MONTE-CARLO METHODS FOR ESTIMATING SYSTEM

RELIABILITY

Michael G. Luby

Computer Science Department

ABSTRACT

An n—-component system contains n components, where each
component may be either failing or working. Each component i is
failing with probability p; independently of the other components
in the system. A system stats is a specification of the states of the
n components. Let F, the set of failure states, be a specified sub-
set of the set of all system states. In this paper we develop Monte
Carlo algorithms to estimate Pr[F], the probability that the sys-

tem is in a failure state.

We now describe the two different formats for the representa-
tion of F considered in this paper. In the first format # is
represented by m failure sets 7, \F,, --- % | Rach failure set is

specified by an n —tuple in the input. The set of failure states is

m
then F' = (J Fy . We develop a formula for the probability of a
t=1

union of events. A Monte Carlo algorithm which estimates th
failure probability of an n~component system is developed based

on this formula. One trial of the algorithm outpuis an unbiased

estimator of Pr[7]. Lei ¥ be the average of the estimators pro-

duced by meany trials of the algorithm. We show that, when the
algorithm is run for an amount of time proportional ton-m, ¥ is
provably close to Pr{F] with high probability.

-

The second format for the representation of # can be
described as foilows. A network is an undirected graph G, where
the edges in the graph correspond to the components in the sys-
tem. Let G be a planar network and let z,, - ' - ,zy be K specified
nodes in G. For the planar X' —terminal problem, the network is in
a failing state if there is no path of working edges between some
pair of specified nodes. We develop a Monte Carlo algorithm to esti-
mate Pr{F] for the planar X-terminal problem. The algorithm
works especially well when the edge failure probabilities are small
In this case the algorithm produces an estimator Y which is prov-
ably close to Pr[F] with high probability in time polynomial in the
size of the graph. This compares very favorably with the execution

times of other methods used for solving this problem.

Rvumo»\.d M KW“?

M o—at
3l—

To my perents,
who carried me cn their shoulders,

may | do as much for my children.

it

Acknowledgements

When 1 came to Berkeley I wasn’t sure if] had the dedication, stamina or
ability to complete a Ph.D. Without the help of the following people, 1 would

never have finished.

Dick Karp has inspired me when I felt empty, filled me with ideas when I had
none, picked me up when I was down, understood when I rebelled and has always
been there when I needed a friend. 1 am eternally grateful for the influence he

has had on my life.

My officemates, Shafl Goldwasser, Silvio Micali and Vijay Vazirani deserve
special mention. They are the brightest and most original group of people | have
ever known. | consider myself very lucky for having the pleasure of spending
four years of my life working and playing with them. Shafl is the friend from
whom 1 keep no secrets. 1 miss her dearly already. Silvio was the source of
some of my happiest times in Berkeley (and ltaly!). His friendship is one of my
most valued treasures. I will greatly miss the playfulness and enthusiasm of
Vijay, his wonderful Indian food and his music.

I couldn't think of better role models than Manuel Blum, Gene Lawler, Clark
Thompson and Andy Yac. The knowledge they have shared with me through their
refreshing courses and through close personal interaction has been a tremen-
dous help. I would also like to thank Gene and Clark for their financial support
when I needed it most.

] thank Sheldon Ross, Jim Pitman and J.W. Addison for their inspiring

courses and for the hours they spent talking to me about research from a

perspective different from that of a computer scientist.

I thank Ravi Kannan, David Lichtenstein, Chip Martel, Barbara Simons and

Michael Sipser for showing me that there is light at the end of the tunnel.

A special thanks goes to those with whom I have head th; pleasure of working
especially closely over the past four years: Eric Bach, Shafi Goldwasser, Howard
Karloff, Narendra Karmearkar, Dick Karp, Gene Lawler, Alberto Marchetti (all
those hours in the Roma!), Silvio Micali (the rush job in Toronto), Bruce Parker,

Prabhakar Ragde, and Umesh and Vijay Vazirani (love that banana bread!).

I wish 1 bad more space, because I really can't do justice to the amount 1
learned from the following friends: Shimon Even, Faith Fich, Zvi Galil, Andrey
"Goldberg, Donald Johnson, Debby Joseph, Wolfgang Maase, Joan Plumstead, Jefl
Shallit, Michael Rabin, David Shmoys, Manfred Warmuth, Avi Wigderson and Alice

Wong.

1 am grateful to you all. You have given me incredible amounts of your time
sharing your expertise and showing me how to abstract, create, syntihesize and
explain new ideas. On the personal side, I have never had such a good group of

friends as] have had at Berkeley. 1 will never forget any of you.

Table of Contents

Chapter 1

B § o iR ats s KUT=1 1)« HURERUUU PP PP PP PPR 1
2. System Problem Description . 2

2.1 n—-Component System......cccoeirniininis i ee it e eeneetsereres s se s aara s 3

2.2 NELWOTKS .. iiierutireiiecicniiteiescrrrasrienteesanesastaarecasesssarsessaseasssmionissessanstnns 4
3. Computation of the Exact Failure Probability ccvecernnieimiiiiiinninniiniacinnnn 4
4, Hardness Restlbs. i iiierioriintrmirsseiiecoieriotimtirossaoresrassnsterestestersamenreiessetossasans 7
5. Monte Carlo AIgOrithmS. .ciciiiiiiniiiiiceisitntionr et cscs st ten st s ssa e e ae 8
8. Comparisons between Monte Carlo Algorithmsccccceiviminininiiieiiiiiiiniciee. 10
7. Combining Monte Carlo Methods with Deterministic Methodscc.cceee. 13
B. RO EIBIICES tuuirrrirernrireermneernessnsrarsssasesasnstnsssmsasstsoiernesssssrnnestssssasstnessenssssonasias 15

Chapter 2 -

1. The Reliability Problemcccccciiiieriiiminiiiniiiisniseeeren it srnesseraaasnaeenee 17
2. A Network EXampPle it csrcnn s s e a s st an s r s e 20
3. Monte Carlo Areﬁ Estimation. .o e e s s e e s 21
4, Convergence of Monte Carlo Algorithmscceiiiiininniiiiiiiniiiniieneen 22
5. Straight Simulation Monte Carlo Methodcooiviviiiimiiiicnnnninniiciennenes 24
8. A Description of the Coverage Algorithmcciiiiiiiiiiiiinin e 25
7. An Implementation of the Coverage Algorithm ... 30
8. A Generalization of the Coverage Algorithmccooieiriiniiininniinincna, 33
9. A Hybrid Allocation Scheme - The Cutoff Methodcccovviiiiiinnniiiinnianenncenee 34
10. A Substantially Faster Variation of the Coverage Algorithm........ccccceeiiece 38
11, Two-Terminal Network Reliability Coverage Algorithmc.cooviieiiniinnin. 48

12. An Upper Bound on the Number of Trials Necessary to Achieve an
(£.6) Algorithm when the System is Monotonic ..ot 48

13. Deterministic Upper and Lower Bounds on Pr{S],
An Extension of Boole's Inequality....ccccccoiiiiiiiiiiiniiiiiiinnnnniicn e, 50

14. A Computational EXample .. iciiiciiitccceacarienc e snrenrrearsenrercssensnsscenenes 53
15, CONCIUSION c.atiiir ittt et st cttte e ceresran e sennassesasonsansensnsmenssarnnsans 58
16. Acknowledgements. ... et caer e st e e e ra e 58
17. NOmMenClatUre. e et ecrsrre s s retern s e ats e cera sans e senvanensannsnnns .58
18. Linear Time Coverage Algorithm Pascal Program...c.cocceiievceiiinivinivennennn, 58
B2 A 1 7=3 =3 o= o [T = PO S AU .84
Chapter 3
1 Introduction o e e e re s eere ree e e e e see s raa e 85
2. Model for Monte Carlo Algorithms to Approximate
Enumeration Problems.ciiii it nerniecntvsreseesseessnn seansnresnne e 87
2.1 Preliminaries for Estimating the Probability of a Union of Sets....... 68

2.2 The Coverage Algorithm for Estimating the

Probability of 2 Union of Sets ..cccccvieeiiiiiiiiiniir i ere s 71

2.3 Covergence of the Algorithm to Estimate PriF]...cccccerrvirirreninrennnnnn. 73

3. Reachability Algorithm........... e raeeeeeeroteetretecteeeereeeetatnaenanteneranennsenas 79
3.1 Basic Concepts and Definitions ..o iiiiiiiii e eerrie e ceen v aeee, 79

3.2 Estimating Pr[F], A Preliminary Version.. ... eeeeeeeeeeeeeeneeeeseennen 79

3.3 Estimating Pr[F], The Final Versioncccccccveivrieeeinieeeeeieseeeieessnsnnes 82

4. Dynamic Programming Subroutine to Calculate FHc.coeeeiveiiiniinceencninnn. 84
4.1 Concepts and Deflnitionscciriiiiieeii i et e e e v ena e e 84

4.2 The Computation of FW e v aa e 85

4.3 Choosing a Walk at Randoml ... iveiceiiiiiiiiinicrieiieroereirrrccreerr e seneran enees 86

5. z-y Plaﬁar Two-Terminal Problem...c.cceiiiiiiiiiiiie e rincrves e errrccren e eene 91
5.1 Graph Concepls .o e e e e se e e 91

5.2 BStiMating PrLF et iiicciecieeeee e et e sa s e seseneeeeeeseeareebeaennaaas 92

6. Planar Two-Terminal Probleml..cccci it ccci et cees s se i serr e eene e 94
B.1 Preliminary ComCePtS iuiiaciatieiereerie et iiicireiaretasesnsnsseesssssaeansesnnssnnnnn 94

8.2 EstimMating PriF e se cececeeseettst e easesseseeasesssaessassnsens 97

vi

6.3 Modified Dynamic Programming Subroutinecccccceiriininiiiiiniiiicinnaes 99
8.4 Adding Dummy Edges to Reduce the Preprocessing Time............... 102
7. Planar K—Terminal Problem . .cccciiiiiiiricemniiiinenicneeccatccseseancanesinncnneans 103
7.1 Preliminary Conceplis .ot 103
7.2 EStimating PrF '] ceecreeeeiciineciiciacieontnneesareisirssneans e nsassnesareseeaeeans 105
8. Planar All-Terminal Problemccoii v ..109
8.1 Graph Conce LS. it iientirsiernnrsccnsennan et s s raansran sene e 109
8.2 ESLIMALING PrLF] +eossveesesssssssessseesesseeeesssesssnssssaesesessoessssmsessasssessanees 110
9. Running Time Analysis for the Reachability Problemcccoeaiiinieinnnnnennin 113
9.1 An Upper Bound on (8.8) .. .ccciiniumiiieicosinsinninnreenecnonnnnessassssnnaneecenss 114
9.2 An Upper Bound on (9.b)....coceivmuuiummmimiinmmmniiniirtiieniieeansnnene e sesnens i15
9.2.1 The Definition of H ..ciiicciiiiiieniiniiiieniinisieiretcranassinnesnenressans 115
9.2.2 Upper Bound Derivationccovciiiiiiinniiiiiiincnnne e, 118
8.3 The Choice Of L .ccieriiiciiiininiasiicieniistiieseisiaiseerastectasseanssaraionsnsorneressasens 119
9.4 Summary of the Running Time ...ccccoiuieiiiimicnincii e 120
10. Running Time Analysis for the Planar Two-Terminal,
All-Terminal and K —Terminal Algorithms......ccuciiiiiioniniinnnnninionninnn. 120
10.1 Preprocessing TimMeccciviiiiiiiiiririenieeiniienionniiesieinissnieeesnenane 121
10.2 NUMDBET Of TrIALS cieveeeiinirrareriorensrsmosatseranrasntissssissiscnsssnssassarsesoossoses i22
11. Improvements and Fine Tuning of the Algorithmc..civiiiiiinin 125
12, RE OB ES ittt iiiiiieirriccieieimcea et st taesasstnetosesaseronanoernarmasnnsitesssostansrasrassncs 128
Appendix 1 - PASCAL Implementation of the Reachability Algorithm............ 129

Appendix 2 - Sample Runs of the PASCAL Programi.....cceeeeerncnsevesssessinensnens 156

Chapter 1

1. Introduction

The focus of this dissertation is the problem of determining the reliability of
a system. The stendard approach is to try and celculate the exact reliability of
the system. For systems with special structures and for very small systems this
approach has been very successful. However, if the system is large and does not
have a very special structure then the running time for all known algorithms to
calculate the exact reliability of the system is exponential in the size of the sys-
tem. For the classes of systems we consider, the computation of the exact relia-
bility is either at least as hard as an NP-complete problém or is a #P-complete
problem. Thus, it is unlikely that there will ever be a fast algorithm to calculate

the reliability of these systems. '

The difficulty in calculating the exact reliability of a system motivates the
approach we have taken in this work. Instead of trying to calculate the exact
reliability, we develop Monte Carlo algorithms to estimate the reliability. Our
goal is to develop algorithms which output an estimate of the reliability which is
provably close to the exact reliability of the system with high probtability.
Furthermore, the running time of the algorithms should be small We have
attained these goais for the m—component system described in subsection 2.1
We have attained these goals for the X—terminal problem on a class of graphs

which occur often in practice. This problem is described in subsection 2.2.

The organization of the rest of this chapter follows. In section 2 we describe

—

2
the class of system reliability problems that will be considered. Then, we give a

description of the the methods for calculating the exact reliability of the system
in section 3. In section 4 we give evidence for why the calculation of the exact
reliability is a hard protlem. In section 5 we describe Monte Carlo algorithms
and give our measure of what constitutés a good Monte Carlo algorithm. In sec-
tion 8 we compare previous Monte Carlo algorithms for the systems described in
section 2 with each other and with our algorithms. In section'? we show how
Monte Carlc algorithms can be effectively combined with methods for the exact

computation of system reliability.

2. System Problem Description

In this section we describe the system problems which are the subject of
this work. All of our systems are composed of n components. Each component
is either working or failing. Each component ¢ has = failure probability p; asso-
ciated with it, where i is failing with probability p; and working with probability
1-p; independently of the states of the other components in the system. A sys-
tem state is an n-tﬁple (b,, - ,by) where by = 0 if component 1 is failing and
b, = 1 if component i is working. There are 2" system states and the probability

of any particular system state (by, - ' ,by) is

B 1- b
IIpe - {1-p" .
i=1

Let S be ihe set of all system states, and let F ¢ S be the set of failing sys-
tem states and let S—F be the set of all working system states. The failure pro-
bability of the system can be written as Pr{F]. The reliability of the system is
Pr[S-F] = 1-Pr[F]. Notice that the exact computation of the reliability of the
system is equivalent to the exact computation of the failure probability. How-
ever, a good estimate of the reliability of the system is not necessarily a good

estimate of the failure probability. For instance, if the reliébility of the system

is 1-1071° , then 1-107% is a good estimate of the reliability. On the other hand,
107 is nct a gosd estimate of 10710 | the failure probability of the same system.
Usually, since systems are designed to be reliable, the failure probability is
much smaller than the reliability. In this case, a good estimate of the failure
probability is a good estimate of the reliabiiity, but net necessarily vice-versa.
Therefore, we discuss only the probiem of trying to compute or estimate the

failure prcbability of the system.

We have uot described how the set of failure states F is presented in the
problem input. We now describe two completely different formats for the

representation of F.

2.1. n—-Component System

This is the format we assume in chapter 2. The set of failing states # is the
union of m failure sets F; (1 =<1 < m). The failure sets are specified in the
problem input as m-—tuples (i, * .Ccp), where ¢4 =0,1 or * Failure state
(by, - -+ \by) is in failure set (¢,, - * - .Cn) provided that ¢; = 0 implies that by = 0,
¢, = 1 implies that b, = 1, and ¢; = * implies b; may be either O or 1.

A wide class of systems can be put into this format. Many of these systems
have the following monotonic property (In Bariow [3], this is called a binary
coherent system). Define a partial order C on system states as fcilows: § €t if
and only if the set of components failing in system state s is a subset of the set
of components feiling in £. An n-component system is monotone if for all
failure states s and system states ¢, s C ¢ implies that ¢ is also a failure state.
Intuitively, a system is monotone if the system deteriorates in performance as
more and more components fail. In any monotonic n ~component system the
set of failure states can be represented by failure sets which cdrrespond natur-
ally to minimai failure states (minimal with respect to the partial order ¢C).

The number of failure sets, m, is equal to the number of minimal failure states

of the system.

2.2. Networks

For the systems described in this subsection, the set of failure states, F, is
represented implicitly by a network. We now describe a network. Let G be an
undirected graph with n edges. Each edge g; in & fails with probability p¢ and
works with probability 1-p; independently of the other edges in the network.
The edges arz the components in the system. Nodes are assumed to always

work.

In the two-terminal problem there are two specified nodes z and . The set
of failure states are those states where z and y are disconnected by a cut of
failing edges. This is a monotonic system where the minimal failure states
correspond to z -y cuts. Therefore, this problem can be put into the same for-
mat as the n —component system described in the previous subsection by listing
all the z —y cuts. However, since the number of x —y cuts can be exponential in

the number of edges, this is not always an attractive alternative.

In the K—terminal problem there are X specified nodes. The problem is to
compute the probability that there is a cut between any pair of the K specified
nodes. The all-terminal problem is the speciel case of the K —terminal problem
when all the nodes are specified. In chapter 3 we develop Monte Cario algo-
rithms for these three network problems when the underlying graph G is planar.

These algorithms avoid listing the cuts in the graph.

3. Cx;mputation of the Exact Failure Probability

We first discuss previous work relevant to the computation of the exact
failure probability for n —~component systems presented in the format discussed
in subsection 2.1. The straightforward method for calculating the failure proba-

blity consists of listing all the failure states, computing their probabilities and

summing these probabilities to get Pr{F]. The running time for this algorithm
is proportional to the number of failure states times n. However, the number of

failure states can be exponential in the number of failure sets.

Another method is to use the principle of inclusion-exclusion, i.e.

PriF1=Y priR] -2 PrianRI+ LT PrianFnfl. .
¥ €3 ik

However, the number of terms in this expression is 2". It is sometimes possible
to use the first few terms in this expression to estimate Pr{#]. However, these
partial sums may vary wildly.

A very powerful method is factoring. Let X be a system, let X-i be the
same system as X except that component i is specified as working, and let X—i
vbe the same system as X except that component 1 is specified as failing. Thus,
the failure states Fy of X are partitioned into Fy.;, the set of all failure states in
X such that component i is working, and Fx_;, the set of all failure states in X

such that component 1 is failing. Then,
PriFy] = py PriFx<]+ (1-po) PriFxd] .

Factoring can be used recursively to compute the failure probability of X+i and
X—i. The factoring algorithm produces a binary tree structure, called the
decomposition tree, where X corresponds to the root of the tree and X1 and
X—i are the children of X. A straightforward application of facicring resultsina
full binary tree with 2" leaves, where each leaf corresponds to a cne compenent
system. However, the tree t-:»an be truncated at any nﬁd; wgi‘a;.:-;c':;;'.responds toa

system whose failure probability is easy to evaluate. Thus, the size of the tree

can be substantially smaller than 2",

We now discuss previous work relevant to the computation of the exact
failure probability for network problems. Let ¢ be the number of cuts separat-

ing the two specified nodes in the two-terminal problem. Ball and Provan [2]

give a method for calculating the exact failure probability for which the running
time is propcriicnal to n-c?. Since ¢ can be exponentially smaller than the
number of failure states, this is sometimes a substantial savings over the
straightforward method. Clearly, this method is better than inclusion-exclusion,

for which the running time is proportibnal to n-2° . Their method does not seem

to extend to the K—terminal or all-terminal problems.

When the network has special structural properties it is possible to apply a
reduction. Ccusider a network G. Suppose there is a pair of edges between
nodes w and v in G with failure probabilities p; and p, respectively. A parallel
reduction replaces these two edges with one edge with failure probability p, P2 .
Suppose there is a node u in G of degree two, with one edge to v with failure
probability p,; and the other to w with failure probability p, . A series reduction
removes from the graph the node u and the two edges out of %, and adds a new
edge between v and w with failure probability 1-(1-p,)(1-p2). G is called
series-parallel if the graph can be reduced to a single edge via these two types

of reductions.

Consider the X—terminal problem. A parallel reduction reduces the size of
the network such that the resulting network and the original network both have
the same failure probability. If there is a node u of degree two which is not one
of the X specified nodes, then a series reducticn can be applied which reduces
the size cf “hc network such that the resuiting network and the original network
both have the same failure probability. However, if u is one of the X specified
nodes then the series reduction cannot be applied. Satyanarayana and Wood
[13],[16] introduce a new set of reductions, called polygon-to-chain reductions.
They show that if the underlying graph G is series-parallel then the exact failure
probability for the X —terminal problem can be solved in tirme linear in n, the

number of edges in G. In [10], Satyanarayana and Chang deflne a combinatorial

invariant of the graph called the domination of G. They show that the number
of leaves in the optimal decomposition tree when factoring is combined with
reductions is equal to the domination of G, and they show how to factor to
achieve this optimal decompositon tree. Using the idea of the domination of the
graph, Satvanarayana, Hagstrom and Prabhakar [11], [12], [G] show how many
terms in the inclusion-exclusion formula can be combined to reduce the total

number of terms.

In [13].[1€], Satyanarayana and Wood show how a triconnected component
in a K—terminal network can be replaced by a chain, where a chain is a path of
degree two nodes. The failure probabilities of the edges in the chain are deter-
mined as follows. A triconnected component is connected to the rest of the
graph through at most two nodes u and v. The triconnected component is first
disconnected from the rest of the graph at # and v and considered as a network
in its own right. Several K—terminal problems (at most 5) are solved using this
network, with a different specification of the X nodes in each problem. The
failure probabilities computed for these problems determine the failure proba-
bilities of the edges in the chain. The chain is then added between u and v in

the original network to replace the triconnected component.

4 Hardness Results

In this sectiion we motivate the use of Monte-Cario algorithms to estimate
failure probabilities for the systems described in section 2. In [1], Cook proved

that the satisfiability problem is as hard to solve as any probiem in a class

problems, called the NF-complete problems. Satisflability is called a decision
problem, because the answer to the problem is either "yes" or "no". Karp [7]
showed that many other combinatorial dercision problems were aiso NP-

complete. Fast solutions to these NP-complete problems has been the aim of

many researchers for years, with no success. The worst case running time for
the best algorithlrns for all these hard problems is exponential in the size of the
problem input. Over the years, hundreds of problems have been added to the
list of NP-complete problems [5]. Valiant [14] noted that many seemingly hard
problems are not decision problems but counting problems. He went on to
define a new class, called #P, and proved that the!;e are problems in #P that are
as hard to solve as any problem in #P; these are the #P-complete problems. #P-
complete problems are at least as hard to solve as NP-complete problems, but

they could be harder (nobody knows yet).

Provan and Ball [9] showed that the monotonic n —component problem with
the input format as described in subsection 2.1 is #P-complete, even when there
are at most two components per failure set and when all component failure pro-
babilities are one-half. They also showed that the two-terminal problem is #P-
complete, as well as the problem of approximating the failure probability for the
two-terminal problem. The status of the planar two-terminal problem is unk-
nown, but no polynomial time algorithm is known for the computation of the

exact failure probability.

These results are strong evidence that it is hopeless to devise a polynomial
time algorithm to compute the exact failure probability for the n —component
problem described in subsection 2.1. Since there is no polynomial time algo-
rithm known for computing the exact failure probability for the planar

K—terminal problem, a Monte-Carlo approach seems attractive.

5. Honte Carlo Algorithms

A Monte Cearlo algorithm is a randomized computational experiment for
estimating some quantity. In this paper the quantity is the failure probability of
the system and the experiment is cast in the following form. Let P be a probea-

bility measure on a finite set 4 and let f be a real-valued random variable on A

with respect to P. Let u be the expected value of f, ie.

u= % f(a)Plal.

acd

For our algorithms, we design the set 4, the probability measure P and the ran-
dom variable / with the following properties: (1) u = Pr[F], (8) it is easy to ran-
domly choose a € A with probability Pr{a], and (3) given a € 4, f(a)is easy to

evaluate. One trial of a Monte Carlo algorithm can be described as follows:

1. Randemly chocse an element in A such that a €4 is chosen with probabil-
ity P[a]

2. Estimator Y « f(a).

The expected value of ¥, E[Y], is 4 = Pr[F]. A Monte Carlo algorithm repeats
many independent trial steps. Let N be the total number of trials and let Y; be

the estimator produced in the i** trial. The algorithm outputs

_ Y+t Yy
y= N

as the estimate of u. By elementary probability theory, the greater the number
of trials the more likely ¥ is close to 4. We now guantify this statement. We say
a Monte Carlo algorithm is an (£,4) algorithm if

Pr“z-—y— <z]> 1-5
u

where £ and § are small positive real numbers. This is a relative measure of the
closeness of ¥ to u. We discuss why this measure was chosen in chapter 3, sub-
section 2.3. Our goal is to design an algorithm so that the number of trials
sufficient to achieve an (&,8) algorithm is provably smail and so that the running
time per trial is small. This goal may not be always possible. Therefore, we list

our goals for Monte Carlo algorithm design here in increasing order of priority.

1. Design an (£,6) algorithm which is provably faster than an existing algo-
rithm.

2. Design an (¢,6) algorithm which is provably fast for an interesting subclass
of the entire class of problems.

3. Design an (z,8) algorithm which is provably fast for the entire class of prob-

lem inputs.

. Comparisons between Monte Carlo Algorithms

As before, let S be the set of all system states and let F be the set of all
failure states. The easiest Monte Carlo algorithm to describe which outputs an
estimate of Pr[F] is straight simulation. One trial of the algorithm consists of
randomly choosing a system state s € S such that s is chosen with probability
Pr{s]. The estimator Y is zeroif s is a working state and one if s is a failing

state. Straight simulation is easy to implement. However, the number of trial N

sufficient to achieve an (¢,6) algorithm is proportional to There are

PriF]

two serious problems here:
1. Pr[F] can be arbitrarily small and thus -P—I%FT can be arbitrarily large.

2 The number of trials, N, is expressed in terms of the quantity we are trying

to estimate. Thus, we can't put an a priori upper bound on N.

Let S;. ealled the j** stratum, be the set of all system states s such that
there are exactly j failing components in s. The systemn states in an
n—component system are partitioned into n+1 strata. The sequential destruc-

tion method (hereaiter called SD#) of Easton and fong [4] is a refilnement of

straight simulation. One trial of their algorithm can be described as foiiows:

1. Randomly choose a system state § € S such that s is chosen with probabil-

ity Pr[s]. State s is chosen in exactly the same way as s is chosen using

10

straight simulation.

2. Suppose s € S;. Make a list of the n components such that the first j com-
ponents on the list are a random permutation of the failing components in
s, and the last n—j components on the list are a random permutation of
the working components in s. Let fc,, - - ,Cp} be the ordered list of com-

ponents.

3. Let s; be the system state where components ¢, thru c; are failing, and
Cjy+1, ° ' .Cq Are working. Thus, sy is from the j“' stratum. The estimator Y
is based on a weighted average of the estimator produced by straight simu-

lation when presented with the system states sg.81, - Sn .

Easton and Wong prove that the variance for SDM is less than the variance for
straight simulation. Since the number of trials sufficient to achieve an (£,6)
algorithm is directly proportional to the variance, SDM is better than straight
simulation. They include some examples where SDM is substantially better than
straight simulation. However, they give no a priori bounds on how much better
SDM is then straigﬁt. simulation. In contrast, our algorithm for the
n —component system is better than straight sirmulation by a factor easily com-
putable from the problem input. They also prove that the number of trials
sufficient to achieve an (z£,8) algorithm remains bounded by a constant as the
component failure probabilities approach zero. However, their bound dzpends
on the structure of the problem instance and cannot be easily computed. In
contrast, we show that there is an easily computable upper bound on the
number of trials sufficient to acheive an (z£.6) algorithm for our n —component
elgorithm which approaches zero as the component failure probabilities

approach zero.

Van Slyke and Frank [15] suggest stratified sampling. They consider only

the case when all components have equal probability, but the technique can be

11

easily generalized to the case of unequal component failure probabilities. As
before, let S; be the J* stratum set. Let F; be the set of failure states in §;. It

is easy to compute Pr[S;] and to randomly choose s € S; sc that s is chosen

with probability g-[[sgl]— . The failure probability of the system can be
3

expressad as
n
Prif]= 3 PriFy | SPrIS;]

The idea is to compute some of the quantities Pr{F; | S;] by exact methods {for
instance Pr(F; | S;] =0 for 1 <k, where k is the minimum number of tailing
components in any failure state) and to estimate the rest of these guantities
using straight simulation. The total number of trials they perform to estimate
Pr[F; | S;] by straight simulation is proportional to Pr[5;]. Let S' be the union
of the states in the stratum sets for which straight simulation is to be used, and
let F' be the set of failure states in S'. Their algorithm can be thought of as
using straight simulation to estimate Pr[F'| S']. They multiply this estimate
by Pr[S'] and add this quantity to the failure probability they are able to com-
pute using exact methods. This is their estimate of Pr[F]. They show by exam-
ple that straitified sampling can be substantially better than straight simulation.
In fact, it is not hard to prove that the variance for stratifled sampling is smaller

than for straight simulation.

