation of the filter transfer functions H'.(z) (equation 2.11) is
included here for completeness. We begin by recalling the time window sug-
gested by Barnwell [ 5 ]

wi{n) = (1=n)a™ n=<0, 0<a<l
and

h(n) =w(—n) =(n+l)a™® n=0, 0<a<l,
which has the z-transform

N S
(1-az1)?’
The z-transform of the sequence h'y(n)=h(n)h{(n+k) is desired. The z-

H(z) = |2 |>a. A1)

transform of h(n +k) is

h(n+k)-2*H(z) = |z | >

2k
(1-az")F’
H'y(2z) is found by integrating, equation (2.8),

Hy(2z) = Hk(z)'z"H;(z) = E:'?j-fv"H(v)H(;zﬁv“dv = -Z-:Eer(v)H(-:%v"“du

where the integration is along any closed path in the region of convergence of

both A (v) and H(:ﬁ.

Substitution of (A.1) into (2.8) gives

[ 1 Tl 1
Hy(z) = ZﬂJf(l-av“)a a a—)a Fldy 21rJf(u-a)2 (1—av—)2
z

vk+idy,

We already know that H(v) converges for all |v|>a. So H(:—) will converge if

§—I>a. or equivalently, |v|<-|-%|—. The common region of convergence is
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a<|v| <-I%L. Any closed path in the common region will encircle the pole of

order two at v=a; the poles at v=fr- are outside any such path. Note that

since we are interested in values of k=0, v**! is analytic everywhere and does
not contribute a pole. The integral can therefore be evaluated using the resi-
due theorem which states that an integral around a closed contour equals 275
times the sum of the residues of the integrand evaluated at all poles encir-

cled by the path of integration [ 34 ].

Since H{v) has a pole of order two at v =a, evaluation of the residue of

the integrand is found by differentiating

—n)2 2\, k+1
Aw-PBHET | b1
ov Iu:a ( l-azz —1)3 ’
This residue equals H',(z) since the 27 which multiplies the integral in (2.8)

residue =

cancels the 2nj of the residue theorem.

It is worth noting that if A{n)=w(-n) is chosen to be the impulse
response of a one pole filter, the resulting output filters A',(z) are also one

pole filters. That is, if A(n)=w(-n)=a™ for n=0 so that

1

HE) = e

then

a*

1—az~!’

Hy(z) =

The question might arise, "If a one pole window corresponds to a one pole
output filter, and if a two pole window corresponds to a three pole output
filter, then what type of window corresponds to a two pole output fliter?"” If we

take for H'g(z) the two pole filter
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' - 1
0(2) - (l_az_l)z"v

which has the corresponding impulse response
h'g(n) = (n+1)a®,
and recall that the output filter for k=0 has impulse response

h'o(n)=h%n)=w?(—n), then the window can be found from

L
h(n) = VR (n) = Vr+ia®?.
Such a window has no discontinuities and more heavily weights the present

frame than the past frames as desired, but computation of H',{z) for k£ #0 is
impossible because h(n) is irrational in n and therefore does not have a
closed form H(z) representation to use in equation (2.8). H'x(z) is the z-

transform of A"y (n)=h(n)h(n +k) which can be written

n+dy
h'y(n) = h(n)h(n+k) = Vin+l)(n+k+1)a 2.

The inability to find H';(z) as a rational polynomial which can be realized as a

recursive sampled-data fllter eliminates this window from consideration.



APPENDIX B

CATALOG OF ANALOG COMPUTATIONAL CIRCUITS

The autocorrelator employs the basic computational building blocks for
signal processing - delay, multiplication, and filtering. There are many ways
to implement each of these blocks, and some alternatives are mentioned
briefly below. For a more detailed discussion of each circuit, please see the

references cited.

1.1.1. DELAY LINES

Digital delay lines are basically RAM and all are functionally the same. A
number of different RAM cells are available for constructing a digital delay
line [ 35 ]. Analog delay lines are of two types - cascaded sample-and-hold

circuits or rmultiplexed sample-and-hold circuits.

The simplest MOS sample-and-hold circuits suffer from offset and signal
dependent errors (i.e. distortion) due to overlap capacitance and channel
charge redistribution. An interesting, feedback-corrected sample-and-hold
was presented recently [ 368 ]. Dynamic range of 80dB was reported for this

sample-and-hold which was constructed with a polysilicon gate process.

A multiplexing sample-and-hold (S/H) scheme, employing one op amp
and p capacitors, was used in an LPC lattice analyzer [ 14 ]. The delayed sig-
nals are stored on different capacitors, and when a particular delayed signal
is desired, the corresponding capacitor is connected into the circuit. The
accuracy of this multiplexed S/H was limited by the fixed-pattern noise asso-
ciated with the switching. A dyriamic range of only 45dB was reported, but the
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circuit was constructed with a metal gate process; so direct comparison with

the 80dB figure above is not possible.

1.1.2. ANALOG MULTIPLIER

A four-quadrant analog MOS multiplier has been fabricated by Soo [ 37 ].
This multiplier provided 77dB of signal-to-noise ratio, 1.5MHz bandwidth, and
0.3% non-linearity while occupying 450mil? of chip area. Such a circuit, if
combined with a high quality analog SC delay line, would work very well in an

autocorrelator.

A four-quadrant analog multiplier/divider in bipolar technology was
reported by Gilbert [ 38 ]. The non-linearity was an excellent 0.01% with a £10
volt input signal swing. This circuit might be used with SC delay line and
filters in a bipolar compatible CMOS process. The delay lines (cascaded S/H
circuits) and filters for the autocorrelator in a purely bipolar technology

would be prohibitively large.

1.1.3. MDACs

An MDAC is just a DAC with its analog reference input connected to an
analog voltage equal to the multiplicand. No attempt will be made to discuss
all the possible resistive DACs, capacitive DACs, and combinations thereof
which might function as an MDAC; see references [ 39 ] and [ 30 ] for such a
discussion. The MDAC chosen for the autocorrelator is a capacitive DAC com-

patible with a standard CMOS process.

1.1.4. FILTERS

Various implementations of a real pole and real zero are available. The
low frequency cutoff of 25Hz eliminates RC filters from considerations due to

the large area required. Some clever implementations of continuous time
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filters with low cutoff frequencies using FETs have been reported [ 40 ][ 41 ).
SC filters allow low cutoff frequencies and have become very popular for audio
range filtering [ 39 ]. Implementation of a negative real zero (in the z-

domain, not the s-domain) poses a problem in some SC configurations.

1.1.5. ABSOLUTE VALUE CIRCUITS -

An MOS absolute value circuit can be constructed using a diode-
connected enhancement mode transistor to restrict current flow to one
direction only, figure 4.13. Accurately matched resistors are required in such
a circuit. Alternatively, a sampled-data SC absolute value circuit can be used
to compute the absolute value of the input. This requires a comparator to
determine the sign of the present sample and an amplifier with a programm-
able gain of +1. In a SC amplifier, the sign of the gain is easily inverted by
changing the switch phasing of the input sampling switch.

1.1.8. LONG DELAY LINES

Long delay lines, with lengths on the order of a hundred samples, are not
feasibly realized as a cascade of sample-and-hold circuits because the
number of op amps becomes large, and the area required for them becomes
prohibitive. The multiplexed S/H mentioned above might work for large
delays. But the natural choice for a long analog delay line is the charge-
coupled device or the bucket-brigade device. They are compatible with MOS

circuitry. A digital approach would employ a large RAM.



APPENDIX C

SPEECH PROGRAMS AND SENTENCES

Computer simulation results presented in chapter 4 were performed by
passing digitized speech through custom written programs. The speech was
sampled at 8kHz and digitized by a 12 bit ADC. All programs were written in
the C programming language. When required, synthesized speech was played
back by a 12 bit DAC operating at an 8kHz rate. The sentences used for the
simulations are listed in table C.1 , followed by the source code for the pro-

grams.

2.1. GENERATEAUTO.C

The program Generateauto.c simulates the autocorrelation system and
allows optional inclusion of the various system modifications - downsampling,
AGC, multiplier quantization (MDAC), pre-emphasis, and quantization of the
autocorrelation values. It takes speech as input and generates the autocorre-
lation values for each frame. The source for Generateauto.c is listed on the

following pages.
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Digitized Speech Used for Simulations

File Name

Adam.t
Baker.t
Charlie.t
David.t

Dr.Bob.t
Hello.t
Susan.t

Suzie.t

Thieves.t

We.t
Why.t
ah.t
ahsh.t

audiocritic.t

clock.t
cursor.t

demo.t

ee.t
eh.t

handel.t
is.t

mike.t
oak.asa.t
oak.ellen.t
poweramp.t

room_noise.t
sh.t

shah.t

ss.t

trends.t
xyz.t

Sentence or Phrase Spoken

Adam.

Baker.

Charlie.

David.

Doctor Bob is on
vacation again.

Hello, how are you?
Susan kicked the goat
on Sunday.

Suzie sat on the
sandwich.

Thieves who rob friends
deserve jail.

We were away a year ago.
Why do I owe you a letter?

/ah/

/ah/./sh/

We publish part one of the
transcript of our all day seminar
on the state of the art.
Clock,slope, fleld.

Move the cursor to the

clock slope field.

This is a demonstration of

?mt/hetic speech.

ee
/eh/
Behold, I tell you
a mystery.
Is waiting to see you.
The two powering modules
available are fitted with a battery
and a balancing transformer.
The oak trees are strong.
The oak trees are strong.
The two most interesting power
amplifiers for the audio purist.
(background room noiseg

Trends and perspectives in
signal processing.
XYZ.

