Processor Design Tradeoffs in VLSI

By

Robert Warren Sherburne, Jr.

B.S. (Worcester Polytechnic Institute) 1978
M.S. (University of California) 1981

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Engineering
in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

..

PROCESSOR DESIGN TRADEOFFS IN VL3I

Robert Warren Sherburne, Jr.

ABSTRACT

As the density of circuit integration is increased, management of complexity
becornes a critical issue in chip design. Fundreds of man-years of design time
are required for complex processors which are presently available on a few
chips. This high cost of manpower and other resources is not acceptable. In
order to address this problem, the Reduced Instruction Set Computer (RISC)
architecture relies on a small set of simple instructions which execute In a regu-
lar manner. This allows a powerful processor to be implemented on a single chip
at a cost of only a few man years. A critical factor behind the success of the
RISC 11 microprocessor is the careful optimization which was performed during
its design. Allocation of the limited chip area and power resources must be
carefully performed to ensure that all processor instructions operate at the
fastest possible speed. A fast implementation alone, however, is not sufﬁcieni;
the designer must also consider overall performance for tyfsical applications in
order to ensure best results. Areas of processor design which are analyzed in
this work include Systern Pipelining, Local Memory TradeofIs, Datapath Timing,
and ALU Design TradeofIs. Pipelining improves performance by increasing the
utilization of the datapath resourﬁes. This gain is diminished, however, by data
and instruction dependencies which require extra cycles of delay during instruc-
tion execution. Also, the larger register file bitcells which are needed in order
to support concurrency in the datapath incur greater delays and reduce system

bandwidth from the expected value. Increased local memory (or register file)

capacity significantly reduces data 1/0 trafiic by keeping needed data frequently
in registers on the chip. Too much local memory, though, can actually reduce
system throughput by increasing the datapath cycle time. Various ALU organi-
zations are available to the designer; here several approaches are investigated
gs to their suitability for VL1 Carry delay as well as power, area, and regularity
issues are examined for ripple, carry-select, and parallel adder designs. First, a
traditional, fixed-gate delay analysis of carry computation is performed over a
range of adder sizes. Next, delays are measured for NMOS implementations util-
izing dynamic logic and bootstrapping techniques. The results differ widely: the
fixed-delay model shows the parallel design to be superior for adders of 16 bitls
and up, while the NMOS analysis showed it to be outperformed by the carry-
select design through 128 bits. Such a result underscores the need to reevalu-
ate design strategies which were traditionally chosen for TTL-based implementa-
tions. Single-chip VLSI implementations impose 2 whole new set of constraints.
It is hoped that this work‘ will bring out the significance of evaluating the design
tradeoffs over the whole spectrum ranging from the selection of a processor

architecture down to the choice of the carry circuitry in the ALU.

In this research | was supported for three years by a General Electric doc-
toral fellowship. The RISC project was supported in part by ARPA Order No. 3803

and monitored by NESC 4N00039-78-G-0013-0004.

Table of Contents

Chapter 1:

INTRODUGCTION .. 1
Chapter 2. |

SYSTEM PIPELINING .o 7
Chapter 3 ,

LOCAL MEMORY TRADEQOTTS .o 19
Chapter 4:

DATAPATH TIMING ..o 34
Chapter &

ALU DESIGN TRADEOFTS .o 45
Chapter 6:

PROCESSOR PERFORMANCE: ..o 63
Chapter 7:

CONCLUSTONS ...oooomiiemsieesimesssssisssssmssmsmamssssassssss s s 78

CHAPTER 1:

INTRODUCTION

In the world of int;egrated circuits a revolution is taking place. Silicon
chips, which only a decade ago contained several transistors or logic gates, now
accommodate up to hundreds of thousands of transistors. Several 32-bit Central
Processing Unit (CPU) implementations, as well as 64 and 256 Kilobit dynamic
Random Access Memories (RAMs), have been produced on a single chip. Higher
levels of integration offer systems which are not only smaller, cheaper, and less
costly to operate than their predecessors: they offer higher performance as
well. By shrinking the circuitry so that it can reside on less than a square cen-
timeter of silicon area, wire delays are reduced dramatically. As a result, the

user obtains higher performance at lower cost.

The rising complexity confronting the designer is a serious concern as dev-
ice capacity on a chip increases. The design of a typical, 32-bit microprocessor
requires 30 or more man-years. If this were performed by a single person, the
fabrication technology will have changed so much that the original assumptions
made regarding chip constraints would be grossly invalid. In order to shorten
the elapsed design time, chips are partitioned into modules, each of which is

constructed by a design team. Each team optimizes its module while conform-

ing to the specifications assigned by the project leader or manager. This divide-
and-conquer approach is the traditional methodology in industry, where early

product release yields a high return on the initial investment.

A disadvantage of the divide-and-conquer strategy is that no design team is
familiar with the chip as a whole. This makes global optimization difficult, if not
impossible. The overall organization of the system anc its microarchitecture
sets a fundamental limit on performance. A poor choice of microarchitecture
will render a design doomed to a short life, if not outright failure, in the market-
place. The microarchitect's responsibility is to address this issue. He must be
familiar with the architecture as well as the constraints of the fabrication tech-
nology. Since the chip constraints are constantly changing, design decisions

must be periodically reevaluated.

Traditional CPU's such as in the IBM 360,370, DEC VAX-11/780, and so forth
consist of several circuit boards, filled with standard Small and Medium-Scale
Integration (SSI and MS1) packages. Performance is limited by the logic delays
and wiring delays associated with the many inter-chip communication paths.
Bipolar chips are normally used in such designs because they offer high tran-
sconductance. This means that a greater output current drive is available,
which is important for reducing wire delays. Increasing the speed of signal pro-
pagation between chips requires more power per chip. Expensive cooling sys-

tems rmust then be added in order to control chip temperature.

In contrast, more recent 32-bit CPU designs have been implemented by
Very Large-Scale Integration (VLSI) on a single chip. As a larger fraction of the
system is placed on a chip, interchip wiring delays are reduced. Interchip
delays are replaced with smaller, on-chip wire delays, increasing system perfor-
mance. A ceiling for maximum transistor count is set by the limited chip area

and power dissipation of the technology. Because Metal-Oxide Semiconductor

(MOS) transistors are smaller and consume less power than their bipolar coun-
terparts, they are more attractive for VLSI. The poor transconductance of the
MOS transistor increases off-chip signal delay, but this is offset by the reduced
number of such delays inherent in higher levels of integration. MOS is presently

the most popular fabrication technology for VLSI systems.

A VLSI processor is expensive to develop. Instead of relying on available
SS1/MSI parts, the designer must perform circuit design. layout, and sirnulation
at the device level. Optimization of one module on the chip aflects the area,
power, and timing available for the other modules. Wiring is costly in terms of
chip resources: a 32-bit bus occupies a large amount of area in the planar lay-
out. The number of Input/Output (I/0) pads is limited by chip periphery. This
complicates testing by restricting access to internal state. Redesign is costly
because new masks and wafers are required, delaying the produc£ several
months. As a consequence, the board-level design is more attractive {or imple-

menting complicated processors.

The high costs associated with a single-chip design are mainly due to com-
plexity in design and testing. These penalties of single-chip implementation, can
be alleviated by simplifying the CPU design. By reducing complexity and inter-
nal state of the machine, it will be simpler to design and test, and will be more

likely to be free of design errors on the first try.

Several NMOS, single-chip VLS] microprocessors have been designed with
this idea in mind. The RISC1[1], RISC 1 [2], and MIFS [3] implementations util-
ize low-level instructions, each of which requires a single machine cycle to exe-
cute. This regular execution timing simplifies the application of pipelining for
high performance while remaining conceptually simple. Less instruction decod-
ing is necessary, allowing small, fast Programmed Logic Arrays (PLAs) or simple

decoders to be used.

This contrasts with commercial single-chip micreprocessors, which dedi-
cate over half the die area to microcode Read-Only Memory (ROM) for instruc-
tion decoding. In the Reduced Instruction Set Computer (RISC) design, area
freed up by the reduced control circuitry is used for an expanded register file.
Depending on the application environment, other functiohs may be incerporated

on chip instead with the freed-up area to improve systemn performance.

In a single-chip design, datapath speed is a limiting factor in system perfor-
mance. The datapath consists of the functional modules which manipulate data
and provide for its temporary storage. Additionally, as its name implies, it
includes the paths over which data may flow between these modules. Datapath
cycle time is determined by delays in the main datapath modules and the com-
munication overhead incurred to and from these modules during the machine
cycle.

In order to minimize the datapath cycle time, the microarchitect deter-
mines what datapath modules are necessary and how they are orchestrated dur-
ing the cycle. First, a functionally partitioned, two-dimensional representation
of data flow is composed. Timing schemes are formulated which maximize con-
currency of data bperations and data flow. Next, the modules are optimally
placed on the chip for minimum cornrnunication path delay and area. Several
iterations may be required in order to stay within the limits of the chip

resources.

This thesis studies fundamental design tradeofls of importance to the
microarchitect of a VLSI processor. All of these tradeoffs are inlerrelated; the
microarchitect must decide which tradeofls to make for best performance
under specified conditions. These conditions include the fabrication technology
and amount of chip resources available, as well as the type of environment for

which the system is designed for.

Pipelining at the system level is investigated in Chapter 2. It presents the
timing of the basic operations to be performed using increasing levels of con-
currency. It is when overall datapath timing and resource allocation are deter-

mined that optirnal topology of information flow must be considered.

Within the datapath itself, the local memory (register file) and ALU delays
limit the speed which may be attained. A larger local memory eflectively
reduces data traffic arising from procedure calls and returns. Datapath
bandwidth, however, is reduced due to the increased register cycle time. A
conflict then exists between the desire for maximum datapath bandwidth, and

the need to reduce data 1/0 overhead.

Since the local memory may occupy a significant portion of the chip, it is
important to ensure that it makes effective use of available resources. Pro-
gramming environments which include many nested procedures benefit
significantly from a multiple-bank local memory scheme. On the other hand,
those with few procedures may suffer from the increased register cycle time. In
addition to the programming environment, the register-bank swapping strategy,
overflow interrupt overhead, and data 1/0 bandwidth affect optimal memory

size. These tradecfls are investigated in Chapter 3.

Datapath bandwidth may be improved by pipelining the read and write
operations of the register file. Different bit cells are required for different levels
of pipelining. In general, the number of wordlines anﬁ bitlines in the cell must
increase with higher concurrency. Register cell design issues relating to data-
path timing are investigated in Chapter 4.

ALU delay can also be improved with increased parallelism. Adder delay
analysis has traditionaily been performed using the notion of fixed gate delay.
This is appropriate for TTL implementations where performance is dominated by

on-chip bufler delay. Such an approach is not suitable for VLSI, where

performance becomes limited by wiring and transistor parasitics. In Chapter S,
relative performance of ripple, partial lookahead, conditional carry, and parallel
adders is analyzed and compared for both the cénstant gate delay model and an
NMOS mmodel which takes into account device parasitics and permits evaluation

of alternative circuit design strategies for increased performance.

Interactions between these areas of design tradeofls are investigated in
Chapter 6. Designing for limited chip area and power resources is also dis-
cussed. Conclusions drawn from these areas of analysis are summarized in

Chapter 7.

References

[1] D.A Patterson, C.H. Sequin: "RISC I: A Reduced Instruction VLSI Computer,”
Proceedings of the 8th Symposium on Computer Architecture, ACM
SIGARCE CAN, pp. 443-457, May 1981.

[2] M.G.H. Katevenis, R.W. Sherburne, D.A. Patterson and C.H. Sequin: "The RISC
I1 Miero-Architecture,” Proceedings of the IFIP TC10/WG10.5 International
Conference on Very Large Scale Integration (VLS1 '83), Trondheim, Norway,
pp. 348-359, August 1983.

[3] J. Eennessy, N. Jouppi. S. Przybylski, C. Rowen, T. Gross: "Design of a Figh
Performance VLS] Processor,” Proceedings of the Third Caltech Conference
on VLSI, Computer Science Press, pp. 33-54, March 1983.

CHAPTER %2:

SYSTEM PIPELINING

The goal of pipelining is to make more effective use of system resources,
and in so doing, increase performance. Greater levels of pipelining lead to
increased concurrency. The execution of one instruction (or microinstruction)
may overlap initiation and completion of several others. This will bt; illustrated
for datapath timing in a later chapter. In this chapter we will take into account

the interaction with external (ofl-chip) memory.

Performance Improvement by Pipelining

Instruction Memory:
1A If 10 b I Instruction Address
Instruction Fetch

Instruction Decode

Phase 1

Execution:
Phase 2 OF | EX] WR p— E Operand Fetch

R-R Execution
Write Result

Phase 3 Data ¥emory:
S F :_':> .
o D AL D Data Store

Data Fetch
Alignment

Figure 1: The Three Phases in Instruction Processing

There are several sequential steps involved in the execution of a single
mermory-te-memory instruction. The first phase of this cycle consists of the
instruction fetch and decode. The next phase encompasses the register-to-
register operation within the CPU, where data modifications are performed. For
data 1/0 (Input/Output) instructions, this cycle consists of address calculations
for LOADs, STOREs, or JUMPs. Finally, there is a third phase for LOAD and STORE
instructions during which they access data memory. Support for sub-word data
(e.g. bytes or half-words) may be included here. These three phases, each sub-

divided into three subphases, utilize different resource groups {Figure 1).