Kumoamato, ei. al. [8] develop a technique which is similar in spirit to
stratified sampling. Some of the failure probability they compute by exact
methods, sobme they estimate by straight simulaticn. Their motivation is that in
some network problems it is easy to find some important path sets and cut sets.
Let PH be the set of system states which are in at least one of the important
path sets, let CT be the set of system states which are in at least one of the

important cut sets and let ' be the set of failure states in S—-PH-CT. System

12

states in PH are known to be working states and system states in CT are known
to be failing states. The idea is to use exact methods to compute Pr[CT] and
Pr[PH] and use straight simulation to estimate Pr{F' | S-PH-CT]. Let ¥ ve
the estimate of Pr[F'| S-PH-CT]. The estimate of PAr[F] is then
9. Pr[S-PH-CT}+ B-[CT]. The variance for this method is provably smaller
than the variance for straight simulation. However, no a priori bound of the
number of trials sufficient to achieve an (£,4) algorithm seem to be easily com-
putable. Furthermore, not too many cuts or paths can be included in the set of
important cuts and paths. The time to compute Pr(CT] and Pr[PH] exactly

grows exponentially with the number of important cuts and paths.

Now we outline our main results. In chapter 2, we present an (g,d) algo-
rithm for the n —component system described in subsection 2.1. The total run-

ning time of the algorithm is e priori bounded above by a value proporticnal to

il n'm, where n is the number of components and m is the number of

& 22
tailure sets. Thus, the algorithm is provably fast for the entire class of probiem
inputs.

In chapter 3 we present an (e,6) algorithm for the planar K—terminal prob-
lem. When the edge failure probabilities are small and the maximum number of
edges bordering a face in the graph is small, the algorithm is provably fast. An
upper bound on the running time of the algorithm can be computed a priori.
The subclass of problems for which the algorithm runs provably fast are impor-

tant in practice.

7. Combining Monte Carlo Methods with Deterministic Hethods

In section 3 we described methods for computing the exact failure probabil-
ity of a system. These techniques can be combined with the Monte Carlo

methods we have developed. We now give several examples where these tech-

13

S S S SR S K

niques can be combined. Consider the decomposition tree for the factoring
algorithm when applied to the X—terminal problem. We pointed out before that
series-parallel and polygon-to-chain reductions should be applied whenever pos-
sible to the subnetworks in the decomposition tree to minimize the size of the
tree. Our planar K—terminal algorithm can be used to estimate the failure pro-
bability for any network in this tree which is planar. Thus, the decomposition
tree can be truncated at any node which corresponds to a planar subnetwork. It
is an open (and probably hard) question as to what the optimal component
selection rule is to minimize the size of the decomposition tree if the leaves of

the tree are planar graphs.

Another place where our planar K—terminal algorithm could be useful is
motivated by the work of Satyanarayana and Wood [13],[18]. As we described
earlier, a triconnected component in the graph can be replaced by a chain
without changing the failure probability of the entire network. The failure pro-
babilities of the edges‘in the chain are computed by computing the failure pro-
babilty for less than five X—terminal problems on the triconnected component.
If the triconnected component is planar, then our planar K~terminal algorithm
could be used to estimate the failure probability for these K—-terminal prob-

iems.

In chapter 3, scction 7, we point out that given a fast algorithm for comput-
ing the exact failure probability for the two-terminal problem for a class of net-
works there is a fast Monte Carlo (£,6) algorithm for the K—terminal problem for

the same class of networks.

14

8. References

[1] Cook, S.A.,The Complexity of Theorem Proving Procedures, Proc. 3™ Ann.
ACM Symp. on Theory of Computing, Assoc. for Computing Machinery,
1971a, N.Y., pp. 151-158

[2] Ball, M.0. and Provan, J.S.,unpublished paper

[3] Barlow, R.E. and Proschan, F.,Statistical Theory of Relicbility and Life Tesi-
ing, Eolt, Kinehart and Winston, New York, 1875

[4] Easton, M.C. and Wong, C.K.,Sequential Destruction Method for Monte Carlo
Evaluation of System Reliability, IEEE Transactions on Reliability, vol.
R-29, no. 1, April 1980, pp. 27-32

[5] Garey, M.R. and Johnson, D.S.,Computers and Intractibility, A Guida to the

I3

rancisco,

Theory of NP-Completeness, W.H. Freeman and Co., San

1879

[8] Hagstrom, J.N.,Combinatoric Tools for Computing Network Reliability, Ph.D.
dissertation, U.C. Berkeley, 1880

[7] Karp, R.M.,Reducibility Among Combinatorial Problems, Complezxity of Com-
puter Computations, ed. R.E. Miller and J.W. Thatcher, Plenum Press,

N.Y., 1972, pp. 85-103

[8] Kumamoto, H., Tanaka, K. and Inoue, K., Efficient Evaluation of System Reli-
ability by Monte Carlo Method, IEEE Transactions on Reliability, vol. R-

28, no. 5, December 1977, pp.311-315

. -

f9] Proven, 4.5. and Bail ¥.0., The Compiesidy of Couniing Cuis and of Comnpud-
ing the Probability that a Craph is Connected, working paper MS/S 81-
002, Management Science and Statistics, January 1881 (revised April

1981)

[}
wm

[10] Satyanarayana, A. and Chang, M.K.Network Reliability and the Factoring

Theorem, ORC 81-012, U.C. Berkeley, 1981

[11] Satyanarayana, A. and Hagstrom, J.N.,New Algorithm for the Analysis of
Multiterminal Network Reliability, IEEE Transactions on Reliability, to
appear

[12] Satyanarayana, A. and Prabhakar, A.,New Topological Formula and Rapid
Algoriium for Reliability Analysis of Complez Networks, IEEE Transac-
tions on Reliability, 27, 1978, pp. 82-100

[13] Satyanarayana, A. and Wood, X.,Polygon-to-Chain Reductions and Network
Reliability, ORC 82-4, U.C. Berkeley, March 1982

[14] Valiant, L.G., The Complezity of Enumeration and Reliability Problems, SIAM
J. Computing, 8, 1979, pp. 410-421

[15] Van Slyke, R. and Frank, H.,Network Analysis: Part 1, NETWORXKS, vol. i, no.
3, 1972, pp. 275-250

[18] Wood, R.K.,Polygon-to-Chain Reductions and Eztensions for Raliability

FEvaluation of Undirected Networks, Ph.D. dissertation, ORC 82-12, U.C.

Berkeley, 1982

16

Chapter 2

1. The Reliability Problem

We assume throughout this chapter that an instance of the n-component
reliability problem is specified by the following data:

(a) for each component i, where 1< i < n, a failure probebility p;. Component
1 is failing with probability p and working with probability 1 — p; indepen-
dently of all other components in the system. The assumption made here
that components are s-independent is convenient, but not essential, for the
development that foliows.

(b) a specification of the combinations of component states which cause the
overall system to fm.l As we describe below, this specification consists of a
list of m failure sets.

Given these data, the problem is to estimate the failure probability of the sys-

tem.

In order to discuss how failure sets are specified, and how failure sets

together with the failure probabilities of components determine the failure pro-

bability of the system, we require further definitions. A system staie is an n-

[» 1
-

tuple {(b,, ..., b,) where b = 0 if component i is failing, and 2, =1 if com-

ponent i is working. There are 2" different system states and the probability of

n
any particular system state (b, ..., bs) is 11 piH" {1 —p()b‘ . For example,
i=1

in an eight-component system, the system state (0, 1,1,0, 1, 0, 1, 1) has proba-

17

bility p; (1-pe) (1-P9) P4 (1-Ps) Pa(1-P7) (1-Pa).

Let (€3, Cp) be an n-tuple, each component of which is either 0, 1, or
s, Such an n-tuple represents a set F, of system states, according to the fol-
lowing rule: (b, ..., b,) is an element of 5 provided that ¢ = 0 implies
b; =0, ¢; = 1 implies ¢ =1, and ¢; = * impiies b; may be either 0 or 1. Thus,
the 8-tuple (O, * 1, 1, 1, % 0, 1) represents the foliowing set of four system
states: §(0,0,1,1,1,0,0,1), (0,0, 1, 1, 1, 1, 0,1),{0.1,1,1,1,0,0, 1) and (0, 1,
1,1, 1, 1, 0, 1}}. A set F, represented in this way by an n-tuple (€, Cn) is
called a failure set provided that each system state in F, is a failure state of the

system.

Let F be the set of all failure states of the system. We assume that F is
specified as the union of failure sets F'y, Fa, Fy, each of which is described

by an n-tuple of 0's, 1's and *'s. Thus Pr [F]. which is the failure probability of

m
the system, can be written as Pr [Fl.
k=1

The probability of a failure set F, is the sum of the probabilities of the sys-

temn states contained in Fy:

PriR)= Y Pris] (1.1)
L Ei’.
Alternatively, if the n-tuple (¢, Cy) specifies F}, then

prif] =11 o (1-p)™ where
{=1

|
o

i ifC(-
C('=

0 ifey ior*

and

(1ifcg=1
" ={0 ifc;=0or*

18

For example, Pr[{0,* 1,1, 1,%,0,1)] is
P1{l =pa)(1 =pa) (1 = p5)p7(1 = pea).

Let Pr[s |] denote the conditional probability of system state s given

that 5 is drawn from the set of states #} .

Then

Pris|F 1= sER (1.2)

For example, Pr(0,0,1,1,1,1,0,1) (0, % 2,1, 1,°0,1)] is

P1P2(1 = p3) (1 = ps)(1 = pe) (1—pe) P2 (1 — Pa)
P1(1 =p3){(1 = ps) (1 —ps)P2(1 — Po)

= p2(1 — Po)

In network reliability and many other types of problems the n-component
system has a monotonic property. Define a partial order < on system states as
follows:

s C t iff the set of components failing in system

state s is a subset of the set of components failing in

state £ .

An n-component system is monotﬁne if for all failure states s and system states
t,s € timplies t is also a failure state. In any monotonic n-component system
the set of failure states can be represented by failure sets which correspond
naturally to minimal failure states {(minimal with respect to the partial order
€). ¥ s is a minimal failure state, then the corresponding failure set Fy is the
set of all states £ such that 8 ¢ ¢. Thus, F, can be written as (e, - - Cn)

where ¢, = 0 if component 1 is failing in state s, and ¢; = * if component 1 is

working in state s .

19

2. A Network Example

20

Figure 1 shows an undirected network with eight edges and two designated

vertices, z and y. Each edge @ is failing with probability p; and working with

probability 1 —p;. The network is said to fail if there is no path of working

edges between z and ¥/ .

®uPpa ...

Figure 1 - Two - Terminal Reliability Problem

. pa) = (.1..5, .4, .3, .2, .4, .1,.2)

An z -y cut set is a minimal set of edges whose deletion leaves no path

between z and y . Then the network fails if an only if all the edges in some z - ¥

cut set fail, and thus the set of failure states of the system can be expressed as

the union of failure sets which correspond to the z — y cuts. These failure sets

are listed in Table 2, where the probability of each failure set is also given.

k B-tuple representing failure set F, Pr(Ff:)
1 2 3 4 5 8 7 8

1 L * [] - L] L J o 0 '02
je = ® « =« 0o 0 0 * .008

3 o = . 0 . 0 * 0 .0024

4 * ¢ V] . * 0 . 0 .032

5 L J L] o |] 0 L 3 L]] .08

8 o = * 0 8] . * . .008

7 * O * 0 * (¢] C . .0ce

8 « 0 0 0 he * . . .08

9 0 0 L] L] L] * . ® _05

Table 2 - List of Failure Sats for Network of Figure 1

21

3. Monte-Carlo Area Estimation

In this section we present a Monte-Carlo technique to estimate the area of a
region in the Euclidean plane. Most of the Monte-Carlo algorithms presented in
this paper for the estimation of the failure probability of a system are analogous
to this arca estimation technigue, and the explanation of the algorithms will rely
heavily upon this analogy.

Suppose a region E of known area A(E) encloses the region U of unknown

area in the plane. Furthermore, suppose region E is subdivided into b blocks

such that the area of each block i is known to be ay, thus A(E) = i a;. Sup-
i=1

pose the region U consists of some subset of these blocks. Let ¢; indicate

whether or not block i is in region U, i.e.,

_ |1 itbloeki e U
i =l if blockti £ U

Then the area of region U, A(U), can be written as E ay .
{i=1

A straightforward method for determining A(U) is to compute the above
sum, but if b is large, this is a costly calculation. In the applications we consider
b is very large.

Suppose instead we have a method to randomly select biock i out of the set

of all blocks with probability Z%ET An unblased estunator. Y, of the quantzty

L rar P e o M e o — PO — i e

A(U) can be generated by randomly selecting block ¢ with probability I‘(ILE-)—

©
*

and letiing ¥ = a¢A{Z). The expected value v, E[Y], is

f} E ay A(E) = A(U) .

The algorithm can be repeated many times yielding estimator Yy in the j*

(Yl +...+ YN)

N is an unbiased estimator of A(U).

trial. ¥ =

11213141516 7%
o#&/3 12| BH|IS6

~Q

7 |13 WAaofn BRI 2
a5 |20 21 23 (99 A3l |32
33|34 |35 |36 |37 |38]37 |40

3 - Eis entire region
U is the shaded region, E is subdivided into 40 blocks

Qg = 0, x; = 1.

We will show in the next section that the number of trials necessary to

guarantee a specified degree of accuracy and confidence in the estimator is

:

linearly proportional to It is therefore desirable that this ratio be small.

A

o~

vy’

4. Convergence of Monte-Carlo Algorithms

Suppose the Monte-Carlo algorithm is repeated N times. Let Y; be the

Y, + Yo +...+ ¥;
value of the estimator obtained from the t trial. Let ¥ = of zN n) 2

A meaningful measure of the quality of the estimator ¥ is its relative error,

given by

l?-u

u

where u is the expected value of the estimator produced by the algorithm (u is
the quantity we are trying to estimate). We next derive an upper bound on the
number of trials N required to guarantee that the relative error will exceed a
speciﬁéd value £ with probability less than or equal to a specified value 6. For
example, if we specify &= .05 and & =.1, we are requiring N to be large
enough that the relative error will be greater than 5% no more than 10% of the
time. For the sake of brevity, a Monte-Carlo algorithm will be called an (e, 6)

algorithm if the algorithm achieves these guarantees.

22

Let o2 be the variance of Y, where Y is the value obtained in a single Monte-

o2

Carlo trial. Then the variance of ¥is N By Chebyshev's inequality

[y~
Prllyuu >¢ =Pr[|f’—u|>su]sﬁt%2-1—‘-2—.

Y
H
3

1)
Thus, in order that Pr “ —-? ;ll >t] be less than or equal to ¢ , it suflices
!
that

2
o 1
Nz — ———
u? §e®

Notice that there are two factors in the right-hand side of the inequality: 5—2—

which depends on the Monte-Carlo algorithm and problem instance; and 5.2

which depends on the desired relative accuracy of ¥ and the desired confidence

level of obtaining this accuracy. The rest of this analysis will only be concerned

2
with _6_2_
u

For the area estimation algorithm presented in the previous section the
random variable Y, which is the estimator of the area of region U, A(U),is a

Bernoulli random variable muiltiplied by the area of region £, A(E). Thus

0% = A(E) - A(U) = A(U)? and thus

2 _AE)
ut A(U) '

The number of trials, N , necessary to achieve an (g, §) algorithm is

[i@L-l . (4.1)

A(U) 8e2

We note that since Chebychev's inequality is true for any probability distribution

this may be a very conservative upper bound on the number of trials.

23

It the area of region U is not much smaller than the area of region A, then

the number of trials necessary is small. Our goal is to design an algorithm such

thet %%—f,—))— is small. We first present a standard algorithm to estimate the

failure probability of an n-component system which can be viewed as an area

estimation algorithmn where for n-compaonent systems typically encountered in

practice, the ratio %(%%- is very large.

5. Straight Simulation Monte-Carlo Method

A simple Monte-Carlo algorithm to estimate Pr [F], the probability that the

n-component system is in a failure state, follows.
Step1 randomly select system state s with probability Pr [s]

lifserF

Step2 the estimator Y of Pr[F]is {0 otherwise

The analogy to the area estimation technique goes as follows. The set of all
system states corresponds to the enclosing region E£. The system states
correspond to the blocks into which the enclosing region is subdivided, where
the area of each system state s is Pr[s] and hence A(E)=1. Region U
comprises the set of all failure states F and hence the area of region U is
Pr[F]. The expected value of Y is equal to Pr[F], however if Pr [F] is small
compared to one {which is typical of n-component systems) the number of trials

must be very large to estimate Pr [F] accurately.

The motivation for this work is to design a Monte-Carlo algorithm which esti-
mates Pr [F] accurately with a small number of trials even waen Pr[F] is very

small.

24

8. A Description of the Coverage Algorithm

Assume that F, the set of failure states of an n-component system, is
specified as the union of failure sets F,, Fa, ..., Fp. Then the failure probabil-

ity of the system is given by

PriFl=pPrlU Rl
k=1

We noted in Section 2 that it is easy to compute Pr [Fi] where F; is any one of

the m failure sets. If the m failure sets were disjoint, then calculating Pr (7]

m
would be simply a matter of computing 2 Pr[Fy]. Unfortunately, the failure
=1

sets are not disjoint in general. Furthermore, the classical formulas for the pro-
bability of a union of sets do not lead to efficient Algorithrns for evaluating
Pr[F]. For example, the inclusion-exclusion formula

m m m ki1
prir)=pr]) Al= § Aial- 8 5 priaon)

1=1 ko=1

m ki1—1kgl
+ 2 z 2 P"[Fk!an'ans]"’...+(-‘1)m+1Pr [Flann...nFm]

klgl kz’l ka=l

entails 2™ -1 terms. The terms can fluctuate wildly in value, making it impossi-
ble in general to obtain a good approximation by truncating the expansion after

the first few terms.

Another well-known formula is

Pr(F]= P'[,Ql Rl = PriFy]

+ PrFanFy] + Pr(Fsn(FiUFe)] +...+ Pr[Fmn(FiU.. UFm-1)].

This expansion has only m terms, but the individual terms seem bhard to com-

pute, and the most obvious algorithms based on this formula require a number

25

of steps exponential in m. In fact, to compute Pr[F] exactly is NP-hard [1].
We will not attempt to compute Pr[F] exactly. Instead, the ability to easily

k m
calculate Y Pr[F,] will be used to estimate Fr{ Fy]. Let cov(s), the cover-
=1 k=1

age of fajlure state s, be the number of failure sets containing s. For example,
in the network reliability problem described in Figure i and Tabie 2, the cover-
age of failure state s =(1,0,1,0,0,0,0, 0) is three because s is contained in
the failure sets F;, Fp and F,. As a second example, suppose the set of failure

states is the union of three failure sets shown in Figure 4. Then

F=F,\ Fg U Fs, cou(s,) = cov(sy) = 1, cov(sg) = 2, and cou(s,) = 3.

—
~ Sl
! S | Sa F

o}

S>3
2

Figure 4 - Araprasentation of a set of failure states F as
FyU Fe U Fa

Notice that each failure state s contributes a total of cov(s)Pr{s] to

m
Y, Pr[F,]. because s contributes Pr[s] to Pr[F,] for each F, containing s.
k=1

If instead we could arrange that each failure state s contributes a total of

*Pr[s], then the total contribution of all failure states would be Pr[F].

The new algorithm, called the coverage algorithm, is analogous to the area

m
estimation algorithm. The area of the enclosing region & is Y, Prifp]. Thae
k=1

blocks that comprise region E are all ordered pairs (s, k), where s is a failure
state contained in failure set F,. Thus, failure state s will appear as the first

component in exactly cov(s) blocks. We let the area of each block (s. k).

26

denoted a(s, ¥), be equal to Pr[s]. Thus, the total area of all blocks in which

s is the first component is cov(s)-Pr[s], and the total area of all blocks is

m
indeed), PrlFf].
k=1

Now we define region U, whose total area will be Pr[F]. For each failure
state s we let exactly one the cov{s) blocks in which s is the first component
be in the region U. Thus, a(s, k) =1 for exactly one of the cov(s) blocks in
which s is the first component and a{s,k) =0 for the other cov(s)—1 such
blocks. Notice that it does not matter which of the cou(s) blocks is in the
region U. This makes it possible to select any one of the cov (s) blocks in

which s is the first component to be in region U.

Figure 5 illustrates the sample space for the set F of failure states shown in
Figure 4. The region U is shaded in this figure. In this example block (s, k) is

in region U if Fy is the smallest indexed failure set containing s.

F (54,2)
54,2))
(.3.1) E_ ’ E’ (53]
(54,9 55,9

Figure 5 - Sample space for F shown in Figure 4.

How do we randomly select block (s, k) with probability —m‘j-[é'-l—-?
Y, PriF]

k=1
This is a two-step process. First, we randomly select failure set # with probabil-
PriF]

jty ————=—_ This is easy to do once the probability of each failure set has

© 3§ PR
k=1

been computed. This selects the second component k of the block. Then we

randomly select a failure state s from failure set F; with probability %;JT
k

27

This is also easy to do, as we discuss in the next section. This selection picks the

first component s of the block. Notice that this two-step process picks block

(s. k) with probability _Fris]

m

Y PriFf]

k=l

The computation of a(s, k) is discussed in detail in the following sections.

One trial of the coverage algorithm randomly selects block {s,%) by this twe-

m
step process, and returns a(s .,k)" Y, Pr{F.] asthe estimator of PriF}.
k=1

The advantage of this algorithm over the straight simulation algorithm is
the number of trials, N, necessary to achieve an (g, 8) elgorithm. Recall from
Formula (4.1) that for the area estimation algorithm, if N is greater than or

equal to

AE) _ 1]
A(D)

6 e®

(8.1)

then the algorithm is an (&, §) algorithm. For the straight simulation algorithm

this value of N is

1
[’_’n-m ‘1]
ée?

(8.2)

But Formula (8.2) involves Pr[F], the quantity the algorithm is attempting to
estimate. There can be no upper bound on N derived from the formula since
Pr[F] can be arbitrarily small. Thus, without any prior information about
Pr[F} it is impossible, using only this formula, to put an upper bound on N a
pricri which will guarantee an (e, 4) algorithm.

Let 7, be the probability that a state s selected from among all 2" states

with probability Pr[F] has cov(s) equal to 1, i.e.

rn= 3y, Pris] (8.3)
s ::(“:;.-.:t

28

Thus,
A(U) = Pr[F] = ‘)'i_';l r (6.4)
and
A(E) = é: Pr[F]= 2 i (8.5)

The new algorithm is an (&, 6) algorithm if the number of trials is

[o]

i1
r ||
A(E) _ z
ao] | & (6.
- 6e? - 5-g*)

But,

Sl om (6.7)

Thus, if we let N = 6,:2 for the new algorithm we will hé.ve an (g, 6) algorithm.

Since m is known before we run the algorithm it is possible to put an a priori
upper bound on the number of tri;als necessary to guarantee an (¢, é) algo-
rithm. An even tighter upper bound is derived in ZSection 13.

Through the insight gained by this new algorithm, we are able to derive an
easily computable upper bound on the number of trials to perform to guarantee
on (g, §) algorithm for the straight simulation algorithm. The reasoning goes
as follows: Equations (8.7), (8.5) and (6.4) imply that Formuia {8.E} is iess than or

equal to

m_ 1 (6.8)

& pin] 0F
=]

29

Thus, the straight simulation algorithm is an (e, 8) algorithm if the number of

trials is given by to Formula (8.8).

We now compare the upper bounds on the number of trials derived for the
straight simulation algorithm and the coverage algorithm. Let N be the upper
bound on the number of trials for the straight simulation algorithm and N be
the upper bound on the number of trials for the coverage algorithm. We see

that

R=n-% prin] (8.9)

k=1
m
If), Pr[F:] is less than one, the upper bound of the number of trials to
k=1
achieve an (g,) algorithm for the new algorithm is less than the upper bound

on the number of trials to achieve an (£, §) algorithm for the straight simula-

m
tion algorithm. If 2 Pr[F:] is greater than one, the reverse inequality holds.
k=1

Thus, a decision about which algorithm to use can be made based on the value of

m m
Y, Pr{Fe]. We expect Y, Pr{F,] «1 when the component failure probabili-
k=l k=1

ties are small, and therefore the upper bound on the number of trials for the
new algorithm will be substantially less than the number of trials for the straight

simulation algorithm.

7. An Implementation of the Coverage Algorithm

We next present an implementation of the new Monte-Carlo algorithm. The
input to the algoritum is an n-ccmponent reliability proklem in the format
described previously. The output from one trial of the algorithm is a number

which is an unbiased estimator of the system failure probability. '

30

31

Preprocessing

For k = 1,2, ..., m compute Pr[F:].

If F, is represented by the array (c,. . .. ,Cq) then, as described

n ’ ”
previcusly, Pr(F] =11 p 4 (1-p)""
iz

Allocate an array &S5 of size m.

™=

Pr(Fy]

dt

For k =1.2, ..., i, FS[k]+ S
Y PriFy]

J=1

Array FS will be used to randomly select failure set F, with probability

Pr[F:]
—
Y, PrlF;)
=1
Honte-Carlo Trial
. : s PriF] .
Step1 Randomly select a failure set F; with probability ————— This can
12 Pr[Fy]
=1

be done by picking a random number r from the uniform distribution
over [0, 1] and determining

k =min §{j | FS[j]= r] using binary search.

Step 2 Rarndomly select 5 € F with probability Pr[s | F.]= g—[rf,—]r
&

TF
i4

F, is specified by the array (c1,C2 ..., Cs) then

s ={by, ba ..., by) ischosen as follows:

ifct = 0, then b‘ =0
ifc, = 1, then b = 1
[then choose b = 0 with probability py

* [and b; = 1 with probability 1 - p;

ifC(

At this point block (s, k) has been selected.

Step3 Compute a(s, k)

1 if F;; is the smallest indexed
Define a{s, k) = failure set such that s € F}
0 otherwise

nen afs, k) can be computed by finding the smallest index i such

that s € F,. Ifk =i then a(s, k) = 1, otherwise afs, k) = 0.

m
Step4 The estimator, Y, of Pr[F] is a(s. k)) Pr[F.].
k=l

The time to perform the preprocessing step given the list of failure sets
Fi,...,Fp is O(m-n). For the two-terminal problem the failure sets could be
given implicitly by a data structure representing the graph. The preprocessing
step consists of listing all the z —y cuts in the graph and then proceeding as
before. All of the cuts in the graph can be listed in time O(m'n) [2] (in this
case m = # cuis in the graph, n = # edges in the graph), so the total prepro-

cessing time is O(m-n) in this case also.

Step 1 of the trial takes time O(log m) using binary search to find k.
Since there are 2" system states, there can be at most 2" failure sets, hence
the time for Step 1 is O(n). Step 2 also takes time O(n), and Step 4 can be

cerformed in constant time.

In this implementation the computation of a(s, k) in Step 3 takes time at
most O(m-'n). This can be seen as follows: afs, k) is computed by sequen-
tially searching through the failure sets until we find a failure set F; such that
s € FI and then a(s, k)=1ifi =k, otherwise a(s,k)=0. Bach test for
membership of s in a failure set takes O(n) time. In the worst case all m

failure sets will be examined, thus the total running time is O(m-n).

In Section 8 we found that trials are sufficient to achieve an (&,)

m
6 &2

32

algorithm. Thus, the running time for all the trials is

o[mz" (7.1)

6 £°

The running time per trial is dominated by the time to compute a{s, k) in

tep 3 of the algorithm. In the following sectione we will discuss methods to sub-
stantially reduce the running time of the algorithm based on alternative ways to
compute a. First, we will generalize the definition of a in a way that helps us

compute a quickly.

8. A Generalization of the Coverage Algorithm

The requirement that a(s, k) =1 for exactly one of the cov (s) blocks in
which s is the first component and a(s, k) =0 for the other cov (s) =1 such
blocks can be retaxed. A more general scheme is to allow afs, k) to be a ran-

dom variable such that

Y Ela(s, k)] =1. (8.1)

!b l. EF.!

Any such scheme can be viewed as a probabilistic allocation of the probability of
system state s to the set of blocks in which s is the first component. Any alloca-

tion scheme fulfilling these more general requirements will produce an unbiased
estimator of Pr[F]. As an example, letting as, k) = a—;}%—)— for all blocks in

which s is the first component, fulfills these requirements. This particular ailo-
cation scheme has the smallest variance among all allocation schemes, which
can be seen as follows. The variance of is equal to E[Y?] = E{Y]?, but, since
E[Y]? = Pr[F)? for eny choice of a, the allocation which minimizes E[Y?] will
have the smallest variance. Now,

E[Y*] = f:Pr[Fg]H.;F Pr[s]-[) E[az(s,k)]]]. (8.2)

k=1 {k|s € Py}

33

The choice which minimizes Y E[d¥s, k)] subject to
(ks € Py}

Y Ela(s, k)] =1 will minimize the variance. A little algebraic manipula-
ks € Fy

tion shows that this is minimized when a(s, k) = ;—1——-—

() for all blocks (s, k) in

which s i3 the first component.

9. A Hybrid Allocation Scheme - The Cutoff Method

Let ¢, the cutofl, be a positive integer. We will allocate the probability of

failure state s among the blocks in which s is the first component as follows:
1.) If cov(s)<c then allocate Pr[s] equally among all cov (s) blocks, i.e.,

a(s, k) = for all cou(s) such blocks.

—1
cov(s)
2.) If cou(s)>c then allocate Pr[s] equally among ¢ of the blocks, i.e.,

i

a(s, k) = S

for ¢ of the blocks and a{s,k)=0 for the other

couv(s) — ¢ such blocks.

The reason that ¢ is called the cutoff is because in the implementation of the
hybrid allocation scheme the algorithm finds the first min fc, cou(s)] failure
sets that contain s. The probability of state s is allocated equally among the

blocks in which the second component is the index of one of these

1
min {c, cov(s }§

min {c, cov{(s)] failure sets. Thus, a(s, k)= if & is the index

of one of ihese iailure sets, otherwise a(s, k) =0. The value ¢ is an upper
Ivamo‘und.wor cutofl, on the number of failure sets containing s that the algorithm

must find in order to compute a{s, k).

