Combining Graphics and Procedures in a VLSI
Layout Tool: The Tpack System

Robert N. Mayo

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

Tpack is a system for VLSI module generation that uses both graphical and
procedural information. A graphical editor is used to specify tiles of mask
information, then procedures are written to arrange the tiles into modules.
This technique combines the visual power of graphical systems with the pro-
gramming power of procedural systems. Since all of the mask information is
contained in the tiles, the same procedures may be used for different design
rules or technologies, merely by supplying a different set of tiles. This paper
describes the procedural and graphical interfaces, and discusses two module
generators that have been built with them.

Introduction

There are two common methods of VLSI layout today: procedural and graphi-
cal. In the procedural approach the designer writes a program to generate the cir-
cuit layout. In the graphical approach, the designer interacts with a CAD system
that displays the layout being designed. Each approach has its advantages and its
shortcomings. The Tpack system described in this paper uses the best ideas from
each approach by decomposing the layout process into a graphical portion and a
procedural portion. This decomposition works especially well for building module

generators (programs that produce standard structures from the designer’s

The Tpack System January 23, 1984

specification) because it allows the pieces to be changed and re-used for many

different purposes.

Each of the procedural and graphical approaches has advantages and disadvan-
tages [Row80, Tri81, Wil81]. Procedural layout allows the full power and generality
of a programming language to be used in generating a circuit layout. Procedures
are written to generate each structure of the circuit, and are combined hierarchically
using the methods defined for the programming language [BMS81, Kar83]. Parame-
ters may be passed to procedures in order to generate different versions of the same
structure. In this way a property of one part of the layout (such as the size of an
array of memory cells) can affect another part of the circuit (such as the location of
power and ground busses). It is also possible to store non-mask information, such as

power consumption, and use it to alter the topology of the layout.

Procedural layout offers great power and flexibility, but suffers from two draw-
backs. First, it is hard to embed graphical information in a textual procedure:
topological information is hard to visualize when specified textually. Second, the
results of even a small change cannot be seen without “‘recompiling” the whole cir-
cuit, which can be a time-consuming process. Thus, procedural systems tend not to

be very interactive.

The graphical approach, on the other hand, has the designer specify his layout
by editing a two-dimensional picture of it on a color display
[FaR78, [BM78, KeN82, Ous81]. The layout is modified by commands to add and
delete mask geometries, commands to move sections of the layout, and commands

to duplicate areas of the layout. Changes in the design are reflected immediately on

The Tpack System January 23, 1984

.
the display. Because of the visual power and instantaneous feedback, graphical sys-

tems are especially well suited to editing small pieces of designs.

However, graphical tools provide only limited mechanisms for building up
larger circuits. Cells may be composed hierarchically, with each cell containing
some mask information and/or other cells. In addition, cells may be formed into
arrays of identical elements. Unfortunately, current graphical systems do not gen-
erally allow cells to be parameterized, nor do they provide support for non-
homogeneous arrays. Thus, graphical tools are often difficult to use for chip assem-

bly and for layout of irregular modules.

This paper describes an intermediate mechanism between the above alterna-
tives, called tile packing. Tile packing combines grapkical information with simple
procedures and is especially suitable for generating semi-regular modules. Semi-
regular modules are those that consist of a few basic elements arranged in irregular
patterns. PLAs and ROMs are obvious examples of semi-regular modules, but there
are many other examples as well. For example, one kind of barrel shifter is com-
posed of a uniform array of cells, except for the cells on the diagonal, which are
different from the rest [MeC80,plate 13]. This kind of structure cannot be captured
in the simple arrays provided by graphical editors such as Caesar [Ous81]. Other
examples of these semi-regular structures include NOR decoders and Hamming
encoders. Our experience is that virtually every chip design contains several of

these structures.

Tpack is a set of procedures that may be used to write module generators

based on tile packing. The following sections describe the concepts in Tpack and its

The Tpack System January 23, 1984

interface as seen by the designer of a module generator. This paper then discusses
two module generators that have been written and describe our experiences and

conclusions.

The Tpack System

In the tile packing method, a module generator consists of two parts: a set of
tiles that are designed graphically, and a set of procedures to arrange those tiles.
Tiles are rectangular areas that contain layout information, and are designed using
the Caesar graphical editor [Ous81]. A tile might contain a single pull-up, a CAM
cell, or an ALU bit slice. In addition to the layout information in a tile, its size is
also important and is used to control spacings. Some tiles are used only for spacing;
any mask information they contain is ignored. Procedures, on the other hand,
specify how tiles should be arranged to generate modules; they contain no
knowledge of mask geometries or spacings. Since procedures only control the
arrangement of tiles and not their contents, the tiles encapsulate all the information
about design rules and technology. Because of this we can design different sets of
tiles for different technologies or design rules, and the procedural information will

not need to change.

In general, many tiles will be used when generating a layout, and it is impor-
tant to see how they all fit together. To simplify this task, an example of the
desired module is drawn (Fig. 1) and then rectangular labels are placed over the
areas that are to be tiles. For example, a person designing a PLA generator will

draw a small PLA that contains all of the features of a larger PLA. He will then

The Tpack System January 23, 1984

Figure 1: An ezample set of tiles. Tiles are areas of geometry defined by rectangular
labels drawn on an example circuit. This allows tiles to be defined in their intended
context, making it easier to see how a tile will fit together with other tiles. The in-
formation in some tiles, such as the SPACE tile, may be used by the program solely
for spacing purposes.

place rectangular labels over the parts of the structure that are to be used as tiles
by the PLA generator procedure. This method eliminates most problems associated
with tiles not abutting or overlapping properly, since the designer can see the entire
structure when its components are defined. In fact, if the procedure-writer ensures
that tiles are only used in the same context as in the example then the design rule
correctness of the example implies the that all generated modules will also be design

rule correct.

