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Abstract

We study the multiple time scales structure of linear systems of

the form

e
[}

Ao(e)x + Bo(e)u

Yy Co(e)x

with a view to obtaining fapproximate" Tower order transfer functions
valid at different time scales. Our development includes the classical
two time scales case as well. We use our results to study the positive
realness of linear systems with multiple time scales in terms of the

positive realness of the reduced order transfer functions.
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Section I. Introduction

It has been widely recognized that weak couplings are responsible
for the multiple time scales evolution of linear systems. The study of
systems evolving at multiple time scales is simplified by studying
reduced order models of these systems valid at specific time scales.
Such reduced order models are obtained by assuming that the dynamics at
faster time scales has reached its equilibrium and that at slower time
scales has yet to evolve. In Coderch et al. [1], the multiple time scales

structure of the autonomous linear system
X = Ao(e)x

is studied. Motivated by their results we study linear, multiple time

scale input-output systems of the form

e
I

= Ao(e)x + Bo(e)u
(1.1)

<
|

= Co(e)x

with a view to obtaining approximate, lower ofder transfer functions valid
at different time scales. We relate the time scale behavior at these
separate time scales to the overall input-output behavior of the system
(1.1).

There is an extensive literature on two-time scale singularly per-
turbed systems (see Kokotovic [3] for a review) and an input-output time
scales decomposition has been suggested in the work of Porter and Shenton
[4], and Luse and Khalil [5]. Our own work has been motivated by the
paper of Saksena and Kokotovic [6], who show (in the two-time scale case)

that the system (1.1) has a strictly positive real transfer function



if the reduced order slow transfer function and the fast transfer func-
tion are strictly positive real. Our contribution in this paper is as
follows: We utilize the methods of Coderch, et al. [1], which we review
in Section 2 to obtain the input-output description of linear systems
with two time scales in a form resembling that of Luse and Khalil [5]1,

it however extends naturally to the multiple time scale case (Section 3).
We use this description in Section 4 to generalize the results of Kokotovic
and Saksena [6] on the positive realness of two-time scale transfer func-
tions. Our method of proof is, however, quite different. Finally, in
Section 5, we define and discuss the input-output behavior at different
time scales of the system (1.1) and positive realness of multiple time
scale linear systems.

The reason for the interest in the positive realness of multiple time
scale systems is its relevance to the study of the robustness of adaptive
control schemes to unmodelled dynamics. Roughly speaking we have shown
here that positive realness of a reduced order transfer function at one

time scale is preserved only if all the faster time scale dynamics

(unmodelled dynamics) are also positive real! This implies non-robustness

of the positive realness of a transfer function to unmodelled dynamics.

Section 2. Mathematical Preliminaries and Review

In this section we review briefly (a) some facts from the perturba-
tion theory of linear operators (from Kato [2]) and (b) some of the
results on the multiple time scales decomposition of autonomous linear

differential equations (from Coderch et al. [1]) of the form

x = A(e)x



with A(e), an analytic function of €.

2.1. Perturbation Theory for Linear Operators

Consider a linear map; T: ¢" - ¢". o(T), the set of all eigenvalues
of T is called the spectrum of T. The function R(§,T): € -o(T) » ¢™Xn
defined by

R(E,T) = (T-£1)""

is called the resolvent of T. The resolvent of T is an analytic function
with singularities at Ay € o(T), k=1, ..., s. The Laurent series of
R(£,T) at My has the form

m, -1

k . . © . s
R(E,T) = -(&-2,)7'P, - L (g-2,) o} + 1 (g2 )'s; " (2.1)
1= 1=

where

P, := .2?‘1. Jr R(E,T)dE € ™M (2.2)
k

(with rk a positively oriented contour enclosing xk but no other eigen-

value of T) is a projection (i.e. Pi = Pk) called the eigenprojection of xk;

m = dim R(Pk)

is the algebraic multiplicity of Xk'

D, 1= ok Jr (5-3 R(EL T)CE. (2.3)
k
M
is the eigennilpotent (i.e., Dk = 0) for xk, and
21 -1
S = 7o | (63, ) TR(EL TN (2.4)

Ty



It is known that

PePe = SkePk (2.5)
" = RPN @ ... ® R(P,) (2.6)

and that R(Pk) is the generalized eigenspace for the eigehva]ue A

K
Further, the spectral representation of T is

S
T= kzl (AP D). (2.7)

An eigenvalue Xk is said to be semisimple if its associated eigennilpotent

Dk is zero.
We now discuss the perturbation of a linear operator T(e) of the

form

T(e) =T + 0201 " 1M ¢ € [0,e,] (2.8)
n=

Here (2.8) is assumed to be an absolutely convergent power series expan-

sion. The eigenvalues of T(e) satisfy
det(T(e)-gI) = 0 (2.9)

This is an algebraic equation in £ whose coefficients are e-analytic.
From analytic function theory it follows that the roots of (2.9) are
branches of analytic functions of € with only algebraic singularities.
Hence the number of (distinct) eigenvalues of T(e) is a constant s,
independent of €, except at some isolated values of €. Without loss of
generality let € = 0 be such an exceptional point and further let it be
the only such point in [O,ao]. In the neighborhood of the exceptional

point, the eigenvalues of T(e) can be expressed by s distinct, analytic



functions: A](e), cees xs(e). These may be grouped as

{A](e), cens Ap(e)}, {Ap+](e), cees Ap+2(s) s oo

so that each group has a Puiseux series of the form (written below for

the first group)

kh(e) = )+ a]whe]/p + aszhezlp + ... h=1, ..., p

where A is an eigenvalue of the unperturbed operator T and w=exp{i2n/p}.
Each group is called a cycle, A is called the center of the cycle and

the group of eigenvalues having A as center is called the A-group split-

ting at € = 0. : The perturbations of the resolvent and eigenprojection

are discussed next:

Proposition 2.1 [1], [2]

If £ ¢ o(T), then £ ¢ o(T(e)) for € ¢ [0,50] and

RE,T(e)) = R(E,T) + "f] &M (M) (g (2.10)
n.—.
where . o) ( o)
R(M () = I V)PR(E,TT " R(E,T)T V2 TP R(E,T)
v]+...+\)p=n
v, >1 (2.11)

i
the sum being taken over all integers p and Vis eees vp‘g 1 satisfying

Vit Vg = M The series (2.10) is uniformly convergent on compact

subsets of € - o(T).
Let X be an eigenvalue of T = T(0) with (algebraic) multiplicity m.
Let T be a closed contour in €-o(T) enclosing A but no other eigenvalues

of T. From the proposition 2.1 above, it follows that for € small enough



R(,T(e)) is well defined for £ € T (i.e., there are no eigenvalues of

T(e) on T'). Further, the matrix

-1
Ple) =y jra(e,r(enda (2.12)
is a projection which is equal to the sum of the eigenprojections for
all the eigenvalues of T(e) lying inside I'. Using (2.10) and integrating

term by term (recall uniform convergence from Proposition 2.1), we have

P(e) =P+ ozoen p(n) for ¢ € [0980] (2'13)
n=1
where
P =l JPR(g,T)dg (2.14)
and
(") - %.JFR(")(ENE. (2.15)

P(e) is called the total projection and R(P(c)) the total eigenspace for

the A-group of eigenvalues of T(e).

The following proposition is useful in the results of Section 2.2:

Proposition 2.2

Let A be an eigenvalue of T = T(0) of algebraic multiplicity m and
P(e) be the total projection for the A-group of T. Then

(T(e)-ARCe) - A Ir(e-x)a(g,r(e))ds =2, nzo e 7(n) (2.18)

where D is the eigennilpotent for T and f(") is given by



i) . -nf](-l)p ) s(k‘)T(v‘)s(kz)...s(kp)r(vp)s(kp+1) (2.19)
p=1 v]+...+vp=n+1
¥ty =1

v;>1 ,kj_>_—m+1

with S(o)

P, sUK) o pK gor k > 0 and

(k)

Eg%; IT(Q-A)-TR(E,T)dg]k for k > 0

Corollary 2.3

If A =0 is a semi-simple eigenvalue of T = T(0) in Proposition (2.2)

above we have

T(e)P(e) _ f N f(n)
€ n=0

with the ?(") defined as above, with A = 0.

2.2, Multiple Time Scales Structure of Autonomous Linear Systems

We state here the results of Coderch et al. [1] for the multiple

time scales structure of the autonomous linear system

X = Ag(e)x x ¢ R" (2.20)

Agle) =} epAop e ¢ [0,e,] (2.21)

The matrix Ao(e) is assumed to be semistable for each ¢ ¢ [O,eo] (i.e.,
all eigenvalues in &_ except for perhaps a semi-simple eigenvalue at 0),

with constant rank n for € ¢ ]O,eo]. As is shown in [1] the system (2.20)

exhibits multiple time scales iff

rank AO(O) <n



Further, heuristically there is a connection between the time scales
evolution of (2.20) and the eigenvalues of A(e). In particular, eigen-
values of order ek are symptomatic of system behavior at time scale t/ek.
We discuss how to make this connection precise. Since AO(O) has some
zero eigenvalues, we can define Po(e) to be the total projection matrix
for the zero group of eigenvalues of Ao(e). Define

. Ao(e)Po(e) '

AI(S €

(2.22)
Then if AO(O) = A00 has semi-simple null structure - SSNS (i.e., 0 is a

semi-simple eigenvalue of AOO) the matrix A](e) has series expansion of

the form
A(e) = § PA (2.23)
by Corollary (2.3). Intuitively, A1(E) represents the part of Ao(e)

having eigenvalues which are at most O(c) - i.e., the zero group of eigen-

values of Ao(e) - corresponding to slower dynamics of (2.20). If the
first term of the series (2.23), namelyA10,has semi-simple null structure

it follows that

P (e)A; (e) P (e)Py(e)Ay(e)
AZ(e) = € = E:2

where P](e) is the total projection for the zero group of eigenvalues of

A](e), has series expansion

Ae) = T P,

p=0 P

Proceeding recursively in this fashion and assuming successively, that

i i . , ... have SSNS,
AZO’ A30, eees i.e., the leading terms of Az(e) A3(e)

-9-



we define Ak(s), Pk(s) for k =0, ..., m. The recursion ends when

m
L

Am+1(€) = 0 or equivalently
k=0

rank Ako =n. (2.16)

The assumption that AOO’ A]O’ cees Amo have SSNS is referred to as the

multiple semi-simple null structure (MSSNS) assumption. Under this assump-

tion, Ao(e) represents the fast (time scale t) dynamics, A](s) the next
slower (time scale t/e) dynamics, Az(e) the following slower (time scale
t/ez) dynamics, ... . Further, the total number of time scales is the
stopping point of the above recursion, i.e., m. The following proposition
establishes some important properties of the Ak(e), Pk(e) and the comple-

mentary projection to Pk(e), i.e., Qk(a) =1- Pk(e).

Proposition 2.4.