LOAD AeM | T | E D

LOAD BeM 1 {E|D

ADD C+A+B I |E

STORE M+~C I {E D

BRANCH X 1 {E
Time —>

Figure 2: Timing of Sequential Execution

Timing for simple, serial execution is illustrated in Figure 2. Shown are five
instructions, three of which access data memory. This approach makes poor
usage of the rescurces on chip. For example, the ALU is used during less than
half of the phases (one third for data 1/0 instructions). The 1/0 bus is not used

at all during the executicn phase.

Even very simple pipelining can increase performance substantially. A 2-
way pipelined scheme is shown in Figure 3, in which instruction retching over-

laps execution of the previcus instruction. This yields up to twice the bandwidth

LOAD AeM 1 {E|D

LOAD BeM 1 E|D

ADD Ce+A+B 1 E

STORE MeC 1| E|D

BRANCE X 1 E
NOOP 1 |E

Figure 3: Two-Way Pipelined Timing Showing Branch Delay

of the serial scheme. It is assumed that only a single 1/0 operation is permitted
in each phase, thus a wait-state is inserted while data 1/0 takes place. Hence,
performance is 1/0 limited — a single memory access occurs in each phase.‘ This

is the timing scheme of the RISC 1 and RISC 1l microprocessors [1].

In the event of a program branch, the branch address calculation is not
completed until the following' instruction has been fetched. This results in a
delay of one phase before the target address is ready. Inorderto accommodate
this delay, a NOCP (NO OPeration) instruction is inserted after the branch
instruction. This creates overhead for all prcgram branches. This overhead
may be reduced by redefining the branch instruction in such a way that it is
supposed to take effect only efter the subsequent instruction. The code can
then be reordered so that the instruction after the branch performs useful work
prior to the branch occurrence [2]. Otherwise, a wait-state (in the form of a
NOQP) is required. Code reorganization for this “delayed branch” optimization

will be discussed in more detail later in this chapter.

10

LOAD AeM 1 | E \ D

LOAD BeM 1{E |D

NOOP 1 | E

ADD CeA+B 1|E

STORE M«C 1|E|D
BRANCH X 1 | E
NOOP i |E

Figure 4: Three-Way Pipelined Timing Showing Data Delay

The pipelining can be further improved by permitting two memory 1/0
operations per phase, as shown in Figure 4. Multiple 1/0 operations per phase
may, be attained either by multiplexing a single port or by replicating ports. In
this pipelining scheme a new instruction is initiated each phase, and as many as
three instructions may overlap. Unoptimized branch delay remains at one
phase, as in the previous scheme. Fowever, the overlapped data memory access
may now require wait states following LOAD instructions. As indicated in the
figure, the data fetch is not completed prior tc the execution of the following
instruction. If this following instruction utilizes the fetched data as one of its
operands, it must wait one phase. Co.de reorganization for data dependency
optimization is similar to that for delayed branches (to be discussed). At best,

this approach is up to three times faster than that of the sequential approach.

A four-way pipelined timing scheme is detailed in Figure 5. The execution

phase is divided into two sub-phases: E, (register file read, with internal

11

LOAD A«M 1 | £ | E2| D

LOAD BeM I || E| D

NOOP T{£E:|£e

ADD C~A+B 1 |E,|E;

STORE M«C 1 {£,| E.| D
BRANCH X 1| E| £

NOOP I} E\ | £
NOOP 1 B, | Ee

Figure 5: Four-Way Pipelined Timing

forwarding and overlapped write) and Ez (ALU or shifter operation). The ALU
and register file are used in every phase; this allows maximal rescurce usage.
Overhead due to unoptimized data dependencies remains 2 single phase if the
ALU result is directly forwarded to the concurrent read phase of the following
instruction. Unoptimized branch overhead, however, is now two phases per
branch. Two memory accesses per phase must be supported. This requires two
1/0 busses, as in the TMS 320 [3] and the MIPS [4] microprocessors. Addition-
ally, the memory 1/0 cycle is now shortened to match half the execution time,
so faster memory is necessary in order to realize the full gain of this added level

of pipelining.

12

The processor-limited execution time for a given program using the various

pipelining schemes discussed may be given as:

1. Sequential 2N +D

1. 2-Way Pipelined N+D+ ()
1. 3-Way Pipelined N+{(D)+ (I

IV. 4-Way Pipelined -}‘-—[N+ (D) +(2l)]

where N represents the number of coded instructions, with D data accesses and
J jumps. Time is normalized with respect to a single register cycle. Optimizable
overhead (branching, data dependencies) is shown in parentheses. ldeally, the
factor a is 2 for the 4-way scheme, assuming that the factor « represents the
available memory cycle speedup available over the previous schemes. Maximum

performance improvement occurs for a=2.

A comparison of ideal performance (fully optimizable) for these approaches
is shown in Figure 8. Results are normalized with respect to the non-pipelined
(sequential) case: the four-way scheme assumes a=2. Bandwidth reduction
caused by added data 1/0 cycles is shown in the shaded areas on the graph; the
full shaded penalty occurs for the case of all ins'tructions performing data
LOADs. A fraction of this area would then pertain to the actual data 1/0 cost for

a particular program.

13

ws

Maximum Processor Bandwidth
N\
N
NN

Figure 6: Performance Comparison of Pipelined Schemes (for a=2)

(shaded area indicates maximum possible data1/0 overhead)

Optimization of Pipeline Dependencies

ldeal performance 1is proportional to the number of pipelining levels
employed in the system. Eowever, overhead due to data and instruction depen-
dency reduces the efficiency of pipelining. This overhead is most significant for
highly-pipelined machines. Code reorganization at the register-to-register
instruction level may reduce this penalty inherent in pipelined implementations.
The effective use of on-chip local memory also reduces data dependencies, by
reducing data 1/0 traffic. Design tradeofls concerning local memory will be

investigated in a later chapter.

Code is optirnized by reordering so that the required data cor instruction is

available when needed. The optimized jump or load (in the event of a branch

14

slot or data dependency optimization, respectively) is performed earlier than is
needed in a sequentially executing program. Useful work may be done in the
interim if the optimizing compiler can find an instruction to put into the empty
slot. This is the goal of the delayedA jump scherne [2]. This reordering is not
easily done for conditional jumps for ;vhich branch prediction techniques must
be utilized. Data from the VAX-1 1/780 indicate that conditional branches consti-
tute 7% to 17% of the dynamic instruction count [5]. This penalty may be con-
sidered acceptable unless the number of pipelining levels is high. Stack
machines are less flexible in terms of code reorganization; for t.hisAreason only

register-based machines will be considered.

Conditional and unconditional branches, whether absolute or relative, con-
stitute less than 25% of typical programs. Subsequent to optimization, unfilled
branch slots for the MIPS processor vary from 17 to 24% (for a single slot per
branch), and 21% to 50% (for two slots per branch) [8]. Results of this optimiza-
tion vary depending on the programming environment and compiler technology.
The IBM 801 compiler "...is able, generally, to convert about 60% of the branches
in a program into the execute torm."[7]. Figure 7(a) illustrates the effect of
unoptimized branches on overall performance. In (b) this is compared among
the four timing schemes. Fstimated results of optimization are presented in (c).
assuming the worst case MIPS unfilled branch slot incidence mentioned above
(24% and 50%). As expected, the overhead of unfilled branch slots increases with
pipelining. This overhead need not be directly proportional to the number of

branches; the graphindicates an upper bound for convenience of discussion.

Dependencies arising from LOADs and branches are similar, with the excep-
tion that the former refers to data memory, and the latter refers to instruction
memory. Such dependencies are inherently reduced with a register-based

architecture. This is because the frequency of LOADs is reduced by depending

15

A

1
) 11,111
/_I‘L_—'/
02 253

branch incidence

(b) Comparison among pipeline schemes

A
2.0] 2.0
g } 2 slots/branch E
E 15 E 15
= =
e] 8
'.g 1.0 1 sTot/branch = 1.0
2 o
Q L Q
é 0.5 é 0.5
0.0 M ¥ : N 0.0
0x branch {ncidence 25z
(a) Effect of slot overhead
1
1
2.0
g .
g 1 1an
: .
<]
g 1.0
3 1v —_—
%
X 0.5
0.
° o= 25

branch {ncidence

(c) Comparison after optimization

Figure 7: Dependency Overhead and Optimization

mainly on local register storage of operands.

dependenc

LOAD count is typically less than 15

formance overhead of dat

ure 7.

It is expected that optimized data
y overhead will be less than that for branches, since the dynamic
 which is observed for Quicksort [2]. Per-

a dependencies may be determined with the aid of Fig-

Execution time overhead due to dependencies is also accompanied by a

16

corresponding increase in code size due to the NOOP instructions. Dependency
optimization significantly reduces this overhead by replacing NOOPs with useful
instructions. Elimination of remaining NOOPs may be accomplished by encoding

wait states in the instructicns responsible for the dependencies.

LOAD AeM I | E,| Ee D |

LOAD BeM I {E,| £2]|D

BRANCH X | 1| E| Ee

ADD Ce-A+B , 1 |E, Ez\
STORE M«C I E,‘EZXD

Figure 8: Reorganized Code for Four-Way Pipeline

After code reorganization for dependency optimization, the four-way pipe-
lined instruction sequence of Figure 5 appears as shown in Figure 8. This exam-
ple includes a performance improvement of 807% as well as a 37% reduction in
code size.

This code optimization at the level of the machine cycle is important for
highly pipelined machines. Complex instructions cannot be reordered at this
level, and as a result perform poorly. Discussion of this issue for the MULTIPLY

instruction is given in [8).
Pipelining Datapath Modules
Pipelining may also be applied at the submodule level within the datapath.

For example, the ALU and register file may each exploit several levels of con-

currency. Dependencies have been investigated as one side-effect which limits

17

performance of a pipelined system. Additional costs of pipelining are the addi-
tional storage elements and associated clocks needed to hold intermediate
results. A high degree of pipelining entails more circuitry for these functions. A
consequence may be extra delay in the throughput of all instructions. This
delay results from the propagation time through the added storage elements
and data skewing, as well as the required clock setup time for latching the inter-
mediate results. This overhead can be significant in a highly-pipelined module,
such as the parallel adder example in [9). Datapath pipelining will be considered
in more detail in Chapter 4. Typically, pipelining in a datapath module is
employed only to the degree that it helps to alleviate a severe bottleneck in sys-
tem performance. The degree of attainable pipelining is then determined by the
slowest link in the system which cannot be improved; often this is the 1/0 cycle.

The following chapter will address 1/C-limited performance issues.

References

[1] D.T. Fitzpatrick, J.K. Foderaro, M.G.H. Katevenis, H.A. Landman, D.A. Patter-
son, J.B. Peek, Z. Peshkess, C.H. Sequin, RW. Sherburne, K.S. VanDyke:
*VLSI Implementations of a Reduced Instruction Set Computer,” VLS Sys-
tems and Computations, Carnegie-Mellon University Conference, Computer
Science Press, pp. 327-336, October 1981. Also in: "A RISCy Approach to
VLSL,"” VLSI Design, vol. 1I, no. 4. pp. 14-20, 4th qtr. 1981, and Computer
Architecture News (ACM SIGARCE), vol. 10, no. 1, pp. 28-32, March 1982.

[2] D.A. Patterson, C.H. Séequin: “RISC 1: A Reduced Instruction VLSI Computer,”
Proceedings of the Bth Symposium on Computer Architecture, ACM
SIGARCH CAN, pp. 443-457, May 1981.

[3] S. Magar, E. Caudel, A. Leigh: "A Microcomputer with Digital Signal Process-
ing Capability,” International Solid-State Circuits Digest of Technical
Papers, pp. 32-33, February 1882.

[4] J. Hennessy, N. Jouppi, F. Baskett, J. Gill: "MIPS: A VLSI Processor Architec-
ture,” VLSI Systems and Computations, Carnegie-Mellon University Confer-
ence, Computer Science Press, October 1981.

[5] D.W. Clark and H.M. Levy: "Measurement and Analysis of Instruction Use in
the VAX-11/780," Proceedings of the 9th Symposiumn on Computer Architec-
ture, ACM SIGARCH CAN, pp. §-17, March 1982.

(6]

[7]

(8]

)

18

J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross: "Design of a High
Performance VLS! Processor,” Proceedings of the Third Caltech Conference
on VLSI, Computer Science Press, pp. 33-54, March 1983.

G. Radin: "The 801 Minicomputer,” Proceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, ACM
SIGARCH CAN, pp. 39-47, March 1982.

M. E. Hopkins, "Compiling High Level Function on Low Level Machines,”
Proceedings of the International Conference on Computer Design, ICCD '83,
pp. 817-619, Oct.-Nov. 1983.

R.P. Brent and E.T. Kung, "A Regular Layout for Parallel Adders,” IEEE Tran-
sactions on Computers, vol. ¢-31, no. 3, pp. 260-264, March 1982.

19

CHAPTER 3:

T.OCAL MEMORY TRADEOFFS

A fundamental limitation to processor performance is set by the ratio of the
amount of memory traffic and the available 1/0 bandwidth. The bandwidth limit
for a given technology is set by area and power constraints. Only a limited
nurnber of 1/0 pads with their associated driver circuits can be placed on the
chip periphery. Wire bonding technology has not followed in the footsteps of the
shrinking transistor; pad size has remained constant over the years. Power dis-
sipation of 1/0 drivers is determined by a delay-power product, because the ofl-
chip loading is primarily capacitive. Multiplexing the pads for several 1/0 tran-
sactions per cycle requires a faster settling time, and hence greater power dissi-

pation.

