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ABSTRACT

Velterra Series have been in the Engineering literature for
some time now, and yet there have been few attempts to measure
Volterra kernels. This paper discusses techniques for measuring
the Volterra kernels of weakly nonlinear systems. We introduce a
new quick method for measuring the second Volterra kernel which
is analogous to pseado-noise testing of a linear device. To illus-
trate the discussion we present an experimental example, an
electro-acoustic transducer. Throughout the paper we emphasize

the practical aspects of kernel measurement.
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1. Introduction: Purpose and Point of View

Volterra series have appeared in the engineering literature for forty years
now. There have been many articles devoted to theoretical issues such as
existence of Volterra Series (e.g. [1-3]) computation of Volterra kernels of spe-
cial systems (composition, feedback configurations, nonlinear circuits; see [8-
18]). the formal framework for Volterra series [1.4-8]; we can say that the topic
has a firm foundation. However relatively few attempts have been made, outside

the biological areas, to actually measure Volterra kerrnels.

This paper discusses practical techniques f2r measuring the Volterra ker-
nels of a weakly nonlinear system (device, plant, netwerk). By a weakl’ non-
linear system we mean no more than a system whizh is well described by its first
few Volterra kernels; in particular the higher order kernels must fall off rapidly.
We assume that the nonlinearities may be subtle {i.e. distortion products 40db
or more down) and that the measurement noise is lcw {or that the necessary sig-
nal averaging has been done). Examples of such systems are some high guality
transformers, electromechanical and electroaccustic transducers, simple com-
munications systems; not included are e.g. devices with dead zone, hard satura-

tion or hysteretic nonlinearities (even when these nonlinearities are subtle).
While the problems of kernel measurement in biclogy are quite different, involv-

ing stronger nonlinearities and very poor S/N ratios, much of the following is

still relevant.

Related work includes that of Narayanan and Yeyer et al. [22-25] who have
studied IM distortion in transistor circuits; Weiner and others [26] have done
similar work for simple communications systems. In these studies a model of a
transistor or modulator is assurned and expressions derived for the various ker-
nels; then certain distortions such as 2f ,—f, are measurad at a few frequencies
and input levels and checked against the model's predictions. Certain recent

* Research supported in part by the Office of Naval Research under contract N00D14-78-C-
0572, the National Science Foundation under grant ECS 80-20-640, and the John and Fannie
Hertz Foundation.

¢¢ The authors are with the department of Electrical Engineering and Computer Sciences,
and the Electronics Research Laboratory, University of Caifornie, Serkeley 94720.
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work by Ewen and Weiner [17] assumes a specific {but important) form for the
Volterra kernels and gives methods to solve the resulling parameter
identification problem. In contrast to these studies we mmaks no assumption
about the form of the kernels. These measurements are thus useful in systems
of such complexity that no simple model is obvious, and for model validation
when one is.

We have chosen frequency dcmain Volterra karnels over time domain Vol-
terra kernels and Wiener kernels for two reasons. The first is that it is easier to
accurately measure frequency domain kernels than time domain Volterra ker-
nels when the nonlinearities are subtle. Second and more important, we are usu-
ally interested in frequency domain Volterra kernels precisely because they
have an infuitive interpretation: for example Ha(; 2y,—j=2) is a measure of the
second order difference intermodulation of »;, anc<. =, . While a similar interpre-
tation exists for time domain Volterra kernels, no such simplz interpretation
can be given to the Wiener kernels, whose apparert advantages are type of con-
vergence { Lp as opposed to local Taylor series; irrelevant to us) and "ease” of
measurement with white noise [15;18-20]. Concerning this last "advantage”, we

feel that in many applications the advent of microcomputers, D/As and A/Ds has
outmoded the use of white noise/correlation techniques. With only a few inex-

pensive components it is now possible to generate very complicated multitone
signals with all distortion products near the noise floor, often 70db or more
down. Signal processing too has gone far beyond Y. F. Lee's Laguerre lattice
filter [7:p91]. These practical considerations allow us to make a more direct

attack on the measurement problem than was possible twenty five years ago.