Speaker

George White
George White
George White
George White

Paul Hurst
Paul Hurst
Paul Hurst

Paul Hurst

Peter Chu

Bob Brodersen
Peter Chu
synthetic sound
synthetic sounds

Bob Brodersen

John Fattaruso (RSB)

John Fattaruso

Bob Brodersen

synthetic sound
synthetic sound

John Fattaruso
Steve Love

Steve Love

Asa Romberger
Ellen Szeto
Barry Hyman

small fan running
synthetic sound
synthetic sounds
synthetic sound

Steve Love
Paul Hurst

Table C.1. Speech used in the simulations of chapter 4
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GENERATEAUTO.c

#define SOURCE " /brodersen/hurst/bin"
ditdef M

#undef SOURCE

#define SOURCE " /mb/audio/hurst/bin"
ffendif

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

/* This program generates the first 10 autocorrelation values
* for the input file. The autocorrelation values are stored in
* files. 'output 1.xx’' contains the autocorrelatin values determined
* using Barnwell's 10 filters exactly. 'output2.xx’ contains the
* autocorrelation values determined using a lower sampling rate
* on the last section of each filter.
»

* to compile: cc -0 Generateauto.c -lm -INS
»

*/This is the VAX version.
®

jdefine AD_BITS 11 /* number of bits in A/D converter (excluding sign bit) */
fdefine AD_full_scale 2047
#define POINTS 400 /* sets maximum frame size (in samples) */
Zdefine ALPHA 0.98
fdefine pi 3.1415927
4define NO_AUTOC 10
#define MAX_FRAMES 500 /* limits maximum number of frames to 500 */
#define sign(x) (((x) >=0) ? 1: -1) /* nice line of code, huh? */
/* see 'C manual’, pg. 47 */

/* all external variables are initialized to 0 */

int frame_rate =80;

int samp_freq =8000;

int contsampflag =0;

int dwnsampflag =0;

int gainflag =0;

int preempflag =1;

int agcflag =0;

int clipflag =1;

int quant_flag =0;

int q_bits =0; /* This value is never used. If quant_flag==1,q bits is
* read from command line.
L ]

int r_full_scale=2047;

int rfs_bits =11; /* rfs_bits is 'r_full scale_bits’. # bits which correspond
* to r_full scale.

float R[MAX_FRAM‘E/S][NO_AUTOC]:
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struct stat stbuf;
FILE *fopen(),*fp_scaled, *fp_sec1,*fp_sec?,*fp_sec3,*fp_guant;

main (argc,argv)
int arge;
char *argv{];

¢

int i,l,rate,row,frames,atoi(),framelength,agc[MAX_FRAMES],power();
long filesize;

float cos(),pow(),low_pass(),mult();

float max_RO,s[POINTS],prod[ POINTS];

char *temp_file, *mktemnp();

FILE *fopen(),*fp_input;

max_R0=0.0;

if (arge == 1) instructions();

i=2:
:while(++i <= arch
§ if (argv{i-1][0] t= "~

ex ("bad parameter");
else switch(argv]i-1][1])

case 'c': contsampflag=1;
brealg

case 'd’: dwnsampflag=1;
rate=atoi(argv[i++]);
if(rate == 0) ex("-d ?");
break;

case 'r': frame_rate=atoi(argv[i++]);
break;

case 'g": gainflag=1;
break;

case 'b’: rfs_bits=atoi{argv[i++]);
r_full_scale=power(2,rfs_bits) - 1;
gainflag=1;
printf("gainflag is now on (i.e. -g lag assumed)\n");
if((rfs_bits > 15) || (rfs_bits < 5))

ex("bad number of bits");

break;

case 'a’: agcflag=1;
break;

case 'k’: clipflag=0;
break;

case 'q": quant_flag=1;
q bits=atoi{argv]i++]);
break;

case 'p': preempflag=0;
break;

case 's": samp_freq=atoi{argv{i++]);
break;

default: ex("bad parameter");
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!

/*s P] will hold the speech samples */
for (i=0;i<POINTS;i++)
s[i] = 0.0;
for(i=0;i<POINTS;i++)
prod[i] = 0.0;

;‘or (row=0;row<frames;row++)
printf("\nframe %4d * row+1);
for (i=0;i<NO_AUTOC;i++)
s[i] = s_[1+framelength]
for (i=NO_AUTOC;i<framelength+NO_AUTOC;i++)
s[i] = getsh(fp_input);

if Epreempﬂag = 1) preemp(s,framelength);
if (ageflag==1) do_age(s,agc,framelength,row);

for (1=0;1<NO_AUTOQC;i++)
t
for(i=0;i<framelength+1;i++)
prod[i]=mult(s[i+NO_AUTOC-1],s[i-1+NO_AUTOC-1],
q bits,1)/AD_full_scale;

if {(contsampfl

R[row]{1 af--low ass(prod,l,1,framelength);
if (dwnsampfia

R[row][ﬁ—low _pass(prod,L,rate,framelength);

)

for (i=0;i<frames;i++)
if (R[i][0] > max_R0) max_RO=R[i][0];

if (contsampflag ==
norm, store(max RO,frames, 1,agc);

if (dwnsampflag == 1)
norm, store(max RO,frames,2,agc);

felose(fp_input);
felose(fp_secl);
fclose(fp_sec?2);
fclose(fp_sec3);
/* sys;all("/ bin/rm %s",temp_file); */
if(agcflag = 1) fclose(fp_scaled);
if(quant_f ﬂag = 1) fclose(fp_guant);
‘ pmtf(”\fl"

/* low_pass() is the bank of low pass filters required in the autocorrelation
* computation. Each autocorrelation coefficient has a different filter.
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Y/

#define fc 51.453  /*51.453 is the -3db point for filter #3 when fs=8kHz*/
#define p1 0.9604

ffdefine p2 0.9604

f#define gainl 2.5 /*want filter section 1 to have dec gain = 2.5 */
#define gain2 1.38  /*gain of filter section 1 (due to b0 & bl) is 1.9604%/
#define gain3 1.3  /*so gain1*1.9604 = 1.27*1.9604=2.5 */

#define GAINO 1.9604 /*This is the de gain for filter section 0 for R[0] */

float low_pass(prod,L rate,framelength)
int l,rate,framelength;
float prod[POINTS];
§ float input?2,input3;
float pow(),cos(),sqrt(),x,b0,b1,p3,g1,g2.¢3,21,d0;
int i,section;
/™ hopefully, all static variables are initialized to zero Sseems to be true) */
static float output1[2][NO_AUTGC],output2[2][NO_AUTOC),output3{2][NO_AUTOC];

if (rate == 1) section = 0;
else section = 1;

b0=21+ 1)*pow(ALPHA,1+0.0);
b1=(1-1)*pow(ALPHA,1+2.0);

z1=b1,/b0;

d0=b0/GAINO; /* what the heck is d0?*/

x=cos(2.0*pi*c/ (BOOO/rateg); /* compute p3 (it depends on the */
p3=(2-x) - sqrt((2-x)*(2-x)-1); /* down sampling of last section.
* 8000 is sampling rate which is

* /assumed in window parameters
]

ge=gain2%1-p2
g3=gain3*(1-p3

.
£ ]

g1=gain1‘z 1-p1§/ GAINO;

for(i=1;i<framelength+1;i++)

input2=output1 section]H;

input3=output?2| section]{1};

output1section][1]=p1*outputi[section]{1]+

(b0*prod[i]-b1*prodfi-1])*gl;

if (1 == 0) putsh((short)outputifsection][l],fp_sec1);

output2[section][l]=p2*output?] section{1]+input2*g2;

if (1 == 0) putsh((short)output?2{section]|1],fp_sec?);

if(i==(i/rate)*rate)

¢ outputB[section&l]:pS‘output3{section}{1]'|+input3‘g3;
if (1 == 0) putsh{(short)output3d|section]{1],fp_sec3);

!
return{output3[section][1]);



121

|

/* norm_store() scales autocorrelation results (if asked) and stores

* the results in a file.
*/

norm_store(max,rows,outflag,agc)

float max;

int rows,outflag,agc[ MAX_FRAMES];

§ int i,j,norm,scale,quantize(),round_ofi();
float fscale,sqrt();
char *filename;
FILE *fopen(), *fp_output;

%f (outflag == 1)

if (gainflag == 1)  filename = “outputl.g";
else if (agcflag == 1) filename = "outputl.agc";
else filename = "outputl.ng";

{

else

if (gainflag == 1)  filename = "output2.g";
else if (agcflag == 1) filename = "output2.age”;
else filename = "output2.ng";

J

if ((fp_output = fopen(filename,"w")) == NULL)
ex("can’t open output file");

if (max < 0.01) max = 0.1; /*in case max is zero */
for (i=0;i<rows;i++)
¢ if (gainflag == 1)

if (R[i][0] < 0.01) fscale = 1;

else fscale = max / R[i][0];

for(j=0;j<NO_AUTOC;j++)
¢ if (gainflag == 1)
§ norm = (r_full_scale*(R[i][j]/max)*fscale);
/* assure R[0] = r_full_scale */
if(j == 0) putsh(r_full_scale,fp_output);
else putsh(norm,fp_output);

else /*if agcflag or no gain options*/
putsh(limit(R[i][j],r_full_scale),fp_output);

if (gainflag == 1)
scale=limit(sqrt((r_full_scale/255.0)*{scale),32767);
putsh(scale,fp_output);

