

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN MOS-LSI AUTOCORRELATION

LINEAR PREDICTION SYSTEM

by

P. J. Hurst

Memorandum No. UCB/ERL M83/51

26 August 1983

AN MOS-LSI AUTOCORRELATION

LINEAR PREDICTION SYSTEM

by

Paul James Hurst

Memorandum No. UCB/ERL M83/51

26 August 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California,Berkeley

94720

An MOS-LSI Autocorrelation Linear Prediction System

By

Paul James Hurst

B.S. (University of California) 1977
M.S. (University of California) 1979

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Engineering

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved:
Date

'iy.£&A^...ik?/p>

An MOS-LSI Autocorrelation linear Prediction System

Paul James Hurst

Ph. D. EECS

<fzJUA*dZ^^.
Robert W. Brodersen

Chairman of Committee

ABSTRACT

Integration of an autocorrelation linear prediction system for speech

analysis will be described. The system is composed of both analog, switched-

capacitor and digital circuitry. A switched-capacitor autocorrelator is the

key component of the system. Accuracy requirements both in the analog and

digital processing domains are carefully considered for the speech applica

tion. Practical aspects of speech processing are discussed.

The autocorrelator was fabricated on an analog/digital compatible CMOS

process. The design, layout, and fabrication of the integrated circuit are

described. Experimental results are presented for the autocorrelator

integrated circuit as well as the complete linear prediction system.

This research was sponsored by DAPRPA Grant 1-482427-25976.

ACKNOWIZDGEMENTS

I would like to express my deepest appreciation to Professor Brodersen

for his support and encouragement throughout the course of my graduate

studies. I am very lucky that he chose me to work as a research assistant

under him. and I have learned a great deal about integrated ciruit design and

signal processing from him.

I would also like to thank the EECS faculty and fellow graduate students

in the integrated circuits group and speech group. They are all very

knowledgeable, friendly, and helpful. Special thanks go to Ron Fellman for all

his help, Ron Kaneshiro and Tat Choi for their help in the fabrication Lab, and

Hy Murveit and Asa Romberger for providing invaluable programming assis

tance.

My most important source of recreation during my graduate studies has

been playing softball with the RSB softball team (record 46-20). The RSB

team members are all quality softball players and good guys, and I thank

them all.

Finally, I would like to thank my mother and sister for sticking with me

through this long research project, my father for his support, and Jane Ber-

ryhill for being so helpful and understanding this past year.

TABLE OF CONTENTS

Chapter 1 - INTRODUCTION 1

Chapter 2 - LPC THEORY AND APPLICATIONS 3

2.1 A MODEL FOR SPEECH 3

2.2 LPC THEORY 5

£3 WINDOWING 7

£4 LPC COEFFICIENT COMPUTATION - DURBIN'S RECURSION 12

2.5 FREQUENCY DOMAIN INTERPRETATION OF LPC 17

2.8 PRACTICAL CONSIDERATIONS IN SPEECH ANALYSIS 18

£8.1 PRE-EMPHASIS , 18

£8.2 DYNAMIC RANGE 19

£6.3 ANTI-ALIAS FILTER 20

£7 OTHER APPLICATIONS OF THE AUTOCORRELATOR 21

Chapter 3 - CIRCUITS FOR THE AUTOCORRELATION LPC SYSTEM 23

3.1 SYSTEM OVERVIEW 23

3.2 THE AUTOCORRELATOR 24

3.2.1 CIRCUIT OPTIONS 24

3.2.2 THE SELECTED CIRCUITS 28

3.£2.1 MDAC 28

3.2.2.2 FILTERS 29

3.3 DURBIN RECURSION MICROPROCESSOR 35

3.4 AN AUTOMATIC GAIN CONTROL CIRCUIT 35

n

Ul

Chapter 4 - DESIGN OF THE SYSTEM 41

4.1 SPEECH RELATED DESIGN 41

4.1.1 SIMULATIONS 41

4.1.2 DOWNSAMPUNG 43

4.1.3 EFFECT OF AGC ON STABILITY 44

4.1.4 MDAC BITS 45

4.1.5 QUANTIZATION OF THE AUTOCORRELATION VALUES 51

4.1.6 DC GAIN OF FILTERS 53

4.1.7 THE 8088 MICROPROCESSOR AND DURBIN'S RECURSION

53

4.1.8 TOTAL ERROR FROM ALL MODIFICATIONS 56

4.2 ANALOG IC DESIGN 58

4.2.1 THE PROCESS 58

4.2.2 A SIMPLE MODEL FOR THE MOSFET 59

4.2.3 OPERATIONAL AMPLIFIER 61

4.2.4 SPEED AND COMPENSATION 64

4.2.5 EFFECT OF PARASITICS ON MDAC AND SC FILTERS 68

4.2.6 FILTERS 71

4.3 IC LAYOUT 78

4.4 THE AUTOMATIC GAIN CONTROL 78

4.4.1 AGC BREADBOARD 78

4.4.2 An MOS AGC 80

Chapter 5 - EXPERIMENTAL RESULTS M 82

5.1 THE BREADBOARD SYSTEM „„ 82

IV

5.1.1 AUTOCORRELATOR 82

5.1.2 THE DURBIN RECURSION MICROPROCESSOR B8

5.1.3 THE AGC 88

5.2 AUTOCORRELATOR IC RESULTS 89

5.2.1 MDAC 90

5.2.2 MULTIPLEXED SC FILTERS 91

5.2.3 OPERATIONAL AMPLIFIER 98

5.2.4 THE IC AS AN AUTOCORRELATOR 96

5.3 A SECOND TEST CHIP 98

5.3.1 RESULTS 100

5.3.2 OP AMP 101

Chapter 8 - SUMMARY AND CONCLUSIONS 104

8.1.1 IMPROVEMENTS AND MODIFICATIONS 105

6.1.2 IC LAYOUT AND MODULAR DESIGN 106

8.1.3 ANALOG VS. DIGITAL PROCESSING 107

Appendix A - FINDING THE FILTER TRANSFER FUNCTION 108

Appendix B - CATALOG OF ANALOG COMPUTATIONAL CIRCUITS Ill

1.1.1 DELAY LINES Ill

1.1.2 ANALOG MULTIPLIER 112

1.1.3 MDACs 112

1.1.4 FILTERS 112

tl.5 ABSOLUTE VALUE CIRCUITS 113

1.1.6 LONG DELAY LINES 113

Appendix C - SPEECH PROGRAMS AND SENTENCES 114

V

£ 1 GENERATEAUTO.C .•.„ 114

£2 SPEAKPITCH.C 127

£3 SPECJ)EV.C 141

Appendix D - THE CMOS PROCESS SCHEDULE „ 150

Appendix E - EXACT SIMUUTTONOF LOOP GAIN 156

REFERENCES 162

CHAPTER 1

INTRODUCTION

Recently, synthetic speech has appeared in many consumer products

such as automobiles, educational games for children, chess games,

microwave ovens, and alarm clocks. The successful integration of speech syn

thesis algorithms in silicon technology has provided manufacturers with low

cost speech synthesis systems. But the inverse process, speech analysis, has

remained a task handled by large computer systems or expensive general

purpose signal processing integrated circuits, often not operating in real

time. Vocoders, store-and-forward message systems, and speech recognition

systems will remain prohibitively expensive unless low cost analysis systems

are made available.

A real-time linear predictive speech analysis system is described in this

thesis. The analysis system employs a mix of switched-capacitor analog cir

cuitry and MOS digital circuitry. The heart of the system is a switched-

capacitor autocorrelation integrated circuit (IC). An automatic gain control

circuit which reduces the dynamic range of the incoming speech precedes

the autocorrelator. A small microprocessor system converts the

autocorrelator*s output into linear prediction model coefficients.

The autocorrelator itself was integrated as the final stage of this

research. The chapters follow the design of the system from start to finish,

roughly in chronological order. Chapter 2 covers the speech analysis theory

which forms the basis of the IC. Chapter 3 presents circuits which are used to

implement the system. The operation of the circuits is explained. In chapter

4, the circuits chosen in chapter 3 are discussed in detail. Non-idealities due

to integration of the circuits in MOS technology are considered. Various

system-level design decisions are made. The design, layout, and processing of

the autocorrelator IC are discussed. Chapter 5 presents the results obtained

from the breadboarded system and from the autocorrelator IC. Conclusions

and suggestions are made in chapter 6.

CHAPTER 2

LPC THEORY AND APPLICATIONS

Speech is a verbal form of communication. The rate at which information

is transmitted during a conversation is approximately 100 bits per second [l].

Hence, speech could theoretically be encoded in such a way as to convey all

the information while transmitting only 100 bits per second. One simple digi

tal transmission scheme used today, 8 bit quantization of speech sampled at

6kHz, requires 64k bits per second. This is 640 times larger than the informa

tion rate, the discrepancy reflects how inefficient direct transmission of the

speech time waveform is.

The speech waveform is a sequence of sounds. In the case of vowels, each

sound is a periodic repetition of a distinct waveform. Speech analysis

attempts to eliminate the transmission of the redundant information in the

time waveform. Many different techniques have been applied to speech

analysis, some meeting with more success than others. Mathematical tracta-

bility and automatic implementation of analysis algorithms are very desirable

properties. One analysis method, linear predictive coding (LPC), has these

properties and has been widely applied to the speech analysis problem. Auto

correlation LPC will be described in detail in the following sections.

£1. A MODEL FOR SPEECH

To understand speech analysis, we must first understand how we produce

speech sounds. A sound is produced as follows (see figure 2.1):

Air is forced out of the lungs by muscle contraction. As the air passes

through the vocal cords, it is either allowed to flow through unrestricted

(unvoiced sounds), or it is transformed into short bursts of air by the

periodic opening and closing of the vocal cords (voiced sounds). The air

then passes through the vocal tract. The shape of the vocal tract and

position of the lips and tongue determine the resonant frequencies (for-

mants) of the sound. The vocal tract acts as an acoustic filter, spectrally

shaping the air pressure wave as it passes from the vocal cords to the

lips.

A simple model for the speech production process described is shown in

figure 2.1. The unrestricted flow of air at the vocal cords is modeled as white

noise. The periodic bursts of air at the vocal cords are modeled as periodic

VOCAL TRACT

PULSE

GENERATOR

NOISE

GENERATOR

•\i ALL POLE

FILTER
SPEECH

OUT

GLOTTAL

EXCITATION

Figure 2.1. Cross-section of the vocal tract (left) and a simple model for the
speech production process (right)

impulses. The period of the impulses is called the pitch period. The vocal

tract is modeled as a time-varying filter.

Most speech synthesizers are realizations of this simple model. The exci

tation waveform and filter parameters are changed at a rate of 20Hz to

100Hz. Each segment of synthetic speech produced by a given set of parame

ters is called a frame of speech. The update rate or frame rate corresponds

to the rate at which different sounds occur in conversational speech.

In speech analysis, the inverse process is performed. The continuously

changing speech waveform is broken into pitch and vocal tract information

each frame. There are many different approaches to speech analysis [1]; one

particular method will be described in detail.

2.2. LPCTHEORT

With LPC, the present speech sample is modeled as a linear combination

of the past p speech samples plus an unknown input

SM - 2 Oi,s(n-i) +bu(n);

s(n) is the sample of the speech waveforms(t) at time t-nT9 {T9 is the sam

pling period), u(n) is the input (glottal excitation), and at is the Ith LPC

coefficient In the frequency domain, this prediction equation gives an all-

pole transfer function

G{x) =|kL= —A

S(z) and U(z) are the z-transforms of s(n) and it(n), respectively. For a

given sound, LPC finds an all-pole filter G(z) which models the vocal tract

transfer function. The LPC model can be viewed physically as a cascade of p

acoustic tubes of constant length and differing cross-sectional area [2]. The

cross-sectional areas are related to the LPC coefficients (see section 2.4). An

LPC transfer function is plotted in figure 2.2, superimposed on the FFT of the

same sound. The LPC all-pole filter attempts to model the resonances of the

vocal tract (see section 2.5). Each resonance modeled requires a complex

conjugate pair of poles. Typically, vocal tract resonances are spaced 1kHz

apart. So if the speech waveform is sampled at a frequency /, = •=— so that

we are modeling the vocal tract from 0Hz to ^-- we need a minimum of

p = "yTTj—poles to model the vocal tract resonances. One or two more poles

are often included to model the non-flat spectrum of the glottal waveform.

In LPC speech analysis, we are given the speech waveform s(n) and want

to determine the LPC coefficients, a^ 1-^i^p. Since we have no prior informa

tion about the excitation u(n), we predict the present sample s(n) from the

»iii»..»ii,,,ii,i,i. •^^-t"^- iii i»i

••f-| v H r
•?* •

KM I Ml HM MM ZM9 MM

figure 2.2. LPC fit (solid line) to a speech spectrum (broken line)

pastp samples

&(n)= £ ais (n—*)•

The error between the actual speech sample s(n) and the predicted value

s(n) is the prediction error e (ra)

e(n)=s(n)-s(n). - (2.2)

There are various error rninimization criterion which might be used to find

the LPC coefficients. One is to minimize the total squared error Ep

Ep= £e2(n)= £ [s(n)-ff(n)]». (2.3)
8£,

To minimize Ep, we differentiate Ep with respect to afc and set e = 0 for

each ifc, l^fc^p. This yields p linear equations

2°* 2 s(n-i)s(n-fc) = J] s(n)s(n-fc) for l^k^p

which can be rewritten

£ci|*(fc-i)=/?(*) l^A:<p . (2.4)

where

/?(*)= 2 s(n)s(n-A:) (2.5)
ns-«

is the autocorrelation function of the speech signal s(n). The solution of (2.4)

for the LPC coefficients requires solution of p linear equations in p unknowns.

This will be discussed in section 2.4.

2.3. WINDOWING

Note that equation (2.3) minimizes the error over all time. If s(n) is a

constant sound, R(k) will be that sound's autocorrelation function and solving

equation (2.4) will give LPC coefficients for that sound. But for conversational

speech, s(n) is a continuously varying sequence of sounds. Therefore, we

8

would like to compute R{k) separately for each frame (which should

correspond to only one sound if the frame size is chosen properly). Then we

can find the LPC coefficients for that particular frame. To achieve this, we

window the speech waveform. That is, we multiply the speech waveform by a

window function w(n) which weights the present frame more heavily than

other frames. This windowing gives a new time waveform sw(n,j)

sw(n,j) = s (n)w (n -j)

where j accounts for the positioning of the window. Then this windowed

speech sw(n,j) is used in the autocorrelation computation, equation (2.5), to

give

#(*..?)= 2 sw(n,j)sw(n-k,j)= 2 s(n)w(n-j)s(n-k)w(n-k-j).(2.Q)

Since the application of a window results in an autocorrelation function based

on short segments of the speech signal, (2.6) is often referred to as the

short-time autocorrelation function. Since equation (2.6) is the only auto

correlation function which will be discussed from here on, it will be simply

referred to as the autocorrelation function.

The time window w(n) can be of finite duration (FIR) or infinite duration

(IIR) (figure 2.3). In either case, the window should have no discontinuities,

going smoothly to zero at the window's endpoints. This minimizes the spectral

smearing of the formants due to the window [1]. If an FIR window is chosen,

equation (2.6) may be implemented by first computing the sequence

sw(n,j)=s(n)w(n—j), then using the windowed speech in equation (2.8). This

approach is straightforward; requiring permanent storage (ROM) for the

sequence w(n), temporary memory (RAM) for storing the windowed sequence

sw(n.j), a multiplier, and a summer [3].

if im 2M i4« am U9

/>+**

2M 2M

/?**

Figure 2.a top: FIR time window (e.g. a Hamming window)
bottom: IIR time window suggested by Barnwell

3M

10

The windowing and summation in equation (2.6) can be implemented as a

filter following a multiplier for both the FIR and IIR windows. This can be seen

by defining a time-reversed version of the window

h(n) = w(-n).
Then (2.6) becomes

R(k.j)= J s(n)h(j-n)s(n-k)h(j-n+k). (2.7)
ns-«

If we define

s'k(n) = s(n)s(n-k)

^ *(n) = h(n)h(n+k)
and substitute these into (2.7), we have

K(kj)= 2 s'k(n)h'k(j-n).

We can see that R(k,j) is the convolution of s'k(n) with h'k(n). So if we can

produce the time sequence s'k(n) and pass it through the linear, time invari

ant filter with impulse response fc'fc(n), the output of the filter at time j will

be the autocorrelation function for lag Jfe, R(k,j).

Producing the sequence s'*(n) requires only multiplication and delay. To

find the z-domain transfer function for the filter with impulse response

^ *(n) = h(n)h(n+k),
we recall that multiplication in the time domain corresponds to convolution in

the frequency domain. So if we denote the z-transforms of the sequences

h(n)->H(z)

and

h'hM-H'k(z).

then the shifted sequence h(n+k) has the transform

h(n+k)-*zkH(z).

11

Now H'k(z) can be found [4]

H'k(z) =H{z)*zkH(z) =̂ j-fH(v)H(Z)v*-ldu.
v

(2.8)

So once a window w{n)=h(-n) has been chosen, H{z) is determined and

H'k(z) can be found by integration in the complex plane (see appendix A).

For example, let us take

w(n) =
(l-fOoT* n^O
0 n>0

where 0<a<l. The corresponding h(n) is

h(n) =

with z-transform

(l+7l)an 715:0
0 n<0

(2.9)

H(z) =2/i(n)*-» =(i * lvr (2.10)
H(z) is a low pass filter with two coincident real poles. Substituting this H(z)

into (2.8) and evaluating the integral gives

(see appendix A). Note that each value of k corresponds to a different filter.

filter Specifications
#*(!)

lag poles zero

tf'o(l)

k=0 0.9604 -0.9604 1.000000

k=l 0.9604 0.0000 0.999796

k=2 0.9604 0.3201 0.999184

k=3 0.9604 0.4802 0.998215

k=4 0.9604 0.5762 0.996888

k=5 0.9604 0.6403 0.995205

k=6 0.9604 0.6860 0.993216

k=7 0.9604 0.7203 0.990869

k=8 0.9604 0.7470 0.988268

k=9 0.9604 0.7663 0.985309

Table 2.1. Filter specifications for H'k(z)

12

All the filters have three poles at z =a2 and one real zero. Barnwell has found

that for an 8kHz sampling rate, cx=0.98 is the best choice [5]. This window

gave spectral errors comparable to a 240-point FIR Hamming window. For the

H' (1)case a=0.98, the pole and zero locations and the relative DC gains *)-{ are
H o(l)

tabulated in table 2.1. The magnitude response of the filters is shown in

figure 2.4. Note the effect of the zero. For all the filters, the -3dB frequency is

25Hz.

A block diagram of an autocorrelator employing the IIR window of equa

tion (2.9) is shown in figure 2.5. The autocorrelator requires a p stage delay

line, multipliers, and filters. Note that the temporary memory storage (RAM)

required is only 4(p + l)+p. The multiplier in the IIR autocorrelator must be

approximately twice as fast as the FIR autocorrelator*s multiplier. The IIR

autocorrelator outputs values for R(k) every sample, this is useful in some

applications (see section 2.7).

The delay line, multipliers, and filters of figure 2.5 can all be imple

mented as analog or digital circuits. A mix of analog and digital circuits will

be used in the autocorrelator described in later chapters.

2.4. IJ^COEFnCIENTCOMPUTATION-DURBIN'SRECURSION

Once the autocorrelation values for a particular frame have been com

puted, the set of linear equations (2.4) must be solved to determine the LPC

coefficients. The equations can be compactly written in matrix form

13

i • • • > i •

81' ' *' j ' *' *)' ' »* j' * »•' i » »' ' ii » i ii •i i * i> ♦ i i i • . i i i i ii i

4M ••• 1266 IMS 2860 2460 2860 3266 3666 4866

468 888 1288 1608 2000 2480 2888 3200 3600 4886

Figure 2.4. top: Magnitude response of filter H'0(z)
bottom: Magnitude response of filters H'Q(z), H\{z), and H'q(z)

or

*(0) /?(1) R(2)
R(l) /?(0) R(l)
R{2) R(l) R(Q)

#(p-l) R(p-2)

R<P-D

R(0)

o3

M

*(2)
#0)

1*<P>.

14

(2.12)

R- a=r

where R is the pxp autocorrelation matrix, a is the pxl vector of LPC

coefficients, and r is the pxl vector of autocorrelation values. In equation

(2.12). the relation i?(fc)=#(-*) has been used, and the time dependence of

R(k) has been dropped for simplicity. The a^'s could be found by inverting

the Rmatrix and multiplying both sides by R~l. This would require £-+ Dip2)

operations (multiplications or divisions) and p2 storage locations. For

tunately, the autocorrelation matrix is symmetric, and the elements along

any diagonal are identical Such a matrix is Toeplitz. and Levinson and Durbin

derived efficient recursion relations for solving such linear equations [6].[7].

The Durbin algorithm is the faster algorithm, requiring p2 + 0(p) opera

tions and 2p storage locations.

Durbin's recursive solution to (2.12) is

start: E0=R(0)

m=0

loop: m=m+l

™1H*"" p

of*=afi~l-*inOm-^ l^iJSm-1

s(n)

k*)
<*•

5*
-1

* Z

R(0)

> z-1

i——
* Z

v '

yr a

A a2

z

s(n•W)
•1

7.
-1

<3
(k.l) «

* Z
V (1-k) a

0«-

5*-
M »Z

$*
A fl2

* z

5*

^ z
^ a

R(k)

15

k+2

Figure 2.5. Block diagram of autocorrelator employing the IIR window of
equation (2.9)

£-m=(l-^)^-l (2.13)

if(m.<p) go to loop;

else stop;

af1 is the ith LPC coefficient for an m-pole model. The loop evaluates the LPC

coefficients for all models of order less than or equal to p. The algorithm ter

minates when the model of order p has been found. Ep, the total squared

error (equation (2.3)), is computed in the Durbin algorithm (equation (2.13)).

The algorithm computes the LPC coefficients as well as the reflection

coefficients (the fcj's). The reflection coefficients have a physical interpreta

tion. As was mentioned in section 2.2, the LPC model of the vocal tract can be

viewed as a cascade of p acoustic tubes of equal length and differing cross-

sectional area. If the Ith acoustic tube of has area 4, then

16

_ A-,-4

In low-bit rate transmission of speech, the reflection coefficients are quan

tized and transmitted because the LPC model is less sensitive to quantization

of the reflection coefficients than to quantization of either the autocorrela

tion values or the IPC coefficients.

The LPC analysis fails to give a stable all-pole filter when | Jfej | >1 for any i

[2]. If |&i|>l, then £i<0 which contradicts the definition of £* as the total

squared error which must always be non-negative (see equation (2.13)). In

terms of acoustic tubes, | fc* | >1 corresponds to either i4t<0 or Ai-i<0; neither

makes sense physically. It has been shown that the autocorrelation method

always produces a stable filter if all computations are performed with infinite

precision [8]. In practice, the use of finite precision arithmetic can result in

an unstable filter.

At this point, it is worth noting that the solution of (2.12) for the LPC

coefficients is not affected if all the autocorrelation values R(k) are scaled by

a non-zero constant For example, if we replace each R{k) in (2.12) with

cR(k)t then the c factors out to give cRa=cr which reduces to Ra=r. This

observation is of interest in later chapters.

The gain in the LPC model (6 in equation (2.1)) has not been determined

because it is associated with the input u(n) which is unknown. But we may

assume the input u(n) is either an impulse 6(n) (for voiced speech) or sam

ples of a white noise process (for unvoiced speech) with the property that the

energy in u(n) is unity. With that constraint, and the reasonable requirement

that the energy in the LPC model equal the energy in the speech, it can be

shown [8] that

62 =5, =#(<))+£ a* R(k).
fc=i

2.5. FREQUENCY DOMAIN INTKKKKhTiflTON OF IPC

The popularity and success of LPC is due to LPC*s accurate modeling of

the resonances of the vocal tract. Early experiments determined that the

spectral peaks were perceptually far more important than spectral valleys [9].

The LPC error criterion will now be considered in "the frequency domain

where the reason for the accurate resonance modeling can be seen.

Recall the definition of the prediction error in equation (2.2)

e(n) =s(n)-s"(n) =s(n)-2a<s(n-i)

which transforms to

(•> = !-£«-< S^)=A(z)S(z)

where A(z) is the denominator of the vocal tract model (equation (2.1))

AIM) ^
Q\2

17

Now the total squared error of (2.3) can be evaluated in the frequency domain

by invoking Parseval's Theorem

»8-» C" "ft C" -»

which can be rewritten

From this equation, we can see that Ep depends on the integrated ratio of two

spectra. Points where | C| is smaller than \S\ make a larger contribution to

the total error than points where | G\ is larger than | S\. Therefore, the error

minimization (2.14) can be viewed in the frequency domain as one which

18

weights the modeling of spectral peaks more than valleys. So LPC models the

resonances of the vocal tract very well.

2.6. PRACTICAL CONSIDERATIONS IN SPEECH ANALYSIS

2.6.1. PRE-EMPHASIS

The speech production process was explained earlier. A long-time spec

trum for continuous speech shows a roll-off of approximately -8dB/octave

above 500Hz [10]. This is typical of voiced sounds. The speech spectrum is

the product of the excitation's spectrum, the vocal tract transfer function,

and the lip-to-air radiation transfer function. The glottal excitation for voiced

sounds has a -12dB/octave slope at high frequencies. The vocal tract has

unity transfer gain at each resonance and the lip-to-air radiation has a

+8dB/octave characteristic at high frequencies. The net effect is a

-6dB/octave roll-off at high frequencies as shown in figure 2.6.

To achieve the most accurate model of the spectral peaks, it is advanta

geous for all spectral peaks to have the same magnitude. Otherwise, the LPC

error criterion will cause the lower amplitude peaks to be modeled much

more poorly that the higher amplitude peaks. Therefore, the speech

waveform is pre-emphasized before LPC analysis is begun. The pre-emphasis

is in the form of a simple, one zero filter (zero at 500Hz) which removes the

-6dB/octave roll-off present in typical voiced speech spectra. Pre-emphasis

reduces the likelihood of instability in the LPC model G(z) [2].

