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Abstract

An extremely efficient breakpoint-hopping algorithm is presented for

' tracing the driving-point and transfer characteristics of any nonlinear circuit

made of linear (possibly multi-terminal) resistors, dc independent sources,

Tinear controlled sources (all 4 types) and 2-terminal nonlinear resistors

described by piecewise-linear v-i characteristics. Most resistive nonlinear

electronic circuits can be realistically modeled by such circuits. The algo-
rithm can trace not only violently nonlinear (with sharp turning points) and
multivalued characteristics, but also characteristics composed of several dis-
connected branches, provided one point in each branch is given.

The remarkable computational efficiency of the breakpoint-hopping algorithm

.is due to two key properties built into the algorithm:

1) the circuit equation is formulated into a special form; namely, a canonical
piecewise-linear equation with a lattice structure.

2) the algorithm finds only the breakpoints and possibly one point on each end
(unbounded) segment via explicit formulas (hence no convergence problem).
These data points represent the minimal amount of information needed to
specify a piecewise-linear characteristic uniquely.

1~This research is supported in part by the Air Force Office of Scientific
Research (AFSC) United States Air Force Contract F49620-79-C-0178.



1. INTRODUCTION

This paper is.a sequel to [1], where we have proved that for a very large
class of resistive piecewise-linear circuits--most electronic circuits can be
modeled by such a circuit--the algebraic equations resulting from various analy-
sis methods (node, cut set, loop, hybrid and tableau analysis) can always be
cast into an explicit analytical form where the only nonlinearities are absolute-
value functions; namely,

= 0 (1.1)

where 8, is a scalar, x, a, ¢;, and @, are n-vectors, B is an nxn matrix, and

( , ) denotes vector dot product. For circuits having a unique solution, the
canonical Katzenelson algorithm given in [1] can be used to find this solution
in a finite number of iterations. For circuits having multiple solutions, the
general (necessarily less efficient) algorithm given in [2] can be used to find
all of the solutions.

With the operating-point problem essentially solved in [1,2] for the cano-
nical piecewise-linear equation (1.1), we now turn to the equally important pro-
blem of finding the v-vs-i (or i-vs-v) driving-point characteristic of the
one-port N shown in Fig. 1, or thev, (or io)-»vs-yin(either Vip OF iin) trans-
fer characteristic (4 types) of the two-port N shown in Fig. 2. The one-port
N in Fig. 1 and the two-port N in Fig. 2 may contain an arbitrary interconnec-
tion of the circuit elements listed in Table 1.

Since the low-frequency behavior of most multi-terminal devices can be
realistically modeled by a circuit made only of elements from Table 1, it is
clear that the class of resistive nonlinear circuits considered in this paper
is extremely broad.

A common method for findingthe driving-point or transfer characteristic is
to solve for the operating point using a computer simulation program as the
input source Yin is varied by increments over the dynamic range of interest.
This "brute force" method unfortunately suffers from two major shortcomings:

1) it is extremely time consuming, and 2) it is valid only if the driving point
or transfer characteristic is a single-valued function, and therefore excludes
many circuits of practical interest [5,6], including the examples given in the
following Figs.: 19, 20, 22, 23 and 25.

The above objections can be overcome by several recent algorithms [7-10]
for tracing solution curves of general (not necessarily piecewise-linear)




Table 1. Repertoire of allowed circuit elements

1. linear (positive or negative) 2-terminal resistors
2. dc voltage and current sources
3. Tlinear controlled sources (all 4 types)
4. any linear multi-terminal resistors (e.g., ideal transformers,
gyrators, circulators, etc.)
5. nonlinear 2-terminal resistors described by a voltage-controlled canonical
piecewise-linear representation
Ok
i =1 (v,) =a +byv + mz]ckmlvk'Ekml (1.2)

or by a current-controlled canonical piecewise-linear representation

o
k
Ve =V (i) =3 +b i + mZ]ckm|1k—Ikm| (1.3)

k=1,2, ..., n, where s bk’ and Cym 2re determined from explicit

formulas given in [1,3] for an arbitrary continuous piecewise-linear func-
tion having (ok+1)-segments. Here E, - iresp.; Ikm) denotes the voltage

(resp.; current) coordinate at the m-th breakpoint, and the subscript k
denotes the k-th resistor.

In fact, these 2-terminal resistors may be coupled to each other via the
generalized representation defined in (2.8) and (2.9), thereby including
any multi-terminal elements (e.g., see the piecewise-linear equation (2.37)

for bipolar transistors) described in the form of (2.8)-(2.9).Jr

nonlinear equations with respect to a parameter p, which in the present con-
text represents Yin: These algorithms essentially trace the characteristic
from one point to a "nearby" point via a homotopic approach. For piecewise-
Tinear circuits, however, this approach does not take advantage of the piece-
wise-Tinear nature of the characteristics (where only 2 breakpoints are needed
to specify any segment of the characteristic) and proceed to calculate even
the points between the breakpoints, completely oblivious of the fact that the
segment is a straight line! Other algorithms which do exploit the piecewise-
linear characteristic exist [11,12], but they do not exploit the canonical
piecewise-linear representation considered in this paper and are therefore com- -
putationally inefficient.

1"/-\1'cer'na11:e1y, a multi-terminal device may be modeled by a circuit using only
uncoupled piecewise-linear 2-terminal resistors and linear controlled sources
[4]. In which case, (2.8) and (2.9) reduce to (1.2) or (1.3).



In this paper, we develop a highly efficient breakpoint-hopping algorithm
which systematically finds all breakpoints of the characteristic (plus possibly
one point on each "unbounded" segment tending to + or -«) within the specified
dynamic range. If the driving-point or transfer characteristic consists of
several "unicursal” [13] (i.e.; contiguous) branches, our algorithm will find
all branches where one point on each branch is given. In other words, the
problem of finding all branches reduces to that of locating one point on each
branch. For simple circuits, this information can be obtained by using the
algorithm in [2].

Since only the minimal number of points needed to specify a piecewise-
linear characteristic uniquely is sought by our algorithm, it is the most effi-
cient algorithm possible, assuming of course that the breakpoints can be found
efficiently. Since our algorithm uses one breakpoint to find the next nearest
breakpoint, it is called a breakpoint-hopping algorithm.

The key idea responsible for the remarkable computational efficiency of
our algorithm is the choice of a particular equation formulation (a generalized
form of hybrid analysis [14, 2]) which gives rise to a canonical piecewise-
linear equation with a lattice structure; namely,

O.
Bx + Z 2 c; | =a+or (1.4)
j=1 i=1 "~ %5851

where xj and Bji are scalars, and X, Sji’ a and r are (n+1)-vectors, B is an
(n+1)x(n+1) matrix, where n is the number of nonlinear resistors, o, is the
number of breakpoints in the piecewise-linear v.-i. curve of the j-th resistor,
j=1, 2, ..., N, and p is a scalar equal to the value of the input variable,
i.e., p= pores= 11n

Observe that the canonical equation (1.4) is a special case of (1.1)
because, here, the argument inside each absolute-value function contains only
one variable, namely, x 331, 1<i< oj. This implies that the "hyperplane"
boundaries in the n-d1mens1ona1 Xq = X5 = ... = X space which separates the
various piecewise-linear regions are all parallel to the respective coordinate
axis, as illustrated in Fig. 3 for a circuit containing 2 piecewise-linear
resistors characterized by the vy - i] curve in Fig. 3(a) and the 12 -V, curve
in Fig. 3(b). Here, we identify the parameters in (1.4) as follows: x]:g Vys



Xz:é iy, n =2, o = 2, oy = 1, By = -1, Bip = 2, and Byy = 3. Equation (1.4)
partitions the X1=Xy plane into exactly 6 "rectangular" regions via the 2
vertical lines (one-dimensional hyperplanes X1 = -1 and x; = 2) and the hori-
zontal line x, = 3, as shown in Fig. 3(c). Such a "parallel" boundary struc-
ture as defined by (1.4) is called a lattice structure in [2]. We will see
shortly that this parallel structure is crucial to the computational efficiency
of our breakpoint-hopping algorithm.

Since not all equation formulation methods (e.g., node analysis, loop
analysis, cut set analysis [1]) give rise to a canonical piecewise-linear equa-
tion with a lattice structure, Section 2 is devoted to a general formulation
method which guarantees such a structure.

The breakpoint-hopping algorithm for solving (1.4) is derived in Section
3. Several validating examples illustrating this algorithm are collected in
Section 4. For completeness, various degenerate (il1l1-conditioned) cases which
could invalidate our algorithm are analyzed in Section 5.

2. FORMULATION OF CANONICAL PIECEWISE-LINEAR EQUATIONS WITH LATTICE STRUCTURE

Consider the circuit configurations in Figs. 1 and 2 where N contains
only elements listed in Table 1. Let us extract all nonlinear resistors in N
and redraw the circuit as an (n+1)-port N terminated by "&" voltage-controlled
resistors on the left, "n-2" current-controlled resistors on the right, and
the input source Vin (which for convenience is assumedAto be a voltage source)
at the bottom, as shown in Fig. 4(a). The (n+l)-port N is linear and time-
invariant and can be described by various standard representations, depending
on the choice of independent variables. For our present purpose, the
independent variables must be chosen to be the same as those of the terminating
nonlinear resistors, as shown in Fig. 4(b).