When ¢ is infinite then a(s, k) = tor all blocks (s, k) this is the

1
cou(s)
minimum-variance case. When ¢ is one then a(s, k) = 1 for exactly one of the

cou(s) blocks in which s is the first component and a(s, k) = 0 for the other

cov(s) —1 such blocks; this is the maximum-variance case for the hybrid

34

method. Recall from formulas (6.3), (8.4) and (B.5) the definition of »;. Then
1..1'1

m
2 1.'1"

t=1

is the probability a system state with coverage i is randomly selected in

2
one trial of the algorithm. Thus, for the cutoff method 25- can be expressed as
u

r o

151 <¢c + _1__2 r 2 ‘l'.f‘
i c {ixc =1 -1 (9 1)
S RS
ix] ixl

It is trivial to modify the coverage algorithm presented in Section 7 to
incorporate the hybrid allocation scheme. The only change is in the computa-
tion of a(s, k), which can be described as follows:

Step 3 Sequentially search through the failure sets until either ¢ failure sets
F, are found such that s € F; or all the fajlure sets are searched. Let
{ be the number of failure sets found such that s € Fy, then

1 = min (c,cou(s)) . If k is the index of one of the [failure sets found,

then afs,k) = i— otherwise a(s, k) =0.

If we let ¢ == (in which case as, k)= 1 3), then the time per trial

cov (s
is still O(mn). The best upper bound we can prove on the number of trials

necessary to achieve an (g,6) algorithm is still 3'-;-"-2— so the total running time

is still 0[%] . However, using the algorithm with ¢ = = will result in a sto-

chastically better estimate of Pr[F] then using the algorithm with a smaller

value of ¢ for the same number of trials.

35

10. A Substantially Faster Variation of the Coverage Algorithm

In this section we present an alternative implementation of the coverage

algorithm presented in Section 7. We will prove that an upper bound on the

{)
running time of this new algorithm to guarantee an {£.5) algorithm is 011‘—?‘-4 .
{957

Recall that for the previous implementation of the coverage algorithm we

m®n

were able to prove an upper bound on the running time of O[502 | Since m is
£

typically very large in comparison to n, this improvement in the running time is
substantial. Wevcall the new algorithm the linear time coverage algorithm to
emphasis the fact that the running time is linear in the input size (which is
mn) divided by 6-£2.

We assume the most general input format. The input consists of the failure
probabilities of the n components and a list of the m failure sets in the format

described in the first section of this paper.

We first present the algorithm. The preprocessing step is exactly the same

as it is for the coverage algorithm. The first two steps, randomly selecting block

(s. k) with probability —-E:El—. are also exactly the same as they are for

m
Y, PriF]
k=l
the coverage algorithm. Once block (s. k) has been selected, the linear time

coverage algorilhm produces two unbiased estimators, a(s, k) and a'(s, k), of

-c—o_vl(-;T in Step 3 which are independent of one another. Note that both
S Em(s, k)]=1 and 3 EFlas k)=t Thus, either
ikl‘ € Fb’ ik Il Efij

m
Y = als, k) ﬁ Pr[F.] or Y =a(s,k)), Pr[F.] will be an unbiased estima-
k=) k=1

tor of Pr(F].

36

37

A Description of the Linear Time Coverage Algorithm

Peo, ¥eo
numirigls « 0
time « 0
Repeat steps 1-5 until time = 2«2
‘€
PriF,

Step1 randomly select a failure set F,, with probability —m—L—b-]—— as before

X Prif]

k=1

Step2 randomly select § € Fp with probability Prﬁ[% as before
&

Step3 1«0

Do until a failure set F is selected such that s € F}

[

randomly select failure set F; with probability ;1;-

lel+1
Check toseeifs € F; (*)
timme « time + 1

a(s, k) = ;:_1._

, 1ifi =k
afs. k) = 0 otherwise

Step 4 The estimators, Y & Y', of Pr[F] are

Y=a(s. k) 3 PriF]
k=1

Y = afs, k) -:21 Pr(F,]

Step 5 numtrials + numérials +1 , ¥ « Y+7 , P« P+ ¥

Gotostep

. ¥
Step 8 Estimator 1 = Tarmtrial
?.
nsti = umirials
mstimator 2 e

One trial of the algorithm is the executicn cf steps 1-5. The value of the
constant ¢ is discussed in the following theorem, which establishes that the
choice ¢ = 18 gives an (£, §) algorithm. The running time for each trial is

dominated by the time to perform the test marked with a (*) in Step 3. This test

cmn

FRCEE To

takes O(n) time to perform. The total running time is therefore

simplify notation, we call the number of times (*) is performed per trial the
length of the trial.

1

Now we will show that Efa(s, k)] = ;1—}-(8—)

Suppose (s, k) is picked in

Steps 1 and 2 of one trial. We are interested in computing

Efla(s, k)] = Eflengt:!nof trial]

Each time line (*) is executed there is a chance of ﬂiﬁi)— that s € F; since

each failure set is picked with probability —:‘— and s is an element of cov(s)

failure sets. Let X(s, k) be the length of the trial given that (s, k) is picked in

Steps 1 and 2 of the trial. Then X(s, k) is a random variable geometrically dis-

tributed with rate -cﬁ%l@l- and

_E[X(s, k)] . _m 1 _ 1
Ela(s. k)] = m T ecov(s) m cou(s)’ (10.3)
Now we will show that E[a'(s, k)] = ;:—:FI(-S-T’ Suppose (s, k) is picked in

Steps 1 and 2 of one trial. Once the algorithm finds a failure set F; such that

g8 € Fy, the probability that i = k is exactly -1 independently of the
cov(s)

38

length of the trial. Thus,

1

Ela(s. k)] = prr s (10.4)
and a(s, k) and a'(s, k) are independent estimators of S S
cov(s)
bl ory?l o e o s _
We now compute z- and =5, which we call ¥ and ¥ in the folicwing
E[Y} . E[Y]

discussicn to simplify notation. These formulas are needed to analyze the run-
ning time of the algorithm. Using the notation introduced in formulas (8.3),(8.4)

and (6.5) we see that

- g -4

g5 s

=1

and
E[Y?] = Lf} ir*] ij n] . (10.8)

Thus, if we let

Y
PriF i=1
= B - 4= (10.7)
Y ARl Y i
=1 i4=
we see that
2
fg — 10.8
P (10.8)
and
o s = (10.8)
M

The standard technique to guarantee an (£, 6) elgorithm is to compute an
a priori upper bound on the number of trials sufficient for an (&, 6) algorithm.

Typically Chebyshev's inequality is used to compute an upper bound on the

39

number of trials sufficient to guarantee an (g, §) algorithm. Instead, we put an

upper bound on the number of times (*) in Step 3 must be executed to guaran-

cm

6 e

tee an (g, 6) algorithm. We will prove that if (*) is executed times during

the course of the algorithm, we have an (g, 6) algorithm (where ¢ is a suitably
chosen constant = 1). The intuitive reason why this type of time bound will

guarantee an (£, §) algorithm follows:

Eflength of atriall]=m u .

If (*) is executed ¢ = ;:.: times, then the expected number of trials com-
pleted by time f is approximately mf,u. = " ;‘82 . The upper bound on both 3

and 9' can be expressed as % (where & =2 and 1, respectively). Thus, if the

estimator Y (or ¥') for each trial were independent of the length of the trial and
if ¢ were chosen to be suitably larger than &, then an application of Chebyshev's
inequality would give us the desired result. Since the estimator ¥ (or Y") from
each trial depends on the length of the trial, we will use Kolmogorov's inequality

(which is a stronger version of Chebyshev's inequality) to prove the resuit.

We first introduce some notation which will simplify the proof that execut-

[m

ing (*) in Step 3 O times will guarantee an (t£,4) algorithm. Let X; be a
{582]

random variabie denoting the length of the j® trial. Thus, {X;] is a sequence of

i.i.d. random variables where

m ir, {
prry= & Anfmlo AL, (10.10)
D LR WS Y
i=1 i=1

The estimator ¥; (or ¥;') of Pr{F] generated at the end of the § trial is also a
random variable such that E[Y;] (or E[Y;']) = Pr[F]. Y is not independent

of X;, but the sequence of ordered pairs {(X;, ¥;)} are independently and

40

identically distributed (readers familiar with renewal-reward theory will recog-

nize that this is a renewal-reward process).

n
¥We let S, = 2 X, be the time at which the n® trial is completed,
i=1

7.’} be the sum cf the estimaies irom the first n trials

[0 o
B
R
S .

i

Wpls

1

and N(¢) be the number of trials completed by time £.

The running time of the algorithm will depend upon the upper bound on

9 (¥') if the algorithm uses Y (Y') as the estimator of Pr[F]. If we let

€=2(C=1), then ¥ < £ [I" < ‘%] . In the following discussion we express

i
the running time in terms of £ and use the variables ¥ and K in place of Y and
R or Y and R' to avoid proving two theorems depending upon whether ¥ or ¥'

o

is used as the estimator of Pri{~)].

Theorem: The Linear Time Coverage Algorithm is an (&, 6) algorithm when
the estimator used is Estimator 1 and ¢ = 16, or when the estimator

used is Estimator 2 and ¢ = 8.

Proof : We will prove that
|| e en |
Pr|| = >z |{=<6
A TS R
when

41

Comment 1 :

Comment 2 :

Back to Proof : Fix {' =

When € =1 and £<.25, |1+ < 2. Thus when

Estimator 1 is used as the estimator (£ = 2}, the algorithm is an
(£.,d) algorithm when ¢ = 18, and when Estimator 2 is used as
the estimator (& = 1}, the algorithm is an (&, ¢) algorithm when

= 8.

R {
N}ztt; is not an unbiased estimator of Pr[F] because N(t)isnota

valid stopping time [3]. Nevertheless, the proof of the theorem is
still valid. We could complete the trial in process at time £ and

RN: +1

USE N(t)+1

as the unbiased estimator of Pr[F], but this would

make the running time of the algorithm a random variable. We
choose not to complete the trial in progress at time ¢ and accept
the small bias in the estimator. In the following discussion we use
the term "stopping time"” to mean the time the algorithm is
stopped, we do not mean stopping time as it is defined technically

in renewal theory.

dm k=

522 " :82 where d is a constant to be deter-
M

mined later. Let 8 be a constant (whose optimal value we will deter-

mine later) and let ¢ = ¢'(1 + 8) . First, we investigate what can be

said using stopping time £".

n” RNy ADg ;
Ny Tt ._
B H BT 74"
Bven _ pry)
pr| | N7 >zand N(t") <k | + (10.11)

E[Y]

42

NG~ (]]
Pr N("g[ﬂ =2rand N(t") =k (10.12)

We will compute upper bounds on formula (10.11) and (10.12) separately.

Upper bound on formula {10.11}

Farse
sl
Pr | £ 2cand N{t") <k |<sPr[N(t") <k] =
S '
Pr(Sy > "] = Pr|=2-> t(lk‘“ﬁ)} <
[Se _t] | 5 -m.y,‘]
k k _ k
Pr T >8 -Prl — l ﬁ]
k
e o n g 206£% . _ .2 _q21 1
et e=8.8= d,‘ig . Since & = :',46.52 = [,u} W' we use Chebyshev's

inequality to conclude that an upper bound on formula (10.11) is

26¢c2
'= 0.
é d g (10.13)
Upper bound on formula {10.12}
[Rygee
xi NA(,;‘“) - E[Y]
Pr zcand N{{") =k | <
1| E[Y] ()
T 1
:: fr “E[Y} i i
r 1"
PrH B[] =cforsomer 2k and N(t")2k|{=<
R
—— E[Y]
Pr|| T————|2¢forsomer 2k (10.14)

E[Y]

43

We will use Kolmogorov's inequality to derive an upper bound on formula
(10.14). We first state Kolmegorov's inequality [4] and then manipulate the ine-
quality until it is in a form which is useful to derive an upper bound on formula

(10.14).

Kclmogorov's Inequality

Let Y,, Yz....Y, be independent random variables with the same distribu-

tion as Y such that E[Y] and o*[Y]=E[Y?] - E[Y]? are fnite, and let

l
R =) Y, . Forevery 2 >0,
i=1

Pr3l|1sl<n & |R -1-E[Y]| >:~/Tza[y]]<;1;— (10.15)

Substituting -\/—_5-1"-[—}71- E[Y] for z yields

a]Yl

Pr[3tl|1slsn &IR,—ZE[Y]l>enE[Y]]< nE[TT

c R £
< : [Smce Ef[?]]z—<13(or1$)sr .

Once again, this can be rewritten as

’ R

7 - E[Y]

E[Y]

> "ln}<

PrlEHlslsu& g
wtn

Thus,

— [R _ o

E[Y] i
T gn-2
= Pr FL7] > 7 >

[+

m 3lj1slcn2t &

| R‘ - £1Y] gn 2t

Y] 1”1

Hlalln'z“'lsl<n'z‘& 12

B - E[Y]

.ot~1 .ot P E——
Prl3i|n2tlsicn2& 7]

> 2¢

a4

An upper bound on formula (10.14) can be derived as follows.

R
l - E[Y]
Pr —__!:J'—[—?]—— >¢gforsomer >k
; ' .]
o Bl ol
<SS Prl3ilk2t-igsl <k 2 & | — =2
igx l ' |~ E[Y] | lzl
g & 1 _ 4c _ 4€8
= £ igl 28 T wetk d
Ml k

Thus, formulas (10.11) and (10.12) sum to less than

2
3-[4-5 + %‘5— (10.18)

-3

. . . d-m .) 2e< |
"E —— — @] —'—] -
Using stopping time ¢ 3 o7 (1 + 8), we achieve an [e g {4 + 4 J algo

rithm. If we substitute ¢'= 6 for 6 we achieve an (¢, §) algo-

d]
2
£

4-C + 2—
g

. 2
rithm where now the stopping time is S (1 +) = -2 47 + 2 | (1 + B).
é"¢ de g

2
The value of 8 which minimizes this stopping time when ¢ is small is §= _s:_s .
€

Substituting this value for f yields

2
meE 3 3
4 1+ -2 1+ E—
o L L
o3 1| 9
A\ e } i ¢ i

This completes the proof.

The total running time of the linear time coverage algorithm is then

O(m-n) for preprocessing plus 0{""'51_:2_] time to execute (*) in Step 3

45

1

Ol 6—:‘2—} times, which guarantees an (¢, §) algorithm for the linear time cover-

age algorithm.

11. Two-Terminal Network Reliability Coverage Algorithm

In this section we show how the two-terminal network reliability problem
can be attacked using a variant of the algorithm of Section 7. We give a fast way
to compute a when the input to the algorithm is a list of the edge failure proba-
bilities together with an adjacency list for the graph. The preprocessing step in

this case consists of listing all the z =y cuts in the graph [2].

The first two steps of one trial of this algorithm, picking block (s, k), are
exactly the same as they are for all the previously described coverage algo-
rithbms. We will use the cutof! method described in Section 8 to compute
a(s., k). Let c be the value of the cutofl. The adjacency list representation is
used to list cut sets occurring among failing edges in state s. The algorithm
lists cut sets occurring among failing edges in state s until either ¢ cuts are

found (cov(s)=c) or until all cov(s) cut sets occurring among failing edges

1

- if & is the index of one of the
min {c, cov(s)}

in state s are found. a(s.k) =
failure sets, otherwise a(s, k) =0.

The time for listing each cut set is O(n) [2], thus the time tc compute
afs, k) is

min {c, cov(s){'n . (11.1)
The average time to compute a for one tris

2 igfg+c 21:7'(

18{<¢c xc

21’.7‘.‘

tx1

‘n. (11.2)

46

47

When ¢ = 1, the time per trial is O(n). An upper bound on the number of trials

sufficient to guarantee an (g, 6) algorithm is
m
Y, PriF]
k=1 -1 1 < M
PrF]) 682 T 6¢f
as we saw in formula (6.1). Thus, an upper bound on the running time of

and c = 1.

m-n] m
322 J is cbtained if the number of trials is 3 o8
£ £

In the next section we show that

$ prin]

k=1 .
PriF}

n
is less than or equal to]] (1 + p;) . Thus, if we execute
{=1

[fl (1+p0) - 1]

=]
6 £?

trials, we have an (&, §) algorithm. If welet ¢ =1, the total running time is

[I"Iu +p‘>-1]-n

{=]
6 £?

Olmn +

12. An Upper Bound on the Number of Trails Necessary to Achieve an (&, §)

Algorithm when the System is Monotonic

In this section we show for monotonic n-component systems

5 PriR] "
= < [[(1+p0). (12.1)
PriyU Fe =t

k=1

Thus, the number of trials sufficient to guarantee an (g, §) algorithm for

[n]
[H 1+p) -1
i=1

6 &2

the coverage algorithms is for monotonic n-component sys-

tems. Note that

PN
IE[(1+p)set™t .
i=1

n
Thus, as E p; goes to zero, the number of trials necessary also goes to zero.
=1

n
In marked contrast, since Pr[F] goes to zero as 2, pi goes to zero, the
i=1

number of trials necessary for the straight simulation method becomes

k.
unbounded as), g goes to zero.
{=1

n
Note that H (1 + p) can be computed before any trials are performed.
=1

This calculation gives an a priori upper bound on the number of trials necessary.
Thus upper bound suggests that the coverage algorithms work especially well
when the failure probabilities are small. Reliability problems tend to have small
failure probabilities associated with their components. These observations indi-
cate that the coverage'algorithms are well suited for solving problems that

occur in practice.

48

The proof of equation (12.1) wil be by induction. Let n-tuple
(b,....b¢,*.....*) be a specification of system states where each b; is either zero
or one. Let D(b.....b,*....,*) = PrlF|(by,...0¢,"%.....*)] . where F is the set of

failure states.

Since (*,..,*) is the set of all system states, D(*,....*) = Pr[F] whichis

equal to the denominator of the left-hand side of equation (12.1). Note that

1if (by..bp) € F

D(byibp) = 0 otherwise

D can be defined inductively as
D(by..biop,®) = piD(brbe1,0.%,...,%) + (1 = p) D(by,.. by 1200007)
If the n-component system has the monotonic property,
D(by....bg-1,0,%,....*) 2 D(b,....0-1,1,%.....%) .
Let

lif(blt n) € F
N(bx-’---bn) 0 otherwise

Deflne N inductively as

N(b 1""'bi—1'.""|.) = pi‘N(b1,...,b‘_1.0,‘......) + N(b 1,...,b‘_1,1..,....‘) .
m
We claim N(*,....*) is greater than), Pr{#,]. This can be seen by cbserving
£=1

the the contribution of failure state (b;,...,b5) to N(*,...,*) is equalto

Hp,, where ¢’y =

i=1

1ifb; =0
0ifb, =1"

Thus, the contribution of all failure states to N(®,...,*) is greater than the con-
tribution of all minimal failure states to N(®,...,*) which is equal to the sum of

the probabilities of all the failure sets.

49

We will show by an induction argument that

Bl < fT(14p0)
D(. i=]

which will validate equation (12.1). The induction hypothesis is

N poibe®un®) S 1] (14 Pg) D(Brebs®ens®)
g=i+1

for all combinations of 0's and 1's substituted for (by,....b¢) . The basis of the
induction argument is that for all system states (Byr....bn). N(by....bs) =
D(by,....bs) by definition of N and D. We will assume the induction hypothesis

for 1 and show this implies it is true for i - 1.

N(bl""'bi-l"""'.) '—'p"N(bl.....b‘-‘, 0,.,...,‘) + N(bll"'lbi-l' 1.‘,....‘)

= le:'I*i'l (1 + Pj)[PiD(b l""'bi—lt 0....,..,,‘) + D(bl"'"bt—l' 1,...,...,‘)] =

B P Db 041, 0,%,....2)+ D(by,....bi-1 1%, ‘)
’Rl(1+m)lp‘-D(bl,..,,b‘_l,o't'_“.-).,_(l_p‘)D(bh R ,)1(12 .2)

D(b1.ubior®...®)
Formula (12.2) is maximized when D(by.....b-1 1,*.....,*) is maximum, but
since D(by.....bs~1, 1.%.....°) < D(by,....b¢-1, 0.*.....*), this implies (12.2) is max-
imized when D{8y...9¢-1, 1.%...,*) =D(by...bi-1. 0,%,...,%) . Substituting this

value into {(12.2) yiclds the conclusion

n
N(b 1""'b1'1"""") < ’I.-I‘(l + p’)'D(b;...‘,b{_l,‘.”.,‘) .

Thus equation (12.1) is verified.

13. Deterministic Upper and Lower Bounds on Pr[F]. An Extension of Boole's

Inequality

50

51

Boole's inequality states that

<> AR (13.1)

k=] k=1

Pr{f) P

F, |. and show that this lower bound can be

[S——)

[m
We provide a lower bound on Prl U
k=1

computed quickly. First, we present Scole's inequality in another form. We

defined 7, in section B8 as
= » Pris] = Pr{cov(s)=1i]

s o state =.{.
cov(s)=t

Now we define a positive integer valued random variable Z such that

Pr[Z=i)]=r . Let] betheevent Z21. Then

B(z]=3ip[z=i]= Sirn = 3 Pr[R]
=0 {=0 k=i
and
m - " m [m]
PriIl= Yy PriZ=i]= 2n = PrluF,}
. (=1 $=1

{¢=1

Thus Boole’s inequality can be rewritten as

Pr[I]1 < E[Z] (13.2)

hich is a special case of Markov's inequality. Now we develop a lower bound on

whic
Pr[I}
m 2 S]
E[28] = S itpr[z=i]= 3 itr = 3 3 Pr | Fx 0 Fy |
i=1 {1=1 k=1 §yot
We claim
Theorem :

CE[Z1) | oy (13.3)

E[Z?%]

or aiternatively,

52

m 2
[2 P"[Fh]] -
™ k:l < Pr [U Fg] (13.4)
2 2 Pr{F,r\Fj] k=1
k=1 f=1

Procf :

This is equivalent to proving

which is true if and only if

f} iy][‘Z‘] iry Z)

i=1 j=1

Compare terms i =1, j=k andi=k, j=1! from the left-hand side and

right-hand side of the equation.
Left-hand side: !'rpkmy + krg-lory = 2:(kl)Tem .
Right-hand side : 7,-k%71, + 75137 = (kB4 1%)rm; .

It is sufficient to show 2(k-l) =< k?+1%. But this follows since

(k —1)® = 0. This completes the proof.

Notice that from the list of failure sets we can compute

$ ﬁpr[F,nF,]

k=1 =1

in time O { m%n). We now consider how gocd these bounds are by taking the

m .2.
E[Z%] _ tgxt T
E[Z] m

53
The best a priori upper bound on this ratio is m, but in practice we expect this

ratio to be rmmuch smaller than m.

E[Z® E(Z] 'Z"}Pr[F‘]
Inequality (13.3) can be rewritten as E'[[7 iL > PriT] = ‘=}3r[7

. . . rl 78 . :
Thus for ihe algorithms presented in Sections 7 and 11, F[Z])6 is an easily
. us

computable upper bcund on the number of trials sufficient to guarantee an

(e,)algorithun.

14. A Computational Example

The new coverage algorithms was applied to the network reliability problem
used as an example in Section 2. The failure probability of the system is .21254,

there are nine failure sets,

3

" Pr(F,]=.2644
e=1
and
9 2
g:lprm]] peas?
= - = .1768
iPr{F,nF,} .3953

k=l j=1
Four different versions of the coverage algorithm are used to estimate PriF].
Since randomly selecting block (s, k) in the first two steps of a trial is the
same for all versions of the algorithm, all four versions use the same randomly
selected block (s, k) on the same trial
The four diferent versions of the coverage algerithm Qiffer enly in the com-
putation of a(s, k). The method used to compute a(s, k) for each of the four

versions is described in the following table.

Version Computation of afs, k)
= 1
! afs. k) = cov(s)
— : c
2 i 1311,1.3..!’ |s € Fyi
1ifi=k

als k) =g ieq = &

@

randomly select F; with

prooability o until

5 € F;. Let ! = number
of failure sets picked until

s € F‘ .
a(s, k) = po

4 let F; be [ailure set s.t.
s € F; found using ver-
sion 3

1ifi=k
als. k) =loiri # &

Forty trials were conducted, with the following results. When Version 1 was
used, the estimate of Pr[F] determined by these forty trials is .2181. The esti-
mates derived by treating each of the first, second, third and fourth sets of ten
trials as though it were the entire sample are .2005, .2291, .2181 and .2247,
respectively.

When Version 2 was used, the estimate of Pr[F] determined by these forty
trials is .2247. The estimates derived by treating each of the first, second, third
and fourth sets of ten trials as though it were the entire sample are .2115, .2115,
L2300 and .2280, respectively.

When Version 3 was used, the estimate of Pr[F] determined by these forty
trials is .2078. The estimates derived by treating each of the first, second, third
and fourth sets of ten trials as though it were the entire sample are .1410, .2262,
.1410 and .323Z2, respectively.

When Version 4 was used, the estimate of Pr[F] determined by these fcrty
trials is .2115. The estimates derived by treating each of the first, second, third

and fourth sets of ten trials as though it were the entire sample are .2380, .2380,

54

.1851 and .1851, respectively.

A detaiied table of these results follows.

system state failure sets a(s, k) version selected index of
k s € F, containing s 1 2 4 Fyst.s € F
8 00100010 3,82 /5 ¢ 2,0 o 2
5 10000111 58 1/2 1 7/8 1 5
5 00000011 5,8,8,9 1/4 1 1/8 1 5
4 11011010 4 1 1 11/9 1 4
9 00001011 8,9 1/2 ©C 2/9 o 8
5 11010111 5 1 1 1/9 1 5
9 00111010 9 1 1 2/9 1 9
9 00011011 8 1 1 5/9 1 9
9 00111011 9 1 1 4/9 1 9
9 00111111 9 1 1 13/9 1 9
3 01101010 3 1 1 14/9 1 3
9 00100000 1,2,3,8,7.9 1/8 0 1/9 0 3
9 00110011 9 1 1 1/9 1 9
5 11010111 5 1 1 2/9 1 5
1 10011100 1 1 1 15/9 1 1
9 00110111 9 i 1 4/3 1 9
5 10010001 2,5 1/2 0 2/% 1 5
9 00111011 9 1 1 3/9 1 9
5 11000011 5 1 1 8/9 1 5
5 10010011 5 1 1 18/9 1 5
2 10000001 2,5,7,8 1/4 1 7/9 0 7
8 10000011 5,8 1/2 0 5/9 0 5
5 11000011 5 1 1 2/9 1 5
9 00011111 9 1 1 10/9 1 9
5 11010101 5 1 1 1/9 1 5
8 10001111 8 1 1 14/9 1 8
4 11000010 4,5 1/2 1 1/9 0 5
8 10001011 8 1 1 1/9 1 8
5 10010011 5 1 1 2/9 1 5
9 00111111 9 1 1 5/9 1 9
8 10001011 8 1 1 4/9 1 8
9 00101011 9 1 1 14/9 1 9
5 11000011 5 1 1 5/9 1 5
4 10011010 4 1 1 24/9 1 4
8 10000110 5,8 i/2 0 3/9 0 5
5 10000111 5,8 1/2 1 8/9 0 8
5 11010111 1 1 12/9 1 5
7 10001001 7.8 i/72 1 8/9 0 8
8 10001111 8 1 1 4/9 1 8
9 00011111) 1 1 30/9 1 9

15. Conclusion

We have presented several highly eflective Monte-Carlo methods for
estimating the failure probability of an n-component system, given a list of
failure sets. In many practical situations an n-component system is presented
as a network or fault tree, and the fajlure sets are too numerocus to be explicitly
listed. In future werk we will show that our coverage formula and the associated
Monte Carlo method can sometimes be applied in such situations using implicit

methods of sampling from among the failure sets of the system.

18. Acknowledgements

The authors would like to thank J. Pitman for pointing out the approach to
proving that the Linear Time Coverage Algorithm is an (g, 6) algorithm using

Kolmogorov's Inequality.

17. Nomenclature
™ e nomenclature intreduced in each section is listed here for easy refer-
ence.
Section 1 n - number of components in the system
m - number of failure sets
p; - probability component 1 is failing
{by.....by) - a specification cf a system state

b, = 0 if component i is failing

b; = 1 if component 1 is working

{e,,...,C,) - a failure set specification

¢; = 0 if component i is failing

1 if component i is working

Cy
¢, = * if compcnent i may be either failing or working

Fy - the k** failure set

56

Section 4

Section 8

57

s - a system state

F - the set of all failure states

Pr[F] - the probability the network is in a failing state
=, - the two designated nodes in the two terminal problem
£ - enclosing region

A(E) - area of region ¥

I’ - unknown region

A(U) - area of region U

5 - number of blocks into which ¥ is subdivided

@, - area of block i in £

a; - 1 if block i € U, 0 if block i £ U.