Ideally, pre-emphasis is applied only to voiced speech since unvoiced

speech does not have the -6dB/octave roll-off characteristic (because the

excitation for unvoiced speech doesn't have the -12dB/octave roll-off). But

usually a constant pre-emphasis filter is used for all speech, voiced and

EXCITATION

Time Domain

JUUL«

VOCAL TRACT

V-
Frequency Domain

frequency-

UP

RADIATION

*-f

19

SPEECH

= lifflthniniT

Figure 2.6. Construction of the speech waveform in time and frequency
domains

unvoiced. The main reason is that unvoiced speech has a very simple spectral

shape associated with it, hence modeling is fairly simple and is not hampered

by pre-emphasis. Furthermore, the voiced/unvoiced decision is not an easy

one; and the modeling error resulting from not pre-emphasizing a voiced seg

ment of speech is much larger than the error resulting from pre-emphasizing

an unvoiced segment. Also, adaptive pre-emphasis requires additional

analysis of the speech to determine the optimal pre-emphasis filter.

2.6.2. DYNAMIC RANGE

Another concern is the dynamic range of the incoming speech. With a

particular speaker, the speech has a dynamic range on the order of 30dB.

When different speakers and slight variations in the speaker-to-microphone

distance are allowed, the dynamic range increases to 40dB. If the incoming

20

speech is quantized by a linear analog-to-digital converter (ADC), 7 bits of

resolution would be necessary. More bits would be used in practice to minim

ize clipping and quantization noise; a 10 or 12 bit ADCis commonly utilized.

To eliminate the need for a 10 or 12 bit ADC at the input, an automatic

gain control (AGC) circuit should be used. A properly designed AGC would

decrease the dynamic range of the speech considerably without affecting the

speech's spectral characteristics and thereby relax the ADC requirements. An

8 bit ADC is sufficient if an AGC is employed (see chapter 4). The AGC would

scale all the speech samples in a given frame and hence the frame's auto

correlation values R{k). As was noted in section 2.4, scaling all the autocorre

lation values does not change the resulting LPC coefficients.

2.6.3. ANTI-ALIAS FILTER
>

Before sampled-data processing can begin, the speech must be bandlim-

ited to -—& If the bandlimiting filter causes a large attenuation of the speech

spectrum below -~ some of the LPC parameters will be wasted modeling this

attenuation near -£-. This is undesirable. So a high order filter or elliptic

filter with a sharp roll-off characteristics and cutoff frequency close to 4?-is

preferred. Unfortunately, such a filter introduces significant phase non-

linearity. But as can be seen from equation (2.14), the LPC error criterion

depends only on the magnitude of the spectrum of the incoming speech - not

on the phase.

21

a7. OTHER APPLICATIONS OF THE AUTOCORREIATOR

Autocorrelators have many uses in speech processing. In addition to LPC

analysis for speech transmission, some speech recognition systems use an

autocorrelation-based LPC distance measurement between sounds. The

Itakura-Saito measure [11] requires storage of a reference template for

each sound, the template is the sound's LPC coefficient vector a^y (see equa

tion (2.12)). When an unknown sound is uttered, its autocorrelation matrix R

is found (see equation (2.12)), and the distance between the unknown sound

and each reference template is computed as

d=10log
a£/ftW

arRa

ar is the transpose of & The denominator is the minimum LPC error Ep

achievable for a p-pole model of the unknown frame (see equation (2.3)) [8].

The numerator represents the total error E'p obtained if the unknown frame

of speech is modeled by the stored template a,^. Therefore the numerator

will always be greater than or equal to the denominator, so the ratio is

greater than or equal to one and therefore dfeO. This distance measure will

equal zero only if a„y=a i.e. when the unknown speech and the reference

template have identical LPC spectra.

Pitch detection is an extremely difficult problem, and pitch detection

errors are more often responsible for poor quality synthetic speech than are

vocal tract modeling errors. The best pitch detectors rely on a variety of

pitch detection techniques, one technique is the autocorrelation technique

[12]. The autocorrelation function, if computed over a time much larger than

the pitch period, will be periodic with period equal to the pitch period. This

periodicity is easily measured; a simple peak-to-peak distance measurement

on the autocorrelation function reveals the pitch period. The autocorrelation

(2.15)

22

function should be computed every sample to find the pitch period, and an IIR

autocorrelator is an excellent choice for such an application. Accuracy of the

autocorrelation values is not crucial, so simpler filters (e.g. one pole filters)

for H'k (z) could be used.

The voiced/unvoiced/silence decision used in pitch detectors, speech

recognition systems, adaptive pre-emphasis subsystems, and telephone mul

tiplexing systems can be made very accurately using the first few autocorre

lation values #(0), R(l)t R{2) and a zero-crossing detector [13].

CHAPTER 3

CIRCUITS FOR THE AUTOCORRELATION LPC SYSTEM

Circuitry for implementing a nine pole autocorrelation LPC analysis sys

tem will be described in this chapter. The autocorrelator employs the IIR win

dow discussed in chapter 2. The system is a mix of analog and digital circui

try. A completely digital implementation of the LPC system - excluding the

input antialias filter - would be possible, either by designing a custom

integrated circuit (IC) or by programming a general purpose digital signal

processor. But combining analog MOS switched-capacitor techniques and digi

tal MOS circuitry potentially offers a lower power, smaller area integrated cir

cuit approach.

In this chapter, circuits are presented for each major block of the sys

tem, and their operation is described. So as not to cloud the functional

descriptions, non-idealities associated with the IC implementation are not

considered until next chapter.

3.1. SYSTEM OVERVIEW

A block diagram of the complete system is shown in figure 3.1. The

speech first passes through a bandlimiting, low pass filter. The filter is a fifth

order elliptic which has a -3dB cutoff frequency of 3.4kHz, ldB of passband

ripple, and includes a zero at 500Hz for pre-emphasis. The bandlinuted,

pre-emphasized speech passes through an automatic gain control circuit

(AGC) and then to the autocorrelator where the autocorrelation values for the

present frame are computed. The ten autocorrelation values are

transformed to LPC coefficients by a small microprocessor system. The

23

«•>

irr toe IDC AUffOCMUUTM

24

Figure 3.1. LPC system block diagram

speech is sampled at a rate of /,=8kHz; the autocorrelation values are sam

pled at a frame rate of 80Hz.

3.2. THE AUT0CORREUVT0R

a2.1. CIRCUIT OPTIONS

An autocorrelator using the IIR window of equation (2.9) requires delay,

multiplication, and filtering. An analog delay line of length p can be con

structed by cascading p switched-capacitor (SC) sample-and-hold circuits.

Such a delay line requires p operational amplifiers (op amps). Time multi

plexing of one op amp and p capacitors to implement a p stage delay is possi

ble [14]. If the signal to be delayed is available in digital form, a RAM of p

words will function as ap stage delay line.

25

Fast, accurate multiplication of signals is another requirement of the

autocorrelator. A digital multiplier provides exact multiplication of two digital

numbers. Multiplication speed can be directly traded for IC area - a parallel

multiplier is faster and larger than a serial multiplier. A multiplying digital-

to-analog converter (MDAC) provides accurate multiplication of a digital sig

nal with an analog signal; the product is in the form of an analog output vol

tage. The time per multiply for an MDAC is dependent on the speed of the op

amp used and the type of MDAC (e.g. serial or parallel). Analog continuous

time multipliers which multiply two analog signals and produce an analog pro

duct as output are also available. The digital multiplier is compatible with a

digital delay line, the MDAC with either a digital or analog delay line, and the

analog multiplier with an analog delay line.

The filters required for the autocorrelator are third-order low pass filters

with a cutoff frequency of 25Hz. Digital filtering is required if a digital multi

plier is chosen to multiply the speech signals. If either the MDAC or analog

multiplier is chosen, the signal to be filtered will be analog. Either continuous

time or discrete time analog filters can be used, but a 25Hz cutoff frequency

would require a much larger chip area in a continuous time (resistor-

capacitor) implementation. SC filters are discrete time filters and hence are

described by z-domain transfer functions, so they can accurately realize the

transfer functions H'k(z)t 0<k<9, required for this system (see equation

(2.11)). With a sampling rate of 8kHz, the 25Hz low pass filters can be

integrated as SC filters in a reasonable amount of silicon area. (For further

discussion of analog circuits for signal processing, see appendix B.)

28

3.2.2. THE SELECTED CIRCUITS

The autocorrelator must provide adequate accuracy for speech analysis.

Also, the goal of integrating the autocorrelator onto an IC must be con

sidered. The above discussion breaks down to three basic choices - fully ana

log, fully digital, or some combination thereof. The fully analog autocorrela

tor - analog delay line, continuous time analog multiplier, and SC filters -

could be constructed with only four op amps using multiplexed op amps for

the filters and delay line. An ADC would be required to digitize the analog

autocorrelation values for the microprocessor which implements the Durbin

algorithm. A fully digital approach would require an ADCto digitize the incom

ing speech for processing. Previous work on autocorrelation LPC with finite

word length arithmetic recommends 16 bit by 16 bit multipliers and 32 bit

intermediate results to minimize the effects of quantization and truncation

[l5],[16]. A fast parallel multiplier could be multiplexed to handle all compu

tations. Such a digital autocorrelator would essentially be a custom designed

digital signal processor with a hardware multiplier and very Limited instruc

tion set A hybrid approach - consisting of an MDAC, digital delay line, and SC

filters - could be constructed with only three op amps because the MDAC can

be incorporated into one of the SC filter sections as a variable input capacitor

(see chapter 6 for more on this). Again, an ADC is required to digitize both

the incoming speech and the autocorrelation values.

The hybrid approach potentially offers the lowest power, smallest area IC

of the three options, as well as high accuracy and simple control logic. This

approach was chosen for integration of the autocorrelator. Circuits for the

MDAC and filters are considered below. Accuracy and circuit limitations are

discussed in the following chapter.

27

The speech is sampled at an 8kHz rate, so the time between samples is

125/zseconds. This is a very long time when compared to typical op amp set

tling times which are on the order of microseconds. Therefore it is possible

and advantageous to employ time multiplexing of the MDAC and filters for the

computation of the autocorrelation values. Time multiplexing results in the

most efficient use of integrated circuit area.

The autocorrelator block diagram is shown in figure 3.2. The pre-

processed speech is sampled at /,=8kHz and held for the analog-to-digital

converter (ADC) and multiplying digital-to-analog converter (MDAC). The digi

tized sample sd(n) (i.e. s(n) digitized) is stored in RAM along with past sam

ples sd(n—k), l^fc^9. The 125/xsecond sampling period is broken into ten

12.5/isecond time slots. During the kth time slot, the sample sd(n—k) is read

out of RAM and presented as the digital input to the MDAC where it is

SPEECH
IN A/D

i
S.C

L.PE

T

DIGITAL DELAY

LINE (RAM)

•Hmdac

MUX

1
S.C.

LPE

T

i
S.C.

LRF

T
MUX H

figure 3.2. Autocorrelator block diagram

R(k)

28

multiplied by the MDAC's analog input s(n). The analog output of the MDAC,

s(n)sd(n-fc), is multiplexed to the k** SC filter (with transfer function

H'k(*)* equation (2.11)) which implements the windowing and sununation for

the computation of R(k). This procedure is carried out for each of the ten

time slots, 0sfc^9; then the process is repeated for the new sample s(7i+l).

&2.2.1. MDAC

A four-quadrant SC MDAC for the autocorrelator is shown schematically

in figure 3.3. The MDAC is "parallel" rather than "serial" - multiplication

occurs in one clock cycle for B bits rather than B cycles for B bits. The ana

log input Vyn is connected to the analog sample-and-held voltage s(n). The

digital input word sd(n—k) in offset-binary format controls the switches Si

through S3. The MDAC is controlled by two non-overlapping clocks $1 and $2

in

1 •in

v.„

1

S, ciaC

Sg C2"2C

"™"« """ST™"
CB«2C

^

Cx-^'C

RESET

>V

figure 3.3. Four-quadrant switched-capacitor MDAC

'out

29

(i.e. l2=0» see figure 5.6.) During $I§ the reset switch is closed and switch

Sx is connected to ground, so the feedback capacitor Cjb and the offset capa

citor C* discharge. The digital input word is presented, with switch Sj turning

on and connecting capacitor CJ into the circuit if the j** bit Bj is a logical '1*.

The input switch S& connects V^ to one side of the selected capacitors; the

other side of the capacitors is held at zero volts because the op amp inverting

input is a virtual ground. So the selected capacitors charge to V^. On $2, the

reset switch across C^ opens and switch S^ connects the selected capaci

tors to ground, forcing the stored charge onto Cj*. Simultaneously, Qg is con

nected to lb, forcing a charge Q-CsVin onto Cjb. The output voltage after

the op amp settles is

which reduces to

t^q-
V** =^-7; K,

££,2*-2*
2*,2>-*-l|
1*1 J

*oui — 2? **» = £ JS^-lIK*
for a binary weighted capacitor array. As can be seen from the above equa

tion, capacitors Cx through Cg with Cjb act as a variable gain amplifier, the

gain being controlled by the digital word sd(n-fc). Capacitor C^ is switched

out-of-phase with the other capacitors, thereby providing the half-scale offset

required for a four-quadrant MDAC.

&2.2.2. FILTERS

Switched-capacitor filters are analog, sampled-data filters. For the auto

correlator, sampled-data filters are required as discussed in chapter 2. The

z-domain transfer function for the filters was given in equation (2.11). There

fore, the filters can be implemented in SC technology once an appropriate

30

configuration has been found.

The filters required each have three real poles at z =a2 and a real zero at

Jk—1g= . . a2. O^fctSjo. A SC filter which implements a real pole and real zero is

shown in figure 3.4. The circuit is controlled by two non-overlapping clocks $i

and $2 U'e« $i"$2=0.) On $1# the switches are connected as shown in the figure.

On $2» the switches are flipped to the other positions. Writing charge transfer

equations at two consecutive sample times, n and n+1, gives the time-

domain relation

Q+c, C9

assuming that %«* is sampled on $i and that V^ changes only on the rising

edge of $!• Transformation of (3.1) into the z-domain gives

in

Figure 3.4. Switched-capacitor filter, real pole and real zero

1--£—-i

V^iz) " Cfo+Cr Cfb
Cfb+Cr

31

(3.2)

Note that the pole location is - \ n , the zero location is _ - , and the DC

gain is .?**/. x =—77^ Since passive capacitor values are non-negative, the

pole and zero locations for this configuration are in the interval [0,l]. There

fore, this filter can realize H'k(z) for any k>0 (see table 2.1). The case fc=0

requires a negative real zero which can be achieved by reversing the switch

phasing of Q. If the phasing of Q is reversed, the sign of the C% term in equa

tion (3.2) is inverted:

or in the z-domain

1 C* g-i
Vout(z) _ Cn-Cj Cz-Q
"^*T~ fy+Cr , cfb . i3*3;

Cfb + Cr
The pole location is the same as the previous circuit. The difference is the

Cm
zero location which is now ———. The zero can be any real value excluding

GM-Gi

the interval [0,1]. So the two circuits, identical except for the switch phasing

of Q, offer zero locations over the entire real axis.

A circuit with a transfer function identical to equation (3.2) but with

different switch timing than figure 3.4 is shown in figure 3.5. This circuit

switches the feedback capacitor C/0 out of the feedback loop rather than CJ..

Likewise, Cs is switched out of the circuit rather than Q. On $j, the reset

switch resets the op amp, Q is connected to ground, and Cjb and Cx are float

ing. On $2, the reset switch is open, Q is connected to the input, and Cfb and

32

V:
in

- Vout

Figure 3.5. Switched-capacitor filter, one pole and one zero, different switch
ing scheme

Cj are connected into the circuit. Again, notice that by simply inverting the

phasing on the input switch for Q, the input voltage ^n(n+l) is introduced

with a sign inversion. This changes the transfer function of the filter from

(3.2) to (3.3).

Time multiplexing of the op amp of figure 3.5 for multiple filters is now

possible since Cfb and C, hold the state of the filter (figure 3.6). When C/6>

and CMk are floating, a different pair of capacitors, C/6AM and C^kM. may be

switched into the circuit so that another filtering function can be performed.

Each pair of capacitors, CV and CH form one channel of the multiplexed

filter section. There are ten channels per op amp to implement the ten filters

required for the autocorrelator. Three multiplexed filter sections must be

cascaded to implement the 3 pole, one zero transfer functions required

33

(Hk (z) of equation 2.11).

For the purpose of illustration, let ^=$£=$3 and RESETs^ in figure 3.8.

The timing is as follows: during $1(the reset switch is closed and discharges

Cr, all Cfb and C9 capacitors are floating. During $2< tne reset switch is open,

the input switch changes position, and one set of capacitors Cjb and Ca are

connected into the circuit Ci and C9 transfer charge onto Cf0+Q.. The filter

transfer function is

IN

,-11-

v^z) " ~c/bjk+q.

*B

i

—=—« l1—Cfba +Cr

This clocking repeats, but on $2« C*m+t an<^ ^/**+i are connected into the cir

cuit. Cxm and Cfbb are now floating. If ten sets of capacitors are stacked on one

4a +a *b
ho"

c«
OH I—

Cfb

ll-0^--^OHI

yRESCT

4*

>r

Figure 3.8. Multiplexed version of figure 3.5

Capacitor Ratios for SC Filters

lag
transfer

function

pole zero

0-

c,

k=0 equation (3.3) 0.9604 -0.9604 24.25 0.4899

k=l equation (3.2) 0.9604 0.0000 24.25 0.0000

k=2 equation (3.2) 0.9604 0.3201 24.25 0.4708

k=3 equation (3.2) 0.9604 0.4802 24.25 0.9238

k=4 equation (3.2) 0.9604 0.5762 24.25 1.3596

k=5 equation (3.2) 0.9604 0.6403 24.25 1.7801

k=6 equation (3.2) 0.9604 0.6860 24.25 2.1847

k=7 equation (3.2) 0.9604 0.7203 24.25 a5753

k=8 equation (3.2) 0.9604 0.7470 24.25 2.9526

k=9 equation (3.2) 0.9604 0.7683 24.25 3.3159

Table 3.1. Capacitor ratios for implementing H'k(z)

34

op amp, one pole-zero pair for the ten filters H'k(z)t 0£&^9, have been real

ized. If the Cs capacitors are eliminated, one pole for ten filters is realized.

The filters H'k(z) can be efficiently constructed using one multiplexed pole-

zero section followed by two multiplexed pole sections. As noted earlier,

changing the switch phasing of Q during the A:=0 time slot results in a sign

reversal of the Q term in the transfer function. This is necessary to imple

ment the negative real zero for filter H'0(z).

The capacitor ratios for the filters H'k(z) are listed in table 3.1. Since all

channels of a multiplexed filter section share the same CJ. and Q, all have the

same DC gain which is , (l)s—St? As was noted in chapter 2, the DC gain

for the filters H'k(z) is different for each k. Rather than have a different Q

35

for each filter, the different DC gains are implemented by scaling in the

microprocessor (see section 4.1.7).

3.3. DURBIN RECURSION MICROPROCESSOR

The analog autocorrelation values output by the autocorrelator must be

transformed into LPC coefficients or reflection coefficients by the Durbin

recursion algorithm (see section 2.4). For a 9 pole LPC model, the recursion

involves 100 operations (multiplications or divisions) each frame. Accuracy

considerations necessitate digital processing. Previous investigations have

reported a need for 16 bit multiplies and 32 bit intermediate results in the

recursion algorithm to minimize error due to finite word arithmetic [16],[15].

Given this, only 18 bit microprocessors with a multiply instruction were

considered, and the Intel 8088 was chosen.

The microprocessor system is shown in figure 3.7. To digitize the analog

autocorrelation values, an ADC is included. The memory requirements of the

Durbin algorithm are minimal and are easily handled by a 256 by 8 bit RAM.

The program size was estimated to be less than Ik bytes, so a Ik byte EPROM

was chosen. Speed, word length considerations, and the program will be dis

cussed in the following chapter.

3.4. AN AUTOMATIC GAIN CONTROL CIRCUIT

Ideally, the input speech wouldgenerate an R(0) (analog voltage) equal to

the ADC's full scale input at every frame; this would minimize the error due to

the quantization of the autocorrelation values. The magnitude of R(0) has

twice the dynmaic range of the speech because R(0) is the short-time energy

of the speech waveform which is proportional to the speech amplitude

squared. The dynamic range of the input speech is typically 30dB. resulting

PROGRAM

ROM

ir

MICROPROCESSOR

i i

n n

ir 1 r

kl«k)

ADC RAM I/O PORT
fe

Figure 3.7. Block diagram of 8088 system

36

in a 60dB range for R(0). To minimize the dynamic range of R(Q), and

thereby reduce errors due to quantization of the autocorrelation values, scal

ing of the input speech at each frame is necessary.

An automatic gain control circuit (AGC) for this purpose is shown in

block diagram form, figure 3.8. The speech passes through two parallel paths.

The upper path delays a frame of speech while the lower path computes an

estimate of y/R{0) for the frame. Then, as the speech passes out of the delay

line, it is scaled by g« -—-.

The lower path estimates V/?(0) rather than compute it exactly. An

exact computation might seem in order, but the IIR window used in the auto

correlator overlaps multiple frames and therefore exact computation is nei

ther possible nor worthwhile. Furthermore, the square root operation is not

easily realized. To simplify matters, y/R{0) is estimated using the absolute

37

tin)

DELAY LINE

<$>
•<o)/i

Figure 3.8L Block diagram of automatic gain control circuit (AGC)

value function and filtering,

J&= E l*(n)|w(n-*)a £ |s(n)|/iO-n).

where w(n) is the same two pole window function as is used in the autocorre

lation computation, equation (2.6), and w(~n) = h(n) as in chapter 2. The

use of the same window function should generate an estimate of v/?(0) which

is fairly accurate since R(0) and Vy are based on the same weighted speech

segment

Vy must be scaled to give an estimate of V7?(0). To find the scaling fac

tor, we make use of statistical data on the amplitude distribution of speech.

Speech has an amplitude distribution which is very closely approximated by

the Lapiacian distribution [17]

38

where a, is the root mean square value of speech. If we take the expected

value of Vy

E{VV)= £ E(\s(n)\)h(j^n)=E(\s(n)\) £ h(j-n) =tf(|s(n)|)jy(l)

because 2 ^0'-™) is the DC gain of the filter H(z), H(l) (DC or 0Hz

corresponds to z =1). £*(|s (n) |) is found by integrating

E(\s(n)\)=f\s\p(s)ds =^.
It the speech signal is assumed ergodic over a frame (12.5msec), then

V^I5J»(7,. so £(Ky)*iI2M±L

Not only should the AGC scale the speech in an attempt to give i?(0)

equal to the ADC's full scale input, it should set the gain so as to minimize

clipping at the ADC. Clipping of the speech generates errors in large ampli

tude samples which heavily contribute to the autocorrelation values. Under

the Laplacian distribution assumption, speech has the property that the

amplitude is greater than 4o*s only 0.35% of the time because

Pnb[\s fa)\>4aa]=l-Prob[-4:08<s(n)<4:aa]=l- f p(s)ds =0.0035.

HIDSo if the gain is set to —c 1^, njzmm» the speech will be clipped about
g 4v fL Vy ^Oj

0.35% of the time, so the error due to clipping will be negligible.

If the analyzed speech is to be reconstructed, the AGC gain should be

stored and transmitted for use in the synthesizer. For such situations, an ADC

is included to quantize the present scale factor g. Then, to handle the scaling

of the speech, an MDAC is employed in the feedback loop of an op amp to

39

implement division. Only a small number of bits of resolution is required to

give adequate performance in the AGC; five or six bits is sufficient [18]. A

companding ADC with logarithmic transfer characteristic is preferred rather

than a linear ADC. In any case, the AGC gain should be changed at the frame

rate of 80Hz.

A feedback AGC system, without the delay line, was considered for this

application. This would greatly simplify the AGC and make an IC realization

much easier and smaller in area A feedback AGC uses the last frame's

energy, R(0), to estimate the scaling factor for the present frame. If the sig

nal does not vary rapidly from frame to frame, this would work very welL

Unfortunately, speech changes very rapidly from frame to frame. To Illus

trate this point, let us consider a segment of background noise proceeding

the word 'peat*. The background noise fills frame 1, and the /p/ sound begins

at the start of frame 2. The energy in the frame of background noise will be

very low, so the feedback AGC will set the gain to be very large for frame 2.

The result is excessive clipping of the /p/ sound as it is scaled by the AGC.

This causes a large error in the computation of the autocorrelation values for

frame 2, resulting in an incorrect LPC model or an unstable model. When syn

thesized, the /p/ sound cannot be distinguished from a /b/ or /ee/, and the

word 'peat' can not be distinguished from 'eat' or 'beat'. This is a common

occurrence - plosives are transient in nature and are heavily clipped by a

feedback AGC. Setting the gain for frame 2 based on the average energy in

frame 2 eliminates this problem.

An AGC of the type described would be very useful as a speech pre

processor, whether the subsequent processing is analog or digital. The AGC

reduces the bit requirement of the following ADC and minimizes quantization

40

error at the ADCwhich might generate unacceptable errors in computation.

CHAPTER 4

DESIGN OF THE SYSTEM

In the last chapter, circuits were chosen for implementing the autocorre

lator, the AGC, and the Durbin recursion algorithm; but many design details

such as the number of bits in the MDAC and the op amp design were not con

sidered. The design details fall into two groups. Decisions such as the number

of bits in the MDAC and the quantization of the autocorrelation values are

speech related. On the other hand, design of the op amp and the SC circuits is

independent of the speech processing application; the SC circuits should be

designed to give accurate voltage transfer and filter characteristics. Com

puter simulation was used extensively during the design phase. The op amp

and other analog circuits were simulated on the circuit simulation program

SPICE [19]. Speech related simulations were done by running sentences of

digitized speech through specially written programs.