Except for the rare and degenerate cases ﬁ can be represented by an affine
equation

Px =0y +s (2.1)
where

x A [Vl’VZ""’Vz’iz+1’i2+2""’in’iin]T’ (2.2)

Y A TipsinseensigaVoqoVgppsneaVoVs 11 (2.3)

S is a Eonstant (n+1)-vector which accounts for the dc independent sources
inside N, P and Q are constant (n+1)x(n+1) matrices which depend only on the
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parameters of the linear elements inside ﬁ. Note that if Q is nonsingular,
then (2.1) reduces to the usual hybrid representation [1,2]:

y =Hx+s, (2.4)

~

where H 4 g' P and §0,§ -9'15. Consequently, we call (2.1) the generalized
hybrid representation (since both X and y are hybrid vectors). Given any non-
degenerate circuit (Fig. 4(b)), (2.1) can be derived manually by standard cir-
cuit analysis methods for simple circuits (n<3), or by the systematic elimina-
tion algorithm given in [4] for larger circuits. For the few degenerate cases
where N can not be represented by (2.1), we can always extract a linear
resistor from one or more nonlinear resistors to remove the degenelr'ac:,y.Jr Hence,
there is no loss of generality in assuming that ﬁ has a generalized hybrid
representat1on (2.1) Once (2.1) is found, the circuit elements and topology
inside N become irrelevant as the canonical piecewise-linear equat1on that we
are about to formulate for the circuit in Fig. 4(a) depends only on P, Q, s
and the external terminating elements.

Since Vin in the vector y is the input source, let us separate it from the
remaining dependent variables by rewriting

Y=y teeny, . (2.5)
where T
.!'=£ [11,12,...,iz,vz+1,v2+2,...,vn,0] (2.6)
T
gn+1,g fo,0,...,0,0,0,...,0,1] (2.7)

and p A \Z is the value of the driving voltage source, where p can vary be-
tween the spec1f1ed dynamic range [p m1n’pmax] of interest.

Our next step is to express X in terms of the "unknown" independent vari-
ables X This can be easily achieved by substituting the voltage-controlled
piecewise-linear representation (1.2) in place of i], gy oees ig, and the
current-controlled piecewise-linear representation (1.3) in place of Vo+l?
Voss +ovs Vp in (2.5). Without any extra work, however, we can allow the
2-terminal nonlinear resistors to be coupled to each other in accordance with

the following much more general "coupled" representation:

Of course, the vk-1 characteristic of each nonlinear resistor so extracted
will have to be modified by subtracting a linear term equal to the extracted
series or parallel linear resistor.



0’

T
+ + .
byx 321 1z1c31k|x3 BJ'I' (2.8)

k=1,2, cc.5 %,

T
vk k * Pk-v * Jz] 12]CJ‘|kIXJ J‘ll (2-9)

k=28+1,2+#2, ..., n

where 3 Cjik’ and Bji are scalars, Pk and x are (n+1)-vectors with x de-
fined in (2.2). Here, we assume, without loss of generality, that

Bji < Bjk iff i<k foreachj=1,2, ..., n.

Note that if the k-th resistor is uncoupled to the other e]emenis, we have
=[0...010...01"
where the k-th entry in bk is 1 and c ik = 0 for all j # k. In this case,

(2.8) (resp.; (2.9)) reduces to (1. 2) (resp 5 (1.3)) with Ciik = ki for j = k.
Substituting (2. 8) (2.9) in place of 1k and Vi in (2.5), we obtain

y= § + § + JZ Z]§ -Bji|+-pgn+1 (2.10)
where - _ -
(3 ] by €3i1
%2 9; €ji2

al ;n BLlir Cji = éjin (2.11)
L0 _ L0 0

fori=1,2, ..., oj and j =1, 2, ..., n. Substituting (2.10) for y in (2.1),
we obtain (1.4); namely,

canonical piecewise-]inear equation with lattice structure:

+ = .
= JZI 12 CiilxyB5il =2 +or (2.12)

where




B A B -P (2.13a)
i a QSji (2.13b)
al-s-0 (2.13¢)
rd-Qe (2.13d)

Observe that (2.12) is a special case of the general canonical piecewise-Tinear
equation (1.1) with

o, =[00...010...0]

where the j-th entry in o is 1 for some j€ {1,2,...,n}. In other words, the
argument inside each absolute-value function in (2.12) contains only one vari-
able xj, j=1,2, ..., n. It is indeed remarkable that the rather general

piecewise-linear circuit in Fig. 4(a) can be described analytically by equation

with such a highly specialized structure.

Remarks

1. If the nonlinear resistors in Fig. 4(a) are not coupled to each other, then
(2.8)-(2.9) reduce to (1.2)-(1.3) and § in (2.11) reduces to a diagonal
matrix (see (2.16), (2.20), (2.25) and (2.33) in Examples 2.1-2.4). In
this case, gji,reduces to cjijfj where

ej=[00...010... 0

and 1 is located in the j-th entry (see (2.16), (2.20), (2.25), and (2.33)
in Examples 2.1-2.4).

2. Although both the hybrid and the tableau equations in [1] also give rise
to an equation with a lattice structure, we choose the generalized hybrid
representation in this paper because 1) the hybrid representation for i
does not exist in many circuits and 2) the tableau representation would
have resulted in a much larger system of equations. This is especially
objectionable if the number of linear elements inside N s relatively large
compared to the number of nonlinear elements.

We close this section with several examples whose driving-point or transfer
characteristic is to be found in Section 4.

Example 2.1 (Fig. 5)
Consider the circuit in Fig. 5(a) where nonlinear resistors R, and R,

are described by the piecewise-linear characteristics shown in Figs. 5(c) and

-8-
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(d). Although these two characteristics are strictly increasing and are there-
fore both voltage-controlled and current-controlled, we have chosen Vi and 12
to be the independent variables for illustration purposes. Using the explicit
formulas in [1], we obtain the following canonical piecewise-linear equations
for R.I and R2:

R = iy(vq) = 9/8 vy +7/8 |vq] (2.14a)

1: 4
Ry vy = Vyliy) = 978 1,y + 7/4 |i,-1] - 9/4 (2.14b)
Extracting the two nonlinear resistors, we obtain the linear 3-port N

shown in Fig. 5(b). By straightforward analysis, we obtain the following
generalized hybrid representation for N:

1 0 0 vy 0 -1 1 i 0
0 0 1 i, |= 1 1 0 Vo | 0 (2.15)
0o 1 -1 i 0 0 0O V. 0
in in
—_— U —
P X Q Y N
Note that s in (2.1) is always equal to Q if ﬁ contains no dc sources.
Substituting (2.14) into (2.10) and (2.11), we obtain
0 9/8 0 0 7/8 0
B.l‘l:O’ 621=‘l’ g= '9/4 ,§= 0 9/4 0 Y S-I-I= 0 392"= 7/4
0 0 0 0 0 0
(2.16)
Substituting (2.15) and (2.16) into (2.13), we obtain
-1 -9/4 0 -9/4 -1 0 -7/4
B=19/8 9/4 -1|,a=| 9/4|, r=1 01, s 7/8 |, ot = 7/4
0 -1 1 0 0 0 0
(2.17a)

Substituting (2.17a) into (2.12), we obtain the following canonical piecewise-
linear equation for the circuit in Fig. 5(a)

-y o[y 0 -7/8 -9/87) (-1
o/8  9/4 1|, [+|7/8| vyl +| 778 [lip-1] =| 98 |*e] 0
o -1 Jl;J Lo 0 0 0oJ
N e e T D
& X oy ImByl Gy IxpByl r
(2.17b)

-9-



Note that the parameters Bji in (2.12) always correspond to the breakpoint
coordinate (ordered from left to right) for resistor Rj. In this case n = 2,
oy = 1, Oy = 1 and hence we could have obtained 811 =0 and 82] = 1 by inspec-
tion of Figs. 5(c) and (d) directly.

Example 2.2 (Fig. 6)
Consider the circuit in Fig. 6(a) where nonlinear resistors Ry and R, are

described in Figs. 6(c) and (d) respectively. Since Ry and R, are both non-
monotonic and voltage-controlled, it is necessary to choose Vi and vV, as the
independent variables in this example. Their canonical piecewise-linear equa-
tions are found as follow:

Ry:iq = T1(vq) = -7/8 + 7/4 vy - 25/18 |v;-1.2| + 41/36 |v;-3]  (2.18a)
Ryt i, = T,(vy) = -2.2 + dv, - 7/2 |vy=0.8| +5/2 |v,-2| (2.18b)

The associated linear 3-port N in Fig. 6(b) is described by the following
generalized hybrid representation:

0 0 1 Vi 1 0 07)(1 0
0 0 1 v, =10 1 0|1, |[*]|O (2.19)
1 1 3.2 1. 0 0 1 V. 0
mn in
— \ ) —_—— )
P X Q y s

Substituting (2.18) into (2.10) and (2.11), we obtain (here n = 2, gy = 2,
and gy = 2)

B‘l‘l = "02, B-Iz = 3, 62] = 0-8’ 822 = 2 (2-203.)
-7/4 7/ 0 O -25/18| 41/36 0 0
é\: "2.2 Y E = 0 4 0 ’ §-‘-I = 0 s E-IZ = 0 . Sz-l = -7/2 'Y 522 = 5/2
0 0 0 O 0 0 0 0
(2.20b)