The organization of the paper is as follows: section 2 contains the prelim-
inaries, section 3 covers the two basic methods used to resolve the output into
its homogeneous components, section 4 discusses the basic multitone method of
measuring the kernels, section 5 introduces a new quick methed of measuring

the second kernel, and section 6 describes a simple experimental example.



With the exception of section 5, much of the material in this paper is known,
though perhaps not in the form appearing here. We have tried to keep the expo-
sition practical as opposed to theoretical. Where a statement or method may be
true for, or generalizable to, arb.itrary n, we give it for a specific and practical n,

e.g. two or three: most of the following can be formalized.

2. Preliminaries

Under very general conditions a nonlinear causal time invariant operator N
has a Volterra series
y(t)=Nu(t)=yo+y +ya+...

yn(t)=)  [ha(TiTe Tadu(t —T)u(t —T2) - - w(t—Tp)ETidTe - - ATy
where h, is a symmetric distribution supported on {#*)* and is called the nth

Volterra kernel of N. We will be concerned with those systems for which the
smeall integer, say five or six.* We refer to y, as the the nth degree cr order
component of the cutput y and assume for simplicity that y;=0. The map u -y,
is homogeneous of dagree n, that is, au-a™y, . Dach 2, also determines a
symmetric multilinear operator

N, (uy g, un )=

=f [ haimira T et —m)uelt =7g) - un{t =T )dTd T 2T

so that y,=N,{u,u,..u). These multilinear cperaisrs can z!so be specified in

terms of their Laplace transforms
n
Hn(51-32~-~sn)=f' e fh-n(t;.tz....tn)e:p(—; Sity )2t 2ty - - - dey
=1
which are called the frequency domain Volterra kernels.
K
If w is a multitone, i.e. w(t)=1(t)) a;ezp(s;t) then as t-o= , y(t)-ys(t).
i=1

where

. n
Ysa(t)= § § SO t,;ﬁ Qg Qiy " Qi exp(zlsijt) Frn{Si,Si,--St,)
=1 )=

‘l=l ia=l

*We are deliberately vegue about what “close” and “signals of interest” mean exacLy.
y vegu
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It will be important later to note that the nth crder componsent of ys is a sum of
exponentials whose frequencies are sums of n input frequencies, nagative fre-
quencies included.

References i-4, 8-18, 26, and 27 cover this matearial in more detail.

3. The Problem of Kernel Separation

In general the output ¥ dus to uw has components of all degrees, though in
the systems we consider their amplitudes fall off quickly. Ons step in measuring
the kernels, in the time or frequency domain, is to estimate the components

Y1.... of y. What we need is a stable method of estimating

1 a*
y,,-ﬁaan .'V(au).

z=3

While N(au)(t) is in general an analytic function of «, for the systems we con-
sider it is close to a low ordsr polynomic!l in «, with ceefiiciznts y;. Thus the
problem of estimating thes different order comzcnaniz is “n oroctice one of
estimating the coefficients of a noisy polynomizl. Thesre ars many ways to do
this. We'll first describe the simplest, which we cali the Vandermonde method.
Consider the fact that y, is homogsneous of degrese n. Thus if cur input is
reduced 8db, y, falls 6db, y, i2db and so on; if -u is zpplied, the odd degree
compoenents change sign while the even ones do not. Suppcsz “ve assume that
components of degree five and higher are negligitle, ie. buried in the
measurement /quantization noise. Let us apply the signals ¢;u{¢) to the device

and call the resulting responses 7;(¢t) , where «;, i=1,..4 are some wisely chosen

nonzero distinct constants. Then we have

. [al af af af|ly,] e,
g_aga§a§a§y2+ag
3l ~ |las af of af| [vs] * [es
4f |2 af af af| Vs [2a

where the e; contain measurement noise and terms of degres five and higher.

The matrix A above is a Vandermonde matrix, and is invertible since the a; are



distinct and nonzero. Approximating 2=0 and solving this equation {for each
time or frequency sample point) gives us an estimate of the components y; in
terms of the measurements =;* . This is just a simple polynomial interpolation
and is mentioned in Simpson and Power [20:p318] and Halme [8:p28].

