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Abstract

An extremely efficient breakpoint-hopping algorithm is presented for

tracing the driving-point and transfer characteristics of any nonlinear circuit

made of linear (possibly multi-terminal) resistors, dc independent sources,

linear controlled sources (all 4 types) and 2-terminal nonlinear resistors

described by piecewise-linear v-i characteristics. Most resistive nonlinear

electronic circuits can be realistically modeled by such circuits. The algo

rithm can trace not only violently nonlinear (with sharp turning points) and

multivalued characteristics, but also characteristics composed of several dis

connected branches, provided one point in each branch is given.

The remarkable computational efficiency of the breakpoint-hopping algorithm

is due to two key properties built into the algorithm:

1) the circuit equation is formulated into a special form; namely, a canonical

piecewise-linear equation with a lattice structure.

2) the algorithm finds only the breakpoints and possibly one point on each end

(unbounded) segment via explicit formulas (hence no convergence problem).

These data points represent the minimal amount of information needed to

specify a piecewise-linear characteristic uniquely.
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1. INTRODUCTION

This paper is a sequel to [1], where we have proved that for a very large

class of resistive piecewise-linear circuits—most electronic circuits can be

modeled by such a circuit—the algebraic equations resulting from various analy

sis methods (node, cut set, loop, hybrid and tableau analysis) can always be

cast into an explicit analytical form where the only nonlinearities are absolute-

value functions; namely,

P

f(x) = a + Bx + 7 c. |<a.,x>- B41 =0 (1.1)
1-r1 ""1 ~ ^

where 3^ is a scalar, x, a, c., and a. are n-vectors, B is an nxn matrix, and
< , > denotes vector dot product. For circuits having a unique solution, the

canonical Katzenelson algorithm given in [1] can be used to find this solution

in a finite number of iterations. For circuits having multiple solutions, the

general (necessarily less efficient) algorithm given in [2] can be used to find

all of the solutions.

With the operating-point problem essentially solved in [1,2] for the cano

nical piecewise-linear equation (1.1), we now turn to the equally important pro

blem of finding the v-vs-i (or i-vs-v) driving-point characteristic of the

one-port Wshown in Fig. 1, or the vQ (or iQ) - vs -y1n(either vin or i*in) trans
fer characteristic (4 types) of the two-port N shown in Fig. 2. The one-port

Min Fig. 1 and the two-port W in Fig. 2 may contain an arbitrary interconnec

tion of the circuit elements listed in Table 1.

Since the low-frequency behavior of most multi-terminal devices can be

realistically modeled by a circuit made only of elements from Table 1, it is
clear that the class of resistive nonlinear circuits considered in this paper

is extremely broad.

A common method for finding the driving-point or transfer characteristic is
to solve for the operating point using a computer simulation program as the
input source y. is varied by increments over the dynamic range of interest.
This "brute force" method unfortunately suffers from two major shortcomings:

1) it is extremely time consuming, and 2) it is valid only if the driving point
or transfer characteristic is a single-valued function, and therefore excludes

many circuits of practical interest [5,6], including the examples given in the
following Figs.: 19, 20, 22, 23 and 25.

The above objections can be overcome by several recent algorithms [7-10]
for tracing solution curves of general (not necessarily piecewise-linear)
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1.
2.

3.
4.

5.

Table 1. Repertoire of allowed circuit elements

linear (positive or negative) 2-terminal resistors
dc voltage and current sources
linear controlled sources (all 4 types)
any linear multi-terminal resistors (e.g., ideal transformers,
gyrators, circulators, etc.)
nonlinear 2-terminal resistors described by a voltage-controlled canonical
piecewise-linear representation

1k - 1k(vJ =a. +b.v, + yc.Jv,-E
k"k

m=l
km1 k km

or by a current-controlled canonical piecewise-linear representation

a,.

vk " v„0J - a. + b.i. + I c.m|i,-I,
k k k A km' k km

m=l

k » 1, 2, ..

formulas given in [1,3] for an arbitrary continuous piecewise-linear func
tion having (a.+l)-segments. Here E. (resp.; I. ) denotes the voltage

(resp.; current) coordinate at the m-th breakpoint, and the subscript k
denotes the k-th resistor.

In fact, these 2-terminal resistors may be coupled to each other via the
generalized representation defined in (2.8) and (2.9), thereby including
any multi-terminal elements (e.g., see the piecewise-linear equation (2.37)

4.

for bipolar transistors) described in the form of (2.8)-(2.9).

n, where a. , b. , and c. are determined from explicit

(1.2)

(1.3)

nonlinear equations with respect to a parameter p, which in the present con

text represents yin. These algorithms essentially trace the characteristic
from one point to a "nearby" point via a nomotopic approach. For piecewise-

linear circuits, however, this approach does not take advantage of the piece

wise-linear nature of the characteristics (where only 2 breakpoints are needed

to specify any segment of the characteristic) and proceed to calculate even

the points between the breakpoints, completely oblivious of the fact that the

segment is a straight line! Other algorithms which do exploit the piecewise-

linear characteristic exist [11,12], but they do not exploit the canonical

piecewise-linear representation considered in this paper and are therefore com

putationally inefficient.

Alternately, a multi-terminal device may be modeled by a circuit using only
uncoupled piecewise-linear 2-terminal resistors and linear controlled sources
L4J. In which case, (2.8) and (2.9) reduce to (1.2) or (1.3).
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In this paper, we develop a highly efficient breakpoint-hopping algorithm

which systematically finds a"M breakpoints of the characteristic (plus possibly

one point on each "unbounded" segment tending to +« or -«>) within the specified

dynamic range. If the driving-point or transfer characteristic consists of

several "unicursal" [13] (i.e.; contiguous) branches, our algorithm will find

all branches where one point on each branch is given. In other words, the

problem of finding all branches reduces to that of locating one point on each

branch. For simple circuits, this information can be obtained by using the

algorithm in [2].

Since only the minimal number of points needed to specify a piecewise-

linear characteristic uniquely is sought by our algorithm, it is the most effi

cient algorithm possible, assuming of course that the breakpoints can be found

efficiently. Since our algorithm uses one breakpoint to find the next nearest

breakpoint, it is called a breakpoint-hopping algorithm.

The key idea responsible for the remarkable computational efficiency of

our algorithm is the choice of a particular equation formulation (a generalized

form of hybrid analysis [14, 2]) which gives rise to a canonical piecewise-

linear equation with a lattice structure; namely,

aj
Bx + I I c..|x,-e.,| = a + pr (1.4)
~~ j=l i=l ~J J J

where x. and p.. are scalars, and x, c.., a and r are (n+l)-vectors, B is an
j j i "* "j i ** ~*

(n+l)x(n+l) matrix, where n is the number of nonlinear resistors, a. is the
j

number of breakpoints in the piecewise-linear v.-i. curve of the j-th resistor,
j j

j = 1, 2, ..., n, and p is a scalar equal to the value of the input variable,

i.e., p =vin or p =iin.
Observe that the canonical equation (1.4) is a special case of (1.1)

because, here, the argument inside each absolute-value function contains only

one variable, namely, x.-fi.., 1 < i < a.. This implies that the "hyperplane"
j j I j

boundaries in the n-dimensional x-. - x« - ... - x space which separates the

various piecewise-linear regions are all parallel to the respective coordinate

axis, as illustrated in Fig. 3 for a circuit containing 2 piecewise-linear

resistors characterized by the v, - i, curve in Fig. 3(a) and the i*2 - v2 curve
in Fig. 3(b). Here, we identify the parameters in (1.4) as follows: x-j A v-j,
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x2 Ai2, n=2, ^ =2, a2 = 1, 6-j-j =-1, $12 =2, and $21 =3. Equation (1.4)
partitions the x,-x2 plane into exactly 6 "rectangular" regions via the 2
vertical lines (one-dimensional hyperplanes x-. = -1 and x-, = 2) and the hori

zontal line x2 = 3, as shown in Fig. 3(c). Such a "parallel" boundary struc
ture as defined by (1.4) is called a lattice structure in [2]. We will see

shortly that this parallel structure is crucial to the computational efficiency

of our breakpoint-hopping algorithm.

Since not all equation formulation methods (e.g., node analysis, loop

analysis, cut set analysis [1]) give rise to a canonical piecewise-linear equa

tion with a lattice structure, Section 2 is devoted to a general formulation

method which guarantees such a structure.

The breakpoint-hopping algorithm for solving (1.4) is derived in Section

3. Several validating examples illustrating this algorithm are collected in

Section 4. For completeness, various degenerate (ill-conditioned) cases which

could invalidate our algorithm are analyzed in Section 5.

2. FORMULATION OF CANONICAL PIECEWISE-LINEAR EQUATIONS WITH LATTICE STRUCTURE

Consider the circuit configurations in Figs. 1 and 2 where N contains

only elements listed in Table 1. Let us extract aTl_ nonlinear resistors in W

and redraw the circuit as an (n+l)-port W terminated by "£" voltage-controlled

resistors on the left, "n-£" current-controlled resistors on the right, and

the input source v. (which for convenience is assumed to be a voltage source)
in ^

at the bottom, as shown in Fig. 4(a). The (n+l)-port W is linear and time-

invariant and can be described by various standard representations, depending

on the choice of independent variables. For our present purpose, the

independent variables must be chosen to be the same as those of the terminating

nonlinear resistors, as shown in Fig. 4(b).

Except for the rare and degenerate cases M can be represented by an affine

equation

Px = Qy + s (2.1)

where

xA[Vl,v2,...,vriA+1,i£+2,...,in,iin]T, (2.2)

yiCi1»i2---irvJl+1,v£+2,...,vn,vin]T (2.3)

s is a constant (n+l)-vector which accounts for the dc independent sources

inside W, P and Q are constant (n+l)x(n+l) matrices which depend only on the
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parameters of the linear elements inside W. Note that if Q is nonsingular,

then (2.1) reduces to the usual hybrid representation [1,2]:

X = t!x +!o (2'4)
where HAq" pand sQ £ -Q" s. Consequently, we call (2.1) the generalized
hybrid representation (since both x and y are hybrid vectors). Given any non-

degenerate circuit (Fig. 4(b)), (2.1) can be derived manually by standard cir

cuit analysis methods for simple circuits (n<3), or by the systematic elimina

tion algorithm given in [4] for larger circuits. For the few degenerate cases

where W can not be represented by (2.1), we can always extract a linear
t

resistor from one or more nonlinear resistors to remove the degeneracy. Hence,

there is no loss of generality in assuming that M has a generalized hybrid

representation (2.1) Once (2.1) is found, the circuit elements and topology

inside N become irrelevant as the canonical piecewise-linear equation that we

are about to formulate for the circuit in Fig. 4(a) depends only on P, Q, s

and the external terminating elements.

Since v. in the vector y is the input source, let us separate it from the
in ~

remaining dependent variables by rewriting

y =y' + p?n+l ^2'5^
where

y' A[iri2....,irvjl+1,vJl+2,...,vn,0]T (2.6)

en+1 *[0,0 0,0,0,...,0,1]T (2.7)

and p A v. is the value of the driving voltage source, where p can vary be-
= in

tween the specified dynamic range [Pmjn>Pmax] of interest.
Our next step is to express y' in terms of the "unknown" independent vari

ables x. This can be easily achieved by substituting the voltage-controlled

piecewise-linear representation (1.2) in place of i-j, i2, ..., i^, and the
current-controlled piecewise-linear representation (1.3) in place of v^+1,
vflJo> ...» v in (2.5). Without any extra work, however, we can allow the

2-terminal nonlinear resistors to be coupled to each other in accordance with

the following much more general "coupled" representation:

Of course, the vk-ik characteristic of each nonlinear resistor so extracted
will have to be modified by subtracting a linear term equal to the extracted
series or parallel linear resistor.
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vak +$fc +i} i^jiki^ji1. (2.8)

K - 1, c, .*., *»»

\ •ak+ &+ .^ j^jiklV^i1' (2.9)

k = £+1, Jl+2, ..., n

where a. , c..., and 8.. are scalars, b. and x are (n+l)-vectors with x de

fined in (2.2). Here, we assume, without loss of generality, that

^ii < ^ik ^ n< k for eacn ^ = ^' 2' "•• n*
Note that if the k-th resistor is uncoupled to the other elements, we have

bk =[0 ... 010... 0]T
where the k-th entry in b. is 1 and c.ik =0 for all j f k. In this case,
(2.8) (resp.; (2.9)) reduces to (1.2) (resp.; (1.3)) with c-^ =c^ for j = k,

Substituting (2.8)-(2.9) in place of iV and v. in (2.5), we obtain

y = a + Bx+ T yc..|x.-8..|+pe,nI ^ ^-j-ji ' j pji' ~n+l
/s /v

where

S a B A

r*Ti
_ —•>

cjil

cji2

\i
C A
~3l =

cjin
0 J _

(2.10)

(2.11)

for i =1,2, .... a. and j = 1, 2 n. Substituting (2.10) for y in (2.1),

we obtain (1.4); namely,

canonical piecewise-linear equation with lattice structure:

(2.12)
n 3

Bx + I I c.-lx.-S.-l = a + pr
~ j=l i=l J1 J J1

where
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B A Q§ - P (2.13a)

C•• A Qc..
-31 = —31

(2.13b)

a A - s - Qa (2.13c)

r A - Q5n+1 (2.13d)

Observe that (2.12) is a special case of the general canonical piecewise-linear

equation (1.1) with

a. = [0 0 ... 0 1 0 ... 0]T

where the j-th entry in a. is 1 for some j€ {l,2,...,n}. In other words, the

argument inside each absolute-value function in (2.12) contains only one vari

able x., j = 1, 2, ..., n. It is indeed remarkable that the rather general
j

piecewise-linear circuit in Fig. 4(a) can be described analytically by equation

with such a highly specialized structure.

Remarks

1. If the nonlinear resistors in Fig. 4(a) are not coupled to each other, then

(2.8)-(2.9) reduce to (1.2)-(1.3) and B in (2.11) reduces to a diagonal

matrix (see (2.16), (2.20), (2.25) and (2.33) in Examples 2.1-2.4). In

this case, c.. reduces to c...e. where

e. = [0 0 ... 0 10 ... 0]T

and 1 is located in the j-th entry (see (2.16), (2.20), (2.25), and (2.33)

in Examples 2.1-2.4).

2. Although both the hybrid and the tableau equations in [1] also give rise
to an equation with a lattice structure, we choose the generalized hybrid
representation in this paper because 1) the hybrid representation for N

does not exist in many circuits and 2) the tableau representation would

have resulted in a much larger system of equations. This is especially

objectionable if the number of linear elements inside N is relatively large

compared to the number of nonlinear elements.

We close this section with several examples whose driving-point or transfer

characteristic is to be found in Section 4.

Example 2.1 (Fig. 5)

Consider the circuit in Fig. 5(a) where nonlinear resistors R-j and R2
are described by the piecewise-linear characteristics shown in Figs. 5(c) and
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(d). Although these two characteristics are strictly increasing and are there

fore both voltage-controlled and current-controlled, we have chosen v, and i«

to be the independent variables for illustration purposes. Using the explicit

formulas in [1], we obtain the following canonical piecewise-linear equations

for R, and R2:

R1 :̂ =1^) =9/8 v1 +7/8 |v]|

R2 :v2 =v2(i2) = 9/4 i2 + 7/4 |i2-l |- 9/4

(2.14a)

(2.14b)

Extracting the two nonlinear resistors, we obtain the linear 3-port M

shown in Fig. 5(b). By straightforward analysis, we obtain the following

generalized hybrid representation for W:

1 0 0" ~vl - "0 -1 1 - _il" "0

0 0 1 h
= 1 1 0 v2

+ 0

0 1 -1 _ -^in- _0 0 0 _ v.
*- in-J

.0.

(2.15)

Note that s in (2.1) is always equal to 0 if W contains no dc sources.

Substituting (2.14) into (2.10) and (2.11), we obtain

3-i -j =0, 32i =1, a=
~ 0 - "9/8 0 0" "7/8"" " 0 "

-9/4

- 0 _

,B = 0

_ 0

9/4

0

0

0_

0

- 0 _

*§21" 7/4

- 0 -

(2.16)

Substituting (2.15) and (2.16) into (2.13), we obtain

r -i -9/4 01

9/8 9/4 -i

0 -1 1

"-9/4" ~-i" " 0 " --7/4"*

' ? = 9/4

_ 0.

»r= 0

- 0-

9 Sn = 7/8

- 0 -
» -21 = 7/4

- 0 -

B =

(2.17a)

Substituting (2.17a) into (2.12), we obtain the following canonical piecewise-

linear equation for the circuit in Fig. 5(a)

-1 -9/4

9/8 9/4 -1

0 -1

0"
r~ —1

vi -o" "-7/4"

1 h + 7/8 hi + 7/4

1_ -1in- -0 _ - 0 ^
J

!i2-l I =

"-9/4" ~-l

9/4 + P 0

- 0 _ -0 _

x c-j-j |x^-3^-j| c2i |x2-32-|| a

-9-
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Note that the parameters a., in (2.12) always correspond to the breakpoint
j •

coordinate (ordered from left to right) for resistor R.. In this case n = 2,
j

al = 1» a2 = ^ and nence we could nave obtained $,, =0 and 3«, = 1 by inspec
tion of Figs. 5(c) and (d) directly.