Substituting (2.19) and (2.20) into (2.13), we obtain

7/6 0 -1 7/4 0
B = 0 4 -] 9 é = 2-2 . r = 0 ]
1 -1 -3.2 0 -1

-10-



-25/18 41/36 0 0
S-H = 0 ’ S-IZ = 0 ’ Sz'l = '7/2 ) 522 = 5/2 (202])
0 0 0 0

Substituting (2.21) into (2.12), we obtain the following canonical piecewise-
linear equation for the circuit in Fig. 6(a):

74 0 1\(v, ~25/18 41/36
o 4 -1 |lv, [+] o |12 0 |vy-3)
a1 -l 0 0
—— ) e I
B X R LSRR B PR ES (S PY
0 0 7/4 0
+ |-772 ||v,-0.8]+ [ 572 | [v,-2]=| 2.2 | + o] O (2.22)
0 0 0 -1
-~ v Y —
oy IXo-Boyl  Cop  IXp-Bypl 2 r

Example 2.3 (Fig. 7)

Consider the circuit in Fig. 7(a) where nonlinear resistors R1 and R2 are
described in Figs. 7(c) and (d). Since R1 and R, are both non-monotonic and
current-controlled, it is necessary to choose 1'.I and i, as the independent
variables in this example. Their canonical piecewise-linear equations are
found as follow:

v](i]) =-1+ i] - |i]-2| + |i1-3| (2.23a)

Volig)= =2 + iy-2]i,-4| + 2[iy-5] (2.23b)

The associated linear 3-port N in Fig. 7(b) is described by the following
generalized hybrid representation:

0 0 0 i] T 1 -1 i 0
1 -1 0 i, =10 0 0 Vo |+] 0 - (2.24)
1 0 -1 L 0 O 0 Vin 0

P X Q y s

-11-



Substituting (2.23) into (2.10) and (2.11), we obtain (here n = 2, gy =2
and gy = 2):

6]] = 2, 812 = 3, Bz-l = 4, 822 = 5 (2.256)
-1 1 0 O -1 1 0 0
é = "2 K § = 0 ] 0 ’ S]] 0 Y E]2= 0 ’ 521 = -2 ’ 522= 2
0 0O 0 o0 0 0 0 0
e as (2.25b)
Substituting (2.24) and (2.25) into (2.13), we obtain
1 1 0 3 1
B=|-1 1 0, a=| 0, r=|0
-1 0 1 _ 0 0
-1 1 j -2 2
S-” = 01, S'Iz = 0, Sz] = 0| 522 = 0 (2026)
0 0_ 0 0

Substituting (2.26) into (2.12), we obtain the following canonical piecewise-
linear equation for the circuit in Fig. 7(a):

11 0y ] [ 1
-1 1 0fji, |+ O |i1-2| +]0 |i1-3|
-1 o L J Lo 0
B L TR ES S T I PR LR PY
-2 2 3 1
+1 0 [liy-4l+}| 0 |12-5| =[ 0 |+p]| O (2.27)
0 0 0 0
—— e Y —
co1 1% Byl Gpp IXpoBppl 2 r

Example 2.4 (Fig. 8)
- Consider the one-transistor circuit shown in Fig. 8(a) containing 3

Tinear resistors and an ideal transformer with a turns-ratio n = 10. Let us
model the transistor by the usual Ebers-Mol1l circuit model [4] as shown in Fig.

-12-
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8(c), except that instead of using pn-junction diodes for R] and R2’ we approxi-
mate the diode exponential law by a piecewise-linear function. Let

- x/V

fx) A1 (e T

-1) (2.28)

where VT is the thermal voltage which is 26 mV at room temperature and

IS = afIES = “rICs (2.29)
where IES (resp.; ICs) is the reverse saturation current in the base-emitter
(resp.s base-col]ecpor) junction. For VT = 26mV and IS = 10']4 A, we approxi-

mate f(x) by a 3-segment piecewise-linear function

£(x) = -3.6374x1073 3¢ + 2.63x10"%x-0.4| + 5.887x1073|x-0.6]

‘ (2.30)
as shown in Fig. 8(d). From (2.29) and choosing ag = 0.99 and @, = 0.5, the
canonical piecewise-linear equation for R1 and RZ’ which model the base-emitter
and base-collector junction diodes respectively, are found as follow:

+ 6.15x10"

Ryt 13 = 95 (vy) =-3.6557x1073 + 6.18x1073v, +2.643x10™% |v,-0.4]
+5.916x1072|v,-0.6] (2.31a)
Ryt i, = 3,(v,)=-7.2748x1073 +1.23x10"2v, + 5.26x10"% |v,-0.4|
2+ 1p = 1p(vp) =-T. : 2*5- 270
+ 1.1774x107%|v,-0.6| (2.31b)

The associated linear 3-port N in Fig. 8(b) is described by the following
generalized hybrid representation:

0.5 -1 0 (v, -945 6x10° 1 i, 0
20 1 0 v, |= -1.0145x10% 9.1x10% 0 i, | +] 0 (2.32)
3 3 3
-1 0 8x10 i. 8x10 -4x10 0 .| v. 0
— y in \ _ P in
P X Q y S

-~ ~ ~ ~ ~

Substituting (2.31) into (2.10) and (2.11), we obtain (here n=2, 01=2 and
02=2):

B'I'I =82'| = 0.4, B]z = 822 = 0.6 (2-333)

-13-



-3.6557x10™3 ) F6.18x1073 0 0
a=|-7278<10 |, 8= o0 1.23x107% 0
0 3 L o 0 0
2.643x107% ) (5.916x10"3 0
PN _ A _ ’S - -4
i = 0 »C27| O » G = | 5-26x10 7
o 0 0
0
Spp = | 1.776x1072 (2.33b)
0
Substituting (2.32) and (2.33) into (2.13), we obtain
-5.50 74.8 0 40.2 -1
B = |-42.7 1120 0o |,a=|65 |[,r=| o0
50.4 -49.2 -8000 0.146 0
-0.25 -5.59 3.16 70.6
Cyp =| -2.68 |, c1p =| <60 |,cpy%| 47.9 |, Cpp =| 1071 (2.34)
2.1 47.3 | -2.10 -47.1

Substituting (2.34) into (2.12), we obtain the following piecewise-linear equa-
tion for the circuit in Fig. 8(a):

-5.59 74.8 0 (v, -0.25 -5.59
-42.7 1120 0 |v, |+]-2.68|lv;-0.4] +| -60 |]v;-0.6
50.4 -49.2  -8000 | i, 2.11 47.3
B X ¢p Ix-Bqql iz IX97Bypl
3.16  [70.6 40.2 1
+| 47,9 |1vy-0.4] + | 1071 ||v,-0.6] =| 625 |+ | O (2.35)
-2:10 -47 .1 0.146 0
Sy Ixp-Byl Cop  IXp7Bpol a r

-14-
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Example 2.5 (Figs. 8(a) and 9)

Consider the same circuit in Fig. 8(a) again, but redraw as shown in Fig.
9(a). Instead of replacing the transistor by a circuit model (made of un-
coupled 2-terminal piecewise-linear resistors and controlled sources) as in

Fig. 8(b), let us describe the transistor by an equivalent version of Ebers-
Mo11 equation; namely,

i) = 11 (vpavp) = = Flvy) + aif £(vy) (2.36a)

12 = ?2(v1,v2) = - f(v]) + éL'f(Vz) (2.36b)
r

where the function f(-) is as defined in (2.28). Approximating the function
f(-) by the 3-segment piecewise-linear function f(-) as defined in (2.30)

and choosing g = 0.995 and a, = 0.5, we obtain the following pair of coupled
piecewise-linear equation describing the npn transistor:

3-segment piecewise-linear Ebers-Moll equation:
5 3

i,=11(vq5v,) =-1.8187x107° + 6.18x10 "V, - 6.15x10'3v24-2.643X10'4|v1-0.4|

+ 5.916x107° |v,-0.6|-2.63x10™* |v, - 0.4]-5.887x1073|v,-0.6]

2

1y= 1, (¥7,V,) = -3.6374x1073 - 6.16x1073v, +1.23x10 %y, - 2.63x107* |v, 0.4

- 5.887x1073|v,-0.6] +5.26x107* |v,-0.4] +1.1774x107%|v,-0.6|  (2.37)

Observe that (2.37) can be interpreted as the equations of two coupled 2-
terminal resistors as shown in Fig. 9(b). Note that N in Fig. 9 is identical
to that of Fig. 8(b) except that the two controlled sources have been removed:
their role in the circuit model in Fig. 8(c) is now assumed directly by an
explicit coupling term in the corresponding equation model (2.37). Indeed if
we extract the two controlled sources in Fig. 8(b) and connect them externally
in parallel with R] and R2, then the "composite" equation describing the
resulting parallel combination is precisely given by (2.37). In other words,
our present formulation is exactly equivalent to that of Example 2.4 and we
should expect to obtain the same canonical piecewise-linear equation in the
end, even though the intermediate calculations are different. Let us verify
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this observation as follows:

The new 3-port ﬁ in Fig. 9(b) is described by the following generalized
hybrid representation:

0.5 -1 07V, 10 1.0t i 0
20 -1 0 ||lv, |= 1.6x10° 1.71x10° 0 i, |+ 0 [(2.38)
-1 0 8000 (i, 8000 0 o JLv,, 0

P X Q Y S

Substituting (2.37) into (2.10) and (2.11), we obtain (here n=2, o1=2 and
0,=2):
2

B'l'l = B'lz = 0.4, Bz-l = 622 = 0.6 ’ (2.393)
-1.8187x107 6.18x10°3  -6.15x10"3 0
3= -3.6374107 |, 8= [-6.15107° 123107 0
0 0 0 0
2.643x1074 [ 5.916x1073 -2.63x1074
A 4 | o~ 3. -4
E'l'l = -2.63)“]0 ° S]z" "5-887x]0 ’ SZ" - 5.26)(]0 ’
0 L o0 0
-5.887x1073 )
&yp = | 1.1778x1072 (2.39)
0 i

Observe that unlike (2.16), (2.20), (2.25) and (2.33) in the previous
examples where g is a diagonal matrix, E is not a diagonal matrix in (2.39) in
view of the additional coupling terms in (2.37). Likewise, observe that whereas
§ji in (2.16), (2.20), (2.25) and (2.33) has only one nonzero entry, §ji has
more than one nonzero entry in (2.39).