Memory traffic consists of two classes of information: instructions and
data. Several options are available for reducing either component. At a high
Jevel, the set of machine instructions may be designed to include powerful con-
structs which are equivalent to many simple instructions. This has been done
traditionally for large mainframe computers. There is much debate, however,
with regard to its use in VLSI implementation. Advocates of the simpler Reduced
Instruction Set Computer (RISC) maintain that, within the constraints of single-
chip implementation, a complex instruction set is a poor use of limited ch&p

resources [1]. Microprocessors to date have devoted the majority of their die

20

area to instruction microcode ROM. RISC implementations utilize this area to
provide more local memory. Use of local memory keeps much of the needed
data local to the processor and allows data traffic to be reduced. A register-
based machine, for example, can store frequently-used operands in a fast,

multiple-port register file.

Register allocation is performed by the compiler and requires no hardware
overhead. It is performed independently for each subroutine, thus procedure
calls require separate register banks or blocks of local memory. Register con-
tents may have to be swapped out of local memory in order to make room for
the next procedure. The 1/0 overhead entailed is costly and may actually
increase data traffic over that required by off-chip operand storage. In order to
overcome this performance degradation, the RISC | microprocessor organizes
its local memory as multiple register banks, with each bank supporting a
different procedure level [1]). In addition, adjacent banks overlap partially in
order to facilitate parameter passing among subroutines. This approacl"l drasti-

cally reduces data 1/0 traffic.

A multiprogramming or multitasking environment puts even more stringent
demands on the performance of local memory. During each context switch a
new register bank must be made available for the next executing program. In
the case of a single register baﬁk. its contents rmust be saved during every con-
text switch. Multiple banks reduce this overhead by allowing context informa-
tion from severali programs to reside on chip. Since multitasking may be inter-
rupt driven, arbitrary switching to any other process must be allowed. This con-
trasts with procedure level changes. where a stack organization will suffice.
Microprecessors implementing context switching support include the Fujitsu

FSSP (4 banks) [2] and the Siemens SAB 80199 (8 banks) [3].

All implementations with multiple register banks for procedure or context

2l

switching support rmust accommodate register overflows. When the number of
banks is exceeded, some swapping to external memory is required in order to
make room on chip. When the capacity of a given bank is exceeded, external

memory storage must be used, to store additional operands.

The alternative to the approach discussed abové is a pure memory-to-
memory architecture. With this scheme all data are stored in external memory,
and no saving or restoring of registers is necessary upon a procedure call or
context switch. On the other hand, all operand manipulations require data load
and store operations to be performed. The above mentioned data 1/0
bottleneck, and the resulting greater latency compared to that of the register
file architecture, may reduce performance. An example of a memory-to-

memory microprocessor is the TMS 9985 [4].

The relative merit of the memory-to-memory approach versus a register-
based machine depends on the programiming environment and memory perfor-
mance. Additional data traflic of the memory architecture mus"c be compared
to that incurred in a register machine when the procedure nesting depth or
number of processes exceed the available number of register banks, as well as

that occurring when capacity of each bank is exceeded.

Clearly, an infinitely large local mermrory is desirable since it can reduce
off-chip data traflic to zero. Thus, the architects would like to have as much on-
chip memory as pessible. However, if the local memory is too large, it will also
be slower, and system performance will be degraded. This chapter analyzes

these tradeoffs.

Local Memory in RISCTI

The RISC 1 is the second in a series of 32-bit, NMOS microprocessors

developed at U.C. Berkeley [5]. The RISC instruction set consists solely of single

register-to-register operations [8]. This simple and regular implementation
reduces control complexity, chip area, and design time, and it simplifies imple-
mentation of pipelined execution [7]. The simple RISC instruction set is an
easier target for highly optimizing compilers than is a complex instruction set
[8]. Proper optimization can also reduce dependency overhead inherent in pipe-
lined implementations [9], thus making more eflective use of the available data-

path bandwidth.

A drawback of such an instruction set is tl;xat it requires higher memory
bandwidth for fetching these instructions. Because the instructions are simpler,
it often requires several of them to synthesize a complex instruction. This
increases overall code size. On the other hand, the RISC microarchitecture’
includes support for subroutine call and return, one of t;he most time-consuming
operations in typical high-level language programs for machines which keep
variables in registers [8). The number of register saves and restores is reduced
by employing a local memory organized as multiple register banks. A new bank
is allocated whenever a procedure is called. The banks represent stack levels,
so that register save or restore need be performed only during stack overflows

or underflows.

RISC 1I includes eight register banks, or windows, one of which is reserved
for interrupt processing. At any one time there are ten registers local to the
present procedure level. Additionally, there are six "high” and six "low” regis-
ters which are shared by adjacent procedure levels; these are used primarily for
passing parameters and results between procedures. Each window swap (for
save or restore) involves sixteen registers: the ten locals and one set of over-
laps. Ten global registers are accessible from any procedure level, thus a total

of 32 registers are addressable from any procedure.

23

Table 1 and Figure 1 show the relative execution time and performance of
two C programs, "Tower of Hanoi” and "Puzzle”, versus the number of windows on
the chip. These results are based on earlier studies of procedure behavior and
register file management overhead for RISC [10,11]. Both benchmarks nest toa
depth of twenty. However, "Tower" has a very high rate of procedure calls and
returns (19%) and thus makes intensive use of the multiple windows. Perfor-
mance improves steadily through the use of, say, seven windows. "Puzzle”, on
the other hand, performs well with only one or two windows; it has only 0.7% calls

and returns.

[WINDOWS 1 2 3 5 7 9 .

TOWER !
19% Dynamic | 7.08 | 3.02 | 252 | 1.38 | 1.10 | 1.02 | 1.00

Call & Return
PUZZLE
0.7% Dynamic | 1.17 1.02 | 1.00 | 1.00 { 1.00 | 1.00 | 1.00}
Call & Return |

TABLE I: Normalized RISC]I Execution Time

(relative to case of infinite windows)

1.7

B

9

5 64

E

g

&

OZ'

2- 123‘57“)'123573
Windows # Windows
TOWER PUZZLE

Figure 1: Normalized Performance of RISCII

24

Typical programs have 2 procedure call or return every twenty instructions,
so the benchmarks shown here represent extremes [12,13]. In consideration of
limited chip resources, a careful analysis of the program environment is desir-
able. If few procedures are used, a smaller local memory allows resources to be

utilized for performance improvement in other areas.

Cost of Fixed-Size Window Swaps

The cost of register window overflow is determined by two factors: thie over-
head of servicing the intérrupt caused by the overflow, and the cost of the actual
data transfer between the register flle and external memory. The RISC Il
microprocessor incurs a penalty of about thirty instructions for the window
overflow/underflow interrupt routine. The single 1/0 bus implementation sup-
ports one memory access per cycle, which means that each load or store for the
window swap takes two cycles. With sixteen registers per window, a total of 32
cycles are required. Although each window swap is costly, overflow/underflow
occurs infrequently if there is a sufficient number of windows on chip. Fowever,
reducing local memory size below a program-dependent limit degrades perfor-
mance significantly due to this high cost of swapping. With fewer windows,

better swap interrupt and 1/0 support is crucial.

Since each swap utilizes the same protocol {sixteen adjacent registers
swapped to/from the current window) better data 1/0 support can be provided.
For example, a single instruction may provide all the necessary information for
multiple register copying. Then it is not necessary to fetch individual Load or
Store instructions for each register transfer. Furthermore, only a starting
address needs to be passed to the memory controller in order to initiate the 18-
word move. Two data words may then be passed on the bus each machine cycle.
Compared to the present scheme, with one data word every two cycles inter-

leaved with instruction fetching, throughput is increased by a factor of four.

25

At compile time, the dynamic procedure nesting profile is not known.
Therefore the compiler cannot a.n‘t.icipate window overflows in a multiple-window
implementation. For this reason, overflows must be detected on chip. It is the
cost of handling this interrupt which accounts for thirty instructions in RISC 1L
For a processor with a single window, the compiler can anticipate the swaps and
_this overhead can be reduced. Every executed call or return requires a save or

restore operation, respectively.

Table 1l presents RISC Il execution time as a function of data 1/0 bandwidth
and local memory size. The cost of each swap includes the thirty cycles for
interrupt overhead, as well as the sixteen data word transfers. Since swap over-

head for "Puzzle" is small, only “Tower” is considered here.

WINDOWS | 1 2 3 5 7 9 e |

One-Half
Data1/0 7.08
Per Cycle

|
|
Single \
|

' 4.51 | 3.95 174 | 119) 105

Data1/0 4,04 3.19 | 1.55 | 1.14 1.03
Per Cycle .
Dual '
Data1/0 052 | 339 | 2.81 | 1.46 1.12 | 1.03 | 1.00
Per Cycle ! ;

Swapping
Interrupt 0.00 | 1.89 | 1.43 | 0.36 0.09 | 0.02 | 0.00
Overhead

TABLE 1I: Execution Time for "Tower"” with Varying Swap Randwidth

(includes interrupt overhead for multiple window cases)

Performance penalty due to interrupt overhead is illustrated by the shaded
area in Figure 2. As before, seven or more windows are desirable for high per-
formance, regardless of the level of data 1/0 support. This is because the inter-
rupt overhead is so high. An exception is the single window case with dual data

1/0 per cycle, which is seen to provide better performance than register files

26

/;)///

Performance
.GN
Il

41 —
=717/ 7,
:///// ///

1 2 3 5 1 9
Windows
Figure 2: Performance with Overhead of RISC Il Swap Interrupt

("Tower” Benchmark, half data 1/0 per cycle)

with two or three windows. With a large local memory, efficient interrupt sup-
port is not so important since few swaps occur. With few windows, though, it can
be crucial. The remainder of this chapter will not consider the interrupt over-
head; it is assumed that the area freed by reducing local memory size may be
dedicated toward better interrupt support, and that overall swapping cost is

dominated by the register traflic.

Improved Swapping Stralegies

Thus far, we have only considered fixed-size window swaps for which all
registers are transferred to/from memory. This scheme is attractive due to its
simplicity and ease in providing higher swap bandwidth. However, such a
scheme swaps all registers in the window, whether they were used or not. A
study of several C programs has determined that on the average only four regis-
ters are used per procedure in RISC [10]. Therefore, the fixed-swap scheme per-

forms four times the number of necessary save and restore data transfers.

27

Register Usage Record

In order to keep track of the registers actually used, a “dirty bit" may be
employed. During each register write, a bit is set to indicate a register that
needs to be saved when the window gets swapped. Swaps thus vary in length,
depending on the number of bits set. The increased hardware complexity neces-

sary to support such an approach, however, is undesirable.

An alternative is to utilize a single-word register usage mask for each win-
dow. Each bit which is set in the mask indicates usage of a specific register. A
stack of such masks must be maintained on-chip for resident windows. During a
window overflow, the appropriate mask is stored with the window contents. Addi-
tional logic is required in order to encode and decode the mask and provide for

a mask stack.

A single window implementation does not require this hardware. The com-
piler can insert code before each call in order to save the registers used in the
current window. Restoring registers after a return can be done on demand by
the compiler. Since not all registers may need to be restored, further reduction
in 1/0 is anticipated.

Save overhead may also be eliminated by performing a data memory write
in parallel with all register file writes. This "store-through” scheme requires a
dual-bus microarchitecture which can fetch an instruction and perform a data
access in each cycle, such as the TMS 320 [14] or MIPS [15] microprocessors.

Overall, swap overhead may then be reduced by more than a factor of eight.
Variable Window Size

Although we have described alternative strategies for local memory

management, we have not yet addressed effective use of the on-chip memory

28

area. The above schemes reduce data traffic and off-chip register save space by
a factor of four, but on-chip memory still attains only 25% utilization. If the

register file windows can vary in size, such a waste of resources can be avoided.

For a variable-size window scheme, "bank| and “window" no longer need to
be synonymous. The register file may be divided into fixed-size banks for regu-
lar and efficient swapping. Several procedures may reside within a single bank
of, say, 18 or 32 registers; they may also span bank boundaries. This scheme
requires- additional hardware, in the form of pointers for each procedure
domain, and an adder to calculale the physical addresses of the registers.

Further details of veriable-size window schemes may be found in [1]

WINDOWS 1 2 3 5 7 9 o |
Full-Bank |
Register 404 | 2.01 | 1.76 | 1.19 | 1.05 | 1.01 1.00

Swaps
Partial P ' l
Register 176 | 1.25 ! 1,19 | 1.05 | 1..01 | 1.00 1.00!
Swaps
Partial
Swaps with 1.38 | 1.13 | 1.10 | 1.03 | 1.00 1.00 | 1.00
Store-Through

Variable Size
with Full- 2.01 | 1.21 | 1.08 - - - 1.00

Bank Swaps

TABLE 1II: Execution Time for "Tower"” with various Swap Schemes

(one data 1/0 per cycle assumned for all cases)

Performance comparison of these schemes is presented in Table IIL All
cases assume single data 1/0 per cycle and four registers per procedure. Inter-
rupt overhead, which occurs for the multiple window and variable size schemes,
is not included here. The variable window scheme is assumed to utilize two
equal-size banks, with total register count being the number of windows indi-
cated in the table times sixteen. One of these banks is swapped during an

overflow or underflow. Total number of registers is sixteen times the number of

29

windows indicated in Table III. Significant performance improvement is
observed for implementations with few windows using these alternative swap
schemes. By using more eflicient swapping strategies, high performance may be

attained with less chip area dedicated to local memory.