Example 2.2 (Fig. 6)

Consider the circuit in Fig. 6(a) where nonlinear resistors R, and R2 are
described in Figs. 6(c) and (d) respectively. Since R, and Rg are both non
monotonic and voltage-controlled, it is necessary to choose v, and v2 as the
independent variables in this example. Their canonical piecewise-linear equa

tions are found as follow:

R1 : i-j =T^v-j) =-7/4 +7/4 v] - 25/18 lv^l.21 +41/36 |v.,-3| (2.18a)

R2: i2 =?2(v2) =-2.2 +4v2 - 7/2 |v2-0.8| +5/2 |v£-2| . (2.18b)

The associated linear 3-port W in Fig. 6(b) is described by the following

generalized hybrid representation:

L 1

0 0 1 " "vl ^
0 0 1 V2

=

1 1 3.2_ -11n-

1 0 0

0 1 0

_0 0 1

pi 1 0

12 + 0

Un J Lo J
(2.19)

Substituting (2.18) into (2.10) and (2.11), we obtain (here n = 2, a1 = 2,
and a2 = 2)

3^ =1.2, 312 =3, 621 =0.8, $22 =2 (2.20a)

a =

--7/4" -7/4 0 0^ "-25/18*" ""41/36" -0 " "o"1

-2.2 ' 5 = 0 4 0 • £n = 0 9 £l2 = 0 9 £21= -7/2 ' £22 = 5/2

0, _ 0 0 o_ _ 0 _ - 0 - -0 -

(2.210b)

_oJ

Substituting (2.19) and (2.20) into (2.13), we obtain

B =

7/4 0 -1 " ""7/4" 0

0 4 -1 . a = 2.2 »r,= 0

-1 -1 -3.2
0

^-1
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"-25/18" "41/36" - o - 0

£n = 0 9 £l2 = 0 • £21 = -7/2 9 £22 = 5/2

0 _ ... o ^ 0 _ 0 -

(2.21)

Substituting (2.21) into (2.12), we obtain the following canonical piecewise-

linear equation for the circuit in Fig. 6(a):

7/4 0 1

0 4-1

L-l -1 -3.2J

B

""-25/18"

v2
+ 0

'-iinJ 0 _

|vr1.2|+

41/36

0

L 0 J

h-3i

£n 'xi"6nI £12 Ixr3i2l

" 0 " " 0 " '7/4" r 0

-7/2 |v2-0.8| + 5/2 |v2-2| = 2.2 + P 0

- 0 _, _ 0 _ - 0 _ --1

(2.22)

£21 lx2"32l' £22 lx2~622I 2 I

Example 2.3 (Fig. 7)

Consider the circuit in Fig. 7(a) where nonlinear resistors R, and Rg are
described in Figs. 7(c) and (d). Since R, and R2 are both non-monotonic and
current-controlled, it is necessary to choose i, and i2 as the independent
variables in this example. Their canonical piecewise-linear equations are

found as follow:

Rl :vl =VV =-1 +11 " I1!'2' + I1!"3'
R2: v2 =v2(i2)= -2 +i2-2|i2-4| +2|12-5|

(2.23a)

(2.23b)

The associated linear 3-port W in Fig. 7(b) is described by the following

generalized hybrid representation:

0 0 0" ^1"
1 -1 0 12 =

1 0 -1_ -11n-

1 1

0 0

0 0

-11-
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(2.24)
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Substituting (2.23) into (2.10) and (2.11), we obtain (here n = 2, a, =2

and a2 = 2):

3-j-j = 2, 6,2 - 3, B01 = 4, 300 =5

, B =

(2.25a)

a = -2

L.0J

21 "' M22

1 0 0

0 1 0

L0 0 OJ

-l "1* "01 "0"

9 £n 0 9 £l2 = 0 9 £21= -2 ' £22° 2

- 0^ _o_ _<)_ uO.

Substituting (2.24) and (2.25) into (2.13), we obtain
(2.25b)

B =

£ll

1 1 0" -3 - 1 "

-1 1 0 • 2 = 0 9 r= 0

-1 0 1 _o._ _0 _,

--1" ~i" ^"-2" -2"

0 • £12 = 0 9 £21 = 0 9 £22 = 0

_ 0_ _0_ _ 0_ -0^

(2.26)

Substituting (2.26) into (2.12), we obtain the following canonical piecewise-

linear equation for the circuit in Fig. 7(a):

"-2 "1

0 |i2-4| + 0

_ 0_ _0

|i,-5| =

"3" ~ 1"

0 + P 0

-0. _ow

(2.27)

c21 |x2-321l c22 |x2-022| a r

Example 2.4 (Fig. 8)

Consider the one-transistor circuit shown in Fig. 8(a) containing 3

linear resistors and an ideal transformer with a turns-ratio n = 10. Let us

model the transistor by the usual Ebers-Moll circuit model [4] as shown in Fig.
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8(c), except that instead of using pn-junction diodes for R, and R«, we approxi

mate the diode exponential law by a piecewise-linear function. Let

X/VTf(x)Ms(e !-l) (2.28)

where Vj is the thermal voltage which is 26 mV at room temperature and

h = Ve* = Vcs (2-29)

where Ics (resp.; L. ) is the reverse saturation current in the base-emitter
(resp.; base-collector) junction. For VT =26mVand I =10" A, we approxi
mate f(x) by a 3-segment piecewise-linear function

f(x) =-3.6374xl0"3 +6.15xl0"3x +2.63xl0"4|x-0.4| +5.887xl0"3|x-0.6|
(2.30)

as shown in Fig. 8(d). From (2.29) and choosing af =0.995 and a =0.5, the
canonical piecewise-linear equation for R, and R2, which model the base-emitter
and base-collector junction diodes respectively, are found as follow:

R-, : i^ =i1(v1)=-3.6557x!0"3 +6.18xl0"3v1 +2.643xl0"4|v.,-0.4|

+5.916xl0"3|v1-0.6| (2.31a)

R2: i2 =i2(v2) =-7.2748xl0"3 +1.23xl0"2v2+5.26x!0"4|v2-0.4|

+1.1774xl0"2|v2-0.6| (2.31b)

The associated linear 3-port N in Fig. 8(b) is described by the following

generalized hybrid representation:

"-0.25 -1 0 " rvi i --945 6x103 1 "

-20 -1 0 v2 = -1.0145xl04 9.1xl04 0

--1 0 8x1 oi
J

-•"in; 8x103 -4x103 0 •
v. J "

'1 0

\
+ 0

Lvin- Loj

(2.32)

P x Q y s

Substituting (2.31) into (2.10) and (2.11), we obtain (here n=2, ^=2 and
a0=2):

311 =621 = °'4, 312 = 322 =°'6 (2.33a)
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a =

£n

B =

£ll

-3i

-3

-3.6557x10

-7.2748x10

0

2.643x10

0

L 0

-41

, B =

s£l2 =

£22 1.774x10"2

L 0

Substituting (2.32) and (2.33) into (2.13), we obtain

6.18x10"° 0 0

0 1.23xl0'2 0

0 0 0_

5.916x10"3" " 0

0 9 £21 = 5.26x10

0 . 0

»-4

-5.59 74.8 0 " "40.2 i

-42.7 1120 0 9 ? = 625 • r= 0

.50.4 -49.2 -8000_ _0.146_ _ 0_

"-0.25" "-5.59"
-

" 3.16 ' " 70.6

-2.68 • £12 = -60 '£21 = 47.9 9 £22= 1071

_2.11_ -47.3, .-2.10 . _-47.1 -

(2.33b)

(2.34)

Substituting (2.34) into (2.12), we obtain the following piecewise-linear equa

tion for the circuit in Fig. 8(a):

"-5.59""-5.59 74.8 0

-42.7 1120 0

50.4 -49.2 -8000

3.16

47.9

•2:i0 J

B

|v2-0.4| +

1

*-l1n-'

•70.6'

1071

-47.1

-0.25

-2.68

L2.1U

£ll

|v2-0.6| =

£21 lx2"^21' £22 'x2"^22'

-14-

|vr0.4| + -60

L 47.3J

|vr0.6|

Mil £l2

40.2 ~-l "

625 + P 0

_0.146_ _ 0 _

lxl"012

(2.35)



Example 2.5 (Figs. 8(a) and 9)

Consider the same circuit in Fig. 8(a) again, but redraw as shown in Fig.

9(a). Instead of replacing the transistor by a circuit model (made of un-
coupjed 2-terminal piecewise-linear resistors and controlled sources) as in

Fig. 8(b), let us describe the transistor by an equivalent version of Ebers-
Moll equation; namely,

h - Vvrv2> =-f(v2)+^f(vi>
i1- = Mvt.v,) « - f(vj + J-f(v9)•2 " *2\*v*2i ~ ~ *\*it • ^- -v'2

(2.36a)

(2.36b)

where the function f(«) is as defined in (2.28). Approximating the function

f(.) by the 3-segment piecewise-linear function f(-) as defined in (2.30)

and choosing c^ =0.995 and a =0.5, we obtain the following pair of coupled
piecewise-linear equation describing the npn transistor:

3-segment piecewise-linear Ebers-Moll equation:

i1=i1(v1,v2) =-1.8187xl0"5 +6.18xl0"3v1-6.15xl0"3v2 +2.643xl0"4|v1-0.4|

+5.916xl0'3|v1-0.6|-2.63xl0"4|v2-0.4|-5.887xl0*3|v2-0.6|

i2 =i2 (v1,v2) =-3.6374xl0"3 -6.15xl0"3v1 +1.23xl0'2v2 -2.63xl0"4|v1-0.4|

-5.887xl0"3|v1-0.6| +5.26xl0"4|v2-0.4|+1.1774xl0"2|v2-0.6| (2.37)

Observe that (2.37) can be interpreted as the equations of two coupled 2-

terminal resistors as shown in Fig. 9(b). Note that W in Fig. 9 is identical

to that of Fig. 8(b) except that the two controlled sources have been removed:

their role in the circuit model in Fig. 8(c) is now assumed directly by an

explicit coupling term in the corresponding equation model (2.37). Indeed if

we extract the two controlled sources in Fig. 8(b) and connect them externally

in parallel with R, and R2, then the "composite" equation describing the
resulting parallel combination is precisely given by (2.37). In other words,

our present formulation is exactly equivalent to that of Example 2.4 and we

should expect to obtain the same canonical piecewise-linear equation in the

end, even though the intermediate calculations are different. Let us verify
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this observation as follows:

The new 3-port M in Fig. 9(b) is described by the following generalized

hybrid representation:

f-0.25 -1 0"

-20 -1 0

-1 0 8000

1

-'in

4
10 1.1x10

1.6xl05 1.71xl05

,8000

1" -o ^

0 h + 0

o. -V-in - _0 _

(2.38)

Substituting (2.37) into (2.10) and (2.11), we obtain (here n=2, a^=2 and
a2=2):

ell = 312 =°-4' 321 = 322 =°'6

— •1.8187xl0"5" " S.18x10"? -6.15xl0"3 0"

a = -3.6374xl0'3 9 5= -6.15xl0"3 1.23xl0"2 0

0 - 0 0 0-

~ 2.643x10"4"
^

" 5.916xl0"3l "-2.63x10

Sn • -2.63xl0"4 9 £12= -5.887xl0'3 , c21 = 5.26x10

0 j L. 0 J 0

"-5.887xl0"3 "

£22 = 1.1 774x10"

0

2

»-4-|

.-4

(2.39a)

(2.39b)

Observe that unlike (2.16), (2.20), (2.25) and (2.33) in the previous

examples where § is a diagonal matrix, B is not a diagonal matrix in (2.39) in
view of the additional coupling terms in (2.37). Likewise, observe that whereas

c.. in (2.16), (2.20), (2.25) and (2.33) has only one nonzero entry, c.. has
~ji ~j *

more than one nonzero entry in (2.39).

Substituting (2.38) and (2.39) into (2.13), we obtain the same equation

as (2.34) and consequently the canonical piecewise-linear equation should be

the same as (2.35).
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3. THE BREAKPOINT-HOPPING ALGORITHM

A. Assumptions

To exclude pathological and degenerate cases, the algorithm to be developed
in this section makes the following assumptions:

1. The driving-point or transfer characteristic is made of one or more

unicursal (i.e.; contiguous 1-dimensional) curves. Hence, degenerate

characteristics containing points forming nonzero areas, such as the

characteristic of a norator, are excluded.

In terms of the algorithm, this assumption is satisfied (see Section 5C) if

a) the Jacobian matrix corresponding to the starting point of each solu-
+

tion curve has a nullity at most equal to one;
++ +++

b) the solution curve never hits a corner point.

2. The output variable yQ (either vQ or iQ in Fig. 2) of the desired transfer
characteristic is a linear combination of at most n+1 port variables Zj>
j = 1, 2, ..., n+1, where z.. € {x] ,x2,... ,xn+1;y1 ,y2,... ,yn+1>; namely,

yo = ao + °izi + *zH + ••• +Vlzn+1 (3J)

where cu, cu, ..., a +, are real constants. This assumption is satisfied
except in rare degenerate circuits. Indeed, in most cases, the output

variable will be a linear combination of only the independent variables

x,, x«, ..., xM in (2.2) and v. ; namely,
\ c n in

y0 =eg +alX] +a^ +... +Vn +an+1v.n (3.2)

In terms of the circuit in Fig. 4(b), (3.2) implies that M has a unique
+4-4-+

solution for yQ when the ports are driven as shown in Fig. 4(b).

"**See Section 3B.
"^See Assumption 4 below.

WA corner is a closed connected set determined by the intersection of at
least two boundary hyperplanes, or determined by the union of regions
with Jacobian matrices of nullity at least two [16].

t+++For example, if we choose yQ A\^ in Figs. 5(a), 6(a) and 7(a), then
the last row of the corresponding piecewise-linear equations (2.17),
(2.22) and (2.27) is of the form (3.2). On the other hand, y0 A iin in
Fig. 8(a) can not be expressed in the form of (3.2). By inspection of
Fig. 9(b), we find i. = - v,/8k - i, is of the form (3.1). Note that

i. is a linear function of both v.. and i, of port 1, and is independent

of v2 and i«.
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3. The canonical piecewise-linear equation (2.12) is derived for the case when

the input variable is a voltage source v. . This involves no loss of

generality for driving-point characteristics because our algorithm is

capable of tracing multivalued characteristics and hence it does not matter

whether v. or i. is chosen as the independent variable. However, for

transfer characteristics driven by a current source, it is necessary to

interchange iin in (2.2) with vip in (2.3). The form of the resulting
canonical piecewise-linear equation remains unchanged, however.

4. The solution curve to be defined below never hits a corner in the sense that

as we sweep the input variable p, no two (or more) nonlinear resistors

arrive at a breakpoint in their v-i curves simultaneously, i.e., for the
JL

same value p = p . Since this assumption can only be violated by a precise

(usually contrieved) choice of circuit parameter values, we can avoid the

corner problem (if it occurs) by an arbitrarily small perturbation of some

circuit parameters.

B. Basic Ideas Behind the Algorithm

If we choose the output variable yQ to coincide with each variable
x,, Xg, ..., x +, in (2.2), then Assumption 1 guarantees that each x.-vs-v..
transfer characteristic is made of one or more one-dimensional unicursal

branches for j = 1, 2, ..., n+1. Note that x +-, -vs -v. is just the driving-
point characteristic. For other choices of output variable yQ, Assumption 2
allows us to calculate easily the corresponding transfer characteristic by sub

stituting each x. - vs - v. transfer characteristic in place of x. in (3.2), or
3 in 3

(3.1) in which case the corresponding relationships for y.'s are obtained from

(1.2)-(1.3) (for the uncoupled case) or (2.8)-(2.9) (for the coupled case).

Consequently our basic problem is to solve for x,, x2, ..., x +, in the canoni
cal piecewise-linear equation (2.12) for each value of the input v. = p,

where pm. < p < pm .
min — — max

Since the circuit is piecewise-linear, the solution of (2.12) will trace

out aone-dimensional piecewise-linear space curve fin the x, -x2 ... -x+,
space Rn+ ,as we sweep the input from v. =p. to v. =Pmax- Each (straight-
line) segment of r corresponds to a particular combination of segments of the

n piecewise-linear resistors R,, R2, ..., R. Since the boundaries of each
linear region are determined by the breakpoints of the nonlinear resistors,

and not on x +, A i it is convenient to project r onto the first n relevant
coordinates x,-x2- .... -x . This projection gives a one-dimensional
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piecewise-linear curve in ]Rn, henceforth called a solution curve r. Each
breakpoint of r must clearly fall on a particular hyperplane boundary.

For example, consider the three boundaries v, = -1, v, = 2, and i2 = 3 in
the v,- i2 plane in Fig. 3(c) corresponding to a hypothetical circuit contain
ing only two piecewise-linear resistors, as described in Figs. 3(a) and (b).

Suppose that at v. = p .„ A p^°) the solution of (2.12) gives the operating
fn\ in min —

point x^ '. As we vary pfrom Pmin» the solution of (2.12) traces out apiece-
wise linear solution curve r such as that shown in Fig. 10. Note that each

segment of rterminates on aboundary (at x' '(p* '),x* '(p* '),jr '(p^ '), and
x (p )) before changing slopes. These breakpoints are parametrized by the

input voltages p* ', p^ ,p >and p^ ' corresponding to the input voltages
where the operating point arrives at a breakpoint in Figs. 3(a) or (b). Note

that Assumption 4 guarantees that these breakpoints do not occur at a "corner,"

which in Fig. 10 represents the intersection between any two of the three

boundary straight lines; namely, points A and B. Note also that the solution

curve r in general does not have to cover all regions. Here, region (1,2) is

bypassed.

The goal of our algorithm is to calculate the locations of all breakpoints

xu;jpU;j 0f tne solution curve r over the specified dynamic range p . < p

< p . Because (2.12) reduces to a 1inear equation in each region, it is a

trivial matter to calculate this direction vector (slope in this example) of

each segment of r from any initial point. Because the boundaries all possess a

lattice structure, it is also relatively easy to identify which boundary will

be crossed first and hence a formula for calculating the corresponding break

point can be derived. Consequently, we can devise a highly efficient algorithm

to calculate each breakpoint x* '(p '), given the location of the preceding break-

point xv '(pv ')» henceforth called the breakpoint-hopping algorithm. The

various assumptions in Section 3A merely guarantees that this algorithm does

not get stuck in various degenerate (ill-conditioned) situations to be analyzed

in Section 5.

C. Derivation of the Algorithm
(0) -1-

Let us begin by finding an operating point xv ' of the circuit when1

v. = p . A p(°) using any method (e.g., algorithm in [1] or [2]). If the
circuit has several operating points, pick one point arbitrarily and denote it

See Section 3D for other choices of the initial parameter p^ '.
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as x^ '. Some if not all of the remaining operating points may also fall on
the solution curve rthrough x^ '. The remaining operating points which do not
fall on r must therefore belong to one or more additional branches and our

algorithm below is simply repeated recursively with one of these remaining

operating points as the initial point. If the original set X of operating

points happen to contain a subset consisting of one point on each distinct

branch, then our recursive algorithm would find all such branches.

Our algorithm consists of two main steps:

Step I. Initialization:

From the coordinates of the initial operating point x* , we can identify

the region r' 'containing x/ ' by comparing each coordinate xj 'with (1.2)-
(1.3) (for the uncoupled case) or (2.8)-(2.9) (for the coupled case); namely,

identify segment "i." such that
j

6j(i ,, <xj0' <Bj1 0=1,2, ...,n (3.3a)
3 J

For the two end segments tending to -» and +«>, respectively, we define

Bj0=-»and6j{ +1) =+~ (3.3b)
J

We assume x'0' is an interior point of R^0', i.e., there exists 6>0
such that all points satisfying ||x-x^|| <6also lie within R^0'. If this
assumption fails, then x^0' must lie on aboundary hyperplane of R^ and we
simply proceed directly to Step II of the algorithm which deals with such "boun

dary" points as starting points.

Choose next another value of p=p^0' +Ap AJl°' near p^ ' (i.e., Ap >0
is sufficiently small) such that the coresponding operating point $} still
lies within R^. This is always possible if x/0' is an interior point.