Substituting (2.38) and (2.39) into (2.13), we obtain the same equation
as (2.34) and consequently the canonical piecewise-linear equation should be
the same as (2.35).
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3. THE BREAKPOINT-HOPPING ALGORITHM

A. Assumptions

To exclude pathological and degenerate cases, the algorithm to be developed

in this section makes the following assumptions:

1. The driving-point or transfer characteristic is made of one or more
unicursal (i.e.; contiguous 1-dimensional) curves. Hence, degenerate
tharacteristics containing points forming nonzerc areas, such as the
characteristic of a norator, are excluded.

In terms of the algorithm, this assumption is satisfied (see Section 5C) if

a) the Jacobian matrix corresponding to the starting point of each solu-
tion curve+ has a nullity at most equal to one;
b)*f the solution curve never hits a corner po*int.'iiﬁ

2. The output variable Yo (either Vg Or 10 in Fig. 2) of the desired transfer
characteristic is a linear combination of at most n+l1 port variables Zj’
j=1,2, ..., ntl, where zj € {x1,x2,...,xn+1;y],yz,...,yn+1}; namely,

Yo =G taqZy tagzy + ...t @ +1Zn4] (3.1)

where Cgs Oqs <5 O q are real constants. This assumption is satisfied
except in rare degenerate circuits. Indeed, in most cases, the output
variable will be a linear combination of only the independent variables
X1s Xos eees Xp in (2.2) and Vin namely,

Yo = 0 toqXy t 0oXy el FaX, o Vs (3.2)

In terms of the circuit in Fig. 4(b), (3.2) implies that N has a unique
solution for Yo when the ports are driven as shown in Fig. 4(b).+*++

Tsee Section 3B.
++See Assumption 4 below.

+++A corner is a closed connected set determined by the 1n§ersection.of at
least two boundary hyperplanes, or determined by the union of regions
with Jacobian matrices of nullity at least two [16].

Tt eor example, if we choose y, A i. in Figs. 5(a), 6(a) and 7(a), then
0= "in

the last row of the corresponding piecewise-linear equations (2.17),
(2.22) and (2.27) is of the form (3.2). On the other hand, yoig ij, in
Fig. 8(a) can not be expressed in the form of (3.2). By inspection of
Fig. 9(b), we find iy = = Vq/8k - i] is of the form (3.1). Note that

14, 1s a linear function of both vy and i, of port 1, and is independent
of v, and 1,. '
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3. The canonical piecewise-linear equation (2.12) is derived for the case when
the input variable is a voltage source Vins This involves no loss of
generality for driving-point characteristics because our algorithm is
capable of tracing multivalued characteristics and hence it does not matter
whether Vip OF iin is chosen as the independent variable. However, for
transfer characteristics driven by a current source, it is necessary to
interchange in in (2.2) with Vin in (2.3). The form of the resulting

canonical piecewise-Tinear equation remains unchanged, however.

4. The solution curve to be defined below never hits a corner in the sense that
as we sweep the input variable p, no two (or more) nonlinear resistors
arrive at a breakpoint in their v-i curves simultaneously, i.e., for the
same value p = 0*. Since this assumption can only be violated by a precise
(usually contrieved) choice of circuit parameter values, we can avoid the
corner problem (if it occurs) by an arbitrarily small perturbation of some
circuit parameters.

B. Basic Ideas Behind the Algorithm

If we choose the output variable Yo to coincide with each variable
Xps Xos e Xoig in (2.2), then Assumption 1 guarantees that each X5 = VS = Vy
transfer characteristic is made of one or more one-dimensional unicursal
branches for j = 1, 2, ..., ntl. Note that Xn+1 = VS " Vi is just the driving-
point characteristic. For other choices of output variable Yoo Assumption 2
allows us to calculate easily the corresponding transfer characteristic by sub-
stituting each xj-vs- Vin transfer characteristic in place of xj in (3.2), or
(3.1) in which case the corresponding relationships for y.'s are obtained from
(1.2)-(1.3) (for the uncoupled case) or (2.8)-(2.9) (for the coupled case).
Consequently our basic problem is to solve for X1s Xgs =ees Xoiq in the canoni-
cal piecewise-linear equation (2.12) for each value of the input Vip = Ps
where Pmin <P <P

n

Since the cirgﬁ¥t is piecewise-linear, the solution of (2.12) will trace
out a one-dimensional piecewise-linear space curve T in the Xq = Xg eee = Xogq
space Rn+], as we sweep the input from Vin = Pmin to Vin = Pmax* Each (straight-
line) segment of T corresponds to a particular combination of segments of the
n piecewise-linear resistors R], R2, cees Rn' Since the boundaries of each
Tinear region are determined by the breakpoints of the nonlinear resistors,
and not on x .4 A i, , it is convenient to project I onto the first n relevant

coordinates Xy = Xg= wow= X This projection gives a one-dimensional
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piecewise-linear curve in Rn, henceforth called a solution curve I'. Each
breakpoint of T must clearly fall on a particular hyperplane boundary.

For example, consider the three boundaries Vi = -1, vy = 2, and 12 =3 in
the vi- 12 plane in Fig. 3(c) corresponding to a hypothetical circuit contain-
ing only two piecewise-linear resistors, as described in Figs. 3(a) and (b).
Suppose that at Vin = °m1n=é p(o) the solution of (2.12) gives the operating
point x(0 . As we vary p from p min: the solution of (2.12) traces out a piece-
wise 11near solution curve T such as that shown in Fig. 10. Note that each
segment of T terminates on a boundary (at x(1)(p(1)) x(2)(p(2)) x(3)(p(3)) and

(4)(0(4))) before changing slopes. These breakpoints are parametrized by the
1nput voltages p(]) p(z) (3), and p( ) corresponding to the input voltages
where the operating point arrives at a breakpoint in Figs. 3(a) or (b). Note
that Assumption 4 guarantees that these breakpoints do not occur at a "corner,"
which in Fig. 10 represents the intersection between any two of'the three
boundary straight lines; namely, points A and B. Note also that the solution
curve T in general does not have to cover all regions. Here, region (1,2) is
bypassed.

The goal of our algorithm is to calculate the locations of all breakpo1nts

(J)(p(J)) of the solution curve T over the specified dynamic range Omin < P
2 Prax’ Because (2.12) reduces to a linear equation in each region, it is a
trivial matter to calculate this direction vector (slope in this example) of
each segment of T' from any initial point. Because the boundaries all possess a
lattice structure, it is also relatively easy to identify which boundary will
be crossed first and hence a formula for calculating the corresponding break-
point can be derived. Consequently, we can devise a highly efficient algorithm
to calculate each breakpoint x(k)(p( )) given the location of the preceding break-
point x(k ])(p(k ])) henceforth called the breakpoint-hopping algorithm. The
various assumptions in Section 3A merely guarantees that this algorithm does
not get stuck in various degenerate (ill1-conditioned) situations to be analyzed

in Section 5.

C. Derivation of the Algorithm

Let us begin by finding an operating point x(o) of the circuit when'

Vip = pm1n-é p(o) using any method (e.g., algorithm in [1] or [2]). If the

circuit has several operating points, pick one point arbitrarily and denote it

7 (0)

See Section 3D for other choices of the initial parameter p

- -19-



as x(o). Some if not all of the remaining operating points may also fall on
the~solution curve T through 5(0). The remaining operating points which do not
fall on T must therefore belong to one or more additional branches and our
algorithm below is simply repeated recursively with one of these remaining
operating points as the initial point. If the original set X of operating
points happen to contain a subset consisting of one point on each distinct
branch, then our recursive algorithm would find all such branches.

Our algorithm consists of two main steps:

Step I. Initialization:

From the coordinates of the initial operating point x( ), we can identify
the region R(o) containing x(o) by comparing each coord1nate x§0) with (1.2)-
(1.3) (for the uncoupled case) or (2.8)-(2.9) (for the coupled case); namely,
identify segment “ij“ such that

B

(0) - |
]).i Xs f.Bji J ]s 29 cees N (3.33)

(-1 =7 j

For the two end segments tending to -« and +=, respectively, we define

Big = == and B, (3.3b)

J VICH #) °

We assume x(o) is an interior point of R(O), i.e., there exists § > 0
such that all paints satisfying H§°~( )u < § also lie within R(o) If this
assumption fails, then 5(0) must 1ie on a boundary hyperplane of R(o) and we
simply proceed directly to Step II of the algorithm which deals with such "boun-
dary" points as starting points.

Choose next another value of p = p(O) + Ap A p(o) near (0) (i.e., Ap >0
is sufficiently small) such that the corespond1ng operating po1nt 5 %0 still
lies within R(O). This is always possible if x 0 is an interior point.