P M:‘w

else if (agcflag == 1) -



putsh(agc[i],fp_output);

else putsh(1,fp_output); /* output a 1 for the gain
* if 'no gain’ option
*/

]

fclose(fp_output);
return;

}
#define ZERO 0.7

preemp(s,framelength)
float sﬁ;
int framelength;

int i

static int fopenflag = 0;
static float x0, x1, output;
static FILE *fp_precheck;

/*
if(fopenflag++ == 0)
if({fp_precheck = fopen("PREcheck”,"w")) == NULL)
ex(""cannot create PREcheck);
* /
for(i = NO_AUTOC; i < framelength + NO_AUTOC; i++)

x0 = sji}; :

s[i] =SE;]0 - ZERO*x1)/(1. + ZERO); /* DC gain = 1 %/
I put(s)h((short)s[i].fp _precheck); */

x1 = x0;

)

jdefine ROOT2 1.414
jdefineA 0.99

do_age(s,age,framelength,row)
float s[POINTS];
int age[MAX_FRAMES], framelength, row;
§ int j,imit():
float Aimit(),fabs(),sqrt(),sigma;
static FILE *fp_agcout;
static float out1,0ut2; /* outl and out?2 are initialized to 0.0
* first time 'do_age()’ is called.
»
if (row == 0)
if ((fp_agcout = fopen("agc.out”,"w")) == NULL)
ex("cannot open 'agc.out’ file");
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for(j=NO_AUTOC;j<framelength+NO_AUTOC;j++)
§ outl = ALPHA*out1 + %1.0-ALPHA)"fabs(s[j]);
; out? = ALPHA*out2 + (1.0-ALPHA)*out1;

/* The output of this |(.)] and LPF circuit is an estimate of the rms value
* of the latest speech frame. (Actually, we must multiply the result by
* ROOT2 to get an estimate of sigma.)

* LPF should have the same impulse response as the window used in

* autocorrelaton computation {impulse response of t.f. w/ two equal poles).
»

sigma = ROOT2 * out?2;

age[row] = limit(4 * sigma,AD_full_scale);

if (agc[row] == 0) age[row] = 1; /* can't allow O as an agc value.
* agc = 0 screws up synthesizer */

putshgagc[row].fp _agcout);

printf("agc output is %d",agc[row]);

for(j=NO_AUTOC;j<framelength+NO_AUTOC;j++)

§ s(j] = (s[j] * AD_full_scale)/agc[row];
if (clipflag == 1) s[j] = ﬂimi:?s[j],(ﬁoat)AD_full_scale):
putsh(limit(s[j],AD_full_scale),fp_scaled);

return;

instructions()

z printf("usage: generateauto file {-c} {-d dwnsamp} {-r frame_rate}

-s samp_rate] \n\t\t{-g} {-a} {-kj {-q q bits] §-p} §-b bits{\n\n");
printf(""\t file must contain at least 500 samples of speech \n");

rintf('""\t -c: requests constant sampling rate to be used\n\t\t

?output is in output1)\n");
printf("\t -d dwnsamp: sets down sampling rate for the last filter
section \n");
pri.n)tf("}t\t(dwnsamp=2 means the sampling rate drops by a factor
of 2)\n");
printfg"\t\t(output is in output2)\n");
printf(""\t -r frame_rate: sets the rate at which the autocorrelation
values \n\t\tare to be output (in Hz). Default is 80 Hz\n");
printfé"\t -s samp_rate: sets the sampling rate (Default is 8k Hz)\n");
printf(''\t -g: causes program to output a scale factor after each
set\n\t\tof autocorrelation values (R[0]=full_scale)\n");
printf("\t -a: causes an agc circuit to pre-process the signal\n\t\t
Value of gain is output every frame\n");
printf("\t\tagc scaled time waveform is stored in file scaled’\n");
printf("\t -k: stops clipping from occuring at output of agc ckt.\n");
printf('"\t -q gq_bits: causes multiplication to be done with multiplier
\n\t\tquantized to q bits (see comment below; keep q bits <= 11)\n");
printfg"\t -p: disables pre-emphasis \n");
printf("\t -b bits: sets R[0] = 2**bits when used with -g option\n\t
\tProgram accepts 8 <= bits <= 15 \n\t
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\t(default is bits=11 -> full_scale=2047)\n");

printf("\t Comment: 'bits’ is the number bits used to store the\n\t
\t results NOT INCLUDING the sign bit.\n");

printf(""\t Therefore, bits=8 allows numbers to range \n\t
\tbetween -255 and +255\n");

exit();

J

/* limit(x,max) takes inputs x (float) and max (int) and returns an integer
* whose value is between -max and +max inclusive. This is a *clipper’ for x.

*/

limit(x,max_value)
float x;
int max_value;
int output;
float fabs();

if (fabs(x) > max_value)
/*printf("\nlimiting\t");*/

return(output = sign(x) * max_value);
else return{output = x);

/* flimit(x,max) takes inputs x (float) and max (float) and returns an float
* whose value is between -max and +max inclusive. This is a 'clipper’ for x.

*/

float flimit(x,max_value)
float x,max_value;

float fabs();

if (fabs(x) > max_value)
/*printf("\nlimiting\t");*/
return(sign(x) * max_value);

)

else return(x);

i

/* mult(x,y,bits) does Aoating point multiplication. If asked, the function
* will quantize y and return the product.
-

float mult(x,y,bits,1)

float x,y;

int bits,];

§ float pow(),y_quantized;
int quantize(),power();
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if(quant_flag == 0) return(x * y);

else
§ y_gquantized = quantize(y,bits);
/* printf("'y=%f\ty_quantized=%f\n",y,y_quantized); */
if (1 == 0) putsh((int)y_guantized,fp_guant);/* output quantized
* speech once only*
return(x * y_guantized);

}

/* quantize(y,b) takes y (float); clips it to AD_full_scale; and then

* quantizes its value to b bits (not including sign). Returns an int.

* Quantization simulates an A/D converter (see t.f., pg. 108 of Analog
* Devices ‘Analog to Digital Conversion Handbook’)

*®

quantize(y,b)
int b;

float y;
§ float y_temp,y_norm,flimit();

int limit();
_temp = flimit(y,{float)AD_full_scale); /*clipy*/
b=b+1;

_temp = {(((int) (y_temp+(1<<(AD_BITS-b)))) >> ((AD_BITS+1)-b))
<< (AD_BITS+1)-b); /* quantize to b bits */

return(limit(y_temp,AD_full_scale)); /* clip y_temp */
}

/* round_off(x) takes x (float) and returns the integer closest to x
»

round_off(x)
float x;

return((int) (x + sign(x)*0.5));

Abs(t)
int t;
i return(sign(t) * t);

/* power(a,b) is an integer version of pow(). Returns a to the b power.

. /a.b. and result are all integers.
*

power(a,b)
int a,b;
H int result = 1;
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while(b > 0)

§ result = a * result;
b—;

!

return(resuit);

/* ex() prints a message, then exits. */

ex(str)

char *str;

§ printf(""%s\n",str);
exit{);

/ * sys_call(string,arg) does the following:

* char command[J;

* sprintf(command,string,argl,arg?2,..);
* system(command);

»

* Only %s, %Zc, %d and Z%h are allowed in the string. %Zh is replaced
. /mth the user’'s home directory path. (i.e. HOME of "printenv’)
]

#define MAX_LINE 500
#define NULL,_CHAR "\('
fdefine BLANK * ’
#define RETURN "\n’

sys_call(string,arg)

char string[MAX_LINE], *ar

H char command MAX L]NE] *getenv(), **ptr;
inti=0;

ptr = &arg;
sprintf(command,"%c",BLANK);

while( string[i] != NULL_CHAR)
if( string[i] =="'%')

smtch(strmg[++1])

] case 's":
sprintf(command,”%s%s".command,‘(ptr-l-+));
break;

case 'h’:
sprmtfécommand,"?s‘?s".comma_nd,
getenv("HOME"));
break;

case ‘%’
sprintf(command,"%s%c",command,string[i]);
break;

case 'd":
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sprintf(command,"%s%d",command, *(ptr++));
break;

default:
sprintf(command,"unknown conversion type
'%%%e’ ", string[i]);
ex(command?;
break;

i++;
else sprintf(command,"%s%c",command,string[i++]);

system({command);
return;

2.2. SPEAKPITCH.C

To synthesize speech which was analyzed by Generateauto.c, a simple

direct-form LPC analyzer was written. All computations are floating point.