4.1. SPEECH RELATED DESIGN

4.1.1. SIMULATIONS

A high quality microphone (Shure model SM-10) and 12 bit ADC were used

to digitize sentences spoken by a variety of speakers. The sentences and

speakers are listed in appendix C along with the source code for the speech

simulation programs. The main program, Generateauto.c, simulates figure

3.1. This program takes speech as input and generates the autocorrelation

values for each frame. It also features optional control of various aspects of

the autocorrelator design such as AGC pre-processing, quantization of the

41

42

MDAC input, and quantization of the autocorrelation values.

After the speech is analyzed, it can be synthesized and played back by

the program Speakpitch.c which is a direct-form LPC synthesizer (all compu

tations in Speakpitchc use fioating-point arithmetic). For synthesis, the pitch

periods are estimated by a Gold-Rabiner pitch detector [20]. Intelligibility is

a subjective but important criterion which is applied to the synthesized

speech to determine the quality of the analysis. Alternatively, the autocorre

lation values can be compared to a reference set of autocorrelation values

using the Itakura-Saito spectral distance measure, equation (2.15). The pro

gram specjev.c computes the spectral distance between two sets of auto

correlation values. This spectral distance measure, or spectral deviation from

the reference, is extensively employed below to quantify the effect of quanti

zation and other modifications to the LPC analysis discussed in chapter 2.

Spectral deviation and the number of unstable frames are plotted versus

design variables. This is an objective method of measuring errors. A spectral

deviation of 3dB is considered to be the acceptable limit. Unfortunately, spec

tral deviation is not directly related to perceived errors. Large spectral devi

ations at high frequencies are not as objectionable as the same amount of

spectral deviation at lower frequencies (especially near the first resonance).

Nonetheless, 3dB of spectral deviation is generally considered tolerable

(slight perceptual error); ldB of spectral deviation is usually undetectable

[2l].[22].

Occasionally the LPC analysis results in an unstable filter modeling the

vocal tract due to errors in computation (e.g. quantization and truncation).

The effect of an unstable frame on the quality of the synthesized speech is not

easily determined. If an unstable frame is isolated (Le. surrounded by long

43

spans of stable frames), it can be replaced by a stable LPC model either by

repeating the last stable frame or by interpolating the reflection coefficients

of the neighboring frames. If a string of consecutive unstable frames occurs,

it is difficult to find a stable model to replace them, and the result is an audi

ble discontinuity in the synthesized speech.

4.1.2. DOWNSAMPLING

Each filter H'k(z) (equation (2.11)) is realized by cascading three first

order low pass filter sections; each section has a cutoff frequency of 50Hz. As

such, the third low pass filter section is presented with an input signal with

very little signal power above 50Hz. This makes downsampling at the third

filter section an attractive possibility. Downsampling reduces the computa

tional workload in a digital approach and reduces capacitor ratios - and hence

chip area - in a SC filter approach. This is a modification to the system which

seems worthwhile.

A downsampling factor of ten was considered because it is convenient to

implement. If the speech signal is spectrally fiat, downsampling by a factor of

ten would introduce aliases in the filter's passband (0Hz - 50Hz) that are 47dB

below the baseband signal.

The simultation program includes an option for downsampling in the

third filter section. This was used to test the effect of downsampling by a fac

tor of ten. The results are tabulated in table 4.1, row 1. The units of spectral

deviation are millibeis (mB), ImB = 0.0ldB. Note that the errors contributed

by downsampling are extremely small and are perceptually undetectable.

The downsampling by a factor of ten means the third filter section

operates at a sampling rate of 800Hz. To achieve the desired cutoff frequency

Cfb
of 50Hz, the capacitor ratio -*—is only 2.04. This is much smaller than the

Cr

Spectral Deviation Results
test condition mean standard number total

(mB) deviation of number
(mB) unstable

frames

of

frames

downsampling by factor of
10 at third filter section

0 6 0 4239

AGC pre-processing 6 19 0 4239

AGC pre-processing and
truncation of R(k) to 11 32 55 4239
nearest integer

Truncation of R(k) to
nearest integer without 143 184 2527 4239
AGC pre-processing

Table 4.1. Spectral deviation results for various test conditions

44

ratio required for the first two filter sections which operate at an 8kHz sam-

piing rate - they have -~-<=24.25.
Cr

4.1.3. EFFECT OF AGC ON STABILITY

An AGC is very important in this system - it relaxes the bit requirement

of the MDAC and the ADCs. But an AGC can cause instability in the LPC model

if the AGC changes its gain too often and/or too much, resulting in a time

waveform which is difficult to model. The effect of the AGC was simulated, and

the results are presented in table 4.1, row 2. Note that the AGC works very

well because the spectral deviations are very small. The scaled speech (out

put of the AGC) was played back through loudspeakers and found to be

extremely intelligible, only lacking the dynamic range of the original speech.

If the autocorrelation values are truncated to the nearest integer prior

to the Durbin recursion algorithm, as is the case in this LPC system, the

results are not as good (table 4.1, row 3). The larger spectral deviations and

45

the unstable frames are caused by quantization of the autocorrelation values.

Such quantization is unavoidable because the autocorrelation values must be

digitized for the microprocessor which handles the Durbin recursion algo

rithm. Still, the number of unstable frames is fairly small, only amounting to

1.2% of the frames analyzed. This should be contrasted with the results

obtained without the AGC but including the integer truncation (table 4.1, row

4). "Without the AGC, the large dynamic range of the speech results in a large

dynamic range for R(0). Small values of R(0) result in heavy quantization of

all the autocorrelation values and can cause large errors or instability in the

LPC model. Figure 4.1 shows the distribution of R(Q) with and without AGC

pre-processing. A comparison of the graphs clearly demonstrates that the

AGC is beneficial.

4.1.4. MDAC BITS

The number of bits required in the MDAC should be minimized since for a

SC MDAC the area of the capacitor array roughly doubles for each bit

required. So, from an area standpoint, a minimum number of bits is desir

able. Also, the RAM delay line size increases as the number of bits increases.

Furthermore, the ADC is simplified and conversion time is reduced as the

number of bits in the MDAC decreases. A good AGC reduces the number of

bits required by keeping the signal amplitude large.

The simulation program Generateauto.c provides optional control of the

number of bits in the MDAC. Due to quantization of the speech onto the com

puter, the MDAC is simulated by a 12 bit by B bit multiply where 1^B^12.

This is not the same as the MDAC which multiplies an analog voltage (ideally

represented as a floating point quantity) and a finite length word. But quanti

zation of both the multiplier and the multiplicand in the computer simulation

um

ai4»tt

. f.,

"T t

>«!•••«••«*•»••••+•<

.—fr~..

tit

*/&/
7M Iltt

figure 4.1. top: Distribution of R(0) values with AGC pre-processing
bottom: Distribution of R(0) values without AGC pre-processing

46

47

does provide an upper limit on the error due to quantization in the MDAC.

Let's consider the problem of quantization in the computation of

R(k)= 2 s(n)s(n-k)w(n)w(n—k). Since the delayed speech is quantized
n=-~

prior to multiplication in the MDAC, s(n—k) should be replaced by

sd(n-k)=s(n—k)+q(n—k) where g(n-fc) is the quantization error due to the

ADC. For an ADC which rounds the analog input to the nearest quantization

level, q(n) has a uniform probability distribution over the interval

—-jpfig^—g-: If this quantized value is used in the autocorrelation computa

tion, we get an approximation to R(k):

Ra(&) = 2 s(n)sd(n—k)w(n)w(n-k)
n=-*»

= 2 s(rt)[$(n-fc)+g(n-*)]i«(it)tu(n-A:)

m» m

= 2 «(w)s(w—ib)t«(n)t«(n—ib)+ 2 s(n)q(n-k)w(n)w(n-k)

= R(k)+ 2 s(n)q(n-k)w(n)w(n-k)

where Ra(k) is the approximation to R(k). The quantization error q is a ran-

dom variable with E(q)=0 and Var(q)=—-—: Furthermore, assuming the
o

speech waveform traverses many quantization levels, q(n) is independent of

g(»n) for 771 ?*n and g is uncorrelated with s [4]. If we assume a given

speech waveform js(n)j, then only q is a random quantity. The random vari

able Ra(k) has expected value

E[R*(k)] = EU?(k)+ 2 s(n)q(n-k)w(n)w(n-k)

= R(k)+E\ 2 s(n)g(n-fc)tu(n)iu(n-fc)

48

0»

= B(k)+ 2 s(n)E[q(n-k)]w(n)w(n-k)

so Ra(k) is unbiased, and variance

Var[R9(k)] =7arp?(Jb)+ 2 s(n)q(n-k)w(n)w(n-k)

= Var\ 2 s(n)q(n-k)w(n)w(n-k)

= 2 Var[s(n)q(n—k)w(n)w(n-k)]

= 2 s2(n)Var[q(n-k)]w2(n)w2(n-k)

=Wxr[g(n-fc)] £ s2(n)tw2(n)«;2(n-A:) * 7ar(g)i?(0).

The proportionality stems from the observation that the final summation

looks just like the expression for R(0) if tu(n) is replaced by w(n)w(n-k)

(see equation (2.6)). So the final summation expresses the computation of

R(0) when a different window, w(n)w(n-k), is used. The standard deviation

of Ra(k)is

*/?, =VWir(i?a) oc Vtfer(g)/?(0),
and the ratio of the desired output, J?(0), to the standard deviation of the

actual output. Or , is
•a

r(q) _. r(o) _ veto
**i ^Vtrr(q)RiP) Vftor(g).

This ratio, which is similar to a signal-to-noise ratio, increases as i?(0)

increases, so a large /?(0) is desirable. Scaling the input speech by using an

AGC is one possible way to achieve a consistently large i?(0). The ratio also

2'2Bincreases if Jfar(g)=—-—decreases, this occurs if the number of bits B in

the ADC is increased.

Spectral Deviation Results

MDAC bits mean

(mB)
standard
deviation

(mB)

number
of

unstable

frames

total
number

of

frames

4 368 338 1302 4239

5 205 251 1105 4239

8 118 173 820 4239

7 65 128 383 4239

8 34 94 170 4239

9 14 59 41 4239

10 5 34 5 4239

11 2 24 0 4239

12 1 17 0 4239

Table 4.2 Spectral deviation results versus MDAC bits

49

Simulations with the number of MDAC bits as the independent variable

were performed on all the sentences in the data base to determine the

minimum number of bits acceptable. The results are tabulated in table 4.2

and graphed in figure 4.2. In the upper graph, the mean spectral deviation is

plotted versus the number of MDAC bits with a solid black line; the mean plus

three times the standard deviation of the spectral deviation data (mean +3a)

is plotted on the same graph with a dashed line. By Tchebychev*s inequality

[23] at least 89% of all the data lies below the dashed line. As can be seen

from the graphs of figure 4.2, 8 bits (7 bits + sign) is acceptable.

In the autocorrelator, the MDAC is followed by a low pass filter H\(z)

with very narrow bandwidth. Therefore, ADC/MDAC non-linearities can be

tolerated in moderation because they generate harmonic distortion at higher

frequencies which will be attenuated by the filters.

!•?•

I4t»

ISM

im >

•42

m

•M

«rt

914

It?

•

I

!

..*..,,.

sMMrSS/jr

Ultt

lira

<r.
% !•••

1
!* ♦!•

"^ 7M

§ »M

* MS

1 1M

•
S

/

\

j i j ;

\
i -f ••

:

! ts : :

• * r a

AUWSSte
xt

Figure 4.2. top: Spectral deviation versus MDAC bits
bottom: Unstable frames versus MDAC bits

18

50

Spectral Deviation Results
R(k) quantization

(bits)
mean standard

(mB) deviation
(mB)

number

of

unstable

frames

total

number
of

frames

6 57 95 479 4239

7 35 79 268 4239

8 18 57 147 4239

9 10 38 71 4239

10 5 27 16 4239

11 2 11 9 4239

12 1 6 6 4239

13 0 5 1 4239

14 0 1 0 4239

15 0 0 0 4239

18 0 0 0 4239

Table 4.3L Spectral deviation results versus R(k) quantization

51

4.1.5. QUANTIZATION OF THE AUTOCORRELATION VALUES

Since the analog autocorrelation values must be quantized prior to the

Durbin recursion algorithm, the effect of such quantization must be investi

gated. Quantization can lead to large spectral errors or even instability.

The simulation program Generateauto.c provides optional control of the

quantization of the autocorrelation values. At each frame, the autocorrelation

values are computed exactly using floating point arithmetic. Then, for quanti

zation to B bits (B-l bits + sign), all R(k) are scaled by the factor 28"1

W)
and

truncated to the nearest integer. This results in Rlp)^^"1. Table 4.3 and

figure 4.3 show the results of such quantization. Quantization to the 10 bit

level is acceptable, the number of unstable frames rapidly increases below 10

s

27a

ass

t?i

194

IM

•i *.;.

•t-i-"- ••'

» • t i» it ia i3

• • i« ii ia ia

14 I*

IC

figure 4.3^ top: Spectral deviation versus R(k) quantization
bottom: Unstable frames versus R(k) quantization

52

I*

53

bits.

4.1.6. DC GAIN OF FILTERS

Due to the filtering, the maximum signal amplitude at the output of each

filter section is smaller than its maximum input signal amplitude. To main

tain maximum output voltage and,therefore the maximum R(0) possible,

each filter section has a DC gain larger than one. The gain was determined by

running speech through the system. The main concern was to avoid clipping.

The filters are a cascade of first order sections. The one pole, one zero

filter section was positioned first, followed by a one pole section which is in

turn followed by the final one pole section which operates at the lower sam

pling rate. The selected gain values are 2.5, 1.38, and 1.3 respectively.

4.1.7. THE 8088 MICROPROCESSOR AND DURBIN'S RECURSION

The Durbin recursion algorithm transforms the quantized autocorrela

tion values into LPC coefficients a* and reflection coefficients A^. In a

microprocessor implementation, the algorithm must be implemented with

fixed point arithmetic. The two goals of the microprocessor system are real

time computation while generating negligible modeling errors due to the

integer arithmetic. The two requirements are conflicting in nature; increasing

computational accuracy requires longer word lengths which means longer

multiplication and division times. The design strategy was to first find word

lengths at every step in the algorithm which produce negligible errors. Then

this program was run on the microprocessor system to see if it was fast

enough for real time analysis. Due to the availability of 8 bit and 18 bit mani

pulations with the 8088 instruction set, word lengths of 8, 16, 24, and 32 bits

were considered.

54

The program spec_dev.c was modified to check the effect of finite length

arithmetic in the Durbin algorithm. The flexibility of the C programming

language, which allows manipulation of bits by shifting and masking, was very

helpful.

Durbin's recursive solution of equation (2.12) is listed below, and the

number of bits assigned to each variable is listed in Table 4.4. The real

number 1.0 is scaled to ONE=2u in the 8088 program. After reading a set of

autocorrelation values R(k), 0^Jb^9, each R{k) is shifted left until there is a

T in bit 14 of R(0), so that 214-si?(0)<218. Each R(k) is treated as a 16 bit

integer. Since | fy | <1 for a stable model, | fc{ | <0NE in the 8088 program, so

&t is stored as a 16 bit number. The e^'s do not have a theoretical bound, as

do the ki, but they do have a practical bound for speech modeling; a practical

bound of | a* | <8 was determined experimentally. In the 8088 program,

| dt I<8 ONE and therefore the largest % will require 18 bits; so each a* is

stored as a 24 bit word for convenience of manipulation. Also, it was found

that the magnitude of the product aiR(7n-'i) never exceeds 231 (32 bits)

despite the fact that a< is an 18 bit integer and R(7n-i) is a 16 bit integer.

Therefore the product can be stored as a 32 bit integer. Likewise, the product

kmdgl} never exceeds 32 bits. The 8088 program includes a subroutine for

Word sizes for the Durbin algorithm
variable name bit length

() 16
m 8

km 16
of* 24
ap-tRCm-i) 32

32

Em 16

Table 4.4. Word size at different points in the Durbin algorithm.

55

multiplying an 18 bit word (oj) by a 16 bit word. This multiplication time is

reduced, on the average, by checking the top two bits of the 18 bit integer

because if the top two bits are just a sign extension, a 16 bit by 16 bit multi

plication will suffice.

The microprocessor also must modify the output of the SC filters before

beginning the Durbin recursion. Each SC filter has an undesirable DC offset

voltage which adds to the autocorrelation value. Also, the SC filters all have

the same DC gain (see section 3.2.2.2). But the gains should be slightly

different as can be seen in table 2.1. The 8088 program goes through an ini

tialization phase during which the autocorrelator's input is zero. This allows

the 8088 to sample the DC offsets of the filters and store them. Then the

microprocessor begins execution of the main program. Each frame, a new

set of autocorrelation values are read. For each autocorrelation value, the

corresponding offset voltage is subtracted and the difference is scaled by the

relative DC gain of table 2.1. The result is the autocorrelation value which is

used in the Durbin recursion algorithm:

start: E0=R{0)

m=0

loop: 171=171 +1

R(m)+^lla^-lR(m-i)
km —

Em-l

atn=ap-l-kmamil} tetem-1

Etn=(l—km)Em-i

if(m<p) go to loop;

else stop;

Spectral Deviation Results
MDAC bits mean

(mB)
standard

deviation

(mB)

number

of

unstable

frames

total

number

of

frames

4 28 60 246 4239

5 18 48 117 4239

6 15 43 79 4239

7 14 42 49 4239

8 13 41 52 4239

9 12 40 51 4239

10 12 37 62 4239

11 12 37 52 4239

12 13 38 51 4239

56

Table 4.5. Spectral deviation results versus MDAC bits with all modifications

The final version of the 8088 program required 120 bytes (960 bits) of

RAM to store all the variables. A 256 by 8 RAM was chosen; this allows 136

bytes for the program stack which was more than necessary. The stack is

only used to save a few registers temporarily during a subroutine call.

4.1.8. TOTAL ERROR FROM ALL MODIFICATIONS

As might be expected, inclusion of all the modifications discussed in sec

tions 4.1.2 through 4.1.7 results in an error which is larger than the error due

to any one modification alone but less than the sum of the individual errors.

The results of downsampling, MDAC quantization, R(k) truncation to the

nearest integer, and AGC pre-processing all simultaneously in effect are tabu

lated in table 4.5 and graphed versus MDAC bits in figure 4.4. Using an 8 bit

MDAC results in acceptable performance. Auditioning synthesized speech

t44

I"%v its

^ -

T......

,.t *"..*?*. tf.V.*M*«««4>*4«.

C 4 7 •

AWWS/Ar
t« it

Figure 4.4w top: Spectral deviation versus MDAC bits, final system
bottom: Unstable frames versus MDACbits, final system

57

it

58

confirmed this decision. If an 8 bit MDAC was used in the analysis, the syn

thesized speech was easily understood although occasional minor flaws could

be detected.

4.2. ANALOGIC DESIGN

To demonstrate the feasibility of the analog/digital hybrid approach, the

SC circuits for the autocorrelator were integrated on a single CMOS chip. The

digital circuits for the autocorrelator are simple ciruits (i.e. small RAM, con

trol logic) and were not included on the chip. MOS was chosen because it

accommodates SC circuitry and is compatible with digital circuitry; CMOS,

rather than NMOS or PMOS, was chosen because it offers more flexibility as

well as more gain per amplifier stage. The IC design was a two part job, one

being MDAC and SC filter design to minimize parasitic related errors, the

other the design of the op amp. One parasitic, MOSFET channel charge redis

tribution during turn-off, is not well understood and hence it is not modeled

properly in circuit simulators such as SPICE [24]. So reliable computer

simulation of these charge effects was not possible. Therefore, a breadboard

version of the autocorrelator was built for experimentation. Op amp design

was done exclusively on SPICK

4.2.1. THE PROCESS

For integration of the IC, a reliable metal-gate CMOS process was chosen.

A P-type substrate, 1000 angstrom gate oxide thickness, and 30V oxide break

down voltage are characteristics worth noting. The minimum drawn line width

is 10/um which results in 8/xm channel lengths after out-diffusion of the source

and drain. The gate-to-drain and gate-to-source overlaps are 1 to 2 microns

for the NMOSFET, but only 0.1 to 0.2 microns for the PM0SFET due to a self-

59

aligning P+ implant. Capacitors are MOS capacitors (metal-oxide-N+). The

threshold voltages are typically IV for the NMOSFET and -2V for the PMOSFET.

Since the substrate is P-type, the NMOS transistors are used as switches;

PMOS transistors must be placed in an N-well so they are inefficient from an

area standpoint unless a number of switches can be grouped into one welL A

more detailed description of the process can be found in appendix D as well

as in [14].

4.2.2. A SIMPLE MODEL FOR THE MOSFET

For analog circuit design, simple equations which model the MOSFET are

useful. Equations for an N channel MOS transistor are given below, and all

parameters are defined. The P channel MOS transistor follows the same equa

tions if the direction of positive drain current is changed. Typical values for

the parameters are listed in table 4.6.

If the transistor is in the linear region of operation (Le. if a continuous

channel extends from drain to source), the MOSFET acts as a resistance of

value

Typical Values for MOSFET Model Parameters
Parameter SPICE Symbol NMOS PMOS

v* VTO 1.0V -2.0V

k KP 24*f
V2

7£dL
V2

A LAMBDA 0.01K"1 0.005V-1

NSub NSUB 1.6X1015 l.OxlO18

t» TOX 0.1/4 0.1/4

Table 4.6. Model parameters for SPICE simulations

60

^{(ifc-ifc-.S^fOS.-iu" <*D
5s
2

The approximation is valid if JJs-Jfo»-~: The parameters are

/4 = the mobility of the channel charge,

C'cz = the gate to channel capacitance per unit area,

W = the width of the active area,

L = the length of the active area,

Vga = the gate to source voltage,

V& - the drain to source voltage,

Vth = the threshold voltage of the transistor.

The transistor is in the linear region if both Vg9>Vul and JJd>Jfo. If JJs>Jfo

but VgjKVfo, then the transistor is in the saturation region (i.e. the channel is

pinched off at the drain), and the transistor follows the relation

/* =§^*i,-*k)2(l+Mk)
where

Tds = the drain to source current,

X"1 = the Early voltage of the transistor.

The threshold voltage Jfo is dependent on the source to substrate voltage

Vtn =^0+r[vi 7„ |+2| 9f |-V2TP7I"]
where

VtM = the threshold voltage measured with Vb8=0,

y = the body effect parameter,

Vba = the substrate to source voltage,

<Pj = the Fermi level of the substrate.

61

The capacitances associated with the MOSFET are shown in figure 4.5. The

N+ source and drain diffusions in the P substrate form diode junctions which

are always reverse-biased and have an associated non-linear junction capaci

tance. The gate metal overlaps the source and drain diffusions slightly, giving

rise to overlap capacitances Cw. These overlap capacitances provide an

undesirable coupling between the gate and source and between the gate and

drain when the transistor is off. The total gate to source, gate to drain, and

gate to substrate capacitances are complicated functions of the terminal vol

tages [25].

4.2.3. OPERATIONAL AMPLIFIER

Since all circuits employing the op amp are SC circuits, the op amp load

ing is capacitive. A simple transconductance amplifier which uses the capaci-

L
GS DS

dy nb D
SB i? DB

S

B

Figure 4.5. Capacitances associated with a MOSFET

62

tive load for compensation was designed. Important design goals are settling

to 0.1% in 3/4seconds, open loop gain greater than 1000, large output swing

and low noise. Low power dissipation and small area are desirable but not cru

cial due to the multiplexing of each op amp.

The op amp schematic is shown in figure 4.6. Current source M14 biases

the input differential pair M1-M2. Wilson current mirrors M3-M4-M5 and M6-

M7-M8 provide current gain as well as high output impedance. The drain

current of M4 is mirrored to the output by cascode current mirror M9-M10-

M11-M12. The op amp has a differential mode transconductance of Gm

^* ~ ^mtn

Wd

Lb
We

Le

^gSm^

W5

Ls

WZ

Ls

*11

Ln

*10
Lio

Qm^^m^Qmgls the transconductance of the input transistors Ml and M2. If

W
the -r-ratios are as shown in figure 4.6, G^ reduces to

^^SW — 9flUm

WB ws

La
We s*»*

Ls

w*
[Le\ L3

= dm^Ai^yJIbUa.

Aj is the current gain of the Wilson mirrors M3-M4-M5 and M6-M7-M8, 4/=2.5 in

figure 4.8. The differential mode voltage gain is just 4/=^/?^ where R^ is

the output impedance of the Wilson mirror M6-M7-M8 in parallel with the out

put impedance of the cascode mirror M9-M10-M11-M12.

#«*(Wilson) « rQ7(gmQro6) =
v 16/4C"„

Le

XjXaAiIbioa

ml3

C)
BIAS

mIO

.03-

103m9

ml4

-o

\/

IN•-P•—|r"30 30

V-

mil

ml2

IN+
-•

m7

h2 in

m6

'3-
m8

10

10

OUT

2.5

2.5

w
figure 4.61 CMOS op amp schematic (—ratios next to transistors)

63

so

giving

V^5Rout (Cascode)*r0l2(^ml2r0ll) = j^-
*l2*ll(4/hiaa)Z

-a.
Rout = Rout(WUson)\ \Rwt(Coscode)*Ibi*t

64

-3.-0. J

So the low frequency voltage gain is inversely proportional to bias current.

But reducing the current to achieve higher gain reduces bandwidth and

increases the noise [26].

Since the CMOS process uses a P-type substrate, the PMOS transistors sit

in an N-well and therefore have a higher output resistance than the NMOS

transistors. So the PMOS transistors were chosen for the simple current

source for biasing the input stage. The input transistors Ml and M2 are large

area devices to minimize the op amp's noise [26].

The op amp is employed in a shunt-shunt feedback configuration with its

non-inverting input grounded. In such a configuration, the common mode

input signal is very small so a large common mode rejection ratio is not

required. Nonetheless, the symmetry of the op amp should provide a very

large common mode rejection.

4.2.4. SPEED AND COMPENSATION

The op amp is basically a one stage design. As such, it should provide a

wide bandwidth. All nodes internal to the op amp have an low frequency

2
impedance of ; the highest impedance node is the output node. G^ has

9m

two non-dominant poles due to the total capacitance at the drains of the

65

input transistors M1-M2 interacting with the equivalent resistance looking

into the Wilson mirrors

_ - 9m 9m
Pnd 2Q 2(CoV+Cj)'

(Cm is the gate overlap capacitance, CJ is the junction capacitance associated

with the source and drain diffusions). The dominant pole is at the output

node due to the large output resistance Rout interacting with the feedback

and load capacitors.