Register File Delay

Up to this point, only 1/0 limited performance has been discussed. From
the designer's point of view, attention should also be focused on datapath
bandwidth. Especially for RISCs, where each execution cycle consists of a uni-
form register-to-register operation, the datapath cycle time determines max-
imum system performance. The machine cycle of t.he‘RISC 11 consists of a dual-
port register read, followed by an ALU or shift operation; these latter operations
overlap the register write of the previous instruction and bitline precharge of
the next instruction. The machine cycle is then limited directly by the register

file read-write-precharge cycle time.

The register file cycle time increases with local memory size and depends
on several design parameters. Read delay consists of two components: wordline
assertion, and bitline discharge (Figure 3). The wordline, or addressing, delay is
proportional to the gate capacitance loading of the access transistor. This delay
then is linearly proportional to word size. In technologies where the wordline
itself is the dominant resistance in addressing delay, such as with a polysilicon
wordline, this delay follows the square of word length. Periodic buflering of the
address (as for the dynamic ripple carry ALU) is necessary to reduce this delay
to a linear function of word size. Bitline discharge delay increases with the pro-
duct of the resistance of the wordline access transistor and the bitline loading
capacitance. This delay then increases proportionally with memory word capa-

city.

30

_/— Begin Read

Bitline Delay #2

Access FET —__ %
)

L S 3 —e
J i Coitiine Read Sensing

__Do__‘ T
Wordline Delay #1

Register Bitcell T Cuwordiine
7T

Yordline Driver

Figure 3: Register File Read Delay

4
o 4 unoptimized
E
i 2 - optimized
B .
>
3 -
©
o
S
',é 1
z -

P T T T T T T -
1 2 3 4

Normalized capacity

Figure 4: Cycle Delay versus Local Memory Capacity

Total register delay is therefore expected to increase proportionally with

local memory size. However, some optimization is allowed by the wordline

31

access transistor. Reducing its width allows faster addressing at the cost of
increased bitline discharge delay. Optimal performance is attained when both
delays are equal [16]; this implies an access transistor size (and hence register
cycle delay) which is proportional to the square root of the memory capacity.
The write and precharge delays are then affected similarly. As a result, data-
path cycle time increases with the square root of word length or word capacity
of the register file (Figure 4). This effect must be taken into account to obtain a

more realistic performance estimate for various local memory sizes.

WINDOWS R 2 3 5 7 9

Normalized RISC 1l
Register Cycle Time 1.00 | 1.22
(ignoring swaps)

1.41 | 1.73 | 2.00 | 2.24

Full-Bank —é— - o8 | 3.68 | 3.55 | 2.39 | 2.20 | 2.28
Register
Swaps with 1 | 404|245 2.48 | 2.06 | 2.10 | 2.26

Varying Data
1/0 per cycle 2 o852 | 1.84 | 1.95 | 1.90 | 2.05 2.24

Partial -

Register 1.76 | 1.53 | 1.68 | 1.82 | 2.02 2.25
Swaps ,

Partial

Swap with 138 | 1.38 | 1.55 { 1.78 | 2.01 2.24

Store-Through 1

Variable Size
with Half 2.01 | 1.48 | 1.52 - - -
Bank Swaps

TABLE IV: Datapath Bandwidth Limited Execution Time

(smaller lccal memory is faster; using "Tower” benchmark)

Table IV includes the eflect of variable register cycle delay. The partial
register swap schemes using a single window yield the best performance, only
rivaled by the variable size scheme with its additional hardware complexity. A
single window, fixed-swap implementation with dual data 1/0 per cycle
approaches the performance of the seven window RISC II with half data 1/0 per

cycle. Execution time for "Puzzle”, with little swap overhead, follows the

32

register cycle time dependence with memory size; it executes nearly twice as
fast with one window as it does with seven. Inclusion of register file delay then
has a major impact on the relative merits of the swapping schemes. Of course,
the smaller local memory implementations have higher datapath bandwidth, so
a similarly faster external memory is required in order to realize this perfor-
mance. Local memory size is traded off against memory bandwidth require-

ments.

Chip design tradeofls in VLS] must be made using both architectural and
circuit design considerations. One measure of the cost of local memory,
increased delay, yields two minimum execution time solutions: 1/0 limited, and
datapath bandwidth limited. Because of the limited number of pads that can be
placed on a chip, memory 1/0 is a severe bottleneck in system performance.
For this reason, a large local memory was chosen for RISC 1l. Presently, memory
speed is increasing, making datapath bandwidth a more critical limit to system
performance. In the future, increased chip resources will make possible a
greater local memory hierarchy [17]; 1/0 bandwidth may then be replaced by

datapath bandwidth as the primary factor limiting system performance.

. References

[1] M.G.H. Katevenis: "Reduced Instruction Set Computer Architectures for
VLS1," Doctoral Dissertation, Computer Science Division, University of Cali-
fornia, Berkeley, 1983.

[2] N. Inui, H. Kikuchi, T. Sakai: "16-bit C-MOS Processor Packs in Hardware for
Business Computers,"” Electronics, pp. 182-186, June 16, 1981.

[3] J. Gosch: "Microprocessor does Multitasking in Real Time,” Electronics, pp.
71-71, Nov. 3, 1882.

[4] J. Schabowski: "Tough Control Tasks Take 16 Bits,” Electronics, pp. 91-94,
Dec. 18, 1880.

[5] M.G.E. Katevenis, RW. Sherburne, D.A. Patterson, C.H. Séquin: "The RISC II
Micro-Architecture,” Proceedings of the IFIP TC10/%G10.5 International

33

Conference on Very lLarge Scale Integration (VLSI '83), Trondheim, Norway,
pp. 349-359, August 1983.

[8] D.A. Patterson, C.H. Sequin: "A VLSI RISC,” IEEE Computer, vol. 15, no. S, pp.
B-21, September 1882.

[7] J. D. Wright: "Relation of Microcode to Future Machine Design,” COMPCON
Digest of Papers, pp- 104-106, March 1883.

[8] G. Radin: "The 801 Minicomputer,” Proceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, ACM
SIGARCH CAN, pp. 36-47, March 1982.

[9] T. Gross: "Code Optimization Techniques for Pipelined Architectures,”
COMPCON Digest of Papers, pp. 278-285, March 1983.

[10] D. Halbert, P. Kessler: "Windows of Overlapping Register Frames,” CS 292R
Final Class Report, Computer Science Division, University of California,
Berkeley, Spring 1880.

[11] Y. Tamir, C.H. Sequin: “Strategies for Managing the Register File in RISC,”
IEEE Transactions on Computers, vol. ¢-32, no. 11, November 1983.

[12] D.R Ditzel, E.R. McLellan: "Register Allocation fer Free: The C Machine
Stack Cache,” Proceedings, Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, Palo Alto, pp. 48-56, March
1982. (ACM: SIGARCE CAN vol. 10, no. 2, SIGPLAN Notices vol. 17, no. 4)

[13] D.W. Clark, E.M. Levy: Measurement and Analysis of Instruction Use in the
VAX-11/780," Proceedings, Symposium on Architectural Support for Pro-
gramming lLanguages and Operating Systems, Palo Alto, pp. 9-17, March
1982.

[14] S. Magar, E. Caudel, A. Leigh: A Microcomputer with Digital Signal Process-
ing Capability,” Proceedings of the International Solid-State Circuits Confer-
ence, pp. 32-33, February 1982.

[15] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross: "Design of a High
Performance VLSI Processor,” Proceedings of the Third Caltech Conference
on VLSI, Computer Science Press, pp- 33-54, March 1983.

[16] A.M. Mohsen, C.A. Mead: "Delay-Time Optimization for Driving and Sensing of
Signals on High-Capacitance Paths of VLSI Systerns,” IEEE Jjournal of Solid-
State Circuits, vol. sc-14, no. 2, pp. 231-239, April 1879.

[17] D.A. Patterson, C.H. Sequin: "Design Considerations for Single-Chip Comput-
ers of the Future,” IEEE Journal of Solid-State Circuits, vol. sc-15, no. 1, pp-
44-52, February 1980,

CHAPTER 4:

DATAPATH TIMING

A critical issue for register-to-register machines is the register file organi-
sation and timing. A variety of bitline and wordline configurations yields a wide
range of datapath bandwidth. The microarchitect must determine what silicon
resources are required for each approach and study the tradeofls between the
various timing schemes. The purpose here is to review a variety of possible
datapath timing schemes in order to develop an intuitive understanding cf the

tradeofls involved.

Various datapath designs are compared here in terms of the speed at which
register-to-register (R-R) operations can be executed. This determines the per-
formance limit of simple, register-oriented machines, such as the RISC I [1],
MIPS [2], and the 801 [3]. Regular instruction cycle timing yields simple, regu-
lar implementation of the control circuitry. Regularity of instruction execution

permits pipelining without requiring complicated hardware pipeline interlocks.

The benefits of instruction pipelining may also be exploited by a micro-
coded machine. Pipelining favors the use of regular, register-to-register
microoperzations, rather than the use of irregular, but fast, microcoded imple-
mentation of the relatively few dynamically executed, compiled complex

instructions [4].

35

When viewed from the datapath, the actual instruction coding is not visible.
Therefore no assumptions regarding the machine's instruction set are made in
this chapter. Instruction coding is a higher level issue, for which tradeofls can

be assessed once a programming environment has been chosen.

For simplicity, overhead of 1/0 will be ignored. Performance limits due to
off-chip communication were considered in the previous chapter. Program
counter logic will not be considered explicitly: it may be encompassed for our
purposes within the domain of the addressable register file. Therefore, ideal
system speed, to be discussed in this chapter, is determined directly by the

datapath bandwidth.

BUS A

(READ)
REGISTER FILE >-

BUS B

4

<>

- i R e
MmO IXTOMX o

(READ)
BUS C

il

(WRITE)

REGISTER READ ALU OPERATION REGISTER WRITE BITLINE RESTORE

Figure 1: Register-to-Register Timing Example

The fundamental datapath operations to be performed during each
register-to-register cycle are shown in Figure 1. They include reading two
operands from the register file, performing an ALU or shifter operation, and

writing the result back into the register file. In NMOS implementations, the read

36

bitlines must be restored to a logic "1" prior to reading. This is necessary if the
read bitline is dynamically precharged, and/or the bitline is used for both read-
ing and writing through the same register cell port. This is to ensure the read
value is valid, and that the read operation does not accidentally uwrite into the

cell.

A critical, limiting factor in determining allowable concurrency is the regis-
ter file organization: three of the four basic operations concern it. Various bit-
line (bus) and wordline (addressing) organizations will be considered in discuss-
ing timing schemes which exploit greater levels of concurrency than the sequen-

tial example above.

Shared Bitline Register Files

READ -
RIW ”
SEARED I<— > DEDICATED VRITE
BITLINE CELL BITLINE CELL
R/W
. > READ
>

Figure 2: Shared and Dedicated Bitline 2-Port Cells

Of fundamental importance in determining allowable concurrency within a
register file read-write cycle is the bitline arrangement. A shared bitline organi-
zation utilizes the same bitlines for both reading and writing. A dedicated bitline
approach utilizes separate bitlines for reading and writing, allowing some over-
lap of these operations (Figure 2). Advantages of the shared bitline design
include its economy of area, due to fewer bitlines and fewer transistors. This
cell may also be faster, since its smaller size reduces loading on the wordlines.

This helps make up for the reduced level of concurrency attainable with fewer

37
bitlines. Overall system timing for the chared bitline approach is identical to

that in Figure 1.

‘ Sel A bithwe A I Write Read A

< L}L‘-‘ 3 «* -A_]“—,‘
—— . T T,

lfbaﬁimB sdal -) R:.Guhl lesl ,

stati
(2) ¢ I Waite A Read A

er-‘a.____Do__r—U
T,

ikﬁuﬂn &uabl

] (b) pseudostatic

5

5

(c) with dual-port write

Figure 3: Shared Bitline Register Cells

Another design choice exists for the shared bitline cell, leading to two
different structures. One may use shared (Figure 3(2)) or dedicated (Figure
3(b)) wordlines for the read and write operations. In the first case there is one
set of wordlines, to be used for both reading and writing to common ports; writ-
ing is usually performed via complementary signals driving two ports. Thisis a
derivation of typical commercial Random Access Memory (RAM) designs. The
shared wordline approach leads to a fast and compact cell. Such a static design
has been implemented in the RISC 11, which requires a large, dual-port register

file [5]; its symmetry was crucial in attaining a compact layout.

Care must be taken to ensure that reading onto a precharged bus will not

a8

change the state of the shared wordline cell. As shown in Figure 3(a), each bit
cell inverter may be considered to be transformable into a 2-input NOR gate by
the ad;iition of the wordline transistor. If the bus is initially discharged to
l‘ ground, wordline access will behave as a NOR input and set the cell state (write).
If the bus is precharged prior to accessing, reading will cause either no change
(if both sides of the wordline FET are high), or bus discharge will occur (cell
node grounded). The wordline transistor in this latter case acts as a voltage
divider. A narrow transistor will have a greater voltage drop across it during
discharging, allowing the cell state to be maintained. A wide transistor will
reduce the ;/oltage drop, allowing the high logic level of the bus to change the
cell state. This reod disturb problem then constrains the size of the wordline

transistors, limiting speed of bitline discharge during reading.