SPEAKPITCH.c

#define SOURCE " /brodersen/hurst/bin"

#define PITCH_FILE "/brodersen/hurst/source/8msec_pitch"
pifdef M

f#undef SOURCE

#define SOURCE "/mb/audio/hurst/bin"

#undef PITCH_FILE

#define PITCH_FILE "/mb/audio/hurst/source/8msec_pitch"
#endif

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#define NO_AUTOC 10

#define NO_POLES 9

#define LOTS 2000

#define UV 0 /*indicator variable-UV means unvoiced frame */

#define V 1 /*indicator variable- V means voiced frame */

#define MAX_24BITS 8388607 /* max value for a 24 bit integer:(2~23)-1 */

int frame_rate =80;

int samp_freq=8000;

int floatflag =1; /* float version of Durbin's Recursion is default */
int pitchflag =0;

int gainflag =0;
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int ageflag =0;

int unstableflag=1;
int deempflag =1;
int unstbie_frames=0;
char *pitch_file;
struct stat stbuf;

/* This program is a refinement of Sammy Lum’s Speak.c. It runs much faster.
[

* Autocorrelation data and pitch estimates are fed into this program to
* produce synthetic speech. The output speech is stored in a file.
*®

“'/To compile: ce -0 Speakpitch.c -Im -INS (VAX program)
E

main(arge,argv)

int arge;
char **argv;

int i,atoi();
char *temp_file,*mktemp(),string[200];

pitch_file = PITCH_FILE;

¢ == 1) instructions();

arsv{I][Ol =="-) || (a)rgV[Z][Ol =="-))

ex("bad flle name’

i=3;
while {(++i <= ar
P S largetiaifol =
ex("bad paramet.er")
else smtch(argv[rl][l])
case 'r':frame_rate = atoi(argv{i++]);
break;
case 'f":floatflag = 1;
break;
case 'p':pitch_flle = argv{i++];
bre
case 'g':gainflag = 1;
break;
case 'a’:agcflag = 1;
breal;
case ‘s’:samp_freq = atoi(argv{i++]):
break;
case "u’:unstableflag = 0;
break;
case 'd":deempflag = 0;
brealg
default: ex("bad parameter\n");
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if ((gainflag == 1)&&(agcflag == 1))
ex(can’t use both -g and -a options");
if (flter(argv) < 0) ex(" ");

';f(deempﬂag ==1)

printf("DE-EMPHASIZING\n");

sys_call("%s/deemp %s > %s",SOURCE,argv{2],

temp_file=mktemp("'Spk_TemPX20XXXX"));

printf{"SCALING\n");

sys_call("%s/scale Zs %Zs;/bin/rm %s",SOURCE,
! temp_file,argv[2],temp_file);

ii.f(deernpﬁag ==0)

printf("SCALING\n");

sys_call("%s/scale %s %s",SOURCE,argv{ 2],
temp_file=mktemp("Spk_TemPXXXXXX"));
sys_call("/bin/mv -f %s %s",temp_file,argv{2]);

}

instructions()
printf("usage: speakpitch filel file2 §{-p file3] {-r auto_rate]
{-s samp_freq] {-f} \n\t\t{-g} {-a] {-uj {-dj\n\n");
printf("filel should contain the autocorrelation values\n");
printf("file2 will contain the output samples\n");
printf("-p file3 should contain pitch information\n
\tdefault is a constant 8msec pitch period\n");
printf("-r auto_rate is the frequency at which the autocorrelation
\n\tvalues were sampled (in Hz);default is 80Hz\n");
pringg"-s samp_freq is the sampling frequency (default is 8kHz)\n");

printf("-f flag causes Durbin’s Recursion to be done in floating point\n");
printf("-g causes program to read gain input from autocorrelation file\n")
printfé"-a causes program to read agc gain from autocorrelation file\n");
printf("’-u causes program to terminate Durbin’s recursion whenever\n
\t\ta reflection coefl. exceeds ONE\n");
printfé"-d turns off deemphasis \n");
printf("* results are scaled and ready to output to the D/A converter
in LSI\n");

; exit();

filter(argv)
char *argv{];

int fpe();
int count,samples,framelength,atoi(),last_frame;
int i,j,k,1,output,rows,poles,scale,scaleflag = 1,agc;
long filesize,r[NO_AUTOC],overflow_count,pitch_pericd,r_full_scale;
float yJNO_AUTOC],a[NO_AUTOC .newa[NO_AUTOCJ.‘x.gain.sqrt(),t’abs().magn.out.fscale,fagc;
float noise[LOTS],nat_excit[256],simple_excit[256],Gain,comp_gain();
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FILE *fopen(),*fp_auto, *fp_output, *fp_pitch, *fp_excitation;

signal(8,&fpe); /* this is a function which allows programmer to jump
* /to a subroutine when a floating point error occurs
E 3

if ({fp_excitation=fopen("excitation","w")) == NULL)
ex("cannot create file 'excitation'");

if ((fp_auto=fopen(argv{1],"r")) == NULL)
exg'cannot open file of autocorrelation data");

if ((fp_output = fopen(argv{2],"w")) == NULL)
ex("can’t create output file");

if ((fp_pitch = fopen(pitch_file,"r")) == NULL)
ex("pitch file cannot be opened");

/* initialization */
overflow_count = 0;

gain = 0.0;

count = -1;
for ( i= 0; i<NO_AUTOC; i++)

{ yli] =0.0;
i] =0.0;
riij =0;

a[0] = 1.0;
/* compute length of the file containing auto values */

stat(argv] 1],&stbuf);
filesize = stbuf.st_size;

/* determine number of rows */
framelength = samp_freq/frame_rate;
printf("framelength=%d samples \t\tframe_rate=%d Hz\n",
framelength,frame_rate);

rows = filesize/(2*(NO_AUTOC + scaleflag));

printf("frames = %d\n",rows);
/*set up arrays of excitations*/
set, _gxdit(noise,nat ,_excit,simple_excit,framelength);

/* BEGIN SYNTHESIS */

for ( 1=0; 1<rows; 1++)
§ printf("frame %Z4d ",1+1);
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for (i=0;i<NO_AUTOC:i++)
r{i] = getsh(fp_auto); /* read in autocorrelation values */

if (gainflag == 1)
§ fscale = getsh(fp_auto);
if (fscale == 0.0) fscale = 1.0; /* can’'t have fscale==0 */
if(1 == 0) r_full_scale = r{0];
fscale = fscale * sqrt{255.0/2047.0);/* scale factor */
x

/

printf("fscale is Zf\t",fscale);

fscale = fscale * fscale * sqrt(r_full_scale / 2047.0);
p;intf("fscale is Zf\n" fscale);

]

J
else if (agcflag == 1)
fage = 0.0001 + (agc = getsh(fp_auto));
else getsh(fp_auto); /* just skip over the scale factor
* (which is 1) if no gain option
]

/* get pitch */

pitch_period=getsh(fp_pitch);
if (feof(fp_pitch) != 0) /*check for EOQF in pitch file*/
{ printf("\n\npitch file Zs is too small. Need at
least %d pitch periods\n",pitch_file,rows);
return(-1);

samples=(pitch_period * samp_freq)/10000; /*convert pitch period
* to # of samples at sampling freq; pitch_period is in units of
* 0.1msec (assumes pitch period is from Monte's bread-board or
“/Herb's span program)
*

printf("Pitch period is %4.1fmsec\n",pitch_period/10.0);

/*set x to point to the start of the desired excitation array*/
if (samples > 0)
X = nat_excit; /* voiced */
if (last_frame == UV) count = -1; /* reset count on a */
last_frame = V; /* uv/v transition */

else
§ X =noise; /*unvoiced*/
samples = LOTS;
last_frame = UV;

]

/* do durbin's recursion on new data. Use the new values
* obtained from durbin's recursion only if it works (i.e.
* number of poles = 9) ./

if {loatflag == 1) /*use floating point version*/
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{ if ({poles=durbinf(r,newa,&gain,0)) == NO_POLES)
for (i=0;i<NO_AUTOC;i++)
a[i] = newa[i);

i

else /*use integer version*/
§ if ((poles=durbin§r.newa.&gain.0.0)) == NO_POLES)
for (i=0;i<NO_AUTOC;i++)
afi] = newa[i};

!

printf("gain = %7.3f poles = %Zd\n",Gain=
comp_gain(gain.fagc,fscale),poles);

/* compute fllter outputs for a frame. Synthesis filter

* has the form: y(n)=a[1]*y(n- 1)+a[§8 (n-2)+..+G*x(n).
* y(n) {present outputg is stored in y{0}, y(n-1) is

*in y[1)....ete. x(n)=x[n]=excitation

L ]

for { k=0; k < framelength; k++)
{ if(count >= samples) count=0;
else count++;

for (i=1; i<NO_AUTOC; i++
y[0] = a[i]*y{i] + y[0}; /*y[0]is the present output*/

/* TESTING VAX random number generator */
putsh((short)x[count],fp_excitation);

y[0] = y[0] + x{count]*Gain/858.0;
- output = (out = y[0]*500.0);
if((magn=—fabs(out)) > 32787.0)
§ output = 32787.0 * out/magn;
overflow_count++;
printf("" **overflow in computation. y[0]=%f\n",out);

putsh(output,fp_output);

for (j=0;j<NO_POLES;j++) /*shift data*/
NO_POLES-j] = y[NO_POLES-1-j;

y[0] = 0.0;

fclose(fp_excitation);
fclose(fp_auto);
fclose(fp_output);
fclose(fp_pitch);

if (overflow_count != OL)
printf("%ld overflows occured in the synthesis filter\n",
overflow_count);



if (unstble_frames != 0)
printf("%d unstable frames \n",unstble_frames);
return(0);

)

set_excit{noise,nat_excit,simple_excit,framelength)
float noise[LOTS],nat_excit[256],simple_excit{256];
int framelength; /* Why is this arguement listed ? */

§ int i,rand(),Rand();

/* expected value of noise squared = 1791393 */
for(i=0;i<LOTS;i++)
noise[i] = (Rand(0) - 16383.5) * 0.02002;

/* this input waveform is not used in this version of Speakpitch.c */
/* energy in simple_excit = 1782150 */
for(i=0;i<256;i++)
simple_excit[i] = 0;
simple_excit| 28] = -545;
simple_excit|29]| = 1090;
simple_excit|30] = -545;

