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ABSTRACT

This dissertation studies the problem of designing the configuration of local area
network-based distributed systems by a performance modeling approach. The study
concentrates primarily on the interactive transaction-oriented computer systems connected
by an Ethernet-like network. Major transaction types are chosen to represent the
workload; each type is characterized by the demands on various computing resources. A
two-step methodology is described that produces the initial configuration; this
configuration is the one to which more detailed queueing network models are applied.
Based on the queueing model results, the methodology then iterates to refine the
configuration of the distributed system.

Various transaction types are first assigned to host systems to balance CPU
utilizations. We then distribute the shared files among host systems to minimize total
remote file accesses. Queueing network models for our distributed systems are
constructed from a set of submodels of the host systems, of the local area network, and of
the file servers if any. Model parameters are derived from our workload data, measured
in an interactive transaction-oriented business system. Two examples are provided to
show how the configuration of a local area network-based distributed system can be
designed by using our workload data.

Attempts are next made to capture in our queueing network models the difference in
resource demands during the preparation phase and the execution phase of a typical
transaction. As a result, we introduce the special class of phase-free queueing network.
It is shown that a general product-form queueing network can be reduced to an equivalent
phase-free product-form queueing network. It is also shown that the per-class
throughputs, mean queueing time, and mean queue length in the original network can be
calculated from the values of the aggregate indices of the phase-free network.

Lastly, a special class of local area petwork-based distributed systems, that of the
workstation-based systems, is examined in some detail. Workload clustering is proposed
as a method for reducing the number of chains in the model to make it more tractable
mathematically. File server design issues are investigated, and design guidelines are
recommended based on workload data and performance goals.
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CHAPTER 1

Introduction

1.1. The Coming Era of Distributed Computing

Progresses made in microelectronics since the early 1970's have revolutionized the
whole computer industry, and even created a new market, that of personal computers
[Kay77]. The 16-bit microprocessors used in many systems today have a power equivalent
to that of many early minicomputers. It will be only a few years before the 32-bit
microprocessors are used extensively in new microprocessor-based products. The
increasing density and speed of the semiconductor memory chips has also helped the
development of small and powerful computer systems. It is very common to employ 64K-
bit memory chips in today’s computer systems. Meanwhile, the 256K-bit memory chips of
the next generation are almost ready to come out of research laboratories. Technological
advances in peripherals such as bit-mapped displays, high-density disks, and easy-to-carry
floppy disks have all together made this revolution possible.

On the other front, the communication industry has paralleled the progress and
development of the computer industry {Tan81]. The commercial use of satellites provides
unprecedented bandwidth and speed for data communication, as well as for the more
traditional voice and video communications, across large geographical distances. Packet
switching networks built on top of the existing telephone networks provided by public
carriers open up a convenient and inexpensive way for information exchange. More
recently, the technology of local area networking [Cla78] has been introduced to provide
high bandwidth and multiaccess capabilities to computer systems and users located within
several thousand feet of each other. This advance is of great value to the office
environment and to neighborhood communities.

The proliferation of small, inexpensive, yet very powerful computers together with
pew communication technology makes distributed computing a viable solution for data
processing [Sch78, Zie79]. New sectors in the computer industry are also emerging : office
automation With workstations [Bec82], and home and personal computing [Wil83, Tho84].
The trend towards computerization in both office and home will greatly influence the way
of life in the coming century.

1.2. Our Focus - Configuring Local Area Network-based Distributed
Systems

Technological progress in microelectronics and data communications has presented
many new challenges to computer researchers. The structure and the behavior of
distributed systems are considerably more complex than those of single-machine systems;
hence, the need for design methodologies and evaluation tools is even more evident than it
is in the latter case.
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We are interested primarily in the design of local area network-based distributed
systems configurations. The rest of this section describes the general environment that
our research efforts have assumed. The communication medium that allows exchange of
information between computer systems is a local area network [Cla78, Thu80]. There are
many alternative technologies that can provide the basis for local area networking; we
have only assumed for such network that the unit of information exchange at the network
level is a packet or datagram, and that the network has some kind of multiaccess protocol
to a broadcast medium [Eth80, Tan81]. The computer systems connected by this network
are homogeneous in the sense that they have the same interface to the file system. In
other words, we require all computer systems connected to the network to have the same
mechanism for remote file access. Although the architectures and technologies of the
CPUs in the various computer systems can be quite different, we assume that the CPU
power of each computer system is known. Different implementations of a given
architecture by the same vendor are often in this so-called homogeneous category since the
rankings of their powers are usually readily available. A stricter definition of homogeneity
is needed if we allow task re-assignment among computer systems in the network. Here,
the same result must be obtained regardless of which computer system executed the re-
assigned task. Machines with incompatible floating-point formats and machines with
different representations of binary integers typically fail to meet this stronger homogeneity
requirement. However, we have assumed that tasks are not reassigned in our system.

A general description of the workload within an interactive environment is of course
required. Users are connected to computer systems through terminals and interact with
the computer system by entering data and commands. Knowledge of the detailed nature
of a task is mot necessary; however, a description of the resource demands of each
individual task is needed. These tasks share some data files. A simple characterization of
file sharing is essential. Files are stored on disks which may be distributed among the
computer systems connected to the network or may be grouped together in a file server
[Isr78].

1.3. Related Work in Distributed Systems and Models

We shall review some of the related work in the area of distributed systems. The
definition of distributed system adopted here is roughly that of Enslow’s [Ens78]. A
distributed system consists of multiple autonomous computer systems physically connected
by a network medium. An operating system with some level of transparency manages the
resources, possibly with some degree of decentralized control. We divide this section into
two parts : experimental systems and models of distributed systems.

1.3.1. Experimental Systems

Many proprietary distributed systems have been built in prototype form and
experimented with, but the detailed descriptions of these systems are not in the public
domain. We can only survey some of the distributed systems described in the literature.
The Xerox Palo Alto Research Center has engaged in many of the pioneering studies of,
and experimentations with, distributed systems. The Xerox researchers have taken the
client-server viewpoint based on a functional decomposition of a distributed system [Isr78,
Mit82], and many interesting applications have been developed. Grapevire is a system



providing message delivery, resource location, authentication, and access controls [Bir82].
Violet is an experimental decentralized system that allows its user to build distributed
applications [Gif81]. A calendar system was an early example of such applications.
Clearinghouse is a decentralized agent for locating named objects in a distributed
environment [Opp83].

The Cambridge file server employed in the Cambridge distributed system uses the
Cambridge ring as the communication medium, and a comparison with the Xerox
distributed file system is presented in [Mit82]. The FELIX file server built by Bell
Northern Research is designed to support a variety of file systems, virtual memory, and
database applications [Fri81]. A distributed version of UNIX based on the functional
separation of file access mechanism and process execution domain is described by Luderer
et al [Lud81l]. This distributed system is a tightly coupled one with high speed virtual
circuits as its communication vehicles. A simple star-shaped microcomputer-based
distributed system running UNIX has been described by Pechura [Pec8l]. SODS/OS, a
distributed operating system for IBM Series/1 computers, offers a hierarchy of services
provided by the local and network operating systems [Sin80].

Almost every university has some research activities in distributed systems. The
LOCUS system built at UCLA is a distributed UNIX-based operating system with
replicated files and a high degree of transparency [Pop81, Wal83]. The JADE project at
the University of Calgary is essentially a prototyping environment for developing
distributed system software and applications {Wit83]. The Eden project at the University
of Washington has the same goal along with some hardware system development [Laz81].
The Athena project at MIT is noted for its eventual size and its application to
undergraduate education [Bra84]. This is only a small sample of the research projects at
various universities.

Experience with a large distributed banking system connecting 10,000 Bank of
America terminals across the state of California has been reported by Good [Goo83].

1.3.2. Models of Distributed Systems

There are many aspects in the area of modeling that are related to the design of
distributed systems. File placement algorithms have been studied within many different
contexts, and such studies have been described by many authors; some of the best known
are [ChuB9, Cas72, Fos81, Wah84]. The survey by Dowdy and Foster covers and
compares a dozen of models in this area [Dow82]. Variations on the theme include taking
into account the number of file copies, the disk capacity constraints, and various cost
models for file retrieval, update, and communication overhead. A variety of mathematical
programming techniques are also covered in that survey. Strategies to perform task
allocation in distributed environments have been studied quite extensively, and two recent
investigations based on network flow graph models are reported in [Chug80, Wu80]. Many
other studies combine task allocation, file placement, and other related resources
allocation problems in one single model [Mah76, Mor77, Tri79, Den81]. These studies tend
to be more comprehensive than those mentioned previously.

Realistic and comprehensive models addressing the configuration design problem are
very few, especially those based on measurements of real workloads. Models constructed



specifically for existing systems are discussed by Acker and Seaman in the context of a
feasibility study [Ack82] and by Deitch in a capacity planning context [Dei82]. Goldberg
et al constructed a validated model for the LOCUS distributed system at UCLA and are
reportedly working on the tools for the design of distributed systems configurations
[Gol83].

1.4. The Contributions of this Research

The major emphasis in this research is on devising a practical methodology for
configuring distributed systems subject to a given workload and given performance
constraints. A characterization for the workload is proposed so that actual data can be
collected from existing systems or can be extracted from some higher level workload
description. This characterization and the performance indices adopted in our study are
discussed in Chapter 2. The first part of the methodology allocates computing resources,
and distributes the workload so as to balance CPU demands among various host systems
and to minimize total remote file accesses. The second part of the methodology uses
queueing network models to verify performance requirements and to estimate delays due
to resource contention which are fed back into the first part of the methodology for
possible iteration. . Instead of formulating and solving a set of simultaneous equations or
some mathematical models, the iterative methodology proposed in this dissertation allows
the system designer to examine the intermediate configurations, to interpret the results,
and to validate the assumptions made at the various steps of the methodology. The
methodology can be easily modified to satisfy special constraints which do occur often in
actual configuration design. The two parts of the methodology are described in Chapters
3 and 4 respectively.

We shall demonstrate through examples the tradeoffs the designer can make, and the
insights that can be learned. For example, in Chapter 4 we show how to evaluate file
system organizations, that is, how to choose between a distributed file system and a file
server-based system, given a workload description and a general system description. More
sophisticated models based on multi-phase workload characterizations are constructed in
Chapter 5 to reflect somehow the distribution of resource demands of the workload. As a
result of this queueing network modeling effort, we are able to characterize a special
family of queueing networks having an equivalence relationship with some simpler
queueing networks. This provides not only an intuitive explanation for some earlier work
in this area, but also simplifies the computational efforts in getting the equilibrium state
distribution for a queueing network. The notions of balanced file server and of system-
wide load measure given in Chapter 6 for a workstation-based environment provide a
system designer with a set of guidelines and hints as to where measurements should be
collected and improvements should be attempted.

Our methodology should be applicable to distributed relational database systems, if a
proper interpretation is given to the model parameters. Most relational database systems
implement relations as files [Sto78, Wilg1]. In this case, a database consisting of a set of
relations can be viewed as a collection of files with record (tuple) structure. Applications
built on top of the database are essentially well-defined transactions accessing and
modifying a subset of relations, that is, of files. This description transforms the problem
into the one we study in this dissertation, and makes our methodology perfectly applicable



to the distributed relaticnal database system case in the appropriate environment.

We do not specifically address the case of heterogeneous systems in a local area
petwork environment. This case is inherently more complicated from many functional
viewpoints; however, in the context of configuration design, adding a set of transaction
and file assignment constraints due to the heterogeneity of the distributed system is
probably a simple approach to take in modifying the configuration design methodology
proposed in this dissertation.

We are only able to validate models of single host system against measurement data
from an existing system. Models of distributed systems similar to ours have been used in
[Gol83], and the authors of that paper claim to have validated them. However, the
queueing network models of distributed systems need substantially more validation and
calibration work than the one done so far. With this premise, our models are better
suited for a study of comparative nature, e.g., one comparing and selecting the best design
among several configuration alternatives, than for a study of predictive nature. Before
substantial validation work is performed, however, care must be exercised in using and
interpreting directly the absolute values of the performance measures obtained from the
models.



CHAPTER 2

Workload Characterization and Performance Indices

2.1. The Context of the Study

The workload to be used in our study was measured in a medium-size interactive
transaction-oriented business system [Whi83]. Such systems are used mainly in the
wholesale industry. A typical configuration consists of one central processing unit (CPU)
with half a megabyte of memory, six terminals, two line printers, two cassette drives, and
four disk platters. There are many applications that run on these systems and share a
common set of files, typically two dozen in number. Commonly found applications are
order processing, inventory control, and sales analysis.

In such systems, the notion of ‘‘user” which is found, for instance, in a program
development environment, does not exist. Instances of the execution of application
programs are called transactions. Transactions are equivalent to the “users” in that they
demand and share various resources. The way transactions interact with each other is
generally known in advance. In particular, we know the set of files they share and the
degree of sharing that might exist. Since the set of shared files is rather static and is
limited in its size, the directory of shared files is rarely changed, and, thus, very stable. It
is likely that this characteristic will be carried over to the distributed version of such
transaction-oriented business systems.

Unlike what happens in business systems, users in typical research and development
environments show relatively little sharing of user files in their activities [Por82]. When a
user file is shared, the sharing usually occurs across a much larger time span, e.g., several
days. Notice that the set of common operating system files related to various kernel
utilities are shared and used by all users, and is generally referred to as system files. The
issue of directory structure is a rather complicated one in a research and development
environment, where sharing is dynamic although a relatively infrequent phenomenon
[Wal83]. In fact, the directory of files is a specialized name server in a distributed
environment, and the issues involved in designing distributed name servers are not
completely understood yet (Ter84]. The structure and the modeling of a file directory for
our particular workload environment is discussed in Section 4.1.

2.2. Workload Characterization

We shall divide this section into two parts : basic resource demands, which can be
satisfied by multiple instances of the same type of resource, and spatial characterization of
file sharing.