In the frequency domain the a; may be complex and vary with irequency.**
Thus the response of a device to a signal passed through various all-pass filters
could be used to resolve the output into its homogeneous components. Some-
t.mes we know apriori that only certainA y; appear; the other ¥;'s may then be
dropped from the y vector and the corresponding coiumrns from the 4 matrix.
For example if we know only even order responses occur, the squations zbove
can be replaced with a two by two system involving just y,; and v,. This is of
course equivalent to interpolating with an even pclynomial.

The a; must be chosen carefully. Choosing tiae «;>1 has the zdvantzge of
keeping ||A7!'|| small, so the error in our resulting estimates is small. The
disadvantage is that to estimats the components a2t scme reference lzvel we
apply a larger signal, perhaps overloading the device {that is, operaiing the cev-
ice where it is not weakly nonlinear in our strict sens2). The ¢; shou!d alter-

nate in sign and not be too close, to keep |4~} smalil

But even with careful choice of the ¢;, the Vandermonde method is in z2n-
eral sensitive to measurement error. To see this consider estimating ¥, and y2
with o;=1, ag=—1. We average 7, and Tz to get y;, and since 7, is very nearly
~r3 (y2 is generally much smaller than y,) we have committed the cardinal sin
of subtracting nearly equal quantities. Of course this example is oversimplified,
but it conveys the basic idea. A more formal explanation is that the absolute
error in i is bounded by | |A~'e || , but the magnitudes of y2,y¥3 ... are generally
much smaller than y, so the relative error in these entries may be hugs. Res-
caling the equations, perhaps using y,,10y2,100y3 - - - instead of ¥, ¥z ... simply
makes A~! blow up.

*We shguld Foint out that the inverse of this matrix can e exgicitly found and thet there
ere stable and fast ways to soive these equations: see e.g. [28].

**Some of Victor's (biological) experiments can be interpreted as the Vandermonde method
with complex ; ; see e.g. [28].
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One improvement is to take additional measurements and use the least
squares solution of the resulting overdeterminad equations as our estimate of y.
This is the method we used, and although it is an improvement cver the simplest
inerpolation method, it still gives poor estimates of the higher order com-
ponents: estimating the rapidly decreasing coefJicients of a noisy polynomial is
inherently difficult. What we can say is this: we can get a zood estimate of the
first coeflicient appearing, a poorer estimate of the ne:t, and 2 very poor esti-
mate of the small high order coeificients. The fregquancy sspzration technique
we discuss below is based on this observaticn. ]t arranges icr tii2 component. we

need to estimate at some irequency to be the jirs
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frequency.

For time domain kernel measurement or when ke inzut @ s fixed, we may
have no alternative. But in other cases, clever selsciion of tii2 probing signal u
can greatly improve our estirnates. The frequency ssparaiion izcinique relies on
the fact that the {steady state) nth order respense to a muititone signal only

occurs at specific frequencies, sums of n input freguencies. Ve assume that the

input has the form u(t)=2Re f bmezp(jumt) and that the steady state output

m=1
spectrum g{kw) is measured; for notational convenience we will assume w=1
and drop the qualifier “steady state" in the following. The simplest and oldest
use of frequency separation is as follows: suppose the input frequencies are all
odd {i.e. b, =0 for & even); then the odd and even order responsas cccur at odd
and even order frequencies, respectively. To isolate a second ordsr response at
some even frequency we need only remove the 4th, 6th, etc. crder responses,
that is, estimate the z? coefficient of an even pelynomial. We czuld use the Van-
dermonde method, modifying the matrix and y, but the esstimate will be very
accurate since the second order response we seek is not swamped by a larger

first order response; it is the first large respcnse occuring at that frequency.



Moreover by applying the signal at three levels we can approximately remove
the effects of the components through degree six, as opposed to degree three
for the general case. This trick is widely known, the requirement is simply that
the input signal be odd, i.e. have the inverse repeat property as it is sometimes
called. In the next section we'll see very robust methods for measuring even

high crder kernels using frequency separation.