It follows that for both p = p(O) and p - 3(0), (2.12) reduces to a
linear equation obtained by substituting all parameters in (2.12) corresponding
to R(O); namely,

3(04(0) = 400 4 (0)y | (3.4)
E(O)g(o) = é(0) + a(o)r (3.5)
where .
1
8(0) 2+ JZ [- Z ¢518) 1; ¢siei] (3.6)
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(Here, g} denotes the unit row vector with zero entries except at the j-th

position, j = 1,2,...,n).

.'j"]
Z <Jji J1

e .

n
E(O)=é a+ I [- Z ¢4i854] (3.7)

, kR o
Q(O)_ x(o) - (8(0)-p(0))[8(0)]-]r i} (6(0)-p(°))d(°) - (3.8)

.i

where d(o) A [B(O)] r denotes the direction vector which falls on the straight
line x(o) to x(o). As we increase p from p = p( ) the solution curve T start-
ing from x(0)~w111 grow along the direction d 0) unt11 it crosses the nearest
boundary ;yperp1ane of R(o). This boundary ;s well as the intersecting break-
point x ! can be identified as follows:

Let d(o) denote the j-th component of d(o). If d§0) >0 (resp.; d§0) <0),
then T is 1ncreas1ng (resp.; decreasing) a]ong the direction of the j-th coor-
dinate axis, and T will reach the j-th boundary hyperplane x, = B.. (resp.;

J Jis

X5 = By ( 1)) at p(])' (0)+Ap(0), where J

A§°’A(Jjj x00)/1a{0)) (3.52)

(resp.s 20 & (x{-g; ;710D (3.95)
Choose the index JO such that Ap§ ) is minimal compared to the other Ap§0) with
4 #0,5 =1, 2, .o, §g1s 3G weu ne Then X5 = Bigiy. (TSP

J
Xj = Sj (i _1)) is the first (hence nearest) boundary hyperglane intersected
0 0’3
0

by the solution curve T' from 5(0). Hence, the breakpoint 5(]) which is located

on the boundary hyperplane x, = 8. . (resp.; Xx; = B8. (s ) is given by
Jo Jo"jo Jo Jo("jo‘:!)
where
(0) + Ap(o) I p(1) (3.11)

Note that Ap(o) #0if B(O) is nonsingular because x( ) is an interior point

within R(o). Also Ap(0)> 0 because p(o) =P . and the direction vector d(o)
is chosen for the solution curve.

min
The above initialization algorithm for locating the first breakpoint 5(1)




of the solution curve T from 5(0) is illustrated in Fig. 11(a) for a typical
2-dimensional region R(O), and in Fig. 11(b) for a typical 3-dimensional region
R(O). Note that in Fi% 11(a), the boundary line Xp = Byj is penetrated by
the direction vector d 0) at x(]) (p'p( )) before its extension intersects the
second boundary line Xy = 6212 at x%l)' (p= p(]) ). Hence x(l) is the "nearest"
breakpoint where the solution curve first hits a boundary of R(o). In Fig.
11(b), the boundary plane Xp = Boj is penetrated by the direction vector d( )
at x(1) (p'p( )) before its extension intersects the next two boundary planes,

f1rst at Xq = B]( 1) (back side of the “cube" R(O))at x(])' and then at x,=8
i 3 313

(top side of R(o)) at x(]) . Here, the "nearest" breakpoint is located at
(right side of R(O))
Note also that for the direction vector d(o) drawn in Fig. 11(a), its com-
ponents d%o) > 0 and déo) > 0 are both pos1t1ve. However, for the direction

vectord( )drawn in Fig. 11(b), we have d(o) <0, d(o) > 0 and d(o) >0. In
other words, the components of the d1rect1on vector d 0) in genera] have dif-
ferent signs.

Since only one boundary is crossed for any v in = P (by Assumption 4), the
boundary hyperplanes of the next (adjacent 'coR(0 ) region R 1) are identical
to those of R(o) except that the index i; of R(]) is greater (resp.; less)
than that ost(O) by one. More spec1flga11y, if R

S (0) is bounded by
, 1 P
Bj(ij-l)-f Xj.§ Bjij’ then R is bounded by 33(1 ) 3 < 5 J for j # g
and B; . < X: < B: (s (resp.; B: (3 _oy <

Jol, = o Joli *1) Jo(1j0 2) =

g = Bjo(‘jo"))'
Step II. Breakpoint Hopping:

Step I identifies a breakpoint x(]) lying at the boundary hyperplane
separating region R(O) from region Rrl . It follows from Assumption 1 that
the solution curve T in region R(]) from 5(1) will be a straight-Tline segment
which either intersects another boundary hyperplane as shown in Fig. 12(a) or
tends to infinity as shown in Fig. 12(b). The latter situation corresponds to
the case where R(]) is an unbounded region (i.e., one of the piecewise-linear
resistors is operating in its end segment) and we are done.

Consequently, it suffices for us to consider the general situation where
the solution curve T starting from some breakpoint x(k -1) (at p= p(k ])) in
(k-1) intersects another boundary hyperplane separating regions R(k -1)

region R
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and R( ) at a new breakpoint x(k) (at p = p(k)) In other words, given break-
point x(k 1) find the adJacent breakpoint §(k

The basic ideas behind the initialization algorithm in Step I is still
applicable here. However, there is a new complication which we must overcome;
namely, the direction vector d(k) which lies along the solution curve T in
region R(k) may point in the wrong direction, as illustrated in Fig. 13. Here,
the portion of the solution curve T' in the two adjacent regions R(k -1) and R(k)
(drawn for the 2-dimensional case) is shown connecting breakpoints x(k'])

(k) and x(k+]) If the two direction vectors d(k -1) (along T in R( )) and

(k) (along the extension of of I in R(k)) are as indicated in Fig. 13, then
we would traverse from x(k -1) (corresponding to o = (k ])) (k) in the
direction of d(k 1) as we increase p from p%k (k) A p(k 1) + Ap (k- 1)
where Ap(k ])~ However, any further increase in p from p(k) to p(k)
would take us back into region R(k 1) along the direction g(k) if Ap > 0.
Clearly, in this case, we should proceed in a direction exactly oggos1te to
that of d(k) in order to arrive at breakpoint x(k+]) at p(k+]) + Ap
where 20(K) < o.

The situation depicted in Fig. 13 actually is not pathological but actually
occurs whenever the solution curve I' is not a single-valued function of Vip= -
For example, consider the driving-point characteristics shown in Figs. 14(a),
(b) and (c). Note that in all three cases, we traverse from breakpoint (:) to
breakpoint (:) by increasing the value of Vi from p(]) to p(l) + Ap(]), where
Ap (1 > 0. However, in order to continue from breakpoint (:) to breakpoint (:)
we must decrease the value of vj from p(z) to p(z) + Ap(z) where Ap(z) <0in
Figs. 14(a) and (b), or hold constant at Vip = p in Fig. 14(c). Observe that
this would trace out a different segment even though the values of p overlaps
those of the preceding segment because the parameters of the canonical equation
(2.12) must be updated to those corresponding to the new region.

It follows from the above observations that it is necessary to develop
an algorithm for determining which direction we should proceed (i.e., d(k) or
- d(k)) upon reaching a breakpoint x(k) in order that the solution cur;e I can
be traced in a continuous manner; i.e., hopping from one breakpoint x(k) to
the "next neighboring" breakpoint X k+]). In view of the lattice st;ucture of
the boundary hyperplanes, a highly efficient algorithm can be devised with the
help of Fig. 13.

+Ap




For the moment,+ let us assume that the previous direction vector d(k‘])

is (correctly) directed towards breakpoint x(x); i.e., Ap(k']) > 0. Assume
that the breakpoint x(k) 1ies at the boundary hyperplane defined by the jk_]-th

coordinate; namely, at X5 =B (i 1) It follows from the above

assumption (Ap >0) that
k-1)_,(k)
d( -d: <0 (3.12)
Ig-1 -1

ifka?d only if g(k) is directed away from R(k); i.e., returning back to region
R( - ). Hence, if (3.12) holds, then we must follow the opposite direction

-g(k). This is equivalent to choosing Ap(k) < 0. By a similar derivation,
(3.8) now takes the following form in R(K);

2E(k"']) - §(k) = [p(k+])-p(k)]g(k) (3.13)
where
and

potk) 4 oK) (k) ¢ g (3.14b)
Here g(k) is the Jacobian matrix of (2.12) in region R(k) and is given by

) n i -1 o T
AR Z i) * 12 ¢51%37 (3.15)
h|

The above formulas which cover the two typical cases depicted in Figs. 14(a)
and (b) are valid if and only if B(k) is nonsingular. However, the case
depicted in Fig. 14(c) has singu]gr Jacobian matrix §(k) and Ap(k):g p(k+])
-p k) _ 0. This degenerate case will be analyzed in Section 5. Meanwhile,
let us summarize the above properties as follows:

strict-monotone parameter variation property:

If g(k) is nonsingular and Ap(k) A p(k+1) - (k) then Ap(k) > 0 (resp.;
Ap(k) <0)inR if and only if the solut1on curve T in R(k) follows the
direction of g(k) (resp.; -d(k)) from x(k) to x(k+1)

It follows from the preceding property that if Q(J) is nonsingular, then

+This assumption is not necessary and will be lifted shortly.
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the solution curve T will traverse the region R(j) along the direction of
%n(Ap(J))d(J). Hence, we can now remove the earlier assumption that d(k -1) in
k-1) is directed towards x(k), and replace (3.12) by the more general

criterion:

d§t)1 d§: :) sgn(Ap(k'])) >0 (3.16a)
(resp.; dék) -d§k'])-sgn(Ap(k'])) < 0) (3.16b)

if and only if d(k) is directed towards (resp.; away from) R(k)

Observe that (3.16) uses only data from the Jk ]-th entry of d( ) and
d(k']), where Jk 1 corresponds to the piecewise-linear resistor Rj (where
one of its breakpoints had just been reached). k-1

Equation (3.16a) (resp.; (3.16b)) implies that we should choose Ap(k) >0
(resp.; A k) < 0) in the next region R(k). Observe also that we can replace
sgn(Ap(k-])) by Ap(k']) in (3.16) without changing the validity of the preceding
property.