2.2.1. Resource Demands

The workload of an interactive transaction-oriented business system can be
characterized by the number of major transaction types, the resource demands by each
major transaction type, and the relative throughputs of these transaction types during
some typical interval of operation. The relative throughputs of these transaction types
are assumed to be expressed in percentages, and sum up to unity.

We shall use this characterization of a transaction type as a template of resource
demands for user jobs or tramsactions. A user job or tramsaction is an instance of a
transaction type which is initiated from a user terminal. The sequence and the amounts of
resource demands are those which characterize the corresponding transaction type. We
shall use terminals, transactions, and user jobs interchangeably when no ambiguity will be
possible. Each transaction uses a few temporary (private) scratch files during its execution
while sharing some permanent files with other instances of the same and other transaction
types in execution. It is this collection of shared files that are our main concera in this
study.

The resource demands of a transaction of a given type can be further characterized
by the average values of the following quantities :
(1) the number of user interactions (or commands);
(2) the user think/preparation time per interaction;
(3) the total CPU time demand;
(4) the number of physical disk accesses to be made to each shared file;
(5) the number of display outputs.

Five major transaction types are characterized and summarized in Table 2.1. For
simplicity, we name these five types of transactions T1, T2, T3, T4, and T5; these
symbols correspond to the following types : order entry, new order release, shipment
processing, stock receipts, and invoice printing, respectively.

Note that a display output is the transfer of a character string by a transaction
process through an input/output (I/O) channel, usually an asynchronous communication
line, to a user display terminal. There are generally a number of display outputs during

Table 2.1 Workload Data

Number of | Think Time CPU Number of | Number of
Transaction Relative Interactions for each Time Physical Display
T Throughput er Interaction Disk I/O’s Outputs
o o Tranl:action (seconds) (seconds) / (charapcters)
T1 20% 47 1.0 16.78 179 217 (15)
T2 20% 11 10.0 36.20 834 196 (25)
T3 15% 6 1.5 28.46 100 27 (20)
T4 25% 12 2.0 8.72 42 85 (15)
TS 20% 7 0.5 34.00 1030 29 (15)




an interaction. Notice that we have separated the input from the output functions for a
typical user terminal. This is very convenient for representing the user operations of the
computer system as long as there is no overlap between user input and display output at
each terminal. Disks are sectored; a physical disk I/O transfers one sector of data.

The data listed above can be collected by a suitable hardware monitor and/or by
appropriate software instrumentation. The values of the characterizing parameters for
each transaction type generally remain invariant with respect to changes in the underlying
structure of the distributed system; for example, they are usually the same for a system
with file servers as for a system with a distributed file organization. However, there are
overheads involved in getting a resource demand serviced at a remote site. These
overheads range from simple, easy to quantify ones, such as the times spent for network
transmission and communication protocols, to more complicated ones, such as the
queueing delays due to contention at remote sites. Overheads must be taken into
consideration together with the resource demands of invariant nature when modeling a
distributed system.

Some of the workload information discussed above is used in the next chapter to
determine the distribution of tramsaction types and shared files over the hosts. Input
parameters to the queuing network models described in Chapter 4 are also estimated from
some of the quantities in our workload characterization.

2.2.2. File Sharing

There are twenty files that are shared among the five transaction types we have
described in the previous subsection. For simplicity, we have named the set of shared files
F1 through F20. Table 2.2 gives us the estimated probabilities that a particular file be
accessed by a tramsaction of a certain type given a file access is required by the
transaction type in question. This is a conditional probability, and the entries in each
column sum up to unity. In order to use this table to compare rates of file access among
shared files, the actual access rate to a shared file from a transaction type should be
weighted properly by the total file access rate of the corresponding transaction type. An
entry containing ¢ indicates that the corresponding file is used by the corresponding
transaction type, but the (conditional) probability of accessing it is comparatively
negligible. For the purpose of modeling, we can ignore these entries.

Locks are used to allow concurrent sharing of files while preserving the semantic
correctness of multiple parallel transactions. In the measured system, lockable granules
are the physical sectors of a file, so that file sharing will not drastically degrade
transaction throughputs [Rie77}.

In order to characterize the spatial aspect of the sharing phenomenon, we propose
two metrics based on a conceptually simple user-object sharing graph. Characterizing the
temporal aspect of sharing is much more difficult, and we will not attempt to do that
here. Let us assume that there are k objects shared by n users in a computing
environment. Given a fixed time interval, we represent the intensity of sharing between
user i and object j by the edge label t;;, which is the number of accesses by user s to
object j during that interval. Without loss of generality, we can assume that the ¢;;’s are
between 0 and 1 by properly normaliziag the intensities of all edges. One such example is



Table 2.2 Conditional Probabilities for File Access

] Transaction Type
Shared File T1 T2 T3 T4 T5
F1 € € € 0 0
F2 0.033 0.104 0.081 0.052 0.075
F3 0.050 0 0 0 €
F4 0.310 0.453 0.551 0 0.508
F5 0.084 0.081 0.163 0 0.113
Fe 0.201 0.226 0.204 0.175 0.302
F7 € € € 0.035 0
F8 € 0 € 0 0
F9 € 0 € 0 0
F10 0.042 0 0 € 0
F11 0 0 0 € €
F12 0 0 0 0.157 €
F13 0.025 0 € 0.052 0
Fl4 € 0 € 0 0
F15 0.252 0 0 0 €
F18 € € € 0 0
F17 0 0.133 0 0 €
F18 0 0 0 0.140 €
F19 0 0 0 0.333 €
F20 0 0 0 0.052 €

given in Figure 2.1 for a bipartite graph with two sets of nodes, users and okjects, and
edges exist only between pairs of nodes from both sets. We define two metrics, the mean
m and the variance var, for the sharing graph. In order to apply them to a general class
of problems, these metrics are pormalized so that they lie between 0 and 1.
Characterization of sharing and design decisions can use these metrics, as we shall show
later.

We define the total normalized intensity S; of access to an object j as the average of
intensities from all users, as shown in (2.1). We can interpret S; as a random variable.

1 n
=

Recall that the t;;'s are between 0 and 1, and, thus, we have the inequalities in (2.1). The
mean m and the (normalized) variance var are defined in (2.2) and (2.3).
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Figure 2.1 Spatial Characterization of a User-Object Sharing Graph

1 k
m=1g XS (22)
J=1
1 k2 2
var =4(F Z:SJ —m) (23)
J=

It is obvious that m is (tightly) bounded by 0 and 1. We shall now show that var is also
(tightly) bounded by O an 1. Notice that the factor 4 is present in (2.3) in order to
normalize the variance var.

That var is (tightly) bounded by 0 and 1 will be shown in two steps. First, we show
that “moving” to 0 one by one those S;'s which are less than the mean will increase the
variance as a result. A similar argument applies to those S;'s that are larger than or
equal to the mean if we “move” them to 1 one by onme. Formally, let us assume that
0<S;<m, and move S; to 0. For this new distribution, we have a different variance as
well as a different mean. However, the mew variance vGr,,, is greater than the old
variance var,y as shown below.
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1k . 1k
VAr 0y — :? 2 SJ - (-k_E S;)
J=1 j=1
L ol i
1 & o 2 1 ¢ 2
= LD s = SH- (£ (L 5)~5)
J=1 1=1
After some algebraic manipulation, we have
S" k
var,,, = varyy + F (2( 2 SJ) - (k+1)S,-) (2.4)

j=l1

k k k k
Since (k+1)S, == S‘-+kS,' < S,+Z SJ < E S,'f‘E SJ = 22 SJ y the term in
jo1 j=1  jem1 je=1
parenthesis is greater than 0. Thus, we have shown that the variance increases when one
sample point is moved to the extreme ( 0 in this case ).

In the second step, we show that the maximum variance is achieved within this class
of “polarized” distributions when we have an equal number of S;’s at both extremes, ie.,
0 and 1, and there are no S;’s assuming intermediate values. For the general ‘‘polarized”
distribution, assuming that p S;'s equal 1 and the remaining k—p S;’s equal O, the
variance var pqrized iS given by

1
VGT polarized = F p(k—p) (25)

. . . . . k .
It is easy to show that this variance var ;s i maximum when p= 7| In particular,

the value of this maximum is 1/4 when k is an even number. An example can be readily
constructed with variance 1/4; therefore, we normalize it accordingly, as shown in (2.3).

We can apply the pair of metrics (m,var) to the problem of deciding how to
distribute shared files to host systems so that local accesses to shared files are maximized
by some criterion. If the mean m of a given sharing graph is large, we know that it is
nearly impossible to allocate (single-copy) files to host systems such that remote accesses
are minimized. Putting all shared files in a central depository such as a file server is
probably a good solution. On the other hand, if m is small, we have a very good chance
in allocating files so that most accesses are local to the host system. It is when m is
neither large nor small that we need a second metric like var. When the variance var is
small, the distribution of shared files to host systems could prove to be a viable solution.
However, if we have a very large variance, a few files are shared heavily by almest all host
systems and the others are barely shared. It will still be difficult to distribute these
heavily shared files satisfactorily over host systems as we demonstrate in the second
example of Chapter 4. A hybrid approach, consisting of some centralized files and some
distributed files, may be appropriate with this particular type of sharing behavior. The
thresholds for these metrics are application dependent.



2.3. Basic Analysis of the Workload Data

A simple analysis of workload data is carried out here with appropriate assumptions;
some of the results will be used later as parameters for various models. Throughout this
study, we have assumed that the devices involved have the following characteristics.
Disks are sectored, and each sector contains 512 bytes of data; a disk access takes about
32.07 milliseconds, which is the sum of average seek time, mean latency time, and data
sector transfer time. The bandwidth of the local area network is either 10 Mbit/sec
[Eth80] or 24 Mbit/sec [Whig83]. Some kind of multiaccess protocol is assumed on this
Ethernet-like communication medium [Met76]. Display output service times depend on
the speed of the /O channel which terminals are connected to. Normally, we assume a
9600 baud asynchronous line with 10 bits per character (byte). Therefore, transferring 15
characters requires about 15.62 milliseconds.

We first compute the elapsed time for each transaction type by assuming a
uniprogramming environment, i.e., an environment without queueing delays for services
rendered by the various resources and at various processing stages. The elapsed time
includes user think/preparation time at the terminal. The inverse of this time will be the
best possible throughput for each instance of the corresponding transaction type. These
best elapsed times and throughputs are shown in Table 2.3.

It is also of interest to compute the resource demands on a per interaction basis.
The best possible response times are then computed by the same uniprogramming
assumption. The results are shown in Table 2.4. These constitute the lower bounds for
the respective transaction types. Note that we have assumed in Table 2.4 that the
resource demands for each interaction are the same on the average. In Chapter 5 we shall
examine the effects on the queueing network models of the partial relaxation of this
assumption.

In Table 2.5, we have assumed a simple model of process execution. The process
initiated at the terminal goes to the CPU for a “‘burst” of CPU time, until it needs to
perform an /O to the disk subsystem or an output to the display device. After the I/O
operation, the process resumes at the CPU to get another burst. After the last CPU
burst, the process finishes its execution and returns to the user terminal for the next
interaction. The various branching probabilities are calculated by assuming geometric

Table 2.3 Best Elapsed Time and Throughput

. Best Elapsed Time Best Throughput
r Transaction Type (secﬁnds) (per mimftel;
T1 72.905 0.822
T2 178.049 0.336
T3 41.229 1.455
T4 35.393 1.695
TS5 70.984 0.845
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Table 2.4 Resource Demanrds per Interaction

. CPU Disk I/O Display Output Best Response Time
Transaction Type {seconds) Nd,-,i ’ 1\};,,,-,,, ’ (secponds)
T1 0.357 3.80 4.61 0.551
T2 3.290 75.81 17.81 8.185
T3 4.743 16.66 4.50 5.371
T4 0.726 3.50 7.08 0.949
TS5 4.857 147.14 4.14 9.640

Table 2.5 CPU Bursts and Branching Probabilities with Display Cutput

Transaction Type CPU Burst Probal?ility to P'roba.bility to Probabi!ity to
(ms) Disk Display Output Terminal
T1 37.93 0.403 0.489 0.108
T2 34.77 0.801 0.188 0.011
T3 214.03 0.751 0.203 0.046
T4 62.69 0.302 0.611 0.087
Tb 31.89 0.966 0.027 0.007

distributions for the number of visits to each service center, so that the means of these
distributions match the expected number of disk accesses and display outputs as obtained
from the measurements. Specifically, the branching probabilities to disk, display output,
and terminal are :

2 N, disk P N, disp
d- k e eas——— y d . —3
= N, T N,

, and Pieem =1 — Pgigk — Pdiup ’ (2-6)
where N, = 1 + Nk + Nisp) Nieks and Ny, can be found in Table 2.4.

Table 2.6 CPU Bursts and Branching Probabilities without Display Output

Transaction Type CPU Burst Probal?ility to Probabi!ity to
(ms) Disk Terminal
T1 74.37 0.791 0.209
T2 42.83 0.986 0.014
T3 268.57 0.943 0.057
T4 161.33 0.777 0.223
T6 32.78 0.993 0.007
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There are cases in which we assume that terminals are locally attached to the
computer system by a high speed communication line, and, thus, display service times can
be ignored and not modeled. The mean durations of CPU bursts and the branching
probabilities under these assumptions are shown in Table 2.8. The branching probabilities
are calculated with equations similar to (2.6). We shall use this set of model parameters
for the workstation-based distributed systems in Chapter 6.

2.4. Performance Indices

There are two specific types of performance indices of interest in this study. One is
the overall system throughputs for the various transaction types, the other is the average
response time to user commands/inputs for each transaction type. These two indices can
be employed to compare designs with different configurations, and may be assigned as
performance requirements to be satisfied by the design. The designer must properly
configure the system to meet these requirements while keeping its cost at a minimum.

It should be pointed out that the throughput index and the response time index are
actually vectors, in which each element corresponds to a tramsaction type. Since the
comparisons of multiple indices or variables are somewhat cumbersome, a judicious choice
of the presentation technique is essential.