It follows that for both p=p^ and p=fT0', (2.12) reduces to a
linear equation obtained by substituting all parameters in (2.12) corresponding

to R* '; namely,
2(0);(0) =;{0) +p(0)r (3.4)

B(0)j(0) .?(0) +J(0)r (3.5)

where

B(0) AB+Il-\ cej+ \3 cej] (3.6)
~ j=l i=l J J i-1,. J J
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(Here, e. denotes the unit row vector with zero entries except at the j-th
position, j = 1,2,... ,n).

i.-1 a. ~~
rm n 3 3
V*£ a + 7 [- I C..3-.+ J C.-B..1 (3 7)= - fa fa -3iP3i i^i ~jnPJiJ ^,/;

j

x<°>-x<°> =(pClpWlltB^)]-1; =(a(0)-P(0))d(0) (3.8)
where d^0' A[B™']"'r denotes the direction vector which falls on the straight
line x(°) to !c0'. As we increase pfrom p= p* ', the solution curve rstart
ing from x^ 'will grow along the direction d^ 'until it crosses the nearest
boundary hyperplane of R^ '. This boundary as well as the intersecting break
point x^ ' can be identified as follows:

Let d(0) denote the j-th component of d(0). If d(0) >0(resp.; d(°^<0),
3 "" j • J

then r is increasing (resp.; decreasing) along the direction of the j-th coor

dinate axis, and r will reach the j-th boundary hyperplane x. = ft... (resp.;

Xj =ej(i.-1)} at P(1) =P(°) +APj0)' wnere J

a

Apj0)^(ej.i."xj0))/Idj0)l (3'9a)
j

(resp.; Apj0) A(x]0)-6j(._.,})/|dj0)|) (3.9b)
J

Choose the index jn such that Ap: is minimal compared to the other Ap: ' with
(o\ u J0 , Jdju; t 0, j = 1, 2, ..., jn-l, jn+l, ..., n. Then x. = 6, , (resp.;
J ° ° J0 Vj0

x. = B. /. i\) is the first (hence nearest) boundary hyperplane intersected
J0 30njn'u

by the solution curve r from xv '. Hence, the breakpoint xv ' which is located

on the boundary hyperplane x. = $• .. (resp.; x. = 6. (i nJ is given by
J0 VjQ 30 JOujQ"V

x") - x^+Ap^d^ (3J0)
where

p = pW+Ap(°)Ap(1) (3.11)
Note that Ap'0' f 0 if b'0' is nonsingular because x^ ' is an interior point
within r(°\ Also Ap(°^> 0because p^0' =pmin and the direction vector cP '
is chosen for the solution curve.

The above initialization algorithm for locating the first breakpoint x/

-21-



of the solution curve r from x^ ' is illustrated in Fig. 11(a) for a typical
2-dimensional region R^ ', and in Fig. 11(b) for a typical 3-dimensional region
R^ '. Note that in Fig. 11(a), the boundary line x, = Bi,« is penetrated by

(n) h\ m\ • ni
the direction vector dv ' at xv ' (p=pv ') before its extension intersects the

second boundary line x« = B0,- at xi ' (p=p^ ' ). Hence x^ ' is the "nearest"L ^12 ~| ~ /Q.
breakpoint where the solution curve first hits a boundary of Rv ', In Fig.

11(b), the boundary plane x0 = &0. is penetrated by the direction vector dv '

at xv ' (p=pv ') before its extension intersects the next two boundary planes,

first at x1 =B1/. _^ (back side of the "cube" R^Jatx^' and then at x3 =B3i
(top side of Rv ') at xv ' . Here, the "nearest" breakpoint is located at

x^ (right side of R^).
Note also that for the direction vector d* ' drawn in Fig. 11(a), its com

ponents di '>0and d£ '>0are both positive. However, for the direction
vectord(°) drawn in Fig. 11(b), we have d{°* <0, d^ >0and d^ >0. In

(0)
other words, the components of the direction vector dv ' in general have dif

ferent signs.

Since only one boundary is crossed for any v. = p (by Assumption 4), the
(0}1 (1)boundary hyperplanes of the next (adjacent toRv ') region Rv ' are identical

to those of r'0' except that the index i. of Vv ' is greater (resp.; less)
than that of $S ' by one. More specifically, if R^ ' is bounded by

Bj(i.-l) - xj - eji.» then R^ is bounded by ej(i.-l) - xj - 3ji. for J*J0
and B. . <x. <B1 (i +1 \ (resp.; B1 (i o\ 1 x. < B- (i _•,)).

Wjq j0 J0njQ U J0°j0^ J0 J0ujQ u

Step II. Breakpoint Hopping:

Step I identifies a breakpoint x^1' lying at the boundary hyperplane
separating region R^0' from region r"'. It follows from Assumption 1 that
the solution curve r in region R^ ' from x* ' will be a straight-line segment
which either intersects another boundary hyperplane as shown in Fig. 12(a) or
tends to infinity as shown in Fig. 12(b). The latter situation corresponds to
the case where R^ ' is an unbounded region (i.e., one of the piecewise-linear
resistors is operating in its end segment) and we are done.

Consequently, it suffices for us to consider the general situation where
the solution curve r starting from some breakpoint >r ' (at p=p^ " ') in
region R^"1' intersects another boundary hyperplane separating regions R
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fir) (I,) (|/N
and Rv ' at a new breakpoint xv ' (at p = pv '). In other words, given break-

(k-U ~ (k)
point xv ', find the adjacent breakpoint xv .

The basic ideas behind the initialization algorithm in Step I is still

applicable here. However, there is a new complication which we must overcome;
(k)

namely, the direction vector dv ' which lies along the solution curve r in

region RN ' may point in the wrong direction, as illustrated in Fig. 13. Here,

the portion of the solution curve r in the two adjacent regions Yr ' and R* '

(drawn for the 2-dimensional case) is shown connecting breakpoints x^ ',
x/k) and x^k+1\ If the two direction vectors d^"1* (along rin R^'1^) and
d* ' (along the extension of of rin R^ ') are as indicated in Fig. 13, then
we would traverse from x* ' (corresponding to p= p^ ') to x' ' in the
direction of d'k"^ as we increase pfrom p^"1' to p^ Ap(k"l) +Ap^"1^,

(k-l)~ ~~ (k) (k\
where Apv ' > 0. However, any further increase in p from pv ! to pv ' + Ap

would take us back into region R* ' along the direction d^ ' if Ap >0.
Clearly, in this case, we should proceed in a direction exactly opposite to

that of d_M in order to arrive at breakpoint x^k+1^ at p^k+1^ Ap{k) +Ap^,
where ApW < 0.

The situation depicted in Fig. 13 actually is not pathological but actually

occurs whenever the solution curve r is not a single-valued function of v. =p.2 in K

For example, consider the driving-point characteristics shown in Figs. 14(a),

(b) and (c). Note that in all three cases, we traverse from breakpoint (T) to
breakpoint (f) by increasing the value of v. from p^ 'to p^ '+ Ap' \ where
Ap^ ' > 0. However, in order to continue from breakpoint (2) to breakpoint (3),
we must decrease the value of v. from p'2' to p* '+ Ap^ 'where Ap^ ' <0 in

in *

Figs. 14(a) and (b), or hold constant at v. = p in Fig. 14(c). Observe that

this would trace out a different segment even though the values of p overlaps

those of the preceding segment because the parameters of the canonical equation

(2.12) must be updated to those corresponding to the new region.

It follows from the above observations that it is necessary to develop

an algorithm for determining which direction we should proceed (i.e., d^ ' or
(k) (k)

- dv ') upon reaching a breakpoint xv ' in order that the solution curve r can

be traced in a continuous manner; i.e., hopping from one breakpoint xv ' to

the "next neighboring" breakpoint x^ '. In view of the lattice structure of
the boundary hyperplanes, a highly efficient algorithm can be devised with the

help of Fig. 13.

-23-



For the moment, let us assume that the previous direction vector d' '
is (correctly) directed towards breakpoint x'x'; i.e., Ap'k_1^ >0. Assume

(k)that the breakpoint xv ' lies at the boundary hyperplane defined by the 3k i-th
coordinate; namely, at x. = B.- lA -n- It follows from the above

/u_l \ K ' K • 3i, i
assumption (Apv* ' > 0) that K '

d(k-l)#d(k) <Q (3J2)
Jk-1 Jk-1

if and only if d^ ' is directed away from r' '; i.e., returning back to region
(k-1)

Rv '. Hence, if (3.12) holds, then we must follow the opposite direction
(k) (k)

-dv '. This is equivalent to choosing Apv ' < 0. By a similar derivation,

(3.8) now takes the following form in R^ ':

xW)-xW=[p(W).pW]d(k) (3.13)

d<k) L[B(k)]"V (3.14a)
where

and

Ap(k) Ap(k+1)-P{k)<0 (3.14b)

Here B^ * is the Jacobian matrix of (2.12) in region R^ ' and is given by

n ^i"1 ai
B(k) AB + I [- I Cl1eJ+ J Cl1el] (3.15)

~~ j=i i=l -J1 J i=i."-J1 J
j

The above formulas which cover the two typical cases depicted in Figs. 14(a)

and (b) are valid if and only if B^ ' is nonsingular. However, the case
depicted in Fig. 14(c) has singular Jacobian matrix Er ' and Ap^ ' A p^ '
- p^ ' =0. This degenerate case will be analyzed in Section 5. Meanwhile,
let us summarize the above properties as follows:

strict-monotone parameter variation property:

If B^ is nonsingular and Ap^ Ap(k+1) - pM, then Ap^ >0 (resp.;
Ap^ <0) in R^k) if and only if the solution curve r in R^ ' follows the
direction of d(k) (resp.; -d(k)) from x(k) to x(k+1).

It follows from the preceding property that if B^J' is nonsingular, then
+This assumption is not necessary and will be lifted shortly.
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the solution curve rwill traverse the region R^' along the direction of
sgn(Ap^J')d^. Hence, we can now remove the earlier assumption that d^ " ' in
(k-1) ~ (k)

Rv ' is directed towards xv ', and replace (3.12) by the more general

criterion:

dW .d(k"1).sgn(Ap(k"1))>0
°k-l Jk-1

(resp.; d(k)
3k-l

•di^-sgnUp^"1*) <0)
Jk-1

if and only if d^ ' is directed towards (resp.; away from) R^ '
Observe that (3.16) uses only data from the j. _-. -th entry of d

(k-1)

(resp.; LqS ' < 0) in the next region Yr \
(k-1) (k-1)

sgn(Apv ') by Apv ' in (3.16) without changing the validity of the preceding

(k)

(3.16a)

(3.16b)

and

where j. , corresponds to the piecewise-linear resistor R. (where
k-1

one of its breakpoints had just been reached).
(k)

Equation (3.16a) (resp.; (3.16b)) implies that we should choose Apv ' > 0

Observe also that we can replace

property.
(k)Having thus identified the correct direction to proceed in R

(k)
objective is to determine the first boundary hyperplane of Rv ' penetrated by

the solution curve r. To do this, we need to find the direction (identical or

opposite) traversed by each component of r along the j-th coordinate axis (i.e.,
Tk)

the projection of r onto x. within Rv '), j = 1, 2, ..., n. This information
j

can be determined with the help of (3.16) as follows:

our next

component direction cri terion:

The component of r along the x. coordinate axis traverses towards the

positive (resp.; negative) direction of

RW if, and only if,
x. as

W

r moves from r' to x^'Mn

d(k).d(k) .d(k-l).
J Jk-1 Jk-1

Ap^XJ (3.17a)

(resp.; dn(k).d|k)
3 3k.-, Jk-1

:0) (3.17b)

(k^
In view of the lattice structure, the boundary hyperplanes of Rv ' can be

described trivially as follows:
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&i (i \ £ xi £ &*i » j = 1, 2, ..., n
jnj-l; J J1j

(3.18)

x. =

If (3.17a) (resp.; (3.17b)) holds, then the right (resp.; left) boundary

B^. (resp.; x. = B-/.,• _-j\) will be reached at
j j

p(k+l) =p(k)± (k) (3.19)

where

APjk) A(6j. -xjk))/|djk)| >0
J

(3.20a)

(resp.; Ap]k) A(Xj(k)-Bj(i .^Vldj^l >0)
J

(3.20b)

provided d; ' $ 0, and the plus sign (resp.; minus sign) in (3.19) is chosen if
(k) ^ — Tin—

dv ' is directed towards (resp.; away from) Rv ', i.e., if (3.16a) (resp.;

(3.16b)) applies.

Equation (3.20) gives the corresponding (positive) increment Apj ' in p
needed to reach the boundary along each coordinate axis x., j = 1, 2, ..., n.

*—"~"~—" j

To determine the first boundary crossed by the solution curve r, pick the index
(v)

j., such that Ap^ ' is minimal; i.e.,
k 3k

Ap^k) = Min Ap^k)
Jk 1<j<n J

It follows that the breakpoint x* ' is reached when

(k) . A (k)p = px ' + Ap^ '

(resp.; p=p(k) - Ap^k))

(3.21)

(3.22a)

(3.22b)

provided that (3.16a) (resp.; (3.16b)) holds,

hyperplane is given by

xi = ^i i .Jk Vjk

(r6SP'; X3k =33k(ijk-1)}
if (3.17a) (resp.; (3.17b)) holds for j =Jk-

In this case, the first boundary

(3.23a)

(3.23b)
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It follows from the above analysis that

,(k+l) =,(k) +ip(k).,(k) (3.24)

where

fAp(k).ifdJk).d(k-1U(k-1)>o
APW A ^ ^ JW

^ Jk Jk-1 Jk-1

(3.25a)

(3.25b)

Assuming region R^ 'is bounded by (3.18), the next region can be trivially
identified: R* ' is bounded by the following boundary hyperplanes:

and

3JOyD-XJ —3ji.: j * jk
j j

Vj^\^Vj-)'ifd^p(k)>0
(resp.;B,(, .2)<x <BJu(, .1),ifdjk).Ap(k)<0)

V'j, V'j,

(3.26)

(3.27a)

(3.27b)

We can iterate (3.24) until all breakpoints within the user-prescribed

dynamic range p. < v. < p had been found. If pmax < «>, then the solution
curve Twill terminate at some "bounded" point in ]Rn provided the corresponding
Jacobian matrix is nonsingular and p = pma„ can be reached.

3 max

D. Adding Bells and Whistles

The preceding algorithm (Section 3C) should be adequate for tracing the

driving-point and transfer characteristics of most garden-variety electronic

circuits. It may, however, occasionally get stuck in some contrived but not

degenerate circuits. We will now describe these situations so that additional

checks and refinements can be bui.lt into the algorithm.

a) Choice of initial point: For simplicity, the preceding algorithm in

Section 3C is initiated by finding one operating point when pin = Pmi-n» where
p . is the user prescribed lower limit of the input voltage. There are

several situations, however, where the prescribed p . may not be the best

choice for a starting point. One situation is when the circuit is made of

passive elements with no internal power supply, such as the class of two-
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transistor negative resistance circuits described in [5,6]. In this case,

v. = p = 0 would be a better choice because the origin in this case is guaran

teed to be an operating point. For such circuits, the user should simply

specify the origin as the starting point instead of wasting computer time to

find another operating point due to some (often arbitrarily) chosen value

v. = p . .
in Hmin

In fact, there are other occasions where a nonzero operating point (dif

ferent from that at Pml-n) is known from some previous analysis and should be
used instead.

In both cases, the algorithm in Section 3C would find only the part of the

solution curve T for 0 < p < pma . To find the remaining portion corresponding
— — max /q\

to pm,.„ < p < 0, we simply repeat Step I along the opposite direction of dv ';
min — ~ fn\ —

i.e., choose Apv ' < 0 in Step I and then repeat Step II until the solution

curve F is beyond the range p . < p < Pmax«
b) The user specified p . may be poorly chosen such as in Fig. 15(a),

where the driving-point characteristic is a closed loop located to the right of

pmin' or in Flg* 15^ wnere pmin gives nse to 3 °Peratin9 points. In the
first case, another o. such that p« > p .„ > p-, must be chosen. In the second

' min Z mm 1

case, assuming the operating point P is specified, then only the portion of the

driving-point characteristic below point P would be found by the algorithm in

Section 3C, and the same modification described in a) above must be used to find

the remaining portion.

c)The user specified pm,„ may be poorly chosen, such as in Figs. 15(a),
' max

16(a), or 16(b). In all three cases, the solution curve T does not exist at

v. = p .For such situations, the complete solution curve T will be either
in max —c

a loop with a finite perimeter (e.g., Fig. 15(a)), or a multivalued curve

with two unbounded end segments (e.g., Figs. 16(a) and 16(b)).

d) Even if an algorithm capable of finding all operating points such as

that described in [2], is used to find the initial points corresponding to

v. = p • , there is no guarantee that one and only one point on each separate
i n mi n

branch of the solution curve will be found. For example, consider the hypothe

tical driving-point characteristic in Fig. 17 which is made of two distinct

branches. Note that although the algorithm in [2] will find aVl_ three operat

ing points corresponding to vin = pmin in Fig. 17, only one of these three
points should be used in the algorithm in Section 3C. On the other hand, since
no operating point on the second "bow-tie" shaped branch has been found, our
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algorithm will fail to uncover this branch.

iect

TO
e) The algorithm in Section 3C fails whenever B^ ' in (3.8) or (3.14) is

singular. In this case, BK ' has a nullity equal to one (by Assumption 1) and
(lr)

the solution curve T is well defined as a straight-line segment in region Rv '.

The vertical segment in Fig. 14(c) is a case in point. This situation is

analyzed in Section 5 and appropriate modifications to the algorithm in Section

3C will be presented there.

Let us now incorporate the preceding modifications into the algorithm in

Section 3C as follows:

Refined Breakpoint-Hopping Algorithm

Step 0. (Searching the starting points)

Find a set of operating points X = {xa,x. ,...,xm} corresponding to one
-~a -»d ~in

or more input voltages v. = P. Include any user-furnished operating

point X.

In general, the operating points in X are found by letting p. = pM.
fn\ in min

A p^ ' and then using either [1] (if the circuit is known a priori to
have a unique solution branch, or if only one branch is sought) or

[2] to find the corresponding operating points.

The following steps are iterated for each operating point xk in X, and
the corresponding solution curve T. passing through xk will be found
over the user-specified dynamic range p . < v. < p in the usual

III I II """" I II ^~ HlQ/\

case, or over some modified range p, < p< p2 (where p-j may be -» and
p« may be +») where the solution curve T. is defined (e.g., Figs.

15(a), 15(b), 16(a), and 16(b)). Since two or more solution curves

may turn out to be identical even though they pass through distinct

operating points in X (e.g., see Fig. 15(b)), the following algorithm

will detect this situation by comparing their breakpoints: any two

branches r. and T. having an identical breakpoint are identified as

the same branch.

If X contains at least one point in each branch, in addition to pos

sible extraneous points falling on the same branch, then the following

algorithm will find all distinct solution curves.

4.

The algorithm for the ill-conditioned case in [2] must be modified as described
in Appendix B.
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The corresponding driving-point or transfer characteristic is obtained

by calculating the breakpoints corresponding to each solution curve

17 via (3.2) if the output variable depends only on x,, x2, ..., x
and v-n, or via (3.1), (2.8), and (2.9), if otherwise.

Step 1. (Tracing the solution curve in R* ')

(a) If X = <{> then stop.

(b) Pick a solution of X as the starting point for a branch of solu

tion curve. Denote this solution by x* ' and delete it from X.

Set a) = 1.