Tiles are arranged by procedures that use the Tpack library of routines. These
routines are written in the C programming language, and are designed to support
tile-based module generation. Included are routines for initializing Tpack, reading
tiles from files, creating new blank tiles, stretching tiles, and writing tiles into files.

Also included are placement routines that allow information from a tile to be copied

-5

The Tpack System January 23, 1984

into another tile at a specific point. This allows us to build new tiles out of smaller
tiles, and then use these new tiles, in turn, to produce even larger tiles. The final

module is just a new tile generated in this fashion.

(32, 26)

2.2 N E

Figure 2: Tiles and their placements. Tiles contain mask information, and may be
placed many times in a circuit. Each corner of each such placement has a fixed posi-
tion in the layout, while the corner of a tile is considered to be relative to its lower
left corner. For example, the upper right corner of TILE_A is (15, 8), while the same
corner of its first use, placementl, is at (17, 10). The lower left corner of every lile is

(0, 0).

The tile placement routine TPpaint_tile takes as parameters a source tile, a
destination tile, and a poinl. As a result of the call, the contents of the source tile
are copizad into the destination tile such that the lower left corner of the source tile

appears at the specified point. A placement rectangle is returned that indicates the

The Tpack System January 23, 1984

area in the destination tile that is now covered by the source tile (Fig. 2). Later on
the corners of this placement may be used in positioning other tiles. This allows
tiles to be placed by alignment with previously placed tiles; only the first tile in a
module is placed at an absolute location. The alignment function TPalign takes
two points as arguments: one corner of a placement and one corner of a tile. The
result is a point that describes where the new tile should be placed so that the two
points coincide. Note that the new tile is aligned with the placement of a previous

tile, not with an absolute coordinate.

Figure 8: Using tiles to control spacing. The PRECHARGE tile and TILE-A (from
Figure 1) are to be placed so that their left edges are separated by a distance equal to
the width of the SPACE tile. This is done by first placing down the PRECHARGE
tile (Fig. 3a2). The SPACE tile is then aligned with the placement of the
PRECHARGE tile, but the information contained in the SPACE tile is not actually
copied into the circuit (Fig. 3b). TILE-A is then placed down so that it aligns with
the right edge of the SPACE tile placement (Fig. 3c). The result is that the contacts
in the PRECHARGE tile and TILE-A overlap.

The alignment procedure described so far is fine for non-overlapping tiles, but
there are cases where the designer wishes to overlap tiles. This cannot be done with

the current scheme, because tiles may only be aligned with corners of previously

The Tpack System January 23, 1984

placed tiles. The solution that we have adopted is to use some tiles solely for spac-
ing purposes. All mask geometry contained in these tiles is ignored, but the place-
ment of the tile provides additional corners with which to align. The TPspace rou-
tine is used for. this purpose. This routine behaves in the same manner as the
TPpaint_tile routine, except that no new mask information is placed; its only func-
tion is to return a placement indicating where the tile would have been placed by
TPpaint_tile. Other tiles may then be aligned with this placement (see Figure 3).
This allows tiles to be overlapped by an arbitrary amount, but note that this over-
lap distance is not contained in the the program: it is specified graphically in the

collection of tiles.

Source Code Statistics

component lines code | total lines
tpack (caesar database part) 8316 18619
tpack (interface) 2421 4293

Table 1: Code size for the two Tpack components.

The tpack system is implemented as two pieces. All of the storage of mask
geometries, as well as file input and output, is handled by a modified version of the
Caesar database. On top of this database are routines for creating the abstraction
of a tile, as well as routines for manipulating these tiles. Table 1 gives the code

sizes for these components of Tpack.

Quilt — An Example

The Tpack System January 23, 1984

We have built two module generators in order to evaluate the effectiveness of
tile packing. The first is Quilt, a program that assembles rectangular arrays of
non-overlapping tiles. The output is a personalized array. Array elements may be
different sizes, as long as each element abuts with its neighbors. Many VLSI struc-
tures can be viewed as personalized arrays, and Quilt is a convenient way of gen-

erating them.

Fgurs 4c: ths oulput of Quilt

Figure 4: Using the Quilt module generator. Quilt creates a personalized matrix of
tiles from a set of tiles (Fig. 4a) and a matrix of characters (F'ig. 4b). Each character
in the matrix names a tile to be placed in the corresponding position in the output.

The user defines a set of tiles for Quilt to process, such as those shown in Fig-
ure 4a. Each tile is given a one character name. Quilt reads an array of characters

from a text file, such as that shown in Figure 4b, and for each character in the file

The Tpack System January 23, 1984

the tile of the same name is placed in the output. Figure 4c shows the result of

running Quilt with the example data.

TPinitialize(arge, argv);
out_tile = TPcreate_tile();

strepy(tilename,”?");
start_prev_row = origin placement,;

newrow = TRUE;
while ((inchar = getc(infile)) != EQF) {
if (inchar == '0)
newrow = TRUE;
else if (inchar !'="") {
tilename[0] = inchar;
this_tile = TPname-ta_tile(tilename);
if (newrow) {
prev_placement = TPpaint.tile(thistile, out tile,
TPalign(pLL(start_prev_row), tUL{this tile)));
start_prev_row = prev_placement,
newrow = FALSE;
| else {
prev_placement = TPpaint.tile(this tile, out tile,
TPalign{pLR(prev_placement), tLL(this tile)));

DO DY OO D) v 1t st pd et ot b b et b
R~ OODINTND WO ODRIDOR W~

!