Other system-related performance indices, such as the utilizations of critical
resources, may be useful for bottleneck detection and capacity planning. It is important
for a system designer and modeler to examine utilizations, queue lengths, queueing times,
and throughputs of various resources. Such evaluation approaches cannot be easily
automated, and the details of their implementation will depend on the expertise of the
modeler and designer. More importantly, it is usually difficult to incorporate the cost
structure of the proposed configuration into a performance model, and designers will have
to bridge this gap to reach a cost-effective decision in the design and planning process.
We shall demonstrate this point with a few examples in the ensuing chapters. For
instance, the first example given in Chapter 4 shows that a moderate increase in CPU
speed may be more cost effective than the addition of another host system to a distributed
system. This tradeoff can be carefully evaluated using the simple methodology presented
in this dissertation before a major procurement or upgrading decision is made.



CHAPTER 3

Allocating Computing Resources and Distributing the Workload

Numerous models have been proposed for the problem of allocating computing
resources so as to optimize some performance-based (or performance-oriented) objective
function [Tri80, Dow82]. These computing resources include computing power (CPU),
storage capacity (Disk), or communication network capacity (Link). We have associated
terminals with user jobs of various tramsaction types; thus, terminals can be viewed as
representing the workload, and are subject to distribution as well. Intuitively, the goal of
the allocation/distribution process in the context of distributed systems design is to
allocate computing resources to match the needs of the workload, which is also distributed
so that response times and throughputs are optimal, or, more simply, that the
requirements in terms of such indices are met. It should be clear that the dollar cost is
always either an objective function subject to minimization or a constraint. Without
presenting a detailed cost model, we study and compare only similar types of
configurations, so that costs are similar and can all satisfy the same kind of cost
constraints.

The existing models are rarely comprehensive enough to be usable in configuring the
local area network-based distributed systems as a whole; and, even if we do have such a
model, the chances of its being computationally tractable are very remote indeed. For
this reason, we propose an iterative step-wise methodology for configuring local area
network-based distributed systems. This methodology makes the problem of configuration
design mathematically tractable with various kinds of design constraints, and allows
system designers to parameterize the design alternatives more easily for comparisons at
various steps. The first half of the methodology deals with the allocation of resources and
the distribution of the workload in the distributed system by mathematical or graph-
theoretic models, so that CPU demands at various host systems are balanced and total
remote file accesses are minimized. This first half is presented in this chapter. The
second half of the methodology uses the proposed configuration as a basis for the queueing
network models which, for the most part, factor in the stochastic aspects of the workload
and the interactions and resource contentions among transactions. More realistic data or
indices can be obtained from queueing network models. Specifically, the queueing network
models provide an estimate for the queueing delays due to contention for resources among
various transactions. This new estimation of queueing delays and transaction throughputs
may require modifications to the computing resources allocation and workload distribution
that was carried out in the first half of the iterative methodology if necessary. This part
is discussed in Chapter 4.

15
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3.1. Confining the Problem

The type of distributed system being studied here consists of various numbers of host
systems interconnected by a local area network. It is sometimes advantageous to consider
connecting terminals to more than one host system through the local area network or
some dedicated high-speed data concentrator. Nevertheless, we confine the study to
systems in which terminals are connected to specific host systems. Note that, however, we
do investigate one type of system that connects all CPUs to the same disk subsystems, i.e.,
file server-based distributed systems [Mit83]. This type of configuration is based on the
functional separation of computation and storage, with a high-speed local area network as
the necessary interface.

For convenience, we divide the task into two major steps : the task of transaction
type (workload) allocation and the task of (single-copy) shared file distribution. Before
discussing the distribution of files, we need to investigate the problem of allocating
transaction types, i.e., terminals, to host systems. The task of transaction type allocation
is dealt with first, since each transaction type exhibits similar resource demands, and thus
it is easier to capitalize on file access locality. We only have to consider the issue of
shared file distribution in a more general type of distributed file system, i.e., that without
dedicated file servers [Wal83]. Although distributing shared files over host systems is a
problem which arises only in the design of a distributed file system, a similar problem
arises in the design of a file server-based system if the distribution of files over several disk
drives and/or over several servers is considered. However, the problem is at a different
level in a hierarchical description of the system.

3.2. Step I - Allocation of Transaction Types to Host Systems

Since files have not been assigned to host systems yet, in this step of the design we
assume conceptually that they are stored in a central file depository on the network (e.g.,
in a file server). Hence, the only load that can be meaningfully balanced at this point is
the CPU load. Minimizing the remote 1/O activity is the objective of the next step.
Implicitly, by selecting this as the objective of the first step, we have assumed that the
workload to be distributed is more CPU-bound than I/O-bound, i.e., the workload consists
mostly of transaction types with relatively long CPU bursts between disk accesses like the
workload we have in Tables 2.5 and 2.6.

Given the number of hosts that the distributed system to be designed will consist of,
transaction types are assigned to host systems according to their expected CPU demands
per unit time, properly weighted by the given relative throughputs. The CPU demand
rate of a transaction type is obtained by dividing the total CPU demand by the
uniprogramming execution time of one transaction. The uniprogramming execution time
of a transaction is given by the sum of its total CPU time and its total [/O time, and is
used here for initial placement instead of the multiprogramming execution time since this
is unknown. The objective of this assignment is to balance the CPU loads among the
various hosts as much as possible. The criterion we use is the minimization of the sum of
squared differences between the CPU demands for each host system and the ideal average
load. Specifically, if the CPU demand rate for transaction type s is d;, and there are m
transaction types to be allocated to n host systems, the ideal average load is
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m 4.
.'£ ) . (3.1)

Ioadideal =

Note that this ideal average load may not be in the space of feasible solutions, and is a
constant, given n, m, and d;’s. The objective function we choose to minimize is

n m
2 (Yzydi - load;geu)? (3.2)
Jj==1 i=l
where the decision variable z;; is 1 if transaction type i is allocated to host system j, and
0 otherwise. Other objective functions such as mazmin or minmaz are possible;
however, we choose the familiar least sum of squares objective function so that a larger
deviation from the ideal average load would be penalized more heavily. By expanding the
sum of squares, (3.2) becomes

n m
Y (Dzdif —n (loadigey)” - (3.3)
jeml il
Recalling that load;s,, is a constant, a less complicated but equivalent objective function
18

2": ( §15j46)2 : (3.4)

Jjml jum=]

Note that we generally try not to assign the same transaction type to more than one
host system, since transactions of the same type exhibit the same file access pattern. This
approach will ensure better locality of access to (single-copy) shared files. This would be
irrelevant in file server-based systems.

3.2.1. Solution Approaches for the Transaction Type Allocation Problem

The decision problem version of the optimization problem we have just described is
NP-complete even for the case n=2 [Cha75, Gar79]. The proof of NP-completeness
involves a straightforward reduction from Karp's PARTITION problem [Kar72], and is
omitted here. This problem is solvable in pseudo-polynomial time for any fixed n. We
choose to employ a simple heuristic to solve the problem [Cha75], and evaluate the
heuristic probabilistically. In order to do that, we present two approaches to obtaining
the optimal solutions for the cases of n=2 and n=3, respectively.

Let us restate the problem and introduce some additional notation to be used in later
discussions. The optimization problem consists of solving for the 0-1 decision variables z;;
g0 that (3.4) is minimized, given n, m, and the d;'s (where ¢ ranges from 1 to m). We
shall designate by S; the total load allocated to host j.

m
S;= Y zyd; . (3.5)
1==1
We shall also designate by C(z,P) the sum of squares obtaiced from a particular problem
instance z and with algorithm P, that is,
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C(z,P) = i’ (E'zijdi)z- (3.8)

j=1 i=1
Intuitively, we can think of this problem as the one of placing a set of m items, each with
weight d;, into n bins so that the resulting weight in each bin is best ‘‘balanced”
according to some criterion; in this case, so that the sum of squares is minimum.

3.2.1.1. Dynamic Programming Approach

For the case n=2, we adopt the dynamic programming approach [Bel62] to obtain
an optimal solution. This approach results in a pseudo-polynomial time algorithm.
Assume that the d;'s are integers, or have been scaled to integers if they are rational

numbers. Let us define S and U as follows :

m S
jaml
The function ¢(i,7) we use in the recursion is defined as
t(i,5) = True if there is a subset in {d,,dy, - - - d;} that sums up to 5,
= False otherwise . (3.8)

It is clear that t(¢,7) can be recursively expressed as
t(s,7) = True if [ t(i—1,5) = True | or [ j2d; and t(i—1,7—d;) =True | (3.9)
with initial conditions

t(¢,0) = True , and

t(1,7) = True if j = d,, False otherwise. (3.10)

An example of this computation is shown in Table 3.1, where the boolean values in italics
are obtained from the initial conditions. After the computation, we search the last row
for the largest index j with a True entry. Taking advantage of the fact that for n=2 the
least sum of squares is optimization-wise equivalent to

Table 3.1 An Example for the Dynamic Programming Algorithm

{d,=5, dy=4, d3=2, d =1, dy=3}, U=T
j=0 j=1 j=2 j=3 j=4 j=5 j=6 =7
i=1 True False False False False True False False
=2 True False False False True True False False
=3 True False True False True True True True
1=4 True True True False True True True True
i=5 True True True True True True True True
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2
21 S;—loadey | (3.11)
j=1
or simply the absolute value of the difference between S, and S, , we now have the
optimal solution with the least sum of squares equal to 2+(S-5)%

This algorithm is very easy to implement. Although generalizing it for n >2 is not
too difficult, it is not obvious which entry in the multi-dimensional table will correspond
to the optimal solution. A limited search for the optimal solution is necessary, and thus
this approach may not be efficient for n >2.

3.2.1.2. Branch-and-Bound Approach

The branch-and-bound technique [Hor78] is employed for the case n=3. The basic
idea of this approach is to carefully apply a backtracking algorithm such that the search
tree is limited in its size during the computation. With a little care in planning,
symmetrical cases, e.g., those which consist of interchanging all items between two bins,
are not re-evaluated in our optimization problem. The bounding function, which guides
and limits the search, is briefly discussed here.

Following the observation' that,
. n LI . K .
given }'S;=K, }'S; is minimum if S'J-=—7-‘- for all 7,
j=1 j=t
we derive a bounding function for the partial sum S;. For the case n=3, suppose we
have a solution, e.g., from a heln'istic algorithm, such that C is the sum of squares. If
there is an optimal solution C <C, the following inequality must hold for anv given
partial sum 5;>5/3 at any point of the computation :
S-S;
Si+2 (—2—’)2 <c'<c, (3.12)
where S is the sum of the d;'s as defined in (3.7) above. This leads to the simple
bounding inequality (3.13) for any partial sum S; at any point of the computation :

S+V60 =252
5; < 5

(3.13)

Using the best available solution C, this bounding function can be easily computed
and tested when S; is changed to see whether further search on the subtree is necessary.
If a leaf of the search tree has been reached, the sum of squares is computed, and the
currently best solution is replaced if necessary. Obviously, the bounding functions needs
be updated if a better solution is found, so that the search can be tightened and converge
quickly.

The generalization of this approach to n >3 is straightforward. Another advantage
of this approach is that the search for the optimal solution can be terminated at a pre-
determined time or at any ‘“sign” of convergence to the optimal solution.

This result can be easily proved by using an interchange argument, or the Lagrangian’s method.



3.2.2. Probabilistic Evaluation of the Heuristic Algorithm
The heuristic algorithm [Cha75] for the allocation problem works as follows :

(1) For each bin j=1 to n, initialize the partial sum S; to zero.

(2) Allocate the largest d; in the input set to the bin j with the smallest partial sum S;.
(3) Update partial sum S; , and remove d; from the input set.

(4) Repeat steps 2 and 3 until the input set becomes empty.

In our evaluation, we assume a uniform distribution for the input sizes d; between 0
and 2000. The results are summarized in Tables 3.2, 3.3, 3.4, and 3.5, with n=2,3 and
m=5 to 13. We compare the solutions of 200 problem instances obtained from the
heuristic algorithm and the optimal algorithm for each entry corresponding to an (n,m)
combination.

Table 3.2 gives the estimated probability that the heuristic algorithm provides an
optimal allocation solution. It agrees with our intuition that, as m increases, the chance
of getting an optimal solution decreases. Particularly for smaller m’s, the probability for
n=2 is smaller than that for n=3 because there are generally more ways to rearrange
the items, and, intuitively, a simple heuristic could deviate farther from the optimal
solution.

In order to get some insight into the distribution of the “deviation” from optimality,
we define such deviation §(z) as follows :

Kz) = C(z,Heuristic Algorithm)
~ C(z,0ptimal Algorithm)

It should be noted that the distributions of &(z) in all of our evaluations lie well within the
worst-case upper bound for §(z) given in [Cha75], and are generally very narrow indeed.
Tables 3.3 and 3.4 shows the fraction (in percentage) of the problem instances whose §(z)'s
are smaller than 0.29 and 0.4% respectively. Notice that in Tables 3.3 and 3.4, when m
is small and is not an integral multiple of n for n==3, the fraction of the problem
instances that is within the given § from the optimal solution tends to be small. Overall,
there is little dispersion and, thus, small variance, in the distributions we have obtained.

(3.14)

Table 3.5 shows the minimum deviation §, in percentage, that will include 90 percent
of the problem instances. This value is also referred to as the 90%-fractile or 90-th
percentile value. Generally speaking, as m increases, the deviation measure decreases;
thus, the minimum § in Table 3.5 decreases.