It should be mentioned that complete separaticn of the components of
different order by frequency separation is impessible. For whensver w is an nth
order respense frequency, it is also an n+2,n+<, ... order response frequency,

at lsast.
4. The Hultitone Method ("Harrnonic Probing')

In this secticn we discuss the actual measurement of the kernels. Suppose
we apply a two tone signal wu{t)=cocs{n,f)+cos(nzt), n,>nz>0. Then
gln,zny)=Ha{jn,. =jng)+ terms of order 4, 8,... and for certain values of n; and
np , additional terms of order 3, 5,... Applying the signal at two or three levels
and using the Vandermonde method to estimate the second degree component
of g{n,=n;) yields an accurate measurement of Hz{jn..jnz) and Ha(jn,. —inz).
At the same time we can measure Hp{jn,.jn,) and Hz(jn2,7nz) dbut these are of
less interest since they always lie on the lin2 x,=z5 . Ve simply repeat this pro-
cedure until a sufficient number of points have bean mezzurad.

A variant of this method can bes used to mesasurs the'third and higher order

T >
i

kernels. Suppose a three tone signal is appiied. Third deiree ra2sponses occur
at up to 22 different {pcsitive) frequencies, three of "vhica ire t2 input frequen-
cies n; ,ny.ng .* If we chocse integer triplets such that tiz {uil 22 frequencies
appear (the "general” triplet has this property), estimaticn of 33 yields a good
estimate of 19 points of A5 The four points H,(n,,=;n2=;n,) are of more

importance than the remaining 15 which lie on plaress where two irequencies are

equal. Note that 12 points of H; can be measured from the same experiment.

*They are:
Ny, Mg Mg 3n,, 3n, 3na |n,inyingl,
|2nytna|, [2rytng|, |2nain,|, |2raing|, |2ngzm,|, [2nging
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5. ANew Method

Unfortunately, measuring kernels by the multitone method can be quite
slow. For example to measure H, at only 100 points (relatively few) requires at
least 100 experiments, each experiment consisting of generation of a signal.
waiting for steady state, sampling the output, and then computzation (FFT, ker-
nel separation). One may have to wait through haif of these before deciding the
input level is too low or high or that another frequency range might be more
interesting. We've developed a method for getting a quick estimate of the
second kernel. We use this method to make descisicns about input level, fre-
quency range, etc. before using the siower but more robust multitone method.

It is perhaps surprising that many points of Hp{j,.j~z) can be simultane-
cusly measured since methods for simultaneously measuring imany points of
H{jw) for a linear device {pseudonoise, impulse testing) rely very heavily on
linearity. The idea is simple: arrange the second crder IM tones to lie on distinct

frequencies which don't include the input frequencies.

We start with two relatively prime integers p and g, g odd. The probing sig-
nal will have two parts: one with frequencies p, 2p...p{g—1)/2 and the other
with frequencies q.2q9,...g(p—1). We claim that the part one- part two intermo-
dulation tones are distinct. These IM tones occur at frequencies
np+mg, 0<|n|<(g-1)/2, O<m=p-1, the input tones are precisely the n=0 or
m=0 cases. Suppose that 7ip+7iig = np+mg, where 0= 7, n s(g—1)/2 and
0< 7, m <p —1. Taking residues mod g, we have 7=n{[q], and thus #=n consid-
ering the inequality in 7, n above. Hence M =m as well. This shows that the
part one -part two IM tones are distinct and do not include any input frequen-
cies. They also do not include any part one(two) -part one{two) intermodulation
tones since these are all 0 mod p (mod g ); here we use the inequality in

7., m.* The conclusion is that at the part one -part two IM frequencies, there is

*We could add more iones to the second part end simgly ignore every tii coiumn, since
these irequencies may have part one -part one coatribuzions.



no first order component and only one second ordsr contribution. Let us take

P=7, g=5 as an example. We make a table as foliows:

14 19 24 29 34 39 44
7 12 17 22 27 32 37
0 S 10 15 203 =25 ©
-7 2 3 B8 13 i8 23

-14 9 4 1 6 1@ 18

The left column and center row (in bold) are input frequencies; the other entries
are the part one -part two IM frequencies and it is easily checked that at these

frequencies there is no first order and just one second order contribution.

A quick estimate of A3 is ncw easy: we apply this muititones signal u at, say,
six different levels and use a least squares interpolaticn to es:imate 7, . Almost
every entry of gy; gives us a value of H; : in cuw =2xample above
T2(8)=H2(15j.,—77)ap where a and g are the comziex amplitucdzs at 15 and 7 in
2. This should be compared to the multitons meathed whare sniy two cr four of
the entries of g, are used and in fact the efficiency of usinz tx2 TFT is question-

able.