Having thus identified the correct direction to proceed in R(k), our next
objective is to determine the first boundary hyperplane of_R(k) penetrated by
the solution curve I'. To do this, we need to find the direction (identical or
opposite) traversed by each component of I along the j-th coordinate axis (i.e.,
the projection of T onto xj within R(k)), j=1,2, ..., n. This information
can be determined with the help of (3.16) as follows:

component direction criterion:

The component of T along the xJ coordinate axis traverses towards the
ositive (resp.; negative) direction of X; as T moves from x(k) to x(k 1) in
R'K) if, and only if,

d(k) d(k) d(k -1) Ap(k -1) 0 (3.17a)
'S S
(resp.; (k) (k) d(k -1) Ap(k L 0) (3.17b)

% Jk 1 Jk-1

In view of the lattice structure, the boundary hyperplanes of R(k) can be
described trivially as follows:




SXp<Bsis 31,2, (3.18)

B./.
315 q) 3

If (3.17a) (resp.; (3.17b)) holds, then the right (resp.; left) boundary

Xy = Bjij (resp.; X5 = Bj(ij'])) will be reached at
p(H1) & oK) 4 (k) (3.19)
where
(k) LK)y, 14(K)
Apj A (Bjij X3 )/|dj | >0 (3.20a)
. potk) (k) (k)
(resp.; ap;"" & (x; -Bj(ij_]))/ldj | >0) (3.20b)

provided d§k) # 0, and the plus sign (resp.; minus sign) in (3.19) is chosen if
g(k) is directed towards (resp.; away from) R‘"’/, i.e., if (3.16a) (resp.;
(3.16b)) applies.

Equation (3.20) gives the corresponding (positive) increment Ap§k) inp
needed to reach the boundary along each coordinate axis X33 i=12,...,n.
To determine the first boundary crossed by the solution curve T, pick the index

j, such that 20'K) is minimal; i.e.,
k Jj K mnifar .
28K = Min aplk) (3.21)

Ik 1<j<n J
It follows that the breakpoint §(k+1) is reached when

o= oK) 4 Ap§:) (3.22a)
(resp.; p = p(k) - Ap§t)) (3.22b)

provided that (3.16a) (resp.; (3.16b)) holds. In this case, the first boundary
hyperplane is given by

X: = B. . (3.233)

(3.23b)

if (3.17a) (resp.: (3.17b)) holds for j = jk.
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It follows from the above analysis that

NEOIMOPPWOMO (3.24)
where
2otK), i qlk) glk=T) 5 (k=) 5 g (3.25a)
(k) Ik -1 Ik-1
AptY A
008K g qlk) Lglk=1) 5o (k=T) g (3.25b)
Ik Ig-1 k-1

Assuming region R(k) is bounded by (3.18), the next region can be trivially
identified: R(k+1) is bounded by the following boundary hyperplanes:

Bj(-ij_]) ﬁ Xj i Bj-ij J # jk . (3-26)
e (k). . (6)
. k k
B: s < X;: <Bi (s , if di 800 >0 (3.27a)
Jk1jk Jk Jk(1j +1) Jk
. k) . (k)
(resp.s B: (s _oy S X: < Bi (s _qys if dg -Ap < 0) (3.27b)
3l -2 = N = Ny -1 Ik |

We can iterate (3.24) until all breakpoints within the user-prescribed
dynamic range p .. < v < p .. had been found. Ifnpmax < =, then the solution
curve T will terminate at some "bounded" point in R" provided the corresponding

Jacobian matrix is nonsingular and p = Pnax €an be reached.

D. Adding Bells and Whistles

The preceding algorithm (Section 3C) should be adequate for tracing the
driving-point and transfer characteristics of most garden-variety electronic
circuits. It may, however, occasionally get stuck in some contrived but not
degenerate circuits. We will now describe these situations so that additional
checks and refinements can be built into the algorithm.

a) Choice of initial point: For simplicity, the preceding algorithm in
Section 3C is initiated by finding one operating point when o

in = Pmin? where
is the user prescribed lower limit of the input voltage. There are
several situations, however, where the prescribed Pmin May not be the best
choice for a starting point. One situation is when the circuit is made of
passive elements with no internal power supply, such as the class of two-

Pmin
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transistor negative resistance circuits described in [5,6]. In this case,

Vip =P = 0 would be a better choice because the origin in this case is guaran-
teed to be an operating point. For such circuits, the user should simply
specify the origin as the starting point instead of wasting computer time to
find another operating point due to some (often arbitrarily) chosen value

Yin = Pmin’

In fact, there are other occasions where a nonzero operating point (dif-
ferent from that at pmin) is known from some previous analysis and should be
used instead.

In both cases, the algorithm in Section 3C would find only the part of the
solution curve T for 0 < p < Pnax: 10 find the remaining portion corresponding
to ppip 2P 2 Ozowe simply repeat Step I along the opposite direction of 9(0);
i.e., choose Ap < 0 in Step I and then repeat Step II until the solution
curve T is beyond the range g i <P < pp.. -

b) The user specified Pmin May be poorly chosen such as in Fig. 15(a),
where the driving-point characteristic is a closed loop located to the right of
Prin® OF in Fig. 15(b) where Prin gives rise to 3 operating points. In the
first case, another Omin such that P > Ppin > P9 must be chosen. In the second
case, assuming the operating point P is specified, then only the portion of the
driving-point characteristic below point P would be found by the algorithm in
Section 3C, and the same modification described in a) above must be used to find

the remaining portion.

n =

¢) The user specified Prax MY be poorly chosen, such as in Figs. 15(a),
16(a), or 16(b). In all three cases, the solution curve T does not exist at
Vin = Pmax’ For such situations, the complete solution curve T will be either
a loop with a finite perimeter (e.g., Fig. 15(a)), or a multivalued curve
with two unbounded end segments (e.g., Figs. 16(a) and 16(b)).

d) Even if an algorithm capable of finding all operating points such as
that described in [2], is used to find the initial points corresponding to
Vin = Pnin® there is no guarantee that one and only one point on each separate
branch of the solution curve will be found. For example, consider the hypothe-
tical driving-point characteristic in Fig. 17 which is made of two distinct
branches. Note that although the algorithm in [2] will find all three operat- .
ing points corresponding to Vin = Pmin in Fig. 17, only one of these three
points should be used in the algorithm in Section 3C. On the other hand, since

no operating point on the second "bow-tie" shaped branch has been found, our
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algorithm will fail to uncover this branch.

e) The algorithm in Section 3C fails whenever g(k) in (3.8) or (3.14) is
singular. In this case, Q(E) has a nullity equal to one (by Assumption 1) and
the solution curve T' is well defined as a straight-line segment in region R(k).
The vertical segment in Fig. 14(c) is a case in point.+ This situation is
analyzed in Section 5 and appropriate modifications to the algorithm in Section
3C will be presented there.

Let us now incorporate the preceding modifications into the algorithm in

Section 3C as follows:

Refined Breakpoint-Hopping Algorithm

Step 0. (Searching the starting points)

Find a set of operating points X = {5a’§b”"’§m} corresponding to one

or more input voltages Vip = °- Include any user-furnished operating

point X.

In general, the operating points in X are found by letting Pin = Pmin

A p(o) and then using either [1] (if the circuit is known a priori to

have a unique solution branch, or if only one branch is sought) or

[2] to find the corresponding operating points.

The following steps are iterated for each operating point Xy in X, and

the corresponding solution curve rk passing through Xy will be found

over the user-specified dynamic range Pmin < Vin < Pmax in the usual
case, or over some modified range Py <P <Py (where Py may be -« and
p, may be +») where the solution curve rk is defined (e.g., Figs.
15(a), 15(b), 16(a), and 16(b)). Since two or more solution curves
may turn out to be identical even though they pass through distinct
operating points in X (e.g., see Fig. 15(b)), the following algorithm
will detect this situation by comparing their breakpoints: any two
branches I'. and Pk having an identical breakpoint are identified as

J
the same branch.

If X contains at least one point in each branch, in addition to pos-
sible extraneous points falling on the same branch, then the following
algorithm will find all distinct solution curves.

TThe algorithm for the ili-conditioned case in [2] must be modified as described
in Appendix B. '
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The corresponding driving-point or transfer characteristic is obtained
by calculating the breakpoints corresponding to each solution curve

Pk via (3.2) if the output variable depends only on X{s Xo5 05 Xp
and Viq» O via (3.1), (2.8), and (2.9), if otherwise.