24 4

25

26 TPwrite tile(out_tile);

Figure 5: C code for the Quilt program. The Tpack library provides functions to read
in tiles, create new tiles, place and align tiles, and write out tiles. As a result, module

generators like Quilt are easy to write and are very flexible.

The code for Quilt is shown in Figure 5. The first line passes command line
arguments to an initialization routine that loads in a set of tiles. In line 2 a new tile
is created in which to form the result. After initialization Quilt enters the main
loop, with each iteration processing a character from the input file. In line 10 Quilt
sets a flag just before the beginning of each line. Lines 12 and 13 get the tile that
has the same name as the input character, which is the tile that we want to place.
If this is the beginning of a line, we want to place the new tile just below the left-

most tile in the previous row. This is accomplished by the TPpaint_tile call on lines

-10-

The Tpack System January 23, 1984

15 and 16. The TPalign routine embedded in this call has 2 points as arguments:
the lower left corner of a placement (generated by pLL) and the upper left corner of
a tile (generated by tUL). The tile is placed such that these two corners align. The
location of this new tile (a placement) is stored in start_prev_row for use at the start
of the next row. The TPpaint_tile call on lines 20 and 21 is executed for the rest of
the tiles in the row. In this call, each tile has its lower left corner aligned with the

lower right corner of the placement of the previous tile.

Quilt is a good example of how flexibility can be increased by decomposing the
layout process into stages. The designer supplies a set of tiles and a matrix of char-
acters, and Quilt arranges the Atiles accordingly. New modules can be generated by
changing either the tiles or the matrix of characters. Quilt fits especially well in the
Unix world wher; processes communicate over pipes: it reads the character matrix
from its standard input, and thus can be used as the last filter in a pipeline. Many
simple module generators can be built as programs that generate character arrays
for Quilt. An example of this is the Vlsifont program for generating text logos.

Appendix C describes Vlsifont, and appendix B gives more details on the Quilt pro-

gram.

Tpla — A PLA Generator

Tpla is a more complex example of tile packing. It is a PLA generator written
using the Tpack library. Several different styles of PLAs may be produced: nMOS
with buried contacts, nMOS with butting contacts, precharged CMOS, and CMOS

with ratioed pull-ups. While there is a different set of tiles for each style, the

The Tpack System January 23, 1984

procedural part of the PLA generator remains the same.

A large number of tiles are needed to specify a PLA structure. Each location
in the core of the AND and OR planes may contain one of three tiles: a transistor,
no transistor but a continuation of the input line, or no transistor and no input
line.x The AND plane uses these tiles in two orientations, and the OR plane uses
these in two more orientations. We therefore have 6 tiles for the core of the AND
plane and 6 for the OR plane. The vertical and horizontal pitch of the AND plane
is specified by a tile, and the horizontal pitch of the OR plane is set by another tile.

The vertical pitch of the OR plane is the same as that of the AND plane.

Fourteen tiles surround the periphery of the planes. These tiles include tiles
for power and ground routing, input and output drivers, pull-ups or precharge tiles,
and tiles that connect the two planes. Eight tiles are used to control the overlap-
ping of the peripheral tiles with the core region (1 tile for each side of the AND and
OR planes). Some tiles have more than one form: there are both clocked and

unclocked input drivers, for example. This gives a total of 36 tiles for the PLA.

At first we felt that 36 tiles was a lot for a PLA, especially since all 36 tiles
must be redesigned when converting to a new technology. However, it is much
easier to generate new tiles than to write new procedural code. Thus, for example,
separate tiles are defined for two symmetries in each of the AND and OR planes,
even though the tiles are just flipped and rotated versions of each other. Even with

this many tiles it has been easy to retarget the PLA generator. Defining tiles is a

* The last item is included so that we can extend the input lines only as far as is needed.
This helps reduce the capacitance of the circuit and makes for faster PLAs.

The Tpack System January 23, 1984

quick process, since it only involves drawing a picture of a PLA and labeling the
tiles. Our experience has been that designing a new style of PLA is more time con-
suming than retargeting our PLA generator for the new style. A person familiar
with PLAs in some new technology should be able to retarget our PLA generator
for that technology in an afternoon, assuming that the PLA fits our model of an

and-plane and an or-plane surrounded by peripheral circuitry.

Debugging a retargeted set of tiles in Tpla is easy in comparison to debugging a
retargeted purely procedural PLA generator. Few bugs appear in the first place,
due to the fact that the tiles are specified by outlining areas on an example PLA.
Those bugs that do exist show up in the graphical output and are easy to relate
back to the graphical collection of tiles. A purely procedural approach to generating
PLAs is likely to result in more bugs due to the lack of immediate visual feedback.
The correction of these bugs involves modifying the procedural description and
recompiling the PLA generator. Correction of bugs in a retargeted Tpla only
requires modifying the tiles and regenerating the PLA, therefore removing the com-

pile phase from the edit-compile-generate cycle of the purely procedural approach.

The code for Tpla is about 720 ‘C’ statements. A similar PLA generator,
Mkpla, does not use the tile packing scheme and consists of about 900 lines of Pas-
cal code [Lang80]. While we have not saved much code by using tile packing, we
have gained technology independence. Retargeting a program like Mkpla for a new
technology requires major modifications since every rectangle that appears in the
PLA is specified in the code. It is interesting to note that the flexibility of pro-

cedural information is increased by separating out all the of the graphical

.13 -

The Tpack System

January 23, 1984

information.
Performance Statistics
test case time in seconds
truth # of # of # of mkpla tpla tpla
table | inputs | outputs | product terms {no merging) | (merging) |
A 3 5 8 1.3 10.6 140 |
B 10 23 34 3.7 43.2 170.2

Table 2: Performance of Tpla versus Mkpla.