Compensation is only meaningful in the context of feedback circuits. In

the SC autocorrelator, the op amp is subjected to numerous feedback

configurations. In all cases, the feedback is shunt-shunt (i.e. voltage output,

current input).

Stability and settling time can be determined from the phase margin of

the loop gain [27]. The loop gain of the shunt-shunt feedback circuit figure

4.7 is

where the reverse transmission through the op amp has been neglected - it is

assumed to be much smaller than \y/\ at all frequencies of interest (appen

dix E). All terms of (4.2) are functions of the complex frequency s. The loop

gain T(s) can be simulated directly on SPICE using the configuration of figure

4.8. The op amp with feedback element yj across it has a voltage gain

v. - (Gm-yf)
Vs ~ (Vo+Vf) '

The voltage divider has the transfer function

JL= vr
V0 (Vi+Vf)

The cascaded gain is the loop gain

Vx

Figure 4.7. Shunt-shunt feedback circuit

Vo

Ys

^

Yf

•♦•

? Ys Vr

^

Figure 4.8. Circuit for simulating loop gain

66

67

11 ;" vs " vz v0 (vi+y/Kyo+v/)'
This provides a very simple means of simulating the loop gain directly.

This is important in circuits which have frequency dependent feedback such

as those in the autocorrelator. Exact simulation of loop gain is discussed

further in appendix E.

Once an acceptable phase margin was found using figure 4.8, the step

response of the feedback circuit was simulated. The worst case for stability

occurs in the reset configuration. Settling times for MDAC and multiplexed

filters are tabulated in table 4.7. The SPICE model parameters which were

used are listed in table 4.6. These are conservative model parameters based

on data from previous experiments [28].

Circuit

Simulated
(figure)

MDAC

(fig 3.3)

MDAC
(fig 3.3)

Settling Time Simulation Results
Switch Load Settling Time

Phasing w or Ci Capacitance to 0.1%

reset switch
on

reset switch

off

Ci=0.1pF OpF

Cx=0.1pF OpF

iS^T"1 ^^ reset0n Cr=0.22pF lOpF

2.2/4sec

1.3/4sec

1.2/xsec

(ng3P6redmter resetog Cr=0.22pF lOpF 1.9/zsec
Table 4.7. Settling time results from SPICE for different configurations

68

4.2.5. EFFECT OF PARASITICS ON MDAC AND SC FILTERS

To implement the SC circuits of chapter 3, an N channel MOSFET is used

wherever a switch is needed. But the MOSFET is not an ideal switch. Aside

from finite on-resistance and gate capacitance, the gate overlap capacitance

and channel charge introduce error charge in the signal path of the SC cir

cuits. In some configurations, this error charge is signal dependent which

causes distortion. These non-idealities must be considered and their effects

minimized during the design phase.

In SC circuits, the finite on-resistance of the MOSFETs slows the charging

of the capacitors. For a capacitance C and MOSFET on-resistance Rm, the

associated time constant is T=RmC. To charge the capacitance to within 0.1%

of its final value requires seven time constants (7r). Charging time does not

present a problem in this system because the largest time constants are a

few hundred microseconds, so 7r<l/xsec which is much less than the smallest

time allowed for charging (which is 4/4sec). If the charging time were a prob

lem, the time constant could be reduced by decreasing C or by decreasing

Rm. The on-resistance can be decreased by increasing gate drive voltage

w(Yga—Vth) or increasing the transistor's -r-(see equation (4.1)).

For the SC MDAC of figure 4.9, the input switches 5j through S& and S^

can be considered to be ideal switches. This can be understood by noting that

the MDAC operates by transferring charge from the input capacitor array Ci

through CB onto Ctb on $3. The Gaussian surface, shown as the dotted line in

figure 4.9, represents the charge transfer region. As long as the reset switch

is open, the charge inside the surface must remain constant. Since the

switches S\ through Sg are outside this surface, they do not contribute to the

charge transferred and therefore have no effect on the output voltage. The

69

in

Is-

Sg C2»2C

P*- 'out

Co »2WC

in

1
J

Cx^fj

Figure 4.9. SC MDAC

only error charge is contributed by the reset switch which provides DC stabil

ity and therefore breaks the Gaussian surface. As the reset switch turns off.

some fraction of its channel charge will be trapped on the inverting node.

Also, the reset clock is coupled to the inverting node through the gate overlap

capacitance Cw. The output voltage due to these sources can be approxi

mated as

where AV^ is the amplitude swing of the clock signal.

Qcnam*i-C,9XWL(Vg9"VUi) is the charge accumulated in the channel when the

transistor is in the linear region, and 0£r£l is the fraction of channel charge

dumped onto the inverting node when the transistor turns off. Fortunately,

prior to each multiplication, the MDAC is in the reset mode. So the

feedthrough causes a constant DC offset voltage at the MDAC output. The

70

clocking scheme results in the op amp's offset voltage (V9ff99t) being sampled

onto the input capacitor array each reset period. So the op amp's offset vol

tage is not multiplied by the variable gain of the MDAC, but it does appear

directly at output. The total DC output voltage is

W *v,/fmt ♦ §**vel+rQTm*. (4.3)
This offset passes through the SC filters and is subtracted digitally in the

microprocessor as discussed in section 4.1.7.

Finite op amp gain results in a gain error in the MDAC. This gain error

occurs for all products and therefore scales all autocorrelation values by the

same factor. Since the LPC model is not changed by a uniform scaling of all

autocorrelation values (see section 2.4), gain error is of no consequence in

this application.

The diode junction composed of a capacitor's N+ diffusion and the P- sub

strate is always reverse biased, so it has an associated non-linear capacitance

and reverse-bias leakage current For the binary capacitor array, the N+

diffusions of the capacitors are connected to the input switches Si through

Sg. This eliminates problems due to the non-linear capacitances because

they are driven by the input source. For Cjb% the diffusion is connected to

the output of the op amp. The non-linear junction capacitance associated

with C/o does present a non-linear capacitive load to the op amp which helps

to compensate the op amp.

When all the switches Sx through S^ are on, the leakage currents for the

diode junctions of Cx through Cg are supplied by the source driving V&, and

the leakage current for the diode on the output of the op amp comes from

the output stage of the op amp; therefore the leakage currents have no

effect. (Actually, the leakage current flowing through the MOSFET switch

71

drops a negligible voltage /toafc#on') '^iie leakage current associated with a

junction does present a source of error if any of the switches 5j through Sg is

open. If input switch Sj is open, a leakage current due to Q's backplate diode

flows through it and onto Cfb. This leakage dominates the small Leakage

current associated with the drain diffusion of the MOSFET switch Sj. The

maximum error due to leakage currents occurs when all switches Si through

Sg are off (i.e. all bits in the digital word are '0'). Then the error is roughly

Kv _ SWA* ^ 2/teafcAf
t/6 t* ox

which equals 36fiVolts in the worst-case (Af =12.5/4seconds and

/teqfc=100 ,). This error is negligible for an 8 bit MDAC with a 5Voit full
C7JI

scale output.

As was mentioned above, the op amp's offset voltage is sampled on the

input capacitors during the reset phase and therefore the offset voltage is not

multiplied by*the MDAC gain. Since the —noise of the op amp is a low fre

quency noise which can be viewed as a slowly varying offset voltage, the —

noise also appears directly at the output of the MDAC and is not multiplied by

the MDAC's gain.

4.2.8. FILTERS

The filters suffer from many of the same errors as the MDAC. Unique to

the SC filters are the multiplexed capacitors Cz and Cfb. To investigate

different switching schemes, MOSFETs are included on both sides of each

capacitor (see figure 3.6) [29]. The multiplexing could be accomplished with

output side switches only, but this would introduce undesirable signal-

dependent error as can be seen from the following: Assume only the output

72

side switches are used (all switches connected to the op amp's inverting input

are shorted). The MOSFET output switch turns off when tj,— lfo=0. Since

Vgs^Vtf-Vout, the charge transferred onto C/b due to Cw would be

Q~CoV(hyGl—Vout—VtH) an<I tne charge transferred onto Cjb from the channel

of the MOSFET switch is

Q^tQc^^tCo* WL{Vg9-Vih)=TC0Z WLiVeta-V^-VtH)
where O^r^l is the fraction of channel charge dumped onto Cjb when the

transistor turns off. r is a function of clock rise/fall times and loading on the

source and drain of the transistor. If the loading at the source and drain is

identical, r«—: Note that these charge quantities are dependent on Vgut, so

the errors are signal dependent and cause distortion. To eliminate such sig

nal dependent charge transfers, a MOSFET switch is also included on the input

side of each multiplexed capacitor. The input side switch is turned off before

the output side switch is turned off. Since the input side switch is connected

to the inverting input of the op amp which is a virtual ground, the charge

transferred onto Cfb when an input side switch turns off is

#=Qv(AKj-Jfo)+rQ./iajMw|. Tkis error charge is dependent on Vout only

through r since the loading on the output side of the switch is dependent on

Vout.

Switching only on the input side is not possible due to bootstrapping. To

illustrate this problem, let's consider the case of ±7.5V clocks and Jfo=lV.

Then, if Cfb. is floating and has -5V stored on it and the output during time

slot fc+1 is -5V, the input side of Cp,k would be at -10V. If MOSFET Sk has its

gate at —7.5V, Sk will turning on thereby connecting Cfb into the circuit in

parallel with Cjb. This alters the charge on both C/b)g and C/^ and ruins

the multiplexing. This bootstrapping problem could be eliminated by reducing

73

the output signal swing or by increasing the clock amplitude or by adding the

output side switches. Reducing the output swing reduces the dynamic range

of the filters. Increasing the clock amplitude increases the amplitude of clock

related errors and may not be possible if clocks are generated on chip. So the

output switches eliminate bootstrapping problems and also reduce the capa-

citive Loading on the output of the op amp.

To minimize the signal dependent errors, the following switching

sequence is recommended for the multiplexed filters: 1) reset switch on. all

other switches off, 2) reset off, 3) input side switch for channel k on, all other

switches off, 4) output side switch for channel k on, input side switch still on,

all others off. 5) input side switch turns off, output side switch still on, all oth

ers off, 6) output side switch turns off, all other switches off. Repeat cycle for

channel k +1.

By discharging CJ. at the start of each time slot, channel to channel

crosstalk through Cf. is eliminated. By connecting the capacitor's N+

diffusion on the output side of the op amp, problems due to non-linear junc

tion capacitance and junction leakage current are avoided. The non-linear

capacitance is driven by the output of the op amp. The junction leakage

current flowing when the output side switch is on is supplied by the op amp

output stage. When the multiplexed capacitors is out of the circuit, the leak

age current will still flow. But it does not effect the filter at all. This can be

seen by considering the Gaussian surface of figure 4.10. The analysis is

simplified if the switches and op amp are assumed ideal, so we shall do so. We

will look at one channel, channel k. In figure 4.10, if we start with V^=0V and

Vout -0V, the reset switch open, and the other switches on, each of the capaci

tors in the Gaussian surface have zero charge on them. The total charge

74

rout

Figure 4.10. One channel of multiplexed filter showing junction leakage
current

inside the Gaussian surface must remain constant since there is no current

flowing into or out of this node. This total charge Q is initially zero. Then the

switches are turned off. While channel k's switches are open, the other chan

nels are connected into the circuit. When the switches for channel k are once

again turned on, we have ^=0 and the op amp's inverting input is a virtual

ground, so the charge on Q is zero and the charge on the op amp's input

capacitance is zero. So the charge on Cjb and Cr, (C/a+C^)^, must equal

zero because the total charge Qt must remain constant. Therefore Vout =0V so

the leakage current had no effect whatsoever. (The reset switch does break

the Gaussian surface and therefore does inject charge into the surface. This

causes a DC offset voltage but does not invalidate the above argument.)

During the reset period, the DC offset voltage of the multiplexed filter

section is equal to the offset voltage of the op amp. Otherwise, the DC output

75

voltage depends on the time slot To find the the DC output voltage, we will

consider the op amp and all switches except the reset switch to be ideal

Given this assumption, the DC output voltage can be found by writing charge

transfer equations for a given time slot For time slot k and sample n+1.

(Cfbt +CrJVoutfa+l) =CfbiVoutW^Qeta^ +GnbVa.
To find the DC output voltage, we take the limit as n goes to infinity. This

gives

(Cfbt+CrJVovtioo) =C/bmV9ut(^)+rQeham9l'rCoV^el
which reduces to

W ="«•<-> •TJ^+JSteB-, (4.4)
The interesting result is that the DC output voltage depends only on the loss

capacitor Q. and not on Cfb. This makes sense because, for a given filter, C/b

is always connected into the circuit and acts like an open circuit for DC sig

nals.

The finite gain of the op amp causes a slight reduction of the magnitude

of the filter's pole location. If the op amp gain is infinite, the pole is

Cfbz= * . If the op amp has an open loop voltage gain of a, the pole moves

to

c 1+~
Cfb+Cr i

Cfb +Cr

For a >1000, the shift in the pole location is negligible.

The op amp's —noise and op amp's offset voltage are sampled onto Q

during the reset period. Then, when the reset switch opens. Q retains the

sampled — noise and offset voltage. Since the —noise changes very slowly

76

and the offset voltage is constant, both are effectively canceled. The

autocorrelator's output noise is dominated by the third filter section due to

the low sampling rate.

4.3. ICIAYOUT

The layout was made as compact as possible while maintaining isolation

between analog signal paths and clock signals wherever necessary. The op

amp layout is shown in figure 4.11. The input transistors are the large

polygons. Ideally, the input transistors would be circular. This assures good

matching independent of mask alignment errors in either the X or Y direc

tion. The polygons are an approximation to a circle; we could not make cir

cles with our mask making equipment The op amp occupies 450mii2 of area.

To minimize the area of the layout, the switches in the SC circuits were

realized with NMOS transistors. The layout of an NMOS transistor can be seen

in the op amp layout. The gate metal was extended on both sides of the active

area to minimize any leakage currents between the source and drain (this is

important when the NMOS transistor is used as a switch). To be safe, P+ isola

tion diffusions are placed between any two N+ diffusions which are not con

nected. This costs area but was strongly recommended by former users of

this CMOS process [28].

Values for the capacitors on the chip were chosen as small as possible to

minimize total chip area. But small capacitors make parasitic charge transfer

errors more noticeable (see section 4.2.5). For the MDAC, C^O.lpF was

chosen. For the multiplexed filters, Cr=0.22pF for section 1 and 2 and

CJ.=0.66p^ for section 3. The third filter section operates at a lower clock

rate than the other two sections (800Hz rather than 8kHz) and therefore

requires smaller capacitor ratios to achieve the desired low frequency cutoff.

77

Figure 4.11. Op amp layout

78

To allow for experimentation with different clocking schemes, all the

gates of the multiplexed filter switches must be controllable from off chip.

This would amount to 80 control lines if all switch gates were brought out

separately. By using a multiplexer of PMOS switches, the number of pins is

reduced. A plot of the IC layout is shown in figure 4.12. The four opamps can

been seen lined up in a column down the center of the chip. The top op amp is

for the third multiplexed SC filter section. The capacitors for the third filter

section are in the upper right. The second op amp is for the MDAC; its binary

capacitor array is in the upper left. The third op amp is for the first SC filter

section - the section which implements a pole and a zero for each channel.

The feedback and zero capacitors for section one can be seen to the right of

the third op amp. The bottom op amp is for the second SC filter section. Its

capacitors are in the lower left. Note the difference in size between the feed

back capacitors of sections three and two. The difference is due to the lower

sampling rate used in the third filter section. The chip dimensions are 148mil

by 133mil, the area is 19,700mil2.

4.4. THE AUTOMATIC GAIN CONTROL

The AGC is a crucial element of this system. The AGC used was a bread

board circuit consisting of commercially available parts. The breadboard will

be described and circuits for an IC implementation are given.

4.4.1. AGC BREADBOARD

For the breadboard, a Reticon SAD512 256 stage bucket-brigade device

(BBD) delay line was used. The delay line should hold one frame of speech

which is 100 samples for this system. By operating the BBD at a 16kHz sam

pling rate, the number of samples held is 128 which is as close to the desired

79

ctfplof Window, -1*0.8 86.4 -1*3.3 65.35 9 u-200 — Scale,

nrnr m n ma

figure 4.12. Layout of the autocorrelator IC

80

value as is practically possible with the available BBDs. Since the speech was

bandlimited to 4kHz prior to the AGC. the signal out of the BBD has no

significant signal in the 4kHz to 8kHz region and therefore the output of the

BBD can be sampled at 8kHz without filtering. A one pole low pass RC filter

(cutoff frequency = 4kHz) with gain was placed after the BBD to filter noise

output of the BBD and to boost signal amplitude to 5V peak.

The absolute value function is performed by two op amps and two diodes,

the output of which is fed to a cascade of two simple SC one pole filters which

implement H(z) of equation (2.10). The output of the second filters is scaled

4V2by . i and then digitized by an 8 bit MDAC. The digital value is used to con

trol a divider circuit (MDAC in an op amp's feedback path [30]) which sets

the gain of the upper path. The delayed speech is scaled by this divider cir

cuit, and the gain is changed each frame.

4.4:2. An MOS AGC

The ADC, MDAC, BBD delay line, and filters can all be integrated easily on

an MOS IC. Simulations on the number of bits necessary for the AGC's MDAC

were performed [18], and 5 bits of linear coding was found to be sufficient.

So a 3 or 4 bit logarithmic ADC would serve adequately. These low speed, low

resolution ADCs are easily implemented in a small silicon area [31]. The

4V2scaling of the filter output by f * can be accomplished simply by scaling

down the ADC's voltage reference. Simple SC filters can be used to approxi

mate H(z).

The absolute value function is the only element of the AGC that can not

be directly copied from the breadboard onto an IC because floating diodes are

not available in a standard CMOS process. Therefore, diode-connected

81

enhancement-mode NMOS transistors are used instead. A full wave rectifier

circuit (absolute value circuit) is shown in figure 4.13. It requires matched

resistors and an op amp with low offset voltage, but the requirements are not

strict since the AGC scaling need not be exact. Resistor matching of a few

percent and 50mV of offset are adequate.

Vo

VI

figure 4.13. MOS absolute value circuit

CHAPTER 5

EXPERIMENTAL RESULTS

To test the system prior to integrating the autocorrelator, a breadboard

was built. The breadboard was used extensively, both to test the SC multi

plexed filters and to test the system's ability to function as an LPC speech

analyzer. Then the SC autocorrelator IC was fabricated with a metal gate

CMOS process and tested. For comparison, two sets of multiplexed filters were

integrated on a polysilicon gate CMOS process. Results are given for the

breadboard system, the IC autocorrelator, and the poly gate multiplexed

niters.

5.1. THE BREADBOARD SYSTEM

5.1.1. AUTOCORRHATOR

An autocorrelator was constructed of commercially available parts to

test various aspects of the design prior to integration of the autocorrelator.

This was a necessary phase of the design since SPICE does not accurately

model the MOSFET channel charge redistribution during turn off (see section

4.2.5). For the breadboard, capacitors were hand measured to assure better

than 1% ratio accuracy. For all filters, switches were included only on the

output side of the multiplexed capacitors (figure 3.8).

Electrical data taken from the breadboard is tabulated in table 5.1. The

autocorrelator did provide adequate accuracy for speech analysis despite the

large amount of adjacent channel crosstalk in the multiplexed filters. The

crosstalk is due to stray wiring capacitance on the breadboard which couples

82

Autocorrelator Breadboard Data

parameter measured value

Total system S/N ratio oaau
(ADC. MDAC, and filters) °*aD
MDAC bits 12
Cutoff frequency of each filter section 50Hz
Cutoff frequency of filter sections cascaded 25Hz
Adjacent channel crosstalk of multiplexed filters .qohb
(IV peak sinewave at 10Hz) -jood
Outputswing for HDz=\% ,gy
(10Hz sine wave input)
Full scale value of R(0) 5V
Clock frequency (10 channels) 80kHz
Power supply ±87. ±\bV

B3

Table 5.1. Data from autocorrelator breadboard

the adjacent signal paths. The dynamic range of 64dB was sufficient for

speech analysis; the noise was due to analog noise sources and digital noise

coupling into the analog signal lines on the breadboard. To test the bread

board with speech input, the breadboard was fed constant vowel sounds and

the analog autocorrelation values output by the breadboard were digitized by

a 12 bit ADC and stored on a mini-computer. The LPC spectrum for the auto

correlation values was plotted against the fft of the vowel sound to check for

errors. As long as R(0) was large enough so that quantization errors due to

digitization of the autocorrelation values were negligible (i.e. R(0) greater

than 0.4V). the results were very good as can be seen in figures 5.1 through

5.4. In each figure, the upper plot is the LPC spectrum generated from data

taken from the breadboard, and the lower plot is the LPC spectrum generated

by computer simulation of the autocorrelation LPC algorithm. The LPC spec

trum is plotted with the solid line, the fft of the sound with a broken line.

/>*vz*v/£<x /MrS

Figure 5.1. top: LPC fit to /ee/ sound, from breadboard data
bottom: IPC fit to /ee/ sound, computer simulation

84

4688

-
2

4

I"
-
4

b

-
4

8

-
*

4

-
7

8
1 im

riffl
M

,t
w

.'...it...
.1

I

4
8

8
8

6
8

*
•
'
•
*

•
•
'
-

'
-

-
-

i
i

1
2

6
6

I8
6

0
2

6
8

8
2

4
6

8

S
>

m
#W

A
't€r.f

SACsrS

8
5

3
2
6
6

3
6
6
6

4
6
6
6

/£>
&

?&
'd*rtr.f

/A
iry

3
6
8
6

4
6
6
6

F
ig

u
re

5.2.
top:

L
P

C
fit

to
/e

h
/

so
u

n
d

,
fro

m
b

rea
d

b
o

a
rd

d
a

ta
bottom

:
IP

C
fitto

/e
h

/
sound,

co
m

p
u

ter
sim

ulation

8
6

»
'
»
'

I
i

»
i

•
I

i
•

•
i

I
i

i
i

i
I

P
I

a
is

»
:i

I
I

ftl
f

-
7
8

r

466
M
S

1268
1689

2886
2408

2888
3288

3688
4688

»
*

V
B

*
r
tw

y
'

/A
iry

F
igure

5.3L
top:

LPC
fitto

/e
r
/

sound,
from

breadboard
data

b
o

tto
m

:
IP

C
fit

to
/e

r
/

so
u

n
d

,
c
o

m
p

u
te

r
sim

u
la

tio
n

-t«

-72

87

^^^^"T-^-^—^^^T^*.^^^^^^^^^^^^^^^^^^™^^^^

I^BIgi
»••--•

666 1268 1688 2686 2488 2868 3288 3668 4868

/yv&v&MTj' s'Jfcs

«•• ••• 1266 1668 2688 2486 2866 3268 3686

»Wj«±">aer:*v /ACry

Figure 5.4. top: LPC fit to /ah/ sound, from breadboard data
bottom: IPC fit to /ah/ sound, computer simulation

88

As a further check of the breadboard analyzer, the autocorrelation

values were used to synthesize speech. First, vowel sounds were analyzed,

synthesized, and then played back. The synthesis was compared to the origi

nal and found to be indistinguishable. Then, sentences were fed through the

analyzer and then synthesized. Due to occassional unstable frames (caused

by excessive quantization of the autocorrelation values) and a poor pitch

tracker, the synthetic speech sounded much worse than the original

Nonetheless, all synthetic speech was understandable and considered accept

able by the listeners. Abetter pitch tracker would have greatly improved the

quality of the synthetic speech.

5.1.2. THE DURBIN RECURSION MICROPROCESSOR

The only question remaining inthe microprocessor design was the speed

of execution of the Durbin algorithm. The system frame rate is 80Hz which

allows 12.5msec for execution of the algorithm. The execution time was found

to be in the range of lOmsec to 11msec when the 8088 clock frequency was

5MHz. The execution time varies from frame to frame depending upon the

number of calls of the 24 bit by 18bit multiplication routine, which is depen

dent on the data and the number of a< which exceed 18 bits. Since 8088s

which operate with an 8MHz clock are now avaUable. the execution time could

be cut to less than 7msec without changing the system at alL Frame periods

are typically 10-50msec so the simple 8088 system (or equivalent) is adequate

for all applications.

5.1.3. THEAGC

The AGC was constructed as discussed in chapter 4 - bucket-brigade

delay line, full-wave rectifier. SC filter. ADC MDAC. The AGC was found towork

89

very well, giving a constant autocorrelator output over an input range of

32dB. The dynamic range of the AGC was limited by the BBD delay line noise.

The BBD delay line had a dynamic range of only 34dB (16kHz sampling rate).

If the BBD noise had not been a factor, the autocorrelator with the AGC would

have had a useful input range of roughly 60dB (32dB from the AGC plus 31dB

from the autocorrelator). Without the AGC, the autocorrelator's input range

was limited by the autocorrelator's dynamic range to 31dB. But the value of

R(0) varies 62dB as the input varies 31dB due to the squaring of the input sig

nal Therefore small input signals result in very small R(0) values which are

heavily quantized by the following ADC So the autocorrelator's useful input

range for IPC speech analysis without the AGC was actually about lOdB. So

the AGC was a very important addition to the system because it increased the

useful input range for speech signals from lOdB to 32dB.

As was mentioned in the previous chapter, the BBD delay line held 128

samples which is 28 more than one frame. This is unfortunate but acceptable.

A 100 stage BBD could be integrated or the frame length could be changed to

128 samples (frame rate=82.5Hz). This was not done because the AGC was

added to the system after the autocorrelator and microprocessor systems

had been built, so the frame length was already set at 100 samples.