Dedicated wordlines form separate ports for reading and writing. A pseu-
dostatic design, as shown in Figure 3(b), allows temporary breaking of the feed-
back loop (by the refresh FET). This allows single-port writing (with no wordline
FET voltage drop) and eliminates read disturb by breaking the feedback loop.
The wordline transistor size is not constrained as before. In the case of a dual-
port pseudostatic cell with two pairs of wordlines, two locations in the register
file may be written simultaneously {Figure 3(c)). This scheme was chosen for
the Caltech OM-2 [6], as well as the HP FCCUS chip [7). In order to maintain
data integrity, the refresh transistor must be clocked periodically. This is usu-

ally done every cycle, during the bitline restore phase.

A disadvantage of this design is its asymmetry, due to the refresh transistor
and the single inverter drive for reading. The first inverter is not used for read-
ing because its gate can only be charged to VDD-VT by the enhancement pass
transistors. Overall cycle time then must include the worst case delay of

discharging both bitlines.

39

REGISTER READ DELAYED WRITE BITLINE RESTORE

ALU OPERATION

Figure 4: Timing of Delayed Write Scheme

In order to reduce the datapath cycle from four phases to three, the RISC 11
increased the level of pipelining and incorporated a delayed write scheme [8].
In effect, writing is delayed to overlap the ALU computation of the following
instruction. This added level of pipelining is helpful as it allows greater time for
interrupts to be detected without destroying the contents of the register file.
Also, if the ALU delay is significant, it may overlap both the register write and

bitline restore phases (Figure 4).

esisT [DEPENDENCY
STER ADDRESSES DETECTION
A ’
E A ﬁ
S T T
if“tj C
L H
T r
SHARED BUS
REGISTER FILE J

Figure 5: Delayed Write with Internal Forwarding

40

Some performance degradation might result from this scheme due to daia
dependzncies. The result of a cofnputation is not available in the register file for
the read phase of the following instruction. This is a conseguence of this pipe-
lined implementation with the delayed write. The problem was solved in the
case of RISC 1l by detecting data dependencies and forwarding the data through
a temporary register to the ALU or shifter. This internal forwarding, or chain-
ing technique allows the data in this register to override the result of the regis-
ter file read (Figure 5). This technique is transparent to the programmer or
compiler writer. Such an approach is routinely used to increase performance of

highly-pipelined computers, such as the CRAY L

Dedicated Bitline Register Files

ReadD Read A wrike Read A
bitfine B bitline A bitlinel bk A

—

pittre C bitline D Pefresh bifine B
o —_ b——__—0
e e | Reudd T

(a) Static Dedicated Bitline Cell (b) Pseudostatic Dedicated Bitline tell

Figure 6: Dedicated Bitline Cells

As previously mentioned, the dedicated bitline design utilizes separate bit-
lines for reading and writing. Implicitly, this requires separate wordlines as well
to guarantee independence of read and write operations (see Figure 6). This
structure supports a higher level of concurrency and therefore may be desirable

fcr a high-speed datapath. Restoring of the bitline may overlap the writing of the

41

REGISTER READ ALU OPERATION WRITE

BITLINE RESTORE

Figure 7: Timing of Dedicated Bitline Datapath

cell since it uses separate control and data lines. This makes possible the
three-phase timing of Figure 7. Such an approach has been used in the RISC I
[8] and the Matsushita MN1613 [9]. This scheme, however, will be slower than
the previous approach (shared bitline with delayed writing) if the ALU delay is
greater than that of the bitline restore. This, in conjunction with the cell area
difference, makes the three-phase dedicated bitline scheme discussed here

undesirable for large register files.

REGISTER READ ALU OPERATICN

REGISTER WRITE

BITLINE RESTORE

Figure 8: Timing of Dedicated Bitline with Delayed Write

In order to increase the concurrency, the delayed-write scheme may be
used. Timing of the ALU operation, register write, and the bitline restore all
overlap (Figure 8). Internal forwarding logic is necessary to eliminate data
dependency problems as before. Forwarding is performed in parallel with the

register write.

42

REGISTER READ | ALU OPERATION

REGISTER WRITE | BITLINE RESTORE

Figure 9: Overlapped Read/Write Scheme Timing

Alternatively, the read and write operations may be overlapped, as shown in
Figure 9. Dependency detection logic is again required, and internal forwarding

is performed in parallel with the register write.

BITLINE
RESTORE

REGISTER READ

REGISTER WRITE

ALU OPERATION

Figure 10: Delayed Write with Overlapped Read Timing

For even higher performance, two sets of data dependency logic are
required. The first forwards the result of an ALU or shift operation to the data
read register of the following instruction. The second forwards this data, as it is
being written into the register file, to the read register for the instruction after

that. This allows the greatest concurrency, as shown in Figure 10.

In order to combine the register read and bitline restore in a single phase,
the restore must be initiated early enough during the read phase so that it over-

laps the addressing delay. At the time the read wordlines are driven to a logic

43

1" the bitlines must be precharged above the bit cell logic threshold in order
to eliminate writing into the cell Precharge may continue, overlapping wordline
delay so that adequate noise margins are maintained. Alternatively, current
sensing may be used, in which case the bitline voltage remains constant. This

technique has been utilized in MOS ROMs [10]).

System throughput for this single-phase timing scheme may be gquadruple
that of the original four-phase sequential example at the beginning of this
chapter. This performance increase is achieved by maximizing module usage in

each phase, in tune with effective chip resource utilization.

The treatment of datapath timing and register file organization has been
very simplistic in this chapter. Since the bit cells must be designea uniquely for
each timing scheme, their area will vary. This has a varying impact on chip
resources and on cycle delay time. A more detailed analysis is thus required for
the selection of an optimal register cell and timing scheme. This will be dis-

cussed in more detail in Chapter 6.

References

[1] D.A Patterson, C.H. Séquin: "RISC 1: A Reduced Instruction VLSI Computer,”
Proceedings of the B8th Symposium on Computer Architecture, ACM
SIGARCH CAN, pp. 443-457, May 1981.

(2] J. Eennessy, N. Jouppi, F. Baskett, J. Gill: "MIPS: A VLS] Processor Architec-
ture,” VLSI Systems and Computations, Carnegie-Mellon University Confer-
ence, Computer Science Press, October 1981.

[3] G. Radin: "The 801 Minicomputer,” Proceedings of the Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, ACM
SIGARCH CAN, pp. 39-47, March 1982.

[4] J. D. Wright: "Relation of Microcode to Future Machine Design.” COMPCON
Digest of Papers, pp. 104-1086, March 1883.

[5] RW. Sherburne, M.G.H. Katevenis, D.A. Patterson, C.H. Sequin: "Datapath
Design for RISC,” Proceedings of the Conference on Advanced Research in

(6]

(7]

(8]

[e]

VLSI, Massachusetts Institute of Technology. pp. 53-62, January 1882.

C.A. Mead, L.A. Conway: Introduction to VLSI Systems, Addison Wesley Pub-
lishing Co., 1280. .

J. Beyers, L. Dohse, J. Fucetola, R. Kochis, C. Lob, G. Taylor, E. Zeller: "A 32-
Bit VLSI CPU Chip,” IEEE Journal of Solid-State Circuits, vol. sc-16, no. 5, pp.
537-541, October 1981

D.T. Fitzpatrick, J.K. Foderaro, M.G.H. Katevenis, E.A. Landman, D.A. Patter-
son, 1.B. Peek, Z. Peshkess, C.H. Sequin, R.W. Sherburne, K.S. VanDyke:
"VLSI Implementations of a Reduced Instruction Set Computer,” VLSI Sys-
tems and Computations, Carnegie-Mellon University Confei ence, Computer
Science Press, pp. 327-336, October 18981. Also in: "A RISCy Approach to
VLSI,” VLSI Design, vol. 1, no. 4, pp. 14-20, 4th qtr. 1981, and Computer
Architecture News (ACM SIGARCH), vol. 10, no. 1, pp. 28-32, March 1882.

H. Kadota, S. Ozawa, K. Kawakami: "A New Register File Structure for the
High-Speed Microprocessor,” IEEE Journal of Solid State Circuits, vol. sc-17,
no.5, pp. 892-897, October 1982. .

[10] J. Wong, P. Siu, M. Ebel: "A 45ns Fully-Static 16K MOS ROM,” Proceedings of

the International Solid-State Circuits Conference, pp. 150-151, February
1981.

CHAPTER o:

ALU DESIGN TRADEOFFS

Traditionally, evaluation of different adder schemes has been carried out
with the assumption of a fixed gate delay. Such a straightforward comparison-is
permitted by low levels of integration, using SSI parts. These parts are designed
to accommodate a wide range of capacitance loading due to ofi-chip wiring. As a
result, delay exhibits little dependence on the loading capacitance typically
encountered [1]. The designer calculates circuit delay by simply determining

the number of gates in the critical path.

The custom nature of VLS], on the other hand, gives the designer more free-
dom to optimize performance. Dynamic logic and bootstrapping technigues can
be used to increase performance. Under this variety of approaches, gate delays
can no longer be considered constant. Comparison of adder performance based

on the fixed delay model is inadequate for VLSI implementation.

This chapter will begin with a review of adder design strategies. Initially a
gate-level view will be used in order to simplify understanding. It is also directly
applicable to fixed gate delay analysis. This will be followed by a discussion of
design in NMOS using dynarmic logic and bootstrapping. Finally, different carry

schemes will be evaluated for both the fixed delay and NMOS implementations.

Adder Design at the Gate Level

An example of a single-bit cell of a full adder is shown in Figure 1. Three

delays exist: input translation, carry calculation, and sum generation. The

46

translation and sum delays are constant; they each consist of a single gate
delay. The carry delay, however, is cumulative since its calculation is dependent
on the result from the previous bit cell. The carry output of the most significant
bit is thus dependent on all the previous stages. Overall carry delay will vary
with the method used for its calculation, as well as with the number of bits N.

For this reason we will focus on the circuitry that calculates the carry.

Figure 1: Full Adder Cell

Ripple Carry

The simplest adder scheme utilizes a ripple carry as shown in Figures 1 and
2 For an N-bit adder, the carry propagates, or ripples, across N stages. Each
stage consists of 2 gate delays, so the total carry delay for an N-bit adder is 2N,
Advantages of this design include minimal gate count, as well as regularity and

short wire length for implementation in VLSL

The ripple carry approach is used for small word sizes or in applications
where speed is not critical. An 8-bit ripple adder was chosen for the Intel 8080
&bit micropro.cessor because the regular, compact layout had less parasitics

and was actually faster than a lockahead approach [2]. The Motorola 88000 used

47

P —-_) ’ w
G __1 P
! r—_——}
A Catt S
P —
’ f d
' Cout
4 Col (11

Figure 2: Ripple Adder Scheme (2 bits shown)

a 16-bit ripple adder because it was found to be faster than a lookahead adder
with the same amount of power dissipation [3]. Ripple adders were also used for
the 16-bit Caltech OM-2 [4] and the 32-bit RISC 11 [5] implementations, mainly

because of their small chip area and short layout time.

Methods of reducing ripple carry delay are presented in [2). Using an
increased fan-in of 4, the delay can be reduced to an average of 4 gate levels for
each 3 bit group by propagating multiple intermediate carry terms between
each stage. However, many more gates and wires are required, and the overall
structure is much less regular than that of Figure 2. For these reasons, such an

approach will not be investigated further.

Carry-Select

A carry-select (or conditional carry) adder is shown in Figure 3. The carry
output of the first M-bit ripple adder is used to select the proper output of the

next pair of ripple adders, each with complementary carry inputs. All ripple

adders operate at the same time, so overall delay consists of an M-bit ripple add

48

C'm
2
o -
B g
A —— % 23 £
N 2M z 2 M
s = g
= 2 S r
§ Caut -é
E l J, S N
2 £
G a
——> |
B 7 £
Vc.d!. YCok

Cost

Figure 3: Carry-Select Adder

followed by a cascade of multiplexors. Carry delay goes as (M + g’—) so there

exists an optimal M yielding a lower bound in time. This choice of M for highest
performance is VN, assuming bit delay is equal to multiplex delay.

The carry select adder is fully modular. Layout may be done with a few
basic cells. No irregular wiring is required among the modules. This is impor-
tant in reducing the design time, layout area, and the probability of design
errors in the random wiring. Gate count (and therefore power and area) for

carry calculation is nearly twice that of the ripple carry approach.

49

v

i
/
/%‘//
& v
PRODUCT TERMS

\ AP'

Node Detail

Figure 4: Parallel Adder (8 bits shown)

A full-lookahead (or parallel) adder performs calculation of all P and G pro-
duct terms. Figure 4 details the organization of an 8-bit parallel adder as well as
the design of the individual circuit modules. The overall delay for an N-bit paral-
lel adder goes as logy; N assuming a gate fan-in of f. This logy behavior is impor-
tant in reducing carry delay for large adders. Parallel adders have been imple-
mented in the EP Focus [6], MIPS [7] and Xerox Dragon [8] 32-bit microproces-

SOrs.