Table 2 shows the performance of Tpla versus Mkpla. As can be seen, the

hard-coded Mkpla program runs much faster than the more flexible tile-based

module generator. Part of this is due to the fact that the Tpack system is built

upon the Caesar database which is tailored to interactive applications. The Tpack

system has an option that causes it to merge adjacent rectangles into one in order

to decrease the size of the database. Table 2 shows performance data for PLA gen-

eration both with and without merging.

Appendix D describes Tpla in more detail. Tpla has many options, some of

which choose tiles for the input and output drivers. It would be useful to extend

this mechanism in a general way so that other tiles could have alternative

definitions, such as alternative pullups for lower power consumption, or special

input drivers for high speed PLAs.

Conclusions & Ideas for Improvement

-14-

The Tpack System January 23, 1984

The major contribution of the tile packing method is the decomposition of
module generation into a graphical portion and a procedural portion. This decom-
position provides great flexibility. A different set of tiles may be designed for a new
technology, for new design rules, or in order to generate new styles of modules. In
all cases the procedural information stays the same. This means that standard pro-
grams, like Tpla, may be used to generate customized modules — all the designer

has to do is modify the set of tiles that the program assembles.

Tpack is also useful when a program can be written that generates many
different structures. Quilt is a example of such a program — we expect that many
other simple module generators can be built as front-ends that pipe data into Quilt.
Tpla is a much longer program that generates a large class of PLA structures in
different technologies. Both Tpla and Quilt may be used with different sets of tiles,

spreading the cost of writing the code over many designs.

Designing the tiles for a VLSI structure is a quick process due to the use of an
example layout and the immediate feedback of a graphical editor. The design of
tiles in the context of an example helps ensure that the tiles will fit together prop-
erly. Any tile design errors that do exist will appear in the final structure graphi-

cally and are therefore easy to relate back to the graphical tile description.

Writing the procedures that assemble the tiles is more time consuming. For
simple structures, such as personalized arrays of cells, the code is fairly short.
When we write procedures for assembling more complicated structures, such as
PLAs, the code gets much longer. Tpack is most useful when the overall structure

of a layout is simple and the low level details can be encapsulated inside of 2 small

The Tpack System January 23, 1984

set of tiles. As a layout becomes more and more complex, Tpack’s advantages over
purely procedural generators are reduced. In complex modules, most of the irregu-
larity can not be forced down into the tiles, and writing the Tpack code is not much
simpler than writing a completely procedural module generator. Of course, the tile

based technique still provides technology independence for the module generator.

Although our decomposition of module generation into a procedural portion
and a graphical portion seems to work well, there are some areas where it is awk-
ward. The information about which tile aligns with which other tile is contained in
the procedural code and thus is not graphically available to the tile designer. This
can be confusing — the tile designer must guess and then run the program to try
out his guess. It would be a good idea for a future system to provide the alignment
information in a graphical form for the tile designer, or else allow the tile designer
to specify this graphically with the tiles.

As an extension to this idea, it would be convenient to allow alignment of arbi-
trary points within tiles — not just their corners. This would eliminate the need for
special spacing tiles in many cases, and would be more intuitive to the tile designer.
It would also help move more of the alignment information out of the code and into

the graphical world.

For complicated modules, it would be convenient to rotate and mirror tiles
before placing them down. The Tpack system currently does not provide rotation
or mirroring.

As a practical consideration, is not a good idea to require that the tiles be

prepared with the Caesar editor. Editors come and go, and we would like our

- 16 -

The Tpack System January 23, 1984

module generators to be independent of this evolution. It would be easy to define a
protocol which allowed the Tpack system to get tile information interactively from
a editor, and then ask that editor to place down geometry in certain places. This
would allow designers to interactively run module generators and would allow tiles
to be defined using whatever editor the designer was used to. This would even work
on editors that provide different views of mask geometries. For example, the tiles
could contain sticks drawings and the module generator would not be concerned
with that fact, just with the fact that a certain tile needed to be placed at a certain

location.

Acknowledgements

I would like to thank John Ousterhout for his continual help and guidance in
all areas of my research at Berkeley, and especially for suggesting the basic ideas
that lead to the Tpack system. It is often said that graduate students develop ideas
and their advisors publish them — in this case I feel that the reverse is partially

true.

The students and faculty at Berkeley have created a research environment that
is top-notch. I am glad to be a part of it, and I thank them all. Many thanks to
Dave Patterson for providing VLSI design projects that motivate and push CAD
research, and John Ousterhout for leading the CAD research in the CS division.
Grace Mah has used Tpack extensively, and I thank her for her comments and pati-
ence in waiting for bug fixes. Dave Ungar deserves thanks using the Quilt program

with enthusiasm. Howard Landman designed mkpla, and the PLAs produced by

The Tpack System January 23, 1984

that program provided the tiles for the first PLAs from Tpla. Howard’s program
also provided the equations that are used in Tpla to place additional ground and
power lines. Randy Katz taught the VLSI class in the fall of 1983, and provided

useful comments on this report.

Special thanks go to several other students at Berkeley for their enthusiasm
and general good nature: Michael Arnold, Artie Chang, Tom Conroy, Susan Eggers,
Gordon Hamachi, Mark ‘‘the hop’’ Hofmann, Ken Keller, Herb Ko, Grace Mah,

Joan Pendleton, Dave Petersen, Harry Rubin, Walter Scott, and George Taylor.

References

[BMS81] J. Batali, N. Mayle, H. Shrobe, G. Sussman and D. Weise, The
DPL /Daedalus Design Environment, in VLSI 81, Academic Press, 1981,
pp. 183-192.

[FaR78] D. G. Fairbairn and J. H. Rowson, ICARUS: An Interactive Integrated
Circuit Layout Program, Proc. 15th Design Autometion Conference,
1978, pp. 188-192.