5.2. AUTOCORREIArOR IC RESULTS

The 'MDAC and multiplexed SC filters for the autocorrelator were

integrated on a metal gate CMOS :IC. To allow flexibility in testing, all outputs

and inputs were brought out to pins on the IC package so that the MDAC and

each filter section could be tested individually. The IC was fabricated in the

integrated circuit laboratory at U.C.? Berkeley (see appendix D for process

schedule). The yield was very poor, only a few working chips were available

90

for testing after numerous runs in the fabrication lab.

5.2.1. MDAC

The MDAC was tested, and the data is presented in table 5.2. The integral

non-linearity was larger than expected. This can be attributed to oxide gra

dients (the layout does not employ concentric placement of the capacitor

array), parasitic capacitances, and rough metal edges (metal defined the

capacitors inthe MDAC). This non-linearity could be eliminated bymore care

ful layout [32].

The reset feedthrough, which contributes to the DC output offset voltage

of the MDAC. was also larger than expected. When the reset switch turns off

(see figure a3). its channel charge must go somewhere. The charge can flow
to the op amp output node, to the op amp inverting input node, or to the sub

strate. It was expected that most of the charge would go to the op amp output

node, but this was not the case. In fact, most of the channel charge flowed

onto the inverting node, as can be seen'from the following calculations: The

DC output voltage due tochannel charge is (from equation 4.3)

MDAC Data

parameter measured value

Integral non-linearity 2 l^B
Differential non-linearity 0.9 LSB
Settling time (0.1%) 2jjsec
Reset feedthrough at output 30mv
Output swing +3V.-5V
S/N ratio 6odB
Load capacitance «5pA
Clock frequency 80kHz
Power supply JJ.8V
Power dissipation lomrr

Table 5.2 Data for the 8 bit SCMDAC

91

arfeBLae rC.WLlLVg.-V*) ^r37mV
^^ Cfb Cfb

for the MDAC with NMOS reset switch. The contribution to the DC output vol

tage due to the overlap capacitance is (also from equation 4.3)

W = cfb * 2'3mV-
(the gate overlap was estimated to be L^^lfim. under the microscope). Com

paring these results, we see that the observed feedthrough at the output

(30mV) is mainly due to channel charge from the reset switch being trapped

onto the op amp's inverting node. From the experimental data, we can esti

mate r«0.75. The value of r is dependent on the impedance at the output of

the op amp as well as the clock fall time (the reset clock line was driven by a

74C08 CMOS AND gate). A value of r near zero would be desirable, but any

value of r is acceptable since the feedthrough is the same every cycle and

therefore only contributes to the DC output voltage.

Figure 5.5 shows oscilloscope photos of the MDAC output. The top photo

shows the MDAC squaring a triangle wave (upper trace), thereby producing a

parabola wave output (lower trace). The lower photo shows the MDAC output

(lower trace) settling to its final value during clock phase $2 (upper trace).

5.2.2. MULTIPLEXED SC FILTERS

The alters were tested individually. All three filter sections are different -

section one implements ten poles and ten zeros, section two implements ten

poles, section three also implements ten poles but with different capacitor

ratios due to downsampling.

The clocks which were used for testing the filters are shown in figure 5.6.

In figure 3.6, the switch phasing is shown as $A and $#. This labeling is used

rather than $j or <$2 or $a because the best switch phasing was not known

5 V/div

I V/div _

I l I I I I I I I I

TIME(2mS/DlV)

OV/div

0.1 V/div

92

mdoc

input

mdoc
output

A

mdoc

output

I i i I I I I I I I

TIME(US /DIV)
Figure 5.& top: MDAC squaring a triangle wave

bottom: MDAC output settling

93

before the circuit was fabricated although the phasing ^=*3 and *s=*2 was

suggested in chapter 4. Note that $t (reset) and $2 are non-overlapping

clocks, and $a goes low before $2 goes low. The clock amplitudes are ±7.5V

(+7.5Vis a logic HI level and turns on anNMOS switch).

To find the best clocking scheme, the filters were tested with the follow

ing clocking schemes: 1) $A=$9 and *B=H 2) *4=#/ and $*=$2. and 3)

$ii=*2 and $B~HI. The results using clocking schemes (1), (2), and (3) were

practically identical except for the DC output voltages. Also, with clocking

scheme (3) the first two filter sections did not work properly, probably due to
the excessive capacitive loading on the op amp output from all ten feedback

capacitors' backplate diodes. But section three did work with clocking

scheme (3). The measured data is listed in table 5.3. Distortion and crosstalk

figures were measured with a 10Hz sine wave input signal For the crosstalk

$
1

(reiet)

*,

$,

-> <-

channel 0 channel 1

figure 5.a Clocks for testing the multiplexed filters

94

measurement, the channel being tested had its input grounded and all other

channels were fed a IV peak sine wave.

For all cases (except switching scheme (3) for filter sections 1 and 2). the

filter characteristics were very accurate, see figure 5.7. The frequency

response of the different channels matched well (better than 0.2dB) due to

the use of repeated unit capacitors in the layout

For a given clocking scheme, the DC output voltage for filter section 3 is

smaller than for sections 1 and 2 because Cr=0.22pF in sections 1 and 2 and

Cr=0.Q6pF for section 3 (equation 4.4). As with the MDAC. the DC offset vol

tage of the filters was mainly due to the transistor's channel charge. For all

filter sections, the DC offset voltage for clocking scheme (3) is smaller than

that of scheme (l) or (2). With schemes (l) and (2), the channel charge for

the input side switches is provided by the output of the op amp. The charge

flows through the reset switch during the reset period. Then, when reset goes

Measured filter Characteristics (metal gate process)
parameter filter sections 1 & 2

(zeros off)
filter section 3

-3d© frequency 50Hz 50Hz
Output swing for /fZ7a=l% ±1V ±4V
S/N ratio 68dB 70dB
Adjacent channel crosstalk -44dB -48dB
Clock frequency (10 channels) 80kHz 8kHz
Sampling rate for each channel 8kHz 800Hz
Average DC output voltage of
all channels (input grounded)
^i=$» $a=$a aav 0.7V

*A=HI> *a=*2 a3V 0.4V

**=*& *3=HI 0.4V -0.1BV
Range of DC output offset
voltages, all channels
$4=$3. &J=$8 440mV 40mV

j«AT.'•»*, 200mV 18mV
$,=$* *,=#/ 50mV 20mV

Table 5.3L Multiplexed Filter Characteristics, Metal Gate Process

I

— .' 1 - |BMW

' ' ' ' i i ' ' •

0 4k

FREQUENCY (500HZ/DIV)

+-*-*-

95

— —<——-j i ^_i • . .
«•• »»• I2e« I6M 200« 2469 2909 3280 3680 4000

y>V0&&/';£y /Airy

"

figure 5.7. top: Frequency response of multiplexed filter section 1. channel 0
bottom: Computer simulation of the above filter

96

low, the reset switch's channel charge is trapped on the op amp input node

and contributes to the DC output voltage. With scheme (3). the reset switch's

channel charge which is trapped on the op amp inverting node when reset

goes low is used to form the channel for the input side switch when it turns

on. thereby giving a first order cancellation of the channel charge and a lower

DC output voltage.

The harmonic distortion is a function of the output signal level and DC

output voltage of the filter. The harmonic distortion is caused by channel

charge redistribution which is signal dependent.

An unexpectedly large adjacent channel crosstalk was measured.

Crosstalk should be negligibly small because the reset period between chan

nels eliminates the main crosstalk path which is through £^. The crosstalk is

either due to poor isolation between nearby N+ diffusions, charge pumping

through the substrate to the nearby switch transistors, dielectric absorption

in Q, or signal coupling onto Cjb through the overlap capacitances of the off

switches.

5.2.3. OPERATIONAL AMPLIFIER

The op amp was tested alone to compare its performance with the design

goals. It met or exceeded all requirements of the system. Data for the metal

gate op amp is given in the second column of table 5.4.

5.2.4. THE IC AS AN AUTOCORRELATOR

Figure 5.8 shows the IC operating as an autocorrelator. The upper trace

is the output of the MDAC. The ten products can be clearly seen. The lower

trace is the output of the filters. The output is a constant autocorrelation

waveform. R(0) is at the left. R(9) is at the right. In both traces, the reset

Measured Op Amp Characteristics
parameter Metal Gate Poly Gate

Gain 8,000 V/V 1.000 V/V
Maximum output swing ±5.5V ♦1V.-3K
Noise lOOnV/Vrlz 580nV/VKz
Noise 1/f corner frequency 700Hz 1kHz

Power Supply ±7.5V ±8V

Ibus 150/xA 300/xA
Power Dissipation lOmW 18rnW
Number of transistors 14 14
Size 450 mil2 480 mil2

Table 5.4. Op Amp Data. Metal Gate and Poly Gate Processes

97

2 V/div mdac

output

I V/div

' I I I I I I I

TlME(l2.5uS/DlV)

filter
outputs

figure 5.3. SC autocorrelator output with sine wave input

period can be seen between channels. The input signal is a 1kHz sine wave, so

the output autocorrelation function is samples of a sine wave.

Unfortunately, the IC autocorrelator did not provide enough accuracy for

analyzing speech due to the 'excessive crosstalk in the filters and the MDAC

non-linearity. Also, due to low yield, no chip was found which had a filter sec-

98

tion 1 with all 10 zeros functioning. Speech was passed through the IC auto

correlator, but the autocorrelation values usually yielded an unstable LPC

model. Nonetheless, the autocorrelation function was fairly accurate, and the

IC could have been used for voiced/unvoiced decision making or other low

accuracy applications.

5.3. A SECOND TEST CHIP

Since excessive crosstalk and offset voltages were measured and since

the zeros were not all functional, a second IC consisting of two multiplexed

filter sections was constructed. (The two multiplexed filter sections will be

refered to as A and 8 to avoid confusing them with filter sections 1, 2, and 3 of

the autocorrelator IC.) Each section has four multiplexed feedback capacitors

and zero capacitors. Section A's capacitor ratios were chosen to give a 50Hz

cutoff frequency at an 8kHz sampling rate (similar to the first and second

filter sections of the autocorrelator IC). Section B's capacitor ratios were

chosen to give the 50HZ cutoff at an 800 Hz sampling rate (similar to the third

filter section of the autocorrelator). As in the autocorrelator, section A uses a

minimum unit capacitor for £^., section B uses 3 unit capacitors for Q. In

this IC, all switch .gates are brought out to pins to allow maximum flexibility

during testing.

The layout of the second IC is shown in figure 5.9. The chip was fabri

cated on a digital CMOS process with N type substrate, polysilicon gate, with

poiyrpoly capacitors. The op amp is practically identical to the op amp

described in chapter 4 with all devices replaced by their complement. This

was done to assure that current sources were implemented by NMOSFETs

because they are in a well and have a higher output impedance than the

PMOSFETs. For the filters, PMOSFETs were used as switches since they do not

99

figure 5.9. Layout of the poly gate multiplexed filters

100

require a well.

5.3.1. RESULTS

The poly gate ICs were extensively tested. The yield was excellent for

these chips (9 out of 10 worked). This reflects the clean, reliable processing

done in industry. Again, to check the effects of various switching schemes,

the multiplexed filters were tested with all possible clocking schemes. The

clocks used are an inverted version of those shown in figure 5.6 because the

switches are PMOS. (Alogic HI level is taken to be the voltage required to turn

on a switch, so HI is -8V for this IC.) The measured data for the poly gate

filters is tabulated in table 5.5. The most striking differences between the

poly gate filters and the metal gate filters are the lower output offset voltages

and lower crosstalk measured for the poly gate filters. The lower offsets are a

Measured Filter Characteristics (poly gate process)
filter section A filter section B

(zeros off)
parameter

~3dB frequency
Output swing for RD$*\%
Dynamic range
Adjacent channel crosstalk
Clock frequency (4 channels)
Sampling rate for each channel
Average DC output voltage of
all channels (input grounded)

Range of DC output offset
voltages, all channels

ftjajy/.wjstfc

50Hz 50Hz
0.7V IV
62dB 66dB
-78dB -80dB

32kHz 3.2kHz
8kHz 800Hz

-750mV -130mV
-50mV -45mV
180mV 40mV
200mV 55mV

500mV 50mV
60mV 20mV
340mV 120mV
400mV llOmV

Table 5.5 Data for the multiplexed filters, poly gate process

101

direct consequence of the smaller gate area and overlap capacitances of the

self-aligned poly gate transistor. The lower adjacent channel crosstalk is as

expected, and the cause of the crosstalk in the metal gate filters is not clear.

Possibly the crosstalk comes from coupling onto C/t through the off transis

tors' overlap capacitances which is much larger in a metal gate process.

The harmonic distortion rapidly decreases as the output swing decreses.

Typically, J202=l% for an output swing of IV, H02=O.1% for an output swing of

0.25V, and HD2 is buried in the noise for any output swing less than 0.1V. The

harmonic distortion only varied a few dB as the different clocking schemes

were tried. There was a larger variation in distortion from one chip to another

for a given clocking scheme than there was for different clocking schemes on

a given chip.

The frequency response for filter section A without the zeros is shown in

figure 5.10. In figure 5.11, the frequency response of section A with a zero is

shown. Note the difference in the frequency response when the switch phas

ing for Q is reversed. These responses agree with the transfer functions

derived in chapter 3 (equations 3.2 and 3.3).

5.3.2. OP AMP

The op amp characteristics were measured and are included in the last

column of table 5.4. The output swing of the op amp was limited to +1.25V,

-3V due to the large body effect of the process.

>

Q

CD
"0
O

iLl

Q

Z>

<

>

Q

CD

UJ

Q

Z>

<

I I I I I I

4k

FREQUENCY (500HZ/DIV)

i_l I I I J I'''
0 60

FREQUENCY (20HZ/DIV)
Figure 5.10. top: Frequency response of section A, channel 0

bottom: Frequency response of passband of section A,
channel 0

102

>

Q

CD
"0

o

UJ

Q

Z>
I—

<

>

Q

CD

"0

O

UJ

Q

Z>

<

0 4k

FREQUENCY (500HZ/DIV)

w/zero

w/ozero

upper trace
w/zero

lower trace

w/o zero

FREQUENCY (500HZ/DIV)
Figure 5.11. top: Frequency response of section A with zero, non-

inverting phasing of Q(equation (3.2)} q =Qj
bottom: Frequency response of section A with zero, in
verting phasing of Q(equation (3.3), C, =Ct)

103

CHAPTER 6

SUMMARY AND CONCLUSIONS

An autocorrelation LPC analysis system was built with commercially
available parts. The system consisted of an anti-aUas/pre-emphasis filter,

automatic gain control, SC autocorrelator. and microprocessor. The system

did analyze speech in real time with sufficient accuracy to generate useful
LPC model parameters.

The switched-capacitor components ofthe autocorrelator (i.e. MDAC and
multiplexed filters) were integrated on ametal gate CMOS IC. While the MDAC

and filters were fully functional, problems such as MDAC non-linearity and

crosstalk in the filters limited the accuracy of the autocorrelator to less than

required for LPC analysis. The MDAC non-linearity can easily be reduced bya

more careful layout of the capacitor array. The crosstalk in the metal gate

filters is believed to have been caused either by the large overlap capaci

tances of the metal gate transistors coupling signal onto the feedback capaci

tors or by signal retained on capacitor C; after the reset period (dielectric

absorption). A second IC consisting of two multiplexed filter sections was

fabricated ona polysiUcon gate CMOS process. Both the crosstalk andDC out

put offset voltage of the multiplexed filters were greatly reduced on this poly
gate IC.

The results gathered from the fabricated ICs verify that multiplexed SC
filters can be integrated with performance which matches or exceeds that of

the breadboarded filters. By combining these filters with an accurate 8 bit SC

MDAC, an autocorrelator with sufficient accuracy for speech analysis can be

104

105

integrated. (SC MDACs of 10 bit accuracy have been successfully integrated

[32], so an 8 bit SC MDAC can beintegrated.)

The complete autocorrelator in integrated form would include an 8 bit

ADC. 8 bit MDAC. digital delay line (RAM). SC multiplexed filters, and control

logic. With a modern polysiUcon gate CMOS process with 3pmline widths, it is

estimated that the entire autocorrelator would fit on a 10,000 mil8 chip.

6.1.1. IMPROVEMENTS ANDMODIFICATIONS

The system could be modified to give improved performance. The occas

sional unstable frames which are caused by course quantization of the auto

correlation values could be eliminated if the ADC which quantizes the auto

correlation values has an adjustable reference voltage which is set to R(0) or

a voltage slighty greater than R(0) each frame. (This is possible because

|/?(fc)l^/?(0) for all k.) This would make more effective use of the ADC's bits.

But the DC offsets of the filters would have to be canceled prior to the ADC or

the microprocessor would have to know the reference voltage each frame so

it could properly subtract the offsetvoltages.

The op amp associated with the MDAC could be completely eliminated by

making Q of filter section 2 or 3abinary weighted capacitor array and using

the digital word s(n-*) to select the capacitors and to determine the switch

phasing.

If an LPC model with more poles is desired, the system is easily expanded

to produce more autocorrelation values. The number of autocorrelation

values which could be generated by the MDAC and multiplexed filters is lim

ited by the settling time of the op amp.

106

The major drawback of the system is the need for multiple ADCs - one in

the AGC, one to digitize the speech in the autocorrelator, and one to digitize

the autocorrelation values for the microprocessor. Time sharing of these

ADCs is possible since the autocorrelation values and AGC gain value are sam

pled at the frame rate which is much less than the sampling rate.

The AGC was very effective and could be more soif a quieter analog delay

line were available. Other modifications to the AGC were considered and

analyzed in [18].

It is possible that a simpler window could be used in the LPC autocorrela

tor. This would reduce the area required for the multiplexed filters. For

instance, the zeros in the transfer functions have little effect and possibly

could be eliminated altogether. This is worth investigating.

6.1.2. IC LAYOUT AND HODUjUR DESIGN

The layout of the metal gate IC was a long, slow process. From start to

finish, the layout took about six months. Learning how to use the layout pro

gram, poor graphics (a small black and white screen), and painful plotting

(two tape transfers between three computers) contributed to the slow layout.

Also, a great deal of time was spent experimenting with the layout to achieve

the rninimurn total area. And. as problems came to light, circuit simulations

were performed.

In contrast, the time required to lay out the poly gate IC was only three

days! The layout was greatly simplified because building blocks (op amp.

switches, and capacitors) had already oeen layed out by other students and

were available. A new layout program with color graphics had been developed

[33]. and a plotter was available on the computer which was being used for

layout. The total areaof the chip was determined by the need for 40 bonding

107

pads, so there was no reason to worry about saving area during layout. The

great reduction in layout time reflects an improvement in layout tools and

the usefulness of pre-designed circuit building blocks.

6.1.3. ANALOG VS. DIGITAL PROCES3NG

In most applications, the words "signal processing" are proceeded by the

word "digital". Analog signal processing is dominant in high frequency applica

tions where digital circuits are not fast enough to perform the required com

putations. But with switched-capacitor technology, all the basic building

blocks necessary for analog signal processing are available (appendix B).

Digital processing has an advantage in that layout is not as critical for

digital ICs as it is for analog ICs where parasitica must be taken into con

sideration. Many digital building blocks (or cells) have been developed, and

they make for a quick and easy IC layout. But in digital processing, quantiza

tion, area, and power dissipation can be a problem.

Analog signal processing should be considered whenever signal process

ing tasks are to be performed. There are times when analog signal processing

will result in a smaller, lower power integrated circuit and is worth the time

and effort to design.

APPENDIX A

FINDING THE FILTER TRANSFER FUNCTION

A derivation of the filter transfer functions H'k(z) (equation 2.11) is

included here for completeness. We begin by recalling the time window sug

gested by Barnwell [5]

w{n) = (l-fOoT* n^O. 0<a<l

and

h(n) = w(-n) = (n+l)an n^O, 0<a<l.

which has the z-transform

N(z)=(l-oUr |2|>a- (K1)
The z-transform of the sequence /i'fc(n)=/i(n)/i(7H-fc) is desired. The z-

transform of h(n +fc) is

K(n+k)+zkH(z) = ** |z|>a.
^l—OZ 7

H'k(z) is found by integrating, equation (2.8),

#'*(*) =Hk(z)*z*Hk(z) =̂ pfvkH(v)H(^V'dv =̂ fH{v)H{^v^du
where the integration is along any closed path in the region of convergence of

both H(v) and#(%

Substitution of (Al) into (2.8) gives

kK i ZttjJ (1-av-1)2 (i_a2i)2 2^7J (*-a)2 (i-a^z
2 z

We already know that H(v) converges for all |v |>a. So H(—) will converge if
v

>a, or equivalently, |v |<•"—U The common region of convergence is

108

109

a<| v |<-!—*-. Any closed path in the common region will encircle the pole of
a

order two at v =a; the poles at v = — are outside any such path. Note that

since we are interested in values of fc^O, vfc+1 is analytic everywhere and does

not contribute a pole. The integral can therefore be evaluated using the resi

due theorem which states that an integral around a closed contour equals 2nj

times the sum of the residues of the integrand evaluated at all poles encir

cled by the path of integration [34].

Since H(v) has a pole of order two at v=a, evaluation of the residue of

the integrand is found by differentiating

d[(v-a)zH(v)H&vk+l]
residue =

dv

This residue equals H'k{z) since the Znj which multiplies the integral in (2.8)

cancels the 2nj of the residue theorem.

It is worth noting that if 7i(n)=ii;(—ra) is chosen to be the impulse

response of a one pole filter, the resulting output filters H'k(z) are also one

pole filters. That is, if /i(n)=io(-Ti)=an for n&0 so that

1-az *

then

_ (k+l)ak+(l-k)ak+2z-1
(l-a8z-1)3

1-az-1'

The question might arise, "If a one pole window corresponds to a one pole

output filter, and if a two pole window corresponds to a three pole output

filter, then what type of window corresponds to a two pole output filter?" If we

take for H'q(z) the two pole filter

110

#'o(z) - 7; ZT^P
(1-az lr

which has the corresponding impulse response

A'0(n) = (n+l)an,

and recall that the output filter for A:=0 has impulse response

h'0(n)=h.z(n)=w2(^n)t then the window can be found from

fi(n) = y/h'Q{ji) = Vn+Ia8.

Such a window has no discontinuities and more heavily weights the present

frame than the past frames as desired, but computation of H'k(z) for k*0 is

impossible because h(n) is irrational in n and therefore does not have a

closed form H(z) representation to use in equation (2.8). H'k(z) is the z-

transform of /i'fc(n)=/i(n)/i(n+A:) which can be written

h'k(n) =h(n)h(n+k) =y/(n+i)(n+k+i)an*2~*.
The inability to find H'k{z) as a rational polynomialwhich can be realized as a

recursive sampled-data filter eliminates this window from consideration.

APPENDIX B

CATALOG OF ANALOG COMPUTATIONAL CIRCUITS

The autocorrelator employs the basic computational building blocks for

signal processing - delay, multiplication, and filtering. There are many ways

to implement each of these blocks, and some alternatives are mentioned

briefly below. For a more detailed discussion of each circuit, please see the

references cited.

1.1.1. DELAY LINES

Digital delay lines are basically RAM and all are functionally the same. A

number of different RAM cells are available for constructing a digital delay

line [35]. Analog delay lines are of two types - cascaded sample-and-hold

circuits or multiplexed sample-and-hold circuits.

The simplest MOS sample-and-hold circuits suffer from offset and signal

dependent errors (i.e. distortion) due to overlap capacitance and channel

charge redistribution. An interesting, feedback-corrected sample-and-hold

was presented recently [38]. Dynamic range of 80dB was reported for this

sample-and-hold which was constructed with a polysiUcon gate process.

A multiplexing sample-and-hold (S/H) scheme, employing one op amp

and p capacitors, was used in an LPC lattice analyzer [14]. The delayed sig

nals are stored on different capacitors, and when a particular delayed signal

is desired, the corresponding capacitor is connected into the circuit. The

accuracy of this multiplexed S/H was limited by the fixed-pattern noise asso

ciated with the switching. A dynamic range of only 45dB was reported, but the

111

112

circuit was constructed with a metal gate process; so direct comparison with

the 80dB figure above is not possible.

1.1.2. ANALOG MULTIPLIER

A four-quadrant analog MOS multiplier has been fabricated by Soo [37].

This multiplier provided 77dB of signal-to-noise ratio, 1.5MHz bandwidth, and

0.3% non-linearity while occupying 450mil2 of chip area. Such a circuit, if

combined with a high quality analog SC delay line, would work very well in an

autocorrelator.

A four-quadrant analog multiplier/divider in bipolar technology was

reported by Gilbert [38]. The non-linearity was an excellent 0.01% with a ±10

volt input signal swing. This circuit might be used with SC delay line and

filters in a bipolar compatible CMOS process. The delay lines (cascaded S/H

circuits) and filters for the autocorrelator in a purely bipolar technology

would be prohibitively large.

1.1.3. MDACs

An MDAC is just a DAC with its analog reference input connected to an

analog voltage equal to the multiplicand. No attempt will be made to discuss

all the possible resistive DACs, capacitive DACs, and combinations thereof

which might function as an MDAC; see references [39] and [30] for such a

discussion. The MDAC chosen for the autocorrelator is a capacitive DAC com

patible with a standard CMOS process.

1.1.4. FILTERS

Various implementations of a real pole and real zero are available. The

low frequency cutoff of 25Hz eliminates RC filters from considerations due to

the large area required. Some clever implementations of continuous time

113

filters with low cutoff frequencies using FETs have been reported [40],[41].

SC filters allow low cutoff frequencies and have become very popular for audio

range filtering [39]. Implementation of a negative real zero (in the z-

domain, not the s-domain) poses a problem in some SC configurations.

1.1.5. ABSOLUTE VALUE CIRCUITS

An MOS absolute value circuit can be constructed using a diode-

connected enhancement mode transistor to restrict current flow to one

direction only, figure 4.13. Accurately matched resistors are required in such

a circuit. Alternatively, a sampled-data SC absolute value circuit can be used

to compute the absolute value of the input. This requires a comparator to

determine the sign of the present sample and an amplifier with a programm

able gain of ±1. In a SC amplifier, the sign of the gain is easily inverted by

changing the switch phasing of the input sampling switch.