Table 3.2 Probability of Getting an Optimal Solution by the Heuristic Algorithm

m=4 |m=5 | m=6 |m=7 | m=8 | m=9 | m=10 =11 | m=12 | m=13
n== 1.000 | 0.630 |{0.455 | 0.215 | 0.240 | 0.070 | 0.080 0.045 0.025 0.025
n=3 | 1.000 1.000 | 0.905 | 0.550 | 0.330 | 0.150 | 0.085 0.030 0.010 0.005
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Table 3.3 Fraction (in Percentage) of the Problem Instances with § Less Than 0.2%

m=4 | m=5 | m=6 =7 =8 |lm=9 | m=10 | m=11 | m=12 | m=13
n=2 | 100.0 79.0 | 78.0 79.0 | 89.5 89.5 97.0 99.0 99.0 99.5
n=3 | 100.0 | 100.0 | 95.0 81.0 67.5 75.0 82.0 79.0 91.0 96.0

Table 3.4 Fraction (in Percentage) of the Problem Instances with § Less Than 0.4%

m=4 | m=5 [m=6 | m=7 {m=8 |m=9 | m=10 | m=11 | m=12 m=13
n=2 | 100.0 840 | 8.0 | 90.0 | 95.5 98.0 99.5 100.0 99.5 100.0
p=3 | 100.0 { 100.0 | 97.0 88.5 79.0 89.0 93.5 97.0 97.5 98.5

Table 3.5 Minimum § (in Percentage) Covering 90% of the Problem Instances

m=4 |m=5 |m=6 |m=7 |m=8 | m=9 {m=10 | m=11 | m==12 m=13
n=2 | 0.000 |0.822 |0.472 |0.400 | 0.208 | 0.210 | 0.095 0.086 0.058 0.044
n=3 | 0.000 | 0.000 |0.018 |0.556 | 0.705 | 0.433 | 0.280 | 0.290 0.18 0.152

3.3. Step II - Modeling File Distribution

After allocating the transaction types, we are now ready to distribute the shared files
to various host systems. This step does not apply to the file server-based distributed
systems since all shared files will be stored in the file server. We assume that temporary
and private files are stored locally, 1e., on the host where a tramsaction is actually
executed. In the context of local area network-based systems, we assume that there is
complete freedom in allocating the total storage capacity required to various host systems,
so that there is no explicit capacity constraints associated with each host system in the file
distribution problem. Nevertheless, capacity constraints on the algorithm complexity are
taken into account in Section 3.3.2.1 for completeness.

3.3.1. Graph-theoretic Model

As shown in Figure 3.1, we construct a bipartite graph model with two types of
nodes; a node on the left-hand side represents a transaction type, and a node on the
right-hand side represents a shared file. The edge between a transaction type node and a
shared file node is weighted by the rate of physical file (disk) accesses from the transaction
type in question to the corresponding shared file. The rate of file accesses is obtained by
dividing the number of file accesses by the uniprogramming execution time of an average
transaction of that type. The uniprogramming execution time of a transaction is used
here for initial placement instead of the multiprogramming execution time since this is
unknown. The goal of shared file distribution/clustering is to minimize total intercluster,
i.e., remote, file accesses.



transaction type shared file

edges weighted by access rates

Figure 3.1 A Bipartite Graph Model of File Access

Now, we can use the assignment of transaction types to host systems determined in
the previous step to coalesce some of the transaction type nodes and their associated
edges. For example, if transaction types 1 and 4 are assigned to the same host system, we
combine nodes T1 and T4 in the graph in Figure 3.1, and similarly for nodes T2 and T3.
The weights of the edges from this new node to the shared file nodes are computed by
summing the individual weights in the original graph mocdel. A possible clustering for
shared files F1 to F8 is shown in Figure 3.2. We need, however, to retain the original
graph model in order to be able later to calculate remote file access probabilities on a per
transaction type basis.

3.3.2. Graph Algorithms and Their Mathematical Interpretations

The clustering problem for the general graph-theoretic model is NP-complete for
n >2 [Gar79], where n is the number of clusters (or host systems, in our case). For n=2,
we can apply the max-flow min-cut theorem of network flow theory to get the optimal
solution [Law76, Sto77]. For n>2, we have to rely on beuristic algorithms for the
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transaction type shared file

. Host 1(T2TBF3FAFEFT) (N
Host 2 (T1,T4,F1,F2,F5,F8)
........... remote (inter-cluster) accesses

— local (intra-cluster) accesses

Figure 3.2 File Assignment

solutions. For instance, it has been shown in [Wu80] that a heuristic based on successive
applications of the max-flow min-cut theorem yields reasonable clusters.

However, for bipartite graphs, there is a simple polynomial time algorithm to do the
clustering. We shall now describe that algorithm.

3.3.2.1. A Polynomial Time Algorithm

Formally, let us assume that the number of host systems is n, the number of shared
files is k, and the weight of the edge from node ¢ to node j is ¢;;. The objective of the
assignment of shared files to the n host systems is to cluster the host systems-files graph
so that each cluster includes one and only one host system, and the sum of all inter-cluster
edge costs, i.e., the total access rate to remote files, is minimum. Mathematically, we can
formulate this as a standard integer programming problem [Sal75]. The decision variable
z;;is 1if file 5 is assigned to host system ¢, and O otherwise. Notice that the sum of both
inter and intra-cluster edge costs is a constant for a given graph. It is easier in this case



to formulate the problem in terms of the sum of intra-cluster edge costs. Thus, the
objective function to be maximized is

n k n
37 Yc,iz;; , with implicit constraints S z;;=1{or all j, and z;;€{0,1}. (3.15)

i=1 j=I i=1

This problem can be solved by the following simple polynomial-time algorithm. The
objective function to be maximized can be rewritten as
k n
20 ( Xeizis) s (3.16)
Jj=1 =1
and we can take advantage of the fact that each term within the parentheses can be
independently maximized, since the assignment of one file does not depend on the
assignments of the other files. The term in parentheses subject to the constraint
n
Yz=11is maximized by assigning file 5 to the host ¢ with the largest weight c;;.
=1
If there are capacity constraints on some host systems, then we can apply a standard
(binary) integer programming solution technique [Sal75] to this problem, which is NP-
complete. The capacity constraints can be represented as follows :

k
ngijsj < L; forall s, (3.17)

where s; is the size of file j, and L; is the capacity of host system 1.

After clustering the shared files, we can use the original model (see Figure 3.1) to
compute the probabilities of local and remote file access (one for each remote host system)
for each transaction type. A numerical example is given as part of the second example in
Chapter 4.

3.3.2.2. A Simple Extension : Replication of Shared Files

It is often desirable to replicate shared files to allow fast access and to increase
availability at the expense of the overhead involved in concurrency and consistency
controls [Koh81, Stu80, Par82, Wal83]. As a simple extension to the above algorithm, we
can easily allocate shared files with a replication factor of two, i.e., two copies are stored
for each shared file in the distributed system. In this case, it seems very attractive to
have one copy of the shared file stored in a file server, and the other copy stored on a host
system according to the file distribution algorithm we have outlined. We have, on the one
hand, maximized the probability of local accesses for the shared file, and, on the other
hand, we route the necessary remote accesses to a file server which is less sensitive to the
congestion that may exist in various host systems. The ‘“centralization’’ of the second
copies in the file server also eases somewhat the thorny issues of corcurrency and
consistency controls.

If we are distributing two copies of each file to two host systems, it is not obvious
how to represent these two access alternatives in a graph-theoretic model. However, in
mathematical terms, we simply modify the constraints in (3.15) to



n
Y z;;=2 forall 5, and z;;€{0,1}. (3.18)
i=l1
Arguments and algorithms similar to those we have discussed above can then be applied
to this replication problem. That is, the first copy is allocated to the host system that
accesses it most frequently, i.e., to the host system ¢ with the largest ¢;;, and the second
copy goes to the host system with the second largest c;;.

If capacity constraints exist, then we have again an integer programming problem,
and any standard solution technique for such problems can be employed.



CHAPTER 4

Performance Requirement Verification by Queueing Network Models

In the second half of the design methodology, queuing network models are
constructed for the distributed system being configured. These models allow us to gain
insights into the interactions and the contention for resources among transactions in the
proposed distributed system configuration. More specifically, they offer a relatively fast
and inexpensive way of verifying whether the given performance requirements can be
satisfied by the system being configured. Bottleneck detection and capacity planning can
also be done on the basis of the queuing network models to be introduced, as
demonstrated in this chapter.

Our models will be product-form queuing networks [Bas75], that can be analyzed
quite rapidly and inexpensively by any of the several solution packages now available
commercially. The models are constructed hierarchically, by first modeling the various
subsystems, and then integrating these submodels into a complete system modei. Model
parameters are derived from our workload data by introducing appropriate assumptions.
We conclude this chapter with a simple example on modeling file system organizations by
employing the methodology described here and in the previous chapter, and a more
comprehensive one illustrating the design process for the configuration of a local area
network-based distributed system.

4.1. Queueing Network Models

We model a local area network-based distributed system in the same way as it is
actually constructed, i.e., connecting subsystems together by a local area network. Well
known models of a single-machine environment [Boy75, Buz78] are used as models for the
subsystems. These submodels are then integrated into a complete distributed system
model. This composition method has been “validated” to some extent when a model of
the LOCUS distributed system was built {Gol83].

We have already discussed in Chapter 2 the file sharing characteristics of our
workload, and of business applications in general. As far as directories for the distributed
file system in this study are concerned, we assume that each host has a complete directory
of all permanent shared files, and that, because of the stability of these files, directory
updates are so infrequent that the network traffic and the overhead caused by them have
negligible effects on performance.

In a general distributed and fully or partially replicated directory structure, we could
introduce the probability of directory look-up or update, and represent the resource
demands of this operation by some CPU and network service times appropriate for the
directory structure in question. This would clearly require some measurements or at least
estimates of the directory accessing overhead and of the probability of incurring it.
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4.1.1. Components of Models

4.1.1.1. Host System

We assume that in our system each CPU is multiprogrammed, and has one or more
disk drives and several terminals connected to it. The host system model includes a
pumber of active user terminals which initiate interactions by entering commands or data.
Each interaction typically requires some CPU bursts, a few disk accesses, and some
display outputs before ending by returning to the user at the terminal. Figure 4.1
illustrates the central-server model [Buz71] of a host system. The CPU is modeled as a PS
(processor sharing) service station, which approximates a time-sharing multiprogrammed
processor. The disk drive is modeled as a FCFS (first come first served) service station,
and both the display output and the user terminals are modeled as IS (infinite servers)
service stations.

A typical process will use the CPU, do a disk access or a display output, use the
CPU again, then the 1/O subsystem again, and so on, until it returns, after its last visit to
the CPU, to the user terminal. We generally assume that the number of active terminals
is fixed, and that each host can process more than one transaction type. All transactions
of a given type have statistically identical behaviors, and constitute a single routing chain
in the model. Each terminal, in our model, keeps entering transactions of the same type,
but a host can have terminals corresponding to various transaction types.

4.1.1.2. File Server

A file server is just a specialized host system which has no user terminals, hence, no
display outputs. In reality, a file server can achieve economies of scale by using high-
density disk packs and high-speed disk channels, and distributing the cost of this
equipment over all host systems. However, these considerations are beyond the scope of
the models described here, which are intended to provide approximate predictions of
performance. The length of the CPU service time in the file server is usually much
shorter than that of typical CPU burst in a host. It generally depends on the efficiency of

E:E]-O CPU

A A .
Disk v
Display : E[E
Terminal

Figure 4.1 A Queueing Model for a Host System
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the communication protocols that are executed in the file server in order to satisfy
requests from various host systems. The total CPU requirement at the file server is
bounded from below by the time it takes the file server to unpack a request datagram
[Tan81], to initiate the I/O request, and to pack a return datagram which presumably
contains the file sector requested. Figure 4.2 illustrates the model of a file server.

4.1.1.3. Local Area Network

The backbone of the distributed system we are considering is the local area network.
It is assumed that the local area network uses a multiaccess protocol [Met76]. This
component does not necessarily behave as a FCFS server; however, this approximation
will generally be appropriate when the network is not heavily loaded [Alm79, Sho80]. If
we make this assumption, the local area network can simply be modeled as a FCFS server
with arrivals from all hosts and departures towards them. However, if the network is
fairly loaded, say 20 percent utilized, we should use a more accurate model for 1t, since it
is quite likely that we will underestimate the queueing time through the network by
ignoring the delay due to collisions.

4.1.2. File Server-based Distributed System Model

Models for the type of distributed systems being studied can be obtained by simply
integrating a number of host system models with a local area network model, and a file
server model. Slight modifications of the host system model are needed, however.
Specifically, in the file server-based model to be studied in this chapter, there is no local
disk drive within each host. Nevertheless, it is straightforward to add a disk server in the
host system model if there is a scratch disk platter in the proposed host system for storing
temporary files and caching permanent files or sectors. All disk drives are in effect
grouped together under the control of the file server's CPU. Therefore, a disk I/O
operation would go through the network node to the CPU of the file server to access a file
server's disk drive, and back through the network node again. Disk I/O’s from all hosts
are essentially ‘‘remote’’ accesses, and they must compete for resources in the file server
among themselves. There is no need to distribute files over various host systems in these
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Figure 4.2 A Queueing Model for a File Server
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configurations. The file server-based model becomes less complicated since all file accesses
are ‘“‘symmetrical”, in the sense that the overhead involved in the file server is
independent of where the request originates. A model for this type of distributed system
is shown in Figure 4.3. A sample path of a complete user interaction is given by the
dotted line in the same figure. Note that jobs/transactions will always return to their
“home" host because of their belonging to the routing chain that corresponds to their
transaction type, and of the assignment of each tramsaction type to a single host. Note
also that, if a method were used in the first half (see Chapter 3) which assigned
transactions of the same type to more than one host, that type would have to be
subdivided into subtypes, each consisting of the transactions of that type assigned to a
particular host, and a distinct routing chain should be used to model each subtype in the
queueing network model in order to ensure the return of each process to its home host
after a remote access.

CPU

W v
l lespl%: IE |

Termim).l:(< )): TE
CPU

Figure 4.3 A Model of a File Server-based Distributed System
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4.1.3. Distributed File System Model

A model for a distributed system in which shared files are stored in various hosts can
be similarly obtained by integrating a npumber of host system models with a local area
network model. Remote disk/file accesses in a distributed file system model are routed in
a way similar to that used in the file server-based model by viewing a remote host system
as a file server for the purpose of a particular disk access. A remote disk access will go
through the network node to the remote host’s CPU first, then to the remote disk, then to
the remote CPU again before coming back to the local CPU through the network node. A
remote access must compete with processes running on the remote host for both the
remote CPU and the remote disk drive. A model for this type of distributed system is
shown in Figure 4.4. A sample path of a complete user interaction is given by the dotted
line in the same figure.