Y - random variable s.t. E[Y] = A(U)

N - number of trials performed during the course of a Monte-Carlo
algerithm

Y; - estirnator produced by the it* trial

u-E[Y:]

o? - variance of ¥;

¢ - allowable relative error

§ - confidence level that the relative error is < ¢

(£, 6) - algorithm with confidence level & the relative error

of the estimator produced by the algorithm is less than or equal to £.

cov (s) - the number of failure sets Fj s.t. s € Fy
{s, £) - ablock in the regicn F for the coverage algorithms s € Fy
a(s, k) - indicates whether or not (s, k) € U

a(s k) =1if(s, k) € U

als k) = 0if (s. k) £ U

58

Section 7 FS - an array of size m used to pick failure sets

T, - summation of the probability of all states with coverage i

Section B afs, k) - generalized version of definition given in Section 8

Y Ela(s. k)] =1

{kis € Fpf

Section & ¢ -the cuteff

Section 10 Y - unbiased estimator of Pr(F]
Y' - a second unbiased estimator of Pr{F]
a(s, k) - used to produce estimator ¥
a'(s, k) - used to produce estimator Y’
X(s, k) - length of trial given that block (s, k) is selected

s- E[¥L
E[YP

s - B2

E[YT]?
y. Pl
2 PriF]

¢t - number of times (*) in Step 3 of algorithm is executed during the course
of the algorithm.

X, - length of the j* trial

Sn‘5n=§&

i=1
Y; - value of Y on the j* trial

Y;' - value of Y" on the §* trial

s 3
Rn' z Y{

i=z]

n
Rﬂ'- 2 Yt'

i=1

N(t) - number of trials completed after (*) in Step 3 is executed ¢ times

€ -both®¥ and ¥' are < %-

18. Linear Time Coverage Algorithm Pascal Program

In the following pages there is a listing of a Pascal program for the Linear
Time Coverage Aigorithm descrmbad in Secilon 10. Aller ihe problem dala is
input and the preprocessing is perfcrmed, the upper bound and the lower bound
on Pr[F] described in Section 13 is computed and output. Following this are
steps 1 thru 6 of the Linear Time Coverage Algorithm. Following this listing is a
run of the program using as input data the example problem described in Sec-

tion 2.

59

60

progrsm montel { input.output)

¢ this program computes the failure probability of an n~component systea

where the input is a list of fatlure sets -

the running time of this algorithm is ¢ * numcomponents * numfail

divided by dalta * epsilon * gpsilon, where

c is a small constant = (see tne proot that this migoritha & &o

apsilon,deits algorithm)
numcoaponent tz thg mumner af SyBLen CompOnRnTd
numfail {s the number of spec.flad fatlure sets
delta 13 the conf!dance jevael
epsilon is the allowable reiative error 3

label 1 3

var 1,j.k,1 : tnteger 3
numcomponants : integer
numfall : tntager ¢
Sees : integer
prob : array [1..481 of real
failset : array £1..188,1..481 of integer i
failprob : array t9..138) of rasl :
sumprob : real
sstate : array [1..48] of integer
numsteps : integer i

sumesti : real 3
sumest2 : real
outest] ¢ real
outest2 : real

numtrials ¢ tnteger
c : real 3

x : real

z ¢t real

epsilon : real
delta t real

time : integer 3
alphal t rea) 3
alpha2 : real 3

found : boolean

(select fatlure set 2

function selaectfail @ integer
var low.high,pntl.pnath @ integer ;
x ¢ real i
found : boolean i
begtn
x ts random (Seed) 1
found := false

high t= numfatl

while (not found) do

begin
pntl t= {low * high) div 2
pnth = pnt! ¢ 1 3
1f (fatlprobipntll ds x) then high t= pntl
1f (fatlproblpnthl < x) then Jow := pnth
1f ((faiiprobipatll <(ax} and (failprobipnthl o= x

and

selactfail t= pnth

and 1

{ sslsct system state 2

proceaure selectstate i
var { 1 integer 1
x t real 3
begin
for 1 t=] to numcomponents do
begin
sstatelil = Faflsetlk,13
1f (astatef!) = -1} then
bagin
x :» random (Seed)
1f (x (= propiti) then sniutelild 3= J
else sstatelil te 1
end
end
end 3

¢ function to see {f systes stats s in fatlure set b

function inset : boolean 3
var tndic : boolean 3

§ * integer 1
begin

thdtc = true |

)) then found := true

for § := 1 to numcomponents do
begin
If ((fatlsetlt,j]1 = 1) and (sstatelj] = #)) then
tndic := falss 1
1f ((failsetlt,j] = &) and (sstateljl = 1)) then
indic = false
end 3
inset := indic
end

¢ t{nput problem data]

begin

writeln ('Seed:')
read (Seed) 3
{ := seed (Seed)
writeln ('enter epsilon 3') 3
read {epsilon)
writeln {‘enter delta :')
read (delta) 1
writeln {'enter constant '} 3
read {(c) 3
writeln (' ber of components ')}
read (numcomponents) ;
writeln ('input probability of components : ') 3
for { := 1| to numcomponents do
begin

writeln {'input prodb. of component 1.1t3)

read (problfl)} .

end
writeln ('input number of failure sets t')
read (numfail) g
writeln
writeln ('The fallure set specification format s :°)
writeln ('l - component must work for system state to ba in fatlure set’') 1
weiteln (‘¥ - component must fail for system state to pe in failure set’) 3
writeln ('~1 - component may sither work or fail (unspecifiedi’} 1
writeln 3
for t := 1 to numfal) do
begin

writeln {'input specifications for failurs 39t ‘,4:23)

for j t= 1 to numcomponents do

read (failsetii,jl)

end 3

(preprocessing 1}

faiiprobl#l := §.0 4
sumprob i 8§
for t 3= 1 to numfail do
begin
failprobl{i) t= 1.8 ;
for j = 1 to numcomponents do
begin
if (fatlsetli,jl = §) then
failprob{1) := failproblil * probljl
1f (fatisetl1,j} = 1) then
failprobli] := fatlproblil * (1.8 - prob(31)
end 3
sumprob := sump~ob + €atiprobltld
end ;
writeln ;

{ Print upper bound on the failure probability 2}
writeln ('Upper bound on the fatflure probability is * ,sumprob:12:8) 3
¢ Compute and print lower bound on the failure probability)

¢ = 5.3
-

i
i to numfall do

for 1 ¢
for § 3= 1 to numfatl do
begin
x = 1.8 3
for k 1= | to numcomponents do
begin
1f ({(failsetlt,kl=l} or (fallsetlj,k1I=1)) then
x = x % (1.8 - prob(kl) 3
1F ((faflsetlt,k)=F) or (failsetlj,ki=F)) then
x t» x * probik]
1f ((fatlsetli,k]l <> fatiset{j,kl) and (faiisetli k] <> ~1)
and (fatlsetlj, k]l <> =1)) then x = &
end 3

2 "z * X
end

. S S b e

writelin 3 writeln (° E{2*2) = ‘',2812:8) 3 writeln 1
2z t= (sumprob * sumprob) / 2 3
writaln
writeln (‘iLowar bound on the failurs probability 13 tLzt12:8) 3
writelin
x s £ 3
for { = 1 to rumfaii do
begin
writeln ('The prob. of fatlure set ',1:3.' is '.f‘t1prob[i]:12=3) 3
x i= fatlprobli1l * x 3
faiiproblil = x / sumprob
ena ;
numsteps :® trunc ((c * numfaill / {(delta * gpstlon * apsilon}) + 1 3
writeln § writeln ('the numter of steps will be ' numstepsi6) 3
time := & 3
numtrisls = & 3
sumestl := #.8 3
sumest2 = 5.8 1

¢ beginning of Monte-Carlo trial)

while (time (= numsteps) do
begin

t step 1 - select fallure set)
x t» selectfaill 3
¢ step 2 - select system state)
selectstate
¢ step 3 - compute estimators alphal and alpha2 3}

1 1= 8

found :* false

while {not found) do

begin
4 :e trunc {(random{Seed) * numfali) + 1 3
1 (1 >= numfail) tnen § 32 numfatl
1 :w 1 41
time = time + 1 3
1f (time > numsteps) then goto 1 4
found :» tnset

end 3

¢ step 4 - compute alphal and atphaZ)
alphal = (1 / numfail) * sumprob 3

if (k = 1) then alpha2 t= sumprob
else alpha2 t= 8

~

step 5 - tncrement number of trials and total estimators 3}

numtrials := numtrials ¢ 1

sumestl = sumestl < alphal 3

sumest2 = sumestl ¢ aiphal
end { whila {(+ime <= numsteps)) 1

-~

stap 6 - the simulation {8 completed, output the results 3

1 : outest! i= sumestl / numtrials 3
outest2 := sumest2 / numtriais 3
writeln {'number of trials completed = ‘L nuetrials:S)
writein ('estimator 1 = ' ,outest1:12:8) 3
writeln (‘estimator Z2 * s outest2:12:8)
end (of program J .

Seed!

39845

entar epsilon ¢

g1

anter delta :

B.8%

enter constant :

8.9

number of components @
8

input probability of components :
{nput prob. of component 1

7A;ut prob. of component 2
7;:ut prob. of component 3
Iaput prob. of component 4
7;:ut prob. of component 5
7;§ut prob. of component 6
7;;ut prob. of component 7
E;éut prob. of component 8

input number of failure sets @

The failure set specification format is @

1 - componant must work for system state to be in fatlure set
g - component must fail for system state to be in failure set
-1 - component may sither work or fail (unspecified)

input specifications for failurw set 1
-1 -1 -1 -1 -1 =} 4

tnput specifications for fatliure set
-1 -1 -1-1 & 9 8 -1

tnput specifications for failure set
g-1-1 8-1 #-1 9

tnput specifications for fatlure set
-1~ -3 -1 8-1 8

input specifications for failure set
-1 -1 #-1 &-1~-1-1

input specifications for failure set
¥F-1-1 8 §-1-1-1

tnput specifications for failure set
-1 £-1 #-1 &4 8 -1

input specifications for fatlure set
-1 & 8 8 -1-1-1-1

input specifications for fatlure set
s & -1 -1 -1-1=-1-1

O 0 N O e W N

Upper bound on the fatlure probabiliity is §.20440088
E(2Z*Z) = §.39534409

Lower bound on the failure probability is £.17682666

is 8.82808088
is 5.30808808
1s 9.2B240888
is ¥.832800089
8.98809888
is §.03689808
is 9.996998088
is #.096099088
is 2.85388883

The prob. of failure set
The prob. of failure set
The prob. of failure set
The prob. of failure set
The prob. of fatlure set
The prob. of failure set
The prob. of failure set
The prob. of failure set
The proo. of fatlure set

WHNORNEWN -
-
[}

the number of steps will be 144881
number of trials completed = 13864
estimator ! = #.21387693
estimstor 2 = 4.21215856

19. References

[1] J. Scott Provan and Michael O. Ball, The Complezity of Counting Quts and of

Computing the Probability that a Graph is Connected, working paper
Tarniea ey 1981
(revised April 1981)

[2] S. Tsukiyama, 1. Shirakawa, H. Ozaki, H. Ariyoshi, An Aigorithm to Enumerate

All Outsets of a Graph in Linear Time, JACM, vol. 27, no. 4, October
1980, pp. 619-832

[3] S. Ross, Applied Probability Modals with Optimization Applications, 1970,
chapter 3, section 3.4, p. 37

[4] W. Feller, An Introduction fo Probability Theory and Its Applications, third

edition, vol. 1, 1968, chapter 9, section 7, pp. 234-235

64

e

Chapter 3

1. Introduction

In chapter 2 we presented a Monte-Carlo algorithm to estimate the failure
probability of an n-component system. We extend this technique to esstimate the
failure probability for the reachability problem and the planar X' —terminal prob-
lem. A direct application of the algorithm presented in chapter 2 to the planar
K—-terminal problem requires an explicit enumeration of the cuts in the graph.
Since the number of cuts may be exponential in the size of the graph an explicit
enumeration may be very costly. Similarly, direct application of this algorithm
to the reachability problem requires an enumeration of the simple paths in the

graph. The algorithms presented in this paper avoid such explicit enumerations.

Let G be an undirected connected graph with n nodes and m edges. For
each edge e; a probability py is specified. Edge e; is failing (in a failing state)
with probability p; and working (in & working state) with probability 1 —p;
independently of the other edges in the graph. Nodes are always working. G,
together with the specified edge probabilities, is called a network. We will use

the terms network and graph interchangeably when the context is clear.

There are 2™ different combinations of edge states. These combinations

ot & ne the set of all states of the graph.

are called the states cof the graph.

t

For all s € S, the probability cf s, denoted Pr[s]. is the product of the probabil-
ities of the edge states specified in s. We will denote by F, where F € S, the set

of failure states of the network. We are interested in computing

65

Pr[F]1= Y Pr[s] the failure probability of the network.
b4

s €
For the reachability problem there are two specified nodes z and y in the
graph. A failure state is cne in which there is a path of failing edges between z
and y. For the planar K—terminal problem the graph & is planar. There are X
specified nodes z,, ' * * ,Tx in G. The problem is to compute the probability that

there is no path of working edges between some pair of the specified nodes.

We develop Monte-Carlo algorithms for both the reachability probiem and
the planar K—terminal problem. Two important special cases of the planar
K-terminal problem are the planar two-terminal probiem (when K = 2) and the
planar all-terminal problem (when K =n). For these special cases we present
algorithms which have much simpler implementations than the more general

planar X —terminal algorithm.

For the reachability problem we prove that when the edge failure probabili-
ties are small and the node degrees are small the average value of the Monte-
Carlo estimator over many trials of the algorithm converges quickly to the
failure probability. For the planar X—terminal problem we prove that when the
edge failure probabilities are small and the number of edges bordering any face
in the graph is small the average value of the estimator over many trials of the

algorithm converges quickly to the failure probability.

66

2. Model for ¥onte-Carlo Algorithms to Approximate Enumeration Problems

The Monte-Carlo algorithms we develop to estimate the failure probability
for the reachability problem and the planar K—terminal problem can be
explained abstractly as follows. The algorithm can be logically decompesed into
two parts: the preprocessing step and the trial step. The preprocessing step is
executed once at the beginning of the algorithm. The purpose of the prepro-
cessing step is tc perform caiculations needed for every execution of the trial

step.

Let u denote the failure probability. Each execution of the trial step uses
random choices to produce an unbiased estimator of 4. Each trial produces an
estimator which is independent of the estimators produced from the other tri-
als. We now give an abstract description of how u is approximated in the trial
step. Let U be a finite set, which we call the universe. Let wt (mnemonic for
weight) be a measure on U (i.e. wt is a function from all subsets of U to the

positive reals satisfying the requirement that for all B ¢ U, wt(B) = Y, wt(b))
bep

and let a be a function from U to the reals such that

p= Y wt(@)ala).

a€ey

Let

wt(U)=) wit(a)

')

be called the weight of the universe. One trial of the algorithm follows.

Trial to Estimate u
wt{a

1. Randcmly choose @ € U with probability wE (D)

2. Compute a(a)
3. Estimator ¥ « a(a)-wt(U)

Lemma2a: E[Y]=un

67

Proof :

E(Y}= Y l}t—iau—')j—a(a)'wt(U) = Zr wt{a)ala) =u

nEth(L X

2.1. Prelimibaries for Estimating the Probability of a Union of Sets

In all of the problems described in the following sections we want to com-
pute the probability of some subset F of system states. In each case F can be
written as the union of subsets of states, F = {J F;. In this section we develop

an algorithm to estimate the probability of a union of sets. This will be the basis

for all the algorithms presented subsequently.

Let S be a finite set and let Pr be a probability measure deflned on all sub-

sets of S. Let J = {1,...¥) and let F = |y F{ where, foralli €/, F; C S. We are
1€l

interested in computing u = Pr{F]. In our applications it is hard to compute 4
exactly. Instead, we will be able to generate an unbiased estimator, Y, of u
using the general model discussed previously. We first describe the universe U
and the functions wt and a. The coverage of 8 € F is the set

cou(s)= fiel:seF].
Let the universe U be the set of all ordered pairs (s,i) such that s € 5;. Then U

can be written as

U= {si):seFandiccov(s)] = [(s,i):1 €/ and s € F}.

Intuitively, U can be explained as follows. State (s,i) can be thought of as the

copy of failure stale s for set ;. Tach sel F} is represented in U as i though it

did not intersect with any set F;, wherej #1i, j€ /. For fixedi €/ let
Uy = [(S.‘l'.) : 8 € .F'd

U; can be thought of as the copy of the set F; in the universe U. Notice that the

universe is partitioned by the U sets. For all (s, i) € Ulet
wt(s,i) = Pr[s].

Then,
wt (U) = PriF]

and

wt(U)= Y PriFR]
tel

Let a be defined such that for alls € F,

Y a(si)=1

i € cov(e)

Intuitively, a(s,i) is the appropriate adjustment factor to the weight function to

make the total contribution to u of all copies of state s equal to Pr[s]. Thus,

p= 3 wt(si)alsi) = X Y wt(s.i)als.i)

(at)e ¥V s €F {€cov(s)

= ¥ Prls] = Pr[F).
F

8 €

We now give an abstract description of one trial of the algorithm to estimate

Pr(F].
. Randemly chosse i € [v LrLA]
. Randomly chocse ¢ € / with probability _f—P—r[—F—]_
‘
te’
2. Randomly choose s € Fy with probability g-[[%]L
¢

(At this point (s,i) has been chosen with probability Pris]= lz—ft—(zs—r‘J—"')L)

@

Compute a(s.i). .
4. Estimator Y « a(s,i)-wt(U).

To develop some intuition for this algorithm, consider the special case when

69

a(s,i) = 1 if i is the smallest index in cov (s), and
a(s,i) = 0 if i is not the smallest index in cov (s).

An example of the set F = {J F; is shown as a Venn diagram in Figure 2.1.a, the
te]

universe U is shown in Figure 2.1.b.

A

ST
T

Figure 2.1.b The universe U, the shaded portion is where a = L.

The shaded portion in Figure 2.1.b corresponds to the area where a = 1. Notice
that the area of the shaded portion is Pr[F)], whereas the total area of U is

wt(U) = 3 Prlf]. Inthis cass acanbe thought of as a Bernoulli random vari-
-

tef
PriF
able, where Pr[a=1]= . Thus,
Pr{F]
&, rin
PrlF
el = TR

70

and

E(Y] = E[a]"zE:IPr[Ft] = Pr[F].

In the applications we consider in this paper it is hard to compute the
weight of the universe as the universe is defined here. For example, in the

reachability problem, calculating Y, Pr[#] is at least es herd as counting the
. te]

number of z—y simple paths. Counting the number of -y simple paths is a
#P-complete problem. In the next subsection we give an abstract view of how

this difficulty can be circumvented.

2.2. The Coverage Algorithm for Estimating the Probability of a Union of Sets

In all our applications it is hard to directly compute the weight of the
universe as it was defined in the previous subsection. In this subsection we show
how this problem can be circumvented. We call this algorithm the coverage
algorithm.

In each of our applications we circumvent the problem of calculating the
weight of the universe U by designing a set V, called the sample get, which is a
superset of U. There is a wt measure defined on V which is an extension of the
wt measure defined on U. The sample set V is designed such that wit (V) is easy
to calculate and such that it is easy to randomly choose elements in ¥V with pro-

bability proportional to their weights.

We now describe the structure of the sample set V. Abstractly, ¥ can be
thought of as an extension of the universe U in two ways. Recall that for all

i€, U; ¢ U corresponds to £, i.e.
Uy={{si):seFi .

Let E, be a superset of F; and let

71

Vi=§(ti):t €E] .

Each set V; can be thought of as an expansion of the set [i. The sample set 14

will contain \ V; . Consequently, U C V.
iel

Secondly, the sample set is an expanpsion of U in the following way. Let J be
a superset of /. For each j € J~/ we define aset V; . The V; sets are deflned in
such a way that they are mutually disjoint. These sets are also added to the

sample set. Thus,

We extend the wt measure defined on U to all elements in V. The weight of the

sample space is

wt(V)= Y wt(¥)) .
jel

We extend the a function so that for all w € V-U, a{(w) = 0. We can now imple-

ment one trial of the coverage algorithm as follows.

Trial for Estimating Pr[F]

wit VZ
1. Randomly choose j € J with probability wt((V))

2. Hj £ I then estimator Y « 0 and stop
Bsej=ic/

wt (W
(At this poiul i hes been chosen with probability —wt((;)))
3. Randomly choose ¢ € E with probability _i—l-“jt (t{,‘)
N

4. Ift £ F; then estimator ¥ « 0 and stod
Elset =5 € £} .

(At this point (s,i) € U has been chosen with probability —u-)‘f: (SV)

5. Compute a(s.i)
8. Estimator Y « a(s,i)wt(V)

72

Lemma 2.2.a: E[Y] = Pr[F]

Proof :

_ wi (V) wt(ti) | Prisl s).
E[Y] j;}_} —_i—wt(V) 0 + Eils s wt® 0 + 'gjr‘ wi (V) afs i) wt(V)
=% Pris}| ¥ a(sid)]=PriF]

seF i €cov(s) .‘

Suppose a is a zero-one variable. The coverage algorithm can be used to
randomly choose s € F as we now describe. Each s € F is associated with the
unique (s,i) € U such that a(s,i) = 1. We say s € F is chosen in a trial if and
only if the element of U associated with s is chosen in the trial. If nos € F is

chosen in a trial then we say the trial fails. The probability that a particular

§ € F is chosen in a trial is and the probability that some s € F is

Pris]
wt(V)

chosen in a trial is -g?%% . The ability to randomly choose a state s € 7 will be
important when we discuss the planar X—terminal problem. The coverage algo-
rithm for the planar X—terminal problem will use as a subroutine. the coverage
algorithm for the planar two-terminal problem. The subroutine will be used to

randomly choose a failure state s for an appropriately defilned planar two-

terminal problem.

2.3. Convergence of the Algorithm to Estimate Pr{F]

There are three components to the running time of the algorithm: the
preprocessing time, thé number of trials and the time per trial. In this subsec-
tion we discuss the number of trials executed by the algorithm. Suppose a trial
which produces an unbiased estimator of a real number 4 is repeated N times.

Let Y, be the value of the estimator obtained from the i** trial. Let

73

¥ = (Y +Ye+ - + Yy
¥ :

In this subsection we address the question of how

many trials are sufficient to "guarantee” that ¥ is "close” to u. First, we must
define what we mean by guarantee and close. For this purpose, we introduce

two parameters which will be a part of the input to the algorithm, £ and 6.

¢ is a positive real number which is the measure of the closeness of ¥ to u.

There are two natural measures of closeness:

1. ¥ is close to 4 in an absolute sense if
| P~ul<e
2. ¥ isclose to uin a relative sense if

|5
m

The relative measure is the stronger measure of closeness for our applications
because u = Pr[F] < 1. In fact, to say that ¥ is close to u in an absolute sense
when u « 1 is meaningless. For example, consider the case when we are trying
to compare two networks to see which is more likely to fail. Suppose the failure
probability of the first network is 107% and the failure probability of the second
network is 10~7. Suppose we choose £ to be 1073, Suppose the algorithm pro-
duces an estimator in both cases of 107%. For both networks we would say that
¥ is close to i in an absolute sense, even though the first network is 100 times
more likely to fail then the second network! On the other hand, consider what
happens if we use the relative measure of closeness. In this case, for the first
network ¥ must be between .999-107° and 1.001:107° to be close to u and for the
second networx ¢ must be between .299 1077 and 1.001- 1077 to ke clese to o, ¥
the algcrithm produces an estimator ¥ which is close to u for both networks
then it is easy to tell which is the more reliable. In our analysis we will use the

relative measure of closeness.

74

§ is a positive real number which is our measure of confidence that the
algorithm produces an estimator ¥ close to 4. We require that the algorithm
output an estimator ¥ which is close to 4 with probability greater than 1-6.

Thus, for input parameters ¢ and §, we say the algorithm is an (£,6) algorithm if

|

Pr[l?—'ﬂ- <e|>1-4
1<)

We now derive an upper bound on the number of trials, N, sufficient to pro-
duce an (¢,6) algorithm based on the estimator presented in the previous sub-
section. We consider the case when a is a random variable such that |a| < 1.
For all of the algorithms presented in this paper, including those presented in
the previous chapter, a fullfills this condition. This theorem is a stronger ver-

sion of the upper bound on the number of trials derived in chapter 2, section 4.

Theorem 2.3.a : Let {Y;] be a sequence of independently and identically distri-

buted random variables such that [Y;] < 1. Let

= (Y 4+ Yo+ -+ +Yy)
N

andlet p = E[Y,;]>0. Fore<2, if N = (ln%—):—2°;1,- then

Pr l —?—-P—-I <z!>1-8
| P
Proof : This is equivalent to showing
Pr{ l zi 2z
r
We will show that
Pr[P2 (1+2)p] < g— (2.3.b)

and that

75

Pr{ Y<(1-e)p | =< %— (2.3.c)
when N = (In %—) fé- -;— The proof uses Bernstein’s improvement of Chebyshev's

inequality (see [3], chapter VI, section 4). Let
M (e)=E {e--ﬂ-(?—p)}
and let

H(z)=E [e“"'@-ﬁ] .

The following two inequalities follow from [3], chapter VII, section 1.

Pr|N-P=Np+ t—+—lnti'—(fl- < et (2.3.4)
]
Pr|N-P<Np- iil%ﬂ—iij < et (2.3.e)

Let 0® = E[(¥;—p)?]. In [3], chapter VII, section 4, In#_(z) and In¥ ~(¢) are both

bounded above by

]

- No® 14 L‘.g_]) (2.3.5)

2 3

.at
We consider only the case whenz< 1. Then, 1 + 5;— < 2and
Ind_{e) < 2 N-o% .
Substituting into (2.3.d) yields

2. n.a2
t+t* No < g-t

Pr [N-?z Np +
or

o Nep

y;p{u.u_ez-_!_v-_o‘_]] st

76

Lett = ¢%. N-p . Then,

priyap.[m”.[g]] < atwr

2
Now, since | ¥;| < 1, we can bound g}-}— by 1, yielding

Pr [?Ezp'[l +2'z]] < gs® NP |
Let &' = 2'¢ (and consequently ¢’ < 2). Then,

[] ""N'E
Prl?ap-(1+c')15e 4

Thus, to satisfy (2.3.b), we want

st N»
e ¢ < é—
2

Taking the natural log on both sides of this inequality, we can conclude that if

N = (mi—)%—-; then Inequality (2.3.b) holds. A similar calculation using
)

(2.3.e) and (2.3.f) shows that Inequality (2.3.c) holds under the same conditions.

Thus, the theorem follows. L

Corollary : When o is a random variable such that la] €1 for the algorithm

presented in the previous subsection, N= (ln-i—)' 4 _1

% E[a] trials is sufficient to

produce an <, 8) algorithm. s

Notice that the number of trials, N, depends upon two quantities : (In %—)' —:z—

which depends on the the desired relative accuracy of 7 and the desired

confidence level of obtaining this accuracy; and EE&] = ,:)th-gﬁ’]]L' which depends

on the algorithm design and the problem instance. The goal of the algorithm

design is to make the ratio I”P%%%]L provably small so that the number of trials

sufficient to produce an (¢,6) algorithm is provably small.

78

3. Reachability Algorithm

The concepts developed for the reachability algorithm are the foundation
for the algorithms to solve the more classical network reliability problems: the
planar two-terminal, all-terminal and XK ~terminal problems. The solution to the
reachability problem iz primarily of interest for this reason. The reachability
problem can be described as follows. Let G be a network and let z and ¥ be two
specified nodes in G. The network fails if there is a path of failing edges between
z and y. Therefore, state s is a failure state if there is a path of failing edges
between z and y¥ in §. Let F C S be the set of all failure states. The problem is
to compute Pr[F]. Ball and Provan [2] show that computing the exact value of

Pr[Flis a #P-complete problem.

3.1. Basic Concepts and Definitians

An a—b simple path is a path between nodes a and b which does not repeat

edges or nodes. Therefore, state s is a failure state if and only if there isaz-y
simple path of failing edges in s. Let SP be the set of all z—y simple paths in G.
For all sp € SP, let Fp be the set of all states s such that all the edges in 5p are

failing in s. Then,

F= Fg (3.1.a)
sp € SP

Furthermore, Pr[Fpp]= [] p¢. Let WSP = Y, Frlfgl
wcm €SP
3.2. Estimating Pr{F], A Preliminary Version
F can be written as the union of sets as in equation (3.1.a). We first give a
preliminary version of the algorithm to estimate Pr[F] using the framework
established in section 2.1. After presenting this algorithm in an abstract set-
ting, we discuss a possible implementation. This will motivate the final version of

the algorithm discussed in the following subsection.

79

The coverage of § € F is the set
cov(s)={sp € SP:s € Fyp}
Let the universe be
U={(s.sp):s € F and sp €cov(s)} = {(s.sp):sp €SP and s € Fpl.
For aii (s,sp) € U,
wt(s,sp) = Pr(s].

For all s € 7, S afs,sp)=1. Then, wt(U) = WSP. We now describe the

ra
&p € cov(s)

trial step.

Preliminary Version of One Trial of the Reachability Algorithm

Pr|F,
1. Randomly choose sp € SP with probability —-,;,%,—;L]

Randomly choose s € F,, with probability ﬁ_[s_]_
Prifg]

o

(At this point (s,sp) € U has been chosen with probability %%L)

3. Compute a(s,sp)
4. Estimator Y « a(s.sp) WSP

We now discuss a possibie implementation of this algorithm. Step 2, the random

choice of s € Fyp, can be implemented as follows:

Randomly choose s € Fp
All edges in sp are failing in s.
For each edge e, £ sp, randomly choose g to -

fail with probability p;, or
work with probability 1-p;

The time for this step is O(m).
Now we discuss one possible implementation of step 3, the computation of

a(s,sp). For fixed s we need

Y afs.sp)=1

sp € cov(s)

80

81
Let X be a fast algorithm for which the input is an undirected graph with m'’

edges and two specified nodes and which outputs a siinple path between the two
specified nodes. It is easy to design X such that the running time is O(m'). Let
G, be the graph consisting of the nodes in G together with the failing edges in s.

The specified nodes in G; are and ¥.