/* energy in nat_excit = 1791393 */
nat_excit[0] = 37;

nat_excit|1] = 83;
nat_excit{2] = 96;
nat_excit{3] = 107;
nat_excit|4] = 76;
nat_excit|5] = 84;
nat_excit| 8] = 90;
nat_excit{7} = 77;
nat_excit{8] = 89;
nat_excit|9] = 83

nat_excit[10] ='80;

nat_excit[11] = 62;
nat_excit| 12| = 64;
nat_excit| 13| = 49;
nat_excit|{ 14| = 44;
nat_excit{15] =-11;
nat_excit.lsﬁ =9;
nat_excit| 17} = -65;
nat_excit| 18| = -63;
nat_excit{19]| = -21;
nat_excit|20] = -4;
nat_excit[21] = -43;
nat_excit{22] = -159;
nat_excit{23} = -239;
nat_excit{ 24| = -320;
nat_excit{25] = -276;
nat_excit|28] = -211;
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nat_excit[27] = -238;
nat_excit| 28] = 155;
nat_excit| 29| = 8586;
nat_excit{30] = -264;
nat_excit|31] = -404;
nat_excit{32] = 233;
nat_excit{33] = -266;
nat_excit{34} = 293;
nat_excit|35] = -189;
nat_excit{36| = 177;
nat_excit|37] = -131;
nat_excit{38] = 105;
nat_excit|39] = -134;
nat_excit[40] = 109;
nat, __excit[tl-l =-71
nat_excit|42] = 44;
for(i = 43;i<256;i++)
nat_excit[i] = 0;

return;

}

/* Rand() bridges the incompatability gap between the 11/40 and VAX. This
* function returns a random number between 0 and 32767 on both machines.

*/

#define MASK 0x00007(fL /* masks all but last 15 bits on a long integer */
Rand(seed)
int seed;
§ int rand(),noise; /* want 'noise’ to be a positive random
* number between 0 and 32767

*/

noise = (int) ((long)rand(seed) & MASK);
return(noise);

#define MAX_32BITS ({1 << 31) - 1)

/* This function accepts 10 autocorrelation values as input and computes
* the filter coeflicients (the a(i)’s). */

/* Blows up on frame 323 of 'gen audiocritic.t -a'
. /Because of this, this function is no longer the default.
»

durbin(r,newa,gain,delta,shiftcnt)
int delta,shiftcnt;

long r[NO_AUTOC];

float newa[ NO_AUTOC], *gain;

§ long r0,e;
long a[ NO_AUTOC][NO_AUTOC];
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short i,j,k,poles,ONE,shiftflag;
float g,sqrt(),newk[NO_POLES],pow();
float tempsum,fabs();

/*printf("integer version of Durbin’s Recursion\n");*/

/* ONE = 18384; this works fine with long integers */
ONE = 32767

shiftflag

1f(delta 0) printf("R[0]=%51d ".r[0]);

else pmntf(" ")

r0 = r[0];

while(r0 < (1 << 14))
rO=r0<< 1;
shiftent++;

! shiftflag = 1;

if(shiftAag)
for(i=0;i<NO_AUTOC;i++) /* minimize roundoff error */
r{i] = r[i] << shiftent;

for(i=1;i<NO_AUTOC;i++)
newa[i]=0.0;
newa[0] = 1.000;

/*this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)subi*/

r[0] = r[0] + delta; /*try to fix ill-conditioned matrix*/

e =r[0];
printf("Rl0]=751d  ".r{0]);
if (e <= 0L) i=1

else for(i=1;i<NC_AUTOC;i++)
§ tempsum = 0;

for(j=1;j<=i-1;j++)
§ tempsum = tempsum + (mt) (851-1][]] * r[i-i]):
if(fabs(tempsum) > MAX_3
fpmnt.f(stderr,"TEMPSUM OVERFLOW %f",tempsum);

J

oL - () ong)ONE Sempem/)

if (( afi])(i] >= ONE) Il ( a[l{[l] <= -1*ONE))
if (unstableflag =
f printf("'refl. coeff >= ONE #! k[%d] = %7.2f\n",
i, a[x][l] / éﬂoat)ONE)
delta == 0) unstble_frames++;
if ((poles=durbin(r,newa,gain,compute_delta(r[0]),
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shiftent))==NO_POLES) return(poles);

/* if ({poles=durbin(r,newa, &gain,compute_delta(r[0])
shiftcnt))==NO_POLES) return(poles); old line -

wrong (I think) */

/* increment R[0] by .1% and redo durbin if unstable ¥

J
else { unstble_frames++; break;}

for(j= 1.1<-1-

] = a[l-ll (3[1][1] * a[i-1][i-j])/ONE);
1] i] *afi-1 1-] overflows on frame 323 */
nntf "a[Zd|[%Zd] = %1d .1..| ali]liD:
ft(abs(afi][i]) > MAX_24BIT
¢ } %d] = Zld\n",i.j.a[i](j]):

fprmtf(stderr,"a[?d
exceeds 24 bits!!\n");

fprintf(stderr,"~ a[]

J

/"‘ = ((ONE - ((a[i ][] * a[i][i])/ONE)) * e) /ONE; */

: = {tiome *one) N aﬂ I 31][5>/0NE) L e) /ONE; +/
e= e - (int) (a[i [1{ a[l][l ONE:; /* has the nice
feature that e >= theoretlcal value of e) .

, if (e == 0) § fprintf(stderr,"e == 0O\n");e = 1;}

poles =i-1;
if (poles < NoO _POLES) return(poles); /* don't compute a new gain value wih
* bad data--just return and use old data*/

for(j= 1;j<=poles;j++)

newa[j] a[poles][]]/((ﬁoal:)ONE)
if(delta !=
nntf(”new %d] = %t " j,newa[j]);
neka-l] = a[jl[j]/((float)ONE);
if(delta !=0)
printf("newk{%d] = %f *,j-1,newk[j-1]);

J

/* note that Ipc_gain~2 = lpc_error */
/* note: If R[0] has been incremented a number of times, R[0] and

* therefore e are too large -> gain is too large.
*®

/
*gain = sqrt((float)e/pow(2.0,(float)shiftcnt));
* scale gain to undo '<< shiftcnt’ above */

return(poles);

}

old_durbin(r,newa,gain,delta)
int delta;

long r[NO_AUTOC];

float newa[ NO_AUTOC], *gain;
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H long a[NO_AUTOC][NO_AUTOC],e,tempsum;
int i,j,k,poles,ONE;
float g,sqrt();

/*printf("integer version of Durbin’s Recursion\n");*/

ONE = 10000;
for(i=1;i<NQ_AUTOC;i++)
newa|i]=0.0;

newa[0] = 1.000;

/*this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)subi*/
r[0] = r[0] + delta; /*try to fix ill-conditioned matrix*/

e = r[0];
printf("R[0]=%51d ",e);
if (e <= OL) i=1;

else for(i=1;i<NO_AUTOC;i++)
$ tempsum = 0;

for(j=1;j<=i-1;j++)
tempsum = tempsum + (a[i-1][j] * rfi-j]);

iJli] = (r|i]|*ONE - tem :
ALY

if (( afi][i] >= ONE) |i ( a[i])[i] <= -1*ONE))
if (unstableflag == 1
§ printf("refl. coeff >= ONE ! k[%Zd] = Zld\n",i,a[i][i]);
if(delta == 0) unstble_frames++;
if ((poles=old _durbinﬁr,newa.&gain,compute  delta (r[}
==NO_POLES) return(poles);
/* increment R[0] by .1% and redo durbin if unstable ¥

else { unstble_frames++; break;]

for(j=1;j<=i-1;j++)
ofi1D] = e[i-110] - ((aLil] * e[i-1][c1)/ONE;
e = ((ONE - ((a[i](i] * a[i][i])/ONE)) * e)/ONE;
if (e ==0L) e = 1L;
poles = i-1;
if {(poles < NO_POLES) return(poles);/* don't compute a new gain value wih
* bad data--just return and use old data®*/

g = 0.0;

for(jz 1;j<=poles;j++)



;e:;[é]n: ﬁgﬁt}lssr] ]]'/ 10000.0;

g =g+ r[0];
if (g < 0.0) g=0.0;
*gain = sqrt(g);

return(poles);

}
#define fepsilon 0.00001

durbinf(r,newa,gain,delta)
int delta;

long r[NO_AUTOC];

float newa| NO_AUTOC], *gain;

f float alNO_AUTOC][NO_AUTOC],e,tempsum,ONE;
int i,j,k,poles;
float g,sqrt();

/*printf("float version of Durbin's Recursion\n");*/
ONE = 1.0000;
for(i=1;i<NQ_AUTOC;i++)

newa|i|=0.0;
newa[0] = 1.000;

138

/*this is Durbin’s recursion. See J.Makhoul paper. afj][i]=(a sup j)sub i */

r[0] = r[0] + delta;

e = r[0];
printfs"R[o]=z5.0f "e);
if (r[0] <= OL) i=1;

else for(i=1;i<NO_AUTOC;i++)
tempsum = 0;

for(j=1;j<=i-1;j++)
tempsum = tempsum + (a[i-1][j] * r{i-j]):

afi][i] = ({i]*ONE - tempsum)/e;

if (( o{i][i] >= ONE) || ( a[i&[i] <= -1*ONE))
if {unstableflag == 1

printf("refl. coefl >= ONE ! k[%d] = Zf\n".i,a[i][i]):

if (delta == 0) unstble_frames++;
delta = compute_delta(r{0]);