4.1.4. Computing Model Parameters

Most of the model parameters can be obtained from the basic analysis of the
workload presented in Chapter 2, ie., in Tables 2.1, 2.2, 2.5, and 2.6. The branching

T g -—--—----
®
51
53
BlE [S
p—"g -g
% l
A
| Ll
]
I

-, T = = — —

|

|

1

|

1

| .

| Termmal:(‘( )}: E[E
|

1

|

{
a4 Network |
|

Figure 4.4 A Model of a Distributed File System



31

probabilities for disk 1/O’s are invariant with respect to the file system organization. It is
necessary, however, to break down these numbers further in an environment with a
distributed file system. This breakdown depends entirely on where the shared files are
stored as a result of applying the first part of the iterative methodology presented in
Chapter 3. The example in Section 4.3 shows how this can be done.

4.2. A Simple Example Modeling File System Organizations

We have already illustrated in the last section how queueing models of the two basic
file system organizations, file server-based and distributed file systems, can be constructed,
and we now show how they can be used to compare the performances of these
organizations.

4.2.1. The Example

In this example, we make the following simplifying assumptions. All hosts have the
same number of active terminals, and all terminals are used to input the same transaction
type. In the model of a distributed file system, the probability of remote disk access by a
transaction/job is the same at all hosts; furthermore, if the disk access is remote, all other
hosts are equally likely to be accessed.

All transactions in the system are assumed to be of Type 1 (see Chapter 2). The
characterization of that type (T1) is summarized here for convenience as follows :
(1) the mean number of user interactions in a transaction is 47;
(2) the mean total CPU time demand is 16.7 seconds;
(3) the mean number of physical disk accesses per transaction for all shared files is
179;
(4) the mean number of display outputs per transaction is 217.

We assume that each interaction of a transaction uses on the average the same
amounts of resources. The CPU bursts and the branching probabilities to disk, terminal,
or display server are calculated by assuming geometric distributions of the number of
visits to the CPU. Other important parameters are the user think time, the disk service
time, the network service time, the display output service time, and the file server's CPU
service time. These times are assumed to be 1 second, 32.07 milliseconds, 0.17
milliseconds, 14 milliseconds, and 5 milliseconds, respectively.

Most of the above simplifying assumptions were made to reduce the number of model
parameters that could be varied. Three control variables were considered in this
experiment, for both the file server-based model and the distributed file system model.
The total number of terminals in the proposed distributed system ranged from 2 or 3 to
36, the number of hosts in the distributed system was either two or three, and the
probability of remote disk access was either 0.05 or 0.30. Only numbers of terminals that
are integral multiples of the number of hosts were actually used in the experiment.

The experiment was carried out by using the RESQ2 queuing network analysis
package [Sau82]. We show the mean response time versus the total number of terminals
in Figure 4.5, and the total system throughput in transactions/second versus the total
number of terminals in Figure 4.8.
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4.2.2. Analysis of the Results

On the basis of our approximate models and under all of the assumptions we made,
the distributed file system is performance-wise better than the file server-based system
when the system is not very congested, 1.e., when the number of terminals is low. The
converse is true when the system is sufficiently congested. However, the differences
between the two organizations in our experiment are not substantial, as shown in Figures
4.5 and 4.6. The cross-over point depends on the probability of remote disk access. The
lower this probability, the higher the congestion a distributed file system can tolerate
without losing in the comparison with a file server-based one. Both response time and
throughput exhibit this phenomenon.

Results of this type are very useful in configuration design as well as in choosing a
proper file system organization for a given workload. We can use curves like those
presented in Figures 4.5 and 4.8 to select a minimum configuration that meets both the
throughput requirement and the response time requirement by choosing a suitable number
of hosts. For an existing distributed system, we can also easily check whether adding a
few user terminals can increase the throughput enough to meet new demands while still
keeping the response time below a reasonable limit.

In the particular system we experimented with, the bottlenecks were the host CPUs.
Another experiment was carried out by hypothetically improving CPU speed by twenty
percent in a file server-based system. The improvements to be expected of this proposed
system are presented in Figures 4.7 and 4.8. It is interesting to observe that a 20%
speed-up of host CPUs may allow the system designer to satisfy the new performance
requirements simply by upgrading the CPUs without adding new hosts. The eventual
decision will really depend on the relative costs of CPU upgrading and of the addition of a
new host.

4.3. A More Comprehensive Example and Its Analysis

This section presents an application of both parts of our methodology to a realistic
configuration design problem. Models of distributed systems with two host systems are
constructed with and without a file server using the first four types of transactions
described in Chapter 2, i.e.,, T1, T2, T3, and T4. Transaction type T5 is not included in
the example since this type of transaction mainly involves output printing and always
runs with a much lower priority with respect to the other transaction types in the system.
The shared files used by these transactions, to be distributed when appropriate, are the
twenty files listed in Table 2.2.

The numbers of terminals corresponding to various transaction types are chosen to
closely match the relative throughputs requirement. Configuration design experiments
were run with two different file system organizations as well as two CPU speeds. The
values of mean CPU bursts shown in Chapter 2 were used for the “regular” type of CPU,
while a 40 percent reduction of those values was assumed to reflect proposed technological
and architectural enhancements in the CPU’s design. This new CPU type is referred to in
our experiment as the “‘enhanced” CPU. We experiment with three terminal population
sizes. The number of terminals/transactions for each transaction type is increased
approximately linearly to maintain the relative throughputs of the transaction types.
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4.3.1. Configuring a Hypothetical 2-Host Distributed System

We first derive the relative number of terminals corresponding to each type of
transaction needed to match the relative throughputs in Table 4.1. Some relevant data
from Chapter 2 are listed again in Tables 4.1, 4.2 and 4.3 for clarity. Notice that the
relative throughput requirement among the four transaction types in Table 4.1 is re-
normalized since T5 is not included in the configuration design. The initial requirement
for the (relative) number of terminals for each transaction type is the ratio of the relative
throughput requirement to the transaction throughput rate (per terminal) under the
uniprogramming assumption. Without loss of generality, the terminal requirement for T3
is chosen as the base (1.00) for the relative number of terminals required by each
transaction type.

In Table 4.2, we compute the relative CPU demands for each transaction type and
assign transaction types to host systems by balancing their CPU demands. The CPU
demand rate per transaction type is the product of the CPU demand rate per terminal
and the relative number of terminals per transaction type. Since terminals of the same
transaction type are assigned to the same host system, it is easy to see by using the
heuristic algorithm in Section 3.2.2 that transaction types T2 and T4 are in the same host
system H1, and transaction types T1 and T3 are in the other host system H2. It is
conceivable in practice to assign terminals of the same transaction type to different host
systems so that CPU demands can be better balanced; however, this is not done in this
example.

Table 4.1 Relative Number of Terminals

Transaction Relative Throughput Relative Number
Type Throughput (/minute/terminal) of Terminals
T1 25% 0.822 2.36
T2 25% 0.336 5.75
T3 18.75% 1.450 1.00
T4 31.25% 1.695 1.43

Table 4.2 Relative CPU Demands

Transaction | Elapsed {CPU Demand Rate [Relative Number | CPU Demand Host
Type {Time (s)| (/s/terminal) of Terminals |Rate (/s/type) |Assignment
T1 72.905 0.230 2.36 0.542 H2
T2 178.049 0.203 5.75 1.167 H1
T3 41.229 0.690 1.00 0.690 H2
T4 35.393 0.246 1.43 0.350 H1
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Table 4.3 Relative Disk Access Demands

Transaction | Elapsed | Disk Access Demand | Relative Number | Disk Access Demand
Type Time (s) | Rate (/3/terminal) of Terminals Rate (/s/type)
T1 72.905 2.455 2.36 5.793
T2 178.049 4.684 5.75 26.933
T3 41.229 2.425 1.00 2.425
T4 35.393 1.186 1.43 1.695

Table 4.4 Relative File Access Rates

Shared Files

Transaction Type F2 F4 F5 F8 F13
T1 0.191 1.795 0.486 1.164 0.144

T2 2.801 12.200 2.181 6.086 0.000

T3 0.196 1.336 0.395 0.494 0.000

T4 0.088 0.000 0.000 0.296 0.088

H1 (T2+T4) 2.889 12.200 2.181 6.372 0.088
H2 (T14T3) 0.387 3.131 0.881 1.658 0.144

With this assignment, we next attempt to allocate shared files in order to minimize
total remote file accesses. We first compute the relative file access rates in Table 4.3. The
disk access demand rate per transaction type is the product of the disk demand rate per
terminal and the relative number of terminals per transaction type. As seen in Table 2.2,
files F1, F8, F9, F11, F14, and F16 are used very infrequently by transactions of types T1,
T2, T3, and T4; hence, these files can be arbitrarily assigned without having significant
impact on the file access performance of the distributed system being configured. We can
further take advantage of this situation by assigning them to host systems to meet
capacity constraints if there are any, or simply to balance the disk storage size at each
host system if this is desirable. With our simple algorithm described in Section 3.3.2.1, we
quickly identify files F3, F10, and F15 as being made non-trivial use of only by transaction
types T1 and T3 (recall that T1 and T3 are assigned to H2); thus, they are assigned to
host system H2 without further calculations. Similarly, files F7, F12, F17, F18, F19, and
F20 are assigned to host system H1. Table 4.4 shows the breakdown of relative file access
rates for the rest of the unassigned files, calculated by using the conditional probabilities
in Table 2.2 and the data in Table 4.3. Since transaction types have been already
assigned at this point, relative file access rates for each host system can be computed as
well.

With Table 4.4 and our simple file assignment algorithm described in Section 3.3.2.1,
files F2, F4, F5, and F6 are assigned to host system H1 and file F13 is assigned to host
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system H2. In summary, shared files F2, F4, F5, F6, F7, F12, F17, F18, F19, and F20 are
assigned to host system HI; shared files F3, F10, F13, and F15 are assigned to host system
H2; shared files F1, F8, F9, F11, F14, and F16 can be assigned to either host system. At
this point, we can easily compute the conditional probabilities of local file access and
remote file access by each transaction type. This is shown in Table 4.5. In order to
reflect the existence of those negligible remote file accesses, we prefer not to have zero
entries in the table; thus, a small number 0.001 is used instead.

This constitutes the initial configuration for 2 hypothetical 2-host distributed system
with a couple of major design alternatives, i.., file system organizations and CPU speed
improvement. With the results of queueing network models, we can then iterate the steps
of the basic methodology to obtain a configuration that will better meet the performance
requirements.

4.3.2. Analysis of the Results

Three sets of user population sizes are assumed in this example. They will be
referred to as the “minimum"”, “medium”, and ‘“maximum” user populations.
Specifically, the minimum user population vector is (2,8,1,1), and corresponds roughly to
the relative number of terminals in the last column of Table 4.1; this means that there are
9 terminals running transactions of type T1, 6 of type T2, 1 of type T3, and 1 of type T4.
Similarly, the medium and maximum user population vectors are (5,12,2,3) and (7,17,3,4),
obtained by multiplying by 2 and by 3, respectively, the relative number of terminals in
the last column of Table 4.1. Notice that we round off these relative numbers to the
nearest integers. The medium and maximum population sizes are approximately twice
and thrice the minimum user population vector, respectively.

The utilizations of the CPUs, the disks, and the network are plotted in Figures 4.9
and 4.10. It is clear that these proposed systems are CPU-bound even for the minimum
user population. As we increase the user population, the utilization of the file server only
increases slightly due to the severe congestion at the CPUs in the host systems. Also
notice that the disk utilizations of the two host systems in the distributed file system case
are not well balanced. This is not too much of a surprise since the pattern of file accesses
shown in Table 4.4 is very skewed. No matter how we assign the most heavily shared
(single-copy) files, significant remote file accesses cannot be eliminated; thus, the usage of
the disks in the two host systems is bound to be uneven.

Table 4.5 Probabilities of Local/Remote File Access

Transaction Type Prob;,.u Prob . pote
T1 0.369 0.631
T2 0.999 0.001
T3 0.001 0.999
T4 0.948 0.052
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Similar results are shown in Figures 4.11 and 4.12 for the same configurations with
an “enhanced’” CPU. In this case, the file server is better utilized as the user population
grows from the minimum to the medium size. Increases in utilization are much better
spread out across the various resources. The utilizations of disks in the case of the
distributed file system organization are still uneven.

Response times and throughputs for these four transaction types are shown in
Figures 4.13 and 4.14. The throughputs of these four transaction types with the
“regular” CPU for the minimum user population actually match the given relative
throughput requirement quite well. It is not necessary to modify the user population in
order to obtain a better match with the requirement. When the user population is
maximum, severe contention in the CPUs and disks affects unevenly the transactions of
various types; thus, adjusting the user population of each type in the proper direction
appears to be necessary. If we are in the design or planning stage, this is probably not the
first operation to be done, since the system is completely saturated. In these conditions,
the throughputs of all trapsaction types suffer significantly; tuning the system to match
relative throughput requirement is indeed not very interesting. Response times as well as
throughputs are insensitive to the file system organization in Figures 4.13 and 4.14, since
both of these indices are basically limited by the speed of the host CPUs.

In Figures 4.15 and 4.18, we show the response times and throughputs we expect to
obtain with the enhanced CPU. The improvements in both the response times and the
throughputs are very significant and not surprising. In order to match the relative
throughputs in the case of the maximum user population, iterations on the number of
terminals for each type appear necessary. The iterations to fine-tune the configuration are
part of the methodology, but are not carried out here explicitly. Note that the
utilizations of the CPUs in both host systems are very high with the maximum user
population, as shown in Figure 4.11. That the throughputs of some transaction types
(e.g., T3 and T4 in Figure 4.16) actually decrease at the maximum user population is
partially due to the non-linear (although approximately linear) increase in the user
population for each transaction type when we go from the medium user population to the
maximum user population.