Compute a(s,.sp)

Form G, from G by deleting all working edgesins.
Let sp' « z—y simple path output by X when the input is G,.

1if sp=sp
a(s.sp) « {0 it sp # sp’
For fixed s, X always outputs the same simple path sp’ € cov (s). Therefore,

Y a(s.sp)=1. The time for this step is o(m).
wp €covle)

Now we discuss the implementation of steps 1 and 4. We could list all the
z—y simple paths in G. From this we could calculate Pr(Fyp] for each sp € SP

and then finally sum these values to obtain WSP = Y, Pr[Fg). However, if
ap € SP

the number of z -~y éimple paths is large then this is a costly computation, both
in terms of time and siaace. In general the number of z-Yy simple paths is very
large in comparison to the size of the graph. We would like to compute WSP
without listing all the z—y simple paths. However, if all the edge failure proba-
bilities were equal to one, #SP is the number of z—y simple paths in G. Count-
ing the number of z—y simple paths in an undirected graph, even if the graph is
7plarrlar. is known to be NP-hard. This follows from an easy reduction from the
planar Hamiltonian Circuit problem [4]. Therefore, we do not attempt to com-
pute WSP directly. What we do instead in the next subsection is design a set #
such that ¥ is a superset of SP and the weight of ¥ is easy to compute. We
then use an implementation of the coverage algorithm described in subsection

2.2 to estimate Pr[F], where the weight of ¥ is the weight of the sample set.

82

3.3. Estimating Pr[#]. The Final Version

The algorithm we develop in this subsection corresponds abstractly to the

coverage algorithm presented in section 2.2. For allsp € SP, let
X = {{s.sD) 15 € Fopd .

Then wt (X} = Pr[Fyp]. For notational simplicity we will use wt{sp) to denote

wt (Xyp). A walk is an ordered set of edges

f(ugry)(u,ug) - NIRRT

such that (u;_;,4) is an edge in the graph. Edges may be repeated in the walk.
An a-b walk is a walk which starts at node @ and ends at node b. The weight of

a walk wk, wt(wk), is]| pi. where pq is repeated in this product as many
.‘ € wk

times as the sdge e, appears in the walk wk. Thus, the notion of weight extends
naturally from simple paths to walks.

We now consider a class of walks which includes all x—y simple paths but
excludes a large portion (at least in terms of weight) of the z -y walks. Let ! be
a positive integer, the value of which we will discuss in a later section. A
l-restricted walk is a walk with at most n—1 edges such that every consecutive
subsequence of ! nodes along the walk is distinct. Let # be the set of all

z—y l-restricted walks, and let WW = Y wt{wk). Clearly, SP ¢ ¥¥ and
we € ¥

WSP < WW

In the following section we develop a dynamic programming subroutine to

calculate #¥. Furthermore, the calculation of ¥¥ allows us to randomly choose
wk € W with probability Etf’%-;—kl- This is the basis for the final algorithm which
is abstractly described in section 2.2. The sample set is

V=Uy\ {wk : wk € ¥-SP|

The weight function is extended from U to V such that the weight of wk is

wt (wk). Then, wi{V) = WK. For all wk € ¥ -SP, a(wk) = 0.

Coverage Algorithm to Estimate Pr{F] for the Reachability Problem

Preprocessing

Compute ## using the subroutine discussed in the following section.

Trial
1. Randomly choose wk € W with probability "—’%‘;‘;—ﬂ
2. Hwk € W-SP (i.e. wk is not simple) then Y + 0

Else wk = sp € SP, continue to step 3

N . oo PriFg]

(At this point sp € SP has been chosen with probability —ﬁﬁ

3. Randomly choose s € F,; with probability Pris]_
Pr(Fyp)

(At this point (s.sp) has been chosen with probability E%,%]-)
4. Compute a(s,sp)
5. Estimator Y « a(s,sp) W¥

83

The preprocessing time is discussed in a subsequent section. Let d be the max-

imum node degree in G. As we show in the next section the time to perform

step 1 is O(n-d). Step 2, determining whether or not wk is simple, can be
implemented in time O(m). The rest of the steps in this implementation can be

performed in time O(m), as discussed in the previous subsection. Thus, the

running time per trial for this implementation is O{n-d).

4. Dynamic Programming Subroutine to Calculate 44

We present a dynamic programming subroutine to calculate the sum of the

weights of z —y [—restricted walks,

The dynamic programming subrouiine can be used to implement steps 1 and 5
of the reachability algorithm presented in the previous section. Let 1 2 2 be the
length of the shortest cycle allowed in a z—y walk wk € ¥. The value of {
affects both the running time of the subroutine and the number of trials
sufficient to obtain an (e,8) algorithm. We defer the choice of the value of ! until

a later section.

4.1. Concepts and Definitions

We first define some terminology which will simplify the following discussion.
A partial walk, (uqup, - Up_y), is a 1 ;—u, _; simple path which fullfills the fol-

lowing conditions:
1.) The edges in the simple path are ey = (W, u4)) for i = 1,....k=2.

2.) If node z appears in the path then it is the first node in the path u;. Partial
walks where z is the first node in the path are called initial partial walks.

3.) If node y appears in the path then it is the last node in the path u_;. Par-

tial welks where y is the iast node in the path are called terminai partial
walks.

4.) k is equal tc ! unless = is the first node and y is the last node in the path.
In this case k must be less than or equal to ¢, and the partial walk is a z -y
simple path of length less than or equal to ! — 2.

If ug # u;_; we say partial walk (uguy, - * - ,uy-p) is a predecessor of partial walk
(u, - g-gw-,) and that {u, - A_pt;-y) is a successor of
(uo¥y, - - * ,u-2). No initial partial walk can have a predecessor (by condition 2

above) nor can any terminal partial walk have a successor (by condition 3

84

85

above).

4.2. The Cowputation of ##

We now describe a function C, which will be computed using dynamic pro-
gramming. The domain of C is the set of ordered pairs {Ip,pw), where lp is an
integer between 1 and n—-1 and pw is a partial walk. We deflne
C(ip.(u,ug - ** ug-1)) to be the sum of the weights of all
T —uy_; [—-restricted walks of length lp for which the last portion of the walk is

a partiai walk (u,,ug, ' * * Ug-y). From the definition cf C we see that

Ky =3 > C(lp.(uy Upa¥))
ip=1 tcrmtnal parucl

The initial conditions for C are:

1) C(k-2(z,up - Upay)) = weight of simple path (z.ug - Jug-py) for
all simple paths of length k-2 < 1-2.

2.) C(l-2(z.ug . y-y)) = weight of simple path (z.ug, *) for all
other initial partial walks.

3.) All other values of C are initially zero.

The general formula for calculating C is

c (ZP-(ul. e -ul—znul-l)) = Pluj_pug-y) 2 c (-’-P'l-(’u-o-ul- T -ul—Z))
predscsssors
(uguy. - g
for all Ip =1-1, -+ ,n-1, for all partial walks which are not initial partial

walks The computation of C proceeds by calculatmg all the C values for a fixed
i in t.erms of the previously computed C values for lp—1, A more detailed
description of the algorithm is given in the appendix.

Let d be the maximum node degree of any node in G. We now analyze the
running time of this subroutine in terms of the parameters ! and d. We first

show an upper bound on the number of partial walks (u; © ** 4-gW-) in G.

86

There are at most n choices for %;_;. Since u; and ¥,; must be adjacent nodes
in the graph, there are at most d'~® choices for u,, * * - 4. Thus, there are at
most n-d*~? partial walks. The number of predecessors of any partial walk is at
most d. Thus, the computation of C for all walks cf some fixed length Ip (which
uses the values of C for walks of length Ip—1) takes time at meost n.db=l Sinpe
there are n—1 lengths for which the value of C is Eﬂmputed. the total time for

the computation of W¥ is

0 [ntai)

4.3. Choosing a Walk at Random

We now describe how to use the solution to the dynamic programrming sub-

routine to randomly choose an l—restricted walk such that a particular walk

wk is chosen with probability '—"%%"-L.

87

Algorithm to Choose A Random l —restricted walk wk

Step 1 - Choose the length Ilp of wk and the terminal portion of wk,
(2, '+ U -z¥), such that Ip and (w,, - - * ,up-p¥y) are chosen with proba-
bility

C(lp(uy - uay))
.44

Ifu, =z thenwk = (T,ug, U -,Y) isasimple path of length lp =k-2.
Otherwise ¥ ={ and the length of wk is lp, where the terminal
portion of wk is (uy, ' " " U _2Y). In this case, continue to step 2 to
choose the rest of wk.

Step 2-DO UNTIL u, =2
Choose a predecessor partial walk of (u, * - a4-z%_;) such that partial
walk (uguy, * -+ ,U—g) is chosen with probability
p(u‘_:Jl‘-l)'C (lp_l'(uO'ul' e ’u‘-z))
C(ip.(uy - W-2t-y))

wk « (ue,u,) + wk
lp «lp-1
(u,y," - RTRIPR 7Y I (woy, - KTPY

Lemma 4.3.a : [—rastricted walk wk is chosen by the algorithm with probabil-

ity wtgwlc Z

L84
Proof :
Simple path (z,uz * ' * Mtg-gYy) is chosen in step 1 of the algorithm with proba-
bility
wt (z-uz. tT -‘U-t-z-‘.‘!)
4.4
since C{k-2{(c.up ' p-a¥)) =wt{z,uz p_p¥). Similarly, terminal
partial walk (u, - ,u%_p¥) and length lp are chosen together in step 1 with
probability

C(lp.(uy - w-2y))
.44

88

The predecessor partial walk (ugu;, - - * . 14-2) of (u,, ' U-pYy) is chosen with

probability

P(ul_g‘y)'c (lp-1.(uouy - - Y g))
C(lp.(uy, - wy-2y))

so that the last portion of a walk of length Ip such that (w32z " U-2.Y)

iz the firal portion of the walk is

p(ﬂ-;_g.v)'c (lp‘lu(uo,ux. e .u;_g))
Ww
because C (ip.(u, - - ,w_2y)) appears both in the numerator and the denomi-

nator. Similarly, by induction, ' the probability that walk

wk =(z =u U 0 M-nl T Mgl T Y) of length Ip is chosen is

kfl Plupuyey) € (1-2.(z.ug "+ W-1))
=i-1
L4.4

which is equal to

!
kI:I1p(%'u"“) _ wt(wk)

L 4.4 L4

We now sketch the extra preprocessing necessary for a fast implementation
of step 1 of the algorithm to choose a random i - restricted walk. Let n¢ be the
number cf terminal partial walks. We associate each terminal partial walk
uniquely with a number between 1 and nt. We allocate an array 7 cf length

nt (n—-1). Each index into this array can be written in the form

p +{n-1){7-1)

where 1s<lpsn-1 and 1sj=<nt T(lp+{(n-1)-(j-1)) is equal to
Clip.(uy, - * - Ui-2.y)), where (uy, "~ JUr-2Y)) is the terminal partial walk asso-

ciated with index j. Notice that

89

nt(n-1)

W = T(a).

a=1

We use T to form another array T as follows, where the indices of 7' range

between 0 and nt-(n—1).

"9
it
o

~
C
AVt

n e

T{db)

T'(a) = 2

—%ir. for 1sa<nt(n-1).

Notice that

T'(a)-T(a-1) = Ii?il- .

the entries in T' are in increasing order and T'(nt (n-1)) = 1.
Step 1 can be implemented as follows. First, choose a random number 7

from the uniform [0,1] distribution. Then, use binary search to find the index a

such that

T(a-1)<r=sT(a).

The probability that a particular index a is chosen is equal to Zé,%,)—. Then, find
the unique indices {p and j such that

g=Ilp+(n-1)(G-1).
The length of the chosen walk is {p and the last portion of the walk is the termi-

nal partial walk corresponding to j. The time for the binary search is bounded

above by
0 (ig (nt-(n-1))) .

This quantity is O(n). Therefore, step 1 takes at most O(n) time. We discuss a

slightly different implementation in greater detail in the appendix.

90

In step 2 we choose a predecessor partial walk Ip — ! times and there are at
most d predecassors to any partial walk. Thus, the entire walk can be chosen in
step @ in O(n-d) time.

In this section and the previous section we have given an aleorithm to esti-
mate the failure probability for the reachability problem. The basis of this algo-
rithm is the coverage algorithm described in section 2. The primary difference
between the algorithm presented here and a straigntforward implementation of
the algorithm: presented in chapter 2 is the preprocessing step. The preprocess-
ing step for the algorithm presented in chapter 2 requires listing all the z -y
simple paths in the graph, whereas the preprocessing step here is the dynamic
programming subroutine presented in this section. Since the number of z -y
simple paths can be exponential in the size of the graph, the savings can be sub-
stantial. In a later section we formally analyze this algorithm and prove an
upper bound on the running time for an (£,6) algorithm which is independent of

the number of z —y simple paths.

91
5. z—y Planar Two-Terminal Problem
The two-terminal problem can be described as follows. Let G be a network
and let z and y be two specifled nodes in G. State s isa failure state if there is
no path of working edges between z and ¥ in s. Let F £ S be the set of all
failure states. The problem is to compute Pr{F]. In this section we discuss a
special case of the two-terminal probiem. We frst introduce some graph con-

cepts which will simplify the discussion.

5.1. Graph Concepts

An a—b cut is a minimal set of edges whose removal from the graph discon-
nects the graph into two components, where node a is in one component and
node b is in the other. State 5 is a failure state if and only if there is a z—y cut
of failing edges in s. Let CT be the set of all z—y cuts in G. Forct € CT, let Fiy

be the set of all states s such that all edges in cf are failing in s. Then,

F= U Fct
et € CT

Furthermore, Pr[Fy]=][] pi. Let FCT = Y, PriFf.l
cT

o Ect ct €

We denote the graph obtained by deleting edge e from G as G—-e. We
denote the graph obtained by contracting edge e in G as G'e. We denote the
graph obtained by the addition of edge e to G as G+e. An a—-b dummy edge is
an edge added between nodes a and b in G, where the failure probability of the
dummy edge is one. Note that adding dummy edges to G does not change
PrFi.

Let G be a planar network. The dual network G’ of & is formed as follows
(see Figure 5.1.a): Each face in G corresponds to a unique node in &' and each
face in G' corresponds to a unique node in G. For each edge 8¢ in G there is a

unique edge e'y in G' such that e; and e’ cross each other in the plane. The

92

failure probability of '; is equal to the failure probability of 8. There is a one to
one correspondence between states in G and G'. State s in G corresponds to
the unique state s' in & where e is failing in 5 if and only if e'y is failing in §".

Clearly, Pr(s] = Pr[s'].

Figure 5.1.a - G and the dual network G'

We say G is a—b planar if G+e is planar, where e is a new edge added

between nodes ¢ and b in G.

5.2. Estimating Pr{F]

Let G be z-y planar. We discuss the two-terminal problem for this special
case. Consider G+e, where ¢ is a z—y dummy edge added to G (see Figure
5.2.a). Let (G+2) be the dual network of G+e. Label the two nodes in (G+e)'
corresponding to the two faces bordering edge e in G+e as z' and y' respec-
tively. Let G' = (G+e)'—e’, where e' is the edge in (G+e)' corresponding to
dummy edge €.

Consider the reachability problem for G', where z' and ¥' are the specified
nodes. Let SP be the set of z'~y' simple paths in G', and let F'y be the set of
states s’ such that all edges in sp are failing in s'. Notice that every z-y cut
ct € CT in G corresponds to a unique z'—y' simple path sp € SP in G' where

Pr(F.]= Pr[F'p). Similarly, every failure state s of G for the two-terminal

93

/
6 g’
Figure 5.2.a - The formation of G' for the z -y planar two-terminal problem
problem corresponds to a unique failure state s’ of G' for the reachability prob-
lem, where Pr[s] = Pr[s']. Therefore, we can estimate the failure probability

for the two-terminal problem on G by forming G’ and estimating the failure pro-

bability for the reachability problem on G'.

8. Planar Two-Terminal Problem

We discuss the two-terminal problem when G is planar in this section. In
the previous section we discussed a special case of this problem, when G is 2~y
planar. Notice that G can be planar without being z-y planar (see Figure

B.1.b). We first intreduce some cencepts which will simplify the discussion.

8.1. Preliminary Concepts

Let F be the set of all failure states in G. State s is a failure state if and
only if there is a z =y cut of failing edges in 5. Let CT be the set of all z -y cuts
in G. For ct € CT, let F.; be the set of all states s such that all edges in ct are

failing in s. Then,

F= U Fo
ct € CT

Since the set of failure states F can be written as a union of sets, we could
try to implement the abstract aigorithm described in subsection 2.1 directly,

where the universe is
U=1{(s,ct):ct € CT and § € Fy},

wt(s,ct) = Pr[s] and wt(ct) = Pr[F;]. The main difliculty with this approach,
as was mentioned at the end of subsection 2.1, is that it is hard to compute

wt(U)= Y Pr[F4]. To overcome this dificulty we do two things. First, we
ct € CT

work with the dual problem in the dual network G'. Secondly, we define a sample
set ¥ such that the universe U C V as described in subsection 2.2 so that wt(V)
is easy to compute. We use a variant of f.he dvnaric programming subroutine
described in section 4 to compute wt(V). These same basic techniques will also

be used for the planar K—terminal and all-terminal algorithms.

We introduce some terminology to describe the dual problem. A cycle is a

walk that starts and ends at the same node. A simple cycle is a cycle with no

94

repeated nodes or edges, except that the start and end node are the same. Let
G' be the dual network of G. We say simple cycle cy separates face z from face
y if cy corresponds to an z—y cut in G. Let CY be the set of simple cycles that
separate face z from face y¥. State s is a failure state in &' if and only if there is
a simple cycle cy € CY among the failing edges in s. For cy € CY, let F'¢y be
the set of ell states s in G' such that all edges in cy are failing in s. Let #~ be
the set of all failure states in G'. Then, the set of failure states in the dual net-

work is

Fr= oy Fy (8.1.a)

The dual problem is to compute Pr[F'] = Pr[F]. The universe for the dual prob-

lem is
U={(s,cy):cy €CY and § € F'e,{ ,
where wt(s,cy)) = Pr(s] and wt(ey) = Pr[#f'y]. Thus,

wt(U)= Y Pr[F'q].

oy € CY

We now introduce the concepts needed to explain how the sample set V is
defined. The sample set will be defined in such a way that wt (V) can be com-

puted using a dynamic programming sutroutine. Consider x—y simple path

sp = feq, 80, 10y d
of length &s in G. Let {e'(, - e'y,} be the edges in G' corresponding to
1311-91,,- v 'B‘u; in G. Every simple cycle cy € CY which separates face z from

face y must contain an odd number of edges from fe'y, - - - e'e,s (see Figure

8.1.b). Another way of viewing this is that every simple cycle cy € CY includes a

first edge e".eie'ix,---,e"‘.; and an even number of edges from

fe'y,y - - - .@'y}. Thus, we can partition CY into CY,,CY,, - *,CY, , where (Y,

85

is the set of simple cycles cy € CY such that the first edge from {e'y, " - 'B'ﬁ-;
is e'(and for which there are an even number of edges from fe'y2'y}in
cy.

Figure 8.1.b - An z —y cut in G corresponds to a simple cycle in G’

Let Gy = G'—{e’¢1. KN -] ’1'3. where the two endpoints of e’ in G' are
labelled ', and y's respectively in G'y. A z-simple path is a z', ~Y's simple path
in @'y including an even number of edges from {e"-.ﬂ, S .2""3. Let SP; be the

set of all z-simple paths. For sp € SP,, let F'y, be the set of all states s in G
such that all edges in sp are failing in s. Every simple cycle cy € CY; is a

z —simple path sp € SP; together with edge &'y, such that

P"[F'cy} = PP‘[F',?]‘P"

Let

WSP,= Y PriFgl. WCY, = ¥ PrlFg]

&p €35, oy € Liy
and

wey= Y PriFg]
oy € CY

Then, #CY, = WSP,'py, and

96

is
wt(U)= WCY =), WCY, .
=1

8.2. Estimating Pr[F"]

F' can be written as the unicn of sets as in (B8.1.2). We would like to be able
to implement the algorithm abstractly described in subsection 2.1. This
requires the computation of #CY and a procedure to randomly choose cy € CY.
However, it is infeasible to compute WCY exactly, because if all the failure pro-
babilities were equal to one then this is equivalent to counting the number of
simple cyéles. which is NP-hard. This follows from an easy reduction from the
planar Hamiltonian Circuit problem [4]. We will use a modiflcation of the
dynamic programming subroutine presented in section 4 to circumvent these
problems.

Let W, be a suitably restricted set of walks in G' such that SP, C W, and let

WW,= 3 wt(wk). Let
wk'ew,

ls
W=y lwk+e'y :wk € W,
s=1
Notice that CY € W. The sample set will be

V=U\ {wk : wk € #-CY}

where, for wk € ¥-CY, wt(wk) is the weight of walk wk. Let WW be the weight

of sample set V. Then
is
wt(V) = WW = 2 thph ,
g=1

In the next subsection we develop an algorithm to compute W#, which allows us

to randomly choocse wk € W, with probability 2%%)— This allows us to ran-
E)

domly choose cy € W with probability lu—té%l)— We now present the algorithm

to estimate Pr[F'] and then discuss the implementation details.

Algorithm to Estimate Pr{#'] for the Planar Two-Terminal Problem

Preprocessing
For z = 1,...,Is compute ¥¥,. Then, wt(V) = WF = fl WW, D,
. 5=
Trial
1. Randomly choose z € {1, * - - ,Is] with probability z%’%_‘r_

2 Randomly choose wk € W, with probability wtw;k

(At this point wk+e'(€ ¥ has been chosen with probability
wi (Wk"’e"'))

.44
‘3. Ifwk+e'y is not simple then ¥ « 0
Else let cy = wk +e'((cy € CY;), and continue to step 4

PriFfey]

L 44)

(At this point cy € CY has been chosen with probability

4. Randomly choose s € F', with probability ——P—'Ls-l—
Pr(Fgyl

(At this point (s,cy) has been chosen with probability -P—;;[’%-L)

5. Compute a(s,cy)
6. Estimator Y « a(s,cy) WW

The preprocessing time is discussed in a subsequent section. The time to per-
form step 1 is O(n) since Is <n. Let d be the maximum node degree in G
(which is equal to the maximum number of edges bordering any face in G). The
time to perform step 2 is O(n-d), which we show in the next subsection. Step 3,
determining whether or not wk is simple, can be performed in time O(m). Step
4 is analogous to step 2 for the reachability aigorithm in section 3.3, ihe running
time is O(m). The running time for step 8 is O(1).

Step 5, the computation of a{s,cy), can be implemented in an analogous
manner to the computation of a for the reachability problem. The primary

difference is that in the reachability problem s contains a £ —y simple path of

failing edges in G while here s contains a z—y cut of failing edges in G (or

equivalently, a cycle separating face z from face y in G'). Fors € F',
cov(s)=fcy €CY:s € F'g, i .
For fixed s we need

Y af(siey)=1

cy € cov(s)
Let X be the algorithm presented in [5] for which the input is an undirected
graph with ' edges and two specified nodes a and b; and which outputs an a —b
cut ct'. The running time for X is O(m). Let G, be the graph formed from G by
contracting all working edges in s. The edges in G, correspond to the failing
edges in s, and the nodes in G, correspond to the components of G which are
connected by working edges in s. The two specified nodes = and ¥ in G,
correspond to the two components in G containing z and y. Nodesz and ¥ in &

are in different components because s contains a z—y cut of failing edges.

Compute a(s,cy)
Form G, from G by contracting all working edgesins.

Let ct' « z—y cut output by X when the input is G;.
Let cy' be the simple cycle in G' corresponding to ct'

1if cy =cy'
afs.cy) « 0 if cy # cy'
For fixed s, X always outputs the same cut ct’, which corresponds to

cy' € cov(s). Therefore, Y a(s,cy) = 1. The time for this step is G(m).
oy € cov(s)

The total time for all steps of the trial is O(n-d).

8.3. Modifted Dynamic Programming Subroutine

We would like to be able to compute WSP,. WSP, is equal to

p Pr[F'yp], where SP, is the set of all z —simple paths in G';. Except for
#p € 5P,

the restriction that the number of occurrences of edges fe'ye'y,} must

99

be even in every simple path, this is exactly the same problem the dynamic pro-
gramming algorithm presented in section 4 was designed to circumvent. We now

present a modified version of that algorithm for the problem at hand.

A zl -restricted walk is a z',—¥'s; l—restricted walk in G'y; with an even

number of cceurrences of edges from the set ie‘iﬁ';. Ce .e’%;. Let ¥, be the set

of all zl-restricted walks and let WW, = Y ~wt(wk). Then, SF, C W, and
wcey,

WSP, < W#,. We now present a dynamic programming subroutine to calculate

WW’-

We first describe a function C, which will be computed using dynamic pro-
gramming . The domain of C is the set of ordered triples (par.lp.pw), where
par is eitﬁer even or odd, lp is an integer between 1 and n—1 and pw is a par-
tial walk. We define C (even lp,(u,us - ' ' %)) to be the sum of the weights

of all [~rastricted walks of length Ip where the last portion of the walk is par-

tial walk (u;ug - ,u-;). and where the number of occurrences of edges
fe'y ;e .e'y,} in the walk is even. Similarly, € (odd,lp,(u;us, - -+ Ag-y)) bas
the same definition except the number of occurrences of edges te Ngagr t ¢ 0 @ "u;

in the walk is odd. Then,

WW, = ”2—1 2 c (ﬂven»lp-(ul- e Nt—e#!]':))

ip=1 (ul. B .u,..g.y‘,)

The initial conditions for C are

1) C(even k-2(z'suz ' " MUp-2Y¥'s)) = weight of 2z-simple path
(z'y Uz - ' Ug-g¥y's) Of length k=2 =< 1-2.

2) C{even,i-2,(z'5uz ' - 4-1)) = weight oi simple patin {='5.uz - Ay -1)
for all other initial paths for which the number occurrences of edges
o'y, .8y} is even.

3) C(oddl-2,(z's.uz ' 4-y)) = weight of simple path (z'5.uz * " Ay_y)

for all other initial paths for which the number of occurrences of edges
o'y, .- @'y} is odd. ‘

100

4.) All other values of C are initially zero.

Let
. odd if par = even
Jlip(par) = {e'uen if par = odd
The general formula for calculating C is
C (par'lp.(uy -2U-1)) = Plu_gu_y) ¥ C (par.lp-1.(ueu;, * * * Ui-g))
predecessors
(wopty. - %
where
par’ if (o) £le',,. ... 8'%,}
PAr =\ plip(per’) if (y-puy-y) €le'y,,. .- . 8'g}

Thus, using this modified dynamic program on graph G'; we can calculate WW,.

We now analyze the running time for this subroutine. Let d be the max-
imum node degree of any node in G' {which is equal to the maximum number of
edges bordering any face in G). The only difference between the running time
for this subroutine and the time for the subroutine presented in section 4 is that
there are at most twice as many C values that need to be computed. Thus, the
running time for the subroutine here is at most twice the running time for the

subroutine presented in section 4. The total time for the computaticn of ¥, is

o(n-d*1)

In an analogous manner to that used in section 4 we can use this dynamic pro-

gramming solution to randomly choose a 2zl —restricted walk wk with probability

-w—twigﬂ. The entire walk can be chosen in time
t]

O(n-d)

8.4. Adding Dummy Edges to Reduce the Preprocessing Time

The number of dynamic programming problems that have to be solved to
implement the algorithm is proportional to Is, the length of the z—y simple
path in G. Thus, we want this path to be as short as possible. We pointed out
earlier that adding dummy edges to G does not change the failure probability
Pr[F]. Thus, we can sometimes reduce the preprocessing time by adding
dummy edges to G o create a shorter path. The only restriction is that the
graph must remain planar aiter the dummy edges are added (see Figure 8.4.a).
This is the generalization of the technique we used to solve the z -y planar two-
terminal problem, where we added exactly one dummy edge between z and y

(and consequently had to solve only one dynamic programming problem).

Figure 8.4.a - Adding dummy edges fo G to reduce the preprocessing time

102

7. Planar K—Terminal Problem

The K—-terminal problem can b;e described as follows. Let G be a network
and let z,, + - - ,Zx be K specifled nodes in G. Statesisa failure state if there is
a pair of specified nodes z; and z; which cannot be joined by a path of working
edge in §. Let F € S be the set of all failure states. The problem is to compute
Pr[F]. In this section we present an algorithm to estimate Pr[F] when G is

planar.

7.1. Preliminary Concepts

For the K—terminal problem, state s is a failure state if and only if there is
aj €12, - .K} such that there is a z,-z; cut of failing edges in 5. Let F; be

the set of failure states for the z,~2z; two-terminal problem. Then,

F= U Fj
jg!g_..._Xl

and

PriFl=pPr| U m

€ 2. 1

Any algorithm for the exact solution of the two-terminal problem can be
used as the basis for a Monte-Carlo algorithm for the K—terminal problem. Ve
now describe a Monte-Carlo implementation of the K—terminal algorithm using
any two-terminal algerithm which computes the exact failure probability. The

abstract description of the algorithm is given in subsection 2.1. The universe is
U=1{(s,j):se€F; and j 2, K},

where wt(s,j} = Pr[s] and wt(U) = » Pr{F;] . The preprocessing step
jeR - Xi

is to compute Pr[F;] for j € {2, - ,K}. From this, wt(U) can be computed.