For € small enough, including zero and k =1, ..., m

(i) P'i (S)Pj (5)

Pj(E)P'i(e) i =0, 0oy m

(11) Q4(e)gy(e) =0 i #3J 1,=0,...,m

(i11) € = R(Qy(e)) @ ... @ R(Qy(e)) ® R(Py(e)...P,(€)) (2.25)
(iv) rank Q,(e) = rank A g (2.26)
and for € small enough but not zero

(v) 0, (e)Ay(e) =eXq (€)A, (e) = *A, (e)Q, (€) = Ay(e)Q, (e). (2.27)

Remarks: By (2.27) R(Qo(e)) is the generalized eigenspace of order 1
eigenvalues of Ao(e), R(Q1(e)) is the generalized eigenspace of the

order e eigenvalues of Ao(e) (i.e., the generalized eigenspace of the

-10-



order 1 eigenvalues of A](e)), ... (2.25) then is a decomposition of C"
into eigenspaces corresponding to different orders of eigenvalues of (2.25).

Next, we study the evolution of (2.20) at different time scales:

Definition 2.5 (Time Scale Behavior of (2.20))

Consider (2.20) and let a(c) be an order function (i.e., a: [0,50]
+R_, continuous with a(0) = 0 and monotone increasing). x(t) in (2.20)

is said to have well defined behavior at time scale t/a(e) if there existsa

bounded, continuous matrix function Y(t) such that, for any §>0 and T<,

lim  sup_[lexp{Aj(e)t/ale)}-Y(t)]| =0 (2.28)
e+0 te[s,T]

It is said to have trivial behavior at time scale t/a(e) if Y(t) can be

chosen to be zero in (2.28). o
Ao(s) is said to satisfy the multiple semi-stability (MSST) condi-
tion, if (i) Ao(e) satisfies the MSSNS condition and (i1) the matrices
AkO’ k=0, ..., m are semi-stable (i.e., all eigenvalues in &_ except
for perhaps a semi-simple eigenvalue at 0). The time scale behavior of

(2.20) when Ao(e) satisfies the MSST condition is given by.

Theorem 2.6 [1]
Let Ao(e) satisfy the MSST condition. Then,

(i) 1im sup nexp{AO(e)t/ek}-@k(t)n =0
e¥0 8<t<T

¥6§>0, T<ew, k=0,1, ..., m1.

{]
o

(ii) 1im sup "exp{AO(e)t/em}-Qm(t)"
e¥0 §<t<w

where ¢k(t) is given by:

-11-



@k(t) Qk exp{Akot} + P0 cee Pk

=Py -e- Py exp At k=0, ..., m o

Section 3. Input-Output Description of Two-Time Scale Linear Systems

In this section we study transfer functions of two-time scale linear,
time-invariant systems of the form

. n n

x=A”x+A]zz+B]u X €R', uelR

€2 = A21x + AZZZ + Bzu z ¢ R" (3.1)

<
!}

"o
C]x + sz + Du y €R

We first describe the classical [3] analysis of (3.1) and then use the
machinery of Section 2 to derive the desired results. The singularly per-
turbed approximation to (3.1) obtained by setting € = 0 yields (with A22

assumed non-singular):

X)e
1}

Arx + Bru
(3.2)

y Crx + Dru

. . -1 . -1 o _ -1
With A, := Ayp = AppRoofors By 1= By = ApphygBas G i= G - CoRyohyy and
Dr :=D - CzAééBz. The system (3.2) is of order n and along with the

algebraic relation
z = -A2JA X
ey
provides an approximation to the trajectories of the full order (m+n)

system (3.1) on compact intervals of time bounded away from the origin

provided that °(A22) c E_, i.e., A22 is exponentially stable. We also

-12-



associate with (3.1) the fast system (time scale et) by rescaling time
T = t/e and then formally taking the limit € ¢ 0, namely

g% = A222 + Bzu (3.3)
ys= sz + Du
we denote the transfer function of the reduced system (3.2), ﬁr(s),
Hu(s) := C.(s1-A)'B, + D (3.4)
and the transfer function of the fast system (3.3), ﬁf(s)
He(s) := Cp(sI-Ayy) 1B, + D. (3.5)

We study the relation between Hr(s), Hf(s) and the transfer function of
the full system ﬁe(s). First note that from the definition of Dr we

have

Tim A (s) = D_ = lim He(s) (3.6)
oo | " os-0 f

A laborious calculation yields that
H_(s) = Hu(s) + Heles) - D+ 0(e) (3.7)

The 0(c) is a matrix whose elements are uniformly of order € in the
common domain of definition of ﬁr(s), ﬁe(s), ﬁf(es). The exact form of
the 0(¢) term is unintuitive and is omitted. Expressions (3.6) and (3.7)
taken together are suggestive - the overall transfer function ﬁe is (up
to an error of order ¢), the sum of the reduced order transfer function
ﬁr(s), the frequency scaled fast transfer function Hf(es), minus the

d.c. value of ﬁf(s) (or equivalently the high frequency asymptote of
fi.(s)). The form (3.7) has also been derived by Luse and Khalil [5].