([BM78] B. Infante, D. Bracken, B. McCalls, S. Yamakoshi and E. Cohen, An
Interactive Graphics System for the Design of Integrated Circuits, Proc.
15th Design Automation Conference, 1978, pp. 182-187.

[Kar83] K. Karplus, CHISEL: An Extension to the Programming Language C for
VLSI Layout, Report No. STAN-CS-82-959, PhD Thesis, Stanford
University, 1983.

[KeNg2] K. H. Keller and A. R. Newton, KIC2: A Low-Cost, Interactive Editor
for Integrated Circuit Design, Digest of Papers, Compcon 82, 1982, pp.
305-306.

[Lan80] H. A. Landman, Automatic Layout of Optimized PLA Structures,
Masters Report -- EECS Department, 1980.

[MeC80] C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-
Wesley, 1980.

[Ous81] J. K. Ousterhout, Caesar: An Interactive Editor for VLSI Layouts, VLSI
Design, Fourth Quarter, 1981, pp. 34-38.

[Rowg0] J. Rowson, Procedural vs. Graphical Design of Integrated Circuits,
Lambda (now VLSI Design), Fourth Quarter, 1880, pp. 6-7.

- 18 -

The Tpack System January 23, 1984

[Tri81) S. Trimberger, Combining Graphics and a Layout Language in a Single
Interative System, Proc. 18th Design Automation Conference, 1981, pp.
234-239.

[Wil81) J. Williams, Symbolic Artwork Systems, Lambda (now VLSI Design) 2,2
(Second Quarter, 1981}, pp. 64-67.

- 10 -

Appendix A January 23, 1984

NAME
tpack — routines for generating semi-regular modules

DESCRIPTION
Tpack (tile packer) is a library of ‘C’ routines that aid the process of generating semi-
regular modules. Decoder planes, barrel shifters, and PL As are common examples of semi-
regular modules.

Using Caesar, a tpack user will draw an example of a finished module and then break it into
tiles. These tiles represent the building blocks for more complicated instances of the module.
The tpack library provides routines to aid in assembling tiles into a finished module.

MAKING AN EXAMPLE MODULE
The first step in using tpack is to create an example instance of the module, called a tem-
plate. The basic building blocks of the structure, or tiles, are then chosen. Each tile should
be given a name by means of a rectangular label which defines its contents. If the tiles in
the module do not abut (e.g. they overlap) it is useful to define another tile whose size indi-
cates how far apart the tiles should be placed.

Templates should be in Caesar format and, by convention, ead with 2 .tp suffix. With some
programs, it is possible to generate the same structure in a different technology or style by
changing just the template. If this is the case, each template should have a filename of the
form basename-style.tp. The style part of the filename interacts with the -s option (see iater
part of this manual).

WRITING A TPACK PROGRAM
A tpack program is the ‘C’ code which assembles tiles into the desired module. Typically
this program reads a file (such as a truth table) and then calls the tile placement routines in
the tpack library.

The tpack program must first include the file "cad/lib/tpack.h which defines the interface
to the tpack system. Next the TPinitialize procedure is called. This procedure processes
command line arguments, opens an input file as the standard input (stdin), and loads in a
template.

The program should now read from the standard input and compute where to place the next
tile. Tiles may be aligned with previously placed tiles or placed at absolute coordinates. If a
tile is to overlap an existing tile the program must space over the distance of the overlap
before placing the tile.

When all tiles are placed the program should call the routine TPwrite_tile to create the
output file that was specified on the command line.

To use the tpack library be sure to include it with your compile or load command (e.g. ee
your_file “cad/lib/tpack.lib).

ROUTINES
Initialization and Output Routines

TPinitlalize(argc, argv, base_name)
The tpack system is initialized, command line arguments are processed, and
a template is loaded. The file descriptor stdin is attached to the input file
specified on the command line. The template’s filename is formed by taking

TPACK Manual Page - 20 -

Appendix A January 23, 1984

the base_name, adding any extemsion indicated by the -8 option, and then
adding the .p suffix if no suffix was provided. The -t option allows the user
to override base_name from the command line.

Arge and argv should contain the command line arguments. Arge is a count
of the number of arguments, while argv is an array of pointers to strings.
Strings of length zero are ignored (as is the flag consisting of a single space),
in order to make it easy for the calling program to intercept its own argu-
ments. Arge and argv are of the same structure as the two parameters
passed to the main program. A later section of this manual summarizes the
command line options.

TPload_tiles(file_name)
The given file_name is read, and each rectangulsr label found in the file
becomes a tile accessible via TPname_to_tile. No extensions are added to

file_name.

TILE TPread_tile(file_name)
A tile is created and file_name is read into it. The tile is returned as the

value of the function.

TPwrite_tile(tile, filename)
The tile tile is written to the file specified by filename, with .ca or .cif exten-
sions added. See the description of the -0 option for information on what
file name is chosen if filename is the null string. The choice between Caesar
or CIF format is chosen with the -a or -¢ command line options.

Tile creation, deletion, and access

TPdelete_tile(tile)
The tile tile is deleted from the database and the space occupied by it is

reused.

TILE TPcreate_tlle(name)
A new, empty tile is created and given the name name. This name is used
by the routine TPname_to_tile and in error messages. The type TILE
returned is a unique ID for the tile, not the tile itself. Currently this is
implemented by defining the type TILE to be a pecinter to the internal data-
base representation of the tile.

int TPtile_exlists(name)
TRUE (1) is returned if a tile with the given name exists (such as in the
template or from a call to TPcreate_tile).