Such an approach requires nearly four times the gate count of the ripple

80

scheme for carry calculation. The associated increase in power consumption
and irregular wiring makes this design much more costly for VLS! implementa-
tion than the previous ones. A frequently used compromise is to do a partial
carry lookahead, trading off gate and power requirements against carry delay.
In this approach, lookahead is performed in M-bit groups, the results of which
are input to M-bit ripple adders as in the carry-select scheme. Results of this
partial lookahead are pertial products which are input tc ripple carry adders.
The Bellmac-32 [9] and the RISC] [10] 32-bit implementations, as well as a pro-
totype design by Siemens [11] utilize partial carry lookahead adders with M=4.
Another example is the partial carry lookahead adder using MSI parts shown in
TI's TTL Data Book [1]. A regular layout for lookahead computation is discussed

in [12].

Adder Designs in NMOS

So far our model assumed fixed delay and power per gate. In NMOS the high
transistor impedance and the variety of static and dynamic circuit implementa-
tions reduces the validity of such an analysis. Dynamic logic requires no static
power consumption. Operation is performed in two-phases: first the output
nodes are dynamically precharged, then they are selectively discharged. This
selective discharge of precharged nodes without static pullups requires no ratio-
ing of the transistors as for static logic. This allows transistors driving critical

paths to be freely increased in size, to attain desired speed.

The equivalent gate model for a precharged ripple carry chain is shown in
Figure 5(a). This is similar to the ripple logic in Figure 2. The NMOS dynamic
ripple circuitry is given in Figure 5(b). During ¢, the output logic levels are
precharged. At this time the carry input is not allowed to discharge the chain.
On g, the carry input is enabled to propagate ;long the ripple stages by selec-

tive discharge. The G terms are also enabled to discharge the carry line.

(a) equivalent gate model

& -
QIRT,

— @13

@ir+6-Q2

(c) bootstrapped dynamic ripple

citl

31

e

?” ? &5
@6

Ci+l
(b) standard dynamicripple

@ T 1

@2 | L
Qup I
Qu J1

(d) clock timing

Figure 5: Dynamic Ripple Carry Circuitry

Sensing of the carry bit is performed by a static inverter; its output drives the

sum logic.

A modified ripple stage is shown in Figure 5(c). It utilizes bootstrap capaci-

tor Cg to increase conductance of the pass transistor 7.

The first clock phase

¢, is divided into two sub-phases ¢1a and g1 aS shown in 5(d). During the first

sub-phase, the entire carry line is discharged to ground. At this time the

bootstrap capacitor Cg is precharge

place, raising the pass transistor gate to 7 or 8 volts.

d. During ¢is the bootstrapping takes

This results in charge

being coupled onto the carry line. Since it was initially discharged, this coupling

does not cause it to overshoot the supply voltage.

would result in order to discharge the carry line to a logic "0,

Ctherwise, increased delay

By the end of

52

¢1b the carry line is precharged; operation then proceeds with ¢z as for the
previous example. Use of this bootstrapping technique allows for higher perfor-

mance of a long ripple chain.
1 1 L 1 L
™ et S| i
L =L L =L L
F X F F +

L
4

v

S
I

FWLWLWLMJ_WL
r ¥ I + 4

Figure 6: Transmission Line Equivalent of Carry Chain

A long dynamic carry chain will have many pass transistors in series. As a
result, carry propagation across N bits will be quite slow. Behavior of such a
carry chain is equivalent to that of a transmiésion line (Figure 8). Assuming that
the pass transistors are of minimum channel length and large enough to dom-
inate carry line parasitics, the transmission line delay becomes independent of
transistor width. This is because any change in channel conductance (propor-
tional to width) is accompanied by a propertional change in gate capacitance.

The overall RC product remains constant for a particular technology.

"_’J—_‘—a A—%ST'J:S’A& Do—‘f

Figure 7: Carry Chain Buffering (precharge devices not shown)

53

One way of overcoming this long carry chain delay is to periodically buffer
the carry line (Figure 7). This is equivalent to the use of repeaters on lossy
transmission lines. Overall delay for long chains then becomes a linear function
of carry chain length, rather than a square function as would be the case

without the bufiers.

8+
T4
é -
=
E 5
-
f;_ q- ' standard
-9
5o
g ‘/g
2- L5 e
(bootstrapped

¢ 4 1 114

o
o

T3 § 4 3

bits between buffers
Figure 8: Buffered Carry Chain Cptimization

Results of an analysis to determine optimal length of chain sections
between buffers are shown in Figure B. Data are based on SPICE simulation
results using the device parameters in Table 1. The ratio of parasitic to gate
capacitance was 1:4. For the standard ripple carry design, four bits are optimal.
This value was implemented in the Caltech OM-2 and the RISC 1. The
bootstrapped approach yields higher performance through eight bits, at which

point only half the number of buffers are required.

54

A 2.0 um Capacitances:

Transistors: metal 0.14 fF/»®
Vero 09 V diffusion bulk 0.3 fF /a2
Voro =32 V diffusion side-wall 0.3 fF/x
Vop 50 V poly over field 0.2 fF/a2
VBB -2.0 Vv gate 1.6 fF/Az
v 0.75 vV gate-src overlap 0.5 fF/a
k' 20.7 uA/ W Resistances:

800 cm? V'sec | polysilicon 50 Q=

min. electr. 4.0 diffusion 10 Qs
channel L : i)

TABLE I: NMOS Device Parameters (worst-case speed)

4781 with buffera
0* -
T R
a ¢ standard chain
L d
B < standard chain buffered every 4 bits
a - A bootstrapped chain
L)
- ¥ bootstrapped chain buffered every 8 bits
S
2 8+
l'
z v k] L U R
§ 8 ae 2 Lt
bits

Figure 9: Comparison of Ripple Delays

A comparison of ripple carry delays with and without buffering is presented
in Figure 9. Because of the added delay incurred by stalic buffers, the

unbuffered designs are fastest for small adders. In the graph, 2 16-bit adder is

85

shown to be fastest with no buffering at all. Larger chains, though, may benefit
significantly from puflering; it allows delay dependence on adder size to be
reduced from N2 to N as seen By the reduction in slope on the graph. The effect
of increased parasitics (versus the 1:4 ratio mentioned above) is to make the
overall delay increase much more quickly with chain length, so that buflering is
more attractive for smaller adders. Further analysis is necessary for optimiza-

tion in such a case.

The performance of the carry-select approach using ripple adders can also
be evaluated using the ripple data. Fach multiplex operation requires a single
buffered stage and precharge logic, for which delays may be obtained from Fig-

ure 8.

-
Py Q?"*

>

P R
Aol T

G

Figure 10: Parallel Adder Logic Stages in NMOS

The parallel adder is implemented in alternating precharged and static
logic stages (Figure 10). The logic functions shown are identical to those in Fig-
ure 4. Operation is again two phase: first, precharging of the dynamic gates,

then a selective discharge, driven by the input terms. Because both polarities of

56

the intermediate P and G px;oduct terms are required, fully dynamic logic chains
are not appropriate. Delay of a series of parallel adder stages is similar to that
of ripple carry stages which are buffered every bit, as both consist of a static
and a dynamic gate. The result of the P and G product term calculation for all
bits must then be processed in a final stage to include the carry input. Such
parallel adder logic has been implemented in the MIPS and Xerox Dragon 32-bit

Mmicroprocessors.

Evaluation of Carry Schemes

Some adder strategies for representative microprocessors are summarized
in Table II. It is not clear which design is best for a given datapath size, although
small adders all are of the ripple type. First a comparison using the fixed gate
delay model is performed, as a starting point. This is compared to results of
NMOS implementation using dynamic logic and bootstrapping techniques where
applicable. Although speed will be the main focus of analysis, implications.on

chip area and power will also be discussed.

INTEL 8080 8 Bit Ripple
MOTOROLA 88000 16 Bit Ripple
CALTECH OM-2 16 Bit Ripple
UCBRISCII 32 Bit Ripple
BELLMAC-32 32 Bit Partial Lockahead
UCB RISC1 32 Bit Partial Lookahead
HP FOCUS 32 Bit Parallel
STANFORD MIPS 32 Bit Parallel
XEROX DRAGON 32 Bit Parallel

TABLE 1I: Microprocessor ALU's

57

The fixed gate delay model has been applied to large adders in order to
evaluate performance asymptotically. This is not appropriate for comparing
approaches for microprocessors with adders' of only 32 bits or less. This is too
small for an asymptotic analysis because the constant components of delay can-
not be ignored. The data presented will consider absolute delays for typical ALU

sizes.

Farlier discussion of the parallel adder considered arbitrary gate fan-in. In
TTL, there is little penalty for increased fan-in: most of the delay is attributed
to the output driver. In VLSI, however, increased fan-in has its cost. For short
paths, the gate delay is highly dependent on transistor parasitics at the output
node. Increasing the number of inputs to a NOR gate adds more drain diffusion
and overlap parasitics to the output node. Because fixed device ratios must be
maintained for adequate noise margins in static logic, these intrinsic device

parasitics cannot be eliminated from consideration.

R, ———— % %
i :
= 1£25 166256
A k" ::DJ-
(a) B-input NOR gate (b) equivalent using 2-input gates

Figure 11: Realizations of 8-Input NOR Function

Delays of an B-input, static NOR gate were compared with an equivalent
realization composed of 2-input gates (Figure 11). The results, in Table 11, are
based on the device parameters given in Table 1. Delay wes measured as the

time required for the output to reach 3V and 2V for logic "1" and "0", respec-

58

Static NCR No Wire Delay | With Wire Delay
Fan-ln 1
(K=4) tay | tawr | taw tanr
8 15ns 3ns 21ns 4ns
(Figure 11(a))]
2 18ns 12ns 23ns | 18ns
(Figure 11(b)) i

TABLE III: Gate Fan-In Comparison

tively. Delay to logic "0” (tq) is significant for the 2-input version. However,
the interesting delay is that to logic "1" (tgrg): this is the limiting delay.

Neglecting wire loading, the smaller fan-in incurs 20% delay penalty.

With wire delay, penalty for the 2-input constraint reduces to less than 10%.
Wire loading was calculated based on a 42 A spacing between NOR inputs; this is
the datapath pitch between each bit slice {as determined by the register file) of
the RISC 1l microprocessor [13). A minimum-width metal line was assumed to

connect the drains of the multipte NCR input transistors.

Since these resulting circuit delays are so similar, we will restrict ourselves
to ecircuits using a fan-in of 2 in the subsequent comparison of various carry
implementations. This simplifies the analysis by reducing the number of vari-
ables to be considered. Coincidently, the parallel adders in the MIPS and the
Xerox Dragon micrprocessors both use gates with a fan-in of 2 for the carry

computation.

Table IV summarizes the delay and gate count for the fixed delay model
carry schemes. Figure 12(a) depicts adder delay as a function of N, while 12(b)
gives gate count as a first approximation of area and power requirements. Per-

formance for the more complicated schemes is seen to improve considerably

58

Carry Scheme | Gate Delays for Carry | # Gates for Carry

Full Ripple 2N 2N
Carry-Select 4VN -2 4N -2
Parallel 4logoN -2 8N - 3logoN -8

TABLE IV: Carry Computation: Fixed Gate Delay Model

(fan-in = 2, neglecting wiring delays)

4 1)
Parallel
2% Ripple 40214
i al

2] 52 Condition
: ﬂ- zg‘ mpple
i Conditional Carry 3

24 Parallel e 1281
.g w0
264 - 7%
-

8 87

4 > lL - T *?

GRS ’ 8 b S2 o 18
bits # bits

Figure 12: Delay and Gate Count Comparison

over that for the ripple scheme, though at the cost of additional area and power
requirements. The carry-select design is fastest from 8 to 18 bits; it requires

nearly twice the number of gates as the ripple version. The parallel design is

60

fastest for 32 bits and beyond, though at a gate and power cost approaching four

times that of the ripple carry scheme.

l

Adder Scheme Optimal Carry Delay Inverter Count (Power)
Full Ripple %— Tehain %_
Carry-Select 2\/% Tousfor Tchain = Touffor ~ 2%—
Parallel (2logaN - 17) Tougser 5N - 2logaN - S

TABLE V: MOS Implementation Comparison
.
(where ripple chain length M=/ ___.._°:‘ff")
T bis

Results of the NMOS delay analysis using optimal size buflered ripple carry
chains are summarized in Table V. These results represent optimal solutions;
actual values will differ slightly for the carry-select adder in order to accommo-
date the granularity of optimal chain length. Data for typical adder sizes are
given in Figure 13. Results are based upon the optimally buffered, bootstrapped
carry chain length of 8 bits with 15ns of delay, and a single buffer stage delay of
7ns. Using these parameters, the ripple adder is best for 8 bits and also attrac-
tive for 16 bits, due to its reduced area and power requiremnents. The carry-
select is fastest through 128 bits and requires much fewer buffers than the
parallel design. In fact, for a large adder the paralle! approach requires nearly
20 times as many buflers as the carry-select scheme. This high number of
buflers can significantly impact power resources on the chip. Even in a CMCS
implementation using no static power, the additional buflers are costly in terms

of silicon area. These results differ markedly from those obtained using the

Carry Delay (ns)

61

2561 Ripple
w i Parallel
231 Parallel B
Conditional ‘é R
-y “-
(2] Carry L‘J. Conditional
R 9 g Ripple
16 <
a L) L]
8 e 32 2@ us

bits

Figure 13: NMOS Carry Logic Comparison

fixed gate delay model.