-13-



From our standpoint the 0(e) term is unwie1dy and the preceding tech-
nique does not generalize to the multiple time scale case. Hence, we

use the techniques of Section 2 to derive an alternate expression for
He(s).
To convert the system (3.1), which is singular at =0 to the form

studied in Section 2.2, consider the undriven form of (3.1) in the

T = t/e time scale

X €Ay Ay, \[ X X (3.8)
= =: Ao(e)
2! A1 Ay /\z 2
[ ' . dx dz N
with x', z' representing dt * T respectively. Then we have

0 0 A A2

Ao(t-:) = + ¢ (3.9)

A o 0

Under the assumption that A22 is nonsingular we see that A00 the first
term of (3.9) has SSNS with n eigenvalues at 0. Let Po(e) be the projec-
tion onto the zero group of eigenvalue of Ao(e). Then, using formulae
(2.13)-(2.15) of Section 2 for Po(e) we see that
_ T _np(n)
Po(e) = PO(O) + ngl € P0 (3.10)

with

-14-



-1

S =& I 0
'm‘fr e

I -
(Ayp-E1) U (AyymED)!
I 0
- (3.11)
~Agohyy O
A somewhat longer calculation using (2.10), (2.11) yields
1
p1) = -m-J R (g)ag
(A ALy 7 (3.12)
12PoaPa1 12722 .
= | -AZ2a,.A
22A21 n
-1 -1 -1
+A2%A21A12A22A21 Araha1A12R92
_ *A20A01A 12A22 21 i
2

(3.10), (3.11), (3.12) yield the form of Po(e) up to terms of order €.
We block diagonah’ze the system (3.8) using the change of basis

T: R >R" def1ned by

: -1
Inxn : nxm
T(e) := | P(e) [----- (I-P(g)) |-=---- (3.13)
Omxn : Imxm
]
Using (3.11) we see that at € = 0
I o|™!
T(0) = -1 (3.14)
ARy 1

which is well defined. By continuity then, T(e) is well defined in

some interval [0,30]. By construction the first n columns of T(e)']
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Using the transformation matrix T(e) of (3.17) and defining

[§]= T(e)[x], and converting back to the t-time scale we see that
z

the diagonalized system satisfies

N
x | = Kr(e) 0 ri 1+ Er(a) X
€2 0 Rzz(e) z ﬁz(s) z $
y=[C(e) Cyle)] | X |+ Du
? J

By aRr A Al Ry er  F () o

Now, by inspection of (3.19) we have

A(s) = C(e)(SI-A (€))7 B (€) + Cyle)(esI-Apy(e)) 1Byle) + D (3.20)

The form (3.20) is very similar to (3.7). In particular, the last two
terms constitute (up to an error of order €) ﬁf(es). At € = 0 they also
yield D - CZAZ;B2 Dp- The form (3.20) is more convenient for analytic
purposes since all the matrices in (3.20) are continuous functions of ¢
(cf. the results of Section 4). Further, this block diagonalization

technique is useful for systems with multiple time scales (cf. Section 5).

Section 4. Positive Realness of Two Time Scale Systems

Recently, in problems of adaptive control, the robustness of the
strict positive realness condition has been a topic of discussion. 1In
this section we discuss the positive realness of a square (ni=n0) two
time scale transfer function ﬁe(s) in terms of the positive realness of

ﬁr(s) and ﬁf(s). Our results are a generalization of related results

-17-



derived by other methods in Saksena and Kokotovic [6] in the special

case that ﬁf(s) is a positive constant. Our techniques enable the discus-

sion in this section to be generalized to the multiple time scale case.

Definition 4.1 [7]

R n.xn o
A matrix Z(s) € R(s) ' ' is said to be positive real (PR) if Z(s)

is analytic in &+, any purely imaginary pole jwo of 2(5) is simple, with

associated residue matrix positive semi-definite Hermitian and for all

other ju (weR), Z*(jw) + i(jw) is positive semi-definite Hermitian.

Definition 4.2

R n:Xxn.
A matrix Z(s) € R(s) ' ! is said to be strictly positive real (SPR)

if 2(s) is analytic in C,, the closed right half plane, and for all

w € R, 2*(jw) + Z(jw) is positive definite Hermitian.

The key to our results is the following theorem.

Theorem 4.1

xn Xn

nxn; n.
Let A(e) e R™", B(e) e R ', C(e) € R ' be continuous functions of ¢

n.xn.
and D eR ' Y. Then the transfer function

ﬁe(s) = C(s)(sI-A(e))']B(e) + D (4.1)
is SPR for € ¢ [0,e*] if ﬁo(s) is SPR.

Proof: It is easy to see that ﬁo(s) analytic in the right half plane
implies that ﬁe(s) is analytic in m+ for € small enough. Thus, we only

need show
ﬁ;(jw) + ﬁs(jw) > 0 Y » ¢R.

First we claim that given wg > 0 3 vy>0 such that

-18-



ﬁa(jw) + ﬁo(jw) > i%— for fu| > wg. (4.2)

(4.2) is true when n; = 1 (i.e., the scalar case) since in that case the
SPR condition implies that the proper rational function ﬁo can be of
relative degree 0 or 1. For the general case consider x*ﬁo(jm)x for

x € ", If (4.2) is false, then for fixed wo there exist sequences

n.
{xi,xi €C 1,||xi =1} and {wi : l“’il > wo} such that

mfx;r[ﬁo(jmi J#H% (Guy )Ixg > 0 as § > (4.3)

n, ,
Compactness of the unit ball in € ' implies that we may assume {xi} is

n,
a convergent sequencewith limit X ¢ € '. Therefore from (4.3);
2—* o . Dkl e - . .
wiX [Ho(Jmi)+H0(Jmi)]x +>0as i~ (4.4)