(c) Find i. for each j = 1, 2, ..., n such that
j

B./. ,v <x0' <B-.3(ij-l) - 3 - 31 j
irl a.

(3.28)

(d) Compute B(0) AB+J[(- J c..+ { c.jej] (3.29)
j=l i=l ~J' i=i ~0'

J

(e) Compute d(0) A[B(0)]"V (3.30)

(f) Let S(0) A{j|d(°^0,j-l,2,...,n}, for j € S(0)
j

'(xj0)"e0(i-l))/|dj0)|' ifdj0)-M<0 (3-31a^

(B„ -x{0))/|««{0)l. ifd|0).a)>0 (3.31b)
Compute Ap: ' =

(g) Set Ap*0* Au. Min {Ap(°h and if Ap^ is finite, then let jn

be the index such that Ap^ ' =wApJ .
J0

Remark: When oj = 1 (resp.; u> = -1), the B^H (Breakpoint-Hopping) algorithm will
trace the solution curve T from starting point r ' at p = p^ ' along the direc
tion of increasing (resp.; decreasing) p. If we are only interested in the

range [p 4w,pwt, ] instead of tracing the whole solution curve, then w = 1 is
3 Uhnnn max

used throughout this algorithm and we can stop tracing a branch of solution
curve when p = p is reached and then return to Step 1(a) to search for

other branches of the solution curve.

(h) If Ap(°) is infinite then
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(i) if Ap(0) =+~then compute x(1) =x(0) +(pmav-P(0))d(0) and
set p( ' =pm ; (ii) go to Step 11.

max

max

Remark 1: jQ can be uniquely determined due to Assumption 4 in Section 3A,
where we assume the solution curve never hits a corner point.

Remark 2: In the case when Ap^ ' =+«>, the solution curve is a straight line
over the range [pm,-„,Pm,„].

3 Llmin max

(1) Compute p(1) =p(0) +Ap(0)

x").xf°)+BW0)d(0130 -

(j) Set k = 1.

(k) Go to Step 2.

Step 2. (Characterization of the new region)

^ij +1, if ^j^-j and dj" "-Ap

j B\VT' if j=jk- and

1j, if 3 Mk_!

d^.Ap^^O
k-1

.(k-1) . (k-1) „ n
d. '*Ap ' < 0

Jk-1

(3.32)

(3.33)

(3.34a)

(3.34b)

(3.34c)

Go to Step 3.

Remark: If d '̂̂ -Ap^"1^ >0 (resp.; d(k"] ^Ap^"1 ^<0), then the solution
Jk-1 3k-l

curve is in the direction of positive (resp.; negative) 3i< i-th coordinate axis

Step 3. Compute

r

F =

l+2el [B '̂1^"1
~Jk-l ~

r\ (i ...iff'^^o
k-1 ik-l k'] (3*

'Jk-1

Go to Step 4.

Step 4. Compute

l-2ej [B^^rV. , , Ifdj^W^^O
~Jk-l ~ ~Jk-Vj,. , Jk-1

k-1

35a)

(3.35b)

[b(V =

fCB^^d.-lc. ,t ue] -[B(k-1)r1-},ifd(k"1).Ap(k-1)>0
3k-liljk_1 ~'Mk-l " Jk-1

(3.36a)

CB^^Cl+fe, ,1# i}t n[B(k"1)]-1},ifd[k-l).Ap(k"1)<0
(3.36b)

C ^k-l '̂k.T^k-l"^ " " Jk-1

Go to Step 5.
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(Ir) (k-1}
Remark: Regions Rv ' and Rv ; are separated by a boundary hyperplane

Xi =B1 (i _n (resp.; x. =B, , )if d^'^Ap^"1} >0
Jk-1 Jk-l°jk_1 l) Jk-1 ^k-l^.-, Jk-1
(resp.; d^'^-Ap^"1^ <0). (Note that i. has been renewed in Step 2).

Jk-1 Jk-1
Hence,

B(k) =B(k-1) +2c T (3#37a)
k_1 dk-l" k"1

(resp.; B(k) =B(k"1} -2c. . -el ) (3.37b)

Steps 3 and 4 use Householder's formula

(H+GLM)"1 =H'̂ J-GfMH'̂ +L"1)"1^"1} (3.38)
to compute [B* '] via [b' '] * The number of multiplication operations in
this formula for finding the matrix inverse is of the order of n while that for

o

LU decomposition is of the order of n . Unfortunately, there is one drawback in

using this formula; namely, the round-off error may propagate and accumulate

sequentially, and hence the computed inverse will exponentially deviate from the

correct result especially when the matrix is ill-conditioned.

Since the computational efficiency of this formula is quite attractive

especially when n is large, we choose a tradeoff between it and the LU decomposi

tion as follows: after using the formula for several steps (depending on the
(k)matrix condition), we re-evaluate the Jacobian matrix Bv ; by (3.15) and use LU

decomposition to compute the inverse, and then continue to use the formula for

several steps and so forth.

Step 5. Compute d(k) A[B(k)]"V. (3.39)

Go to Step 6.

Step 6. Let S(k) A{j|d(k) f 0, j=1, 2, ..., n}, and for jeS(k), let
j

g< =sgn«<k>.d<k> .d^1WM,>. (3.40)
3 J Jk-1 Jk-1

Go to Step 7.

(k)
Step 7. For j <= Sv ' compute
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(k) .
»i

,(k) (k)(xjK,-flj(iri))'"dj ;'* if g3="1 (3.41a)

(3.41b)

Go to Step 8.

Step 8. Let Ap^ A Min {Ap*kh and if Ap^ is finite, let j. be the unique
(k)

Step 9.

jesJ€b (k) (k) (k)
(see Remark 1 under Step 1(g)) index in SKK* such that ApVM = Apr'.
Go to Step 9,

r Ap<k>

Ap
(k) _

-Ap
(k)

if d^.d^W^^O
Jk-1 Jk-1

if dW.d^Ufr^o
Jk-1 Jk-1

(3.42a)

(3.42b)

Go to Step 10.

Step 10. (a) If Ap^ =-~ and pM <p^ then go to Step 11.
(b) If Ap(k) =-«° and p(k) >p(0) or Ap(k) =+~ and p(k) <p(0), then

(i) set "p.(W) „p(0) and compute'x(W) . x(k) +(p(0).p(k))d(k);
(k+1)(ii) if x € X then delete it from X; (iii) go to Step 11.

(c) If Ap(k) =+« and p(k) >p(0) then (1) if
(k+1)

o = P
H Hmax

and compute

:<k+1>=x(k) +(p -p(k))d(k)
- VHmax H '~

(ii) go to Step 11.

(d) If Ap'k' is finite then compute
p(k+D =p(k)+ap(k)

x(k+D =x(k) +ip(k).d(k)

p > o
nnax H

then set

(3.43a)

(3.43b)

(3.44)

(3.45)

If (p(k+1)-p(0))-(P(k)-P(0)) <0or p(k+1) =P(0) then(i) compute
x =x(k) + (p(°).p(k)).d^k) and if x 6Xthen delete it from X; (ii) if
~°~(o)
*0 =*

then go to Step 1(a)
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(e) Set k = k+1.

(f) Go to Step 2.

Remark 1: Steps 10(b)(ii) and (d)(i) are to delete those operating points of X

which can be reached by the same branch of solution curve.

Remark 2: In the case of Step 10(d)(ii) when x =x^ ' the solution curve r

(0)becomes cyclic since r returns to the initial point xv ' and it will be shown in

Section 5 that there is at most one branch of solution curve to pass any point x

in the domain space under Assumption (5.55).

Step 11. (a) If w = -1 then go to Step 1(a).

(b) If a) = 1 then set oj = -1 and go to Step 1(c).

Remark: In Step 1, for id = 1, if we don't destroy the information on [Er ']" ,
d^ \ and the characterization on r' ' during the breakpoint-hopping procedures,
then when re-entering Step 1 in Step 11(b), we can go to Step 1(f) directly and

skip the redundant calculations in Steps 1(c), (d), and (e).

E. Illustrative Examples

We close this section with two simple examples chosen so that their driving-

point characteristics can be readily obtained by standard graphical methods [15]
for checking purposes. Several nontrivial validating examples are given in

Section 4 not only to demonstrate the generality of our algorithm, but also for

validating future algorithms.

Example 3.1 (Fig. 18)

Consider the circuit shown in Fig. 18(a), where nonlinear resistors R^ and
R2 are described by the piecewise-linear characteristics shown in Figs. 18(b) and
(c). Using the graphical method in [15], the driving-point characteristic for

this circuit is easily obtained as shown in Fig. 18(d).
To derive this driving-point characteristic using the breakpoint-hopping

algorithm, we choose x=[v., ,i2,i1n]T and y =Ci-j »v2»vin^ and write the follow"
ing associated canonical piecewise-linear equation (detailed calculation is

given in Appendix D-l):

r-i

17/8

0

-9/4

-1

1

0" Xl "0" [--7/41 "-9/4" --i ^

0 x2
+ 7/8 1^1 + 0 |x2-l| = 0 + p 0

-1_ -x3- _ o_ - 0^ L o J - 0 J
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Suppose it is desired to trace the driving-point characteristic over the

dynamic range -7 < v. < 7. Hence, pm. = -7 and pm,„ =7.
— in — ' ^min max

Step 1. Starting from vin =-7 Ap^0', we find by inspection of Fig. 18(d)
that i. =-5 and hence, i2 = -5, v« =r3, v, = -4 and i1 = -1. It follows
from Figs. 18(b), (c) and (3.28) that the circuit is initially operating in

segment (1,1). Hence, region R^ ' is identified by -«_< v, <0 and -«> <i2 <1
Substituting the parameters in this region into (3.29) and (3.30), we obtain:

(0) _

-1

5/4

0

-1/2

-1

1

0

0

-1 J

and d <°> a^-V =
8/13

10/13

UO/13 J

(3.47)

Since we are only interested in the range (-7,7), cd = 1 is used throughout

the B-H algorithm in Section 3D. It follows from (3.31b) that •

A (0) =0-(-4) =13/2
Apl 8/13 ,W and A^20) =Irfcfl =39/5

Since Apj°)<Ap2°), we identify jQ =1and hence Ap^ =Apj0^ =13/2.
(3.32) and (3.33), we calculate the next breakpoint:

p(1) =-7 +13/2 =-1/2, and (i).

~-4" " 8/13' "o-

-5 + 13/2 10/13 = 0

_-5_ JO/13 _ -0.

(3.48)

Using

(3.49)

It follows from (3.48) that R, first arrives at its breakpoint (0,0) when v.
(0) !m in

increases from pv ' = -7 to pv ' = - 1/2.

Step 2. The next region fr ' clearly corresponds to segment (2,1) and is

characterized by 0 < v, < <» and -oo < i* < 1.

Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

d^ =[2/5 6/5 6/5]T (3.50)
Steps 6,7. Since dj1 ^-dj^-Ap^ =2/5-8/13-13/2 >0, the direction vector d^

points in the correct direction and it follows from (3.41b) that

(1) _«-0 _
Ap
1 2/5 •» """ 6/5

Steps 8,9. Since Ap^ <Ap]1', we identify j1 =2and hence Ap^ =5/6

and l£ =5/6 (3.51)
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Step 10. Using (3.44) and (3.45), we calculate the next breakpoint:

p(2) =-1/2 +5/6 =1/3, and x(2) =

~0" "2/5^ p/3l
0 + 5/6 6/5 = 1

J>_ _6/5_ _ 1 ,-

(3.52)

It follows from (3.51) and (3.52) that R0 first arrives at the next
(2)breakpoint xv ; when vin increases from p =-1/2 to p =1/3. We

then return to Step 2 to find the next breakpoint.

Step 2. The next region R^ ' clearly corresponds to segment (2,2) and is
characterized by 0 < v, < » and 1 £ i2 <. °°.

Steps 3,4,5. Using (3.35), (3.36), and (3.39) we obtain

d(2) =[1/13 3/13 3/13]T (3.53)

Steps 6,7.. Since di^-d^-Ap^ =3/13-6/5-5/6 >0, the direction vector
(2) points in the correct direction and it follows from (3.41b) that

Ap
(2) ,oo-l/3 . (2) .co-l _
1 =^713 =-• and Ap2 " 37TI

(2) _

(3.54)

(3) .

Steps 8,9. Apvt/ = oo. (3.55)

Step 10(c). Equation (3.55) implies that region R* ' is an "unbounded" re

gion having no other breakpoints as v. increases from p = 1/3 to oo.

Hence we simply choose the specified upper limit p^x = 7 in (3.43)

to obtain the end point (not a breakpoint) with Ap(2^ =7- 1/3 =20/3:
~l/3' 1/13 " 11/13"

1 + 20/3 3/13 = 33/13

- 1 -, -3/13 _, _ 33/13_

(3.56)

To obtain the driving-point characteristic, we note from Fig. 18(a)

that

y0 =i1n - i2 (3.57)

Hence the breakpoints in the i*in - vin plane corresponding to x* ',
x^, and x^3' are trivially obtained from the third row of (3.49),
(3.52), and (3.56), namely, (-1/2,0), (1/3,1), and (7,33/13). The
initial point is of course just (-7,-5). Connecting these points
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by straight-line segments starting from (-7,-5) in the order indi

cated, we obtain the same driving-point characteristic in Fig. 18(d),

as it should.

Example 3.2 (Fig. 19)

Consider next the circuit shown in Fig. 19(a), where the nonlinear resis

tor R, is described by the piecewise-linear characteristic shown in Fig. 19(b).
Using the graphical method in [15], the driving-point characteristic for this

circuit is easily obtained as shown in Fig. 19(c). Note that it is a multi

valued function of v. .
in

To derive this driving-point characteristic using the breakpoint-hopping

algorithm,we choose x = [v.j,1.n] and y =[i^v^] and write the following
associated canonical piecewise-linear equation (detailed calculation is given

in Appendix D-2):

-1

1

-2~ V
+

0

-1 x2 -5/4
L_ -J

|xr2| +
0

3/4
xr4| =

0

-1/2
+ P

-1

0

(3.58)

Suppose it is desired to trace the complete driving-point characteristic

over the whole dynamic range -<»£ v. <oo. we start from vin =9 Ap^ >where,
by inspection of Fig. 19(c), there are three distinct solutions xa = [3 3] ,
xb =[7/4 29/8]T, and xc =[9/2 9/4]T. Hence,

X={[3 3]T,[7/4 29/8]T,[9/2 9/4]T}

Step 1. (b) We pick xa from X and denote it as x
1 —a —

We then delete it from X and

(0)
i.e., x

X={[7/4 29/8]T,[9/2 9/4]T}. Choose u> =1.

(3.59)

A [3 3]T.

(c) x(0) is located in segment 2 of the nonlinear resistor R-j which
is characterized by 3-j^ _-,% =2<v1 <4=^. . Hence, i-j =2.

(d) By (3.29) 1 }

(0) _
-1

-1

(e) By (3.30)

-2

-1

d(o) =[B(o)]-V =[-i 1]T
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(f) S(0) ={!}. Since dj0)-a)= -1-1 =-1 <0, by (3.31a)

APl(0) =(3-2)/|-l| =1.

(g) Ap(0) =(D-Apj05 =1, and jQ =1.

(i) By (3.32) and (3.33),

pO) =9+i=io, and x^ =

(3.62)

(3.63)

(3.64)
"3

+ 1-1-

r- ""

-1
„

2

3 1 4

Step 2. Since d,(0)-Ap(0) =-1-1 =-1 <0, by (3.34b) i, =2-1=1and the
— 'CMnext region Rv ;is located in segment 1 of R-j which is characterized

by -oo < v, < 2.

Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

d(1) =[1/4 3/8]T

Step 6. S(1) ={1} and by (3.40)

g1 = sgn{l/4-l/4--l-l} = -1

Step 7. By (3.41a) and (3.64)

APl(1) =[2-(-00)]/1-11 =<» (3.67)
Steps 8,9. Since dj^-dj^-Ap^ =1/4-1-1 =-1/4 <0, by (3.42b) Ap(1) =-».
Step 10(b). Since Ap^ =-« and p^ =10 >9=p^0'

(i)p(2)=p(°)=9, and x<2> = + (9-10)
1/4

w3/8_

(ii) Since x^ €X, we delete it from Xand X=( >.

Step 11. Set a) = -1 and go to Step 1(f).

Step 1. (f) Since d(0)-a> =-1-1 =1>0, by (3.31b)

Apj0) -(4-3)/|-1I =1
(g) Ap(0) »(d-APi(0) =-1-1 =-1, and jn =1

'0

(i) By (3.32) and (3.33),
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(3.65)

(3.66)

(3.68)

(3.69)

(3.70)



p(D =9-i =8, and x^ =

Step 2. Since d^-Ap^ =-1-1 =1>0, by (3.34a) 1, =2 +1 =3, and the
— — C\)

next region Rv ' is located in segment 3 of R, which is characterized

by 4 < v, < «.

Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

d(1) =[1/2 1/4]T

Step 6. S^ ={1} and by (3.40)

g1 = sgn{l/2-l/2.-l--l} = 1>0

Step 7. By (3.41b) and (3.71)

APl(1) =(~-4)/]l/2| =00

3"
+ (-l)-l.

~r
_

r 1
4

3 i 2

(3.71)

(3.72)

(3.73)

(3.74)

Steps 8,9. Since dj1 '-dj^-Ap^ =1/2--1--1 =1>0, by (3.42a) Ap^ =•.
Step 10(b). Since Ap^ =°o and p^ =8_<_? =p^°\

(i)p(2W°>=9, andx<2)=

(2)(ii) Since xW/ € X, we delete it from X and X

Step 11. Since to = -1, go to Step 1(a).

Step 1(a). Since X = <f>, we stop the B-H algorithm.

To obtain the driving-point characteristic, we choose the breakpoints in

(3.64), (3.68), (3.71), and (3.75), and start from the initial point

x^ ' = [3 3] . Connecting these points by straight-line segments in the order
indicated, we obtain the same driving-point characteristic in Fig. 19(c), as it

should.

4. VALIDATING EXAMPLES

In this section we apply the B-H algorithm from Section 3D to derive the

driving-point and/or transfer characteristic of the four piecewise-linear cir

cuits studied earlier in Examples 2.1 (Fig. 5(a)), 2.2 (Fig. 6(a)), 2.3 (Fig.

7(a)), and 2.4 or 2.5 (Fig. 8(a)). Since these circuits are not of a series-

parallel type, and some contain controlled sources, the graphical method in

+ 0-8)
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1/4

(j>.

9/2

9/4
(3.75)



[15] is no longer applicable. In spite of the simplicity of these circuits,
their associated driving point and transfer characteristics are quite compli

cated. In particular, the characteristics of the circuits in Figs. 5(a),

6(a), 7(a), and 8(a) are multivalued function of v. and can not be obtained

by any existing computer simulation program (brute force approach), such as

SPICE [17]. Consequently, these examples can be considered as "benchmark"

circuits where future competing algorithms may be validated and their computa

tional efficiency compared.