TILE TPname_to_tile(name)

A value of type TILE is returned. This value is a unique ID for the tile
that has the name name. This name comes from a call to TPcreate_tile(), or

TPACK Manual Page -21-

Appendix A Japuary 23, 1984

from the rectangular label that defined it in a template that was read in by
TPread_tiles() or TPinitialize(). If the tile does not exist then a value of
NULL is returned and an error message is printed.

RECTANGLE TPslze_of_tile(tile)
A rectangle is returned that is the same size as the tile tile. The rectangle’s
lower left corner is located at the coordirate (0, 0). All coordinates in tpack
are specified in half-lambda.

Painting and Placement Routines

RECTANGLE TPpalnt_tile{from_tile, to_tile, i_corner)
The tile from_tile is painted into the tile to_tile such that its lower left
corner is placed at the point li_corner in the tile to_tile . The location of the
newly painted area in the output tile is returned as a value of type REC-
TANGLE. The tile to_tile is often an empty tile made by TPcreate_tile().
The point ll_corner is almost never provided directly, it is usually generated
by routines such as align().

TPdisp_tile(from_tile, ll_corner)
A rectangle the size of from_tile with the lower left corner located at
U_corner is returned. Note that this routine behaves exactly like the routine
TPpaint_tile except that no output tile is modified. This routire, in con-
junction with the align routine, is useful for controlling the overlap of tiles.

RECTANGLE TPpaint_cell(from_tile, to_tile, ll_corner)
This routine behaves like TPpalnt_tile() except that the from_tile is placed
as a subcell rather than painted into place. The tile from_tile must exist in
the file system (i.e. it must have been read in from disk or have been written
out to disk).

Label Manipulation Routines

TPplace_label(tile, rect, label_name)
A label named label_name is place in the tile tile. The size and location of
the label is the given by the RECTANGLE rect.

int TPfind_label(tile, 8rect!, sir, Srect?)
The tile tile is searched for a label of name str. The location of the first
such label found is returned in the rectangle rect2. The function returns 1 if
such a label was found, and O otherwise. The rectangle pointer 8rect, if
non-NULL, restricts the search to an area of the tile.

TPstrip_labels(tile, ch)
All 1abels in the tile {sle that begin with the character ch are deleted.

TPACK Manual Page -22-

Appendix A January 23, 1934

TPstretch_tlle(lile, sir, num)

The string sir is the name of one or more labels within the tile {ile. Each of
these labels must be of zero width or zero height, i.e. they must be lines.
Each of these lines define a line across which the tile will be stretched. The
amount of the stretch is specified by num in units of half-lambda. Stretch-
ing such a line turns it into a rectangle. Note that if the tile contains 2 lines
that are co-linear, the stretching of one of them will turn both into rectan-
gles.

Point-Valued Routines

POINT tLL(tile)

POINT tLR(tile)

POINT tUL(tile)

POINT tUR(tile)
The location of the specified corner of tile tile, relative to the tile’s lower left
corner, is returned as a point. LL stands for lower-left, LR for lower-right,
UL for upper-left, and UR for upper-right. Note that tLL() returns (0, 0).

POINT rLL(rect)

POINT rLR(rect)

POINT rUL(rect)

POINT rUR(rect)
The location of the specified corner of the rectangle rect is returned as a
point. LL stands for lower-left, LR for lower-right, UL for upper-left, and
UR for upper-right.

POINT align(p!, p2)
A point is computed such that when added to the point p2 gives the point
pl. plis normally a corner of a rectangle within a tile and p2is normally a
corner of a tile. In this case the point computed can be treated as tke loca-
tion for the placement of the tile.

For example, TPpaint_tile(outtile, fromtile, align(rUL (rect), tLL(fromtile}))
will paint the tile fromtile into outtile such that the lower left corner of
fromtile is aligned with the upper-left corner of rect. In this example rect
would probably be something returned from a previous TPpaint_tile() call.

Point and Rectangle Addition Routines

POINT TPadd_pp(p!, r2)

POINT TPsub_pp(p1, p2)
The points p! and p2? are added or subtracted, and the result is returned as a
point. In the subtract case p2 is subtracted from pl.

RECTANGLE TPadd_rp(r/, pl)
RECTANGLE TPsub_rp(ri, pl)

TPACK Manual Page -23-

Appendix A January 23, 1984

The rectangle r! has the point p! added or subtracted from it. This has the
effect of displacing the rectangle in the X and/or Y dimensions.

Miscellaneous Functions

int TPget_lambda()

This function returns the current value of lambda in centi-microns.

INTERFACE DATA STRUCTURES
In those cases where tiles must be placed using absolute, (half-lambda) coordinates, it is use-
ful to know that RECTANGLEs and POINT: are defined as:

typedef struct {
int x_left, x_right, y_top, y_bot;
} RECTANGLE;

typedef struct {
int x, y;
} POINT;

The variable ORIGIN_POINTER is predefined to be (0, 0). ORIGIN_RECT is defined
to be a zero-sized rectangle located at the origin.

OPTIONS ACCEPTED BY TPinitialize()
Typical command line: program_name [-t template] [-s style] [-o output_file] input_file

-a produce Caesar format (this is the default)
-c produce CIF format
-v be verbose (sequentially label the tiles in the output for debugging purposes; also

print out information about the number of rectangles processed by tpack)
-8 style generate output using the template for this style (see TPinitialize for details)

-0 The next argument is taken to be the base name of the output file. The default is
the input file name with any extensions removed. If there is not input file specified
and no -o option specified, the output will go to stdout.

-p (pipe mode) Send the output to stdout.

-t The next argument specifies the template base name to use. This overrides the
default supplied by the program. (see TPinitialize)

-1 num Set lambda to num centimicrons. (200 is the default)
input_file

The name of the file that the program should read from (such as a truth table file).
If this filename is omitted then the input is taken from the standard input (such as a

pipe).