But this is a contradiction since i*ﬁo(jm)i is a scalar SPR transfer
function. (Either {wi} has a bounded convergent subsequence so that there

exist finite w € R with
X*[Hy (30)+H5(30)1% = 0

or {“i} is unbounded and (4.4) violates condition (4.2) for scalar SPR
transfer functions).
Now using the Laurent series for (ij-A(O))'] in (4.2) we have for
lo| > &), Targe enough
D+ DT - 2{C(0)A0)B(0)+(C(0)A(0)B(0)} > X (4.5)
w w
neglecting higher order terms on the left hand side. Continuity in € and

the fact that D is constant implies that
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D+D™- {C(e)A(e)B(e)+(C(e)A(e)B(e)) T} 2 EYLZ (4.6)
W W

for |w| > &oand € € [0,80]. Now, we can add on the extra terms inthe

Laurent series for (ij-A(e))'] to (4.6) to obtain that

ooy + Bzo) > L5 (4.7)

for |w| > wgand € € [O,eo]. In the compact region |w| < wy» positive

definiteness of ﬁo(jw) + ﬁg(jw) implies that 3y such that
Hy(du) + B3 (3w) > ¥1 for |u| < v,

and continuity in € yields,

ﬁe(jm) + ﬁ;(jw) >-%} for |u| < wg. (4.8)
Combining (4.7), (4.8) yields the desired conclusion. o

Corollary 4.2. Let the assumptions of Theorem (4.1) be in effect except

that D is a function of ewith D(0) + D(0)* > 0. Then the conclusion of
Theorem (4.1) still holds.

Theorem 4.3

Consider the two time scale system of (3.1) with n; = ng. Further,
let the reduced order system ﬁr(s) of (3.4) be PR, analytic in C_, except
perhaps for a simple pole at s = 0 and the fast transfer function ﬁf(s)

be SPR. Then, the transfer function ﬁs(s) of (3.1) is PR.

Proof: From the setup of (3.1) we see that ﬁs(O) = ﬁr(o) and

lim sH (s) = 1im sﬁr(s). Thus, in the case that ﬁr has a simple pole at
s»0 € s+0

s =0, ﬁe also has only a simple pole at s = 0 with the same residue as
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A

A o
Hr‘ Hence, H8 is analytic in C, and the only pole on the jw-axis is a

simple pole at s = 0 with positive semi-definite residue matrix (same as
ﬁr)' Hence to prove that ﬁe is PR for € small enough, we only need show

that

A*. " .

HE (Jw) + H (jw) > 0
. for € small enough.

Consider the expression (3.20) for ﬁe(jm). For w ¢ any compact inter-

val [-w1,w]], ﬁe(jm) is close to

C(e)(sI-A,(e)) 1B (€] + §(e)(~Ryy (€))7 1B, (e) + D (4.9)

which in turn is a perturbation of

-1 _a
C (sI-A) 1B, + D = fi (s) (4.10)

i.e., Cr(O) = Cr’ Ar(O) = Ar’ Br(O) = Br and D-,CZ(O)AZZ(O)BZ(O) = Dr'
Further, since ﬁf(s) is SPR and Hf(O) =D, (equation (3.6)) we have that
D, + D > 0. Since (4.10) is SPR, (4.9) satisfies the conditions of
Corollary 4.2 and we have that (4.9) is SPR. Consequently, for any 61

3 61 small enough such that
Bo(dw)* + B(iw) >0 Yue [yl ¥ee[0,E] (4.11)
Also ﬁf(s) SPR implies from Theorem 4.1 that the transfer function

Cz(e) (esI-Rzz(e))']Ez(e) +D = ﬁf(e,s)

is SPR. Further from the estimates of Theorem 4.1,

He(e,du) + H¥(e,du) > 1—\)12—2 .0 €R (4.12)
tew

for some v,e € [O,eo]. Also, in (4.9) we see that Cr(e) (sI-Ar(e))-1Br(e)
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is strictly proper so that 3 vy,u;,eq, > 0 such that ¥ lo| > wys € € [0,8q]
C.(g)(jwI-A (a))'1B (e) +{C_(e)(jwI-A (e))-]B (e)}* < Xli (4.13)
r r r p E/AJWL=A, r 2 y
Given v and V4 the values of € and wy can be revalued (i.e., € smaller

and wy larger) so that

2% <1 > for |w| > w
w ?']+€2w2

-|, € € [.o’e.l]'

Seeing that ﬁe(jw) is the sum of the left hand side of (4.12), (4.13) we
get

A_(ju) + ﬁ:(jm) >0 (4.14)

for |w| > Wy and € < min(eo,e]). Combining (4.11) and (4.14) yields

that ﬁe is PR for € small enough. o

Corollary 4.4

If both ﬁf(s) and ﬁr(s) are SPR, the full order system ﬁe(s) of (3.1)
is SPR for ¢ ¢ [0,60]. o
The following examples illustrate the necessity of the conditions of

Theorem (4.3).

Example 4.1 (Fast System Zero)

1
+
[ =

€2 -1 -1 z 1

(1 0) [x\ -
z
1

fie(s) = gl is SPR, but Agls) = 0 (not SPR). However, A_(s) = sr=orryeT

<
[}
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is not SPR since its relative degree is 2.

Example 4.2 (Fast System PR but not SPR)

n
+
[ =

~ 3 .. ~ L
He(s) = S5y wtznch is SPR, but H(s) = E%T which is PR (but not SPR).
H (s) = —§%§§-— so that

€S +s+1

Re fl_(ju) = (3‘6‘3 )("e‘; ) .
(-ew +1) +0)

2

This is negative for w satisfying 3-ew” > 0 > 1-em2.