A more accurate comparison must include the effect of wiring delays. The

ripple adder has the shortest paths and would be least affected by such delays.

The parallel adder, in contrast, has wire lengths which increase with N; the long-

est connections must span half the width of the ALU. Inclusion of such delays

could only lessen the gains of increased parallelism. This further reduces the

applicability of the fixed gate delay analysis and makes the parallel adder unat-

tractive for VLSI implementations.

References

[1] Engineering Stad of Texas Instruments, Inc., The TTL Data Book for Design

Engineers, Application Data, SNB4 /74182.

62

[2] H.C. Lai and S. Muroga: "Minimum Parallel Binary Adders with NOR (NAND)
Gates,” IEEE Transactions on Computers, vol. ¢-28, no. 9, pp. 648-659, Sep-
tember 1979.

[3] Les Crudele, Motorola, private communication, January 1981.

[4] C.A. Mead and LA Conway: Introduction to VLSI Systems, Addison Wesley.,
(Menlo Park, 1980). :

[5] M.G.H. Katevenis, RW. Sherburne, D.A. Patterscn and C.H. Séquin: "The RISC
II Micro-Architecture,” Proceedings of the IF1¥ TC10/WG10.5 International
Conference on Very Large Scale Integration (VLS1 '83), Trondheim, Norway,
pp. 348-339, August 1983.

[6] J. Beyers, L. Dohse, J. Fucetola, R Kochis, C. Lob, G. Tayler, E. Zeller: "A 32-
Bit VLSI CPU Chip,” IEEE Journal of Solid-State Circuits, vol. sc-16, no. 5, pp.
537-542, October 1981.

[7] J. Hennessy, N. Jouppi, S. Przybyiski, C. Rowen, T. Gross: "Design of a High
Performance VLSI Processor,” Proceedings of the Third Caltech Conference
on VLS, Computer Science Press, pp. 33-54, March 1983.

[8] C. Thacker, "The Dragon Project,” Lecture given at the Computer Systems
Serninar, University of California, Berkeley, QOctober 21, 1882.

[s] B. Murphy, L. Thomas, A. \facRae: "Twin Tubs, Domino Logic, CAD Speed Up
32-Bit Processor,” Electronics, vol. 54, no. 20, pp. 106-111, October 6, 1981,

[10] D. Fitzpatrick, J. Foderaro, M. Katevenis, H. Landman, D. Patterson, J. Peek,
7. Peshkess, C. Séquin, R. Sherburne, K. VanDyke: "VLS!] Implementations of
a Reduced Instruction Set Computer,” VLSI Systems and Computations,
Carnegie-Mellon University Conference, Computer Science Press, pp. 327-
336, October 1981. Also in: "A RISCy Approach to VLSL" VL3I Design, vol. 11,
no. 4, pp. 14-20, 4th qtr. 1981, and Computer Architecture News (ACM
SIGARCE), vol. 10, no. 1, pp. 28-32, March 1982.

[11] M. Pomper, W. Beifuss, K. Horninger, W. Kaschte, "A 32-Bit Execution Unit in
an Advanced NMOS Technology,” IEEE Journal of Solid-State Circuits, vol.
sc-17, no. 3, pp. 533-538, June 1582.

[12] RP. Brent and E.T. Kung, "A Regular Layout for Parallel Adders,” IEEE Tran-
sactions on Computers, vol. ¢-31, no.3, pp. 280-264, March 1882.

[13] RW. Sherburne, M.G.H Katevenis, D.A. Patterson, C.H. Séquin, "Datapath
Design for RISC,” Proceedings of the Conference on Advanced Research in
VLSI, Massachusetts Institute of Technology, pp. 53-82, January 1s882.

63

CHAPTER 6:

PROCESSOR PERFORMANCE

Previous chapters have discussed individual areas of design tradeofls, one
by one. In reality, there is much more interaction among these areas than has
been suggested so far. In order to perform the analysis necessary to account
for this interaction, an understanding of the entire processor design and its
associated tradeoffs is required. Present 32-bit microprocesscrs include up to
several hundred thousand transistors. Familiarization with every aspect of the

design then can be a monumental task.

However, it is not necessary to consider processor behavior all the way
down to the circuit level. Use of higher levels of abstraction allow some
tradeofls to be evaluated independently of circuit details or of the fabrication
technology. This yields good results without overwhelming the designer and
without burdening him with unnecessary detail. In some other cases, however,
the strengths and weaknesses of a particular implementation technology will
have an impact even at the architectural level. For example, the cost of imple-
menting a particular function on the chip may vary so much among different

processing technologies that it may become‘prohibitive in some instances.

Lirnited chip area and power resources make processor design optimization

-64
a real challenge. A large local memory will reduce the amount of data 1/0
required during execution at the cost of chip resources otherwise available for
other functions. Increasing the datapath wordsize has a similar effect. Optimal
local memory capacity, discussed in Chapter 3, may be too costly to implement.
Other strategies for performance irnprovement, such as increased swap support

or processor pipelining, must then be considered.

Increased pipelining boests processor throughput, as discussed in Chapters
2 and 4. A side eflect of pipelining in the register file is higher memory area
cost, due to the increase in the number of wordlines and bitlines necessary to
support the concurrent operations. As a result, less local memory may be
implemented in a given amount of chip area. This reduces the gain offered by
pipelining in the first place. For fixed local memory capacity, the highly pipe-
lined 'unplernentatidn will have slower register operations. Increased pipelining

can even degrade system performance.

DATA.IN OPCODE
&=IMM—DEC—]

=

DECODER

REGISTER FILE

SH

—r
] aul g

Figure 1: Chip Area Allocation in RISCII

65

Figure 1 shows area allocation for the RISC 1I microprocessor [1]. The
register file occupies the majority of the datapath area; it also consumes half of
the cverall chip power. In contrast, the ALU occupies little area. Based on the
findings of Chapter 5, it is assumed that a sufficiently fast ALU can be realized to
match the register file speed. Because the register file is a limiting factor in
system performance and datapath bandwidth (Chapters 3 and 4), it remains the

focal point of discussionin this chapter.

System Timing
In Chapter 4, several datapath timing schemes were evaluated. The number
of sub-phases in each datapath cycle were reduced by going from a shared bit-
line to a dedicated bitline configuration. The delayed write and overlapped
read/write schemes further reduce the cycle time. A four-fold speedup was

predicted, as shown in Tabie 1.

Datapath Timing Scheme ‘I Bitline il Datapath !
(Chapter 4) | Cenfiguration | Sub-Phases
Sequential I Shared 4y

Dedicated 3

Delayed Write or ; Shared 3¢

Overlapped Read/Write Dedicated 2

Delayed Write with Dedicated 1p
Overlapped Read/Write

Table I: Datapath Timing Schemes

Overall system timing including pipelining is surmmarized in Table 1. For all
except the four-way pipeline, the datapath timing schemes vary the number of

subphases, and thus system performance, by a factor of two. The overall range

loads and stores;

sequential and two-way

of system bandwidth now doubles for an eight-fold var

then vary ten-fold among the possible timing schemes.

iation. Performance of the
schemes is further aflected by the frequency of data
each incurs 50% or 100% overhead per cycle, respectively. For

nstruction mix including 25% data loads and stores, system bandwidth can

Pipelining | Phases Per Datapath Gverall
Scheme Instruction | Sub-Phases Cycle Time
(Chapter 2) | (Chapter 2) | (Chapter 4) (sub-phases)
|
4¢ By
Sequential 2 3¢ By
29 49
49 4p
Two-Way 1 3¢ 3y
2y 2p
4p 49
Three-Way 1 3¢ 3¢
2¥ 2y
Four-Way 1 1¢ 1p

Table 1I: System Cycle Time

Local Memory Capacity

In Chapter 3, discussion focused on optimal local memory size. Chip area
was assumned sufficient to allow its implementation. In the real world, this may
not be a valid assumption. The limited chip area must be shared among many
functions. System architecture and microarchitecture both play important
parts in determining how much room is available for local memory. A non-ideal
some improvement may be

local memory capacity impairs performance;

achieved with increased swap support or pipelining.

Pipelining Bitline Number of | Number of | Area
Scheme Configuration Bitlines Wordlines | Factor
Sequential Shared 2 2 4
Dedicated 3 4 12
Two-Way Shared 2 2 4
Dedicated 3 4 12
|
Three-Way Shared 2 4 ! 8
Shared 4 2 8
Dedicated 4 4 16
Four-Way Dedicated 4 4 16

Increased datapath pipelining generally requires a la
4). An effect of pipelining,
which can be realized in fixed chip area. Table 11l pr
lines and wordlines required fo
relative cell size may be oblained by the produc® of the num
izontal) and wordlines (vertical) pa
dostatic bitcell design, the refresh line
model yields a four-fold variation in bit cell

significan

Table I1I: Bit Cell Area Variation

tly aflects the amount of local memory attainable on chip.

67

rger bit cell (Chapter
then, is a reduction in the amount of local memory
esents the number of bit-
r various levels of pipelining. A simple estimate of
ber of bitlines (hor-
ssing through the cell. In the case of a pseu-
is added to the wordline count. This

size. The degree of pipelining then

The RISC 1, with a pseudostatic, dedicated bitline cell incurs an area factor

of 12. The RISC II utilizes a static, shared bitline and wordline cell;

tor is onl

ple area model closely matches actual silico

824 A® pe

its area fac-

y 4. This factor of three difference in bitcell size predicted by our sim-

r bit).

n implementation (2,733.5 versus

68

Local memory capacity is also limited by allowable power dissipation.
Power for a static register file is determined by the number of registers. For
each static register, one inverter of the pair maintains 2 constant current to
ground. There is little or no additional power required for increased pipelining.
If the optimal local memory size cannot be achieved due to power limitations,

then pipelining may need to be increased for higher performance.

Static bit cell power consumption (in NMOS) may be reduced by lengthening
the depletion load transistors. This increases cell area. The long depletion loads
in the RISC II register file lengthened the cell sufficiently to admit four bitlines
without additional area penalty; however, only two were used by the two-way

pipelined datapath using dedicated bitlines [2].

Power dissipation may be reduced without an area penalty, using high-
resistance polysilicon loads or dynamic storage. These strategies can increase
register cycle time (due to longer write and restore delays), as well as the sus-

ceptibility to soft errors induced by alpha particles.

Complementary-MCOS (CMOS) is attractive due to its extremely low static
power dissipation, which is determined only by leakage currents. In the past,
CMOS was used primarily in specialized, low-power applications, such as in digi-
tal watches and other battery-operated products. The additional area required
for "wells” or “tubs” needed to accomnmodate the complementary devices made
CMOS too expensive to compete with the (then simpler) NMOS process. The
resulting emphasis placed on NMOS technology further widened the gap in per-
formance between these two technologies. At present, however, NMOS chips
have reached their limit in allowable power dissipation. A great deal of attention
is now being focused on CMOS process development; it is emerging as the pri-

mary candidate for exploiting higher device densities.

g9

Datapath Bandwidth

Datapath bandwidth has been discussed in terms of phases, assurning fixed
phase length. Processor cycle times using this assurmnption were presented in
Table 1. In Chapter 3, register cycle time was considered to grow with the
square-root of local memory capacity. Since the register delay makes up most
of the cycle time, processor bandwidth decreases with enlarged memory capa-

city. System performance was reevaluated to include this eflect.

Depending on the bitline configuration and level of pipelining employed, bit
cell area was shown to vary (Table 11I). A larger cell requires longer bitlines
and/or wordlines. This leads to increased delay, which follows the square root of

cell area in a manner similar to that discussed in Chapter 3.

Pipelining | Datapath | Bitline Delay Relative
Scheme | Sub-Phases Configuration \ Factor ’ Cycle Time ;

4y Shared 2 16
Sequential 3¢ Shared 2 12

29 Dedicated VvizZ 13.8

l

4y Shared 2 8
Two-Way 3¢ Shared 2 6

2¢ Dedicated V12 6.9

4¢p Shared V8 11.28
Three-Way 3¢ Shared VB 8.46

2 Dedicated 4 8
Four-Way 19 Dedicated 4 4

Table IV: Processor Cycle Times

The relative cycle time for various pipelining and datapath timing schemes

is given in Table IV. Results are based on the number of sub-phases per cycle

70

(Table 11) times the square root of the bit cell area factor (Table llI). Whereas
Table Il predicted an eight-fold range in datapath bandwidth, the new results
shows only half of this is actually achieved. (These results assume 2 constant
memory capacity; where several bitcell entries yield the same number of data-

path sub-phases, the smaller cell was chosen).

Both the RISC I and RISC II implementations utilized two levels of system
pipelining. The RISC 1, with its large bitcell and 3y datapath timing scheme, has
a relative cycle time of 10.4 using our delay model. The smaller bitcell of RISC II
allowed a relative cycle time of only 8.0, despite a 4y datapath cycle. Com-
parison of actual datapath bandwidth for the fabricated chips was not possible,
due to design errors in the control logic of RISC I which did not allow the full

datapath bandwidth to be attained.