Since each circuit contains only two resistors, their solution curves r

are piecewise-linear curves in the x, - x2 plane and can be easily drawn. Con
sequently, in each of the following examples, we will sketch both the solution

curve r and their associated driving-point and/or transfer characteristics in

order to emphasize their relationships.

Example 4.1 (Fig. 5(a))

Let us derive the driving-point characteristic of the circuit in Fig.

5(a) whose canonical piecewise-linear equations have been derived in (2.17);

namely,

-1 -9/4 0" xi "o" --7/4- --9/4" --1"

9/8 9/4 -1 x2 + 7/8 |xr0| + 7/4 |x2-l| = 9/4 + P 0

.0 -1 1. _*o - -0 ^ _ 0 - - 0 - _0_

(4.1)

where xn
(0) .-1 x2i h and x0 A i

0 = in
Starting from the initial point

xx"' =[-2 -2 -2]T corresponding to vin =p^ ' =-7/2, we apply the B-H algo
rithm to derive the solution curve r shown in Fig. 20(a). The detailed calcu

lation is given in Appendix E-l. The three breakpoints of r are found to be

located at:

x")-[0

with

.(1) -« -1

T, x(2) =[1/2 1 1]T, and x(3) =[0 4/3 4/3]T-1 -1]

J2) _=1/2, and p(3) =4/3

-40-

(4.2a)

(4.2b)

The end segment of ris identified by apoint x'4' =[-6 11/6 11/6]T correspond-
(4)ing to v*in =pv ' =-8/3.

To obtain the driving-point characteristic, we simply project the solution
curve r along the x3 Ai coordinate axis (parametrized by vin). The result



is shown in Fig. 20(b). Observe that it is a multivalued function of vin and
is undefined for v. > 4/3. It is also clear from Fig. 20(b) that whereas the

in(0) (IV (2)
direction vectors, dv ' AK ' ™A ^v '

(3)
dv ', and d

tion, dw/ is oppositely directed. a

Example 4.2 (Fig. 6(a))

Consider the simple circuit shown in Fig. 6(a) whose canonical piecewise-

linear equation has been derived earlier in (2.22); namely,

are pointed in the correction direc-

7/4 0 - I" fx "1xl ""-25/18" "41/36" 0

0 4-1 x2 + 0 |xr1.2| + 0 |xr3| + -7/2

-1 -1 -3.2. „x3^ 0 _, _ 0 „ 0 _

"o" 7/4 "0"

+ 5/2 |x2-2| - 2.2 + P 0

-0 _ - 0 - _rl_

fx2-0.8|

(4.3)

where x, A v,, x2 A y and x~ Ai Our objective here is to find the driving-
point characteristic, as well as the two transfer characteristics v, - vs - v.

and v2 - vs - v. .
As usual, the basic problem is to derive the solution curve T in the x,-x2

plane via the B-H algorithm. Since the circuit in Fig. 6(a) is made of only pas

sive resistors and contains no internal power supply, it is clear that the

solution curve must pass through the origin x^ ' = 0, as shown by I\ in Fig.
21. It turns out that for this circuit a second solution curve through another

initial point x* ' = [9/8 67/40 9/4] at v. = 10 exists concurrently, as
shown by r2 in Fig. 21. The detailed calculation is given in Appendix E-2.

C\) (2) (3) (b)
v ', xv , xv ' and xv ' plus one point in each end segThe breakpoints x

ment of I\ are located as follow:

(0) _

0^ -1.2~ "3" "5

0 ,xn) = 0.48 „(2) . 0.2 , x<3> = 0.8

0 J _ 2.4_ -1 - -4 .

)„

"3.4"

2 . *(5) =
4.9

2.75

J-6- 3-86_

-41-

(4.4a)



with

p(0) =0, p(1) =234/25, p(2) =6.4, p(3) =18.6, p(4) =10.52, and p(5) =20
(4.4b)

The second solution curve r2 is cyclic with the following breakpoints:
(identified by a hat ,,/v" to distinguish them from those of r,)

with

x<°>-

9/8

67/40

.9/4 J

, x
(1) -

1.2

1.6

L2.4J

,x(2L

f78/35l

2

1.6

,x<3> =

1.2

34/15

L2.4J

,and x(4)_

0.8

2

J.6.

(4.5a)

p<°> =10, p(1) =10.48, p<2) =9.35, p(3) =11.15, and p(4) =7.92
(4.5b)

To derive the driving-point and transfer characteristics, we note from

Fig. 6(a) that

iin =x3, v1 =xr and v2 =x2 (4.6)

Consequently, these characteristics are trivially obtained from the respective

components of xat each breakpoint of r1 and r2. The results are shown in
Figs. 22(a), (b), and (c) respectively. Observe that the breakpoints of these
three characteristics with the same v. = p^ 'corresponds to the breakpoint

in (k)in the solution curve T-j or r2 with p= pv '. °

Example 4.3 (Fig. 8(a))

For our final example, consider the one-transistor circuit in Fig. 8(a)
whose canonical piecewise-linear equation has been derived earlier in (2.35);
namely,

f-5.59 74.8 0"

-42.7 1120 0

50.4 -49.2 -8000

pll "-0.25"

x2 + -2.68

1*3- - 2.11_

-5.59

-60

.47.3J

3.16

47.9

L-2.10J

|x2-0.4| +

"70.6

1071

-47.1

|x.,-0.4| + |x.,-0.6|

|x2-0.6| =

" 40.2" "-1 "

625 + P 0

_0.146^ _ o„

(4.7)

where x] Av.,, x2 Av2, and x3 £ i'in. Our objective is to derive the driving-
point characteristic.
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Since this circuit is made of only passive elements and contains no inter

nal power supply, x = 0 is an operating point corresponding to v. = p = 0.
(0)

Applying the B-H algorithm with xv ' = 0 as the initial point, we obtain the

solution curve r shown in Fig. 23(a). The detailed calculation is given in

Appendix E-3. The breakpoints x^ ', x^ \ J »and J and two points in
each end segment of r are located as follows:

with

(0) .
r°i r °-4 1 0. 6 1

0 x(l) - -8.03 , x<2> = -10.9 9

-0- _5.02xl0~5_ _1.81xl0~4-

' 0.708 " r 0.891 "1 r i#o2 "i
j(3). 0.4 , x<4> = 0.6

x(5) _
9 * " 0.606

J. 53x1o-L 3.71xl0"3 5.29xl0"3

(4.8a)

(0) „ n JD=7Q, J2) =ln Q J3) =n 7Q J4) =! A1 an^rt(5) =2p*~' = 0, pv,/ = 7.93, pvw = 10.9, pw/ = 0.78, pv_r/ = 1.41, and p

(4.8b)

The driving-point characteristic is obtained from the third coordinate,

x3 =^in' °^ x (Parametrlzed by v. ) and is shown in Fig. 23(b). a

5. ANAALYSIS OF DEGENERATE CASES

A review of Section 3C would reveal that the breakpoint-hopping algorithm

would get stuck under the following two degenerate situations:

1. The solution curve hits a corner point.
(k) (k) (k)

2. The Jacobian matrix Bv ' in region Rv ' is singular for some region Rv '

traversed by the solution curve r.

For canonical piecewise-linear equations with lattice structure, a corner
it ,

is reached at p = p where two or more nonlinear resistors arrive at their

respective breakpoints simultaneously for the same input voltage vin = p*. The
occurrence of a corner point in piecewise-linear analysis always costs more

computational effort in tracing the solution curve since there is more than

one possibility in determining the next regionforthe solution curve upon hit

ting a corner point. Moreover, the solution curve may split into several dis

tinct branches as shown in the following example.

Example 5.1 (Fig. 24)

Consider the circuit shown in Fig. 24(a), where the nonlinear resistors
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R-j and R2 are described by the piecewise-linear characteristics shown in Figs.
24(b) and (c) respectively. To trace the solution curve by using the B-H alro-

rithm, we choose x=[v-pV^i^]' and y =Ct-j »i2*v1n-'T» and wnte the followin9
associated canonical piecewise-linear equation (detailed calculation is given

in Appendix D-3):

" 0

-1

0

0

-1

0

o- ~xl~ " 1 " "-i" -o"* ' o "

0 *2
+ -1 hi + 0 |x2l - 2 + P -1

-1_ -x3- -0_ _ 0_ _0 _ _-l _

(5.1)

We start from the initial point x^ '= [-2 -2 0] which corresponds to
p^ ' =0and is located in segments (1,1) of the nonlinear resistors R, and R2,
Hence, region R^ 'is characterized by -«£ x-, _< 0and -«<x2 <0, and by
(3.29) and (3.30),

B
(0) _

-1

0

L 0

It follows from (3,31b) that

Apj0) =(0-(-2))/|l| =2, and Ap^0) =(0-(-2))/|l| =2

1 0~ 1

-1 0 , and d<°> =[|{0)]"V- 1

0 -1. -U

(5.2)

(5.3)

Hence, the solution curve r hits the boundary hyperplanes x1 =0 and x2 =0
simultaneously at the corner point

x(1) =[0 00]T with p(0) =2 (5.4)

It is shown in Fig. 24(e) that the corner point x* 'belongs to regions RW,
R(b>, and R<c>
linear resistors R-. and Rg respectively) in addition to region R
solution curve starts, and all these regions are possible candidates for the

solution curve to enter. By (3.14a) and (3.15), the Jacobian matrix and the

direction vector in each region can be found to be:

:(a) „

(corresponding to segments (1,2), (2,1) and (2,2) of the non-

' ' where the

-1 -1 0" 1 1 0

0 -1 0 , B<b> = -2 -1 0

0 0 -1 .0 0 -1
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, anc^ B(c) _

' 1

-2

0

-1

-1

0

0

0

-1_

(5.5a)



d(a) =[-1 1 1]T, d(b) =[1 -1 1]T, and d(c) =[1/3 1/3 1]T (5.5b)

Since d^a\ d^b\ and d^ are in the direction of entering R^, R^,
(c)

and Rv ' respectively, each direction vector will define a trajectory for the

solution curve and the solution curve starting from x^ 'will split into three
different branches upon hitting the corner point x^ '= [0 0 0] as shown in
Fig. 24(e). a

Since a corner can exist only for precise element parameter values, it is
(k) (k)

a pathological situation which occurs whenever Ap} ' = Ap} ' for some j, f j«.
J-j J2 \ l

When this situation is detected, we simply remodel the circuit by perturbing

one or more element parameters and repeat the analysis.

We next consider the second degenerate case when the solution curve tra

verses some region with a singular Jacobian matrix. In this case, the nullity

of B^ ' is at least equal to one. We will focus our attention first in the
case when the nullity is equal to one because in this case the solution in

R^ ' is a well-defined one-dimensional curve. When the nullity exceeds unity,
(k)

we will see in Section 5B that the solution curve r in region Rv ' is made up

of points having nontrivial areas. When this happens, we must again remodel

our circuit by perturbing some circuit elements until the nullity is at most

equal to one.

(lr)
A. One-Dimensional Degenerate Case: nullity of Bv ' = 1

~ (k)
Suppose the solution curve r enters a region RN ' where the corresponding

Jacobian matrix B* ' has nullity equal to one. Let the circuit be characterized

by the linear equation

B(k)x =a(k) + p-r (5.6)

within region R^ ' where (5.6) is obtained by substituting all parameters in the
(k)canonical piecewise-linear equation of (2.12) corresponding to region Rv '.

Since the breakpoint x^ ' € R^ ' is a solution at p = p^ ' where the solu-
(k)

tion curve r begins to enter region Rv '. Hence,

BdOjOO =&M +p("0.r (5.7)

Let d^ ' be a vector in the one-dimensional null space of B^ ' such that

B(k>.d(k) =0 (5.8)
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By (5.7) and (5.8),

B<k>(x<kWk>) =a<k> +p^-r (5.9)

Hence, x'k' +Ad'k' is asolution of (2.12) at p=p^k^ for any real value X
such that x'k' +A-d^ €R^. Since B?k' has nullity one, any vector satis
fying (5.8) must be amultiple of d^. It follows that the solution curve of
(2.12) within R^ ' is a straight-line segment and the solution curve is still
aone-dimensional curve in spite of the singularity of B^ \ However, the
sweep voltage v-n is kept at aconstant v-n =p=p^ 'throughout region R^ '.

It follows from (5.9) that the solution curve in R*k' follows the direc-
tion of dv ' if dv ' is chosen such that it points to the direction of entering

(lr) - " /U_-| \ (l,)
Rx ' instead of returning back to Rv \ Hence, the direction vector dv ;

for the region Rv ' with a singular Jacobian matrix can be determined as

follows:

B^.d^ =0 (5.10a)
and

d(k) .d^-U.^ptk-l) >0 (5.10b)
Jk-1 Jk-1

Note that Ap^ ' =0 since p is fixed at the constant p= p^ ' for the
solutions within r'*'. Hence, the inequalities in (3.16), (3.17), (3.25), and
(5.10) can no longer be applied if B^ ' is singular with Ap^ ' =0. How
ever, d' 'will point to the correct direction if we follow the rule of (5.10)
to choose d^ 'for r' ' with singular Jacobian matrix Ir '; namely,

B(k-l)d(k-l) =Q (5-lla)

d(k-l).d(k-2).Ap(k-2)>0 (5Jlb)
Jk-2 °k-2

where we assume B^k"2^ is nonsingular and Ap' ' f 0. In the case for Ap^ " '
(k-2)

= 0, similar rule applies to the choice of dv '.

It follows that if Ap^k-1' =0then all the inequalities involving Ap^ " '
must be modified such that Ap^ ' is aborted from these inequalities in deter-

(k-1)mining the correct direction vector of the next region since dv J has been t
correctly chosen. For example, (5.10) should be modified as follows:
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!(kVk) - 2
d(k> .dH'-Ap^Ko if Ap^^O
Jk-1 Jk-1

d(k> .d(k-]> >0
k-1 Jk-1

if Ap^-D-O

(5.12a)

(5.12b)

(5.12c)

We now modify the B-H algorithm in Section 3D such that it is applicable

for the more general case including the regions with singular Jacobian matrices

of nullity equal to one. Only the steps needed to be modified are listed below,

the other steps will remain unchanged and refer to Section 3D. The complete

flowchart for this modified B-H algorithm is shown in Appendix C.

Modified Breakpoint-Hopping Algorithm:

Step 1. (e) If B^ ' is nonsingular then same as Step 1(e) in Section 3D,
else find the null space vector d* ' such that

B(°y°> =0 ~ (5.13)
(h) If b'0' is nonsingular then same as Step 1(h) in Section 3D, else

if Ap^ is finite then set Ap^0' =0, else go to Step 11.

Remark: If B^ ' is singular and u>«ApJ '=+°° (resp.; w-ApJ ' - -«) then
'0, '0

2o ~
=x^ +Xd^ is a solution at p=p^ for all X>0 (resp.; X<0).

(k-1' f 0 then same as Step 2 in Section 3D, else if k =1 then

if J - JM

Step 2. If Ap

J

r

V1

= i,-i
J

VVV, J

else if k > 1 then

r

if j - Jk_-,

if J f jw

i,+l, if j =Jk.!

v< 1j-l. if J - jk-1

Jy if j ^k-1

and w-d^"1' >0
ak-l

and a)-d(k"^ <0
Jk-1

and dn(k"^ >0
Jk-1

and d^"1) •< 0
Jk-1
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(5.14a)

(5.14b)

(5.14c)

(5.15a)

(5.15b)



Go to Step 3.

(k-1)Step 3. If Apv ' = 0 then same as Step 3 in Section 3D, else go to Step 12.

Step 4. If F f 0 then same as Step 4 in Section 3D, else go to Step 13.
(k-1)Step 6. If Apv ' = 0 then same as Step 6 in Section 3D, else let

S(k) A{j|d(k) f 0, j =1, 2, ..., n}, and for j €S(k) let

g, =sgn{d(kUk) -d^}
k-1 Jk-1

Go to Step 7.

Step 9. If Ap(k-1) f 0 then same as Step 9 in Section 3D,

(k) .

(5.16)

Ap(k), if o)-d|k) -d^"1) >0 (5.17a)
Jk-1 Jk-1

else if k = 1 then Ap

-Ap(k), if oj-d|k) .d^"15 <0 (5.17b)
Jk-1 Jk-1^

fAp(k>, ifd(k)-d(k-1)>0
Jk-1 Jk-1

else Ap(k) =<
Vk>, ifd(k)-d(k-1)<0

3k-l Jk-1v^

Go to Step 10,

(5.17c)

(5.17d)

Step 10. If Bv ' is nonsingular then same as Step 10 in Section 3D, else

(a) if Ap^ ' is infinite then choose
P(k+D =p(k)

x(k+1) =x(k)+sgn(ApW).d(k)
and go to Step 11;

(b) if Ap^ ' is finite then compute

x(k+1)=xW+Ap(k)-dW

(k+1) = p(k)

and choose

Ap<k> = 0 and P

(c) set k = k+1;

(d) go to Step 2.
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(5.18b)

(5.19a)

(5.19b)



Step 12. Compute

n ii"1 aj
?(k) =5 + .1 [(- .1 5ii+.i. Sji)Sj] (5-20>j=l i=i "^ i=i.~J1 ~J

j

If b' ' is nonsingular then compute [B* '] and go to Step 5,
tir) ~

else find the null space vector dv ' such that

B(k).d(k) =0 (5.21a)

a).d(k) .d(k_1) >0 if k=1 (5.21b)
Jk-1 °k-l

d(k) .d(k-l) >0 if k>1 (5.21c)
Jk-1 Jk-1

Go to Step 6.

Step 13. Compute

(k) .

r-zi*lMh\ M n. ifdjk-1Wk-1)>o
~Jk-l^1Jk^1""1} Jk-1 (5.22a)

-2[B(k-1,]-1cJi ,1b , Ifdf-jW^^O
~' "Vl^-l1^ , Jk-1 (5.22b)

(k^ ~(k}
and choose dv ' the same as dv ' except

1, if dJ(k-1Wk-1) >0 (5.23a)
(k) l k"^

djk-1_ 1-1, IfdJ^W^^O (5.23b)
^- Jk-1

Go to Step 6.