Example 4.3 (Reduced System PR, but not SPR)

X1 1 1 -1 1 2
€2 1 2 -1 z 1
y = (0 -1 1) Xy
X2
z

A~ ~ 2
Hf(s) = E%T is SPR and Ho(s) = 1?%%%— is PR but not SPR. However thg poles
2 1

3. 1 - ;
+ - (1+-E)k to= 0, showing that the

of the full system satisfy A

full system is unstable for small €.

Section 5. Multiple-Time Scale Linear Systems

We consider in this section input-output descriptions of linear

systems of the form
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XK
Ll

= Ao(e)x + Bo(e)u
(5.1)

y Co(e)x

nxn. n.xn
with Aj(e) € R™", By(e) ¢R ' and Cyle) € R 0™, Under the MSST assump-

tion of Section 2 we generalize definition 2.5:

Definition 5.1 (Time Scale Behavior of (5.1)

The system (5.1) is said to have well defined behavior at time scale

t/o(e) (with a(e) an order function) if there exists a bounded continuous

matrix function Y(t) such that for any 6§ > 0, T > =,

i 1
llg tefg?T] u;agy-Co(e)exp{Ao(e)t/a(e)}Bo(e)-Y(t)H =0 (5.2)

It is said to have trivial behavior at time scale t/a(e) if Y(t) can be

chosen to be zero in (5.2). o

By the MSST condition, Ao(e) also satisfies MSSNS so that by Proposi-
tion (2.4):

Agle) = izoeiQi(e)Ai(e) (5.3)

Using (5.3) and the fact that
R" = R(Qy(e)) ® ... DR(Q, (e)) (2.25)
and Q;(e)Q;(e) = 0, we obtain
Q;(e)x = eiAi(E)Q,-(E)x + Q;(e)By(e)u

¥; = Cole)Qy(e)x | > -
5.4

]
y= 1V
i=0 !
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equivalent to (5.1). To find conditions under which we obtain (m+1) sub-
systems with time scale behavior at time scales of order t, t/c, t/ez,

cees t/em respectively, consider a change of basis T(e) ¢ R™™ con-
structed as follows:

First, from Proposition (2.4), we have that rank Qk(e) = rank Ak0=: Pk
for € small enough. Now choose matrices Mk’ k=0,1, ..., m of dimen-

sions nXxp such that Qk(o)Mk is full rank (pk), and define
T(e) = [Qy(eMg: -+ Qg (M 110 (M, 17! (5.5)

T(e) in (5.5) is well defined for ¢ small enough, since it is well defined
at € = 0. By the definition of the projection operators Qi(e)’ the P
column vectors of Qi(e)Mi’ i=0, ..., mare an independent set of vectors
spanning the ‘'non-zero group' eigenspace of Ai(e)’ i=0, ..., m. Thus,

T(e)Ag(e)T(e) ™' is of the form

Ae) + 0 'ot o ]
- - - P - - - l- - - - -
0 eh,(g) 0+ 0
S (5.6)
0 0 . 0
. ! . ! ' :
- -+ == - - r-m:'- -
0 1 0 I 0 e Am(e)
L | I I i
- pkxpk .
where Ak(e) €R are stable, for € small enough by the MSST assumption.

Py XN,

- - n~xp
Define matrices B, (e) € R k™ and Ck(e) ¢R 0 k, by

o

- 7
Bo(e)
T(e)By(e) =| . (5.7)
Lém(e)a
and
CO(E)T-](E) = [Eo(e)g Eem(e)] (5.8)
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Note that Ek(e), Ek(e), Rk(s) are analytic in €. Thus, (5.1) may be

decoupled into the (m+1) subsystems

N
k. = e A, (e)xs + Bs(e)u, Xs € R
i - & ANEIY i > %4
Yi = 61’(5)’(1‘ > (5.9)
m
y = 2 Y
i=0 )

We now give conditions under which they have well defined behavior at
time scale t/e'. Consider the impulse response of the ith subsystem of

(5.9) at time scale t/ei (i.e. Definition (5.1)) given by
LT, (e)expih, (e)t1B; () (5.10)
€

A sufficient condition for (5.10) to have a limiting value as €6 +0

uniformly for t ¢ [§,T] is that

C; ()M ()8, (e) ~ o(e?) § = 0pensny] (5.11)

At faster time scales i.e., t/ek for k < i, the impulse response of the

ith subsystem is
1 = = v i-K, 43 |
< Ci(e)exp{Ai(e)e t}Bi(e) (5.12)
€

(5.12) has a uniform 1limit as €¢+0 for t ¢ [§,T] if
C;(e)B;(e) ~ 0(e¥) (5.13)

(5.13) in turn is implied by (5.11). In fact if (5.11) holds the uniform
Timit of (5.12) is 0. At slower time scales i.e., t/ek for k > i, (5.12)

has the uniform 1imit 0 as € +0 for t € [8,T] if Ki(s) has its eigenvalues
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in 3_. This in turn is implied by MSST assumption.
Thus, under the MSST assumption and condition (5.11) for i =0, ..., m,
the subsystems of (5.9) have well defined time scale behavior at all

time scales t/sk. However, the ith subsystem has non-trivial time-scale

behavior only at the time scale t/ei. We summarize these results in a

proposition:

Proposition 5.2

Consider the decomposition of (5.1) into the form (5.9). Further,
assume that Ao(e) satisfies the MSST condition and that condition (5.11)

holds for i =0, ..., m. Then, we have

(1) Tim  sup | Cole)expiAy(e)t/eX1By(e)-0, (£ = O (5.14)
e¥0 &8<t<T e

¥6>0, ¥T <o, k=0, ..., m-1

cey 1 1 m =
(i1) llg Géggm H;ﬁ-co(e)exp{Ao(s)t/e 1Bg(e)-¢, ()l =0 (5.15)

¥6>0. In (5.14), (5.15) ¢k(t) is given by the pointwise limit
3 (t) = Tim — €, (€)exp{A, () t1B, (<)
ed0 ¢

for k=0, ..., m.
U
(i) NCO(e)exp{Ao(e)t}Bo(e) - kZO € ¢k(e t)| = 0(1) (5.16)

uniformly in t.