/*if ((poles=durbinf(r,newa,&gain,delta))==NO_POLES)

old line of code - wrong (I think) */

if ((poles=durbinf(r,newa,gain,delta))==NO_POLES)



return(poles);

else { unstble_frames++; break;}

for(j=1;j<=i-1;j+

i

poles =i-1;
if (poles < NO _POLES) return(poles);

}

g = 0.0;

ali)li] = a[1°1][1] ((ali](i] * a[i-1][i-j])/ONE);

ONE - (()3[1][1] a[i][i])/ONE)) * e) /ONE;

e==0

for(j=1;j<=poles;j++)
newaD] = oles ]/ 1.0000;

=g- ne

g =g +r[0];
if (g < 0.0) g=0.0;
*gain = sqrt(g);
return(poles);

!

compute_delta(R0)

long RO;

$ int delta;
delta = 0.001*RO;
if (delta == 0) delta = 1;
return(delta);

ex(str)

char *str;

§ printf("%s \n",str);
exit();

float comp_gain(gain,fagc,fscale)
float gain,fage.fscale;
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if (gainflag 1) return(gain/fscale);
else if (agcﬁag = 1) return{gain*fagc/800.0);/* 800 is the magic */
else return(gain); /* number which gives

3

/* Gain(age)~Gain(fscale)*/

/* floating point error causes a jump to this function */



140

fpe()
$ printf("Floating point error\n");
/*printf("Gain=%ZA\nCount=%d\nOutputn-1=ZA\nOutputn=%f\n\n",Gain,
Count,Outputn_1,0utputn);
printf("Fage=%M\nFscale=%A\n\n",Fage,Fscale);

L]

ex("");

#define MAX_LINE 500
fidefine NULL_CHAR ' °*
ffdefine BLANK '’
fidefine RETURN '\n’

sys_call(string,arg)

char st.ring[MAX_LINE}, *arg;

H char command| MAX_LINE], *getenv(), **ptr;
int i;

ptr = &arg;
sprintf(command,”%c",BLANK);

i=0;

while( string[i] != NULL_CHAR)
if( string[i] =='%")
§ switch(string[++i])

case 's:
sprintf(command,"%s%s"",command, *(ptr++));
break;

case 'h’":
sprintfécommand."%s%s",command.
getenv("HOME"));
break;

case ‘%"
sprintf(command,"%s%e",command,string[i]);
break:;

case 'd":
sprintf(command,"%s%d",command, *(ptr++));
break;

default:
sprintf(command,"unknown conversion type
'%%%c'" string[i]);
ex(command);
break;

i++;
else sprintf{command,"%s%c",command,string[i++]);

system({command);
return;
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Pitch information is required to synthesize speech. To determine the
pitch for the synthesized speech, a modified Gold-Rabiner pitch tracker was

used [ 20]. The source code for this program is not included here.

2.3. SPEC_DEV.C

To quantify errors due to the various system modifications, an Itakura-
Saito spectral distance measure was employed (equation 2.15) . The pro-
gram spec_dev.c takes two sets of autocorrelation values and computes the
spectral distance between them. In the simulations of chapter 4, one set of
autocorrelation values was computed with high accuracy (no modifications),
and the other set was computed with one or more modifications in effect. The
spectral distance measured is referred to as a spectral deviation since it is

the distance measured from a very accurate, reference frame.

SPEC_DEV.c:

#include <stdio.h>

4ifdef FORTY

#include */usr/audio/hurst/source/VAX header

#endif

#define NO_POLES 9

&define NO_AUTQC 10

#define OUT_SCALE 100

jdefine MAX_SHORT 32787

j4define ERROR_FLAG -1000 /* number to output in place of rms_error if
* an unstable frame is encountered

4

int scaleflag =1;
int unstableflag=0; /* causes durbinx() to terminate on an unstable k ¢/
int unstble_frames;
int quant_type=0; /* 0 -> use floating point arithmetic */
/* 1 -> use long arithmetic */
/* 2 -> use 16 bit integers wherever possible */
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main(argc,argv)
int arge;
char **argv;

¢

/* short durbinsh(),durbinl(),durbinf(); */

int atoi(),i,j,frame=0;

long r[NO __AUTOC]].r -_ref[NO_AUTOC);

float a[ NO_AUTOC],a_ref[NO_AUTOC],gain,rms_error,numer,spec_dev;
float durbinf(),error(),log();

FILE *fopen(),*fp_ref _auto, *fp_other_auto,*fp_error;

if(arge == 1)
ex("'usage: spec_dev ref other [-fis] \n\t-f is the default");

i=3;
while(++i <= argc)
¢ if (argv{i-1]{0] !=*-)
ex ("bad parameter");
else switch(argv{i-1][1])
§ case 'f": quant_type = 0; /* use durbinf() */
break;
case 'l": quant_type = 1; /* use durbinl() */
break;
case 's': quant_type = 2; /* use durbinsh() */
break; .
default: ex(""bad parameter");

J

if({fp_ref_auto=fopen(argv[1],"r")) == NULL)
ex("input file does not exist");

if({fp_other_auto=fopen(argv{2],"r")) == NULL)
ex("input file does not exist");

if((fp_error=fopen("dev","w")) == NULL)
ex("cannot create 'dev’ ");

while(1)

for(j=0;j<NO_AUTOC;j++)
§ r_ref{j] = getsh(fp_ref auto);
r[j] = getsh(fp_other_auto);
if(feof(fp_ref_auto) == 1)
if(j = 0) ex("bad data count in input file");
else exit(0);
if(feof(fp_other_auto) == 1)
ex(''bad file size in other");

!

i.f§sca.leﬁag == ; getshéfp _ref_auto); /* skip gain value */
if(scaleflag == 1) getsh(fp_other_auto); /* skip gain value */

rms_error = durbinf(r_ref,a_ref,&gain,0); /* 1! not NORMALIZED Y */



if(durbinf(r,a,&gain,0) < 0) /* durbinf failed */
numer = -10; /* indicates error */

else numer = error(r_ref,a); /* !! not NORMALIZED ! */

if(rms_error <= 0)

spec_dev = -(float) (MAX_SHORT / OUT_SCALE);

ﬁ indicates an unstable frame in reference data */
else if(numer <= 0)

spec_dev = (float) (MAX_SHORT / OUT_SCALE);

/* indicates an unstable frame in other data */

else spec_dev = 4,343 * log(numer / rms_error);

printf("frame %3d spec_dev = %f db\n",++frame,spec_dev);
/* printf("normalized rms_error = %f for frame %d\n",
(rms_error * MAX_SHORT / r[0]),++frame);*/

/* output spectral deviation in units of 0.01 db
»
putsh((short) (spec_dev * OUT_SCALE),fp_error);

J

/* This function accepts 10 autocorrelation values as input and computes
* the filter coefficients (the a(i)’s). */

short durbinsh(r,newk,gain,delta)

int delta;

long r[NO_AUTOC]; /* ?? could be a short since R[0] <= 2047 */
float newk|NO_POLES], *gain;

§ long a[NO_AUTOC][NO_AUTOC],tempsum; /* e could be a short since
* e <= R[0]. tempsum must
*be a long. a[][] is up
* in the air. See td_results
* for limits on a[J[]'s
3

short i,j,k,e,r_sh[NO_AUTOC],r_scale,poles,ONE;

float g,sqrt(),newa[NO_AUTOC]; /* God forbid we should really need
* a float. Better check this out.
»

/*printf("integer version of Durbin’'s Recursion\n");*/
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ONE = 32767; /* Different value for ONE results in different rms_error */

r_scale = ONE / r[0];
for(i=0;i<NO_AUTOC;i++)
rs i%.—: r[i] * r_scale;

r[0] = r_sh{0]; /* return r_sh[0] for proper scaling in print in main */
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for{i=1;i<NO_AUTOC;i++)
newal[i|=0.0;
newa[0] = 1.000;

/*this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i */
r_sh{0] = r_sh[0] + delta; /*try to fix ill-conditioned matrix*/

e =r_sh[0};
/* printf("R[0]=%5d ".e); */
if (e <= OL) i=1;

else for(i=1;i<NO_AUTOC;i++)
§ tempsum = 0;

for(j=1;j<=i-1;j++)
tempsum = tempsum + (a[i-1][j] * r_sh[i-j]);

L R A R PR AT

if (( a[l](l >= ONE) || ( a[l&[l] <= -1*ONE))

if (unstableflag == 1
{ printf("refl. coefl >= ONE ! k[Z%d] = %7.2f\n",
l.a[l][l]/éﬂoat)ONE)
if(delta == 0) unstble_frames++;
if ((poles-durbmsh(r newk,&gain,compute_delta(r[0])))
=NO_POLES) return{(short) e);
/ *increment R[0] by .1% and redo durbin if unstable®*/

else § unstble_frames++; break;}

for(j=1;j<=i-1;j++)
ali]lij] = 3[1-1][11 ((ai](i] * afi-1][i-j])/ONE);

AR R e A

; if(fe==0)e=1;

poles =i-1;
if (poles < NO_POLES) return{(ERROR _FLAG);/* don't compute a new gain
* value with bad data--just return and use old data®*/

g =0.0;
for(j=1;j<=poles;j++)

= float)ONE
Rewitt] :‘.[§°‘]‘E71][’ (e “aéi%%m 4
g = g -newa[j] *r_sh[j



145

g = g + r_sh[0];

/* just found out (should have known) that g = e */
/* printf("’'g = Zf\te = Zd\t",g,e); */

if (g < 0.0) g=0.0;

*gain = sqrt(g);

return((short) e);

/* This function accepts 10 autocorrelation values as input and computes
* the filter coefficients (the a(i)’'s). */

short durbinl(r,newk,gain,delta)

int delta;

long r[NO_AUTOC]; /* ?? could be a short since R[0] <= 2047 */
float newk[NO_POLES], *gain;

§ long a[ NO_AUTOC][NO_AUTOC],e,tempsum; /* e could be a short since
* e <= R[0]. tempsum must
* be a long. a[][]is up
* in the air. See {d_resuits
* for limits on a[][]'s
-

int i,j,k,poles,ONE; /* On the VAX, these are the same as longs.