1.1.6. LONG DELAY LINES

Long delay lines, with lengths on the order of a hundred samples, are not

feasibly realized as a cascade of sample-and-hold circuits because the

number of op amps becomes large, and the area required for them becomes

prohibitive. The multiplexed S/H mentioned above might work for large

delays. But the natural choice for a long analog delay line is the charge-

coupled device or the bucket-brigade device. They are compatible with MOS

circuitry. A digital approach would employ a large RAM.

APPENDIX C

SPEECH PROGRAMS AND SENTENCES

Computer simulation results presented in chapter 4 were performed by

passing digitized speech through custom written programs. The speech was

sampled at 8kHz and digitized by a 12 bit ADC. All programs were written in

the Cprogramming language. When required, synthesized speech was played

back by a 12 bit DAC operating at an 8kHz rate. The sentences used for the

simulations are listed in table C.1 . followed by the source code for the pro
grams.

2.1. GENERATEAUTO.C

The program Generateauto.c simulates the autocorrelation system and

allows optional inclusion of the various system modifications - downsampling,

AGC. multiplier quantization (MDAC), pre-emphasis, and quantization of the

autocorrelation values. It takes speech as input and generates the autocorre

lation values for each frame. The source for Generateauto.c is listed on the

following pages.

114

file Name

Adam.t

Baker, t
Charlie, t
David, t

Dr.Bob. t

Heilo.t

Susan, t

Suzie.t

Thieves.t

We.t
Why.t
ah.t

ahsh.t

audiocritic.t

clock, t

cursor, t

demo.t

ee.t

eh.t

handel.t

is.t

mike.t

oak.asa.t
oak. e lien, t

poweramp.t

roomjQoise.t
sh.t

shah.t

ss.t

trends, t

xyz.t

115

Digitized Speech Used for Simulations

Sentence or Phrase Spoken

Adam.
Baker.
Charlie.
David.
Doctor Bob is on
vacation again.
Hello, how are you?
Susan kicked the goat
on Sunday.
Suzie sat on the
sandwich.

Thieves who rob friends
deserve jail.
We were away a year ago.
Why do I owe you a letter?
/ah/
/ah/./sh/
We publish part one of the
transcript of our all day seminar
on the state of the art.
Clock.siope,field.
Move the cursor to the
clock slope field
This is a demonstration of
synthetic speech.
/ee/
/eh/
Behold, I tell you
a mystery.
Is waiting to see you.
The two powering modules
available are fitted with a battery
and a balancing transformer.
The oak trees are strong.
The oak trees are strong.
The two most interesting power
amplifiers for the audio purist.
(background room noise)
/sh/
/sh/./ah/
/ss/
Trends and perspectives in
signal processing.
XYZ.

Speaker

George White
George White
George White
George White

Paul Hurst

Paul Hurst

Paul Hurst

Paul Hurst

Peter Chu

Bob Brodersen
Peter Chu
synthetic sound
synthetic sounds

Bob Brodersen

John Fattaruso (RSB)

John Fattaruso

Bob Brodersen

synthetic sound
synthetic sound

John Fattaruso

Steve Love

Steve Love

Asa Romberger
Ellen Szeto

Barry Hyman

small fan running
synthetic sound
synthetic sounds
synthetic sound

Steve Love

Paul Hurst

Table C.l. Speech used in the simulations of chapter 4

116

GENERATEAUTO.C

#define SOURCE ,,/brodersen/hurst/binM
#ifdef M
#undef SOURCE
#define SOURCE "/mb/audio/hurst/bin"
#endif
^include <stdio.h>
^include <sys/types.h>
^include <sys/stat.h>

/* This program generates the first 10 autocorrelation values
* for the input file. The autocorrelation values are stored in
* files. 'output l.xx' contains the autocorrelatin values determined
* using Barnwell's 10 filters exactly. *output2.xx* contains the
* autocorrelation values determined using a lower sampling rate
* on the last section of each filter.

* to compile: cc -0 Generateauto,c -Im -INS

* This is the VAX version.

v

^define AD_BITS 11/* number of bits in A/D converter (excluding sign bit) */
#define ADJull_scale 2047
^define POINTS 400 /* sets maximum frame size (in samples) */
#define ALPHA 0.98
#define pi 3.1415927
#define N0JUJT0C 10
#define MAX_FRAMES 500 /* limits maximum number of frames to 500 */
#define sign(x) (((x) >= 0) ? 1: -1) /* nice line of code, huh? */

/* see *C manual', pg. 47 */

/• all external variables are initialized to 0 */

int frame_rate =80;
int samp_freq =8000;
int contsampflag =0;
int dwnsampflag =0;
int gainflag =0;
int preempflag =1;
int agcfiag =0;
int clipfiag =1;
int quant_flag =0;
int q_bits =0; /* This value is never used. If quant_flag==l,q_bits is

* read from command line.

V
int rjull_scale=2047;
int rfsjbits =11; /* rfs_bits is ,r_fuil_jcale_bits\ # bits which correspond

* to r full_scale.
•/

float R[MAXJTCAMES][N0JWT0C];

117

struct stat stbuf;
FILE *fopen().*fensealed,*fp_sec 1,*fp_sec2,*fp_sec3,*fp_guant;

main (argc.argv)
int argc;
char *argv[];

\ int i,l,rate,row,frames,atoi(),framelength,agc[MAX_FRAMES],power();
long files ize;
float cos().pow(),low_pass(),mult();
float max_R0,s[P0INTS],prod[P0INTS];
char *ternp_file,*mktemp();
FILE *fopen().*fp_input;

max_R0=0.0;

if (argc == 1) instructions();

i=2;
while(++i <= argc)
I if (argv[i-l][0] !='-•)

ex ("bad parameter");
else switch(argv[i-l][l])
{ case 'c': contsampflag=l;

break;
case 'd': dwnsampflag=l;

rate=atoi(argv[i++]);
if(rate == 0) ex("-d ?");
break;

case V: frame_rate=atoi(argv[i++]);
break;

case *g*: gainflag=l;
break;

case 'b': rfs_bits=atoi(argv[i++]);
r_full_scale=power(2,rfs_bits) - 1;
gainflag=l;
printf("gainflag is now on (i.e. -g flag assumed)\n");
if((rfs_bits > 15) || (rfsj>its < 5))

ex("bad number of bits");
break;

case 'a': agcfiag=l;
break;

case 'k': clipflag=0;
break;

case *q'; quant_flag=l;
q_bits=atoi(argv[i++]);
break;

case *p': preempflag=0;
break;

case 's': samp^req=atoi(argv[i++]);
break;

default: ex("bad parameter");

i

118

I

if((agcflag==1)&&(gainflag==l))
printf("Warning:Usingboththe-gand-aoptions\n\twiiigive
unpredictablesyntheticspeechduetoincorrectagegain.\n");

if((contsampfiag==0)&&(dwnsampflag==0))
jprintf("Shouldhavespecified-cor-dflag:'-c'assumedVi");

contsampflag=1;

if((contsampflag==l)&&(dwnsampflag==l))
ex("can'tuseboth-cand-dflags");

if((quantjlag==1)&&(q_bits<0))
ex("can'thaveq_bits<0.Tryagain.");

if(agcflag==1)
if((fp_scaled=fopen("scaled,,,"w"))==NULL)

ex("cannotcreatefile'scaled'");

if(quant_flag==1)
if((fp_auant=fopen("quantized,VV'))==NULL)

ex("cannotcreatefile'quantized'");

if((fp_secl=fopen("out_sectionl","w"))==NULL)
ex("cannotcreatefile'out^sectionl'");

if((fp_sec2=fopen(,,out_section2","w"))==NULL)
ex("cannotcreatefile'out_section2'");

if((fp_sec3=fopen("out-section3","w"))==NULL)
ex("cannotcreatefile'out_section3'");

/*temp_file=mktemp("PrEeMpXXXXX");•/

if(preempflag==1)
{printff'PRE-EMPHASIZINGINPUTNn");

/*sys^all("%s/preemp%s>%s",SOURCE,argv[l],temp_file);*/

/*elsesys_call("cp%s%s",argv[l],temp_file);*/

if((fpjnput=fopen(argv[l]."r"))==NULL)
ex("can'topeninputfile\n");

stat(argv[l],&stbuf);/*computelengthoffilefpjnput*/
filesize=stbuf.stjsize/2;
printf("filesizeis%ldwords\n",filesize);

framelength=sampjfreq/frame_rate;
printf("framelength=%dsamplesframerate=%dHz\n",
framelength,frame_j,ate);
frames=filesize/framelength;
printf("thereare%dframes\n",frames);
if(frames>MAX.FRAMES)
{printf("Programcanhandleonly%dframes.Sorry.",MAX_FRAMES);

exit();

I

119

1

/* s[i] will hold the speech samples */
for (i=0;i<POINTS;i++)

s[i] = 0.0;
for(i=0;i<POINTS;i++)

prod[i] = 0.0;

for (row=0;row<frames;row++)

printf("\nframe %4d M,row+l);
for (i=0;i<N0 AUT0C;i++)

s[i] = s[i+framelength];
for(i=NO_AUTOC;i<frameiength+NO^AUTOC;i++)

s[i] = getsh(fp_input);

if (preempflag == 1) preemp(s.frameiength);
if (agcflag==l) do_agc(s,agc,frameiength,row);

for (1=0;1<N0_AUT0C;1++)
\

for(i=0;i<framelength+ l;i++)
prod[i]=mult(s[i+NO_AUTOC-l],s[i-l+NOJ^UTOC-l],
q_bits,l)/AD_Jull_scale;

if (contsampflag ==1)
R[row][lj=low_pass(prod,l.l.framelength);

if (dwnsampflag ==1)
R[row][lj=low_pass(prod,l,rate,framelength);

i

for (i=0;i<frames;i++)
if (R[i][0] > max_R0) max.R0=R[i][0];

if (contsampflag ==1)
norm_store(max_RO,frames, l.agc);

if (dwnsampflag == 1)
norm_store(max_R0, frames, 2,age);

fclose ^fp_input);
fclose{fp_secl);
fclose(fp_sec2);
fclose(fp_sec3);
/* sys_call(,,/bin/rm %s",tempj]le); */
iffageflag == 1) fciose(fp_scaled);
if(quantjflag == 1) fclose(fp_quant);
printf("\n");

/* iow_pass() is the bank of low pass filters required in the autocorrelation
* computation. Each autocorrelation coefficient has a different filter.

120

V

#define fc 51.453 /*51.453 is the -3db point for filter #3 when fs=8kHz*/
#define pi 0.9604
^define p20.9604
#deflne gainl 2.5 /*want filter section 1 to have dc gain = 2.5 */
#define gain2 1.38 /*gain of filter section 1 (due to bO &bl) is 1.9604*/
#define gain3 1.3 /*so gainl*1.9604 = 1.27*1.9604=2.5 */

#deflne GAIN0 1.9604 /This is the dc gain for filter section 0 for R[0] */

float iow_pass(prod,l,rate,framelength)
int 1,rate.framelength;
float prod[P0INTS];
{ float input2,input3;

float pow(),cos(),sqrt(),x,b0,bl.p3,gl,g2,g3,zl,d0;
int i, section;

/* hopefully, all static variables are initialized to zero (seems to be true) */
static float outputl[2][N0J^UT0C],output2[2][N0JlUT0Cj,output3[2][N0^AUT0C];

if (rate == 1) section = 0;
else section = 1;

b0=(l+l)*pow(ALPHA,l+0.0);
bl=(l-l)*pow(ALPHAl+2.0);
zl=bl/b0;
d0=b0/GAIN0; /* what the heck is dO ? */

x=cos(2.0*pi*fc/(8000/rate)); /* compute p3 (it depends on the */
p3=(2-x) - sqrt((2-x)*(2-x)-l); /* down sampling of last section.

* 8000 is sampling rate which is
* assumed in window parameters
V

gl=gainl*(l-pl)/GAIN0;
g2=gain2*(l-p2);
g3=gain3*(l-p3);

for(i= l;i<framelength+ l;i++)
\ input2=outputl[sectioniri1;

input3=output2rsection][lJ;
outputl[section][l]=p1*outputl[section][l]+
(b0*prod[i]-bl*proofi-l])*gl;
if (i sss 0) putsh((short)outputl[section][ll,fp_secl);
output2[section]f1]=p2*output2TsectionjTlJ+input2*g2;
if (l == 0) putsh((short)output2fsectionj[lJ,fp_sec2);
if(i==(i/rate)*rate)
{ output3[section][l]=p3*output3rsectioniril+input3*g3;

if (l == o) putsh((short)output3[sectionj[ij,fp_sec3);

, •
return(output3[section][l]);

i

/* norm_store() scales autocorrelation results (if asked) and stores
* the results in a file.

•/

norm_store(max,rows,outflag,age)
float max;
int rows,outflag,agc[MAX_FRAMES"l;
\ int ifj,norm,scale,quantizeOtround_pff();

float fscale.sqrtQ;
char *filename;
FILE *fopen(),*fp_putput;

if (outflag == 1)
i

if (gainflag == l) filename = "output l.g";
else if (ageflag == 1) filename = "output1.age";

else filename = "outputl.ng";
i
else

i

if (gainflag == 1) filename = "output2.g";
else if (ageflag == l) filename = "output2.age";

else filename = "output2.ng";

if ((fp_putput = fopen(filename."w")) == NULL)
ex("can't open output file");

if (max < 0.01) max = 0.1; /* in case max is zero */
for (i=0;i<rows;i++)
{ if (gainflag == 1)

if (R[i][0] < 0.01) fscale = 1;
else fscale = max / R[i][0];

for(j=0;j<N0_AUT0C;j++)
{ if (gainflag == 1)

\ norm = (r_full_scale*(R[i][j]/max)*fscale);
/* assure R[0] = r_full_scale */
if(j ==0) putsh(rjull_scale,fp_putput);
else putsh(norm,fp_output);

else /*if ageflag or no gain options*/
putsh(liniit(R[i][j]ir_full_scale),fp_putput);

if (gainflag == 1)
{ scale=limit(sqrt((rjull_scale/255.0)*fscale),32767);

putsh(8cale,fp_putput);
i

else if (ageflag == 1)

121

putsh(agc[i],fp_putput);

else putsh(l,fp_putput); /* output a 1 for the gain
* if 'no gain' option
V

I

fclose(fp_putput);
return;

!

#define ZERO 0.7

preemp(s, framelength)
float sf];
int framelength;
i

int i;
static int fopenflag = 0;
static float xO, xl, output;
static FILE *fpjprecheck;

/*
if(fopenflag++ == 0)

if((fp_precheck = fopen("PREcheck","w")) == NULL)
ex("cannot create PREcheck");

V

for(i = NOJUJTOC; i < framelength + NOJUJTOC; i++)
f

xO = s[ij;
s[i] = (xO - ZERO*xl)/(l. + ZERO); /* DC gain = 1 */
/* putsh((short)s[i],fp_precheck); */
xl = xO;

i
I

^define R00T2 1.414
^define A 0.99

do_agc(s, age, framelength, row)
float s[P0INTS];
int agc[MAX_FRAMES],framelength,row;
{ int j,limit();

float flunit().fabs(),sqrt(),sigma;
static FILE *fp_agcout;
static float outl,out2; /* outl and out2 are initialized to 0.0

* first time 'do_agc()' is called.
V

if (row == 0)
if ((fp_agcout = fopenCagcout",'V')) == NULL)

ex("cannot open 'age.out' file"):

122

forG=NOJ\OTOC;j<framelength+NO_AUTOC;j++)
[outl = ALPHA*outl + (1.0-ALPHA)*fabs(s|

out2 = ALPHA*out2 + (1.0-ALPHA)*outl;
i

/* The output of this |(.)| and LPF circuit is an estimate of the rms value
* of the latest speech frame. (Actually, we must multiply the result by
* R00T2 to get an estimate of sigma.)
* LPF should have the same impulse response as the window used in
*autocorreiaton computation (impulse response of t.f. w/ two equal poles).
V

sigma = R00T2 * out2;
agcfrow] = limit(4 * siema,AD_full_scale);
if (agc[row] == 0) agcfrow] = 1; /* can't allow 0 as an age value.

* age = 0 screws up synthesizer */
putsh(agc[row],fp_agcout);
printf("agc output is %d",agc[row]);

for(j=N0J^UT0C;j<framelength+N0_AUT0C;j++)
(sQ] = (s[j] * AD_full_scale)/agc[row];

if (clipflag == 1) s[j] = flimit(s[j],(float)AD_fuU_scale);
putsh(limit(s[j],AD_full_scale)lfp_scaled);

i
return;

i

instructions()
(printf("usage: generateauto file j-cj \-d dwnsampj (-r frame_ratej
j-s sampjratej \n\t\tj-gj (-aj $-kj j-q c^bM J-pj f-b bitsj\n\n");

printf^"\t file must contain at least 500 samples ofspeech \n");
printf("\t -c: requests constant sampling rate to be used\n\t\t
(output is in output l)\n");
printf("\t -d dwnsamp: sets down sampling rate for the last filter
section \n");
printf("\t\t(dwnsamp=2 means the sampling rate drops by a factor
of 2)\n"):
printff"\t\t(output is in output2)\n");
printf("\t -r frame_rate: sets the rate at which the autocorrelation
values \n\t\tare to be output (in Hz). Default is 80 Hz\n");
printff"\t -s sampjrate: sets the sampling rate (Default is 8k Hz)\n");
printf("\t -g: causes program to output a scale factor after each
set\n\t\tof autocorrelation values (R[0]=fuli_scale)\n");
printf("\t -a: causes an age circuit to pre-process the signal\n\t\t
Value of gain is output every frame\n");
printf("\t\tagc scaled time waveform is stored in file 'scaled'\n");
printf("\t -k: stops clipping from occuring at output of age ckt.\n");
printf("\t -q qjbits: causes multiplication to be done with multiplier
\n\t\tquantized to q_bits (see comment below; keep qjtits <= ll)\n");
printff"\t -p: disables pre-emphasis \n");
printf("\t -b bits: sets R[0] = 2**bits when used with -g option\n\t
\tProgram accepts 8 <= bits <= 15 \n\t

123

\t(default is bits=ll -> full_scale=2047)\n");
printf("\t Comment: 'bits' is the number bits used to store the\n\t
\t results NOT INCLUDING the sign bit.\n");
printf("\t Therefore, bits=8 allows numbers to range \n\t
\tbetween -255 and +255\n");
exit();

124

/* limit(x,max) takes inputs x (float) and max (int) and returns an integer
* whose value is between -max and +max inclusive. This is a 'clipper' for x.
V

limit(x,max_yalue)
float x;
int max_yalue;
{ int output;

float fabs();

i

if (fabs(x) > max_yalue)
(/*prmtf("\nlimiting\t");*/

return(output = sign(x) * max_yalue);

else return(output = x);

/* flimit(x,max) takes inputs x (float) and max (float) and returns an float
* whose value is between -max and +max inclusive. This is a 'clipper' for x.
V

float flimit(x,max_yalue)
float x,max_yalue;

float fabs();

if (fabs(x) > max_yalue)
{ /*printf("\nlimiting\t");*/

return(sign(x) * max_yalue);
i

else return(x);
)

/* mult(x,y,bits) does floating point multiplication. If asked, the function
* will quantize y and return the product.

v

float mult(x,y,bits,l)
float x,y;
int bits,l;
\ float powQtV auantized;

int quantize()rpower();

125

if(quantjflag == 0) return(x * y);

else

I y_guantized = quantize(y.bits);
/*printf("y=%f\tvquantized=%f\n",y,y_quantized); */
if (1 == 0) putsh((mt)y_quantized,fp_guant);/* output quantized

* speech once only*/
return(x * y_guantized);

. •
/* quantize(y.b) takes y (float); clips it to AD_full_scale; and then
* quantizes its value to b bits (not including sign). Returns an int.
* Quantization simulates an A/D converter (see t.f., pg. 106 of Analog
* Devices 'Analog to Digital Conversion Handbook')
V

quantize(y,b)
int b;
floaty;
(float y_temp,y_norm.flimit();

int limit();

y_temp = flimit(y,(float)AD_full_scale); /* clip y */
b = b + 1;
yjemp = ((((int) (y_temp+(l«(AD_BITS-b)))) » ((AD_BITS+ l)-b))
« (AD_BITS+l)-b); /* quantize to b bits */

return(limit(y^emp,AD_full_scale)); /* clip y_temp */
i

/* round_pff(x) takes x (float) and returns the integer closest to x
V

round^pff(x)
float x;

return((int) (x + sign(x)*0.5));
i

Abs(t)
int t;

return(sign(t) * t);

/* power(a,b) is an integer version of pow(). Returns a to the b power.
* a,b, and result are all integers.
v

power(a,b)
int a,b;
(int result = 1;

126

while (b > 0)
{ result = a * result;

b-;

return(result);

/* ex() prints a message, then exits. */

ex(str)
char *str;
{ printf("%s\n",str);

exit();
!

/* sys_call(string,arg) does the following:
*

* char commandf];
* sprintf(command,string,argl,arg2,..);
* system(command);
*

* Only %s, %c, %d and %h are allowed in the string. %h is replaced
* with the user's home directory path. (i.e. HOME of 'printenv*)
V

#define MAXJJNE 500
^define NULLCHAR 'NO'
^define BLANK' '
#define RETURN '\n'

sys_call(string,arg)
char string[l^X-LINE].*arg;
{ char command[MAX_UNE],*getenv(),**ptr;

int i = 0;

ptr = &arg;
sprintf(command,"%c",BLANK);

whiie(string[i] != NULL_CHAR)
if(string[i] =='%')
{ switch(string[++ij)

\ case's':
sprmtf(conmiand,"%s%sM,commandt*(ptr++));
break;

case *h':

sprintf(command,"%s%s",conunand,
getenv("H0ME")):
break;

case *%':

sprintf(coninian4"%s%c",command,string[i]);
break;

case 'd':

127

sprintf(command,"%s%d'',coniniand,*(ptr++));
break;

default:
sprintf(command,"unknown conversion type
•%%%c"\string[i]);
ex(command);
break;

J
i++;

else sprintf(command,"%s%c",command,string[i++]);

system(command);
return;

2.2. SPEAKPITCHX

To synthesize speech which was analyzed by Generateauto.c, a simple

direct-form LPC analyzer was written. All computations are floating point.