Remark: In the case of Step 13, [B^"1']"1 exists but [B^]"1 does not,
we utilize [B* '] to compute the direction vector cr ' which satisfies

(5.10). Since B^ =B^k_1^ +2ceT where c=c. /. n (resp.;
~Jk-l " ^k-l^y1'

c=-c * ) if the solution curve is increasing (resp.; decreasing) in
~^k-l i

k-1 (k-n (k-U (k-1)the jk_1-th coordinate axis in region Rv ', i.e., if dj '-Apv ; >0
k— i
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(resp.; dJk"1^Ap^k"1) <0). By (5.10a),
Jk-1

zMdM =(B^W )d(«-0
~ ~ - —Jk-1 r

Multiplying (5.24) by [B^"1^"1, we obtain
Ad

where

(k)=o

AAi +2[B(k"1)]"1ceT
~~Jk-l

(5.24)

(5.25a)

(5.25b)

Equation (5.25b) indicates that A differs from I only in the j. -,-th column
_ (k-1) -1 ~which is equal to e. + 2[BV '] c. Since A is singular, the ju -,-th

~Jk-1 . . . k-i

diagonal element must be zero and (5.25a) can be easily solved such that

d<k> A-2[B(k-1)r1c =-2[B(k"1)]'1c, ,, n

(resp.; d<k> =2[B(k'1)]"1c =•2[B(k"1»r1ci u )
k-1' j

k-1

(5.26a)

(5.26b)

except the j. ,-th component of d'k\ djk' ,is equal to 1(resp; -1) if thek-i . Jk-1

solution curve is increasing (resp.; decreasing) in the Jk-^-th coordinate axis
in region R^"1', or more specifically, if dj^'-Ap^" '>0(resp.;

Jk-1

Example 5.2 (Fig. 7(a))

Consider the simple circuit shown in Fig. 7(a) whose canonical piecewise-

linear equation has been derived earlier in (2.27); namely,

1 1 0" Px 1
Xl --l" ~r

1 1 0 x2 + 0 |xr2|+ 0

1 o 1_ -x3- _ 0_ _0_

~2^ "3"^ 1

0 |x2-5| = 0 + P 0

^0^ -0- -0-

xr3| +

-2

0

L OJ

|x,-4|

(5.27)

where x1 A1 x2 Ai2, and x3 Ai1n. Our goal is to find the driving-point
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characteristic. Clearly, x^ '=0 is an operating point corresponding to
p( '=0since both R, and R2 are passive and there exists no internal power
supply. Note that u = 1 is used throughout the modified B-H algorithm because

we are only interested in the range for p_> p^ ' =0.

Stepl. x* ' is located in segment (1,1) of the nonlinear resistors R-, and R9
— — (0)

and region Rv ' is characterized by

-» < x1 £ 2,

B
(0) .

•°° 1 x? ~ 4and

By (3.29) and (3.30),

^1 1 0

-1 1 0

bl 0 U

and d <°> - [B«Vr =
1/2

1/2

Ll/2

(5.28)

(5.29)

By (3.31b),

Ap(0)=2^0 =4jandAp(0)=4^0=8 (5>30)

Since Apj ' <Api ', we identify jQ =1and hence Ap ' =Ap| ' =4.
Using (3.32) and (3.33), we calculate the next breakpoint:

(1) = o +4 =4, and x^ =[0 0 0]T +4[l/2 1/2 1/2]T =[2 2 2]T
(5.31)

It follows from (5.30) that R, first arrives at its breakpoint when

v. increases from p^ ' = 0 to p^ ' =4.

Step 2. The next region R^ ' clearly corresponds to segment (2,1) and is
characterized by 2 <_ x, < 3 and -« <_ x2 < 4.

Steps 3,4. Since

F =l +2-[l 0 0]

1 1 0^ -1

-1 1 0 0

.-1 0 1 -0_

= 0 (5.32)

we are facing a degenerate case and should go to Step 13 of the modi

fied B-H algorithm.

Step 13. By (5.22a) and (5.23a),
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Step 6.

Step 7.

Step 8,

Step 9.

Step 10,

Step 2,

Step 3,

Step 12,

Step 5,

d(1) =[1 1 1]T and d(1) =[1 1 1]T
g1 = sgn{l-l.1/2-4} =1, g2 =sgn{l-l. 1/2-4} =1

By (3.41b),

(1) -££- 1Ap ^-^-2
Ap(1) =Ap{]) =1and j1 =1
By (3.42a), Ap*1) =1.
Since b' ' is singular, we should follow Step 10 in the modified B-H
algorithm. By (5.19),

x(2) =[2 2 2]T +HI 1 1]T =[3 3 3]T
p(2) =p(D =4 and Apd) =o

(5.33)

(5.34)

(5.35)

(5.36)

(5.37a)

(5.37b)

.0)Since Ap^ ' =0, we should follow Step 2 in the modified B-H algorithm.
The next region r' ' corresponds to segment (3,1) and is characterized
by 3 < x, < » and -» ^ x2 < 4.

Since Ap*1' =0, we follow Step 3 in the modified B-H algorithm and
go to Step 12.

By (5.20),

B
(2) _

1 1 0

-1 1 0

-1 0 1

Since B* ' is nonsingular we can compute
1/2 -1/2 0

1/2 1/2 0

1/2 -1/2 lj

and go to Step 5.

By (3.39),

d(2) =[1/2 1/2 1/2]T

[B^r1 =

(5.38)

(5.39)

(5.40)

Step 6. Since Ap'1) =0, we follow Step 6 in the modified B-H algorithm and
by (5.16),
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g1 =sgn{l/2-l/2-l} =1, g2 =sgn{l/2.1/2-1} =1 (5.41)

Step 7. By (3.41b),

iPi2>=^f=~, Ap<2>=^§ =2 (5.42)
Step 8. Ap*2' =2and j*2 =2.
Step 9. By (5.17a), Ap(2) =2. (5.43)

Step 10. By (3.44) and (3.45)

p*3> =4 +2 =6, x(3) =[3 3 3]T +2[1/2 1/2 1/2]T =[4 4 4]T
(5.44)

The remaining breakpoint-hopping procedures continue similarly as the

above steps and it can be shown that x* ' = [5 5 5] with p* ' = 4 is a break

point and x* '=[77 7] with p^ ' =8 is a point in the end segment of the
solution curve shown in Fig. 25(a).

The driving-point characteristic is obtained from the third coordinate of

x and is shown in Fig. 25(b). Note that all points on the vertical segment

project into a single point v. =4. This corresponds to the region R^ 'where
B^ ' has nullity equal to one. •

fir)
B. High-Dimensional Degenerate Case: nullity of Bv ' = m > 1

...

Suppose the solution curve r enters a region RN ' whose Jacobian matrix

has nullity m with m > 1. Let the circuit be characterized by (5.6) within

region R* '. Since the null space of B* ' has dimension m > 1, there are m inde
pendent vectors satisfying (5.8); namely,

B(k)d(k)1 =0 i=1,2, ..., m (5.45)

By (5.7) and (5.45),

BV+!Mlk)1)-aW+pW.r (5.46)
i=l

Hence, x*k^ + I \^k>) is asolution of (2.12) at p=p*k' for all real
values Xv X2, ..., \ such that x*k^ +J X1-d*k^ s R*k^. It follows that
the solutions of (2.12) within R*k' corresponding to p=p* ' are made up of
points in a subset of m-dimensional hyperplane and can not be covered by any

m-dimensional hyperplane with m < m. In this case, the solution curve r is
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no longer a well-defined one-dimensional curve; it, however, will split into
(k^ (k^

an m-dimensional hyperplane within Rv ' upon hitting the breakpoint xv '

(which is also a corner point) as shown in the following example:

Example 5.3 (Fig. 26(a))

Consider the circuit shown in Fig. 26(a), where the nonlinear resistors

R-j and R^ are described by the piecewise-linear characteristics shown in Figs.
26(b) and (c) respectively. To trace the solution curve by using the modified

T T
B-H algorithm, we choose x = [v-j >V29l*in^ and ^ =^1,1*2,vin-' ' and write tne
following associated canonical piecewise-linear equation (detailed calculation

is given in Appendix D-4):

1

0

LO

0

3/2

0

0" fx "1
Xl r-i/2"i 1/2

0 x2 + 0 hi + 0

1_ ^xv^ . 0 ^ L 0 J

|xr2| +

0

-1/2

LOJ

IXo+1|

"0" 0

1 IV1! " -1/2

„o _ - o _

+ p

1

1

Li J

(5.47)

We start from the initial point x*0^ =[-1 -2 0]T which corresponds to
p(°) =o and is located in segment (1,1) of the nonlinear resistors R1 and Rg,
Hence, region R*0' is characterized by -« <x1 <0and -« <x2 <-1, and by
(3.29) and (3.30),

(0) _

1

0

Lo

0 0

1 0

0 1

, and d<°> - [B«Vr =
1

1

1J

It follows from (3.31b) that

ip(0)=0^1i=1,andApW=^^=l
Hence, the solution curve r hits the boundary hyperplanes x1 =0 an(J x2 =-1
simultaneously at the corner point

x(1) =[0 -1 l]TwithP(1) - V (5-50)
which is identified as point A in Fig. 26(e). It is shown in Fig. 26(e) that
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B
(a) .

1

0

.0

(a)

0

0

1.

(b)

B
(b) _

0

0

Lo

,(a) D(b) ,(c)

and B
(c) .

the corner point A belongs to regions Rv"', Rv"', and Rvw (corresponding to

segments (1,2), (2,1), and (2,2) of the nonlinear resistors R1 and Rg respec
tively) in addition to region R* ', and all these regions are possible candi
dates for the solution curve to enter. By (3.15), the Jacobian matrices in

these regions can be found to be

"0 0

0

Lo

0

0

1 J

(5.51)

Note that Bw and BK ' are singular with nullity equal to one. By (5.10),
the direction vectors in these two regions can be found to be

(a) =rn i mT and d(b) a p 0 0]T (5.52)

*c', however, has nullity equal to two and the direction
is not unique. Let

= [0 1

The Jacobian matrix B
(c)

vector in Rv '

(c)1.= [1 0 0] and d^ =[0 1 0] (5.53)

be two linearly independent vectors which satisfy (5.10). By (5.46),

W1 +x2d<c>250)+M is a solution of (5.47) at p= p^ ' =1 for all real

values X, and X2 such that jr ' + X-jd
1(c) +X2dvw €Rvw. It follows that

any point in R^ is asolution of (5.47) at p=p^1' =1and the solution

(cr , D(c)

(c)curve r will split over the whole region of Rv ; as shown in Fig. 26(e). Note
that the direction vector d^ (resp.; <Tb') in (5.52) is in the direction of
entering R^ (resp.; Roland will define a trajectory for the solution curve
in R^ (resp.; R^). But since x'1) is a corner point, the solution curve
in R^ (resp.; R^) follows the boundary line AD (resp.; AB) between regions

and R^b') which is aboundary for region R^c' asR(c) and R(a) (resp.; R(c)
(c)shown in Fig. 26(e). There are three other corner points B, C, and D in R

it can be shown (by finding the direction vector in each neighboring region

and checking whether it points to the correct direction) that point C is the

next breakpoint and region R^f' is the next region for the solution curve with
Jacobian matrix and direction vector *
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(f) =

1 0 0^

0 2 0 , dM -

i ~

1/2

0 0 1 _ 0 _

(5.54)

The traj'ectory for the solution curve is shown in Fig. 26(e) where it

splits into an area on a two-dimensional plane. The corresponding driving-point

characteristic and v, -vs -v. , and v2 -vs -v-n transfer characteristics are
shown in Figs. 27(a), (b), and (c) respectively. a

The high-dimensional degenerate case can be avoided by making a minor

assumption as mentioned in Assumption A.I in Section 3A; namely,

(i) the starting point lies in a region with a nonsingular Jacobian

matrix; (5.55a)

(ii) the solution curve never hits a corner point. (5.55b)

Assumptions (5.55a) and (5.55b) can be easily satisfied by perturbing the

element parameter values whenever the degenerate condition is detected. They

guarantee the algorithm is free from the following two degeneracies: 1) hit

ting a corner point and 2) entering a region with the nullity of the Jacobian

matrix greater than one.

C. Generic Properties of Solution Curves

We end this paper with a careful analysis of the generic properties of the

solution curves. Such properties are best derived by answering the following

questions:

1. Does the solution curve always follow a unique path in each region R'

traversed by r?

Can a solution curve r re-enter a region which it has previously traversed?

Can a solution curve r remain in a boundary hyperplane instead of penetrat

ing it?

The above questions are general problems in piecewise-linear analysis

and have been fully discussed in [16,18]. In the following, we describe the

solutions to the above problems in the form of observations and use them to

show that our breakpoint-hopping algorithm would not suffer the above problems

under Assumption (5.55).

Observation 1. [16] If two regions r'j' and R^k/, with Jacobian matrices
^respectively, have acommon (n-l)-dimensional boundary hyper-

2.

3.

BUT and B

(J)plane, then the ranks of BVJ' and BVIW differ at most by one.(k)
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Observation 2. [16] If the. solution curve r starts from an interior point of

a region with a nonsingular Jacobian matrix, and assuming r never hits any

corner point, then 1) r never eneters a region with a Jacobian matrix of nullity
two or more and 2) r intersects any boundary hyperplane at a single point.

Remark: The condition for nonsingular Jacobian matrix in the region where the

starting point is located can be relaxed such that if the Jacobian matrix has

nullity no greater than one and r never hits a corner point, then it also leads

to the same result of 1) in Observation 2. This can be verified in Appendix A.
(lr) (k)

Observation 3. [18] If the nullity of the Jacobian matrix Bv ' in region Rv '
(k} (k)

is not greater than one, and the solution curve r enters Rv ' at xv ' and

leaves R^k' at x'k+1', then rcan not re-enter r' ' through a point other than

The answer to Question 1 in general is false as shown in Examples 5.1 and

5.3. It, however, is true under Assumption (5.55) as can be shown by Observa

tion 2 and Appendix A: since the solution curve only traverses regions with

the nullity of the corresponding Jacobian matrices no greater than one such

that the direction vector in each region can be uniquely determined,xind the

solution curve will always follow a unique one-dimensional trajectory for each

starting point.

The problem of Question 2 can be answered by Observation 3. Under Assump

tion (5.55), if the solution curve re-enters any previously traversed region,

then this region must be R^ 'where the starting point is located, and the
solution curve becomes cyclic as shown in Fig. 28(a). The driving-point or

(m+2 i (1^
transfer characteristic is periodic as shown in Fig. 28(b) if pv ' + pv '
and is a closed cyclic curve as shown in Fig. 28(c) if p*m '= p^ '.

Under Assumption (5.55), the answer to Question 3 is negative in view of

Observation 2 since the solution curve intersects any boundary hyperplane at a

single point. It follows that both dr"1' and djk' are nonzero where R(k-1^
(k) k"] k"1and RK ' are separated by the boundary hyperplane x. = constant. Hence, all

(ir_"\) fir) k-1
the inequalities involving d: ' and d> ; which determine the correct direc-

Jk-1 Jk-1
tion vectors in the B-H algorithm would not suffer from the ill-conditioned

case when d: ' or d: ' is zero, as long as Assumption (5.55) is satisfied.
Jk-1 3k-l

As a final remark, if Assumption (5.55) is satisfied (which is true

generically), then the breakpoint-hopping algorithm including the modifications
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in Section 5A will trace every branch of the solution curves in the driving-

point or transfer characteristics, provided one point in each branch is given.

-58-



APPENDIX

A. If the Jacobian matrix of the starting region has nullity no greater than

one and r never hits a corner point, then it leads to the same result in!) of

Observation 2.

(k-U
Proof: It is sufficient to show that if the nullity of Bv ' is no greater
—:— (k) ~ (k)
than one and xv ' is not a corner point, then the nullity of Bv ' is also no

(k-1) (k)
greater than one, where Bv ' and Bv ' are the Jacobian matrices in the

(k-1) (k) " ~ (k)
regions Rv ; and Rv ; respectively, and the solution curve r enters Rv ' from

R^atx^.
Since yS ' is not a corner point, Yv ' and R^ ' are separated by an (n-1 )•

(k) (k-1)
dimensional boundary hyperplane, x. = constant. By (3.37), Bv ' and Bv '

Jk-1
are the same except the j. ,-th column. Assume Bv ' has nullity equal to two

(k-1) (k-ll
then Bv ' has nullity equal to one since Bv ' is assumed to have nullity

(k)
no greater than one. Since Bv ; has nullity equal to two, there exists

z€Fn+1 such that B(k'z =0and z. =0. Hence, B^k'^z =0because B^

differs B^k_1^ only in the j. ,-th column. It follows from (5.10) that d^k_1^
(k-1)

is parallel to z with di ' = 0 which implies that the solution curve within

(k-l^ k-1
Rv ; is parallel to the boundary hyperplane x. = constant and never enters

R^ '. Hence, b' 'can not have nullity equal to two and must have nullity no
greater than one. °

B. Correction to the ill-conditioned case in [2]

For ease of reference, we follow the same notations and list some equations

of [2]. Assume circuit M in Sec. II of [2] can be characterized by the canonical

piecewise-linear equation

f(x) = a + Bx + I c.|<a.,x> -0. |= 0 (B.l)

where B €lRnxn, a, c. €IRn, B.« is a scalar, and a. is a unit vector along some
coordinate axis for each i = 1, 2, ..., p.

Consider an arbitrary k-th partition hyperplane Hk defined by

Hk:<ak,x> -0k =0 (B.2)

In general, Hk will be further partitioned into several sections by other
hyperplanes which intersect it. Let o^ be one arbitrary section on Hk such
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that two regions R and R. are separated by a o. . For x € a a., we can expand

the absolute-value term in (B.l) and obtain

I(x) =?k_ _ +BR_ _x (B.3)

where

a b a b

P

ak = a + I c.(+B.) (B.4)

a b i^k

B. =B+ I c.(±J) (B.5)
ab i*k

and the choice of ± sign in (B.4) and (B.5) depends on the sign of <a. ,x >- &.

for i = 1, 2, ..., p and i f k.

When §k is nonsingular, the image Hj* of Hk under the mapping f(-) in
" Vb

(B.3) is an (n-l)-dimensional hyperplane, we can follow Eqs. (20)-(23) in [2]

to find H/ and perform the sign test by Eq. (24).

We now discuss the ill-conditioned case that B. is singular or

Bk = °-
Vb
Degenerate Case I: §k is singular

Vb
In this case, the rank of B. is at most n-1 and the domain for the

~kaaab
mapping f(-) in (B.3) is the (n-l)-dimensional hyperplane Hk:<ak,x >- 3k =0
containing a^, hence the image H! =f(Hk) has at most adimension equal to
n-1 and it is still possible to perform the sign test when it is an (n-1)-

dimensional hyperplane.

The normal vector ak for the hyperplane Hk is aunit vector along one of
the coordinate axis. We assume ak =e. and Hk can be expressed as Xj = ek-
Let b. be the j-th column of B. and B. be the submatrix of B.

~J _ ;kaaab ^k<^aab ~K<*aab
obtained by deleting b. from B. . For any x € H. ,we can decompose x by

~J ~Kaaab
x = x+ x.e. = x+ 3ue., where x is the same as xexcept the j-th component of
x is zero.

Lemma B.l. If B. has rank n-1, then W! is an (n-l)-dimensional hyperplane
-Kaaab K
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and can be expressed as

H« :<aj,,y >- 3[, =0 (B.6)

AT
where a.' is the basis of the null space of B.