The distribution of points at which we estimat2 A, is interssting. We meas-
ure H, at the points in the uniform grid as in the table above, but recall that Hs

vy ¢ 1}

F—jor—jwsz). The

has two symmetries: it is symmetric and Fq{jz..jz2
region |wz|<w; is a "fundamental region” for H,, that is a minirzal region which
determines H; everywhere, and in it the distributicn is shown in figure 1 for
p=i3, g=11.

Several comments are in order concerning this quick method. First,
repeated quick-method tests with different p's or g's yield ssiimates of new
points. For example one test may estimate at 200 points; the next test at 200
new points yielding 400 points altogether: there are no redundant estimates.
The second comment concerns the choice of the complex amplitudes of the fre-

quencies in the probing signal. While it is tempting to make them all one, this is

the worst choice possible. This results in sin(ON/2)/ sin(0/ 2) type signals with

very high crest factors; the sighals spend most of their time down where the
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quantization step is significant. For a given peak level {to keep from clipping the
device, perhaps) the amplitudes are small, and the second order distortions we
are trying to measure are extremely small (i.e. small squared). To avoid these
problems we simply let an optimization routine adjust the phzases to minimize
the peak {see [30]). The practical result of this is to pack as much probing sig-
nal {L; ) as possible into a given peak.** For signals with frequencies
Sf. 2f. ...Kf near optimal phases are 6, =(wk?)/{X+1); cur optimization rou-
tine used these as starting ;Soints. For the quick tests we usad {7<p.g<i9), we
were able to reduce the peak by moere than iCGdb and thus rzaiise a 20db gdin in
measurement sensitivity. This is not far from the tound psak>VZX/2 for a K
tone unit amplitude signal. To illustrate this figurs s two 7-3 quick test
signals: the first {darker) with optimized phases and a pszz¥ of about &, the
second with zll phases zero and a peak of 8. In this case the psaik aas only been
reduced about 6db (representing a 12db gain in seccnd kernel msasurement
sensitivity), but in more realistic cases the improvement is greater. We have
now arrived at probing signals which at first glance resemble the white noise we
complained about in section one, but we hope the reader will appreciate the

" difference.
6. An Example

In this section we briefly describe our test set up and illustrate some of the
above with an example. We used a small 8085 based microcomputer to generate
the probing and trigger signals and do all computation except the FFT. an
HP3582A spectrum analyzer collected and transformed the responses. We built

several reference nonlinear devices with known kearnsis like

. B.4 0.084

Hi(s)= —= __ =

1(s) 1+s/ s8¢ Ha(s1.52)= (i+s/se)li+sa/se)
H,=0, n>2 §0=27330 RSN

and used them to check the algorithms above. Nots that thz distortion is at
most 17, i.e. at least <0db under y, . The vaiuss =i &, measurad by the multi-

e ————
:;zcédinﬂy we first used the quick method with all the amylitudes one and it really wasn't
a
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tene and quick methods were within 2% and 77, respectively, of the predicted
values. Figure 3 shows the magnituds of H, measwed by tha multitone method;
it is indistinguishable irom the graphs based cn 2ither the guic test measure-
ment or the expression above.

The example we give is an electro-acoustic trzisgucer, a JL 2441 compres-
sion driver on a Northwest Sound 90 degree radial 2orn, measured 0.5m on axis.
We chose this example because it has no simple mcdei” and as far as we know
these measurements have never been mads before. To illustrate frequency
separation and the fact that. N{oau) is indeed close to a low order (even) polyno-
mial in «, figure 4 shows the real part of the output at 80CHz versus the input
ammplitude of a 400Hz signal. The Vandermonde meathod correctly estimates a
large second order, small fourth order, and nsarly zero first znd third order
components at 800Hz. A plot like figure 4 can warn us that a device is not well-
described by its first few Vo terra kernels if it is nct clcse to a !ow order polyno-
mizl.