-M num
Normally tpack merges rectangles to form maximal horizontal strips, just like

TPACK Manual Page -24-

Appendix A

January 23, 1984

Caesar(CAD). If the -M option is present tpack will only look back through the
last num rectangles on each layer when doing merges. A small value for num will
make tpack run faster, but not all possible merges will be found. The -v option
gives information about the number of merges done.

=D num! num?

EXAMPLE

The Demo or Debug option. This option will cause tpack to place only the first
numl tiles, and the last num2 of those will be outlined with rectangular labels. In
addition, if a tile called ‘‘blotch” is defined then a copy of it will be placed in the
output tile upon each call to the align function during the placing of the last num?2
tiles. The blotch tile will be centered on the first point passed to align, and usually
consists of a small blotch of brightly colored paint. This has the effect of marking
the alignment points of tiles. The last tile painted into is assumed to be the output
tile.

It is highly recommended that the example in “cad/src/quilt be examined. Look at both
the template and the ‘C’ code. A more complex example is in “cad/src/tpla.

“cad/lib/tpack.h (definition of the tpack interface)
“cadflib/tpack.lib (linkable tpack library)

“cad [src/quilt/* (an example of a tpack program)
“cad /lib/caesar/*.tech (technology description files)

ALSO SEE

Caesar(CAD)

*C’ Manual

Quilt(CAD)

Tpla(CAD)

Robert N. Mayo and John K. Ousterhout, Pictures with Parentheses: Combining Graphics
and Procedures in o VLSI Layout Tool, Proceedings of the 20th Design Automation Confer-

ence, June, 1983.

AUTHOR

Robert N. Mayo

BUGS

When a tile contains part of a subcell, or touches a subcell, then the whole subcell is con-
sidered to be part of the tile. The same goes for arrays of subcells.

TPACK Manual Page -25-

Appendix B January 23, 1984

NAME

quilt — assemble tiles into a rectangular array

SYNOPSIS

quilt |-acv] [-s standardTemplate| [-t template] [-o output_file tezt_file

DESCRIPTION

The user of Quilt first creates a Caesar file, called the template, containing a circuit layout
over which single-character rectangular labels have been placed. These labels define blocks
of the circuit called tiles. Using a text editor, the user then creates an array of characters
(each line defines one row in the array). Quilt reads in the array of characters and produces
a layout where each character is replaced by the tile of the same name. Spaces and blank
lines in the text file are ignored.

For example, we can produce a 3X3 checkerboard with this input file:

ABA
BAB
ABA

The template file would contain rectangular labels called A and B. The paint and subcells
anderneath these labels would be placed in the output file in a checkerboard fashion.

Tiles are normally placed so that they abut with each other in the foliowing fashion: the
lower edges of all tiles in a row are aligned, tiles are packed together horizontally as closely
as possible within a row, and the first tile in a row touches the first tile in the row above it
and the first tile in the row below it.

If we wish tiles to be spaced a certain distance apart, instead of what was described previ-
ously, we can use spacing tiles. Spacing tiles are tiles which indicate, by their size, how far
apart two tiles should be spaced. For horizontal spacing, the single-character name of a
spacing tile should be placed in parentheses between the names of the two tiles on either side
of it. The left edges of the two tiles will be spaced apart by the width of the spacing tile.
For example, the form “AB" places tiles A and B next to each other while “A(C)B” places
them apart by a distance determined by C. If C is of zero width, A and B will be placed on
top of each other. If C is the same width as A, A and B will abut (note that “A(A)B” is the
same as “AB"). If the width of C is less than the width of A the tiles will overlap, and if C
has a width greater than A they will be separated.

Spacing tiles may also be used to control the vertical spacing. A spacing tile at the begin-
ning of a row (such as “(C)AB”) will cause the bottom of the first tile in this row (in this
case tile A) to be separated from from the bottom of the first tile in the row above by a dis-
tance equal to the height of the spacing tile.

Qullt is a small program written with the Tpack system.

OPTIONS
-a produce Caesar format (this is the default)
-c produce CIF format
-V be verbose (sequentially label the tiles in the output, for debugging purposes)

QUILT Manual Page - 26 -

Appendix B January 23, 1984

-0 The next argument is taken to be the base name of the output file. The default is
the input file name with any extensions removed.

-t The next argument specifies the template to use. A .tp suffix is added if no suffix
was specified.

-8 style Use the template with the name q-style located in “cad/lib/quilt.
text_file

The name of quilt’s text file. If this filename is omitted then the input is taken from
the standard input (such as a pipe). If the input comes from the standard inprt and
the -0 option is not specified then the output will go to the standard output.

other optlons
Several other options are inherited from tpack(CAD).

FILES
“cad /bin /quilt — executable
“cad [src/quilt/* — source
“cad [lib/quilt [q-* — location of standard templates
“cad fexamples/quilt/* — quilt example
SEE ALSO
tpack(CAD)
AUTHOR

Robert N. Mayo

BUGS
This program inherits any bugs that may exist in tpack(CAD).

QUILT Manual Page - 27 -

Appendix C January 23, 1984

NAME

SYNOP

visifont - create text logos for VLSI chips

SIS
visifont [-k key] |-f font] word | quilt -s vlsifent

DESCRIPTION

The ‘word’ on the command line is rasterized into a matrix of characters suitable for input
to quilt or viewing on a text terminal. ‘word’ may be surrounded by quotes to allow embed-
ded spaces. The background characters in the rasterized image will be the same as the first
character of key, while the foreground characters will be the same as the second character of
key. Key defaults to “em’’.