The first step of a trial is to randomly choose j € {2, - - - ,K} with probability

PriFy
wt[(U; . The implementation of this step is straightforward. The second step

103

of a trial is to randomly choose § € F; with probability %[;J]— . This can be
. b

implemented as follows:

Initially, let H be the network G.
Do Untii the state of all edges in § are determined
For edge ¢ in A, compute the failure probabiﬁty
P, of network H-e, and

P2 of network H-e.

¥Yith probabilily

P choose edge ¢ tofailins andlet H « H-e.
P1tp2
_Pz__ choose edge ¢ toworkins and let # « H-e.
Pi1tp2

The computation of @ can be implemented as follows. Let j' be the smallest

index such that there is no path of working edges between z, and z;- in s. Then,

C [rei=y
a(s'J)= Oifj#jp-

An upper bound on the running time per trial is O(m ¢), where m is the
number of edges in G and ¢ is the time to compute the failure probability for a

two-terminal problem with at most m edges. The number of trials N necessary

to achieve an (¢,4) algorithm is K'ln-g— —12— .
£

We now describe the planar K-—terminal algorithm. The algcrithm just
described is the abstract basis for the planar A—terminal aigorithm. However,
since it is not feasible to calculate the exact failure probability for the planar
two-terminal problem, we will not be able to implement this algorithm directly.
Wa will uze the Monte-Carlo planar two-terminal algorithm described in section 3
in place of an algorithm to compute the exact failure probability for the planar
two-terminal problem. We will use a technique different than that described

above to randomly choose a failure state.

104

We first describe the dual problem in the dual network. Let G’ be the dual
network of G. Every cut in G corresponds to a unique simple cycle in G'. We say
cycle cy separates face z, from face z; if ¢y correspends to a z,-2; cut ct in G.
Let CY; be the set of all cycles separating face z, from face zy in G'. Let F'y, be
the set of all states s in &' such that all edges in cycle cy are failing in . Let
F'y; be the set of all states s in G' such that there is a cycle of failing edgesin s
separating face z, from face z;. Let F' be the set of all states s in G such that
there is a cycle of failing edges in s separating face z, from face z; for some

jet2 - . K|. Then,

and

U
j € 12, ter -K’
The dual problem is to compute Pr[F'] = Pr[F]. The universe for the planar

K-terminal algorithm is
U={(sj):s€Ffy and €2, - - .K}}

where wt(s,j) = Pr[s] and wt(j) = Pr[F].

7.2. Estimating Pr{F’]

Now we describe the implementation of the coverage algorithm for the
planar X-terminal problem. The coverage algorithm uses the planar two-
terminal algorithm to randomly choose s € F'; . Because we have two coverage
algerithms we need tc' distinguish between the ay,, function associated with the
planar two-terminal algorithm and the ayx function associated with the planar
K—-terminal algorithm. The Qg function for each of the planar tv}o-terminal
problems is deflned and computed the same way as described in subsection 8.2.

The ag function will be described after we present the algorithm to estimate

105

Prir].
We now describe abstractly how the planar two-terminal algorithm is used

to randomly choose § € F'y . As described in subsection 8.1, the universe for the

z,—z; planar two-terminal algorithm is
U ={{s,cy):cy €CY; and s € 7'} .
Let #; be the set of I —restricted walks for the z,—z; planar two-terminal prob-

lem. As described in subsection 8.2, the sample set for the z,~z; planar two-

terminal algorithm is
Ey = Uy lwk :wk € W;-CY;i .

As described in subsection 2.2, each & € F'; can be associated with the unique
(s.cy) € U; such that an,{s.cy)=1. Note that wt(s,cy) = Pr(s]. We say
s € fy is chosen in a trial of the planar two-terminal algorithm if
(s.cy) € U; € By is chosen in the trial where s is associated with (s,cy). For
simplicity of notation, we write s € E; instead of (s.cy) € E; if s is associated

with (s,cy). We say the trial fails if no s € F'y is chosen in the trial. The proba-

bility a particular s € F'y is chosen in a trial is ﬁ%])—
]

We now describe the sample set ¥V for the planar K—terminal algorithm. Let
Vj = i(le):w EEJ;
where wt (w,j) = wt(w) and wt (V;) = wt (&) . Then,

V= U 14
jeta. - X

The wi function as defined on each ¥; carries over naturailiy to 7. In subsection
8.3 we showed how to calculate wt (F;) = wi(%). Thus,

wt(V) = PN wt(V;) is elso easy to compute. We now present the algo-
’ € ‘2' o xl

rithm to estimate Pr{F'] and then discuss the implementation details.

106

Algorithm to Estimate Pr[F'] for the Planar X -Terminal Problem
Preprocessing
For § € {2, - - ,K} perform the preprocessing step for the z;-z; planar
two-terminal algorithm to compute wt(¥;). Let

WW = wt(V) = Y wt(V;) .
je2, K

wt (V,
1. Randomly choose j € {2, - * - ,X] with probability _W(#L

2. Randomly choose s € F'; with probability wﬂ:_([_]_

3 using the planar two-
)

terminal algorithm as a subroutine.

If the trial failsthen Y « 0
Else s € F'; is chosen, continue to step 3.

(At this point (s,j) € U has been chosen with probability %L;—l-).

3. Compute ag{s.j)
4. Estimator Y « ax(s.j) #¥

The preprocessing time is at most K-1 times the preprocessing time for the
planar two-terminal algorithm. All the steps in the trial are straightforward
except for the computation of ay. We now discuss the computation of ag. For

s € F,
cou(s)={j:s € F'y}
For fixed s we need

2 ag(s.j)=1.

J €cov(s)

Let G, be the graph formed from G by contracting all working edges in s. Let
jref2, - Klbethe smallest index such that z; and zy are not contracted into
the same node in G,. There must be at least one such node or else s is not a

failure state. Then,

. 1ifj=j
ag(s.j) = 0if j#j

107

108

For fixed s, j' is uniquely determined. Therefore, Y, ax{(s.j) = 1. The time

J €cov(s)

for this step is O(m). The total time for all steps of the trial is O(n-d).

B. Planar All-Termninal Problem

The all-terminal problem is the special case of the K—terminal problem
when all the nodes in G are specified. We could use the algorithm preserted in
section 7 for the all-terminal problem. However, we present a much simpler

algorithm in this section for this very impcrtant special case.

8.1. Graph Concepts

State ¢ is 2 failure state if there is a cut of failing edges in s whose removal
would disconnect G. Let F be the set of all failure states in G. Let CT be the set
of all cuts in G. For ct € CT, let F;; be the set of all states s such that all edges

in ¢t are failing in s. Then,

F= U Fct
et e CT

Let G’ be the dual network of G. Let CY be the set of simple cycles in G'. For
cy € CY, let F';y be the set of states s in G' such that all edges in cy are failing

ins. Let

Fr= y F',,-, ‘ (B.l.a)
CYy ECY

Each cut ct € CT corresponds to a unique simple cycle ey € CY, such that

Pr(Fy]=PrF'y] Clearly, Pr[F]=Pr[F']l. We now focus on estimating

PriF] -
Let fe';, - - ,e'n_;] be an ordered list of some subset of edges in &' for
 which the corresponding edges {e;, - * - ,@5_,} in G form a spanning tree. Each

simple cycle in G’ includes a first edge 2, from this list. Thus, we can partition

CY into CY,, - -+ ,CY,_,, where (7, is the set of simple cycles cy such that the
smallest indexed edge in ey from {e'y, ' -+ ,e'n—y) ise's.
Let G';, = G'~{e';, - - - 'y}, where the two endpoints of ¢'; are labelled z’,

and y', respectively in G's. Let SP, be the set of all '; —y', simple paths in G'4.

109

-———

110
For sp € SP,, let F'y; be the set of all states s in G’ such that all edges in sp are
failing in s. Every simple cycle cy € CY; is a z';—y’, simple path sp € SP,
together with edge 'y, such that
Pr(Foy] = PriFeyple,
Let

WSP, = Y Prl[Fgl. FCY, = Y Pr(F]

and

Y= ¥ Pr(Fql.
cy €CY

n-1
Then, WCY, = WSP, p, and ¥CY = Y. WCY,.

s=1

8.2. Estimating Pr[F"]
F* can be written as the union of sets as in equation (8.1.a). The universe is
U={(s,cy):cy €CY and § € F'y

where wt(s.cy) = Pr[s] and wt(cy) = Pr[F';,]. Thus, wt(U)= WCY. We would
like to be able to implement the algorithm abstractly described in subsection
2.1. This requires the computation of #¥CY and a procedure to randomly choose
cy € CY. However, it is infeasible to compute ¥CY exactly. Instead, we will use

the techniques developed in section 3.

Let W, be the set cf all z',~y's l-restricted walks in G'g, and let

WW, = 3 wi{wk). Let
wk € ¥,

n-1
F=y lwk+e'y :wk € W,{.

s3]
Notice that CY £ W. The sample set will be

V=Uy wk: wk € ¥=CY]

111

where, for wk € ¥=-CY, wt (wk) is the weight of walk wk. Let WW be the weight

of the sample set V. Then

=1
wt(V)= WW =3 WH, D,

s=1
We now present the algorithm to estimate Pr{/] and then discuss the imple-

mentation details.

Algorithm to Estimate Pr[F'] for the Planar All-Terminal Problem

Preprocessing

For z = 1,...n—1 compute W¥s. (Each WW#, computation corresponds to a
computaltion of W¥ in section 4)

e
WW =3 WWyp,.

=1

WH,:
1. Randomly choose z € {1, " - .1_1—1§ with probability ;WP. d

wtgwkz

2 Randomly choose wk € W, with probability VW
E

3. Y wk is not simple then ¥ « 0
Else let cy = wk +e'y (cy¥ € CY,), and continue to step 4

PriF
(At this point cy € CY has been chosen with probability ——-[TV%-]—)

4. Randomly choose s € F'g with probability _u_PrPEFS]
cy

(At this point (s,cy) has been chosen with probability f%,[%]-)

5. Compute a{s.cy)
8. Estimator Y « afs.cy) WF¥

The preprocessing time is at most n—1 time the preprocessing time for the
reachability problem, since there are n—1 WW, computaticns. All the steps in

the trial are straightforward except the computation of a, which we now discuss.

Fors € F',

cov(s)=fcy €CY:s € F'gl.

For fixed s we need

Y af(s.oy)=1

cy € cov(s)

We can use the same algorithm X as described in section 8.2 to compute a. Let
G, be the graph formed from G by contracting all working edges in s. Let the
nodes in & be indexed as Z.,Tp,....Z,. One of the spscified nodes ia &G is the
node corresponding to the component containing é, in @. The other specified
node in G, is the node corresponding to the component in & whick contains the

smallest indexed node Zy not in the same component as z,.

Compute a(s,cy)

Form G, from G by contracting all working edges in s.
Let ct' « z;—z, cut output by X when the input is G,.
Let cy' be the simple cycle in G' corresponding to ct’

1if ey =cy’
a(s.cy) « 0 if cy # cy’
For fixed s, X always outputs the same cut ct’, which corresponds to

cy' € cou(s). Therefore, 3, a(s.cy)= 1. The time for this step is O{m).
cy € cov(s)

The total time for all steps of the trial is O(n-d).

112

9. Running Time Analysis for the Reachability Problem

In this section we analyze the running time for the reachability algorithm
presented in sections 3 and 4. There are three components to the running time:
the preprocessing time, the time to perform a trial and the number of trials, N,

sufficient to guaraniee an (¢,6) aigorithm.

Let d be the maximum node degree in G. We showed in section 4 that the
time per trial is O(n'd). The preprocessing step, presented in section 4, com-
putes W#, the sum of the weights of z—y l-restricted walks. The weights of
walks which have cycles of length less than ! are not considered in this sum. In
section 4 we showed that the preprocessing time is O(n?d!"!). In this section we
develop an upper bound on N. This upper bound will depend upon the value of {.
We show here that for a judicious choice of ! both the preprocessing time and ¥

are small.

In all the algorithms presented, a is a zero-one variable. In section 2.3 we

show that if a is a zero-one variable and

=1 nn2y 4
N= Fla] (lna—) 2

then we have an (£,6) algorithm. For the reachability problem,

PriF] _ Pr(F] _WSP
FW ~— Y Pr(Fp] WKW
#p € SP

Ela] =

Thus, N is equal to

cpgs}"’ P"[Fup]
BrF] (9.a)

times

4.4

WSP (9.b)

times (in %—) - -

113

9.1. An Upper Bound on (9.a)

We now derive an upper bound on (8.a). Let G be a function from F to the

positive real numbers such that, fors € F,

Glsl= 11 P

3 foding ;v s
and let

GlF]= ¥ _6ls].

s €

In chapter 2, section 12, we prove that

SIF ﬁ(1+p.;)$8§1p‘

PriF] =1

For the problems discussed in this paper the set of failure states, F, has the
following monotonicity property. Let s € F. If ¢ is a state such that the set of
edges failing in s is a subset of the edges in ¢ (in which case we say s C ¢) then
t € F also. State s € F is a minimal failure state if there is no state £ such that
tcs,t#s and t € F. For the reachability problem s is a minimal failure state
if the failing edges in s are exactly the edges in some z -y simple path sp.

Thus, G[s} = Pr[F,,]. From this discussion we conclude that

GlFl= Y Prif,]
sp € SP

and

L, 7 [Fer] v L

zp € SP .
e <j{{l+pj=s
47 N 4 1=l

Thus, if the edge failure probabilities are small (which is common in practice)

then so is (8.a).

114

- 115

9.2. An Upper Bound on {8.b)

We now derive an upper bound on which will depend on the value of L.

VW
WSP'
Our strategy for deriving an upper bound will be the following.
< 1. Associate each z—y l-restricted walk uniquely with a z—y simple path.

This is done by deflning a function

H:W¥ +SP.
.

2. We derive an upper bound on the maximurm, over all sp € SP, of the ratio of
the sum of the weights of the walks associated with sp divided by the weight
of sp. To do this we derive an upper bound on

-
Y wt (wk)
max wk € H-l(sp)
sp € SP wt(sp)
- s o L4
The upper bound derived in 2 is an upper bound on HSP because
-
Y wt(wk) Y wt(wk)
L. 4.4 - wke?® < max wk € H-1(sp) (9.2.2)
WSP Y, wt(sp) sp € SP wt (sp))
sp € SP
-

9.2.1. The Deflnition of A

We first show how a £ —y walk can be uniquely associated with a z -y simple

- path. Let wk = (z=u,ugs ' MUp-1.Up=Y) be a z-y walk in G (see Figure
9.2.1.a). The z ~y simple path sp associated with wk will consist of disjoint con-

nected segments of wk that, when spliced together, form a z—y simple path.

L Simple ‘path sp = H{wk) will be created by proceeding along wk from z o ¥
until a node u, is repeated along the walk. The portion of the walk between the

first occurrence of u, and the second is a cycle cy. We call u, the origin of cy.

- Cycle cy is discarded from the simple path. Let DCY(wk) be the set of dis-

carded cycles in wk when forming H(wk). We add cy to DCY{wk) at this point.

116

o

Simf:[e Fa‘Uz =
{123 14,1516

i .2 . Ay
¢ 4 3 ——o—"

Figure 8.2.1.a - 4 = —y walk and the associafed z -y simpla path

If cy contains another cycle cy' such that cy' € OCY(uk), then cy' is deleted

from DCY{wk) when cy is added (see Figure 9.2.1.b).

cg/ = gSJé)?j
¢y = f 4,5,6 23,701,132, 13}

Figure 9.2.1.b - #hen cy is added to DCY{wk), cy' is deleted

The axtension of the simple path proceeds from u, along walk wk. Eventually

the simple pain will estend fromz fo y.

Notice that the £ -y walk wk can be reconstructed from the z-y simple

path sp by splicing the cycles in DCY{wk) back into sp.

9.2.2. Upper Bound Derivation

Let adj(v) be the set of edges with node v as one endpoint. For this

analysis, we asume there is a constant c strictly less than one such that

117

pisc
.‘ € odj(v)

for all nodes v in G.

Theorem 8.2.2.a:

. . nct 1 . VW
Comment : We will choose { so that 1o < > In this case, WSP

= 2.

Before proving this theorem, we state and prove a lemma which is at the core of
the theorem. For k = 1, for all nodes v in G, let W (k,v) be the set of all walks
with k edges that start at v, and let W W (k,v) be the sum of the weights of all the

walks in W (k,v).

Lemma 9.2.2.b: For allk = 1, for all nodes v in G,
WW(kv) < c*
Proof : The proof will be by induction on k. For all nodes v in G,

FW(1v) = Y Pww) S C
(v.w) € adj(v)

by the definition of c. Suppose WW(k—1,v)<c*"! for k—~12 1, for all nodes v in

G. Then

WW(kv)= Y Prowy WH(k-1w) < cc*! < ck .
(v.w) € adj (v) S

Corollary : For all v in &, the sum of the weights of all waiks with at least &
k

edges that start at v is less than or equal to (1c—c) . .

Now we return to the proof of Theorem 9.2.2.a.

Proof of Theorem 8.2.2.a:

Y wt (wk)
ry < max wkeH p)
WSP — sp €SP wt (sp)

by (8.2.a). Consider a generic simnle path sp of length Ip. We will show

r o wt(uwk)

wk € H(sp)
wt(sp) 1=0

thus proving the theorem. All walks wk € H~)(sp) consist of sp together with
cycles of length at least ! with origins along the simple path. Note that these
cycles may not be simple cycles. Let NC be the set of all walks wk € H ™ (sp)
such that wk has exactly © cycles, and let #NC; be the sum of the weights of all

walks in N. We will show that

#NG et [
wt(sp) = I 1-c } ’

thus proving the theorem. Note that NCp = {sp] and thus

WNCq
wi(p)

For i = 1, NC can be further partitioned into lp! < n! sets, depending upon
which set of i nodes along sp are specified as the origins of the i cycles in the
walks. Let v, ' ,v; be a generic set of 1 nodes along sp. Cocnsider the set of
all walks in N7 where v, -+ . v, are the origins of the i cycles in the walks. By

the Corollary to Lemma 9.2.2.b, the total weight of the cycles of length at least {

Syt ¢ Y3 o -3 allpmer s Ll nd PR Y,
riginve {1 =k <1} in these walks is at most . It follows that the total

weight of all the walks in this set is at most

wt(sp)-{f_’c |

Since there are at most n' such sets,

WNC, net |
wt (sp) = 1-c ’

8.3. The Choice of {

By Theorem 8.2.2.b,

1
WSP - ‘Z.JO

X
n-ct
1-¢ ’

. |
ne 1 < 2. This

. . 4.4
We choose the value of I such that e < o in which case WSP

restriction is satisfled if

Ign +1+lg——
l= 1-c

1
lg =—
e
We point out that this value of ! is easily computable from the problem input.

Now we analyze the preprocessing time for this choice of {. For simplicity,

assume thatc < %- In this case, the value of | can be chosen so that

1< (8.3.2)
lg-l—
c
In section 4 we show that the preprocessing time is O [nz-d"l] If we substitute
the right-hand side of inequality (9.3.a) for I we see that the preprocessing time
ia .
2+ d2)
Oln 9 ,' .
If d-c = 1 the preprocessing time is O (n?), but in any case it is O (n¥") since

d<n.

119

120
9.4. Summary of the Running Time

Ifthereisac < :13— (bounds can be derived for all ¢ < 1) such that

and the number of irials, N, sufficient to guarantee an (&,6) algorithm is
2, 4
Z‘H (1+ p.‘)'(ln-d—)" °s—z=
]

The time per trialis O(n-d).

Note that all these bounds are easily computable from the problem input.
The bounds on the preprocessing time and on the number of trials both contain
a lot of slack. The actual performance of the algorithm should be significantly
better than projected by these bounds. However, this analysis proves that the

algorithm works especially well when the edge failure probabilities are small.

10. Running Time Analysis for the Planar Two-Terminal, All-Terminal and
K-Terminal Algorithms

The running time analysis for the pianar two-ierminal, ali-terminal and
K~termine! algorithms is very similar to the analysis for the reachability prob-
lem. One of the diflerences is that for the planar problems the algorithms are
used on the dual network ' instead of on the original netwerk &, The analysis is
in terms of the dual graph &'. Thus, we let 4 be the maximum node degree in G’
(which is the maximum number of edges bordering any face in G) and we let ¢

be a constant such that for all nodes v in G',

pSc

." [3 odj(v)

(which is the same as, for all faces v in G, Y p; < c). There are three
s, bordsring v

components to the running time: the preprocessing time, the time to perform a
trial and the number of trials, N, sufficient to guarantee an (2,6) algorithm. For

all the algorithms the running time per trial is o(n-d).

10.1. Preprocessing Time

The preprocessing time for the reachability problem is the basis of the
preprocessing time analysis for the other algorithms. Let PT denote the upper
bound on the preprocessing time for the reachability problem. Let is be the
length of the shortest z—y path in G for the two-terminal problem (where the
shortest path may be artificially shortened by the addition of dummy edges, as
explained in subsection 8.4). For each edge in this path the preprocessing step
performs the dynamic programming algorithm presented in subsection 8.3 on a
graph formed by deleting edges from G'. The running time for each dynamic
programming algorithm is at most the same order as PT. Therefore, the

preprocessing time for the two-terminal algorithm is

0 (is-PT).

The analysis for the preprocessing time for the all-terminal algorithm is
very similar. The preprocessing step first finds a spanning tree consisting of
n-1edges in G. For each edge in this tree the dynamic programming aigorithm
presented in section 4 is executed on a graph formed by deleting edges from G'.

The total preprocessing time is
0 (nPT).
Let Is, be the length of the shortest z,-% path in G for the K—terminal

problem. For each specified node z; (where i = 2,....K} the preprocessing step

executes Is; dynamic programming algorithms of the type presented in subsec-

121

122

tion 8.3. The running time for each z; is
0 (lS(PT)

and thus the total preprocessing time is

0 [é lst-PT]

10.2. Number of Trials

The upper bounds on the preprocessing time and the number of trials, N,
sufficient to guarantee an (£,6) algorithm are intimately linked tbru the vari-

able I. In subsection 2.3 we show that if a is a zero-one variable and

=1 _n2y 4 ;
N = Fla] (lng-) v then we have an (£,6) algorithm.

For the planar two-terminal algorithm,

Pr(Fl _ PriF] wCY
WW ~) PrlFg] WW
cy ECY

Ela] =

Thus, N is'less than or equal to

L FPrifal
cy €
BriF] (10.2.a)
times

44

WCY (10.2.b)
times (m%—)- f? Using the same reasoning as in subsection 8.1, we get an upper

bound on {(10.2.a) of

n g
f (epy s e’

t=1

To derive an upper bound on (10.2.b) we use the same technique as was

used in section 9.2. The diflerence in the analysis is how a walk is uniquely asso-
ciated with a simple cycle. Each ! -restricted walk in ¥ is a walk that starts and

ends at the same node in G' which includes an odd number of edges from

te'q, - .2’y). We associate each walk in ¥ uniquely with a simple cycle which
includes an odd number of edges from te'y, """ .2’y } in a manner similar to

that used in subsection 9.2. If walk wk is not a simple cycle then wk can be par-
titioned into two walks wk, and wk; such that both wk, and wk, start and end

at the same common node. Since wk contains an odd number of edges from

fe KPR "u; then either wk, or wkg must also contain an odd number of edges

from §8';, - -.e'y }. Suppose that wk; contains an odd number of edges from
1 4

ie'gl, e .e’%i. We add wkj to the set of discarded cycles and recursively try to

associate wk with a simple cycle occurring within wk,. The rest of the analysis

follows directly from subsection 9.2.

The result is thatif c = %—and ! is chosen to be —19—11"-+ 1, then

lg-c—

g+ ML

wk
Pr=0(n ¢ (10.2.¢)

and
LB 2, 4
N = 2-‘1'[(1+p‘)'(1n6—)--;2— (10.2.d)
=]

Thus, the total preprocessing time for the planar two-terminal algorithm is

Agd
2+”§_

OLS"u

and the total time for all trials is

0|21 1+p)-(n2) L-nd | .
i=1 6" ¢

123

124

The analysis for the planar all-terminal algorithm follows directly from sub-

sections 9.1 and 9.2. The result is thatif ¢ < %—and { is chosen to be _lgl_+ 1,
lg—
c

then both (10.2.c) and (10.2.d) hoid. Thus, the total preprocessing time for the

planar ell-terminal algorithm is

and the total Lime {ur all irials is

4
—nd
£?]

=]

0 [Zﬁ (1+p¢)'(1n§-)-

For the planar K'—terminal algorithm, let
L wt(ey)= Y Prifa]

WCY;
¢y € CY) ey €LY}
Then,
gla] = ZEL = Prif]
Y, Y PriFg]
‘ j=2 oy € CY;
times

$ woy,

i=2

> wt (V)

j=2

Thus, N is less than or equal to
LT, Flra)
TEOWESY 152 m)
PT[F'] (;C’.C.-/
times

X
Y wt(¥)
= (10.2.1)

$ wcy

=2

S

times (m%)- -:'—2- Using the same reasoning as in subsection 9.1 we see that

r PrlFfgl
cyeC}’,

PI‘[F'j] = ‘ISII (1+pt) .

Then, since Pr[F';1=< Pr[F'], (10.2.e) is bounded above by
m
(K-l)'ﬁ (1+p;) -
=1

The upper bound on {10.2.f) is derived by placing an upper bound on

wt (V)
.—.—-1—- y =
ey, for j = 2....K.

wt (7))

is the same as the upper bound on (10.2.b). The
WCY;

The upper bound on

result isthatifc < %—and l is chosen to be -l-g—?—-+ 1, then (10.2.¢) holds and
lg—

N = 2(k-1)-T] (1+4p)-in %y -
i=1 g

Thus, the total preprocessing time for the planar K —terminal algorithm is

2+ H2d.

X ¢,L

(0] 2 ls‘ '‘n ¢
=2

and the total time for all the trials is

0 2(1(-1)-‘{1':l (14p)- (%) Smd
11. Improvements and Fine Tuning of the Reachability Algorithm

There are several input parameters to the reachability algorithm which
affect its performance. The proper choice of these parameters can substantially
increase the efliciency of the algorithm in terms of the ratio of the running time

to the accuracy of the estimator. In this section we highlight these parameters

125

and indicate some heuristic guidelines for fine tuning the algorithm.

Throughout this paper we have assumed the estimator produced by one
trial of the aigorithm is the zero-one variable a multipiied by an appropriate
constant. As we pointed out in this paper, an unbiased estimate of the failure

probability is produced in one trial if

Y, a(s.sp)=1.

sp € cov(s)

In chapter 2, sections 8 and 9, we discuss a hybrid method for computing a. We
now briefly present the hybrid method for computing a(s,sp). Let cutoff be a

positive integer. Let
nc = min(cov(s),cutoff) .

We first list nc simple paths occurring among the failing edges in state s. An

algorithm to list these simple paths is straightforward. Let

fspy - SPre}

be the simple paths listed by the algorithm. Then,

1

oo if sp € 5Py P

als:5P) =| o otherwise
This definiticn of a produces an unbiased estimator of Pr[F] with lower variance
at the cost of mcrez cocmputation per trial. A judicious choice of the value of
cutoff could substantially improve the performance of the algorithm. This
same technique can also be applied to the planar two-terminal, K ~terminal and

all-terminal algorithms.

One choice which greatly affects the behavior of the algorithm is the choice
of the value of . In this paper we prove theoretical results about the choice of

l, but in practice the theoretical value of ! seems to be too large. A large value

126

of I can make the preprocessing prohibitively expensive with little reduction in
the sum of the weights of the walks. Our limited experience with the algorithm
to date suggests a small value of I is always appropriate for the first run of the
algorithm. One heuristic suggestion is to first try l =1 and compute the sum of
the weights of the walks, then try ! = 2 and compare the time to compute the
preprocessing for this value of ! with the reduction in the sum of the weights of
the walks (which directly shows how much the variance per trial decreases).
This will indicatz whether or not it is appropriate to proceed to larger values of

L.

127

12. References

[2] J. Scott Provan and Michael O. Ball, The Complezity of Counting Cuts and of
Computing the Probability that a Graph is Connected, working paper
MS/S 81-002, Management Science and Statistics, January 1981
(revised April 1981) .

[3] Renyi, A., Probability Theory, North-Holland Publishing Company, Amsterdarn,
1870

[4] Garey, M.R., johnson, D.S. and Tarjan, R.E.,The Planar Hamiltonian Circuit
Problem is NP-Complete, SIAM J. of Computing, 5, 1976, pp. 702-714

[5] S. Tsukiyama, 1. Shirakawa, H. Ozaki, H. Ariyoshi, An Algorithm to Enumerate
All Cutsets of a Graph in Linear Time, JACM, vol. 27, no. 4, October
198C, pp. C18-632

e -— et e

128

Appendix 1 - PASCAL Implementation of the Reachability Algorithm

We now present a PASCAL implementation of the coverage algorithm for the

reachability problem discussed in sections 3 and 4.

Program Input

The Seed for the random number generator. The program uses the system
supplied function random to generate a sequence of numbers uniformly
distributed between zero and one. The function seed with the value Seed is

used to initialize the random number generator.

The number of trials to run.

The value of I. WW will be the sum of all ! —restricted walks.
The value of cutoff. Cutoff is described in section 11.

The output indicator. The value of zero produces standard output, the value
of one produces more detailed output that is used primarily for debugging

the program.

The number of nodes, numnades, in the graph G. The convention is that
nodes 1 and numnodes are automatically considered to be the specified
nodesz and .

The edges in the graph. Each edge is input as a triplei, j, p. The edge has
as its endpoints nodes i and j, and the failure probability of the edge is p.

The triple 0, 0, 0 indicates the end of the edge input.

Program Cutlput

1.

Data concerning the construction of the dynamic programming structure.