With enhanced CPUs in the system, both the response times and the throughputs of
all transaction types exhibit some sensitivity to the file system organization, as shown in
Figures 4.15 and 4.18. When the host systems are more congested, the file server-based
system exhibits better performance. As far as the remote file access of a transaction is
concerned, it is performance-wise preferable to “travel” through the least congested path
to get the requested service dome. This path includes both the remote CPU and the
remote disk. It is not unreasonable to expect that a file server in a heavily loaded
distributed system will actually serve as a relief path for remote file access activities. The
file server in this case will be a better choice from a performance viewpoint when it is
properly designed and configured, like the file server-based 2-host distributed system we
have described in this section with an “enhanced” CPU in the case of maximum user
population.



CHAPTER 5

Characterizing Multi-phase Workloads in Queueing Networks

The resource demands of the interactions within a transaction are generally not
uniform. This is not too surprising, since the earlier phases of a transaction often involve
the preparation of data and the retrieval of records, and only later do the computation
and record updates actually occur. For example, the last user interaction of a type 1
transaction (see Chapter 2) consumes on the average approximately 25% of the total CPU
time demanded by the transaction and accounts for about 50% of the total disk accesses
[Whig3]. This observation has led us to the construction of models that reflect this finer-
grained characterization of the workload. In a queueing network model, this can be
accomplished by allowing transactions to go through class changes which reflect changes in
resource demands.

A simple example of a 2-phase workload characterization for transaction type 1
described in Chapter 2 is given in Tables 5.1, 5.2, and 5.3. In this example, we have
divided the 47 interactions of transaction type 1 in Table 2.1 into two phases : the first
phase includes the first 48 interactions; the other consists of the final interaction. Each
phase is characterized by its measured resource demands, as shown in Table 5.1. We do
not conmsider display outputs (see Chapter 2) in this study. In Table 5.2, we have
summarized the resource demands per interaction for each of the two phases. The model
parameters, CPU bursts and branching probabilities, are presented in Table 5.3.

Interestingly enough, the performance measures of interest, i.e., throughput, mean
waiting time, and mean queue length, turn out to have the same values as those produced
by models with the single phase assumption on resource demands. It is obvious, however,
that a multi-phase workload characterization will provide some detailed performance
measures that cannot be captured from the single phase workload characterization. This
observation has led us to a formal characterization of multi-phase queueing networks.
Earlier evidence of an equivalence relationship between these two types of workload
characterization can be found in [Fer82]. We shall demonstrate the existence of this
relationship in Section 5.1; furthermore, we shall show in Section 5.2 how to obtain
detailed performance measures corresponding to a multi-phase workload characterization
directly from the results of a queueing network model based on a single phase workload
characterization. A simple example in Section 5.3, which generalizes the 2-phase workload
characterization given in Tables 5.1, 5.2, and 5.3, concludes this chapter.

5.1. Reducing Multi-phase Queueing Networks

Although some definitions and results introduced in this chapter are applicable to
general queueing networks, we shall restrict our discussion to product-form queueing
networks [Bas75, Kel79], whose global equilibrium state distribution can be expressed as a
product of the equilibrium state distributions of individual service stations. The notation

43



Table 5.1 Workload Data for Transaction Type 1
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Phase Number of Think Time CPU Time Number of
Interactions (sec) (sec) Disk 1/O’s
1 46 1.0 12.585 89.5
I 1 1.0 4.195 89.5
Table 5.2 Resource Demands per Interaction
Phase CPU (second) Disk I/O
I 0.273 1.945
1§ 4.195 89.5
Table 5.3 CPU Burst and Branching Probabilities
Phase CPU Burst | Probability to Probability to Probability to
(msec) Disk Terminal (class change) | Terminal (no class change)
1 92.699 0.661 0.332 0.007
I 46.353 0.988 0.012 0.000

and terminology used in this chapter are similar to those used by Baskett et al [Bas75].

It is common practice to represent the routing behaviors and the patterns of resource
demands of various customers/jobs by different classes and class transitions [MooT1,
Bas75, Fer82). The networks in which this is done may be called multi-phase queueing
networks. Different phases are encoded by different classes, and the phase transitions are
governed by the transition probability matrix for classes changes. We define a queueing
network to be phase-free if there is at most one class for each (open and closed) chain in
each of the service stations. In essence, the routing behavior of a customer in a phase-free
queueing network is probabilistic or ‘“memoryless’’.

In the rest of this section, we describe a two-step reduction procedure that can be
used to obtain, from a general multi-phase queueing network, an equivalent phase-free
queueing network. This equivalence is called state-equivalence in the sequel. We use the
term aggregate state description to refer to a state description that is based on the
number of customers at each service station of a given chain and does not specifically
identify their individual classes. The term detasled state description is used to refer to a
description which distinguishes customers by their classes. It is true that a multi-phase
queueing network can provide detailed (i.e., per class) performance indices; however, we
shall show in the Section 5.2 that important detailed performance measures can be readily
derived from the corresponding measures at the aggregate state level in the phase-free
equivalent network. These results are not only intuitively appealing, but also useful in
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some computationai zspects of the convolution algorithm that may be used to solve
product-form queueing networks [Lam83).

When obtaining the phase-free network equivalent to a given multi-phase network,
the general topology, the queueing disciplines of the service stations, and the routing
structure at the level of the service stations do not have to be changed. As shown below,
only the two following sets of network parameters are to be derived for the equivalent
phase-free counterpart : the mean aggregate (composite) service time at each service
station for each chain, and the branching probabilities (the transition matrix) at each
service station for each chain.

Let the pair (i,r) represent the state of a customer of class r at service station .
The transition from state (i,r) to state {(j,s) can be characterized by the probability
P;..;, - In essence, a customer of class r at end of service at station ¢ goes to station J
and changes to class s with probability P; ,,;, . An open or closed chain C can be defined
as a collection of (i,r) pairs which a customer of this chain may go through, i.e.,
C = {(i,r)}. Particularly, if ({,r)€C and (1,8)€C implies r=s for each chain in a
queueing network, the queueing network is phase-free.

5.1.1. Step I : Mean Aggregate Service Time

Step I : For each (open or closed) chain C, the mean aggregate service time 1/p; at
service station s is set equal to
€ir 1
,'(;’Z,J;ec Z Cir Hir (51)
r(s.rjec

where ¢, is the (relative) throughput for class r customers at service station
i, and 1/p,, is the corresponding mean service time.

Essentially, the aggregate service time of a single phase, i.e., phase-free, queueing
network at each service station is computed as the weighted sum of individual service
times of each class, where the weight is the relative throughput of each class. We
sometimes refer to ¢; = Y ¢, as the total (relative) throughput at service station 1 to

r(s,r)€C
be attributed to chain C'. (W)e do not mention symbol C in e; explicitly for brevity.

The equivalence relationship between a single phase queueing network and a multi-
phase queueing network can be demonstrated rather easily from the work by Kelly
[Kel79])'. Kelly introduced the notions of stochastic reversibility, network of symmetric
queues, and network of quasi-reversible queues. The quasi-reversible queues described by
Kelly include all four types of queues that can be found in a BCMP network [Bas75]. His
work encompasses a class of the product-form queueing networks slightly more general
than that of product-form networks described in [Bas75]; nevertheless, his treatment of
the product-form results is much more coherent and concise than that in [Bas75), because
of his use of the powerful paradigm of reversibility argument. The proof of state-
equivalence stems from Theorems 3.8 and 3.12 in [Kel79]. The relevant parts of these

ror some obscure reason, Kelly’s work is not well known in the computer science community.



46

theorems are combined and re-stated below as Theorem 5.1, with the notation and
terminology used in [Bas75]. The proofs of these theorems can be found in [Kel79].

Theorem 5.1 [Kel79]
A network of quasi-reversible queues has the following properties :
(i). The probability that a queue in the network contains n customers is of the form

n
a;

T #:0)

(==}

(5.2)

subject to normalization in the probability space, where #,(1) is the service rate of
c.
service station ¢ when there are | customers in the queue, and a; =} =
r{i,rleC Hir
(ii). Given that there are n customers in the queue, the classes of customers are
i_ndependent,/and the probability the customer in a given position in the queue is of
Cirl Bir

class r is
i
For example, for an infinite server station, the service rate #(1) is defined by o(l)=I.
Part (ii) of Theorem 5.1 is particularly significant, as it states that, given the aggregate
state distribution, the conditional detailed state distribution is multinomsal.

Given a multi-phase queueing network, applying step I of the reduction procedure we
have
Up; = X (ei/e;) 1/ my, hence e;fp;= 3 /by,
r{i,r)EC r(s,r)EC
and, from part (i) of Theorem 5.1, a state at the aggregate level of the multi-phase

queueing network must have the same probability as that of the phase-free queueing
network.

That this is the case can also be demonstrated algebraically from the results in
[Bas75] by summing up all the relevant probabilities and using the multinomial expansion
identity ’

ni

R R a,
(L o) =nt( X [T +) (5.3)
==} Z"i'a' 1=l L

This procedure was in fact applied to prove a less general result in Ferrari’s work [Fer82].

5.1.2. Step I : Branching Probabilities
Step II : For each (open or closed) chain C and each service station s, we define the
aggrega[e state (1) = {(i,r)1r(¢,r)EC}. The new entries of the transition

matrix |P;;| for chain C are of the form
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Cir Pi,r;j,:

Py
(5.r)E6)G)El)

2 Cir
(¢,r)€l)

P; =

(5.4)

The denominator in (5.4) should be interpreted as the normalization factor for each
row of the new transition probability matrix. It is fairly straightforward to show that the
relative throughputs ¢; (for all i) derived from this new matrix are exactly 3 e, for

r(s,r)EC
an open chain, and differ from } ¢; only by a multiplicative constant i('or)a closed
r(i.r)eC

chain. This property is referrecg t,)o as throughput-equivalence for the two queueing
networks involved in this reduction procedure of the transition matrix. In general, state-
equivalence does not imply throughput-equivalence, as shown by the simple example in
Figure 5.1, where all service stations are operating with a FCFS queueing discipline. The
corresponding throughputs of these two similar networks at all service stations cannot be
the same simply because the branching probabilities are not the same. However, the
relative loadings at all corresponding service stations, i.e., the a;'s in Theorem 5.1, are the
same. Thus, the equilibrium state distributions are the same for both networks.

It will become much clearer later that the reduction in step II is not essential for the
derivation of the equilibrium state distribution, or for that of the performance measures

A

E : e (throughput)

E : e (throughput)

1.5p P=0.7
( ) [:L-E 0.75e
0.5p 1-P=0.25
C ) D:E 0.25e

Figure 5.1 State-equivalent, not Throughput-equivalent Networks
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associated with the detailed state space. It is needed only when the transition probability
matrix of the phase-free queueing network in question is explicitly called for.

5.2. Obtaining Detailed Performance Measures

In this section, we shall show that, given a multi-phase workload characterization,
detailed performance measures of multi-phase queueing network models can be easily
derived from equivalent phase-free network models without solving directly the more
complicated multi-phase queueing network models. As mentioned in the previous section,
the detailed state distribution for the multi-phase queueing network can be constructed
from the phase-free result by using the property of conditional multinomial distribution in
part (ii) of Theorem 5.1. In general, we are interested only in a few performance measures
such as throughput, mean waiting time, and mean queue length. These performance
measures can be readily derived on a per class basis from the performance measures at the
aggregate level. Specifically, we are going to show how to calculate throughput X\;, mean
queue length L;,, and mean waiting time W,, for each class r from the corresponding
aggregate measures \;, L;, and W;.

5.2.1. Throughput

Using the reduction procedure described in Section 5.1.2, we preserve the
throughput-equivalence relationship. The throughput \,, for class r at service station ¢ in
a multi-phase queueing network is expressed as

c-' c.
Ay = : Noor Ny = —X;, 5
E Cip €; ( 5)
r{s,r}eC

where \; is the aggregate throughput at service station ¢ for chain C. This result is
trivial for open chains since the e;,'s are absolute measures of throughputs. The result in
(5.5) is straightforward also for closed chains, since the e;,'s are relative throughputs, and
their ratios equal the ratios of the absolute throughputs.

5.2.2. Mean Queue Length

Given the mean (aggregate) queue length L; for chain C at service station f, the
mean queue length L;, for class r for the general multi-phase queueing network is

Cir/l‘if Cir/”’ir
L. T cem—————c—— . or L TR ememc— L‘ .
" E eir/ﬂir ' ¥ ci/l‘i (5.6)
£ (t,r)EC

The validity of this result comes directly from part (ii) of Theorem 5.1, which states
that the expected number of class r customers in station iois n (e /pi) /(e 1) -
Applying the general definition of mean queue length, i.e.,, L = Y nP(n), it is easy to
show that relation (5.6) holds.
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5.2.3. Mean Waiting Time
The mean waiting time (including service time) W;, for a customer of class r at
service station i is obtained by using Little’s formula, L = \ W. Thus,

L; Vp, L; 1/n;,
Mr=—'=———=——.m, (5.7)

where W, is the mean aggregate waiting time in the simplified phase-free queueing
network.

W,
It is interesting to note that the mean waiting time ratio —v% equals the mean

3
1/[‘:'1'
1/n;

1 . . .

form K; — , where K‘=-VV‘— is invariant with respect to classes of the same chain.
ir i

Note that we use Little's formula to obtain the results for the mean waiting time in this

section; these results will hold if and only if we have both throughput equivalence and

state equivalence between two networks.

service time ratio for class r customers. Also, the mean waiting time W, has the

5.3. An Example of Equivalence Between Two Models

For the queueing network model of a host system in.Figure 5.2 (see also Figure 4.1),
we shall derive parameters from the workload data. We shall do this both for a two-
phase version and for a phase-free version of the model, and demonstrate the equivalence
between these two models. Note that we only show throughputs and mean service rates
for the phase-free version in Figure 5.2.