~k -^b
SI a' = 0 (B.7)
~K0aab~K ~

and

i.e.,

Jrz

'' >aab

Proof:

Let y be any vector such that y € HJ, then there exists an x € Hk such
that y = B. x + a. . Decomposing x, we obtain y = Bb (x+3ue.) +a7

" ~k<*aab - ~*°iab ~ ~ ~kaaab " k~J. ^a^b
= B. x + (3ub.+a. ), where x is an (n-l)-dimensional vector obtained by

deleting the j-th component from x. Since Br, is an (n-l)xn matrix and has
~K0aab

rank n-1, there exists a un

in its null space. Hence each „ _ w ^ .

and since a! is unique, the span of y in the range space has dimension n-1.
~k - -p

Hence W! can be expressed as <aj,,y > = 3/, where 3/, = a! (3ub.+a. ). °

Hence, if B. satisfies the condition of Lemma B.l, and 3J, t 0, we can
~Kaaab K

still find the (n-l)-dimensional hyperplane H£ by (B.6)-(B.8) and perform the
sign test.

/\

If the condition of Lemma B.l is not satisfied, then the rank of B.
~Kaaab

is at most n-2 and the image HJ" will shrink to a hyperplane with at most a
dimension equal to n-2. Hence we can no longer perform the sign test. Due to

a continuity, the image of R (or Rb) will be contained in a hyperplane with
at most dimension n-1. Hence J (or Jb), the Jacobian matrices in region RQ
(or Rb), will be singular and we have two cases to discuss. For simplicity,
we only present results concerning Ra, they can also be applied to Rb.
(a) If Ja has rank n-1, then the image R' of R_ is contained in an (n-l)-dimen-

~d d d

sional hyperplane

H! :<ai,y >- 3! = 0 (B.9)
a -v<d ~ d

where

6k =<?k>\WBk~BJ] {B-8)

ique basis vector a! (modulo scalar multiplication)

ach y € H^ must satisfy <o^,y >=o£ (3kbj+a. )
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jlal =0 (B.10)

and f(x) = Jax + aa for any x € Ra. Equations (B.9)-(B.ll) can be obtained
->. — ~a~ ~a a

similarly fromtheproof of Lemma B.l. If 31 3*0 then there is no solution
_______ a

within R^ and there is no need to perform the sign test for Ra. However,
a a

we can utilize the hyperplane Ha to perform the sign test on all the
a

neighboring regions of R_ with nonsingular Jacobian matrices.
a

(b) If Ja has rank less than n-1 or has nullity m with m > 2, then the image

m (i)K of R» is contained in an (n-m)-dimensional hyperplane Ha = fl H, '
a a . a 4—1 **

where

H!(1):<<(i),y>- 6!(i) =0 (B.12)
a —a ~ a

jla'(1) =0 (B.13)
-»d—a ~

Bl(i) =[al(i)]Taa (B.14)
d —d ~*d

for i = 1, 2, ..., m. If not all of 31^ »i =1, 2, ..., m, are zero,
a

then Ra contains no solution and there is no need to perform the sign test
a

for Ra.
d

Degenerate Case II: 3' = 0

(i) eL is nonsingular and &J, = 0.
~Kaaab ^o^

In this case the origin of the range space is in the hyperplane H^ de
fined in Eq. (21)-(23) of [2]. Hence B. x + a. = 0 has a solution
* - •, * ~Kaaab\ ^a^ ~

x = - B7 a, , and if x € oo.9 then x is a solution of (B.l).
~k<Jatfb~kaaab a D

If J (resp.; Jb) is nonsingular, then there is no solution within the
interior of Ra (resp.; Rb) since the image of the interior of Ra (resp.; Rb)
is on one side of Hk and does not contain the origin y =0.

If J (resp.; Jfa) is singular then by continuity it must have rank n-1
and the image of Ra (resp.; Rb) must be contained in Hk- Let na _ {x|Ja*
+a =0} (resp.; nb _. tx|Jbx+ab=0}), since HR is a boundary hyperplane for Ra
(resp.; R.), Bi, =~0 implies na (resp.; nb) is nonempty. Hencex*6 nafl RQ

D Kaaab a
(resp.; x* e nb n Rb) is a solution of (B.l) if the intersection is nonempty.
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(ii) Bb is singular.

(a) B. has rank n-1 and &{, = 0 in (B.8). Let r\. _ (x|B. x-kgaab k kaaab - ~kaacJb~

+K =0>» &l = ° implies t\. f <|>, and x <• o o. On, is a~kaaab k kaaab ~ a D Xaaab
solution of (B.l) if the intersection is nonempty.

If J (resp.; Jh) is nonsingular, then there is no solution within
the interior of Ra (resp.; Rfa).

If Ja (resp.; Jfa) is singular, then 3k =0 implies na (resp.; nb) is
nonempty. Hence, x* € na n Ra (resp.; x* € nb n Rb) is a solution of
(B.l) if the intersection is nonempty.
St

(b) B. has rank less than n-1.

(1) Ja has rank n-1 and 3a =0 in (B.9). Since Hk is aboundary hyper
plane for Ra, 3a =0implies na t 0, then x*.€ na nRa is asolu
tion of (B.l) if the intersection is nonempty.

(2) J has rank less than n-1 or has nullity mwith m>2and 3a '=0
for i = 1, 2, ..., m in (B.12).

(i) *
3iv - 0 for i = 1, 2, ..., m implies na t 0, then x € na n Ra

a a 7 d d

is a solution of (B.l) if the intersection is nonempty. Cases (1)

and (2) can also be applied to Rb.
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APPENDIX C

MATCH POINT

<a>—

Find * set of operating points

x-iaa,v-..a1B}

«t p - p<°> - '•in

<D

—_§_o$x • ♦?

'STOP ^ ft»°

Pick an eltatnt fro* x

and denote it as i(0)

I
\ u • 1

11

ll.l

< r

Find 1j such that

> >

| 4 ' M 1

NO ^ >>S

YES

f 1.-1 "4

8<0,-8-Ji •£ *♦£.<*
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Find d*0) such that

e<0>d<0) .0

<D



(a>
MATCH POINT

MATCH POINT

<§>—

YES

NO

i • i

-<d^/o^>
NO

>dj0) ^-0.

YES

}/-(0)Ao<°> - Ih -«<°>l/ld(°>l A. <°> • fx<0)-C Vd('

NO

Jo "J

j • J*l

YES

NO

YES

,<»>.
'nan

i{,) - »(0U..<1>-.-<0>)W0)

*.»> •
NO

,0) . ,(0)
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YES

MATCH POINT
k-1

O

YES

NO

NO

NO

YES

NO

YES

NO

S\

YES

1, • i. *l
Jk-1 Jk-1

YES

F.i-2e] [B(k-1)]*1c, , f-um! CB(k-1,]",e1 „ .„
jk-l km}\.\ Jfc-1 J*-l( Jfc.i

F - 0? F - 0?
YES

NO NO

i. » 1, -1
Jk-J Jk-1

jrf«i"'-^,y,a-hlriVi^Iiif|-,»i".| •W^V«i-»«w, .^/""i

1

Find dl ' such that

B<k>.d(k)-0

Find fflfk,l"

d(k) . .d(k)

d -2BP ] cJk.!(1f -1)

jk-1

MATCH r^ POINT(fi>

-1
d*"> • [B<k>] r
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Jk-I



(s>
MATCH POINT

i-i

*,<">. 1010

YES

YES

9, • sgn(d<k>-d5k> .dJMW*-»>, g, - sgn,d<k>.d<k> -d^1'

NO

YES

Ao(k) . L _(k) /|d'k)l .(k) . L(k).a \..Ak)

<a>
MATCH POINT
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NO

MATCH POINT

<a>—

M . .All(k)Ap1 ' • -Ai»

:<W> . t ttW) - !<•<>♦

YES

0tk*D . p(k)44o(k)
x(k*1) « K(k)VD(k).d(k)

*(k*1,-«(k,v.«^(k,)-<*(k)

o<°>.o<k>]d{k)

®r

W»\ «e.i(k,*(p<°U<k>)d<k>
x - x-JVl

For j«0,l.2,«-',k*l

store breakpoints [o^* ,x*J,l

NO

TYES

w"-l

k « k*l

6 ® * 4
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_(") - o

,«W) - e<k>

f(k*l) , .(k)
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D. Formulation of the Canonical Piecewise-Linear Equations

1. Equation (3.46) in Example 3.1:
Using the explicit formulas in [1], we obtain the following canonical

piecewise-linear equations for R-j and R2:

RT :i-, =9/8 v., +7/8 ^1 (D'la)
R2:v2 =9/4i2 +7/4 |12-1| - 9/4 V>~™)

/\

Extracting the two nonlinear resistors, we obtain the linear 3-port H
shown in Fig. 18(e) which is described by the following generalized hybrid
representation:

1 0 0

-1 1 0

LO -1 1J

P

pi 1 "0 -1 r

P1 1
"0"

12 = 1 0 0 v2
+ 0

Un- -0 0 o_ -vin- _o^

(D.2)

Substituting (D.l) into (2.10) and (2.11), we obtain

/s

$11 =0, $2i =1, a =

' 0"

-9/4

0

, B =

'9/8 0 0

0 9/4 0

0 0 0

"7/8" " 0^

0
Ai

9 ?21 = 7/4

0 _ L 0J

Substituting (D.2) and (D.3) into (2.13), we obtain
(D.3)

B =

"-1 -9/4 0

17/8 -1 0

L 0 1-1

~-W "i" "o"
r— —\

-7/4

9 ? = 0 ' r= 0 • Sn= 7/8 • S21 = 0

L o_ ..0„ Lo^ L 0 J
(D.4)

Substituting (D.4) into (2.12), we obtain the canonical piecewise-linear equa

tion (3.46) for the circuit in Fig. 18(a).

2. Equation (3.58) in Example 3.2:

to be

By Fig. 19(b), the canonical piecewise-linear equation of Ri can be found

i1 =-1/2 +v1 - 5/4 |v--2| +3/4 lv--4j (D.5)

The generalized hybrid representation for the 2-port N in Fig. 19(d) can be
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found to be

"l 1 ~vl" "o r "1i"
+

0

0 1 11n 1 0 _Vin_ _1

P x Q y

By (D.5), (2.10), and (2.11),

^11 ' ^12 = ~=
~-l/2~| /\ 1 0 /\ -5/4

y\
3/4

0
9 ! =

0 0
* 5n =

0
» Sl2 =

0

By (D.6), (D.7), and (2.13),

B =

-1 -2 0 -1 0 " 0

1 -1
9 ? =

-"1/2-
9 r=

0
9 Sn*

-5/4
* Sl2 =

3/4

(D.6)

(D.7)

(D.8)

Substituting (D.8) into (2.12), we obtain the canonical piecewise-linear equa

tion (3.58) for the circuit in Fig. 19(a).

3. Equation (5.1) in Example 5.1:

By Figs. 24(b) and (c), the canonical piecewise-linear equations of Ri and
R2 can be found to be

(D.8a)

(D.8b)

Ri: ^ =2 +vi+ h

R2 : i"2 =2 +v2 + |v2

The generalized hybrid representation for the 3-port Win Fig. 24(d) can be
found to be

""1 -1 0^ vl

0 1 0 v2

_0 0 1.Uv

" 1 -1 o"
I1

"0"

-1 0 1 12
+ 0

-0 0 1- Lyin- _0_

By (D.8), (2.10), and (2.11),
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2

3n=0, 32i=0, a= 2

_0 J

By (D.9), (D.10), and (2.13),

, B =

"1 0 0

0 1 0

OOO

" n "<T

' Sn = 0 9 ?21 = 1

L o^ L o J

B =

"0 0 0" "0" r 0^ " i" ~-i "

-1 -1 0 9 ? = 2 » r = -1 » Sn= -l 9 S21" 0

_0 0 -1 _ -0_ _-l- _ o_ _0 -

(D.10)

(D.ll)

Substituting (D.ll) into (2.12), we obtain the canonical piecewise-linear

equation (5.1) for the circuit in Fig. 24(a).

4. Equation (5.47) in Example 5.3:

By Figs. 26(b) and (c), the canonical piecewise-linear equations of Ri and
R2 can be found to be

Rl : 11 =vl " 1/2 lvll +1/2 'VT2I (D.12a)

R2 : i2 =1/2 +3/2 •v2 - 1/2 |v2+l| +|v2-l| (D.12b)

The generalized hybrid representation for the 3-port Win Fig. 26(d) can be

found to be

"1 0 -r pii "0^

0 1 -1 h + 0

_0 0 -i- l-vin- -0-

By (D.12), (2.10), and (2.11),

Sn=0, 3io =2, 3oi=~l» $09 = 1 i a =
'11 '12 21 "22

Sn

-1/2

0

LOJ

» ?12

1/2

0

L 0 J

9 ?21
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0

1/2

L 0 J

r

, B =

0

-1/2

. 0 J

1 0 0

0 3/2 0

LO 0 OJ

"0

. Ĉ22
1

Lo_

(D.13)

(D.14)



By (D.13), (D.14), and (2.13),

B =

1 0 0" " 0"^
r- —I

1 r-i/2i

0 3/2 0 9 ? = -1/2 9 r= 1 5 Sn = 0

0 o u _ 0_ L ij 0_

Sl2 =

1/2 " 0" "iT

0 9 ?21 = -1/2 • ?22 = l

L 0J - oj _o_

(D.15)

Substituting (D.15) into (2.12), we obtain the canonical piecewise-linear

equation (5.47) for the circuit in Fig. 26(a).

E. Detailed Calculations in Examples 4.1, 4.2, and 4.3

1. Example 4.1:

Starting point x^ =[-2 -2 -2]T with p=p^ =-7/2 is located at
r(°) :-co <x<| <oand -«>< x2 <1. By (3.29) and (3.30),

(0) „

-1 -1/2 0

1/4 1/2 -1 , and d

L0 -1 1_

By (3.31b),

*f»=fi=5/2, ^0).l^.15/2

(0) _

4/5

2/5

L.2/5 J

(E.l)

(E.2)

Since Ap^ <Api;0', we identify jQ=land hence Ap^ =Apj0^ =5/2. Using
(3.32) and (3.33), we calculate the next breakpoint:

pO) =.7/2 +5/2 =-1, x(1) =
--2"' "4/5" ' 0'

-2 + 5/2 2/5 = -1

_-2_ -2/5^ --1-

(E.3)

The next region r' 'corresponds to segment (2,1) and is characterized by
0<x1 <« and -~< x2 < 1. Using (3.35), (3.36), and (3.39), we obtain

d(1) =[1/3 4/3 4/3]T (E.4)

Since dj1 '-dP^-Ap^0' =1/3-4/5-5/2 >0, the direction vector d*1' points in
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the correct direction^nd it follows from (3.41b) that

Ap
(1) - —0 _
1 "T/3 "

AD0) =___dl=3/2Ap2 4/3 sic (E.5)

Since Apj1^ >Ap^, we identify ji =2and hence Ap(1^ =Ap^ =3/2. Using
(3.44) and (3.45), we calculate the next breakpoint

,(2) =.! +3/2 =i/2 and x(2) =
" 0" "1/3" "1/2"

-1 + 3/2 4/3 = 1

--1- -4/3- - 1 -

(E.6)

The next region r'2' corresponds to segment (2,2) and is characterized by
0 <Xi <«> and 1 <x2 <«. Using (3.35), (3.36), and (3.39), we obtain

d(2) =[-3/5 2/5 2/5]T (E.7)

Since di^-di^-Ap^ =2/5-4/3-3/2 >0, d^2' points to the correct direction
and it follows from (3.41)

(2) - 1/2-0 - 5/6 AD(2) =«_1 =
1 1-3/51 b/b' Ap2 175Ap. (E.8)

Since Apj2^ <Ap^, we identify j2 =1and hence Ap^2' =Ap}2' =5/6. Using
(3.44) and (3.45), we calculate the next breakpoint

i(3) =1/2 +5/6 =4/3, x(3) =

-1/2- "-3/5" - 0 "

1 + 5/6 2/5 = 4/3

- 1 - -2/5^ .4/3-

(E.9)

The next region r'3' corresponds to segment (1,2) and is characterized by
-oo < Xi <0 and 1<X2 <«. Using (3.35), (3.36), and (3.39), we obtain

d(3) =[3/2 -1/8 -1/8]T (E.10)

Since d^-d^-Ap^ =3/2-(-3/5)-5/6 <0, the solution curve in R(3) will
follow the direction of -d^ and goes to infinity without hitting any boundary
hyperplane of R^3'. Hence, we choose

Ap(3> --4, p«> =

«

" o" " 3/2" "-6

W). 4/3 -4 -1/8 = n/6

-4/3- _-1/8_ _n/6_

4/3 - 4 = -8/3, and x

(E.n)
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as a point inthe end segment of the solution curve. Equations (E.3), (E.6),
(E.9) and (E.ll) will give breakpoints x^t x/2*, x^ and apoint x(4' in
the end segment.

2. Example 4.2:

(a) Ti branch: ..
Starting point x(0) =[0 0 0]T with p= pW •0is located at

r(°) :-«>< Xi <1.2 and -«< x2 <0.8. By (3.29) and (3.30),

(0) .
B

r 2 0-1

0 5-1

_-l -1 -3.2_

,(0)

5/39

2/39

.10/39 J

By (3.31b),

a«(0) - 1-2-0 _ OOA/9C An(°) - 0-8-0 - 7fi/Cpl 5/39 234/25, Ap£ g-jg - /o/5

Since Apj0) <Ap^0), we identify jQ =1and hence Ap(0) -Apj0) =234/25.
Using (3.32) and (3.33), we calculate the next breakpoint:

p^ =0 +234/25 =234/25, x^ =
~<T 5/39 "1.2 "

0 + 234/25 2/39 s 0.48

_o_ _10/39- -2.4 -

(E.12)

(E.13)

(E.14)

The next region R^' corresponds to segment (2,1) and is characterized by
1.2 <Xi <3 arid -« <x2 <0.8. Using (3.35), (3.36), and (3.39), we obtain

d^1) =[.45/74 7/74 35/74]T (E-15)

Since dj^-dj0^ a£0^ =-45/74-5/39-234/25 <0, d^ points in the opposite
direction and it follows from (3.41) that

. (1) 3-1.2 , -/#oc ,(1) _ 0.48-(-oo) _
Apl = 1-45/741 =74/25» Ap2 " ~7774 (E.16)

Since ApP^ <ApP\ we identify ji =1and hence Ap^ }=-Apj =-74/25.
Using (3.44) and (3.45), we calcualte the next breakpoint
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p(2) =234/25 -74/25 =6.4, x^ =
~ 1.2 " '-45/74 " " 3 ^

0.48 -74/25 7/74 = 0.2

2.4 - 35/74_ 1 _.