Figures 5 and 6 show typical input and output spectra for this transducer
during a i3-1i quick test. [n figure 5 one can see clearly the large first order
responses at the input frequencies and the smaller hizher order responses. The
responses on the right which are about 8db higher are mostly second order part
II -part II intermodulation. Veasurements of tae second kernel ¢f the trans-

ducer by the quick method and the two-tone msthed

[+

gresd within 3%. Figurs 7
shows the magnitude of the second kernel measured by the quick method. The
peak distortion here is only 2%. Some features are reccognizable, ior example
the "trough” along the line f,+f,=0 suggests a linear high pass filter {horn cut-
ofi) following 2 nonlinear operator.
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Figure Captions, Measuring Volterra Kernels, Boyd et al.

fig. 1: Distribution of points measured by the 13-11 quick test (described in
section 5) in the region | f2|<f;.

fig. 2: Two unit amplitude signals for the 7-5 quick test: the first (darker) is
with nearly optimal phases, the second is with zero phases. The peak in the
optimized signal has been reduced about €db below that of the zero-phases sig-
nal, giving a second kernel measurement sensitivity gain of about 12db. For
more realistic quick tests, e.g. 13-11, the improvement is more drastic.

fig. 3: [Ha{f1.f2)| for reference device #i. The Reference level is 1V}, f,
and f. are actually shifted slightly so thet none of fy, fz.,f1+f2.f1—f2is
zero.

fig. 4: Real output at 800Hz vs amplitude of £00Hz input signal for example
of section 6, JBL 2441 compression driver cn Northwest Sound radial horn, 0.5m
on axis.

fig. 5: Typical input spectrum for 13-11 quick test.

fig. 6: Typical output spectrum for 13-ii quick test, JBL 2441 driver on
Northwest Sound horn, 0.5m on axis.

fig. 7. |H2{f1.f2)| for transducer exaraple in section 8, JBL 2441 compres-
sion driver on Northwest Sound radial horn, 0.5m on axis. The raference level is
20PaV™? . f,=0 values are not measured by the quick test and are interpolated.
The "trough” along f,+f2=0 represents a linear high pass filter following a non-
linear operator.



+75

-75

Points Measured by 11-13 Quick Test

//*
%
¥ %
* =
* ® *
¥
¥ *
¥ ¥
¥ F X
% o«
%
% %
*
¥ »
*
*  *
#

*

*

*

*

*

*

*

*

*

¥

'cﬁw ‘

1S8




4
theta

a1

.0

......

2.6

.0

ig(x,theta)
sig(rero,theta)

-
=

2;

i:

T g

IR ISR RIS REENENE W] EEWEAS RN NI

10

L3 <

6

2.0




IH2(f1,£2) ! (db)
-2.388e+1 _

~3.880e+1 }
-4.000e+1 5
p LT _
-5.000et1 | o oo< S
B ddtet] | AT Tl PRSI 2.000e+3
5.442e+1 1 T y 7o . LI I I I
2.000e+3 * Yk SRS L

1.000e+3

-1.0008e+3

£11HZ) -2.000e+3 = -2.P00e+3

f2(Hz)



§.0x18"2

Re88BHz (amp)(y, 1v Qzapa)

O~
[y

\

RN L T I ]

nnnnnnnnn

{:ia‘wt— 4

8.

amp
(v)



1o

-10

)

N
L U]
o

Ui} (dby)

TavrerarrTy

........

LU L L L

Hanu e e o B R B B

Lot el |

f (Hz)

3.0

L]
HENENRYS \AIIIIIAIJn‘XIGQ
L]

4.0 6.0



'Fqu- G



tH2(f1,f2): (db)
-3.7@@e+1 _
-4.000e+1

-5.000e+1 -‘-

-6.0088e+1 % Vo

TR

-7.000e+1 3 %
7.000e+1 R

i
!
[}

oo
et
g

e
2.009e+3 -

s
) I
%0 e, y

Iy 1.380e+3
‘ 1.800¢e¢+3
1 | 0 0 a e + 3 .g“..o-.-!.n.u.u

f1(Hz)

e,

.......... * .
2.208e+2

-1.8000+3
-1.300e+3

f2(Hz)

Frje 7



	Copyright notice 1983
	ERL-83-7