SPEAKPTTCH.c

#define SOURCE "/brodersen/hurst/bin"
#define PITCHJTLE "/brodersen/hurst/source/8msecjpitch"
#ifdefM
#undef SOURCE
#deflne SOURCE "/mb/audio/hurst/bin"
#undef PITCH_FILE
#define PITCHJTLE "/mb/audio/hurst/source/8msec_pitch"
#endif
#include <stdio.h>
^include <sys/types.h>
^include <sys/stat.h>

#define NOJUTTOC 10
#define NOJ'OLES 9
#define LOTS 2000
#define UV 0 /* indicator variable-UV means unvoiced frame */
^defineV 1 /* indicator variable- Vmeans voiced frame */
#define MAX24BITS 8388607 /* max value for a 24 bit integer:(2-23)-l */

int framejrate =80;
int sampjfreq=8000;
int floatflag =1; /* float version of Durbin's Recursion is default */
int pitchflag =0;
int gainflag =0;

128

int ageflag =0;
int unstablefiag=l;
int deempflag =1;
int unstbie_frames=0;
char *pitch_file;
struct stat stbuf;

/* This program is a refinement of Sammy Lum's Speak.c. It runs much faster.
*

* Autocorrelation data and pitch estimates are fed into this program to
* produce synthetic speech. The output speech is stored in a file.
*

* To compile: cc -0 Speakpitchc -lm -INS (VAX program)
V

main(argc,argv)

int argc;
char **argv;

int i.atoi();
char *temp_ffle,*mktemp(),string[200];

pitchJUe = PITCHJTLE;

if (argc ==1) instructions();
if ((argv[l][0] == '-•) || (argv[2][0] == •-•))

ex("bad file name");

i=3;
while (++i <= arse)
{ if (argv[i-l][0] •='-')

ex("bad parameter");
else switch(argv[i-l][l])
(case ,r':frame<_rate = atoi(argv[i++]);

break;
case T:floatflag = 1;

break;
case 'p':pitch_£le = argv[i++];

break;
case 'g':gainflag = 1;

break;
case 'a':ageflag = 1;

break;
case ,s':samp_freq = atoi(argv[i++]);

break;
case 'u':unstabiefiag = 0;

break;
case 'd': deempflag = 0;

break;
default: ex("bad parameter\n");

I

if ((gainflag == l)&&(agcflag == 1))
ex("can't use both -g and -a options");

if (fllter(argv) < 0) ex(" ");

if(deempflag == 1)

printf("DE-EMPHASIZING\n");
sys_call("%s/deemp %s > %s". SOURCE,argv[2],
temp_file=mktemp("SpkjremPXXXXXX"));
printf("SCALING\n");
sys_call("%s/scale %s %s;/bin/rm %s",SOURCE,
temp_file,argv[2].temp_file);

if(deempfiag == 0)

printf("SCALING\n");
sys_call("%s/scale %s %s",S0URCE,argv[2],
tempjaie=mktemp("Spk_TemPXXXXXX"));
sys_call('7bin/mv -f %s %s",temp_file,argv[2]);

129

instructions()
\ printf("usage: speakpitch filel file2 J-p file3j |-r auto_ratej

i-s sampjreqj f-f(\n\t\tj-gj |-aj J-u) j-d)\n\n");
printf("filel should contain the autocorrelation values\n");
printf("file2 will contain the output samples\n");
printf("-p file3 should contain pitch information\n

\tdefault is a constant 8msec pitch period\n");
printf("-r auto_jate is the frequency at which the autocorrelation
\n\tvalues were sampled (in Hz);default is 80Hz\n");
printf '̂-s sampjfreq is the sampling frequency (default is 8kHz)\n"):
printfr'-f flag causes Durbin's Recursion to be done in floating pointXn");
printf("-g causes program to read gain input from autocorrelation file\n")
printf("-a causes program to read age gain from autocorrelation file\n");
printf("-u causes programto terminate Durbin's recursion whenever\n
\t\ta reflection coed exceeds 0NE\nM);
printf^"-d turns off deemphasis \n");
printf(" results are scaled andready to output to the D/A converter
in LSI\n");
exit();

filter(argv)
char *argv[];
\

int fpe();
int count,samples,framelength,atoi(),last_frame;

int i,j,k,l,output,rows,poles,scale,scaleflag = l.agc;
long filesize,rrNO^UTOC],overflow_count,pitch_period,r_full_scale;

float y[NO^UTOC].alNOJ^UTOCJ,newa[NOJ^uTOCl.*x.gam1sqrt().fabs(),magn.out,fsc
float noise[L0TS],nat-excit[256j,simpie_excit[256],Gain,comp_gain();

130

FILE *fopen(), *fp_auto,*fp_putput, *fp_pitch,*fp_excitation;

signal(8,&fpe); /* this is a function which allows programmer to jump
* to a subroutine when a floating point error occurs
V

if ((fp_excitation=fopen("excitation","w")) == NULL)
ex("cannot create file 'excitation'");

if ((fp_auto=fopen(argv[l],"r")) == NULL)
ex("cannot open file of autocorrelation data");

if ((foputput = fopen(argv[2],'V)) == NULL)
ex("can't create output file");

if ((fp_pitch = fopen(pitchfile."r")) == NULL)
ex("pitch file cannot be opened");

/* initialization */

overflow^count = 0;
gain = 0.0;
count = -1;
for (i= 0; i<N0_AUT0C; i++)
{y[i;

rjV

a[0] = 1.0;

= 0.0;
= 0.0;
= 0;

/* compute length of the file containing auto values */

stat(argv[l],&stbuf);
filesize = stbuf.stjsize;

/* determine number of rows */

framelength = samp_Jreq/frame_rate;
printf("framelength=%d samples \t\tframejrate=%d Hz\n",
framelength,frame_rate);

rows = filesize/(2*(N0_AUT0C + scaleflag));
printf("frames = %d\n",rows);

/♦set up arrays of excitations*/

set_excit(noise,nat_excit, simple_gxcit, framelength);

/* BEGIN SYNTHESIS */

for (1=0; Krows; 1++)
j printf("frame %4d ",1+1);

131

for (i=0;i<N0_AUTOC;i++)
r[i] = getsh(fp_auto); /* read in autocorrelation values */

if (gainflag ==1)
j fscale = getsh(fp_auto);

if (fscale == 0.0) fscale = 1.0; /* can't have fscale==0 */
if(l == o) rJuUjcale = r[0];
fscale = fscale * sqrt(255.0/2047.0);/* scale factor */
/•
printf("fscale is %f\t",fscale);
fscale = fscale * fscale * sqrt(r_full_scale / 2047.0);

printf("fscale is %f\n".fscale);
V

else if (ageflag == 1)
fagc = 0.0001 + (age = getsh(fp_auto));

else getsh(fp_auto); /* just skip over the scale factor
* (which is 1) if no gain option
V

/* get pitch */

pitch_period=getsh(fp_pitch);
if (feof(fp_pitch) »= 0) /*check for EOF in pitch file*/
{ printnf'VAnpitch file %s is too smalL Need at

least %d pitch periods\n",pitch_file,rows);
return(-l);

samples=(pitch_period * samp_freq)/10000; /*convert pitch period
* to # of samples at sampling freq; pitch_period is in units of
* 0.1msec (assumes pitch period is from Monte's bread-board or
* Herb's span program)
V

printf("Pitch period is %4.1fmsec\n",pitchjperiod/10.0);

/*set x to point to the start of the desired excitation array*/
if (samples > 0)

{ x = nat_excit; /* voiced */
if (last_frame == UV) count = -1; /* reset count on a */
lastjframe = V; /* uv/v transition */

i
else

{ x = noise; /*unvoiced*/
samples = LOTS;
lasWrame = UV;

i

/* do durbin's recursion on new data. Use the new values
* obtained from durbin's recursion only if it works (i.e.
* number of poles = 9) */

if (fioatflag == 1) /*use floating point version*/

132

\ if ((poles=durbinf(r,newa,&gain,0)) == NO_POLES)
for (i=0;i<NO_AUTOC;i++)

a[i] = newafi];
i

else /*use integer version*/
(if ((poles=durbin(r,newa,&gain.O.O)) == NO_POLES)

for (i=0;i<NO_AUTOC;i++)
a[i] = newa[i];

i

printf("gain = %7.3f poles = %d\n",Gain=
comp_g ain(gain,fagc, fscale),poles);

/* compute filter outputs for a frame. Synthesis filter
* has the form: y(n)=a[l]*y(n-l)+a[2l*y(n-2)+..+G*x(n).
* y(n) (present output) is stored in y[0], y(n-l) is
* in y[lj,...etc. x(n)=x[n]=excitation
V

for (k=0; k < framelength; k++)
(if(count >= samples) count=0;

else count++;

for (i=l; KNO AUTOC; i++)
y[0] = a[i]*y[i] + y[0]; /*y[0] is the present output*/

/* TESTING VAX random number generator */
putsh((short)x[count],fp_excitation);

y[0] = y[0] + x[count]*Gain/856.0;
output = (out = y[0]*500.0);

if((magn=fabs(out)) > 32767.0)
(output = 32767.0 * out/magn;

overnow_count++;
printf("**overflowin computation. y[0]=%f\n",out);

i

putsh(output,fp_putput);

for (j=0;j<NO_POLES;j++) /*shift data*/
ytNO.POLES-j] = y[N0_P0LES-l-j];

I
y[o] = 0.0;

fciose{fp_excitation);
fcloseffp^Luto);
fclose(fp_putput);
fclose(fp_pitch);

if (overflow_count !=0L)
printf("%ld overflows occured in the synthesis fllter\n",
overflow^count);

(

if (unstble_frames != 0)
printf("%d unstable frames \n",unstble_frames);

return(O);

set_excit(noise,nat_excit,simpie_excitt framelength)
float noise[L0TS],nat_excit[256],simpie_excit[256];
int framelength; /* Why is this arguement listed ? */

\ int i.rand(),Rand();

/* expected value of noise squared = 1791393 */
for(i=0;i<LOTS;i++)

noise[i] = (Rand(0) - 16383.5) * 0.02002;

/* this input waveform is not used in this version of Speakpitchx */
/* energy in simpie_excit = 1782150 */

for(i=0;i<256;i++)
simple_excit[i] = 0;
sirnpie_excit ^28] =-545;
simple_excitf29j = 1090;
simple^excitLSOJ = -545;

/* energy in nat_gxcit = 1791393 */
nat_excitro] = 37;

nat_gxcit
nat_excit
natjexcit
natjexcit
nat_excit
nat_excit
natjexcit
nat_gxcit
nat excit

= 83;
= 96;
= 107;
= 76;
= 84;
= 90;
= 77;
= 89;
= 63;

nat_excit[10] = 80;
nat_gxcit
nat_excit
nat_gxcit
natjexcit
natjexcit
nat_excit
nat_gxcit
nat_gxcit
nat_excit
natjexcit
nat_excit
natjexcit
natjexcit
nat_excit
natjexcit
nat excit

11

12

13

14

15

16
i j

17

18

19

20

21

22

23'
24

25

26

= 62

= 64;
= 49;

= 44;

= -11;
= 9;
= -65;
= -63;

= -21;
= -4;
= -43;
= -159;
= -239;
= -320;
= -276;
= -211

133

\

natjexcit
natjexcit
nat_excit
natjsxcit
natjexcit
nat_gxcit
natjexcit
nat_excit
natjexcit
natjexcit
natjexcit
nat_excit
nat_gxcit
nat excit

27 = -238;
28. = 155;
29

30

= 856;
= -264;

31 = -404;
32

33

34

35

36

37

38

39

40

= 233;
= -266;
= 293;
= -189;
= 177;
= -131;
= 105;
= -134;
= 109;

nat_excit[411 = -71;
natjexcit[42J = 44;

for(i = 43;i<256;i++)
nat_gxcit[i] = 0;

return;

134

/* Rand() bridges the incompatability gap between the 11/40 and VAX. This
* function returns a random number between 0 and 32767 on both machines.

V

#define MASK 0x00007flfL /* masks ail but last 15 bits on a long integer */
Rand(seed)
int seed;
(int rand(),noise; /* want 'noise' to be a positive random

* number between 0 and 32767

V

1

noise = (int) ((long)rand(seed) &MASK);
return(noise);

#define MAJCJ2BITS ((l « 31) - 1)

/* This function accepts 10 autocorrelation values as input and computes
* the filter coefficients (the a(i)'s). */

/* Blows up on frame 323 of 'gen audiocritic.t -a'
* Because of this, this function is no longer the default.
V

durbin(r,newa,gain,delta, shiftcnt)
int delta, shiftent;
long r[NQ_AUT0C];
float newaENO^AUTOCl^gain;

{ long rO.e;
long a[N0JLUT0C][N0_AUT0C];

135

short i,j,k,poles,ONE,shiftflag;
float g,sqrt(),newk[NOJ,OLES],pow();
float tempsum,fabs();

/•printf("integer version of Durbin's Recursion\n");*/

/* ONE = 16384; this works fine with long integers */
ONE = 32767;
shiftflag = 0;
if(deita == 0) printf("R[0]=%5id ",r[0]);
else printf(" ");

rO = r[0];
while(r0 < (1 « 14))
j rO = rO « 1;

shiftcnt++;
shiftflag = 1;

!

if(shiftflag)
for(i=0;i<N0_AUT0C;i++) /* minimize roundoff error */

r[i] = r[i] « shiftent;

for(i=l;i<NO_AUTOC;i++)
newa[i]=0.0;

newa[0] = 1.000;

/•this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i */

r[0] = r[0] + delta; /*try to fix ill-conditioned matrix*/

e = r[0];
printf("R[0]=%5id ",r[0]);
if(e<=0L)i=l;

else for(i=l;i<N0_AUT0C;i++)
{ tempsum = 0;

for(j=l;j<=i-l;j++)
(tempsum = tempsum + (int) (aTi-l][j] * r[i-j]);

if(fabs(tempsum) > MAX_32B1TS)
fprintf(stderr,"TEMPSUM OVERFLOW %f'.tempsum);

i

a[i][i] = ((r[i]*(long)0NE - tempsum)/e);
prmtf("K[%dl=%ld\t'',i.a|;i][i]):

if ((a[i][il >= ONE) || (a[il[i] <= -1*0NE))
if (unstableflag == 1)
\ printfO'refl. coeff >= ONE !! k[%d] =%7.2f\n",
i.a[i]W/(float)0NE);

if(delta == 0) unstbie-frames++;
if ((poles=durbin(r,newa,gain,compute-delta(r[0])I

i

136

shiftcnt))==NO_POLES) return(poles);
/* if ((poles=durbin(r,newa,&gain,compute-deita(r[0])
shiftcnt))==NO_POLES) return(poles); old line -
wrong (I think) */
/* increment R[6] by. 1% and redo durbin if unstable /

else j unstble_frames++; break; J

for(j=l;j<=i-l;j++)
I 4i][jl = a[i-l]m - «a[i][i] * a[i-l][i-j])/ONE);

/* a[i][i] * ari-l][i-j] overflows on frame 323 */
prmti("a[%dj[%dj = %ld M.i.j.a[i][j]);
if(abs(a[i][j]) > MAX_24BITS)
\ fprintf(stderr,"a[%dlf%d] = %ld\n",i,j.a[i][j]);

fprintf(stderr,"~ a[][] exceeds 24 bits!!\n");

i

/* e = ((ONE - ((a[i][i] * a[i][i])/ONE)) * e)/ONE; */
/* e = (((ONE * (long)ONE - a[i][i] * a[i][i])/ONE) * e)/ONE; */
e = e - (int) (a[i][il * a[i][i] / ONE) * e / ONE; /* has the nice
feature that e >= (theoretical value of e) */

if (e == 0) \ fprintf(stderr."e == 0\n");e = 1;J

poles = i-1;
if (poles <N0.P0LES) return(poles); /* don't compute a new gain value wih

* bad data—just return and use old data*/
for(j=l;j<=poles;j++)

newa[j] = a[poles][j]/((float)ONE);
if(deita != 0)

printf("newa[%d] = %f ",j,newa[j]);
newk[j-l] = a[j]G]/((float)0NE);
if(delta != 0)

printf("newk[%d] = %f ",j-l,newk[j-l]);

/* note that lpc_gain~2 = lpc_error */
/* note: If R[0] has been incremented a number of times, R[0] and
* therefore e are too large -> gain is too large.

•gain = sqrt((float)e/pow(2.0,(fioat)shiftcnt));
/* scale gain to undo '« shiftcnt' above */

return(poles);

old_durbin(r,newa,gain,delta)
int delta;
long r[N0_AUT0C];
float newa[N0_AUT0C],*gain;

137

\ long a[NO_AUTOC][NO_AUTOC],e,tempsum;
int i.j.k,poles, ONE;
float g,sqrt();

/*printf("integer version of Durbin's Recursion\n");*/

ONE = 10000;

for(i=l;i<NQAUTOC;i++)
newa[I]=0.0;

newa[0] = 1.000;

/•this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i */
r[0] = r[0] + delta; /*try to fix ill-conditioned matrix*/

e = r[0];
printf("R[0]=%5id ",e);
if(e<=0L)i=l;

else for(i=l;i<N0^AUT0C;i++)
{ tempsum = 0;

for(j=l;j<=i-l;j++)
tempsum = tempsum + (a[i-l][j] * r[i-j]);

a[i][i] = (r[i]*0NE - tempsum)/e;
/*printf("k[i]=%ld\t",a[i][i]);*/

if ((a[i][i] >= ONE) || (a[i][i] <= -1*0NE))
if (unstableflag == 1)
{ printfC'refl. coeff >= ONE !! k[%d] = %id\n",i.a[i][i]);

if(deita == 0) unstble_Jrames++;
if ((poles=old_durbin(r,newa,&gain,compute_delta (r[J)
==N0_P0LES) return(poles);
/* increment R[0] by .1% and redo durbin if unstable /

i
else \ unstbie_frames++; break; J

for(j=l;j<=i-l;j++)
ati]Q] =a[i-l]D] - ((a[i][i] *a[i-l][i-j])/0NE);

e = ((ONE - ((a[i][i] * a[i][i])/0NE)) * e)/0NE;

if (e == 0L) e = 1L;
i

poles = i-1;
if (poles < N0_P0LES) return(poles);/* don't compute a new gain value wih

* bad data—just return and use old data*/
g = 0.0;

for(j=l;j<=poles;j++)
i

138

newa[j] = a[poles]Jj]/10000.0;
g = g - newa[j] * r|jj;

f

g = g + r[0];
if (g < 0.0) g=0.0;
•gain = sqrt(g);

return(poles);
i

#define fepsilon 0.00001

durbinf(r,newa,gain,deita)
int delta;
long r[N0_AUT0C];
float newafNOJUJTOC^gain;

I float a[N0_AUT0C][N0__AUT0C].e,tempsum,0NE;
int i,j,k,poles;
float g.sqrtQ;

/*printf("float version of Durbin's Recursion\n");*/

ONE = 1.0000;

for(i=l;i<N0 AUT0C;i++)
newa[i]=0.0;

newa[0] = 1.000;

/*this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i */
r[0] = r[0] + delta;

e = r[0];
printf("R[0]=%5.0f ",e);
if(r[0]<=0L)i=l;

else for(i=l;i<N0_AUT0C;i++)
{ tempsum = 0;

for(j=l;j<=i-l;j++)
tempsum = tempsum + (a[i-l][j] * r[i-j]);

a[i][i] = (r[i]*0NE - tempsum)/e;

if ((a[i][il >= ONE) || (a[i][i] <= -1*0NE))
if (unstableflag == l)
{ printf("refl. coefl >= ONE !! k[%d] = %fsn",i.a[i][i]);

if (delta == 0) unstble_frames++;
delta = compute_delta(r[0]);

/♦if ((poies=durbinf(r,newa,&:gain,delta))==NO_POLES)
old line of code - wrong (I think) */
if ((poles=durbinf(r,newa,gain,delta))==N0JP0LES)

i

return(poies);
i
else (unstble_frames++; break;J

for(j=l;j<=i-l;j++)
a[t]DJ = a[i-l]M - ((a[i][i] * a[i-l][i-j])/ONE);

e = ((ONE - ((a[i][i] *a[i][i])/ONE)) * e)/ONE;
/* if (e == OL) e = 1L; */

i

poles = i-1;
if (poles < NO_POLES) return(poles);

g = 0.0;

for(j= 1;j<=poles; j++)

newa[j] =a[poles]Jj]/1.0000;
g = g - newa[j] * rQj;

i

g = g + r[0];
if (g < 0.0) g=0.0;
♦gain = sqrt(g);

return(poies);

139

compute_delta(R0)
long R0;
{ int delta;

delta = 0.001*R0;
if (delta == 0) delta = 1;
return(delta);

}

ex(str)
char *str;
(printf("%s \n",str);

exit();
i

float comp_gain(gain,fagc,fscale)
float gain.fagc,fscale;

if (gainflag == 1) return(gain/fscale);
else if (ageflag == 1) return(gain*fagc/800.0);/* 800 is the magic */

else return(gain); /* number which gives */
j /* Gain(agc)~Gain(fscale)*/

/* floating point error causes a jump to this function */

140

fpe()
\ printf("Floating point error\n");

/*prmtf("Gain=%f\nCount=%d\nOutputn-l=%f\nOutputn=%f\n\n",Gain.
Count,OutputnJ.,Outputn);
printf("Fagc=%f\nFscale=%f\n\n",Fagc,Fscale);
V
ex("");

}

#define MAXJUNE 500
#define NULLJCHAR' *
#define BLANK' *
^define RETURN '\n'

sys_call(string.arg)
char string[MAX_fjNE],*arg;
{ char comniand[MAXJJNE],*getenv(),**ptr:

int i;

ptr = &arg;
sprintf(command,"%c",BLANK);

i=0;

while(string[i] != NULLCHAR)
if(string[i] == '%')
\ switch(string[++i])

{ case *s':
sprmtf(command,"%s%s",conunand,*(ptr++));
break;

case 'h':

sprintf(c ommand,"%s%s",command,
getenv("HOME"));
break;

case '%*:
sprintf(command, "%s%c",conunand,string[i]);
break;

case 'd*:
sprintf(command,"%s%d",command,*(ptr++));
break;

default:

sprintf(command,"unknown conversion type
•%%%c'"lstring[i]);
ex(command);
break;

I
i++;

else sprmti(command,"%s%c",command,string[i++]);

system(command);
return;

141

I

Pitch information is required to synthesize speech. To determine the

pitch for the synthesized speech, a modified Gold-Rabiner pitch tracker was

used [20]. The source code for this program is not included here.

£3. SPECJ)EV.C

To quantify errors due to the various system modifications, an Itakura-

Saito spectral distance measure was employed (equation 2.15) . The pro

gram spec_dev.c takes two sets of autocorrelation values and computes the

spectral distance between them. In the simulations of chapter 4, one set of

autocorrelation values was computed with high accuracy (no modifications),

and the other set was computed with one or more modifications in effect. The

spectral distance measured is referred to as a spectral deviation since it is

the distance measured from a very accurate, reference frame.

SPECJ)EV".c:

^include <stdio.h>
#ifdef FORTY
^include "/usr/audio/hurst/source/VAXJieader
#endif
^define NOJ>OLES 9
#deflne NOJUJTGC 10
^define OUTJCALE 100
^define MAX_SH0RT 32787
^define ERR0R.JLAG -1000 /• numberto output in place of rms_error if

* an unstable frame is encountered

v

int scaleflag =1;
int unstablefiag=0; /* causes durbinx() to terminate on an unstable k •/
int un3tbie_frames;
int quant_type=0; /• 0 -> use floating point arithmetic •/

/* 1 -> use long arithmetic •/
/* 2 -> use 16 bit integers wherever possible •/

142

main(argc,argv)
int argc;
char **argv;

/* short durbinsh(),durbinl(),durbinf(); */
int atoi(),i,j,frame=0;
long r[NOJlUTOC].r_ref[NOJ^UTOC];
float a[NO^UTOCj,a^ef[NOJluTOC],gain,rms_error,numer,spec_dev;
float durbinf(),eiTor(),log();
FILE *fopen(),*fpjref_auto, *fp_pther_auto,*fp_error;

if(argc == 1)
ex("usage: spec_dev ref other [-fls] \n\t-f is the default");

i=3;
while(++i <= argc)
(if (argv[i-l][0] !='-')

ex ("bad parameter");
else switch(argv[i-l][l])
{ case T: quant_type = 0; /* use durbinf() */

break;
case T: quantjype = 1; /* use durbinl() */

break;
case 's': quant_type = 2; /* use durbinshQ */

break;
default: ex("bad parameter");

, •
if((fp_ref auto=fopen(argv[l],"r")) == NULL)

exf'input file does not exist");
if((fp_pther-auto=fopen(argv[2],"r")) == NULL)

ex("input file does not exist");

if((fp_error=fopen("dev","w")) == NULL)
ex("cannot create 'deV ");

while(l)

for(j=0;j<N0_AUT0C;j++)
{ r_ref[j] = getsh(fp_ref_auto);

rp] =getsh(fp_pther_auto);
if(feof(fp_refjuito) == 1)

if(j != 0) ex("bad data count in input file");
else exit(0);

if(feof(fp_pther_auto) == 1)
ex("bad file size in other");

i

iffscaleflag == 1) getsb/fp_ref_auto); /* skip gain value */
if(scaleflag == 1) getsh(fp_pther_auto); /* skip gain value */

rms_error = durbinf(r_ref,a_ref.&gain,0); /* !! not NORMALIZED !! */

1
J

if(durbinf(r,a,&gain,0) <0) /* durbinf failed */
numer = -10; /* indicates error */

else numer = error(r_ref,a); /* !! not NORMALIZED !! */

if(rms_error <= 0)
spec_dev = -(float) (MAX.SK0RT / OUTSCALE);
/* indicates an unstable frame in reference data */

else if(numer <= 0)
spec_dev = (float) (MAX_SH0RT / OUTSCALE);
/* indicates an unstable frame in other data */

else spec_dev = 4.343 * log(numer / rms_error);
printf("frame %3d spec_dev = %f db\n",++frame,spec_dev);
/♦ printf("normalized rms_error = %f for frame %d\n",
(rms_error * MAX.SH0RT/r[0]),++frame);*/

/* output spectral deviation in units of 0.01 db
V
putsh((short) (spec_dev * OUTSCALE),fp_error);

143

/* This function accepts 10 autocorrelation values as input and computes
* the filter coefficients (the a(i)'s). */

short durbinsh(r,newk, gain,delta)
int delta;
long r[N0 AUTOC]; /* ?? could be a short since R[0] <= 2047 */
float newk[NO_POLES],*gain;

i long a[N0_AUT0C][N0^AUT0C],tempsum; /* e could be a short since
* e <=R[0]. tempsum must
* be a long. a[][] is up
* in the air. See td results
* for limits on a[][ps
V

short i,j,k,e,r_sh[N0^AUT0C],r_scale,poles,0NE;

float g,sqrt(),newa[N0_AUT0C]; /* God forbid we should really need
* a float. Better check this out.

*/

/*printf("integer version of Durbin's Recursion\n");*/

ONE = 32767; /* Different value for ONE results in different rms_error */

rjcale = ONE / r[0];
for(i=0;i<N0.AUT0C;i++)

r_shril = r[i] * r_scale;
r[0] = r_sh[0j; /* return r_sh[0] for proper scaling in print in main */

144

for(i= l;i<NO AUTOC;i++)
newa[l]=0.0;

newa[0] = 1.000;

/♦this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(asup j)sub i */
r_sh[0] = r_sh[0] + delta; /*try to fix ill-conditioned matrix*/

e = r_sh[0];
/*printf("R[0]=%5d".e); */
if(e<=0L)i=l;

else for(i=l;i<NOJUJTQC;i++)
\ tempsum = 0;

for(j=l;j<=i-l;j++)
tempsum = tempsum + (a[i-l][j] * r_sh[i-j]);

a[i][i] = (r_sh[i]*(long)0NE - tempsum)/e;
printf("k[%d]=%f\t",i.a[i][i]/((float)ONE));

if ((a[i][i] >= ONE) || (a[il[i] <= -1*0NE))
if (unstableflag == 1)
j prlntf("refl. coefl >= ONE !! k[%d] = %7.2f\n",
i.a[i][i]/(float)ONE);

if(delta== 0) unstbie_frames++;
if ((poles=durbinsh(r,newk,&gain,compute_delta(r[0])))

==N0_P0LES) return((short) e);
/♦increment R[0] by. 1% and redo durbin if unstable*/

else j unstble_Jrames++; break;}

for(j=l;j<=i-l;j++)
a[i]D] = a[i-l]Q] - «a[i][i] * a[i-l][i-j])/0NE);

/* e = ((ONE - ((a[i][i] * aTiTO/ONE)) * e)/0NE; */
e =(((ONE *(iong)0NE - a[ilif *a[i][i])/0NE) *e)/0NE;

}
if (e == 0) e = 1;

poles = i-1;
if (poles < N0.P0LES) return(ERRORJTiAG);/* don't compute a new gain

* value with bad data—just return and use old data*/
g = 0.0;

for(j=1; j<=poles;j++)

newap] =a[polesJQJ/((float)0NE);
newkl

I

ewalj] = a[polesl[j]/((float)0NI
ewkfj-1] = amGl/C(float)0NE);
= g - newa[j] * r_sh[j];

i

g = g + r_sh[0];
/* just found out (should have known) that g = e */
/* printf("g = %f\te = %d\t",g.e); */
if (g < 0.0) g=0.0;
♦gain = sqrt(g);

return((short) e);

145

/* This function accepts 10 autocorrelation values as input and computes
* the filter coefficients (the a(i)'s). */

short durbinl(r,newk,gain,delta)
int delta;
long r[N0_AUT0C]; /* ?? could be a short since R[0] <= 2047 */
float newk[N0_P0LES],*gain;

{ long a[N0_AUT0C][N0_AUT0C],e.tempsum; /* e could be a short since
* e <=R[0]. tempsum must
* be a long. a[][] is up
* in the air. See td_results
* for limits on a[][]*s
V

int i,j,k,poies,0NE; /* On the VAX, these are the same as longs.
* Change to shorts wherever possible.
•/

float g,sqrt(),newa[N0_AUT0C]; /* God forbid we should really need
* a float. Better check this out.