Step 1. (Tracing the solution curve in R(O))
(a) If X = ¢ then stop.
(b) Pick a solution of X as the starting point for a branch of solu-
tion curve. Denote this solution by 5(0) and delete it from X.
Set w=1.
(¢) Find 1 for each j =1, 2, ..., n such that

551, _1)<x( )<s i1, (3.28)
'ij-'l g »
(d) Compute B(O) AB+ X [(- Z ¢ +.E ¢ )eT] (3.29)
J" i= 1=
J
(e) Compute ¢{0) & [a0)7"Ty (3.30)

() Let s(0) A g |d§°)¢o,j=1 2,....n}, for j ¢ s{0)

(x0)-g 3(5,) @1, if 4w <o (@.31)
Compute Ap(o) = |
(553 IO e d®.>0 (3.310)
(g) Set Ap(o)=$ w* Mi?O {A0§0)} and if Ap(o) is finite, then let 30
be the index siii that Ap(o) = @ Ap(o)

J
Remark: When w = 1 (resp.; w = -1), the B-H (Bregkpoint—Hopping) algorithm will
trace the solution curve T from starting point x 0 at p=p 0) along the direc-
tion of increasing (resp.; decreasing) p. If we are only interested in the
range [pmin’pmax] jnstead of tracing the whole solution curve, then w =1 is
used throughout this algorithm and we can stop tracing a branch of solution
curve when p = Pmax is reached and then return to Step 1(a) to search for
other branches of the solution curve.

(h) If Ap(o) is infinite then
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(i) if 209) = 4 wthen compute 5(]) = 5(0) + (pmax-o(o))g(o) and
- set p [ Pmax’? (ii) go to Step 11.
Remark 1: jo can be uniquely determined due to Assumption 4 in Section 3A,

where we assume the solution curve never hits a corner point.

Remark 2: In the case when Ap(o) = 4+, the solution curve is a straight line

over the range [pmin’pmax}'
(i) Compute p(]) = p(o) + Ap(o) (3.32)
2 2 0~
(3) Set k = 1.
(k) Go to Step 2.
Step 2. (Characterization of the new region)
Cio+1, i 5=4, . and a4 aptk 1) 5 g (3.34a)
Jj k-1 A
coL ) (k-1)., (k-1)
i §1j T, if j= .]k1anddk_I Ap <0 (3.34b)
VRS | (3.34c)
Go to Step 3.

Remark: If d(k :) Ap(k [N 0 (resp.; dék']).Ap(k’1) < 0), then the solution
k- k-1

curve is in the direction of positive (resp.; negative) jk_1-th coordinate axis.

Step 3. Compute

1'+2eT [B(k 1)]-1

_]5, if a{k 1. (k1) 5
. -1~ *Jk 1A% Jk-1 (3.35a)
1-2e! [B(k ‘)]“c Lo if alk=1) (k1)
~Jk-1 Jg-1' S Jg-1 (3.35b)

Go to Step 4.

Step 4. Compute
BT T F"Jk iy 18 e; " Nyirqlkl) Ap(k 50
Jk-1

: ~Jg-1 - Jp-1"
[§(k)]-1 ] (3.36a)
[B(k 141 (e e, o el alk-117y, iralk D)tk <
S LS T (3. 36p)
. Go to Step 5.
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Remark: Regions R(k) and R(k']) are separated by a boundary hyperplane

_ . k-1) , (k=1)
X = 8. s _1 (resp.; x. = R, i ) if d( +Ap >0
a1 iy -1 AR BERR PRLF k-1
k-1 k-1
(resp.; d(t }) Ap(k 1) < 0). (Note that ij has been renewed in Step 2).
- k-1
Hence, '
(k) _ p(k-1) T
B =B + 2c (1 1)°§j (3.37a)
k-1 k-1
(resp.; 8(k) = glk-1) 2, el ) (3.37b)
k"] Jk -I k']
Steps 3 and 4 use Householder's formula
(HGLM)" oW e e ) - (3.38)

~ e

to compute [§(k)] via [§(k ])] . The number of multiplication operations in
this formula for finding the matrix inverse is of the order of n2 while that for
LU decomposition is of the order of n3. Unfortunately, there is one drawback in
using this formula; namely, the round-off error may propagate and accumulate
sequentially, and hence the computed inverse will exponentially deviate from the
correct result especially when the matrix is il1l-conditioned.

Since the computational efficiency of this formula is quite attractive
especially when n is large, we choose a tradeoff between it and the LU decomposi-
tion as follows: after using the formula for several steps (depending on the
matrix condition), we re-evaluate the Jacobian matrix g(k) by (3.15) and use LU
decomposition to compute the inverse, and then continue to use the formula for

several steps and so forth.

step 5. Compute d(K) 4 [gk)77Ty. (3.39)
Go to Step 6.

step 6. Let s%) a (5afk) £ 0, 521, 2, .0y nd, and For 5 ¢ s(K), qet

g; = sgn{d(k) alk) glk=1), pplk=T)y, (3.40)
J -1 Ik

Go to Step 7.
Step 7. For j ¢ S(k) compute
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(x{)-g, i, AP/, ae gy = (3.412)

) - (k) 14 (K)
k K| s - (2
(Bjij X; )/ldj |, if 9; 1 (3.41b)
Go to Step 8.
Step 8. Let Ap(k):g Min {Apgk)} and if‘Ap(k) is finite, let jk be the unique
jes()
(see Remark 1 under Step 1(g)) index in S(k) such that Ap(k) = Apék).
Go to Step 9. k
Step 9.
3otk g qlk) qlk=T) 50 (k1) 5 g (3.42a)
-1 Jk-1
MOR .
0otK), ip alk) Lalke1) (k1) (3.42b)
k-1 Ik-1.-

Go to Step 10.
Step 10. (a) If Ap(k) = -® and p (k) o p(o) then go to Step 11.
_(b) If Ap(k) = - and p(k) > p(o) or. Ap(k) = + and p(k) < p(O) then
(1) set p(k N . p(o) and compute x(k . x(k) + (p(o) (k))d(k);hu'
(11) if x(k 1) € X then delete it from X; (111) go to Step ]1
C(c) If Ap(k) = +» and p(k) > p(o) then (i) if Pnax > p(k) then set
(k1)

= Ppax (3.43a)

and compute

§(k+1) - f(k) + (pmax'p(k))g(k) (3.43b)
, (ii) go to Step 11.
() 1 80'K) is finite then compute
Hkr1) o (k) po(K) (3.44)
(1) -y (k) (k) (k) (3.45)

If (p(k 1)_ (0)) (p (k)_ (0)) <0or p(k+]) = p(o) then (i) compute
50-5( ) 4 (p(O) (k)) d(k) and lf'x € X then delete it from X; (ii) if
( ) then go to Step.1(a) :

~
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(e) Set k = k+1.
(f) Go to Step 2.

Remark 1: Steps 10(b)(ii) and (d)(i) are to delete those operating points of X
which can be reached by the same branch of solution curve.

Remark 2: In the case of Step 10(d)(ii) when §o:=§(0), the solution curve T
becomes cyclic since T returns to the initial point 5(0) and it will be shown in
Section 5 that there is at most one branch of solution curve to pass any point X
in the domain space under Assumption (5.55).

-1 then go to Step 1(a).
1 then set w = -1 and go to Step 1(c).

Step 11. (a) If w
(b) If w

Remark: In Step 1, for w = 1, if we don't destroy the informationon [g(o)]'],
g[ﬁ), and the characterization on R(o) during the breakpoint-hopping procedures,
then when re-entering Step 1 in Step 11(b), we can go to Step 1(f) directly and
skip the redundant calculations in Steps 1(c¢), (d), and (e).

E. ITlustrative Examples

We close this section with two simple examples chosen so that their driving-
point characteristics can be readily obtained by standard graphical methods [15]
for checking purposes. Several nontrivial validating examples are given in
Section 4 not only to demonstrate the generality of our algorithm, but also for
validating future algorithms.

Example 3.1 (Fig. 18)
Consider the circuit shownin Fig. 18(a), where nonlinear resistors Rl and

R2 are described by the piecewise-linear characteristics shown in Figs. 18(b) and
(c). Using the graphical method in [15], the driving-point characteristic for
this circuit is easily obtained as shown in Fig. 18(d).

To derive this driving-point characteristic using the breakpoint-hopping
algorithm, we choose x = [v],iz,iin]T and y = [i],vz,vin]T and write the follow-
ing associated canonical piecewise-linear equation (detailed calculation is
given in Appendix D-1):

-1 -9/4 0 X1 0 -7/4 -9/4 -1
17/8 -1 O % [+|7/8)Ixq1#] 0 |Ixp=1]=} 0 [+p] O (3.46)
0 1 -1 X3 0 0 0 0
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Suppose it is desired to trace the driving-point characteristic over the

dynamic range -7 < v; < 7. Hence, p s =-7 andp . =7.

Step 1. Starting from Vip = -7 4 p(o), we find by inspection of Fig. 18(d)
that 1in = -5 and hence, 12 = -5, Vo = -3, vy = -4 and i1 = -1. It follows
from Figs. 18(b), (c) and (3.28) that the circuit is initially operating in
segment (1,1). Hence, region R(O) s identified by - <vy <0and -»< i, <1.
Substituting the parameters in this region into (3.29) and (3.30), we obtain:

-1 <172 0 8/13
§(0) “ls;m a1 ol and c~l(O)A [§(0)3-1r = | 10713 (3.47)
0 1 - 10/13

Since we are only interested in the range (-7,7); w =1 is used throughout
the B-H algorithm in Section 3D. It follows from (3.31b) that -

2{0) = 9%}%%1 =132 and  20{") = ‘Té7Tl = 39/5 (3.48)

Since Ap(0)<<Ap(0), we identify j., = 1 and hence Ap(o) = Ap(o) = 13/2. Using
1 2 0 1
(3.32) and (3.33), we calculate the next breakpoint:

-4 8/13 0
o w7 v132=172, and x(M =25 [+ 132) 10013 | = | 0 | (3.09)
-5 10/13 0

It follows from (3.48) that R, first arrives at its breakpoint (0,0) when Vin
increases from p(o) = -7 to p(])= -1/2.