(E.17)

,(2)The next region R^ ' corresponds to segment (3,1) and is characterized by
3< Xi < oo and -oo^ x2 <0.8. Using (3.35), (3.36), and (3.39), we obtain

d(2) =[10/61 3/61 15/61]T (E.18)

Since dj^-dj^-Ap^ =10/61-(-45/74)-(-74/25) >0, d^ points to the correct
direction and it follows from (3.41),

(2) _ QQ-3 _
1 ' 10/61Ap

AJ2) _ 0.8-0.2 _ n9 0
Ap2 =-376T-12-2 (E.19)

ngSince Ap^ <Apj2^, we identify j2 =2and hence Ap^ =Ap|2^ =12.2. Usi
(3.44) and (3.45), we calculate the next breakpoint

p^3^ =6.4 +12.2 =18.6, x^ =

"3" "10/61" "5 "

0.2 +12.2* 3/61 = 0.8

_ 1 _ -15/61- .4 -

(E.20)

,(3)The next region Yv ' corresponds to segment (3,2) and is characterized by

3 < Xi < «o and 0.8 < x2 _< 2. Using (3.35), (3.36), and (3.39), we obtain

d(3) =[20/101 -15/101 30/101]1 (E.21)

Since d^-d^-Ap^ =-15/101-3/61-12.2 <0, d^ points to the opposite
direction and it follows from (3.41),

(3) _ 5-3 „ (3), 2-0.8
A'l =207TOT ° N-1 • *_ '" 1-15/1011" =202/25 (E.22)

Since App^ <Apj3^, we identify J3 =2and hence Ap^ =-Ap^ =-202/25.
Using (3.44) and (3.45), we calculate the next breakpoint

p(4) =18.6- 202/25 =10.52, x(4) =

5

0.8

L 4 J

-202/25

20/101 "3.4"

-15/101 = 2
4

-30/101- -1.6.

(E.23)

,(4)The next region R^ ' corresponds to segment (3,3) and is characterized by
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3 <Xi <» and 2 <x2 <oo. Using (3.35), (3.36), and (3.39), we obtain

d(4)= [10/63 5/63 5/21]T

Since d^4)-d^3)-Ap(3) =5/63-(-15/101)-(-202/25) >0, d(4) points to the
rect direction and it follows from (3.41) that

(E.24)

cor-

(4) . QQ-3.4 _
>1 " 10/63 " Ap

(4) _ oo-2 =
2 "5763

= 00 (E.25)

Hence, the solution curve goes to infinity without hitting any boundary of

R^ \ Hence, we choose

Ap(4) =9.48, p(5) =10.52 +9.48 =20, x(5) =
"3.4"" "10/63" "4.9 "

2 + 9.48- 5/63 s 2.75

1.6 - 5/21- -3.86.

(E.26)

as a point in the end segment of the solution curve. Equations (E.14), (E.17),
(E.20), (E.23), and (E.26) will give breakpoints x^\ x*2\ x'3\ x*4\ and a
point xwy in the end segment.

(b) r2 branch:
Starting point x(0) =[9/8 67/40 9/4]T with p(0^ =10 is located at

R(0): -oo <X] <1.2 and 0.8 <x£ <2. By (3.29) and (3.30),
"5/32

3(0) .S(0) .

f2 0 -1

0 -2 -1

-1 -1 -3.2 J

-5/32

L.5/16J

(E.27)

By (3.31b),

A-(0) . 1.2-9/8 „ 19/„ A-(0) _ 67/40-0.8 _ 28/5
Apl 5/32 " 12/25' Ap2 " 1-3/321 Z8/5

Since Ap1(0) <Ap^0), we identify jQ =1and hence Ap(0) =Apj0) =12/25. Usi
(3.32) and (3.33), we calculate the next breakpoint:

(E.28)

ng

S(1) =10 +12/25 =10.48, x(1) =
r 9/8 "

67/40

I 9/4 J
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-5/32 = 1.6
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The next region r'1' corresponds to segment (2,2) and is characterized by
1.2 <Xi <3 and 0.8 <x2 <2. Using (3.35), (3.36), and (3.39), we obtain

dO) =[-10/11 -35/99 70/99]T (E-30)

Since dj^-dj^-Ap^ =-10/11-5/32-12/25 <0, d(1) points in the opposite
direction and it follows from (3.41) that

a^O ) - 3-1.2 _ , QR A-(l) _ 2-1.6 B iqo/175
Apl " [-10/11I " 1'98, P " |-35/99| ]™/U* (E.31)

Since Ap^ <Apj1^, we identify ^ =2and hence Ap^ =-Ap^ =-198/175.
Using (3.44) and (3.45), we calculate the next breakpoint:

p(2) =10.48- 198/175 =9.35, x(2) =

1.2

1.6

L2.4 J

-198/175-

"-10/11 " "78/35"

-35/99 = 2

_ 70/99 _ - 1.6 -

(E.32)

The next region R^ ' is characterized by 1.2 _< Xi <3and 2<_ x2 <«and
corresponds to segment (2,3). Using (3.35), (3.36), and (3.39), we obtain

d(2) =[-135/236 35/236 105/236]T (E.33)

Since d^-d^-Ap^ =35/236-(-35/99)-(-198/175) >0, d^ points in the correct
direction and it follows from (3.41) that

-(2) _ QQ-2.-(2) _ 78/35-1.2 , Q A-
Apl =FT357236T= ]-8' Ap (E.34)

35/236

Since Apj2 <̂Ap^, we identify j2 =1and Ap^ =Apj2^ =1.8. Using (3.44)
and (3.45), we calculate the next breakpoint:

3(3) =9.35 +1.8=11.15, x(3) =

" 78/35 -135/236 " 1.2

2 + 1.8- 35/236 = 34/15

1.6 _. _ 105/236 ^ -2-4
(E.35)

The next region r'3' is characterized by -".< x-j <, 1.2 and 2<x2 <oo and
corresponds to segment (1,3). Using (3.35), (3.36), and (3.39), we obtain

d(3) =[15/121 10/121 30/121]7 (E.36)
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Since d|3)-dj2^Ap^2^ =15/121- (-135/236)-1.8 <0, d^ points to the opposite
direction and it follows from (3.41) that

A;(3) _ 1.2-(-oo) . _ -(3) _ 34/15-2 _ 0L9n^
Api - 15/121 - -• Ap2 - ~wm' 242/75 (E.37)

Since Ap^ <Apj3^, we identify j3 =2and hence Ap^ =- Ap£3^ =-242/75.
Using (3.44) and (3.45), we calculate the next breakpoint:

p(4) =11.15-242/75 =7.92, x(4) =
1.2

34/15

L2.4 J

- 242/75

"15/121" 0.8

10/121 s 2

.30/121 - -1-6-

(E.38)
,(4)The next region Yv ' corresponds to segment (1,2) and is characterized by

-oo < x, <1.2 and 0.8 <x0 <2, which is exactly the same as region R^ '. It
follows that the solution curve re-enters region Rv ' and by Observation 3 in

Section 5C, it becomes cyclic as shown in Fiq. 21. Equations (E.29), (E.32),

(E.35), and (E.38) will give breakpoints x(1', x(2\ x(3), and x(4).
3. Example 4.3

Starting point x' ' = [0 0 0] with p'- ' =0 is located at
r(°) :-oo <Xi <0.4 and -oo <x2 <0.4. By (3.29) and (3.30),

,-2 ~

(0) .

0.25 1

20

L' 1

By (3.31b),

(0) . 0.4-0
Ap

0

1 0

0 -8000 J

(0) _

5.05x10

-1.01

. 6.33x10"6 -J

.7.83. ^0).0^..
5.05x10 L c I l-ul1

Since Apj0) <Ap|°\ we identify jQ =1and hence Ap^0) =Ap|0) =7.93. Usi
(3.32) and (3.33), we calculate the next breakpoint:

(E.39)

(E.40)

ng

p(]) =0 +7.93 =7.93, x^ =
"0" " 5.05x10"c " 0.4

0 + 7.93- -1.01 = -8.03

-0^ _ 6.33x10"6 _ _ 5.02x10"5_
(E.41)

-78-



The next region R^ corresponds to segment (2,1) and is characterized by
0.4 <Xi <0.6 and -» <x2 <0.4. Using (3.35), (3.36), and (3.39), we.obtain

-5-.Td(1) =[6.69xl0"2 -9.84X10"1 4.37x10"5] (E.42)

Since dj1 ^-d^-Ap^ =6.69xl0~2-5.05x10"2-0.4 >0, d(1) points to the
correct direction and by (3.41),

ApO)=J_J___i_ =2.97, -pi1)- ^03"(-i •-
1 6.69x10"^ L 1-9.84x10"'I

(E.43)

Since Apj1) <Ap^, we identify Ji =1and hence Ap^1' =Apj1' =2.97. Using
(3.44) and (3.45), we calculate the next breakpoint:

,-21

p(2) =7.93 +2.97 =10.9, x(2) =
0.4

-8.03

. 5.02x10"5J

+ 2.97

6.69x10

-9.84x10
-1

-• 4.37X10"5-1

0.6

-10.9

-4
LI.81x10

(E.44)

The next region r'2' is characterized by 0.6 <Xi <°o and -00 ±x2 <0.4 and
corresponds to segment (3,1). Using (3.35), (3.36), and (3.39), we obtain

cj(2) =[-1.06x10'2 -1.12 -1.33xlO"4]T (E.45)

Since dj^-dj^-Ap^ =-1.06x10"2-6.69xl0"2-2.97 <0, d^ points to the
opposite direction and by (3.41),

Ap
(2) „___o-0_6

1-1.06x10
-2

(2) . 0.4-(-10.9) . i0 i2
Ap2 |-1.12| ,u' XL (E.46)

Since Ap£2)<Apj2% we identify j2 =2and hence Ap^2' =- Ap£2' =- 10.12.
Using (3.44) and (3.45), we calculate the next breakpoint:

p(3) =10.9-10.12=0.78, x(3) =
0.6 -1.06x10 c 0.708

-10.9 -10.12 -1.12 = 0.4

1.81x10"^ _-1.33x10"4^ _1.53x10"3_
(E.47)

The next region R^ 'corresponds to segnent (3,2) and is characterized by

-79-



0.6 <Xi <oo and 0.4 <x2 <0.6. Using (3.35), (3.36), and (3.39), we obtain

d(3) =[0.289 0.315 3.44x10'3]T (E.48)

Since dj|3)-d£2)-Ap(2) =0.315-(-1.12)-(-10.12) >0, d(3) points to the correct
direction and by (3.41),

>-0.70

'1 " 0.289
. (3) QQ-0.708 _ . (3) _ 0.6-0.4. n fi~
Ap, ' = r, *nn = °°» Apo = n oic 0.63

0.315
(E.49)

Since Ap^3^ <Apj3\ we identify j3 =2and hence Ap^ =Ap|3^ =0.63. Usi
(3.44) and (3.45), we calculate the next breakpoint:

ng

p(4) =0.78 +0.63 =1.41, x^4) =

" 0.708 "0.289 0.89

0.4 + 0.63- 0.315 = 0.6

_1.53x10"3_ _3.44xl0"3,_ .3.71
,-3

(E.50)

The next region V4' corresponds to segment (3,3) and is characterized by
0.6 <Xi <oo and 0.6 <Xg <oo. Using (3.35), (3.36), and (3.39), we obtain

d(4) =[0.225 1.06xl0"2 2.68xlO"3]T (E.51)

Since di4)-di3)-Ap^3) =1.06x10"2-0.315-0.63 >0, the solution curve follows
the direction of d^ and goes to infinity without hitting any boundary of R^
Hence, we choose

Ap(4) =0.59, p(5) =l.41+0.59 =2.0, x(5) =

1.02

0.606

-3
5.29x10

as a point in the end segment of the solution curve. Equations (E-41)» (E.44),
(E.47), (E.50), and (E.52) will give breakpoints x(1\ x(2), x(3), x( and
x^ in the end segment of the solution curve.
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0.891

0.6

.3.71x10

+ 0.59

,-3

0.225

1.06x10
-2

L2.68x10"3J

(E.52)
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FIGURE CAPTIONS

Fig. 1. (a) A piecewise-linear one-port N driven by y. , which can be either

a voltage source v^, or a current source i. . (b) Typical piecewise-
linear driving-point characteristic plotted with y. =vinasthe inde
pendent variable, (c) Typical piecewise-linear driving-point charac
teristic plotted with yin=i. as the independent variable.

Fig. 2. (a) A piecewise-linear two-port Wdriven by y. , which can be either

a voltage source v. , or a current source i. , and the open-circuit

voltage vQ taken as the output variable, (b) Same as in (a) but with
the short-circuit current iQ taken as the output variable, (c) Typi
cal piecewise-linear transfer characteristic.

Fig. 3. (a) Resistor Ri with two breakpoints v, =- 1 and Vi =2. (b) Resis
tor Rg with one breakpoint at i*2 = 3. (c) The two vertical lines
(parallel to x2) Xi =- 1 and Xi =2 and the horizontal line (parallel
to Xi) x2 =3 partition the *t " *o D^ane lnto 6 distinct rectangular
regions inside each of which the circuit is described by an affine

function. Region (j,k) corresponds to the linear circuit where resis
tor Ri is operating in segment j and resistor Rg is operating in
segment k.

Fig. 4. (a) Linear (n+l)-port hi terminated by voltage-controlled resistors'

R«is Ro* •••» Rn on the left, current-controlled resistors R^+p R^+2»
..., R on the right and the input voltage source v. across the

driving port (n+1). (b) Linear (n+l)-port M from (a) terminated by

voltage sources v,, v2, ... v. on the left, current sources i«+-|»
i^+2, ..., i on the right, and the input voltage source v^n across
port (n+1).

Fig. 5. (a) Circuit for Example 2.1. (b) Linear 3-port W terminated by non
linear resistors Ri and R2 and voltage source vin. (c) Voltage-
controlled v^ - i, curve for R^ (d) Current-controlled i*2-v2 curve
for R2.

Fig. 6. (a) Circuit for Example 2.2. (b) Linear 3-port Mterminated by vol
tage-controlled resistors Ri and R2 and voltage source v-n. (c) v^ - 1^
curve for R,. (d) v2-i*2 curve for R2.

Fig. 7. (a) Circuit for Example 2.3. (b) Linear 3-Port Wterminated by
current-controlled resistors Ri and R2 and voltage source vin-
(c) Vi«ii curve for R-j. (d) v2-i'2 curve for 1^.

Fig. 8. (a) Circuit for Example 2.4. (b) Linear 3-port Wterminated by



voltage-controlled resistors Ri and R^ and v°lta9e source vin-
(c) Ebers-Moll circuit model of npn transistor, (d) The exponential
law of the pn junction diode in Ebers-Moll circuit model in (c) is
modeled by a 3-segment piecewise-linear function f(-).

Fig. 9. (a) The circuit in Fig. 8(a) redrawn with transistor and voltage
source v.^ extracted across the new (without controlled-sources) 3-port
/* in

N . (b) Representing the 3-terminal device in (a) by two coupled
2-terminal resistors Ri and R2.

Fig. 10. A hypothetical piecewise-linear solution curve r traced on the Xi - x2
plane in Fig. 3. Note that r does not pass through region (1,2).
The notation x^(p^') means the location of x^ corresponding to

Fig. 11. (a) The direction vector d^ originating from >r ' intersects the
boundary line x, = Bn,. at x^ ' before its extension (shown dotted)

1 ~ (IVintersects the second boundary line x2 = B2<j at xv h . (b) The
direction vector d'0' from x'0' intersects the boundary plane x9 =G9.
at xv ' before its extension (shown dotted) intersects the boundary

plane x, = B1/4 i\ (back side) at xvw and finally the boundary
plane x0 = $,. (top) at xv ; .r 3 K3i3 r/ - (-i\ (i)

Fig. 12. (a) Solution curve in region Rv ' connects two breakpoints xv ' and

x' '. (b) Solution curve in region R^ ' goes from x^ ' to <».
fir) ""

Fig. 13. Typical example showing the direction vector dv ' lying along the
solution curve r on r' ' but pointing outwards; i.e. back towards the
region R^ ' where we came from. The horizontal axis is labelled as
x. .

Jk-1
Fig. 14. (a) A current-controlled driving-point characteristic which is not a

single-valued function of vin =p. (b) Amultivalued driving-point
characteristic which is not a single-valued function of v^ = p.
(c) A driving-point characteristic which is a single-valued function
of v. = p except at one point v. = p* where the entire vertical line

segment maps into one-point vin = p*.
Fig. 15. (a) A bow-tie shape driving-point characteristic which does not inter

sect the load line v. = p . . (b) A driving-point characteristic
in min

which intersects the load line v1n = pmin at three points.
Fig. 16. (a) A driving-point characteristic having a vertical end segment

located at p* < p (b) A driving-point characteristic which does
max.

not intersect the load line vin = pmax.
Fig. 17. The load line v. = p .„ intersects one branch at 3 points but not

J T M ml 11in ^mi n



the second branch.

Fig. 18. (a) Circuit for Example 3.1. (b) v, - 11 characteristic for R^
(c) i2 - v2 characteristic for Rg. (d) Driving-point characteristic
derived by graphical method and by the breakpoint-hopping algorithm.

(e) Linear 3-port N terminated by voltage-controlled nonlinear resis
tor R„ current-controlled nonlinear resistor Rg and voltage source
vin

Fig. 19. (a) Circuit for Example 3.2. (b) Vi - 1*1 characteristic for Rr
(c) Driving-point characteristic derived by the breakpoint-hopping

algorithm, (d) Linear 2-port N terminated by voltage-controlled non
linear resistor R, and voltage source v^.

Fig. 20. (a) Solution curve r of the circuit in Fig. 5(a). (b) Driving-point
characteristic of the circuit in Fig. 5(a).

Fig. 21. Two distinct solution curves r1 and r2 for the circuit in Fig. 6(a).
Horizontal axis denotes Xi AVi and vertical axis denotes x2 _, v2»

Fig. 22. (a) Two distinct branches of the driving-point characteristic of the
circuit in Fig. 6(a). (b) Vi - vs - vin transfer characteristics.
(c) v« - vs - v. transfer characteristic.
x ' z in

Fig. 23. (a) Solution curve r of the circuit in Fig. 8(a). (b) Driving-point
characteristic of the circuit in Fig. 8(a).

Fig. 24. (a) Circuit for Example 5.1. (b) Vi - 1*1 characteristic for Rr
(c) v2 - i2 characteristic for Rg. (d) Linear 3-port Nterminated by
voltage-controlled nonlinear resistors Ri and R^ and voltage source
v. . (e) Solution curve of the circuit in (a). Note that it splits
in n\

into 3 branches upon hitting the corner point xx '.
Fig. 25. (a) Solution curve of the circuit in Fig. 7(a). (b) Driving-point

characteristic of the circuit in Fig. 7(a).

Fig. 26. (a) Cfrcuit for Example 5.3. (b) Vi - l^ characteristic for Rr
(c) v2 - i2 characteristic for Y^. (d) Linear 3-port Wterminated
by voltage-controlled nonlinear resistors Ri and R2 and voltage source
v. . (e) Solution "curve" for the circuit in (a),

in

Fig. 27. (a) Driving-point characteristic for the circuit in Fig. 26(a). (b)
Vi - vs - v. transfer characteristic, (c) v2 - vs - v1n transfer
characteristic. Note that the solution curve splits into the whole

fr)
2-dimensional area of region Rv '.

Fiq. 28. (a) Solution curve re-entering a previously traversed region, (b)
/—xO\ ill

Driving-point or transfer characteristic for pv f p . (c) Driv
ing-point or transfer characteristic for p^m =p
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