If the output is piped to quilt, the wuser should use the standard template
“ead/lib/quilt/visifont.tp by specifying the -8 visifont switch, or else supply his own (see
quilt(CAD) for how to do this using Caesar). The standard template recognizes these fore-
ground and background characters:

e - asmall empty square
p - 4 small poly square

d - asmall diffusion square

m — a small metal square

E, P, D, or M - larger versions of the above

FILES
“cad/lib/quilt /¢-vlsifont.tp — standard template for quilt
[ust/lib/vfont/+ — standard place for fonts
“cad /bin /visifont — executable
“cad [src/vIsifont /* - source
SEE ALSO

quilt(CAD), caesar(CAD), vfont(5), vfontinfo(1)
The Berkeley Font Catalogue

AUTHOR

BUGS

NOTES

Robert N. Mayo

If the font does not specify the width of a space character then the width of the letter ‘e’ is

used instead.

MOSIS will not fabricate chips that contain logos or text over 50 microns high, unless per-
mission is obtained first. (As of January 1983.)

HISTORY

VLSIF

This program is a modified version of the tool ‘vfontinfo’ from Berkeley.

ONT Manual Page - 28 -

Appendix D

NAME

January 23, 1984

tpla - technology independent PLA generator

SYNOPSIS

tpla [-acv] [-s style] [-0 output_file]] input_file

DESCRIPTION
tpla is a PLA generator that generates PLAs in several different styles and technologies.

The input format is compatible with eqntott, see PLA(5) for details. Tpla does not handle
split and folded PLAs.

Tpla is a program written with the Tpack system.

STYLES OF PLAs AVAILABLE
The following styles of PLAs are currently supported:

Bels Buried contacts, nMOS, cis version {inputs and outputs on same side of the
PLA). Clocked inputs and outputs are supported. Berkeley design rules.

Btrans
Buried contacts, nRMOS, trans version (inputs and outputs on opposite sides
of the PLA). Clocked inputs and outputs are supported. Berkeley design
rules.

CD4cls
CMOS p-well process, 4 micron Berkeley design rules, dynamic PLAs with
two separate precharge lines for the AND and OR planes, no inverting
buffers between planes, cis version. Since the default for extra grounds lines
is based on an nMOS PLA, use -G 10" for this style. Clocked inputs and
outputs are not supported.

CS3cls
CMOS p-well process, 3 micron MOSIS design rules {August, 1982), static
PLA with p-channel pullups (pullup/pulldown = 1/2), cis version. Since the
default for extra grounds lines is based on an tMOS PLA, use -G 10” for
this style. Clocked inputs and outputs are not supported.

CS3trans
CMOS p-well process, 3 micron MOSIS design rules (August, 1982), static
PLA with p-channel pullups (pullup/pulidown = 1/2), trans version. Since
the default for extra grounds lines is based on an nRMOS PLA, use ‘-G 10"
for this style. Clocked inputs and outputs are not supported.

Tecls Just like Bels except that it has protection frames and terminals added (a
special mod for EECS at Berkeley).

Ttrans
Just like Btrans except that it has protection frames and terminals added.

Mcls Mead & Conway design rules. Butting contacts, 1MOS, cis version (inputs
and outputs on same side of the PLA}). Clocked inputs and outputs are sup-
ported.

Mtrans
Mead & Conway design rules. Butting contacts, nMOS, trans version

TPLA Manual Page -29 -

Appendix D January 23, 1984

(inputs and outputs on opposite sides of the PLA). Clocked inputs and out-
puts are supported.

It is easy to create a template for a new style of PLA, and tpla(CADS5) has information on
how to do it. If you develop a particularly nice template and would like to share 1t, send it
to “mayo@Berkeley” or ‘“‘ucbvax!mayo’’.

OPTIONS
-1 Clock the inputs to the PLA, if this feature is supported for this style.

-0 Clock the outputs to the PLA, if this feature is supported for this style.

-G Insert an extra ground line every num rows in the AND plane and every num
columns in the OR plane. This defaults to whatever is appropriate for the
corresponding nMOS PLA.

-8 Stretch power and ground lines by num lambda. This defaults to whatever is
appropriate for the corresponding nMOS PLA.

-v Be verbose, and show (in the Caesar output) how the PLA was constructed from its
basic components.

-V Be verbose, and print out information about what tpla is doing. This option implies
-v.

-a produce Caesar format (this is the default)

-¢ produce CIF format

-0 The next argument is taken to be the base name of the output file. The default is

the input file name with any extensions removed. If the input comes from the stan-
dard input and the -o option is not specified then the output will go to the standard
output.

-8 The next argument specifies the style of PLA to generate. (This causes tpla to use
the file “ead/lib/tpla/p-style.tp as its template).

-1 Set lambda to num centimicrons. {200 is the default)

-t The next argument specifies the template to use, this normally defaults to the stan-

dard library. A .tp suffix is added if no suffix was specified. This cption is useful for
generating styles of PLAs that are not included in the standard library.

input_file
The file containing the truth_table. If this filename is omitted then the input is
taken from the standard input (such as a pipe).

FILES
“cad /bin/tpla — executable
“cadfsrc/tplaf+ — source
“cad/lib/tpla/p=*.tp — standard templates for PLAs
SEE ALSO
eqntott(CAD1), presto(CAD1), plasort(CAD1), pla(CADS), tpla(CADS), tpack(CAD3),
mkpla(CAD1)

TPLA Manual Page - 30 -

Appendix D January 23, 1984

AUTHOR
Robert N. Mayo, program and the Bcis, Btrans, Mcis, Mtrans, Tecis, and Ttrans templates.

CD4cis, CS3cis, and CS3trans templates by Grace H. Mah

BUGS
The -G and -S options have no way of knowing what the grounding requirements are for the
style of PLA actually being generated.

This program inherits any bugs that may exist in tpack(CAD3).

TPLA Manual Page -31-