Each line of data is of the form

l

#dynrecord = #predrecords = time =

129

The dynamic programming structure for l —rastricted walks is constructed
from the structure for ! —1~—restricted walks. The time is the number of
seconds used to construct the structure for ! from the structure for l-1 (in
the case [=1, this is the time to initialize the structure for l=1). #dyn-
records and #predrecords are values representiing the total 2mount of space

dynamically allocated so far for the construction of the structure.

Data concerning the computation of ## using the dynamic programming
structure. The fime is the number of seconds used to compute W¥. gcar-
ray represents the size of the array necessary to hold the intermediate
values of C in the computation (the size is in increments of 1000 real
words).

The time in seconds to run all the trials.

The fraction of yes answers is the sum of the a values for all the trials

divided by the number of trials.
The sum of the walk weights is the value of ¥F.

The average value of the estimator is the value of Y estimating PF pro-

duced by the program.

The total running time of the program in seconds.

Yain Program logic

The input parameters are read.

The graph input is read and the edge list graph structure is constructed
(recdgrepn).

The dynamic programmng structure for i1=1 is constructed from the edge

lists (convgrdyn).

130

The dynamic programming structure for i+1 is constructed from the
dynamic programming structure for i {dynlenti 1). This step is repeated
until the dynamic programming structure for ! has been constructed.

The dynamic programming structure is used to compute the value of W

(computeC).

At this point the preprocessing is complete, and the running of the trials begins.

Each trial consists of

8.

Choose a walk j from node numnodes to 1 using the dynamic programming

solution (choosewalk).

Choose a state s of the graph in which the edges in the walk chosen in step
8 are failing (choosestate).
Compute the value of a(s.j) (alpha).

Total the result of a(s,j) from this trial with the results from the previous
trials (yesans = yesans + z). After all the trials have been completed, the

estimator Y is computed and output.

" Global Data Structures and Variables

noderec records - These are the records for the nodes in the edge list represen-

tation of the graph. Nodearr is an array of these records, where nodearr[i]
is the nodes record for node i. Numnodes is the largest index for any node
record, and is also the index for node ¥ (node z is node 1). Topedge is the
pointer to the beginning of the edge list for the node. Both listptr and last-
nods are used by the function alpha when performing & depth first search
of the graph. Listptr keeps track of which edge in the edge list shold be
examined next. Lastnode points to the predecessor node in the depth first

search tree.

131

132
edgerec records - These are the records for the edges in the edge list represen-

tation of the graph. These records are dynamically allocated as they are
needed. Edge (i,j) appears on the edge lists for both nodes 1 and 7.
Nodep is an array of size two used to store the indices of the nodes i and j.
Fdgep is an array of size two used to point to the next edge on the edge
lists of nodes 1 and j respectively. Prob is ~the edge failure probability.
Each node has a pointer (tcpedge) to the first edge on its edge list, which
does not correspond to a real edge but is used exclusively as the top of the
edge list record for the edge; topedge .edgep[1] points to the first real edge
on the edge list and topedge .edgep[2] points to the last real edge on the

edge list. Use is used to indicate the status of the edge as follows:

use meaning

edge is the topedge for the edge list of some node
no choice for the edge has been made

edge has been chosen to fail in state s

edge has been chosen to fail in state §

edge is in the chosen walk j

]
WN QO

Dyneptr is an array of size two used in the construction of the dynamic pro-
gramming structure for {=1. Dynepir points to the (up to two) dynrec
records created from the edge. An example of the data structures associ-

ated with storing a graph is shown in Figure A.1.1 and Tables A.1.2 and A.1.3.

Figure A.1.1 - Ezample graph G

133

el, ... ,e9 pointers to edgerec records
node edge
edgerec prob | use P P
pointer 112 1 2 _—
el 0 -1 11 0 | ed5|ebB
el 0 -1 2{ 0 | eB | eB
e3 0 -1 3| 0| edb} el
e4 0 -1 41 0 | eB | 28
ed 0.1 0 1| 3 eB|e?
e 0.2 0 2| 1 | e?| el
e? 0.3 0 3| 2 | e9|eB
eB 0.4 0 2| 4 | e2 | eB
e9 0.5 0 3| 4 [e3 | e4

Table A.1.2 -Example of data structure for storage of graph G

nodearr
index topedge
1 el
2 e2
3 eld
4 ed

Table A 1.8 -Ezample of data structure for storage of graph G

dynrec records - These are the records for the dynamic programming struc-
ture, where each record corresponds to a partial walk. These records are
dynamically allocated as they are needed. Numdyn is the number of
records in use so far. Dyngarb is a pointer to the top of a list used for gar-
bage collection. 1f a dynrec is no longer needed it is linked into this list for
reuse. Stnode and endnode are the first and last nodes in the partial walk,

and lastedge is the pointer to the edge record for the last edge.

Auzptr and auzptrl are used to build and link together the dynamic pro-
gramming structure. After the structure has been build, L is the pointer to
the top of the list of all partial walks, where aurptr is the pointer used to
link together this list. Topred is the pointer to a linked list of predrec

records for the partial walk. The predrec records point to the predecessor

134

Typdyn indicates the type of partial walk.

| tyodyn meaning —
start node 11s the first node in the partial walk, i.e.

the walk is an initial partial walk
terminal | Node numnodes is the last node in the partial walk, i.e.
the walk is a terminal partial walk

both Node 1 is the first node and node numnodes is the last node
in the partial walk,i.e. the walk is a simple path from node 1
to node numnodes.

neither i A partial walk which is neither an initial nor a terminal partial walk

partial walks if the partial walk is of type ferminal or neither. The pradrec
records point to the edges in the partial walk if the partial walk is of type
start or both. Cval is equal to the product of the probabilities of the edges
in the partial walk. Cptr and cindex are used to point to an array of real
variables used to store the values of C for the dynamic programming com-
putation. Cptr points to an array of 1000 real variables, and cindez is an
indice in this array which is the first indice used by the partial walk for the

storage of its C values.

predrec records - These are the records used to point to predecessor partial
walks (if the partial walk is of type terminal or neither) or to the edges in
the partial walk (if the partial walk is of type start or ilwoth.). These records
are dynamically allocated as they are needed. Numpred is the number of
records in use so far. Predgerbd is a pointer to the top of a list used for gar-
bage collection. If a predrec record is no ionger needed it is linked into this
list for reuse. The predrec records are linked together via the npredrec
pointer. If a partial walk is of type ferminal or neither, then the topred
pointer for the partial walk points to a linked list of predrec records, one
record for each predecessor partiai walk. The tadyn pointers of the
predrec records are used to point to the predecessor partial walk. If a par-
tial walk is of type start or both then the topred pointer for the partial walk

points to a linked list of predrec records, one record for each edge in the

135
partial walk. The foedge pointer of the predrec are used to point to the
edges. In this case the predrec lists are not necessarily distinct for each
partial walk because the first few edges in a partial walk may agree with the
edges in some other partial walk. This is why the predrac records pointed
to by a partial walk dynrec record which is of.type start or both cannot be
returned to the predgerb list when the dynrec record is returned to the

dyngarb list (see procedure retdyn).

crec records - These are the arrays of real variables used to compute the
dynamic programming values of C. These arrays are allocated dynamically
as they are needed. Sizec is the size of each array (currently set at 1000).
Numc is the number of arrays allocated so far. Each partial walk which is
of type terminal or neither is allocated mazlength consecutive real vari-
ables in a crec record, where mazxlength is an upper bound of the length of
the longest simple path from node 1 to node numnodes in G (mazlength is
set to numnodes for simplicity in the program). In the dynrec record for
the partial walk, cptr points to the crec record and cindez is the beginning
indice of the real variables allocated to the partial walk in the crec record

array.

termrec records - T is an array (currently of size 5000) of termrec records used
to choose the terminal portion of & walk as the first step in choosing & walk
at random. Each entry in T corresponds to a partial walk of type terminal
or both, where t is the number of such partial walks. Termdyn points to
the dynrec record corresponding to the partial walk and termprob is the
sum of the weights of all walks from node 1 to node numnodes where the

last portion of the walk is the partial walk.

fwalkarr array - This is an array used to store the pointers to the edges in the

walk chosen. Flenwalk is the length of the walk chosen. -

Other Global Variables
name use li
looplength The dynamic programming structure is constructed to sum the

weights of all looplength —restricted walks.

[

s
1

i is incremented from 1 to locplength.

i

antof?

The maximum number of simple walks to look for in the chosen state s

Seed

The seed for the random number 5enerator

printind __ Indicates standard output (0) or debugging output (1).

numtrials The number of trials to be performed

trial

trial is the current trial number in progress

totaltime The total rurning time of the program in seconds

intertime The running time for various portions of the program

x The returned value of alpha is stored here
yesans The sum of the a values produced by the trials
Lk The sum of the weights os all looplength —restricted walks
Y The estimator of Pr(S]

Detailed Description of the Most Important Procedures and Functions

readgraph procedure - This procedure read in the number of nodes in the

graph, numnodes, and the edges in the graph. The edge list represen-
tation of the graph is constructed as the edges are read in (see Figure

A.1.1, and Tables A.1.2 and A.1.3)

convgrdyn procedure - This procedure creates the dynamic programming

structure for i=1 from the edge list representation of the graph. This
is a two stage process. In the first stage the edge list for every node in
the graph is traversed. Suppose the edge list for node fnode is being
traversed, and edge (fnode , Inode) is being examined. A partial walk
{dynrec record) with stnode equal to fnode, endnode equal to inode,
and lastedge pointing to (fnode , inode) is created if fnode is not
node numnodes and lnode is not node 1. If fnode = 1 the partial walk
is of type start or both and a predrec record is created to point to
edge (fnode = Inode). The dyneptr pointer for the edge points to the

newly created partial walk record, this pointer is used in stage two.

136

Each edge gives rise to either one or two partial walks; two if neither
fnode nor lnode are node 1 or node numnodes, and one otherwise.

Each dynrec record is added to the list L via the auzpitr.

In stage two the list [created in stage one is traversed to create the
poiniers to the predecessor partial waiks. Each partial waik which is of
type neither or terminal will have predecessor partial walks. The links
to these predecessors are created by traversing the edge list for node
stnode and using the dyneptr pointer for the edges set in stage one as

the pointer to the predecessors.

dynleniil procedure - This procedure creates the dynamic programmng

structure for i+1 from the structure for i. This is a three stage pro-
cess. The first stage is to create the dynrec records for i+1 from the
dynrec records for i. We will use the following terminology in this
description. An1i-—partial walk is a partial walk which is of length i. A
partial walk which is of type terminal or neither will be called a nonin-
itial partial walk, while a partial walk which is of type star_t or bath will
be called an initial partial walk. Each noninifial i-—partial welk =z
will mate with each of its predecessor i—partial walks y to create
one child i+1-partial walk yz, where z will be called the primary
parent and y will be called the secondary parent of yz. Consider the
partial graph shown in Figure A.2.1. The dynamic programming struc-
ture for 1=3 relevant to this example is shown in Tables A.2.2 and A.2.3.
We wiil show how the structure for i=4 is created, concentrating in par-
ticular on the dynrec record corresponding to the
3—partial walk (7,8,9,10). Predecessor partial walks (6,7,8,8) and
(3,7.8,9) will mate with (7,8,9,10) to create children (6,7,8,9,10) and

(3.7.8,9,10) respectively. Suppose (3,7.8,9) was an initial partial walk,

137

7 8 9 lo
4{’\/ ————9

4

-

5

Figure A.2.1 - Part of a graph to demonsirate dynomic programming
struclure

dynrec records L =d1
ggir:—;rte; stnode | endnode | lastedge | auxptr | topred
di 7 10 (9,10) de pl
a2 8 9 (8,9) d3 p2
d3 3 9 (8.9) d4 p3
d4 4 8 (7.8) d5 -
a5 5 8 (7.8) d6 -
dé 1 8 (7,8) a7 -
47 2 8 (7.8) - -

Table A 2.2 - Dynamic programming structure for 1=3

predrec records

predrec n

- predrec | todyn
201nter

pl p4 de

pe p5 d4

p3 p6 ds8

p4 nil d3

p5 nil ds

po | nil a7

Table A 2.3 - Dynamic programming structure for i=3

then the child partial walk (2,7,8,9,10) will alsc be an imific! partial
walk. In this case a predrec record is created to point to edge (9,10)
and this record is linked into the list of predrec records points to

edges (3,7),(7.8), and (8.9) from (3,7,8,8). On the other hand, if (as is

138

true in the example shown) (3,7,8,9) is a noninitial partial walk then
(3.7,8,9,10) is of the same type as (7.8,9,10). The primary parent is
linked to its children via the auxptr1 pointers. Each child points toits
secondary parent using the ouzptr pointer. See Table A.2.4 for the

relevant dynamic programming structures after the completion of

stage cne.
dynrec records L =d1
dynrec | stnode | endnode | lastedge | auxptr | topred | auxptrl

pointer
di1 7 10 (9.10) d2 pl d8
d2 8 9 (8,9) 43 p2 dio0
d3 3 9 (8.9) d4 p3 d12
d4 4 B (7.8) das5 - -
d5 5 8 (7.8) ds - -
d6 1 8 (7.8) a7 - -
a7 2 8 (7.8) - - -
ds 3 10 (9,10) d3 - ds
ds 8 10 {8,10) d2 - nil
d1i0 5 2 {3.9) a5 - d11
dil 4 9 (8.9) d4 - nil
di2 2 9 (8,9) d7 - di13
d1l3 1 B (8,9) a6 - nil

Table A.2.4 - Relevant structure after stage one

The second stage of dynleniil is to create the links to the predecessor
partial walks for the newly created children. The list of
i-partial walks is traversed. For each noniniticl i-partial walk,
which is the primary parent of the children on the list pointed to by
auzpir 1, the child list is traversed to create the predecessor links for
the children. A child yr will have predecessors only if its secondary
parent y is 2 nondniticl partial walk. If secondaryv narent ¥ is a nonini-
tial partial walk, then the prececessors of yz are the children ey for
which y is the primary parent, as long as the stnode of ey is not the
same as the endnode of yz. See Tables A.2.5 and A.2.6 for the relevant

data structure after the completion of state two.

139

dynrec records L = d1
;g:;rtee(:_ stnode | endnode | lastedge | auxptr | topred | auxptrl
dl 7 10 (8,10) dz2 pt ds
de 8 9 (8,9) d3 p2 dio0
d3 3 9 (8.9) d4 p3 d12
d4 4 8 (7.8) as - -
das 5 8 (7.8) d8 - -
ds i 3 {7.8} a7 - -
a7 2 8 (7.8) - - -
de 3 10 (9,10) d3 p7 do
ds 6 10 (s.10) d2 p9 nil
dio 5 2 (8,9) 45 - d11
d11 4 9 (8.9) d4 - nil
412 2 9 (8,9) a7 - d13
d13 1 9 (8,9) dé - nil

Table A.2.5 - Relevant structure after stage 2

predrec records
pi:g::: npredrec | todyn
pl P4 d2
p2 pd d4
p3 p6 ds
p4 nil d3
po “nil ds
pé nil d7
p7 p8 d13
p8 nil da12
p9 pl0 di1
pl0 nil d10

Table A.2.8 - Relevant structure after stage 2

Stage three of dynleniil discards the old i —partial walks (unless they
are of type both, in which case they are always saved) and links the
children of i+1—partial walks together via the ecuzpir pointers into
the list £. In the exampie, dynrec records d1,d2,43,d4,45,d8 and 47
and predrec records pl,p2,p3,p4.p5 and p8 are discarded and dyn-

rec records dB8,d8,410,d11,d12 and 413 are linked together via

quzrplr on list L.

140

141

computeC procedure - This procedure performs the dynamic programming
calculation of C, which in turn yields the value of #¥. The first step is
to allocate space for each noninitial partial walk to calculate and save
the values of C. The number of real variables allocated for each partial
walk is maziength, where mazizngth is set =cual to numnodes. Crec

records are allocated to provide this space.

The second step is to compute C for walks of length i2 =11+ 1 {from
the C values for walks of length {1 as described in section 5. The value
of I1 is not the actual walk length, the true walk length is
11 + looplength. However, since no walk of length less than or equal to
looplength can have as the flnal portion of the walk =a
noninitial looplength —partial walk, the C values for walks of length
1.....lcoplength are all zero and need not be computed. Wheni1=0
only the initial partial walks will contribute their weight to the C
values for ancestor partial walks. When {1 > 0 only noninitial partial
walks will contribute their C values to the C values of their ancestors.

The third step is to accumulate the C values, so that
C (11, partial walk) is the sum of the weights of all walks of length
less than or equal to L1 + looplength for which the flnal portion of the

walk is partial walk.

The fourth step is to calculate WW from the sum of the weights of the
walks for which the last portion of the walk is a noninitial partial walk.
‘In addition, the array 7T is initialized, where T'[i].termdyn points to the
dynrec record for the noninitial partiel walk 1, and T[i].probad is the
sum of the weights of the walks for which the last portion of the walk is

partial walk i.

142
The final step is to revise the probab entries in the T array so that pro-
cedure choosewalk can use the T array to choose the terminal portion

of a walk with the appropriate probability as described in section 5.
choosewalk procedure - This procedure is used to choose a walk such that
walk 7 is chosen with probability %{:%L This algorithm is described in

section 5. The first step is to initialize the use of all edges in the edge
list structure to zero. The edges in the chosen walk will have their use
set to three to indicate they are in the walk. The second step is to
choose the terminal portion of the path using the T array initialized by
computeC and using binary search as described in section 5. Once the
terminal portion of the walk has been selected the rest of the walk is
selected as described in section 5. Fwalkarr is used to store the
pointers to the edges in the walk chosen. Flenwalk is the length of the

chosen walk.

choosestate procedure - This procedure chooses a state s of the graph once

the walk 7 has been chosen, as described in section 4.

alpha real function - This function computes the value of a(s.j), as
described in section 12. A depth first search of the graph is executed
using only edges chosen to fail in choosestate (use = 1) or edges in the
chosen walk (use = 3). Every time a simple path 1 is found from node
1 to node numnodes, the edges in i are compared with the edges in
walk j to see if they are the same. The pointers to the edges in j are
stored in reverse order in the fwalkarr array. The edges in i are
listed in reverse order using the lastnode value _to point to the previous
node in the path and listptr to the edge in the path. If a match is
found then mafchpath is set to true. The graph is explored unti

numfnd, the number of simple paths from node 1 to node numnodes

143
found so far among the failing edges in the graph, is equal to cutoff;

or until all the simple paths in the graph are found. The value of alpha

1

is then W if walk 5 was among the simple paths listed

(matchpath = true) or zero otherwise.

Brief Description of Other Procedures and Functions

function or !

procedure . use
setclok a reel function (written in the C language) to initialize
the running time to zero.
readclok a real function (written in the C language) which
returns the running time in seconds since the last
time setclok was called.
seed (Seed) an integer function (system supplied) which initializes
the seed value to Seed for the random number generator.
random (Seed) a real function (system supplied) which returns a random
real number uniformly distributed between zero and one
newdyn (x) allocates z, a new dynrec record
newpred (x) allocates z, a new predrac record !
retdyn (x) returns for reuse z, a dynrec record. If z is '
a noninitial partial walk then the predrec records are
also returned for reuse,
printgraph prints the edge list structure, used only for
debugging the program
direc (edgeptr, an integer function which returns the value of the
nodenum) indice in the array nodep for edge edgeptr which
points to node nodenum.
nextedge (mask, a function which returns an edge pointer to the next
lastedge.nodenum) edge after lastedge on node nodenum's
edge list. The mask is a boolean variable. The functicn
is called with mask = {rue {rom the function aipia to
igncre edges which are not faiiing in the state s.
othernode (edge, an integer function which returns the node
nodenum) number which is at the cther endpoint of edge adge
from nodenum, where nodenum is one of the endpoints of
edge edga.

144

o~ - —-

program monteZsim (input,output) ;

C this programs estimatates the probability there is a path between
two specified nodes in an undirected graph where adges have failure
probabilities associated with them- the reachability probiem b)

type eptr = ~ edgerec
dynptr = ~ dynrec
predptr = A~ predrec
ptrc = ~ crec
crec = record
¢ i array (8..999) of real
end 3
dynrec = record
stnode : integer
endnode @ Integer ;
typdyn : (start,terminal,both,netther) ;
auxpir : dynptr 3
auxptrl : dynptr
tosred : predptr
lastedge : eptr
cval : real
cptr : ptrc
cindex ¢ tinteger
end
predrec » record
npredrec : predptr i
todyn ¢ dynpter
toedge : eptr
end
termrec = record
termdyn : dynptr ;
termprob : real
end 3
edgerec = record
prob : real
use ¢ integer
nodep : array [1..2) of tnteger ;
edgep @ array [1..2) of eptr
dyneptr : array [1..2] of dynptr
end ;
noderec = record
topedge :@ eptr
Tistptr ¢ eptr ;
lastnode : integer
end 3
var numc,stfzec,numpred,numdyn,{,flenwalk,cutoff,t ,numnodes : fnteger ;
T : array l#..5880] of termrec ;
nodearr : array [1..189) of noderec i
fwalkarr : array [1..180]1 of eptr
Seed,printind,looplength,maxlength, numtrials,trial @ tnteger ;
totalitime, Intertime,x,yesans, WW,¥ : real
L.dyngarb : dynptr ;
predgard : predptr

#include °declis.h"
function direc (edgeptr : sptr ; nodenum : {nteger) : integer ;
var { : {nteger ;
begin
1f (edgeptr~.nodeplll = nodenum) then { t= 1
1f (edgeptr~.nodepl2] = nodenum) then § := 2 ;
direc := ¢
end (direc)

function nextedge {mask:boolean;lastedge:eptrinodenun: integer):eptr ;

(mask - true - find next edge on edge 1ist with use=3 or use=! or uses-]
falae - find next edge on edge list regardless of use
lastedge - current edqe on edge 11st of nodenum
nodenum - node whose edge Yist is being traversed 3

var jiinteger ; edge:eptr ; correct:boolean
begtin
edge := lastedge ;
repeat
J = direc {(sdge,nodenum) ;
edge = edge".edgepijl
correct :» true
1f mask then correct := ((edge™.use » 1) or {edge™.use & J) or
(edge™.use = -1)}
until (correct) ;
nextedge = edga
end { nextedge) ;

function othernode (edge:eptr; nodenum:integer):integer ;
var {,j:integer

-

begtn
1 :» direc{edge,nodenum)
1f (t=1) then j:i=2
else j =1 ;
othernode :w» edge”™,.nodepljld
end (othernode 1

procedure newdyn {(var x:dynptr)
{ used to get a new dynrec record J

begin
rumdyn := numdyn + 1 3
tf (dyngarb = nil) then new(x)
else begin
x = dyngarb
dyngarbd = x~.auxptr 3
x~ . auxptr = nil
end (elsel

end {newdynl
procedure newpred (ver x:predptr) i
€ used to get a new predrec record)

begin
numpred = numpred + 1
1f (predgarb = ni1) then new(x)
else begin
x t= predgarb i
predgard := x~.npredrec
x~.npredrec = nil
end (alsel
end {(newpredl

procedure retdyn (var xidynptr) 3

¢ used to return a dynrec record, and also some predrec records attached
to It as long as they are not pointed to by any other dynrec record,

{.8. x~.typdyn (> start or both)

var z,w : predptr
begin
x.auxptr 1s dyngarb 3
dyngarb :® x 3
numdyn := numdyn - 1 3
1 ({x~.typdyn <> start) and (x~.typdyn <> both}) then begin
w i® x~,topred g
while {w<>nil) do beglin
z = wh.npredrec
wh.npredrec := predgarb
predgarb = w 3
numpred := numpred - 1 3
w = 2
end (while (w<d>nil))
end € if ((x~.typdyn <> start) and (x~.typdyn &> both)}) 2
end (retdyn)

procedure convgrdyn i

{ converts the graph to the first stage of the dynamic progrzmming
procedure format J

var usetype ! boolean
k,onodse,fnode, Inode : i{nteger
edge.edgel : eptr
<,y ¢ dyrptr
2 : predptr

begin
usetype = false ;
L ts nil 3

for fnode := 1 to numnodes do begin
edge :» nodearr{fnodel.topedge
adge! = navtedgel{usetype, adge,fnode) 1
while (adgel () edge) do begin
inode = othernode (edagei,Tnodel i
1f ((fnode <> numnodes) and (lnode <> 1))} then begin
newdyn (x) 3
kX te direc (edgel,lnode)
edgel”~.dyneptrlk]l = x 3
x™.auxptr = L 3
L i x 3
x~.auxptrl 1= nil 3
x".stnode := fnode i
x~.endnode := lnode

145

146

] x~,lastedge := edgel ¢
| x~.cval := edgel”.prob i
x~.topred = ntl
1¢ {fnodew=l) then begin (its a start state)
newpred (2} 3
x™.topred = z
2”~.npredrec t= nil 3
z~.todyn = nil 3
27.toedge :* edgel
{f {lnoce=numnodes) then x~.typdyn := both
eise x~N.typdyn = start i
ond [{Ff start statsl} .
eise if { Incde=numnodes) then x*.typdyn i= terminal
else x~.typdyn t= neither
end (1f ((fnode (> numnodes) and (1node <> 1)} J
adgel := nextedge (usetype,edgel,fnode}
end { while {sdgel <> edge) 1
end (for fnode i= | to numnodes J

C L« list of al]l states - now inftialize predecessors J

x t= | g
while {(x <> ni{l) do begin
{f {(x~.typdyn = neither) or (x~.typdyn = terminal))} then begin
frnode = x".sthode
Tnode t= x~.endnode i
edge := nodearrlfnodel.topedge i
edgel i= nextedge (usetype,edgs,fnode) ;
while (edgel <> edge) do begin
onode :» othernode (edgel,fnode)
1f ((onode <> lnode) and { de <> des)) then begin
k :» direc (edgel,fnode}
¥ :® edgel”.dyneptrikl 3
newpred (z2) 3
2™.toedge :®= nil ;
2~.npredrec = x~.topred
2 .todyn = y 1
x~.topred i= 2
end (1f ({(onode (> 1node} and (onode <> numnodes)))
edgel := nextedge (usetype,sdgel,fnode)
end (while (edgel <> edge})
end (if ((x~.typdyn * neither) or (x".typdyn = terminal)) 1
X e x”.auxptr
and { while (x <> nt1) 3
end { convgrdyn 23 3

procedure dynleniil

{ builds dynamic programming structure excluding foops of length i+l
from the structure excluding loops of length | - where { is implicitiy
tncreased by one each time this routine is called 3

var z,w : predptr
XY yx,0y : dynptr 3

begin
{ create next level of states 1

x im L g
while (x <> ni1l1) do begin
x~.suxptrl t=nil 3
1f ({x™.tygdyn = terminal) or {x~.typdyn = naither)) then begin
z iw x~.topred
while (2 <> ntl) do begin
y t= z".todyn 3
newdyn (yx) 3
yx~.auxptr = y 3
yx~.auxptrl s x~.auxptrl i
x~.auxptrl t=s yx g
yx~.stnode t= y~,stnode
yx~.endnode t= x~.endnode i
yx~.lastedge t= x~.lastedge g
yx~.cval i= y*.cval * x~. lastedge™.prob 3
yx~.topred t= nil 3
tf (y“.typdyn » neither) then yx™.typdyn := x".typdyn
slse begin ({y~.typdyn = start)
1f (x~.typdyn = neither) then yx~.typdyn := start
else yx~.typdyn t= both i
newpred {(w)
w.toedge = x”~.lastedge
wh.todyn = nil ¢
wr.npredrec = y~.topred
yx~.topred i= w
i end (y*.typdyn = start)
i 2 ia 2~ .npredrec

and € wh'le (z<>ni11) 2
end € if ({(x~.typdyn = terminal) or (x~.typdyn = netther)) 2 3
x = x™.auxptr
end C whitle (x <> nil) J

{ create predecassor links)

x = L 3
while (x <> ntl) do begin
1f ((x~.typdyn = neither) or {(x~.typdyn = terminal)) then begtin
yx i x™.auxptrl j
winilis (yx <> nil) do begin
1= yx™.auxptr ¢
1f (y™.typdyn = neither) then begin
ey = y~.auxptrl i
while (ey <> ntl) do begtin
1f {ey~.stnode <> yx*.endnode) then begin
newpred (w)
w™.toedge t= nil
wh.todyn :® ey
wh.npredrec ts yx~.topred
yx~.topred = w
end { If (ey~.stnode <> yx~.endnode})} 3
ey :® ey™.auxptrl
end { while (ey <> n11})
and { {f (y*.typdyn = neither) 1} 3
yx 1= yx~.auxptrl
end (while (yx <> nt1l1) 3
end C {f ((x~.typdyn = netther) or (x~.typdyn = terminal)) J 3
X 1® x™N.auxptr
end C while {(x <> ni1l) 3

¢ tink up next level of states onto L)

x t» L 3
L t= nil 3
while (x <> nil) do begin
y % x".auxptr 3
1f (x~.typdyn = both) then begin
x™.auxptr e L 3
L ot» x
x~.auxptrl = nil
end C tf (x~.typdyn = both))
else begin (x*.typdyn <> bothl
yx s x~.auxptrl
retdyn (x)
while (yx <> nil) do begin
oy = yx~.auxptrl
yx~.auxptr = L
L t= yx 3
yx~.auxptrl e nil
yx s ey
end (while (yx <> ail) 1}
end { x~.typdyn <> both)}
x = y
end € while (x <> nil} }
end { dynlentil 3 ;

procedure computeC i

¢ performs the dynamic programming procedure once the structure has been
built and initialized)

var x,y i dynptr
w ! predptr 3
cpoint : pirc i
inde,1,11,12 ¢ integer
suini,sum,probadb : real ;
begin
indc t= sizec ¢