* Change to shorts wherever possible.
*/

float g,sqrt(),newa[NO_AUTOC]; /* God forbid we should really need
* a float. Better check this out.
=

/*printf("integer version of Durbin's Recursion\n");*/

ONE = 10000;
for(i=1;i<NO_AUTOC;i++)
newa[i|=0.0;

newa[0] = 1.000;

/*this is Durbin’s recursion. See J.Makhoul paper. afj}[i]=(a sup j)subi*/
r[0] = r[0] + delta; /*try to fixill-conditioned matrix*/

e = r[0];
/* printf("R[0]=%5ld "e); */
if (e <= OL) i=1;

else for(i=1;i<NO_AUTOC;i++)
tempsum = 0;

for(j=1j<=i-1;j++)
tempsum = tempsum + (afi-1][j] * r[i-j]);



148

*ONE :
N TS oy

if (( a[i][i] >= ONE) || ( a[l%[i] <= -1*ONE))
if (unstableflag == 1
prmtfq'reﬂ. coeff >= ONE !! k[Z%d] = %7.2f\n",
i,a[i][i]/(foat)ONE);
if(delta == 0) unstble_frames++;
1f ((poles-durbml(r.newk &gain,compute_delta(r[0])))
==NO_POLES) return((short) e); /* increment R[0]

by 1% and redo durbin if unstable */

else §{ unstble_frames++; break;}

for{i=1:j<=i-1;j
o ) - (et » o114 /one

e = ((ONE - ((a[i][i] * 2[i][i])/ONE)) * e)/ONE;

: if (e == OL) e = 1L;

poles = i-1;

if (poles < NO_POLES) return(ERROR_FLAG);/* don’t compute a new gain vir
* bad data--just return and use old data*/

g = 0.0;
for(j=1:;j<=poles;j++)

Rewelin iitif’f‘ﬁ} fioat)ONE);

g = g - newa[]j

P{ ((ﬁoat) ONE);

g =g + r[0};
if (g < 0.0) g=0.0;
*gain = sqrt(g);

; return((short) e);

#define fepsilon 0.00001

float durbinf(r,newa,gain,delta)
int delta;

long r[NO_AUTOC];

float newa[NO_AUTOC], *gain;

§ double a{ NO_AUTOC][NO_AUTOC],e,tempsum,ONE;
int i,j,k,poles;
double g,newk[NO_POLES];
float sqrt();
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/*printf("'float version of Durbin's Recursion\n");*/
ONE = 1.0000;

for(i=1;i<NO_AUTOC;i++)
newa[i]=0.0;
newa[0] = 1.000;

/*this is Durbin’s recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i*/
r{0] = r[0] + delta;

Z'; 1%5]%(- %%]1__76 .0f "e); */

else for(i=1;i<NO_AUTOC;i++)
§ tempsum = 0;

for(j=1;j<=i-1;j++)
tempsum = tempsum + (afi-1][j] * r{i-j]);

A

if ((afi]li] >= ONE) || ( a[i][i] <= -1*ONE))
if (unstableflag == 1)
§ printf("refl. coefl >= ONE !! k[%d] = %Zf\n" ia[i][i]);
if (delta == 0) unstble_frames++;
delta = compute_delta(r[0]);
if ({poles=durbinf(r,newa,&gain,delta))==NO_POLES)
return(e);

else § unstble_frames++; break;}

for(j=1:j<=i-1;j++)

a[i]fj] -a[l-llLl] ((lilli] * a[i-1]i-j])/ONE);
(§0NE ((ja[ll[l] a[i][i])/ONE)) * e) /ONE;

/‘1f e==0
J

poles = i-1;
if (poles < NG _POLES) return((float)ERROR_FLAG);

g = 0.0;
for(j=1;j<=poles;j++)
newalj] = -a[poles][)]/ONE /* fixing sign for error() */

wic]j-1] 1(i]/ONE;
ze g- newaE[]] *rfjl;
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g=g+ [0}
if (g < 0.0) g=0.0;
*gain = sqrt(g);

return(e);

compute_delta(R0)
long RO;

¢

§

int delta;

delta = 0.001*R0;
if (delta == 0) delta = 1;
return(delta);

float error{r,a)
long rf |;

float
§

!

/*® R(j,.) returns autocorrelation value of input. Function is necessary
* because error() uses R(j,.) and R(-j,.)

x®

-
[

int j;
float err = 0.0;

float R(),B();

for (j= -NO_POLES;j<=NO_POLES;j++)

err = err + B(j,a) * R(j.r);

return(err);

float R(j,r)
long r[];

int j;

/* B(j,a) computes autocorrelation values for the LPC coefls. Reference is

ifj<0)j=-1+j;
return((float)r[j]);
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* G. White paper (Xerox PARC) 'Automatic Speech Recognition, LPC Residual
* vs. BP Filtering

»

float B(j,a)
float a] J;
int j;

int i;

float b = 0.0;



ifj<0)j=-1*j

for(i=0;i<=(NO_POLES - j);i++)
b =Db + a[i] * a[i+i};

return(b);

ex(str)

char *str;

$ fprintf(stderr,”%s \n",str);
exit();
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APPENDIX D

THE CMOS PROCESS SCHEDULE

The process schedule for the high voltage metal-gate CMOS process
which was used to integrate the autocorrelator is presented here. This pro-
cess is a modified version of the CMOS process used by Black [ 28 ]. More

information on the process and layout rules can be found in [ 14 ].

This process uses positive photo-resist throughout. Alignment was done
with a projection aligner to ~1um precision. The p-channel devices were self
aligned by an implant over the metal. The aluminum gates were used as the

mask and the sintering step activated the implant.
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Berkeley Metal Gate CMOS Process
November 18, 1981 (rev. March 5 1982)

Initial wafer cleaning - p-type, 5-7 ohm-cm, <100>

a.

T rpR™mMEe AR DT

TCE clean, 80 °C, 10 minutes (Degrease) (Watch temperature : Boiling
TCE will shatter wafers)

Dip in acetone

Dip in methyl alcohol

Rinse in De-ionized (DI) water

Piranha etch (H;S50,:H;0, - 5:1) for 10 min.
Rinse thoroughly in running DI water

Dip in HF:H20 (1:10) for 20 seconds

Rinse in DI water

Blow dry

Inspect under collimated light for dust. (If dust remains, repeat from
h.; if that doesn’t work, repeat from a.)

Initial oxidation - 40004, Initial Oxide Furnace

a.
b.

Wet 0p, 1100 °C, 27 min. (.4um) (temperature setting=1085 °C)
Dry N, (anneal), 900 °C, 20 min. -

Positive Photoresist (PR) Step, Mask #1 : N- well mask.

a.

b.

mooao

t;-n [ ud poc.q

all

Prebake, 85-90 °C, 15 min. (if wafer just came from furnace then skip
prebake)

HMDS treatment
1. N purge, 10 min.
2. Load wafers
3. Bubble HMDS, 3 min.
4. N, purge, 5 min.

Spin AZ 1450J, 8000 rpm, 30 seconds. (PR thickness = 1.4um)
Softbake, 85-90 °C, 15-20 min.
Align and expose (Blow off dust on top and bottom)

Develop, AZ 351 developer (DI H,0:Developer - 5:1), 1 min. (or regular
AZ developer at 1:1 dilution

Rinse in DI water and blow dry
Inspect
Hardbake, 110-120 °C, 20 min.

Oxide etch, buffered HF (NH F:HF - 5:1) etch rate .12um/min.
(-145um/min if solution is just made) (etch time= 3.5~4 min. with 15%
over etch) (prepare at least 4 hours before use)

PR strip, acetone, 15 min.
Piranha clean, H2S04H20; - 5:1, 15 min.
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4. Implant step - Initial Oxide Furnace

a. Grow implant oxide - 200A
1. Wet 0, 900 °C, 3 min., flowmeter setting=4 cm
2. Dry N, 900 °C, 5 min., flowmeter setting=4 cm

b. Implant Phosphorus (N-), Dose=1z10'3, 200keV (xj(well)=.482um,
Rsh=1.29kohm/square)

5. Piranha Clean, H,S04H30; - 5:1, 5 min.

6. Well oxidation - 72294, Initial Oxide Furnace
a. Wet O, 1150 °C, 85 min., (.78/.92um) (setting=1144)
b. Dry Nz 900 °C, 30 min. (xj(well)=1.978um, Rsh=943 ohms/square)

7. Well drive-in, Arsenic Furnace
a. Dry N, 1200 °C, 24 hours

b. Dry N, (anneal), 900 °C, 60 min. (xj(well)=9.055um, Rsh=827
ohms/square)

8. Pos. PR Step, Mask #2 : N+ (N channel S/D) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)

b. Oxide etch, buffered HF (NH F:HF - 5:1) etch rate .115um/min.
(etch time=7.5 min.)

c. PR strip
d. Piranha clean, 15 min.