Remarks: (i) The conditions (5.11), namely

C.(e)Al(e)B(e) ~ 0(eT) G =0, ..., 0;- (5.11)
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for i=0, ..., m are only sufficient conditions for Proposition 5.2 to hold.

A simpler set of conditions that implies (5.11) is

B.(e) ~ o(e’) i=0, ...,m
or . (5.17)
(-I.i(e) ~ 0(e") i=0, ccoom

(ii) The conditions (5.11), (5.17) are on the matrices ﬂi(s), Ei(e),
Ei(e)' In order to obtain conditions on the original system matrices

we need to consider the decomposition (5.4) and the impulse response

;11* Col€)Q; (e)expie' A, (e)t1Q, (€)By(c) (5.18)

By the construction of T(e) (equation 5.5) it follows that

~ 0. -
0. O (5.19)
Aile)
€Ay (€)

L O . e:""ilf\m(t-:)J

T(e)A;(e)T(e)™ =

Co(€)Q;(e)T(e) ™! = [0,...,0, Tyle)s...,00, (5.20)
and -
r-0
T(e)Q;(e)Ble) = | : (5.21)
Bi(e)
- ° -

Using (5.19), (5.20), (5.21) we obtain

:l,'? CO(E)Q,i(E)eXP{SiAi(E)t}Q-i(E)BO(E) =5— Ci(E)exp{Ri(€)€it}§i(€)
(5.22)
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From (5.22) it follows that,

Cole)Q; ()Ad(£)0;(e)By(e) = E;(e)Ad(e)B; (e)

j =

0,1, ...

Consequently the condition equivalent to equation (5.11) to ensure the

existence of a uniform limit as € + 0 of (5.22) is

Coe)Q;(e)A ()0, (e)By(e) ~ 0(e’)

1=0, o.o,m j=

Example 5.3 (Three time scale system)

-1 0 o0

X = 0 0 0| +¢
0 0 0

y = X.

The system (5.24) can be shown* to satisfy the MSST condition and

diagonalized to yield

i -]+0(€3) 0
X = 0 -e+0(ed)
0 0

i.e., By(e) =

0 0
0 -1
-1 0

0, ceaey Di‘].

o O

[ 1+0(ed)
e+0(e3)

-e2+0(e

-

3

—t

(5.23)

u (5.24)

e+ 0(e3),§2(e) = - ez+0(s3). Thus the system satisfies

the conditions (5.17) which imply (5.11) for well defined time scale

behavior at time scales t, t/e, t/ez.

Conditions (5.11) allow the internal time-scale structure of Ao(e)

(obtained under the MSST condition) to be reflected in the input-output

* - - - -
We discuss computational issues in Section 6.
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behavior of (5.1). In general, there will be circumstances under which
there are fewer time scales in the input-output description than in the
internal dynamics of the system. Consider the following examples 5.4

and 5.5:

Example 5.4 (Two time scale system)

.
-1 0 O 0 0 1 1

X = 0o 0 0 + € o -1 0 X+ 1 u (5.25)
0 0 O -1 0 O 1

y=[(1 0 0)+ (0 1 0)Ix. (5.26)

Note that the system (5.25) has the same Ao(e) as (5.24) so that the
internal dynamics contain three time scales t, t/e, t/ez. On diagonaliz-

ing the system we obtain

(1 0 o] 1-e
x={ 0o - ol +oed)] x+| | ro(ed)] v (5.27)
0 0 -82 L1-e-52
y = ([1+e?,e,e3+0(3))x

Thus Eo(e) = 1-e+0(e3), Eo(e) =1+ 82+0(€3) implying well defined time
scale behavior at time scale t. Further, §](e) =1+ 0(83), 5](3)

=€ ¢ 0(€3) implying well defined non-trivial time scale behavior at time
scale t/e. However Ez(e) = 1-8-624-0(33), Ez(e) = ¢ implying that the
system does not satisfy (5.11) for well defined time scale behavior at

2

t/e“. However

Iin 1T, (e)exp Ay(e)e?t/eld,(e)
24
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exists uniformly for t € [§,T] and is equal to 1. Thus from Definition

(5.1), we can conclude that the system (5.25) has well defined time

scale behavior at only two time scales t and t/e. o
Example 5.4 shows that when the condition (5.11) is not satisfied

the input-output description of the system can have fewer time-scales

than _the internal dynamics of the system.