•/

/•printf("integer version of Durbin's Recursion\n");*/

ONE = 10000;

for(i=l;i<N0_AUT0C;i++)
newa[i]=0.0;

newa[0] = 1.000;

/♦this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i ♦/
r[0] = r[0] + delta; /*try to fix ill-conditioned matrix*/

e = r[0];
/* printf("R[0]=%5id ",e); */
if(e<=0L)i=l;

else for(i=l;i<N0_AUT0C;i++)
\ tempsum = 0;

for(j=l;j<=i-l;j++)
tempsum = tempsum + (a[i-l][j] * r[i-j]);

I

146

a[i][i] = (r[i]*ONE - tempsum)/e;
printf("k[il=%f\t".a[i][i]/((float)ONE));

if ((a[i][il >= ONE) || (a[i][i] <= -l*ONE))
if (unstableflag == 1)
{ printfC'refl. coeff >= ONE !! k[%d] = %7.2f\n",

i.a[i][i]/(float)ONE);
if(delta == 0) unstDie_.frames++;
if ((poies=durbinl(r,newk,&gain.compute_deita(r[0])))
==N0_P0LES) return((short) e); /* increment R[0]
by .1% and redo durbin if unstable */

else (unstble_frames++; break;)

for(j=l;j<=i-l;j++)
aIi]M = a[i-l][j] - ((a[i][i] * a[i-l][i-j])/0NE);

e = ((ONE - ((a[i][i] * a[i][i])/0NE)) * e)/0NE;

if (e == OL) e = 1L;

poles = i-1;
if (poles < N0.P0LES) return(ERRORJTiAG);/* don't compute a new gain vk

* bad data—just return and use old data*/
g = 0.0;

for(j= l;j<=poies;j++)

newalj] = a[polesl[jl/((float)ONE);
_ : = amm/«fl<

= g - newaQj * r[j];
newkD-1] = a[j][jj7((float)0NE);

g = g + r[0];
if(g<0.0)g=0.0;
♦gain = sqrt(g);

return((short) e);

^define fepsilon 0.00001

float durbinf(r,newa,gain,delta)
int delta;
long r[N0_AUT0C];
float newa[NO.A.UTOC].*gain;

{ double a[N0J^UT0C][N0_AUT0C].e,tempsum,0NE;
int i,j,k,poles;
double g,newk[NO_PQLES];
float sqrt();

147

/*printf("float version of Durbin's Recursion\n");*/

ONE = 1.0000;

for(i= l;i<N0_AUT0C;i++)
newa[i]=0.0;

newa[0] = 1.000;

/•this is Durbin's recursion. See J.Makhoul paper. a[j][i]=(a sup j)sub i •/
r[0] = r[0] + delta;

e = r[0];
/* printf("R[0]=%6.0f ",e); */
if(r[0]<=0L)i=l;

else for(i=l;i<N0_AUT0C;i++)
f tempsum = 0;

for(j=l;j<=i-l;j++)
tempsum = tempsum + (a[i-l][j] * r[i-j]);

a[i][i] = (r[il*0NE - tempsum)/e;
/* printf("k[%d]=%f\t",i,a[i][i]); */

if ((a[i][i] >= ONE) || (a[i][i] <= -1*0NE))
if (unstableflag == 1)
\ printf("refl. coeff >= ONE !! k[%d] = %f\n",i.a[i][i]);

if (delta == 0) unstble_frames++;
delta = compute_delta(r[0]);
if ((poles=durbinf(r,newa,&gain,delta))==NO<_POLES)

return(e);
i
else | unstble_frames++; break; J

for(j=l;j<=i-l;j++)
a[i]DJ = a[i-l]Q] - ((a[i][i] * a[i-l][i-j])/0NE);

e = ((ONE - ((a[i][i] *a[i][i])/0NE)) *e)/0NE;
/* if (e == OL) e = 1L; */

i

poles = i-1;
if (poles < N0_P0LES) return((float)ERROR_FLAG);

g = 0.0;

for(j=l;j<=poles;j++)

newap] = -a[poles][j]/ONE; /* fixing sign for error() */
newkQ-1] = an][j]/0NE;
g = g - newa[j] * r[j];

g = g + r[0];
if (g < 0.0) g=0.0;
♦gain = sqrt(g);

return(e);
i

compute_deita(RO)
long RO;
I int delta;

delta = 0.001*R0;
if (delta == 0) delta = 1;
return(delta);

i

float error(r,a)
long if]:
float a[J;
I

int j;
float err = 0.0;
float R(),B();

i

for (j= -N0_P0LES;j<=N0.P0LES;j++)
err = err + B(j,a) * R(j,r);

return(err);

148

/• RQ,.) returns autocorrelation value of input. Function is necessary
* because errorQ uses R(ji-) and R(-j,.)
V ,
float Ry.r)
long r[J;
intj;

ifQ<0)j = -l*j;

re turn((float)r[j]);
i

/* B(j,a) computes autocorrelation values for the LPC coeffs. Reference is
* G. White paper (Xerox PARC) 'Automatic Speech Recognition, LPCResidual
* vs. BP Futering
*/
float B(i,a)
float a[j;
intj;
\

int i;
float b = 0.0;

if(j<0)j = -l*j;

for(i=0;i<=(N0_P0LES - j);i++)
b = b + a[i] ♦ a[i+j];

return(b);
i

ex(str)
char *str;
\ fprintf(stderr,"%s \n",str);

exit();
i

149

APPENDIX D

THE CMOS PROCESS SCHEDULE

The process schedule for the high voltage metal-gate CMOS process

which was used to integrate the autocorrelator is presented here. This pro

cess is a modified version of the CMOS process used by Black [28]. More

information on the process and layout rules can be found in [14].

This process uses positive photo-resist throughout. Alignment was done

with a projection aligner to ~ljjm precision. The p-channel devices were self

aligned by an implant over the metal. The aluminum gates were used as the

mask and the sintering step activated the implant.

ISO

151

Berkeley Metal Gate CMOS Process
November 18, 1961 (rev. March 5 1962)

1. Initial wafer cleaning - p-type, 5-7 ohm-cm, <100>

a. TCE clean, 60 °C, 10 minutes (Degrease) (Watch temperature : Boiling
TCE will shatter wafers)

b. Dip in acetone

c. Dip in methyl alcohol

d. Rinse in De-ionized (DI) water
e. Piranha etch (ff2SO^:H202 - 5:1) for 10 min.
f. Rinse thoroughly in running DI water

g. Dip in HF:H20 (l: 10) for 20 seconds
h. Rinse in DI water

i. Blow dry

j. Inspect under eollimated light for dust. (If dust remains, repeat from
h.; if that doesn't work, repeat from a.)

2. Initial oxidation - 4000A, Initial Oxide Furnace

a. Wet 02. 1100 °C, 27 min. {Afim) (temperature settings1095 °C)
b. Dry N2 (anneal), 900 °C, 20 min.

3. Positive Photoresist (PR) Step, Mask #1: N- well mask.
a. Prebake, 85-90 °C, 15 min. (if wafer just came from furnace then skip

prebake)
b. HMDS treatment

1. N2 purge, 10 min.
2. Load wafers

3. Bubble HMDS, 3 min.
4. N2 purge, 5 min.

c. Spin AZ 1450J, 6000 rpm, 30 seconds. (PR thickness = 1.4/xm)
d. Softbake, 85-90 °C, 15-20 min.

e. Align and expose (Blow off dust on top and bottom)
f. Develop, AZ 351 developer (DI #2^Developer - 5:1), 1 min. (or regular

AZ developer at 1:1 dilution;

g. Rinse in DI water and blow dry

h. Inspect

L Hardbake, 110-120 °C, 20 min.

j. Oxide etch, buffered HF (NH^FiHF - 5:1) etch rate .12/zm/min.
(.145/,tm/min if solution is just made) (etch time= 3.5-4 min. with 15%
over etch) (prepare at least 4 hours before use)

k. PR strip, acetone, 15 min.

L Piranha clean, H2SO±H202 - 5:1, 15 min.

152

4. Implant step - Initial Oxide Furnace

a. Grow implant oxide - 290A
1. Wet 02, 900 °C, 3 min., flowmeter setting=4 cm
2. Dry N2, 900 °C, 5 min., flowmeter setting=4 cm

b. Implant Phosphorus (N-), Dose=la:1013, 200keV (xj(well)=.462/im,
Rsh= 1.29kohm/square)

5. Piranha Clean, H2SO±H202 - 5:1, 5 min.

6. Well oxidation - 7229A, Initial Oxide Furnace

a. Wet 02. 1150 °C, 65 min., (.76/.92/jm) (settings1144)
b. Dry N2. 900 °C, 30 min. (xj(well)=1.978/<tm, Rsh=943 ohms/square)

7. Well drive-in, Arsenic Furnace

a. Dry N2, 1200 °C, 24 hours

b. Dry Nz (anneal), 900 °C, 60 min. (xj(weil)=9.055>in, Rsh=827
ohms/square)

8. Pos. PR Step, Mask #2 : N+ (N channel S/D) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)
b. Oxide etch, buffered HF (NH^FiHF - 5:1) etch rate .115/im/min.

(etch time=7.5 min.)
c. PR strip

d. Piranha clean, 15 min.

9. Implant step - Initial Oxide Furnace

a. Grow implant oxide - 290A
1. Wet 02, 900 °C, 3 min.
2. Dry N2, 900 °C, 5 min.

b. Implant Phosphorus (N+), Dose=5.84xl015, 160keV

10. Piranha Clean, 5 min.

11. Oxide growth over N+ - 3983A, N+ Drive-in Furnace

a. Wet Og, 950 °C, 60 min.

b. Dry N2, 900 °C, 30 min. (xj(N channel S/D)=0.476/zm, Rsh=27.88
ohms/square)

12. Pos. PR Step, Mask #3 : P+ (P channel S/D) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)
b. Oxide etch, buffered HF (NH^F'.HF - 5:1) etch rate .115jum/min.

(etch time=7.5 min.)
c. PR strip

153

d. Piranha clean, 15 min.

13. Implant step - P+ Drive-in Furnace

a. Grow implant oxide - 290A
1. Wet 02, 900 °C, 3 min. (.29/.40/zm)
2. Dry N2t 900 °C, 5 min.

b. Implant Boron (P+). Dose=5.50xl018, 32keV (xj(P channel
S/D)=.598)tim, Rsh=22.28 ohms/square, Rsh(well)=958 ohms/square)

14. Gettering step:
Implant Boron Difluoride into back side of wafer
Dose=5xl015, 200 keV

15. Piranha Clean. 5 min.

16. Oxide growth over P+ and N+/P+ drive-in - 3200A, P+ drive-in Furnace

a. Wet 02. 1100 °C, 15 min. (setting=1110) (Calibrate furnace temp, first)
b. Dry N2, 1100 QC, 28 min. (27 min. then 2 min. pulling out) (xj(N chan

nel S/D)=1.654/im. Rsh=18.39 ohms/square) (xj(P channel
S/D)=1.589/4m, Rsh=40.9 ohms/square)

17. Pos. PR Step, Mask #4: Thin Oxide (P channel and N channel Gates) mask.
a. Apply photoresist, expose, develop (follow 3.a-i)
b. Oxide etch, buffered HF (NH+FiHF - 5:1) etch rate .115jmn/min.

(etch through ~12000 A oxide) (etch time=7.5 min.)
c. PR strip

d. Piranha clean, 15 min.

18. Gate Oxide Growth - 840A/P+(well), 824A/P+(substrate). 1622A/N+ (or
HOOA/gate, 1200A/N+) P+ drive-in furnace
a. TCE clean P+ drive-in furnace at least 12 hours before use

b. Wet 02, 840 °C, 75 min. (Calibrate temp, first, check water after 1.5
hour) (setting=840) (or Dry 02, 1000°C, 145 min., init. ox. furnace)

c. Dry N2 (anneal), 840 °C, 15 min. (or Dry N2 (anneal), 1000 °C, 20 min.
for Dry 02 growth)

19. Threshold shift implant - Boron, Dose=5arlOu, 55 keV (75 keV alt.)

20. Piranha clean, 5 min.

21. Threshold shift anneal - P+ drive-in furnace Dry N2, 1000 °C, 15 min. (load
and unload wafers in SLOWLY)

22. Pos. PR Step, Mask #5 : Contact cut mask.
a. Apply photoresist, expose, develop (follow 3.a-i) (spin on at 5000 rpm)

(check very carefully for gaps)

154

b. Descum - Short plasma etch of resist
1. N2t 1 torr, 60 watts, 65 °C
2. 02, .78 torr, 10 watts, 5 min.

c. Oxide etch, buffered HF (NH*F:HF - 5:1) etch rate .115>m/min.
(etch time=1.5 min.) (etch through ~1700A of oxide)

d. PR strip

e. Piranha clean, 15 min.

23. Metal deposition - 8000A Aluminum

a. HF dip (//F:water - 1:20), 10 sec. (just until back of wafer repels wa
ter)

b. Bake under IR lamp, 15 min.

c. Use following settings: 25/iA,5.2 remote, 1 staple,~5x 10~8 Torr,80
sec.,25 toward

24. Pos. PR Step. Mask #6 : Metal mask.
Apply photoresist, expose, develop (follow 3.a-i) (spin on at 6200 rpm)
(VERY CRITICAL ALIGNMENT to N+)

25. Metal etch - Al etchant type A, 45-50 8C, (Do not overetch) (~3.5 min.)

26. PR strip, acetone, 10 min.

27. Rinse in DI water

28. Pos. PR Step, Mask SI : Self align implant. Apply photoresist, expose,
develop (follow 3.a-i) (spin on at 6000 rpm)

29. Implant (self aligned PMOS) Boron, Dose=3.81xl013, 45 keV (dose=40
/^coulombs)

30. PR strip

a. Acetone, 30 min. (1 min. ultrasonic every 15 min.)
b. DI rinse and blow dry

c. Plasma etch, 150 watts, 1 torr, 5 min. or until done

31. Sinter Aluminum - 450 °C, 15 min. with forming gas, 14 cm.

32. Spin on PR, 15 min. prebake(100 °C). 5000 rpm, 30 sec, 20min.
softbake(90°C)

33. Dice - dicing saw, speed=2(hi), 4.0 mils not sawed, channel 1 =
4.250,2.500. channel 2= 4.630,1.750, distance to edge of chip= .250 mm.

155

this page for number seqaence only

APPENDIX E

EXACT SIMULATION OF LOOP GAIN

The loop gain of a feedback circuit provides valuable stability and set

tling time information [27]. Often, loop gain simulations are based on

approximations [27],[42]. For example, for the shunt-shunt feedback cir

cuit of figure E.1 the exact loop gain is given by

V '" <V/+Vo)(V/+Vi)
(following the terminology in [27], see figure E.1). Output loading and the

output admittance of the op amp are included in y0; the source admittance

y9 and op amp input admittance are included in y^. Usually, yr, the reverse

transmission through the op amp, is much smaller in magnitude than V/ in

the frequency range of interest and can safely be neglected. But often yf is

assumed much smaller in magnitude than Qn and the loop gain is approxi

mated as

ns)~<yf+Vo)ivf+yi)
Neglecting yj is not always valid. For example, if yj-sCfbt then yj and Q»

may have comparable magnitudes near the frequency where |7*(s)|=l. In

that case, neglecting yf would yield an incorrect phase margin and possibly

false stability data. Circuit design text books introduce the "break-the-loop"

loop gain analysis which has a nice intuitive feel, but relies on the above

assumptions as well as the assumption that |y0 I» VfVi

V/+Vi
[27],[42]. The

y
"break-the-loop" loop gain is given by the voltage transfer function T(s)="~

156

157

V

Yf

Va YrV°0 CD=mVa Yout Vo

^

Figure Kl. top: Shunt-shunt feedback circuit
middle: Op amp with feedback element ys
bottom: Same circuit with op amp replaced by its two-oort
representation r

158

in figure E.2.

These approximations need not be made at all because direct, exact

simulation of the loop gain is possible with circuit simulators like SPICE. For

example, consider the shunt-shunt feedback circuit of figure E.1. If the input

current source is replaced by a voltage source Va as shown in figure E.3. the

transfer function from Vz to V0 is

V9 ""(V/+Vo) '
A dependent source, controlled by the output voltage, driving the output of

the op amp in the reverse direction gives a voltage transfer relation

H "* (v/+Vi)'
y

And therefore the overall transfer function —-r^-is

Vr _ (Gn-Vf) (Vf^)
~V9~ (y/+y0) (Vf+Vi)

which equals the exact loop gain. No approximations were made.

It is often important, due to non-linear effects, to test the loop gain at

different DC output voltages. These can easily be accommodated as is shown

in figure E.4. The original circuit (figure E.4, top) is used to determine the DC

operating points. Then controlled sources are connected as shown in figure

E.4 to assure that all DC node voltages are correct. The loop gain is found by

y
computing the small signal gain, 7*(s)=—•=£-:

This exact loop gain analysis can be applied to all four of the feedback

configurations. Here is the procedure for exact loop gain analysis for an arbi

trary feedback configuration:

159

Vx

Figure E.2. Break-the-loop circuit for finding T(s)

Draw the circuit, labeling input and output sources correctly. The input

source must be a current source if it is shunt feedback at the input, an

input voltage source for series feedback at the input. Use Thevenin or

Norton equivalences as required. Replace the input source with its dual (i

-» v, v -* i), call the new source Sm. Now make a second copy of the circuit

Drive the output of the second circuit with a controlled source of the

same type as the output variable, with value +1 times the output of the

first circuit. In this circuit, replace the test source Sa with an infinite

impedance mismatch (replace a voltage source with an open circuit,

replace a test current source with a short circuit.) Label the location

where Sx was as Sr with the same polarity. If S9 was a test voltage, Sr will

measure an open-circuit return voltage. If Ss was a test current, Sr will

measure a short-circuit return current. Have the circuit simulator calcu-

180

late the transfer functions T(s)=——-which is the exact loop gain. An

arbitrary DC input source can be accommodated as discussed above.

Vx Ys

Vo

Figure E.9L Circuit for finding T(s) exactly

161

Vx

Va-Vin(DC)

Vin(DC)

Vo

Vin(DC)

Figure E.4 Circuit for finding T(s) exactly, including DC biasing

BIBLIOGRAPHY

References

1. L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals,

Prentice-Hall, Inc., Englewood Cuffs, N.J.(1978).

2. J.D. Markel and A.H. Gray, Jr.. Linear Prediction of Speech, Springer-

Verlag, New York. N.Y.(19B0).

3. J.D. Markel and A.H. Gray. Jr.. "A linear Prediction Vocoder Simulation

Based upon the Autocorrelation Method," IEEE Trans. Acoust., Speech,

and Signal Process. VoL ASSP-22 pp. 124-134 (April 1974).

4. A.V. Oppenheim and R.W. Schafer. Digital Signal Processing, Prentice-

Hall, Inc.. Englewood Cliffs. N.J.(1975).

5. T. Barnwell, "Recursive Autocorrelation Computation for LPC Analysis,"

Proc. Intl. Cbnf. on Acoustics, Speech and Signal Processing, pp. 1-4

(1977).

8. J. Durbin. "The Fitting of Time-Series Models." Rev. Inst. Int. Statu. VoL

26(3) pp. 233-243 (1960).

7. N. Levinson. "The Wiener RMS Error Criterion in Filter Design and Predic

tion." /. Math. Phys. Vol. 25(4) pp. 281-278 (1947).

8. J. Makhoul, "Linear Prediction: ATutorial Review." Proc. IEEEYoL 63 pp.

561-580 (April 1975).

9. J.L. Flanagan. "Automatic Extraction of Formant Frequencies from Con

tinuous Speech." /. Acoust. Soc. Am, Vol. 28 pp. 110-118 (January 1956).

162

163

10. H.K. Dunn and S.D. White, "Statistical Measurements on Conversational

Speech." /. Acoust. Soc. Am. Vol. 11 pp. 278-288 (January 1940).

11. F. Itakura, "Minimum Prediction Residual Principle Applied to Speech

Recognitioa" IEEE Trans. Acoustics, Speech and Signal Processing VoL

ASSP-23 pp. 67-72 (Feb. 1975).

12. J.D. Markel, "The SIFTAlgorithm for Fundamental frequency Estimation,"

IEEE Trans. Audio ELectroacoustics Vol. AD-20pp. 387-377 (December

1972).

13. L.R. Rabiner and M.R. Sambur, "Application of an LPC Distance Measure

to the Voiced-Unvoiced-Silence Detection Problem," IEEE Trans, on

Acoust, Speech, and Signal Process. VoL ASSP-25(4) pp. 338-343 (August

1977).

14. R.D. Fellman, An MOS-LSI Adaptive Linear Prediction Filter For Speech

Processing, University of California, Berkeley(November 1982). Ph.D.

Thesis

15. B. Gold Private communication,

18. J. Tierney, "A Study of LPC Analysis of Speech in Additive Noise," IEEE

Trans. Acoust, Speech, and Signal Process. VoL ASSP-28(4) pp. 389-397

(August 1980).

164

17. M.D. Paez and T.H. Glisson. "Minimum Mean Squared-Error Quantization in

Speech," IEEE Trans. Coram. Vol. Com-20 pp. 225-230 (April 1972).

18. S. Love, A Preprocessor for Speech Analysis, University of California,

Berkeley. Ca(June 1981). M.S. Report

19. A.Vladimirescu and S. Liu, "The Simulation of MOS Integrated Circuits

Using Spice2," Memorandum No. UCB/ERL M80/7. Electronics Research

Laboratory, University of California, Berkeley, Ca (February 1980).

20. B. Gold and L. Rabiner, "Parallel Processing Techniques for Estimating

Pitch Periods of Speech in the Time Domain," /. Acoust. Soc. Am. VoL

46 pp. 442-448 (August 1969).

21. A.H. Gray, Jr. and J.D. Markel. "Quantization and Bit Allocation in Speech

Processing." IEEE Trans. Acoust., Speech, and Signal Process. VoL

ASSP-24pp. 459-473 (December 1976).

22. P. Chu Private communication,

23. A. Papoulis, Probability, Random Variables, and Stochastic Processes,

McGraw-Hill Book Company, San Francisco, Ca(l965).

24. R. Kaneshiro - • Private communication.

185

25. D.R. Alexander, R.J. Antinone, and Dr. G.W. Brown, "Spice2 MOS Modeling

Handbook," Technical Report BDM/A-77-071-TR, The BDM Corporation,

Albuquerque, NM (May 1977).

26. p.R. Gray, "Basic MOS Operational Amplifier Design - An Overview," pp.

28-49 in Analog MOS Integrated Circuits, ed. RW. BrodersenJEEE Press,

New York. N.Y. (1980).

27. P.R Gray and RG. Meyer, Analysis and Design of Analog Integrated Cir

cuits, John Wiley & Sons, Inc., NewYork, N.Y.(1977).

28. W.C. Black. Jr., High Voltage Metal Gate CMOS Process for Large Scale

Analog Circuit Applications, University of California, Berkeley. CA(June

1977). M.S. Report

29. P.W. Bosshart. "A Multiplexed Switched Capacitor Filter Bank." IEEE Jour

nal of Solid-State CircuitsVol. SC-15(6) pp. 939-945 (December 1980).

30. Engineering Staff of Analog Devices. Inc., Analog-Digital Conversion Notes,

Analog Devices, Inc., Norwood, Mass.(1977).

31. RH. McCharles. V.A. Saletore. W.C. Black. Jr.. and D.A. Hodges. "An Algo

rithmic Analog-to-Digital Converter," IEEE Int I Solid-State Circuits Conf.

Digest, pp. 96-97 (1977).

166

32. J.L McCreary and P.R Gray. "All-MOS Charge Redistribution Analog-to-

Digital Conversion Techniques- Part 1." IEEE J. Solid State Circuits VoL

SC-lOpp. 371-379 (December 1975).

33. Ken Keller and Giles Billingsley. KIC: A Qraphics Editor for Integrated Or*

cuits. Electronics Research Laboratory, U.C. BerkeleyTechnical Memoran

dum

34. J.E. Marsden, Basic Complex Analysis, W.H. Freeman & Company. San

Francisco, Ca(1973).

35. D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated

Circuits, McGraw-Hill Book Company, San Francisco. Ca(1983).

36. E.J. Swanson, RJ. Starke. G.F. Cross, K.H. Olson, C.J. Waldron. RA. Cope-

land, S.A. Surek. RJ. Ribble, and A.J. Vera, "A Fully Adaptive Transversal

Canceler and Equalizer Chip," IEEE Intl. Solid-State Circuits Conf., pp.

20-21 (1983).

37. D.C. Soo and RG. Meyer. "A Four-Quadrant NMOS Analog Multiplier." IEEE

Journal of Solid-State Circuits VoL SC-17(8) pp. 1174-1178 (December

1982).

38. B. Gilbert, "A Four-Quadrant Analog Divider/Multipier with 0.01% Distor

tion," IEEE Int Z. Solid-State Circuits Conf.. pp. 248-249 (1983).

167

39. P.R Gray, D.A. Hodges, and RW. Brodersen, Analog MOS Integrated Cir

cuits, IEEE Press, New York, N.Y.(1980).

40. KS. Tan and P.G. Gray, "Fully Integrated Analog Filters using Bipolar-JFET

Technology." IEEE Journal of Solid-State Circuits, pp. 814-821 (1978).

41. M. Banu and Y. Tsividis, "Fully Integrated Active RC Filters in MOS Tech

nology," IEEE Intl. Solid-State Circuits Conference, pp. 244-245 (Febru

ary 1983).

42. P.E. Gray and C.L. Searle, Electronic Principles: Physics, Models, and Cir

cuits, John Wiley & Sons. Inc., NewYork. N.Y.(1969).

	Copyright notice 1983
	ERL-83-51 (1 of 2)
	ERL-83-51 (2 of 2)