¢ inftiaitze C values }

x ts L 3
while (x <> nil) do begin
1f ({(x~.typdyn = neither) cr (x*.typdyn = terminal))} then begin
tf (indc+maxliength >= sizec) then degin
inde = §
numc :® pumc ¢+ 1 g
new (cpoint)
end (if (indc+maxlength >= sizec))
x~.cptr = cpoint
x™.cindex = (ndc 3
tndc = indc + maxlength 3
x~.cptrt.cix~.cindex] 1= 5.8
end If ({x~.typdyn ® neither) or {x~.typdyn = terminal)) P

B

-

x i® xN,auxptr
end { while { x <> nil } 3}

{ compute C vailues for all lengths 3

for 11 = § to maxlength = 2 do begin
12 = 11 + 1 3
x = L 3
while {(x <> nil) do begin

148

1f {{x~.typdyn = neither) or (x~,typdyn = terminali} then degin

sum ‘= §.8 3
probap = x°.lastsdge™.prob i
w = x~.topred i
while (w (> nil) do begin
y := wt.todyn i

1f ({y~.typdyn = start) and (1] = $)) then sum := sum + y~.cval

1f (y~.typdyn = neither) then sum
w i= w.npredrec
and { while (w <> ntl} 2} 3
x~,cptri.elx™.cindex ¢ 121

i1® gum + y~.cptri.cly”.cindex + 111 3

:=s sum * probab

end { x~.typdyn = neither or x~.typdyn = terminal 2 i

x = x™.auxptr
end (while (x <> ni1l1))
end (for 11 t= | to maxlength = 1 3 3

¢ accumulate C values so that CLi] s sum of values from 1 to t 2

x = L g
while (x ¢> nil) do begin
1f {{x~.typdyn = neither) or

(x~.typdyn = terminal)) then

for 1] := 1 to maxlength -1 do x~.cptro.cix”.cindex + 11] te
x~.eptr.cix™.cindex + 111 + x~.cpter.clx~.cindex ¢+ 11 = 11

x = x™.auxptr
end { while (x <> n11) 3 ;

¢ build up 1ist of terminal states 3
sum := §.8 3

x s L 4
while (x <> nil) do begin

1f ((x~.typdyn = both) or (x~.typdyn = terminal}) then begin

Tt twmt o+ 13

Titl.termadyn = x 3§

i1f {(x~.typdyn = both) then probab := x™.eval
else probadb i= x~.cptrt.clx™.cindex ¢ maxlength - 11

Ti{t).termprob := probab i
sum = sum + probab

end ¢ if ((x~.typdyn = both) or {(x".typdyn = terminal)l)} J

x 1w x™.auxptr
end ¢ while {(x <> nil) 3 3
WW = gsum

¢ normalize terminal states so that they add up to one)

sum2 1= 5.8

for t tm 1 to t do begin
sum2 := gum2 + T[i]l.termprob / sum |
T{i]l.termprodb := sum2

end (for | 1= 1 to t J

end { computeC)

procedure choosewalk g

¢ chooses a walk at random from the dynamic programming solution J

var found,usetype.choose : boolean
tow,high.pntl.pnth,t,§,12 ¢ integer
w : predptr ;
X,y : dynptr
save,sum2,.sum : real 3
edge,edgel : eptr

begin
(choose a path)
{ first initialize use o zero for all adges 2

usetype 1» false ;
flenwalk := §
for |1 i=] to numnodes do begin
edge t» nodearr[i].topedge
edgel := nextedge (usetype,edge.1) i
while (edgel <) edge) do begin
edgel™.use = §
edgel := nextedga(usetype,edgel,)

149

end { while (edgel <) edge))}

end C for 1 := 1 to numnodes) i

¢ ptck terminal state from T)

save := random(Seed) 3
found t= false

low := § 3

high = ¢t

whila { not found) do tagin

pntl :w {low + high) div 2

pnth = ontl ¢ 1 ¢ :

1F (Tipntll.termproo >= save) then high :i= pntl

{f (T{pnthl.termprob ¢ save) then low := pnth 1

1f ((Tlpnti).termprob <= save) and (T{pnthl.termprob >= save))
then found := true

end (while { not found)) 3

3

:= pnth

C now pick the rest of the walk 3]

12
Yy

:» maxlength

te TLjl.termdyn ;

while ({y~.typdyn = neither) or (y~.typdyn = terminal)) do begin

flenwalk := flenwalk + 1 3
edge = y~.lastedge i
fwalkarr{flenwalk] := edge ;
edge™.use := 3 3
sum2 t= §.8
sum t= ;‘.cptr‘.cty‘.c!nd.x + 12 - 11 / edge™.prob 3
12 := 12 - 1 4
w = y~,.topred
save := random(Seed)
choose t= false 3
while { not choose) do begin
x i= wh.todyn
1f ({x~.typdyn = neither) or (x".typdyn = terminal}) then
sum2 := sum2 + x~.cptri.clx®.cindex + 12 - 11
else sum2 := sum2 + x~.cval
tf (save <= (sum2 / sum)) then begin
y i® x 3
choose i* true
oend { if (save <= (sum2 / sum)))
else w = wh.npredrec
end { while (not choose))

end (while ((y"“.typdyn = neither) or (y~.typdyn = terminal})) i

¢ at this stage y is a start state)

w i= y™.topred i
while {w <> nil) do begin

edge != w".toedge ;
edge™.use = 3 3

flenwalk := flenwalk + 1 ;
fwalkarr{flenwalkl := edge i
w s wh.npredrec

ond (while (w <> nil))

end (

choosewalk) 3

procedure readgraph

var edge.edgel,edge2,edgelb,edge2b : eptr i

1

,nodel,nods2: intsger ;

probab : real

begin

writeln ('input the reachability problem graph’') 1

writeln {'first input the number of nodes in the graph’') 3
readin (numnodes) i

writeln (‘the number of nodes is : ',numnodes:d) i

for | = | to numnodes do begin

new {(edge)

edge™.use = -1 i
edge™.edgepll] :v edge ;3
edge~.edgepl2] := edge 1
edge™.nodeplll = ¢t
edge”™.nodepi2) = #§
nodaarrf{il.topadge = adge
nodearr{tl.listptr t= edge %
nodearr{1l.lastnode := &

end 3
writeln ('now input the edges one at a time as ¢ , §, probability
writeln {'(the last edge is § § 8)') 4

repeat

f = ¢+ 1
rogdln (nodol.nodoZ.probob)Ac

')

3

150

writeln ('edge ',114,' 18 : (',nodel:3,' ‘,node2:3,' , ‘',
probab:6:4,')') 3

1€ (nodel > #) then begin
new (edge) 3
edge™.nodeplll = nodel
edga~.nodepl2] := node2 ;
edge”™.prob = probab i
edgel :» nodearr{ncdell.topedge
edgc2 := nodearr{nodel].topedge ;
adgelb := edgel”.odgepl2]
edgel2db = edgel2”.sdgepl2]
adoalb~.sdgepldirec{edgeib,nodel)] := adge
edge2p™.edgepldireciedgeZb,nodel)i := eage g
edge”~.edgepll] :a edgel :
edge~.adgepi2] := edge2 3
edgel”.edgepl2) := edge g
edge2”.adgapi2] = edge 3
edge”.prob t= probab
edge”.use := §

end
unttl (nodel = §)
end { readgraph)

procedure printgraph 3

var {.m :integer ; sdge, sdge2 : eptr ; usetyps @ booiean 3
¢ now print out the graph)
begin
usetype :* false 3
for { := 1 to numnodes do
begin
writeln j
writeln (' node '.1:4,' lastptr ‘,nodearriil.lastnode:4) ;
edge := nodearr(il).topedge ;
edge2 = nextedge (usetype,edge. i) ;
while (edge2 <> edge) do begin
m = othernode (edge2,i) 3
write ('(' ,mid,’', ' ,edge2~.prob:6:2,',', edge2”.use:2,") Yo
edge2 := nextedge({usetype,edge2.!)
eond
end
end (printgraph) 3

procedure choosestate i

- top of edge list

- unchosen sdge

- chosen edge and is fatling
- chosen edge and is working
- edge is in the walk 1]

{ use = -1l

WN -

var {iinteger ; probabi:real ; usetype:boolean ;| edge,edgel:eptr 3
begin
usetype := false i

(choose state 1}

for { t= 1 to numnodes do
begin .
nodearr(il.lastnode := § ;
edge := nodearrl({].topedge 3
edgel := nextedge {(usetype,adge,!) 3
while (sdgei (> edge) do
begin
{f (edgei™.use = #) then
begin
probab := random (Seed)
1f (edgel~.prob >= probab) then edgel”.use := i
else edgel~.use := 2
end
edgel := nextedge (usetype,sdgel,i)
end

-
e — e

. 1 end
end { choosestate J

function alpha : real i

) ¢ this function ifsts numfnd = min (covis), cutoff) paths between

- nodes | and numnodesa,
the value of alpha 13 1 / numfnd {f chosen walk is among these paths,
otherwise the value of alpha is §. 1

var edge:eptr § stopsearch.matchpath,usetype,success tboolean ;
savenode,nuafnd,curnode,j : integer
x : resl

begin

- - = E —————— e e O

151

numfnd = &

matchpath :s false

success = true g

usetypa = true

curnode := 1

edge := nodearrlll.topedge

nodearrl(1]l.lastnode := 1

repeat (until ((not success) or (numfnd >= cutoff)))

repeat (until {{not success) or {curnode = numnodes)))
edge = nextedge (usetype.edqe,curncde)
nodearricurnodel.listptr i= adge
if (edge = nodearrlcurnodel .tepedge) then

¢ exhaustad edge 11st - back up)

tf (curnode ®= 1) then success := false
else begtn
savenode :® curnode 3
curnode := nodearrlcurnodel.lastnode 4
nodearrisavenodel.lastnode := § ;
edge := nodearrlcurncdel.listptr
end
alse degin
:= othernode (edge,curnods) 3
i1f (nodearr(jl.lastnode = #) then

¢ new unexplored node found - explore from it b

begin
nodearr{jl.lastnode t= curnode
curnode s j
edge := nodearrlcurnode].topedge
eond
end
until ((not success) or (curnode = numnodes))
1f (curnode = numnodes) then numfnd := numfnd + 1
1f ((curnode = numnodes) and (not matchpathl) then begin

¢ see if walk is equal to this path from node ! to nusnodes J

stopsearch := false ;
J =8
savenode != numnodes 3
while (not stopsearch) do begin
F L B S
savenode :®= nodearr(savenodel.lastnode
1f ((j=flenwalk) or { enode=1)) then stopsearch ¥ true
tf (fwalkarrlj] <> nodearr(savenodel.listptr) then stopsearch := true
end (while (not stopsearch) }
1f (fwalkarrljl = nodearrisavenodel.ltstptr) then matchpath := true
ond Cif ({numnodes = curnodes) and (not matchpath}) b

¢ now back up from numnodes and continue search for more paths 1}

savencde t® curnode
curnode i= nodearricurnodel.lastnode 3
nodearr[savenodel.lastnode := 7 3
edge := nodearr{curnodel.listptr
until ({not success) or (numfnd >= cutoff}) i
1f (matchpath) then x = 1.8 / numfnd
else x = #.8 ;
alpha = x
ond { alpha J

C this is the beginning of the main program 3

begin
L im b oy
Tif).termprob :» 5.8 3
T{#).termdyn := nil 3
L = nil 3
writeln (' this {s monte2sim.p in action, enter the seed') 3
readin (Seed) 3
writeln (Seed:8) ;
trial 1= seed(Seed) i
writeln (' sntar the number of trials for simple simulations') 3
readin {(pumtrials) 3
writeln {(numtrials:6) ;3
writeln (‘enter the value of shortest loop allowable in dynamic programming’)s
readin {(looplength)
writeln (looplength:6)
writeln ('enter the value of the cutoff') i
readlin (cutoff) i
writeln (cutoff:d)
writeln ('input the output indicator: § - short, 1 - long') s
readin (printind)}

152

writeln {(printindtd) ;

sizec := 1808
numc 1= §

numprad = £ ;
numdyn t= § ¢
dyngarb t= nil
predgarb := ni{

readgraph i

s
13

c".}

if {(printind=1) then printgraph
maxlength := numnodes ;

totaltime := 8.8
fntertime := setclok 3

convgrdyn 3

if (printinde=l) then printgraph ;

4 1= 1 3

(.'.)

tntertime := readclok
total'time = totaltime ¢ intertime ;

writein
writeln (‘1 =

‘'y1:2,' #dynrecords =

¥

numpred:6.' time = ' ,intertime:12:4)
intertime :» setclok

while (1 € looplength) do begin

dynlenttl

{1 ts { ¢]

(.-.J

intertime :* readclok 3
totaltime := totaltime + Intertime

writeln
writeln (°1

numpred:6,

= ', 112,' #dynrecords =
' time * ‘,intertime:12:4) ;

intertime := setclok

{f (printind=1) then printgraph

end (while (

computeC 3

t < looplength)

(...)

intertime :» readclok
totaltime := totaltime ¢ intertime ;

writeln ;

writeln ('@carray =

numec:4,

tntertime := setclok ;

)

time to compute W¥ =

1f (printind=1) then printgraph

yesans = §.§

for trial := i1 to numtrials do begin

choosewalk

3 c.l.)

tf (printind=l) then printgraph

choosestate

(esn)

{f (printinds=!) then printgraph

x = alphs

1f {printindel) then writein ('the value of alpha f1a:
yesans 1= yesans + x i

end <(for trial

Y te yesans /

3 c'..)

numtrials 3

intertime := readclok 3
totaltime := totaltime + intertime ;

writeln

writeln {‘time to run alil

writeln 3
writeln (’'the
writeln {'the
¥ tuy = W,
writeln {('the

writeln 3
writeln {'the

fraction of yes answers is:
sum of the welk wetghts 18

(..')

t= 1 to numtrials) ;

the triasis

',numdyn:6,’' #predrecord =

AR
‘W)

average value of the estimator is:

total running time

{s =

‘,totaltime:12:4)

H

‘W Y}

' ,aumdyn:6,' @predrecord s °,

',sintertimes12:4)

g =« ",intertime:12:4) 3

153

end {monte2aim).

154

#include {sys/types.h>
#include <sys/times.h>

static struvct tms ®p, timeblok;
static int start;

fioat setolok () /® returns @ ¢/

{

p = &timeblok;

times(p);

start = p->tms_utime + p->tms_stime;
;oturn(6.9);

Eloat readelok () /® system time + user time in seoonds */

fioat now;

p = &timeblok;

times(p);

novw = p~>tms_utime + p=>tms_stime = start:
;eturn(nov / 60.@ };

o ——

function setclok: real; external;
fonction readcliok: real; external;

155

Appendix 2 - Sample Runs of the PASCAL Program

In thic appendix we describe six example networks and the results of the
reachability algorithm presented in appendix 1 when presented with these net-
works. In examples 1,2 and 3 the underlying network is series-parallel. We did
not apply any reductions toc the networks before running the algorithm. These
examples were chosen because it is easy to calculate the exact failure probabil-

ity of the network to check the results of the Monte Carlo algorithm.

As we described in section 5, when the network is £ ~y planar we can create
a network G' from the original network G such that the failure probability for
the reachability problem on &' is the same as the failure probability for the
two-terminal problem on G. For examples 4 and 5 we are interested in estimat-
ing the failure probability for the two-terminal problem. Since both networks
are z-y planar, we use the reachability algorithm on the network G' created
from the original network G. Notice that example 4 is the sample problem used

in chapter 2.

To get an idea about how well the Monte Carlo algorithm performed on these
exarhples. we first give the exact failure probabilities. The exact failure probabil-
ities are 5.251-1072, 1.834-107*, 8.948-107%, 2.1254-10"! and 2.81:107° for the
first five examples respectively. We did not compute the exact failure probabil-
ity for example 8. Hewever, based cn the output and the folicwing discussion,
the estimatz ic probably very close to the actual failure probability of the net-
work.

We can get some idea about how well the Mzonte Carle algerithm performs by
concentrating on two parameters in the output. The first parameter is "the sum
of the walk weights", which we call #¥. If the cutoff is one, ¥# measures how
well the reachability algorithm performs compared to straight simulation. The

reachability algorithm needs to perform only W¥ times as many trials as need

156

by straight simulation to get the same level of confidence and degree of accu-
racy in the estimator. Example 3 was chosen to be an especially bad example.
Since WW is exactly one, the reachability algorithm and straight simulation are
expected to perform exactly the same. If WW is greater than one then the
reachability algorithm ectuzlly performs worse than straight simulation.

The second parameter of interest is "the fraction of yes answers", which we

call X . The estimator of the failure probability is X muitiplied by F¥. Thus,

the expected value of X is &»’%1 The closer %.[5]. is to one the better the

Monte Carlo algorithm should perform. Thus, if X is close to one this indicates
that —PL»%’-L is close to one and thus the algorithm should perform well. We note
that the closeness of X to one only gives an indication about how the algorithm

is performing. The value of X cannot be used directly to determine the number

of trials sufficient to produce an (,4) algorithm.

157

158

159

J P R — . S PR

this is monteZsim.p in mction, enter the seed

enter the number of trials for simple simulations
ent;r the value of shortest loop alliowable in dynamic programming
enterlthe value of the cutoff

input the output indicator: @ - short, 1 - long

inp?t the reachibility problem graph
first input the number of nodes in the graph

the number of nodes is :
now izput the edges one at o time as i , j, probability

(the last edge is 0 O

edge 1 is @ (1, 2, 0.4000)

edge 2 is : (1, 2, 9.3000)

edge 3 is : (2., 3, 6.1000)

edge 4 is 2 (3, 4 , 9.2000)

edge 5 is : 3, 4 ., 0.1000)

edge 6 is : (1, 4 , 9.2000)

edge 7is: (4, 5, 0.1900)

edge 8 is : (4 , 5 , ©6.3000)

edge 9 is : (5, 6 , 0.3000)

edge 10 is : (s, 6 , 0.2000)

edge 11 is : ¢ 4 , 6 , 9.1000)

edge 12 is @ ¢ e, 9 , 0.0000)

{ = | #dyorecords = 16 #predrecord = 30 time = 9.06333
#carray = 1 time to compute WW = 9.0167
time to run all the trials is = 2.3167

the fraction of yes answers is: 7. 56666666666667¢-9 1
the sum of the walk weights is: 6 . 63000000000000¢-02
the average value of the estimator is: 5.0 1670000000000¢-02

the total runping time is = 2.3687

EXamp[e 1

160

003

001

161

thie is monte2sim.p in actica, enter the seed
1825268129
enter the number of trials for simple gsimulations

enter the value of shortest loop allowable in dynamic programming

enter the value of the outoff

1
inpu
]

inpu
firs
the

now

(the
edge
edge
edge

edge

edge
edge
edge
edge
edge
edse
edge
eage
edge
edge
edge
edge
edge
edge
edage
edge
edge
edge
edge
edge
edge
edge
edge

1 =
{1 =
1=
#ear
time
the
the
the

the

t the ouwtput indicator: ® - short, | - long

t the reachibility problem graph

t iaput the number of nodes in the graph

nomber of nodes is :

input the edges one at & time as i , j, probability

lest edge is 0 ©
1 is 3 (1, 2, 0.0020)
2is : (1, 2, 0.0040)
3 is ¢ (1, 2, 96.0010)
4 is ¢ (1, 2, 9.0300)
S5is: (2, 3, 0.0030)
6 is : (2, 3, 0.0060)
7is : ¢ 2, 3, 6.0020)
8is : (2, 3, 0.9090)
9is : (3, 4 , 0.0070)
@ is : ¢ 3, 4 , 9.9020)
11 is « 3, 4 , 0.00190)
12 is @ 4 , S, 9.9001)
13is: (C 4, 5 , 90.0800)
14 is : (4, 5, 9.0002)
15 is ¢ (s, 6 , 9.0040)
16 is : (S ., 6, 0.9010)
17 is @ (s, 6 , 0.0080)
18 is : (4, 6 , 9.9200)
15 is : ¢ 3, 6 , ©.0030)
20 is : (2, 6 , 0.0300)
21 is : (6, 7 , 0.6060)
22 is ¢ (6 , 7 , 0.0010)
23is : (6, 7 , 0.9058)
24 is : ¢ 6, 7 , 9.0030)
25 is : (2, 7 , 0.0030)
26 is : (2, 7 , 9.0010)
27is:(©, O, 0.0000)
1 #dyarecords = 42 #predrecord = 184 time = 0.1333
2 #dyarecords = 180 #predrecord = 630 time = 9. 4000
3 #dyarecords = 606 #predrecord = 1624 time = 1.9333
ray = 4 time to compute WW = 9.9833
to run all the trials is = 3.8333

fraction of yes answers is: 9.93333333333333¢-01
sum of the walk weights is: 1.646856378311520-04
average value of the estimator is: 1.63587733578944¢-04

total runping time is = 7.2833

Buomple L

162

"~y

163

e e 8T s Vmmmmma s m el

this is monte2sim.p in mctinn, enter the seed

enter the number of triais fcr sinmple simulations

enter the value of shortest loop allowable in dynemic programming

eater
. lt
iapu

(]

input
first

edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
sdge
edge
sdge

the value of the cutolf

the outpst indicator: @ ~ short, 1 -~ long

the reachibility problem graph
input the number of nodes in the graph
the number of nodes is : 2

aow input
(the last

21

the edges one at
edge is 900

T

is : (1, 2
is @ «(1, 2
is » (1, 2
is (1, 2
is (1, 2
is (', 2
is (1, 2
is (1, 2
is : (1, 2
is (1, 2
is ¢+ 2. 3
is (2, 3
is ¢ « 2, 3
is (2., 3
is (2, 3
is (2., 3
is (2 3
is (2 3
is ¢ (2 3
is ¢ (2 3
is (3 4
is (3 4
is (3 4
is (3 4
is (3 4
is (3 4
is (3 4
is ¢ « 3 4
is ¢ (3 4
is (3 4
is ¢ 4 5
is (4 S
(4 5
P ¢ 4 5
« 4 S
(4 s
(4 5
s (4 5
(4 5
: (4 S
s (S 3
: (S 6
N ¢ 5 6
i
]

R I

PgﬂbFHS@F&D99%9@GNSOGNDQGNDQGHD@GHDQCD@GNDOCMD@GNSQ

B T T RN e e

time as i , j, probability

:

..
e~ S e et e e e e e N et el S e S N e e e e S Nl N N N N e N

edge
edze
edge
edge
edge
edye
adge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edze
edge
edze
edge
edge
edge

:

3

POOOOOODOOCOOOSDOTOPOOTOLROOIS®
g
e = = S N e et e S e N S St et e

GOLEVWEOWE WA AW I WIITIIIIIIIIONANRDNN

g T A S R I SN L 2R Tt A B T A A S

5«nnmuuowunoouu»wcomanwwanmw\bJQ~44~qurquon»mou»mou»aounmcnmuunm

P AU S VO P I B R SRR R A S N I A S S

9.

Q.

9.

0.

9.

Q.

a.

9.

9.
10 , 0.1000
10 , 0.1000
10 , 6.1000
10 , O.10090
10 , 0.1000
10 , 9.1000
10 , 0.:000
10 , 0.1000
10 , 0.1000
10 , 9.1000
11 , 0.1009
10 11 9. 100
19 11 9. 1000
10 i 9. 1009
¢ 11, 0.1202
10 1i 9. 1990
19 11 0. 1000
10 11 , 0.1000
10 11 , 0.1000
10 11 , 9.1000
11 12 , 9.1000

164

165

edge 102 is : (11, 12, 6.1000)

edge 103 is : (11, 12, 90.1096)

edge 104 is : (11, 12, 0.1000)

edge 105 is : ¢ 11, 12, 0.1000)

edge 106 is : ¢ 11, 12, 0.1000)

edge 107 is : (11, 12, 0.1000)

edge 108 is : (11, 12, 9.1000)

edge 109 is : (11, 12, 0.1060)

edge 118 is : (11, 12, 0.1000)

edge 111 is : (9, 0 , 9.0000)

1 = | #dyarecords = 200 #predrecord = 18190 time = 1.7667
#carray = 3 time to compute WW = 1.2500
time to run all the trisls is = 18. 1500

the fraction of yes answers is: 1 . 00000000000000 e -02
the suom of the walk weights is: 1 . 0000BY0B00000Ae + 0O
the average value of the estimator is: 1. 9000000000000 e €12

the total running time is = 21.1667

ExamP{ € 3

166

e ——

this i: monte2sim.p in action, enter the seed

enter the number of trials for simple simulations

enter the value of shortest loop allowable in dynamic progreaming

enter the value of the cutoff

4
input the output indicator: & - short, 1 - long

input the reachibility problem graph

first input the number of nodes in the graph
the number of nodes is :
inpst the edges ona)at a

aow
(the
edge
edge
edge
edge
edge
edge
edge
edge
edge

1 =

#car

time as i , j, probability

1ast edge is 0 O
1 is 3 (1, 2, 0.1000)
2 is : (1, 3, 0.4000)
3is ¢ (1, 4 , 90,1000)
4 is: (3, 2, 0.3000)
Sis: (4, 3, 0.4000)
6is : (2, S, 90.5000)
7 is + (3, 5, 0.20008)
8is: (4, 5, 0.2000)
9is : (0, 8 , 0.0000)
1 #dyarecords = i@ #predrecord = 16 time = 9.9167
ray = 1 time to compute WW = 9.0000
time to run all the trials is = 7.2167
fraction of yes answers is: 7 . 9990000000000 e -0 |

the
the
the

the

e - Ty 9

sum of the walk

weights is:

2. 64400000000000e-9 1

average value of the estimator‘is: 2. 11255600000000¢ -0

total running time is =

Example 1

7.2333

167

168

this is monte2sim.p in metion, enter the seed

753453
enier Lhe number of trials for simple simuolations

¢ i e e b e T e ¥ s

169

enterlthe value of shortest loop allowable in dynamic programming
ent;r the value of the cutoff

inp;t the outpnt indicator: @ - short, 1 - long

input the reachibility prcblem graph

first input the number of nodes in the graph

the number of nodes is : 12

now input the edges one at a time as i , j, probability
(the last edge is 0 0 @)

edge 1 is : (1, 2, 0.1000)

edge 2 is = (1, 3, 0.1000)

edge 3is ¢ (1, 4 , 0.1000)

edge 4 is @ (2, 3, 90.1000)

edge 5 is : (3, 4 , 0.1000)

edge 6 is : (2, 6 , 6.1000)

edge 7 is : (4 , 5, 0.1000)

edge 8 is (6 , 7 , 0.1000)

edge 9 is ¢ (5, 8 , 9.1000)

edge 10 is : (5, 6 , 9.1008)

edge 11 is : (7, 8 , 0.1000)

edge 12 is : (7, 16, 9.1000)

edge 12 is & (S , 9 , 0.10600)

edge 14 is : (1@, 11, 9.1000)

edge 1S is : (9, 11, 6.1000)

edge 16 is : (10, 12, 0.1900)

edge 17 is : (1t , 12, 6.1000)

edge 8 is : (S, 12, 0.1000)

edge 19 is & (9, 0 , 0.9000)

1 = 1 #dynrecords = 30 #predrecord = 51 time = 9.0500
#carray = 1 time to compute WW = 0.0667

time to run all the trials is =

the fraction of yes answers is: 3. SPO0CN0R0000e—0 |
the sum of the walk weights is: 2.98203960000000¢-05
the average value of the estimator is: 2.92239880800000¢-85
the total ruaning time is = 4.3167

-~ !
t)(am’oic S

170

171

this is monte2sim.p in action, enter the seed
ent:r the number of trials for simple simslations
1

enter the value of shortest loop allowable in dysamic programming
enter the value of the cutoff

inwgt the output indicator: © — short, 1 - long

input the reachibility problem graph
first input the number of nodes in the graph

the number of nodes is : 1

now input the edges one at a time as i , j, probability
(the last edge is 909

edge 1 is : (1, 2, 9.1900)

edge 2 is (1, 5, 0.1000)

edge 3is: (2, 5, 9.1000)

edge 4 is : (1., 8 , 0.1000)

edge 5is ¢ (2, 8 , 0.1000)

edge 6 is : (3, 2, 0.1008)

edge 7 is : (4 , 2, 0.1909)

edge 8 is : (4 , 5, 0.1000)

edge 9 is : (s, 6 , 0.1000)

edge 10 is : (5, 10, 0.1000)

edge 11 is : (6 ., 7 , 9.1000)

edge 12 is = (7, 4 , 6.1000)

edge 13 is : (4 , 3, 0.1000)

edge 14 is : (3, 8 , 0.1000)

edge 1§ is : (8 , 9 , 0.1000)

edge 16 is : (9, 7 , 0.1000)

edge 17is : (18, 9, 0.1000)

edge 18 is : (6, 10 , 0.1000)

edge 19is : (106, 11, 0.1008)

edge 29 is : (g, 11, 0.1000)

edge 21 is: (8, 11, 0.1000)

edge 22 is : (0, 9 , 9.0000)

1 = 1 #dynrecords = 36 #predrecord = 96 time = 9.0667
1 = 2 #dynrecords = 93 #predrecord = 215 time = 9.1167
#carray = 1 time to compute WW = 0.1667
time to run all the trials is = 12.0167

the fraction of yes answers is: 9.74000000000000e~01
the sum of the walk weights is: 1.39084889960000¢-92
the average value of the estimator is: 1.35468682821040¢-02

the total ronning time is = 12.3667

Frampk, &