Example 5.5 (One time-scale system)

VAR 0o o 1\ 1
X = 0 0 O|+e| 0 -1 Of{x+ |1]u (5.28)
0 0 O -1 0 0 1
L - .
y=(0 1 1)x (5.29)

The Ao(s) is the same as that of examples 5.3, 5.4 and so has three time
scales t, t/e, t/e2 in its internal dynamics. On diagonalizing the sys-

tem we get (5.27) and
y=([1 1 1]+ 0(e))x. (5.30)

Note that the conditions (5.11) are met by the system (5.27), (5.30) only

at the time scale t. Further

Tim El(e)exp{ﬂ](e)et}81(e)
e+0

and

- = )2, 0=
1im C,(e)exp{A,(e)e“t}B,(¢)
€40 2 2 2

exist uniformly on [§,1] and are both 1. Thus by definition (5.1), the
system (5.28), (5.29) has well defined time scale behavior only at time

scale t. o
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Condition (5.11) is a sufficient condition for internal time-
scales to be reflected into external time scales. In examples 5.4, 5.5
we have shown that when (5.11) is not satisfied, the input-output system
can have fewer than the internal time scales. The following example
shows that if the conditions (5.11) are not met at a specific time scale,
say t/ek, then behavior at faster time scales is t/ej for j < k may also

not exist:

Example 5.6

Consider a diagonalized system with three time scales

(Ay(e) 0 o | —Eo(eﬂ
X = 0 87\1(5) 0 X+ | eBy(e) | u (5.31)
0 0 eziz(s) LBZ(e)

y = [Cle)  Cqle)  Cyle)dx

with all Ri(e), Ei(e), Ei(e) of order 1. The conditions (5.11) are
satisfied at time scale t and t/e and are not satisfied at t/e2 as evi-

denced by the fact that 1imit as € + 0 of

é%-ﬁz(s)exp Rz(e)t éz(e)

for t ¢ [6,T] does not exist. However, limit as € + 0 of
'l - - -
E-Cz(s)exp{Az(e)et}Bz(e)

also does not exist for t € [§,T]. Consequently the system (5.31) does
not have well defined time scale behavior at time scale t/e. It has well

defined time scale behavior only at the fastest time scale t. o
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From Example 5.6, we conclude the following:
c R . J
Cj(s)Bj(s) 0(eY)

is only one of the sufficient conditions (5.11) for well defined behavior

at time scale t/ej. However, if
c ™ - q
Cj(e)Bj(e) 0(e™)

for q < j, the system (5.1) is not well defined at time scales t/eq+],...,

t/eJ'j, since

N = i-ka
1im C.(e)exp{A.(e)e’ "t}B.(c)
e+0 ;E- J J J
.. 1 = = .
= 1im — C.(e)B.:(e) ==  for qg<k<j
ev0 ek J J

The details of the exact time scale structure of the system (5.1)

when conditions (5.11) are not met is currently under investigation.

5.2. Positive Realness of Mu1tip1e Time Scale Systems

Consider the multiple time scale linear system

Xe
L

= Ao(s)x + Bo(e)u
(5.32)

y Co(e)x + Dou

Here Ao(e) ¢ R0

satisfies the MSST conditions; the number of inputs
is equal to the number of outputs and D0 is a constant matrix. We con-
sider in this section assumptions on transfer functions of (5.32) valid
at different time scales in order to guarantee that (5.32) is SPR for
e € [0,e*]. In Section 4, we found that in the case of a two-time scale

system, the reduced system ﬁr(s) SPR and the fast system ﬁf(s) SPR
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implied that the augmented system ﬁe(s) was SPR for € small enough.

In the case of (5.32), we will assume that it is well defined in
the sense of Definition 5.1 at time scales t, t/e, ..., t/em (for
instance, this is implied by conditions (5.11)). In that case we define

the transfer functions at the various time scales using the form (5.9):

figls) = Tim 0g + Cole) (s1-Ry(e)) 'Byle)
fy(s) += fiy_y(0) + Tim é%-Ei(e)(sl-ﬂi(e))-]ﬁi(e) (5.33)

Theorem 5.7

The input-output system (5.32) is SPR for € € [0,e*] if ﬁi(s) is
SPR for i =0, ..., m

Proof: Is by induction. Define

fig(es8) 2= Dy + Egle) (sI-Ry(e)) Byle) (5.34)
and for i =1, ..., m

ye,s) = fiy_q(ess) + E4(e)(s1-'Ry(e)) '8, (e) (5.35)

From the definitions (5.34), (5.35) it follows that the transfer function
of (5.32) is ﬁm(s,s). By Theorem (4.1), Hy(e,s) is SPR for e small enough
if ﬁo(s) is SPR and further

1

<l

0

~ ~ %
Ho(esjw) + Ho(eajw) > .
W

(5.36)

‘

~

Further, exactly as in the proof of Theorem (4.3), Hi_1(5:5) SPR and
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S eiig) + B (e s V51!
H: _q(e,dw) + H; (e,juw) > — (5.37)
i-1 i-1 i 2
+(e 'w)

implies that the inequality (5.37) holds for ﬁi(e,jw). Combining this

with the fact that 118 ﬁi(e,eis) = ﬁi(s), with ﬁi(s) SPR, we obtain as
e .

in the proof of Theorem 4.3 that Hi(e,s) is SPR. Finally, at i = m, we

get the transfer function of the system (5.32) to be SPR.

Section 6. Concluding Remarks

We have extended results on the time-scales decomposition of auto-
nomous systems to that of input-output systems. We have used these
results to study conditions under which positive realness of a transfer
function are preserved under singular perturbation.

The computations associated with obtaining the time scales decompo-
sition of Section 5 are straightforward, but are involved and hence
omitted from the discussion. We have carried out these computations in

detail for systems of the form

).( = (A0+€A])x+(80+€B])u
(6.1)
y = (C0+ec])x.

with three time scales. Roughly speaking, the most involved part of
the computations is obtaining the projection matrices Po(e) of (2.22)
up to 0(53), P](e) up to 0(82) and so on using the formulae (2.13)-(2.15).
Once these matrices and consequently the diagonalizing transformation

T(e) of (5.5) are obtained the conditions for the existence of multiple
time scales input-output behavior is easily verified. Details of these

calculations are available with the authors.
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