Data Wordsize

A four-bit microprocessor may suffice for a microwave oven controller: little
memory is addressed, operations are simple, and high speed is not required. A
large microprocessor will do the job more than adeguately, but it will not be
cost-eflective. Cther applications such as number crunching of massive
amounts of data pertaining to seismic exploration or weather observation
require much more processing power. These scientific calculations using single
and double precision floating point data require 64 and 128 bit wordsizes in con-
junction with high processor bandwidth. Despite this wide range in wordsize,
these applications all have one thing in common: specialization. Processor
wordsize is determined unambiguously by th'e application.

In contrast, a time-shared, Figh-Level Language (KLL) programming
environment supports a wide variety of uses. Data wordsize distribution
includes 8-bit ASCII characters through 128-bit extended precision floating point

numbers. In such an application, the choice of processor wordsize introduces

71

some interesting tradeofis.

A wide datapath can execute in a single cycle operations which would other-
wise require several cycles. However, the wide datapath requires proportionally
more area and power resources. For a design where the datapath dominates
chip area, such as the RISCII, this cost is significant. The wider datapath is also
slower. Local memory cycle time (Chapter 3) as well as ALU delay (Chapter 5:
conditional carry scheme) both increase with the square root of wordsize.
Depending on the application, then, a wider datapath vmay or may not offer

improved performance.

Today, typical, time-shared HLL systems utilize 32-bit processors. This
allows up to 4 Gigabytes of memory to be addressed, which is suflicient for most
applications. Complex arithmetic operations, such as multiplication, may be
best performed by a co-processor on the systemn bus. Such a co-processor may

even handle larger word sizes than the CPU itself.

Assuming the CPU is required to work with words of 32 bits or less, it is
interesting to observe the effect of reducing the datapath width to 18 bits.
Bandwidth increases by 41% due to the smaller ALU and local memory size.
Overall performance then will be improved if less than 29% of the instructions

require double cycles for 32-bit data.

These multiple cycles include 32-bit data loads and stores as well as ALU
and shift cperations. Additionally, each program branch (jump, call, return)
may modify the upper half of the 32-bit address. This also requires an additional
eycle. Extra cycles due to normal program counter incrementing may be
neglected, since they are very infrequent.

An additional incentive for reducing wordsize is that more functionality can

be added using the resources made available. Increased local memory capacity,

better swap support, and more specialized ALU functions {such as 2-bit multiply)

72

can be added to further increase performance.

In practice, the "dead time” between clock phases as well as the clock
delays themselves reduce the 16-bit speed improvement. Also, more registers
will be utilized in the 16-bit processor, since each 32-bit datum t_'equires two
registers. Although this may not justify increased window size since only five or
less registe;—s are typically used per procedure [3], swapping overhead will
increase for the partial swap scheme. A more detailed examination of data
lengths for the particular application is necessary in order to evaluate the

impact of reduced wordsize.

Designing for Limited Chip Resources

As we have seen, the local memory occupies the largest part of the data-
path area on the chip and it is the most critical component determining proces-
sor bandwidth. In designing for limited area, realizable local memory capacily
is reduced with pipelining. Local memory capacity may also be limited by max-
imurn die size in one dimension, which sets a limit on the overall length of the
datapath. In Figure 1, the RISC 1l local memory size was restricted in the
number of registers by the maximum mask pattern size and package cavity.
For that design, the critical chip cost due to pipelining is attributed to the

number of wordlines.

Table V compares area and length costs per unit bandwidth for fixed capa-
city local memory. These costs are given in terms of area- and length-delay pro-
ducts in order to account for processor bandwidth variation; they are obtained
by multiplying the cycle time (Table IV) by the area or length factor (Table 1II).
The highest performance return for a given amount of area or length is seen to
occur for the two-way pipelined, delayed-write scheme with shared bitlines. This

is similar to the approach used in the RISC Il microprocessor [4].

73

Pipelining Datapath Bitline Area-Delay | Length-Delay
Scheme Sub-Phases l Configuraticon Product Product
'l
4¢ Shared B84 32
Sequential 3¢ Shared 48 24
29 Dedicated 166 55.4
4¢ Shared 32 16
Two-Way 3¢ Shared 24 12
2¢ Cedicated 83 27.7
4y Shared 90 23
Three-Way 3¢ Shared 88 17
29 Dedicated 128 32
Four-Way 1y Dedicated 64 16

Table V: Relative Chip Area and Length Costs per Unit Bandwidth
(costs given as Area- and Length-Delay products to reflect performance)
Figure 2 presents the »Tower of Fanoi” benchmark data for the fixed-swap
scheme from Chapter 3. Performance is compared among the pipelining
schemnes of Table V, using the best implementation for each level of pipelining.
Relative performance is plotted as a function of chip area, in units of the area
factor times the number of local memory windows. Since one window in RISC is

reserved for global data, entries begin at two windows.

In accordance with the area-delay product in Table V, the 2-way pipelined
implementation (#2 in the figure) yields the best performance with little chip
area... It even outperforms the three-way version (43) over the entire range. The
four-way version (#4) is not better until three or four times the area is available;
maximum perforn"lance improvement over the two-way implementation is about

507%.

Relative Performance

T4

1.8,
g 8
g
E —t— %
= 4-way
]
-9
o
>
b
=
132 128 14y 460
Area (# wordlines * # bitlines * windows)
Figure 2: Pipelined System Performance Versus Local Memory Area
(RISC 11 executing “Tower of Hanoi,” fixed swaps, 2 cycles per register)
1.5 +
+
.g - 4-way +
2-way
o‘ -
¢
3-wa
M 7
.2 - :_::7\

10 32 48 # 80 e | 112 @ 128 149 460
Area (§ wordlines * } bitlines * § windows)
Figure 3: Pipelined System Performance Versus Memory Area

(RISC 1l executing "Tower of Hanoi," partial swaps)

75

Figure 3 presents data using the more efficient partial swap method of local
memory management, which was seen to perform the best In Chapter 3. Yith
such a reduction in swap overhead, performance now degr.ades noticeably as the
local memory capacity is increased, due to the increase in register cycle time.
Overall performance improves by 507 versus the fixed swap scheme, while
requiring only two windows (less than a third of the capacity required for the
fixed swap scheme) for peak performance. As before, the four-way version
yields 50% better throughput than the two-way. at a cost of three times the

register area. The two-way pipeline remains superior to the three-way pipeline.

1.9 .
08 -
64 * *
4-way
e = 2-way
S-way
R —&r 1-way

Relative Performance

1 L] L) L] . i 1

> 4 & 12 deo 29 24 | 28 32 36 4@
Length (# wordlines * §# windows)
Figure 4: Pipelined System Performance Versus Memory Length

(RISC 11 executing "Tower of Eanoi," fixed swaps, two cycles per register)

Figures 4 and 5 present similar results, this time in terms of the chip length
constraint. Performance is given versus the number of bit cell wordlines times
the number of windows. Relative performance of the pipelined schemes is simi-
lar to that in Figures 2 and 3. However, the variation in length cost is not as

dramatic as that for area; only a factor of two in length separates the optimal

76

Relative Performance

T L L] 3 1 § L4 L 4 . ‘ ¥ 1 R]

& 4 8 12 1o 2o 24 28 32 3 4o
Length (§ wordlines * # windows)
Figure 5: Pipelined System Performance Versus Memory Length

(RISC 11 executing "Tower of Hanol,” partial swaps)

two-way and four-way implementations.

In order to compare performance in view of limited power resources, rela-
tive cycle times given in Table IV are used. Again, the two-way and four-way

schemes are the best performers.

Performance measured using benchmarks with few procedure calls and
returns will be similar to that for the partial swap scheme, as it significantly
reduces the swap cost. In this case, optimal local memory size consists of only a

couple windows.

Overall, the four-way pipeline gives the best performance, as expected.
Kowever, limited chip size may not allow this performance to be attained. In
this case, the two-way pipeline may offer the best results. These results will vary
with the amount. of data 1/0 cycles and data dependencies encountered by the

system.

77

As we have seen, processor design optimization in VLS! is a complex task,

which must account for the limited resources available on a chip. The microar-

chitect must not only be familiar with the limitations of the integrated circuit

technology available; he must also have some knowledge of the demands of the

programming environment for which the processor is designed. This is truly 2

great challenge for the microarchitect.

[1]

(2]

[3]

(4]

References

M.G.K. Katevenis, R.W. Sherburne, D.A. Patterson and C.H. Seguin: “The RISC
11 Micro-Architecture”, Proceedings of the IFIP TC10/WG10.5 International
Conference on Very Large Scale Integration (VLSI '83), Trondheim, Norway,
pp. 349-359, August 1983.

R.W. Sherburne, M.G.H. Katevenis, D.A. Patterson, C.H. Sequin: "Datapath
Design for RISC,” Proceedings of the Conference on Advanced Research in
VLSI, Massachusetts Institute of Technology, pp. 53-62, January 1882,

D. Halbert, P. Kessler: "Windows of Overlapping Register Frames,” CS 292R
Final Class Report, Computer Science Division, University of California,
Berkeley, Spring 1980.

D.T. Fitzpatrick, J.K. Foderaro, M.GC.H. Katevenis, H.A. Landman, D.A. Patter-
son, J.B. Peek, 2. Peshkess, C.H. Séquin, R.W. Sherburne, K.S. VanDyke:
“VLS! Implementations of a Reduced Instruction Set Computer,” VLSI Sys-
tems and Computations, Carnegie-Mellon University Conference, Computer
Science Press, pp. 327-336, October 1981. Also in: "A RISCy Approach to
V1S1,"* VLSI Design, vol. 1I, no. 4, pp. 14-20, 4th qtr. 1981, and Computer
Architecture News (ACM SIGARCE), vol. 10, no. 1, pp. 28-32, March 1982.

78

CHAPTER 7:

CONCLUSIONS

There are many tradeofls to be considered in the design of a microproces-
sor. Often, these tradeofls are interrelated and thus increase the difficulty of
the task of the chip designer. In order to simplify understanding of these issues,
this work has first present individual design areas in which tradeofls can be
made. Each of these design areas has been discussed individually in order to
clarify the range of choices and their associated costs. Later, overall chip
design was viewed with reference to all of these design tradeofls combined in

different ways.

In Chapter 1 the special constraints of VLSI single-chip processors were
introduced. The high cost of custom design favors 2 simple and regular imple-
mentation. The RISC architecture addresses these issues by simplifying the
instruction set and thereby reducing the control logic on the chip. This not only
frees up valuable chip area, but also reduces design time significantly. The
" potion of limited chip resources (area, pins, power) sets the context for the rest
of the paper. Attention is focused on the datapath itself, since it dominates chip

area in RISC implementations, and its performance limits overall system speed.

System pipelining was investigated in Chapter 2. With careful design of the

79

datapath, pipelining may produce significant performance gains. As the degree
to which pipelining is exploited is increased, however, data and jump dependen-
cies make it more difficult to attain further speedup. As a result, a careful
study of program behavicr is necessary in order to accurately assess the value
of various levels of pipelining. At some point, limited chip resources are better
utilized to speed up other critical paths in the system rather than to support
added pipelining.

Local memory tradeofls were discussed in Chapter 3. A fundamental limit
to performance exists due to the memory 1/0 traflic alone. Data memory traflic
can be significantly reduéed through the use of an on-chip local memory organ-
ized in multiple banks. Careful study is necessary in order to determine the
ideal size of this local memory. A large local memory reduces datapath
bandwidth and consumes resources available for other functions; too smeall a
local memory will result in a processor that is restricted by data 1/0. In some
cases, however, more sophisticated hardware support for local memory manage-
ment can compensate for this performance loss. Local memory design was a

critical factor in optimizing the performance of the RISC microprocessors.

Datapath timing for register-based machines was examined in Chapter 4.
Several schemes were presented in order to reduce the number of required
clock phases in each datapath cycle. The corresponding increase in con-
currency requires different register bitcell designs. In some cases, additional
circuitry is needed in order to eliminate data dependencies within the datapath

itself.

Design tradeofls for the ALU were discussed in Chapter 5. Several adder
schemes were compared: ripple, carry-select, and parallel. An initial analysis
was performed based on the assumption of fixed gate delay, which is applicable

to TTL-based implementations. Next, results of NMOS circuit simulations were

80

utilized to obtain a more realistic comparison of these schemes for VLSI imple-
mentation. Because dynamic logic and ;Dootstrap technigues are available in
NMOS technology, these results differ significantly from those obtained with the
fixed gate delay model. The NMOS ripple carry performed best at 8 bits, while
the carry-select was optimal through 128 bits. The parallel adder was deter-
mined to be undesirable for VLSI irnplementation because of its large area and
power consumption. This contrasts with the TTL-based results, where the paral-

lel adder is most attractive.

vln Chapter 8, all of the previous design areas were considered together in
order to evaluate overall processor performance under the constraint of limited
chip resources. Higher levels of pipelining were found to be of diminishing
return; the bit cells needed to support increased concurrency reduce the
bandwidth of the datapath. The two-way pipelined system with a register file
using shared bitlines and a delayed write scheme was found to make the most
eflicient use of limited local memory area. Such a design was utilized in the

RISC 1]l microprocessor.

Each system'application requires its own analysis for optimization of perfor-
mance. Additionally, design decisions must be continually reassessed as the
available chip resources and constraints change with improvements in technol-
ogy. It is hoped that the ideas brought out in this paper will address the nature
of critical processor design tradeoffs and will prove useful to other designers
faced with the task of fitting a high-performance processor onto a single VLSI

chip.