CPU
AT H O—= >
A A Bops vc.ﬁ.k
. Bdisk
Disk
. xtef'm
Terminal

Figure 5.2 A Model for a Host System
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Let N, Q, and D be the average number of interactions, the mean CPU time used,
and the mean number of disk accesses for a transaction, respectively. Let us also assume
that a transaction can be meaningfully broken down into two phases, and let the detailed
breakdowns of these quantities for these two phases be denoted as follows :

N=NA+NB! Q =QA+QB’ and D=DA+DB, (58)
where subscripts A and B denote the portions attributed to phase A and phase B,
respectively.

We assume that the mean think time 1/\,, and the mean disk service time 1/p 404
are the same for both phases. Other parameters are derived according to the assumption
of uniform resource demands within each phase, and the geometrical distribution
assumption for the number of visits to the various service stations.

For the one-phase or phase-free model, we have the following model parameters :

e D
1 N
=T D » Pisk , and Py, = 1= Py - (5.9)
o 1+ — 1+ ==
N N

Qa D,
1 Ny P _ Ny
Hoed N DA y £ diskA N DA ’
NA NA
Promas = Pap (1=Pyisea) » 304 Propmaa = (1=Pap) (1=Puisea) » (5.10)

where P,p = 1/N, is the probability of a class (phase) change from A to B.

Similarly, the parameters for the second phase are expressed as follows :

98 Ds
1 _ Np p Npg
PopuB N DB s £ diskB N DB ’
Npg Npg
P,ompa = Ppa (1=Puiskg) » a0d Piempp = (1=Pga) (1=Pisip) (5.11)

where Py, = 1/Np is the probability of a class (phase) change from B to A.

In order to show that the performance measures of interest to us are identical in the
two models, it is sufficient to show that we have both throughput equivalence and state
equivalence at the aggregate level. This is done in the next two subsections.
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5.3.1. Throughput Equivalence

We need to write for both models a set of (relative) throughput equations, and solve
this set of equations. The set of throughput equations for the one-phase model is as
follows :

ccpu = Cdisk + Cterm
€iisk = Pisk Ccpu
eterm — (1= Paiak) €cpu
One simple solution for the e’s is e, =1, eaisk=Piisk » 304 €perm=1—Puis - Similarly,
the set of throughput equations for the two-phase model is as follows.
€cpua = CdiskA T Cterma
diska = Paiska Copua

Coorma — (1=Puiaka 1= Pap) €cpua + (1= Paisk) Ppa ¢cmup

€uB = €diskB t CtermB
€4iskp = PiiskB CcpuB

erormp = (1= Puigkg\1—Ppa) €cpup + (1= Piiska) Pap €cpua

One solution for the e’s is
ecua=1» iska=Puiska » Cterma=1"Fuioka ;

_ 1-Pisra Pap 1-Pya Pan Pup

=  €diokB =L disk . and e,y p=(1—Puiskn) = -
cpuB 1— PdiakB PBA 1skB 18k B 1— Pd{lkB PBA termB ukA) PBA

e

It is straightforward algebra to show that the ratio between ¢, and € gyqteoup is
(N+D)/(N4+D,); this can be done by plugging the definitions of the model parameters
derived from the workload data, i.e., relations (5-8) to (5-11), into the solutions for e,
€cpuar 304 €cpup- Similarly, the ratio between eg,; and e€g,patediskn and the ratio
between €, 30 €roma+Ciermp are both equal to (N+D)/(N4,+D,). Since we have the
same Tatios for all three throughput measures, the two networks are throughput
equivalent.

5.3.2. State Equivalence

The mean aggregate service rate for the two-phase model at the terminal service
station is A , SiDce the mean service rates of the terminal stations are the same in both
phases. A similar argument applies to the disk service station. The only mean aggregate
service rate for the two-phase model that needs to be checked against the phase-free
petwork is that of the CPU service station. Let us denote by 1/55, the weighted sum of
1/pepus 30d 1/pcpmp according to (5.1) :
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1 1=Piua Pas 1
+

1
Bea 1= Pauskp Ppa Poun

1/n =
[Wos L+ 1=Pyika Pas

1=Pgp Ppa
After plugging in the definitions of the model parameters, i.e., relations (5.8) to (5.11), we
obtain

_Q _ Q/N
Ubser = K35 = T2DJN — /Pem -

Thus, we have shown that the mean aggregate service time at every service station is the
same for both the two-phase model and the one-phase (i.e., phase-free) model. This
concludes the proof that the two networks we are considering are state equivalent.

Thus, since they are also throughput-equivalent, all performance measures of
interest, i.e., throughput, mean queue length, and mean waiting time, are identical.



CHAPTER 6

Configuring Workstation-based Distributed Systems

The rapid advances in microelectronics technology and the consequent reduction of
computer systems’ costs have led to the development of a special type of distributed
system, i.e., the workstation-based distributed systems. A workstation is a single user
desktop computer system typically with a bit-mapped display, a powerful CPU, and
sufficient memory to execute most user jobs [Tha82, Bec82]. The workstations usually
have limited nom-volatile storage capacity for the user’s permanent data files. These
workstations thus rely on remote file servers for most of their needs in file storage and
retrieval. Often, a file server is a specialized workstation equipped with high density disks
as well as proper software for serving its client workstations. Workstations are usually
connected together by a high speed local area network [Cla78] which facilitates
communications among users as well as allowing access to file servers for file storage and
data retrieval through some suitable mechanism such as a network operating system. File
systems of this type are sometimes called “remote’’ file systems as opposed to distributed
file systems. Notice that the amount of storage capacity at each workstation is likely to
increase in the future; hence, investigations of file/sector/record caching from both the
functional and performance viewpoints provide interesting areas of research with useful
future applications.

In our study, a multiaccess protocol at the data link layer like that used in the
Ethernet is assumed [Eth80]. Packets at this level containing file blocks or disk sectors
are transferred back and forth between workstation and file server. High level file
transfer protocol can be built on top of this data link protocol.

Within the framework we have developed so far, such workstation-based distributed
systems can be easily characterized. These distributed systems correspond to the file
server-based distributed systems shown in Figure 4.4, with one user per host system,;
however, it is often the case that in these distributed systems there are many such single-
user ‘‘host systems’’, or workstations. Large numbers of host systems imply large
numbers of closed chains in the corresponding models; these multi-chain models present
computational difficulties in the solution techniques for the queueing network models. We
shall discuss this issue in the next section. The rest of the chapter discusses the notion of
balanced file server design and a simple workload characterization for various types of
workstation jobs; based on this characterization of the workload, we propose a system-
wide load measure for the prediction of performance indices of various workload types and
for planning the capacity of a workstation-based distributed system.

8.1. A Solution Approach for Multi-chain Queueing Networks

The convolution algorithm for product-form queueing networks was first described
by Buzen [Buz73| for single-chain networks, and was extended by Reiser and Kobayashi
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[Rei75] to multi-chain networks. When the number of network states is large, the
normalization constant of the convolution algorithm may be too large or too small,
thereby causing a floating-point overflow or underflow. The computational complexity, in
time and space, of the convolution algorithm makes it practically intractable f;?r a large

pumber of chains; more specifically, both complexities are proportional to ] (N +1),
k=1

where N, is the number of users in chain k, and K is the number of chains. The mean
value analysis algorithm of Reiser and Lavenberg [Rei80] bypasses the evaluation of the
normalization constant, and computes the mean queue lengths and chain throughputs
directly. It avoids the problem of floating-point overflows, but floating-point underflows
may still occur [Rei81]. Nevertheless, time and space requirements of the mean value
analysis algorithm still grow exponentially with K. Although the tree convoiution
algorithm recently proposed by Lam and Lien [Lam83] reduces the computational cost, in
time and space, it only applies to phase-free queueing networks, and works best only when
the queueing chains are sparse and local. This algorithm certainly allows us to model
comparatively more chains in the queueing networks and get solutions for such networks.

Approximation methods have been used to solve multi-chain queueing networks. A
set of non-linear equations for throughputs were derived and solved in [Gol83]. Mean
queue lengths can be expressed in terms of these throughputs; mean response times are
then derived from Little’s formula. Iteration methods are also used to approximate the
solution of multi-chain queueing networks [Rei79, Rei80]. It is often the case that chain
populations have to be large in order for the approximation methods to work well. In
terms of our modeling efforts, we have one user, the minimum possible, per chain, and this
is not too compatible with the use of these approximation methods.

We propose to turn to the heart of the problem, i.e., the number of closed chains, by
examining the workload characteristics for this particular type of models. It is expected
that the number of closed chains can be significantly reduced by clustering the workload
[Fer78] properly. In the workstation-based distributed system models, the workload for a
particular user (or a transaction type) can be characterized by the tuple (think time, CPU
burst, probability of file server access). The probability of going to the user terminal after
a CPU burst is the complement of the probability of going to the file server; thus, it is not
part of the tuple. Although this tuple is very simple indeed, we shall show in the sequel
another characterization for each workload type, which is a simple function of this tuple
and of the service demands at each station. We choose not to impose the semantic
interpretation of ‘‘tramsaction’” on the sequence of user interactions at the workstations
for these systems, since such interpretation does not affect the solutions of the models, and
the relevant measures at the so-called transaction level can be easily derived from those at
the interaction level.

After the workload is clustered, users are classified according to their workload type;
therefore, the number of chains in the model is reduced. The number of users in a chain
then corresponds to the number of users that get clustered into the same workload type.
We peed not have separate CPU service stations and terminal/think service stations for
the same type of users. Instead, a single infinite-server station can be used for the CPUs
and similarly for the terminals of all users of the same type. This reduces the number of
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explicit service stations as well as the number of chains. For convenience and clarity in
later discussions, we transform the model in Figure 4.4 into the workstation-based model
in Figure 8.1, in which two routing chains are represented. As in the previous models, a
remote disk access goes through the network first, the file server’s CPU, one of the disks,
back to the file server’s CPU, then back to the CPU of the workstation through the
network again. Notice that we still assume the same (exponential) service time
distribution for the FCFS stations, i.e., the local area network and file server’s disks, for
all workload types. Thus, it is possible, though too compact conceptually and less clear in
the presentation, to coalesce users of all workload types into single infinite-server service
stations corresponding to terminals and CPUs, respectively, while using different classes to
reflect different service demands and to distinguish among workload types in the local area
network and file server, so that they can be routed properly in the queueing network.

8.2. Workload Data and Model Parameters

The workload data used in the queueing models are drawn from Chapter 2. Since
the workload has supposedly been clustered, an 1/O-bound transaction type (A) and a
CPU-bound transaction type (B) are selected to reflect simple clustering of workload
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Table 8.1 Workload Types Used

Workload Transaction Type Think Time CPU Burst Probability of
Type in Chapter 2 (s) (ms) File Server Access
A TS 0.5 33 0.99
B T4 2.0 161 0.77
C Tl 1.0 74 0.79

characteristics. In some experiments, a third intermediate type (C) is used. Except for
some numerical round-offs, their characteristics are taken directly from Chapter 2 and
summarized in Table 6.1. We assume the same 32 millisecond disk service time and a 5
millisecond mean file server CPU time. The user terminal in a workstation is connected
directly to the CPU so that there is no need to model the display output server. The
network is assumed to have 10 Mbit/s capacity, and an average packet length of 512 bytes
is used. This leads to a network service time of 0.45 milliseconds. The expected service
time in the file server and local area network is thus a total of 42.9 milliseconds, since the
user job travels through file server’s CPU and network exactly twice, and the file server’s
disk once. If there is more than one disk in the file server, we assume equal probability cf
accessing any one of them for each user job.

8.3. Issues to Be Investigated

We first study issues in the design of the file server and the local area network from
the performance viewpoint. Since these are the only resources shared and contended
among workstations, a balanced design of them will provide good performance as well as
permitting smooth growth in the number of workstations. A balanced design in this
context means relatively equal utilizations among the shared resources. It is convenient to
view the file accesses as arrivals at the file server subsystem depicted in Figure 8.2. Notice
that we use two separate network servers to deal with arrivals and departures only for
clarity in the exposition. Even though the local area network could consist of two
Ethernet-like cables, one for going to the file servers and the other for returning from
them, this is not the case in our model, where arrivals and departures use the same
network server. Arrivals are generated by workstations, and each chain (workload type)
has its own arrival rate A depending on the interactions among all user jobs and on the
characteristics of their resource demands. The arrival process cannot be easily

characterized;! nevertheless, we can deduce a relationship among the relative utilizations
of the network, the file server CPU, and the disks. Assuming that there are three chains
as shown in Figure 6.2, and there are k disks in the file server, the utilizations of file
server CPU, each disk, and network can be expressed as (8.1), (6.2), and (6.3).

YThe arrival process is Poisson for a link in a single chain open network if and only if the link is not part
of a loop [Wal82]; the arrival process is not Poisson for any link in a closed network.
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Since we have the same factor A4+Ag+Ac in all the expressions above, we can
compare the relative utilizations of these resources without having to solve the model
explicitly. With our model parameters, the utilization of the local area network is very
small in comparison to that of the CPU, and can therefore be ignored. In order to
equalize the utilizations of the CPU and the disks, k needs to be 3 with our set of model
parameters. Experiments were run with different numbers of disks for the 2-chain (2
workload types) models. Similar experiments were carried out for 3-chain models as well
in order to examine the effect on the results when there are more chains or workload
types. Performance measures are analyzed as functions of the total number of
workstations from 2 or 3 up to 24. When we add one workstation for one type of
workload, we add one workstation for each of the other workload types as well in order to
simplify the presentation of the results.

Intuitively, the variation of the performance measures, i.e., of the response time and
of the throughput of a workstation, should depend heavily on the characteristics of its file
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access behavior, since this is the only type of resource demand that needs to contend with
those of other workstations in the distributed system. This leads to the idea of
characterizing a ‘‘heavyweight” or “dominant” workload type; we investigate the impact
of performance measures by eliminating CPU-bound (lightweight) workstations in the
corresponding 2-chain models. In essence, by doing so we reduce ourselves to a one-chain
model with the same number of heavyweight workstations without the less file 1/O-
demanding workstations. Performance measures will be computed and compared with
and without the presence of the lightweight workstations in a distributed system model
with a balanced file server. In particular, we will examine carefully the file server arrival
rates in these two configurations.