9. Implant step - Initial Oxide Furnace

a. Grow implant oxide - 230A
1. Wet O,, 900 °C, 3 min.
2. Dry Na, 900 °C, 5 min.

b. Implant Phosphorus {N+), Dose=5.84z 1015, 180keV
10. Piranha Clean, 5 min.

11. Oxide growth over N+ - 39834, N+ Drive-in Furnace
a. Wet 0, 950 °C, 60 min.

b. Dry Nz 900 °C, 30 min. (xj(N channel S/D)=0.476um, Rsh=27.88
ohms/square)

12. Pos. PR Step, Mask #3 : P+ (P channel S/D) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)

b. Oxide etch, buffered HF (NH,F:HF - 5:1) etch rate .115um/min.
(etch time=7.5 min.)

c. PRstrip
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14.

15.

16.

17.

18.

19.

20.

21.

22.
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d. Piranha clean, 15 min.

Implant step - P+ Drive-in Furnace

a. Grow implant oxide - 290A
1. Wet 0O,, 900 °C, 3 min. (.29/.40um)
2. Dry Nz, 900 °C, 5 min.

b. Implant Boron (P+), Dose=5.50z10!5, 32keV (xj(P channel
S/D)=.598um, Rsh=22.28 ohms/square, Rsh(well)=958 ohms/square)

Gettering step:
Implant Boron Difluoride into back side of wafer
Dose=5z 105, 200 keV

Piranha Clean, 5 min.

Oxide growth over P+ and N+/P+ drive-in - 32004, P+ drive-in Furnace
a. Wet Op, 1100 °C, 15 min. (setting=1110) (Calibrate furnace temp. first)

b. Dry Nj, 1100 °C, 28 min. (27 min. then 2 min. pulling out) (zj(N chan-
nel S/D)=1.654um, Rsh=18.39 ohms/square) (xj(P channel
S/D)=1.589um, Rsh=40.9 ohms/square)

Pos. PR Step, Mask #4 : Thin Oxide (P channel and N channel Gates) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)

b. Oxide etch, buffered HF (NH /:HF - 5:1) etch rate .115um/min.
(etch through ~12000 A oxide) (etch time=7.5 min.)

c. PR strip
d. Piranha clean, 15 min.

Gate Oxide Growth - 840A/P+(well), 824A/P+(substrate), 1622A/N+ (or
1100A/gate, 1200A/N+) P+ drive-in furnace

a. TCE clean P+ drive-in furnace at least 12 hours before use

b. Wet 0, 840 °C, 75 min. (Calibrate temp. first, check water after 1.5
hour) (setting=840) (or Dry 0,, 1000 °C, 145 min., init. ox. furnace)

¢. Dry N, (anneal), 840 °C, 15 min. {or Dry N; (anneal),1000 °C, 20 min.
for Dry O, growth)

Threshold shift implant - Boron, Dose=5z 10!, 55 keV (75 keV alt.)

Piranha clean, 5 min.

Threshold shift anneal - P+ drive-in furnace Dry Ng, 1000 °C, 15 min. (load
and unload wafers in SLOWLY)

Pos. PR Step, Mask #5 : Contact cut mask.

a. Apply photoresist, expose, develop (follow 3.a-i) (spin on at 5000 rpm)
(check very carefully for gaps)
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33.
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b. Descum - Short plasma etch of resist
1. N, 1 torr, 80 watts, 65 °C
2. Op, .76 torr, 10 watts, 5 min.

c. Oxide etch, buffered HF (NH :HF - 5:1) etch rate .115um/min.
(etch time=1.5 min.) (etch through ~1700A of oxide)

d. PR strip
e. Piranha clean, 15 min.

Metal deposition - 8000A Aluminum

a. HF)dip (HF:water - 1:20), 10 sec. (just until back of wafer repels wa-
ter

b. Bake under IR lamp, 15 min.

c. Use following settings: 25uA,5.2 remote,1 staple,~5z10~® Torr,80
sec.,25 toward

Pos. PR Step, Mask #6 : Metal mask.
Apply photoresist, expose, develop (follow 3.a-i) (spin on at 8200 rpm)
(VERY CRITICAL ALIGNMENT to N+)

Metal etch - Al etchant type A, 45-50 °C, (Do not overetch) (~8.5 min.)
PR strip, acetone, 10 min.
Rinse in DI water

Pos. PR Step, Mask #1 : Self align implant. Apply photoresist, expose,
develop (follow 3.a-i) (spin on at 8000 rpm)

. Implant (self aligned PMOS) Boron, Dose=3.81z1013, 45 keV (dose=40

pcoulombs)

PR strip

a. Acetone, 30 min. (1 min. ultrasonic every 15 min.)
b. Dlrinse and blow dry

c. Plasma etch, 150 watts, 1 torr, 5 min. or until done

Sinter Aluminum - 450 °C, 15 min. with forming gas, 14 cm.

Spin on PR, 15 min. prebake(100 °C), 5000 rpm, 30 sec., 20min.
softbake(80°C)

Dice - dicing saw, speed=2(hi), 4.0 mils not sawed, channel 1 =
4.250,2.500, channel 2= 4.6830,1.750, distance to edge of chip= .250 mm.
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APPENDIX E

EXACT SIMULATION OF LOOP GAIN

The loop gain of a feedback circuit provides valuable stability and set-
tling time information [ 27 ]. Often, loop gain simulations are based an
approximations [ 27 ],[ 42 ]. For example, for the shunt-shunt feedback cir-

cuit of figure E.1 the exact loop gain is given by

_ (G =1y Ny ~ur)
T(s)= vy +16 Xy +¥4)
(following the terminology in [ 27 ], see figure E.1). Output loading and the

output admittance of the op amp are included in y,: the source admittance
y, and op amp input admittance are included in y. Usually, y,. the reverse
transmission through the op amp, is much smaller in magnitude than y, in
the frequency range of interest and can safely be neglected. But often y, is
assumed much smaller in magnitude than G, and the loop gain is approxi-
mated as

Gn Yy

(s +vo)yr +1)
Neglecting y, is not always valid. For example, if y, =sCp, then y; and G,

T(s)=

may have comparable magnitudes near the frequency where |T(s)|=1. In
that case, neglecting Yy would yield an incorrect phase margin and possibly
false stability data. Circuit design text books introduce the "“break-the-loop"
loop gain analysis which has a nice intuitive feel, but relies on the above

Yr¥h
;!L+Tl[27].[42].rhe

"break-the-loop” loop gain is given by the voltage transfer function T(s)=—%—
' (

assumnptions as well as the assumnption that |y, | >
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Yt

Va /

Yf

Va Yin YrVoQ Qf‘.mVa Yout Vo

Figure E 1. top: Shunt-shunt feedback circuit
middle: Op amp with feedback element Yy
bottom: Same circuit with op amp replaced by its two-port
representation
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in figure E.2.

These approximations need not be made at all because direct, exact
simulation of the loop gain is possible with circuit simulators like SPICE. For
example, consider the shunt-shunt feedback circuit of figure E.1. If the input
current source is replaced by a voltage source ¥, as shown in figure E.3, the

transfer function from ¥; to ¥, is

Vo __(Gn-—yy)
1A ('y! +yo)
A dependent source, controlled by the output voltage, driving the output of

.

the op amp in the reverse direction gives a voltage transfer relation

% _ vy ~¥r)
Vv, Q+w)
And therefore the overall transfer function -%—is
B

% _ (Ga-yy) (yr=yr)
o (yr+v) (ur+w) .
which equals the exact loop gain. No approximations were made.

It is often important, due to non-linear eflects, to test the loop gain at
different DC output voltages. These can easily be accommodated as is shown
in figure E.4. The original circuit {figure E 4, top) is used to determine the DC
operating points. Then controlled sources are connected as shown in figure

E.4 to assure that all DC node voltages are correct. The loop gain is found by

computing the small signal gain, T(s)=-l;—.

(}
This exact loop gain analysis can be applied to all four of the feedback
conflgurations. Here is the procedure for exact loop gain analysis for an arbi-

trary feedback configuration:
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Vx +
Ys

Figure E.2 Break-the-loop circuit for finding T(s)

Draw the circuit, labeling input and output sources correctly. The input
- source must be a current source if it is shunt feedback at the input, an
input voltage source for series feedback at the input. Use Thevenin or
Norton equivalences as required. Replace the input source with its dual (i
= v, v » i), call the new source S,. Now make a second copy of the circuit.
Drive the output of the second circuit with a controlled source of the
same type as the output variable, with value +1 times the output of the
first circuit. In this circuit, replace the test source S; with an inflnite
impedance mismatch (replace a voltage source with an open circuit,
replace a test current source with a short circuit.) Label the location
where S; was as S, with the same polarity. If S; was a test valtage, S, will
measure an open-circuit return voltage. If S; was a test current, S, will

measure a short-circuit return current. Have the circuit simulator calcu-
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late the transfer functions T(s):—::!- which is the exact loop gain. An
¢ 4

arbitrary DC input source can be accommodated as discussed above.

Yt

I [\ Vo
Vx Ys __I/

vV Vv

Yt

A -

> Vv Vv

Vr

Figure E3 Circuit for finding T(s) exactly



Yt
Ys Va ‘\ Vo
+
Vin +
Y§
I 4'\ Vo
Va-Vin(DC)
Vin(DC)
Y§

+ + Ys Vr

Vo l -

Vin(DC)

Figure E.4. Circuit for finding T(s) exactly, including DC biasing
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