The third area of investigation is concerned with devising a simple system-wide
characterization of the workload for the workstation-based distributed systems. It is
desirable and often necessary in practice to define a load measure related to the overall file
server arrival rates, so that the file server and the local area network can be properly
configured and designed. For instance, given a file server’s characteristics and workload,
how many workstations can we support before performance drops below a certain level?
Based on the notion of balanced file server design and the characterization of file server
arrival rates, we propose a system-wide load measure p defined as the sum of individual
load measures; an individual load measure for a workstation is in turn defined as the
utilization of the resource in the file server which is most utilized by that workstation (i.e.,
the most critical resource) when it is the only workstation in the system. Thus, p is
expressed as

p= i’m : (8.4)
=1

A

Beritical

where n is the number of workstations, and p; =

Notice that \; is the arrival rate of requests made to the most critical resource in the file
server by workstation ¢. If disks are the most critical resources, \; also depends on the
aumber of disks in the file server. The p;'s are different since X;'s are different. In the
models we experiment with, disks turn out to be the the critical resource throughout.
Because of the single-workstation contention-free assumption, these individual load

Table 6.2 Load Measures for Single Workstation

Workload Tile Server Load Measure Load Measure Load Measure
Type Arrival Rate (/ms) (one disk) (two disks) (3 disks)
A 0.0123 0.394 0.197 0.131
B 0.00118 0.0378 0.0189 0.0126
C 0.00251 0.0803 0.0402 0.0268
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measures can be easily calculated by hand, and are summarized in Table 6.2 for our model
parameters.

We now try to relate the system-wide load measure p to the delay in the file server
and in the local area network. If we have an open queueing network, the sum of the
individual load measures will be the utilization of the critical resource in the file server
complex (which includes the local area network). For a closed queueing network, this sum
will be only a “measure” of the load on the system. We expect that the delay in the file
server complex can be approximated as a simple function of this measure. Since the
workstation part, CPU and terminal, is privately owned, it is easy to calculate its
(terminal) response time and its throughput when the delay in the file server and in the
local area network is available.

Recall that, for a simple M/M/1 queue with arrival rate X\ and service fat,e B, the
1_

as a dimensionless

average waiting time (service time plus queueing time) of a customer 18 m , where

p=L is the utilization of the server {Kle75]. We can view this T

normalized waiting time, or a “‘stretch” factor due to contention at the server. In a closed
queueing network, there is no ‘“‘absolute’ arrival rate at the file server subsystem (see
Figure 8.2), since the delay in the subsystem will be fed back to the workstation
subsystem, and the arrival rate will be automatically reduced to achieve equilibrium.
Although we do not anticipate that the stretch factor will have as simple a form as in the
M/M/1 queue, we attempt to use the system-wide load measure to capture and
approximate the effect of delay in the file server and local area network of the distributed
system.

We shall plot, as functions of the proposed system-wide load measure, normalized
waiting times based on the file server waiting time data obtained from the experiments
carried out in this study. A simple approximation of normalized waiting time as a
function of the system-wide load measure p will be proposed so that first-order capacity
planning in the workstation-based distributed system can be carried out. Although this
functional approximation is not immediately transportable to other configurations, the
idea of the system-wide load measure and the methodology are very general and are
expected to be applicable to many similar systems.

For convenience, we summarize the relevant single-workstation contention-free
performance measures in Table 6.3. Similar to those load measures in Table 6.2, these

Table 6.3 Single-Workstation (contention-free) Performance Measures

Workload | Response Time | Workstation CPU File Server and Throughput

Type (s) Time (s) Network Time (s) (/s)
A 7.547 3.300 4.247 0.124
B 0.844 .700 0.144 0.351

C 0.514 0.353 0.161 0.680
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performance measures can be easily derived from the parameters in Table 6.1 and from
other model parameters. The normalized waiting time is then computed by dividing the
actual time spent in the network and in the file server by the minimum (single-
workstation) service time needed, that is available from Table 6.3. This will generally be
some complicated function of our load measure, but we hope to be able to approximate it
with some simple form.

6.4. Analysis of the Results

8.4.1. Balanced File Server

Experiments were run with one, two, and three disks as well as with different
numbers of workstations for the 2-chain models. The utilizations of various resources are
shown in Figure 6.3. Response times and throughputs are shown in Figures 6.4 and 6.5.
It is apparent that balanced utilizations among resources in the file server are important
for both of these performance measures. The file server arrival rates are important
characterizations for the workload types. They are plotted in Figure 8.6. Notice that the
file server arrival rates can actually drop as the total number of workstations increases
due to contention from different types of workstations.

In order to mix in more workload types, a third intermediate type (C) was added to
the model to study the effect of finer workload clustering on the performance measures.
The functional behaviors of the performance measures versus the total number of
workstations and versus the number of disks in the file server were found to be similar to
those of the 2-chain models. They are shown in Figures 6.7, 6.8, 6.9, and 6.10. The
extremely unbalanced one-disk case is not included in these figures to avoid overcrowding.
The values of the performance measures corresponding to the one-disk case are not
difficult to determine by extrapolation.

8.4.2. Dominant Workload Type

In Figures 6.11, 6.12, 6.13, and 6.14, we compare the utilizations, response times,
throughputs, and file server arrival rates between models with 2 types of workstations and
models with only heavyweight, i.e., type A, workstations. For the purposes of
presentation and comparison, we report on the x-axis the total number of workstations in
the 2-chain models. The number of workstations in one-chain models is only half of the
corresponding value on the x-axis. For instance, if the number of workstations for the 2-
chain models is 10, we mean that there are 5 type A workstations and 5 type B
workstations. Corresponding to the same label 10, in the one-chain model we have 5 type
A workstations and no type B workstations.

This simple experiment confirms our earlier argument that the dominant type of
workload or workstation can be well characterized by its file I/O demand behavior. In
particular, the dominance is reflected in the file server arrival rates shown in Figure 6.14.
This is also evident in Figures 6.6 and 6.10. This observation led us to the idea of
defining a simple system-wide measure related to these file server arrival rates for the
workload as a whole, the “load measure” introduced in Section 6.3.
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8.4.3. A Simple Characterization of the Workload

The file server waiting times are plotted as functions of the system-wide load
measure in Figures 6.15 and 6.16. The curves in those diagrams possess similar forms;
when the system-wide load measure is slightly above one, the values of waiting times
reported there are about twice the minimum service times required in the file server. We
choose to consider a value of load measure near 1 as the typical operating load®. In
systems with load measures significantly greater than one, the (terminal) response times
and throughputs will become completely unacceptable. For load measures much less than
one, there will be no performance problem since the file server is under-utilized.

In order to characterize the throughput and predict (terminal) response times for
other workload types, it is necessary to consider the normalized (file server) waiting time
as a function of the load measure. We plot the normalized waiting time as a function of
our load measure in Figures 6.17 and 6.18. Two figures are used to facilitate the
presentation of many curves. We also show on both diagrams the functions 1+p and
1+p%. The function 1+p® approximates the normalized waiting time for the 3-chain
models quite well. The accuracy of this approximation is very reasonable also near the
typical operating load for the 2-chain and 1-chain models. The over-estimation beyond a
load measure of 1.5 should be acceptable to comservative system designers. We can
employ this simple rule of thumb to calculate the response time and throughput for
various workload types, and plan a workstation-based distributed system accordingly.

Figure 6.19 is the plot of disk utilization as a function of the load measure. (Recall
that disks are the most critical resource in our models.) For the models with balanced or
near-balanced file server, the functional relationship 1—e™” seems to provide a reasonable
approximation and a close lower bound function. Only in the models with extremely
unbalanced file server design this functional relationship underestimates the disk
utilization, or overestimates the load measure corresponding to a given device utilization.
This large deviation is anticipated, and the unbalanced configuration in the file server
which causes this large deviation should probably be the first thing to correct in the
design and operation of such systems.

It is in practice very easy to obtain device utilizations in the running system. This
allows a simple but conservative estimation of the load measure, which in turn can be
used to approximate file server waiting times and to calculate terminal response times and
throughputs. To this extent, this system-wide load measure may be very useful in
planning workstation-based distributed systems.

®The p < 1 condition is referred to as “normal usage” in [McK82].
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CHAPTER 7

Conclusions

7.1. Summary

We have presented an iterative methodology for configuring local area network-based
distributed systems. The characterization of the system’s workload was heavily influenced
by our assumption that the system is an interactive transaction-oriented business
computer system. Since shared files are of great concern in a distributed environment,
two primitive metrics based on a simple user-object model were proposed to capture the
spatial component of file sharing. The workload of business computer installations is
naturally clustered into several major types of transactions, corresponding to different
business activities. The same type of characterization becomes more involved when
applied to a non-business environment, mainly because of the need to cluster and identify
workload types. A set of measurements taken on a medium-sized interactive transaction-
oriented computer system was used to derive parameters for the various models employed
in our configuration design methodology.

The methodology consists of two parts : the assignment of tramsaction types and
computing resources, and the analysis of a queueing network model. The first part of the
methodology is aimed at balancing the CPU loads among the various host systems and
minimizing the total number of remote file accesses in the distributed system. This task is
inherently complicated since it is difficult, to say the least, to express in some simple
functional form the impact of resource contention on the performance measures of various
transactions in the distributed system. The initial assignment of computing resources and
transaction types (workload) is based on the assumption of a uniprogramming
environment. Queueing network models are employed in the second part of the
methodology to determine stochastically the impact of contention on performance
measures. The results of the analysis, particularly the queueing delays and transaction
throughputs, are fed back into the first part of the configuration methodology; if
necessary, the assignments of transactions and computing resources in the proposed
distributed configuration are modified. This methodology promises to become an
indispensable tool for the system designer if we integrate these models into monitoring
and measurement facilities in a running system. Periodic reconfiguration of the
distributed system due to shifts in workload characteristics can thus be carried out
efficiently.

Attempts to break the global resource demands of each transaction into several
phases resulted in the introduction of a special class of queueing networks, the phase-free
queueing networks. Product-form results from Kelly’s work were introduced in Chapter 5
to show the equivalence in terms of some important performance measures between
network models based on a simple phase-free workload characterization and network
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models based on a multi-phase workload characterization. This treatment not only
explains the results obtained by characterizing the workload as comsisting of several
phases, but also simplifies some of the computational efforts involved in getting the
equilibrium solution of a queueing network.

Lastly, we focused on the issues that arise in the design of a special type of local area
network-based distributed system, i.e., a distributed system consisting of workstations and
file servers. Guidelines for designing a balanced file server were derived. A very simple
workload characterization for a workstation was proposed, l.e., that of single-
workstation’s file server arrival rate. A system-wide load measure based on these simple
individual workload characterizations was proposed and evaluated experimentally for
possible use in capacity planning. We also showed how queueing network models can be
used in configuring workstation-based distributed systems.

7.9. Directions for Future Research

The areas for research in the field of local area network-based distributed systems
are many. We shall briefly outline and discuss some of them from a performance and
modeling perspective.

7.2.1. Workload Data Measurements and Monitoring

There have been only a few reports on, and analyses of, workload data measurements
obtained from operational distributed systems [McD75]. This is in part due to the small
number of such systems, and in part to the inherent complexity of collecting and
coordinating data obtained from various computer systems connected by a network.
Further work in this area is needed to increase the level of our understanding of
distributed systems, and to validate various models that have been proposed for the
distributed systems. Tools for understanding and characterizing distributed programs
[Mil84] will provide insights into the applicability of distributed computing to various
problems.

The incorporation of network monitoring mechanisms into an operational distributed
system will facilitate the task of file migration (i.e., file re-assignment) due to shifts of
workload characteristics, and the task of process migration [Pow83] to achieve load
balancing [Alo84] among computer systems connected by the network. Process migration
can be most easily implemented in the context of interactive transaction-oriented business
systems as transaction re-assignment.

7.2.2. Dynamic Reconfiguration

The workload will never remain constant, and the various components in a
distributed system will not always remain operational. Many applications require a highly
available system [Bar78]. The need for dynamic reconfiguration is evident. Data
replication and multipathing for resource access have been widely studied at the
functional level [Bar80, Wal83]. The tradeoff between performance degradation and
availability improvement due to such approaches needs further quantitative study.

From a performance point of view, the issue of load balancing is of great interest.
The load metric, the load forecasting technique, and the control policies are all important
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components of an effective load balancing mechanism. The issues of file migration and file
caching are interesting since programs in a distributed environment are expected to have
both spatial and temporal locality in their data accessing behavior. The degree of file
replication, the granularity of data caching, and the file migration policies {Smi81, Por82]
should be investigated. The effectiveness of various algorithms in the context of local area
network-based distributed systems needs to be evaluated.

In essence, there are three basic areas that can be “reconfigured’’ to either improve
system availability and/or increase performance. Computing resources are subject to
reconfiguration; data files need to be replicated and migrated; programs should be
migrated to balance the utilizations of various computing resources. In the context of
local area network-based distributed systems, all these issues are of great interest and
have important practical application.

7.2.3. Performance Impact of Serialization Delays

We have not represented in our configuration models the overhead due to the
synchronization of accesses to shared files. The performance impact of serialization delays
is of great interest to the methodology presented in this dissertation as well as to the
general context of distributed processing [Haé¢83]. It is intuitive to expect that the
degradation of performance due to synchronization will depend heavily on the granularity
of locks and on the amount of sharing [Rie77]. When the locking granule is a file record
or a physical disk sector which may contain a few records, the probability of actual
conflict between concurrent transactions sharing the same file may be quite small.
Measurements of record/sector accesses by concurrent transactions will be of interest in
performance modeling studies. That of the performance impact of other concurrency
mechanisms such as timestamping in comparison with locking is an interesting study that
has attracted little attention.

The problem of consistency among replicated files needs to be examined with care.
Models that reflect the replication of shared files for fast access are good candidates for
future research in this area.
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