Step 2. The next region R(]) clearly corresponds to segment (2,1) and is
characterized by 0 < v, < @ and -» < i, < 1.

Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

dM =125 65 6/51 (3.50)

Steps 6,7. Since d{')-a{0).20() = 2/5.8/13.13/2 > 0, the direction vector ¢{!)
points in the correct direction and it follows from (3.41b) that
(1) 200 e 10
o) =58 ==, and 12 =5/ (3.51)

Steps 8,9. Since Apé]) Ap% ), we identify j; =2 and hence Ap(]) = 5/6.
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Step 10. Using (3.44) and (3.45), we calculate the next breakpoint:

0 [‘2/5 1/3
ol2) = 12 + 576 = 1/3, and x(2) <l o |+ 5760 65 | = | 1 | (3.52)
0 l_e/s 1.

It follows from (3.51) and (3.52) that Ry first arrives at the next
breakpoint 5(2) when Vin increases from p = -1/2 to p = 1/3. We
then return to Step 2 to find the next breakpoint.

Step 2. The next region R(z) clearly corresponds to segment (2,2) and is
characterized by 0 < vy <wand 1 < i, < =

Steps 3,4,5. Using (3.35), (3.36), and (3.39) we obtain
d(z) = [1/13 313 3/13]" : (3.53)

Steps 6,7.. Since d(z) d(]) Ap(]) = 3/13-6/5-5/6 > 0, the direction vector
d(z) po1nts in the correct directionand it follows from (3.41b) that

Apl(z) =°°{/13 = o, and Ap(z) % = (3.54)

Steps 8,9. 40(2) = w, (3.55)

Step 10(c). Equation (3.55) implies that region R(z) is an "unbounded" re-
gion having no other breakpoints as Vin increases from p = 1/3 to «.
Hence we simply choose the specified upper limit ppax = 7 in (3.43)
to obtain the end point (not a breakpoint) with Ap(z) =7-1/3=20/3:

1/3) 1/13 1/13
3V = | 1 |23 | 3n3 | =] 3313 (3.56)
1 3/13 33/13
To obtain the driving-point characteristic, we note from Fig. 18(a)
that
Yo = lin = T2 (3.57)
Hence the breakpoints in the 1 - VYin plane corresponding to 5(1),
(2), and x(3) are trivially obta1ned from the third row of (3.49),

(3 52), and (3.56), namely, (-1/2,0), (1/3,1), and (7,33/13). The
initial point is of course just (-7,-5). Connecting these points
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by straight-line segments starting from (-7,-5) in the order indi-
cated, we obtain the same driving-point characteristic in Fig. 18(d),
as it should.

Example 3.2 (Fig. 19)
Consider next the circuit shown in Fig. 19(a), where the nonlinear resis-

tor R, is described by the piecewise-linear characteristic shown in Fig. 19(b).
Using the graphical method in [15], the driving-point characteristic for this
circuit is easily obtained as shown in Fig. 19(c). Note that it is a multi-
valued function of v, . '

To derive this driving-point characteristic using the breakpoint-hopping
algorithm, we choose X = [v1,1'1.n]T and y = [i],vin]T and write the following
associated canonical piecewise-linear equation (detailed calculation is given
in Appendix D-2):

-1 -2 Xy 0 0 0 -1
+ |%-2| + |x,-4| = +p (3.58)
1T -1 Xo -5/4 3/4 -1/2 0
Suppose it is desired to trace the complete driving-point characteristic
over the whole dynamic range -= < v, < . We start from v, = 94 p(o) where,
by inspection of Fig. 19(c), there are three distinct solutions Xy = [3 3]T,
x, = [7/4 29/81", and x_ = [9/2 9/4]1". Hence,
X ={[3 31,0774 29/817,[9/2 9/41T} (3.59)

Step 1. (b) We pick X3 from X and denote it as 5(0), ji.e., §(O)=Q [3 3]T.
We then delete it from X and

X = {[7/6 29/817,[9/2 9/41'}. Choose w = 1.

(c) 5(0) is located in segment 2 of the nonlinear resistor R] which
is characterized by 81(11_1) = 2<:v] <4 = 311]. Hence, 11 =2,
(d) By (3.29)

a4 =2
s(0) - (3.60)
~ A

(e) By (3.30)
a0 = @yl < g 7T (3.61)

-37-



(£) 0 = 11 since a{®.w=21.1 = -1 < 0, by (3.312)
80{0) = (3-2)7]-1] = 1. | (3.62)
(g) Ap(o) = w-Ap%o) =1, and j;= 1. (3.63)

(i) By (3.32) and (3.33),

o 3 1 2
ol 941210, and x(1)=[}+1-1-[ ]=[:] (3.64)
~ 3 1 4

step 2. since d{®).40(%) = 1.1 = 11 <0, by (3.30b) iy =2 -1 =1 and the
next region R(1) is located in segment 1 of R] which is characterized
by-oogv.l_<_2.

Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

¢ = 11/a 3781 (3.65)
step 6. 1) = (1} and by (3.40)
gy = sgn{1/4-1/4--1-1} = -1 (3.66)

Step 7. By (3.41a) and (3.64)

2oi1) = [2-(-=)1/]-1] = = (3.67)
steps 8,9. Since d{1).a{0).20(®) = 1/4.-1.1 = 174 < 0, by (3.420) 20{1) = -a.
Step 10(b). Since Ap(1) = -» and p(1) =10>09 = p(o)
7/4
[ ]; (3.68)
38| |29/8

2] 1/4
(i) 0(2) = p(o) =9, and 5(2) =[0]+ (9-10)[ ]
(2) 12
(i1) Since X € X, we delete it from X and X = .

9/4

Step 11. Set w = -1 and go to Step 1(f).
1 >0, by (3.31b)

Step 1. (f) Since d_(lo)-w = -1--1

—

20{®) = (4-3)/1-1] = (3.69)

il
-

(g) 800®) = wespl®) = 1.1 =1, and 5 = (3.70)

1
(i) By (3.32) and (3.33),
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3 1] [a
oM 291 =8, and xXM | " [+ (1)1 | |- 2 (3.71)
- 3 1

Step 2. Since d%o).Ap(o) = -1--1=1>0, by (3.342) iy =2+ 1 =3, and the

next region R(]) is located in segment 3 of R1 which is characterized

by 4 < vy < .
Steps 3,4,5. Using (3.35), (3.36), and (3.39), we obtain

dM =i 18" (3.72)

step 6. S'1) = {1} and by (3.40)
g = sgn{1/2-1/2--1-=-1} =1 >0 (3.73)
Step 7. By (3.41b) and (3.71)

2od1) = -a)/172] = = (3.74)
Steps 8,3. Since d{1.4(0). 0000 /2.1 =1 5 0, by (3.42a) 20V = =,
19

step 10(b). Since ap'!) = wand p{!) = 8 < 9 = p(0)

4 12| [or2
(1) 0@ = 0 =g, ana x@ | s agy| ]| (3.75)
- T lva] e

(ii) Since 5(2) ¢ X, we delete it from X and X = ¢.
Step 11. Since w = -1, go to Step 1(a).

Step 1(a). Since X = ¢, we stop the B-H algorithm.

(3]

To obtain the driving-point characteristic, we choose the breakpoints in
(3.64), (3.68), (3.71), and (3.75), and start from the initial point
X 0) . 3 3]T. Connecting these points by straight-line segments in the order
indicated, we obtain the same driving-point characteristic in Fig. 19(c), as it
should.

4. VALIDATING EXAMPLES

In this section we apply the B-H algorithm from Section 3D to derive the
driving-point and/or transfer characteristic of the four piecewise-linear cir-
cuits studied earlier in Examples 2.1 (Fig. 5(a)), 2.2 (Fig. 6(a)), 2.3 (Fig.
7(a)), and 2.4 or 2.5 (Fig. 8(a)). Since these circuits are not of a series-
parallel type, and some contain controlled sources, the graphical method in

-39-



[15] is no longer applicable. In spite of the simplicity of these circuits,
their associated driving point and transfer characteristics are quite compli-
cated. In particular, the characteristics of the circuits in Figs. 5(a),
6(a), 7(a), and 8(a) are multivalued function of Vi, @nd can not be obtained
by any existing computer simulation program (brute force approach), such as
SPICE [17]. Consequently, these examples can be considered as "benchmark"
circuits where future competing algorithms may be validated and their computa-
tional efficiency compared.

Since each circuit contains only two resistors, their solution curves T
are piecewise-linear curves in the Xy = %o plane and can be easily drawn. Con-
sequently, in each of the following examples, we will sketch both the solution
curve T and their associated driving-point and/or transfer characteristics in
order to emphasize their relationships.

Example 4.1 (Fig. 5(a))
Let us derive the driving-point characteristic of the circuit in Fig.

5(a) whose canonical piecewise-linear equations have been derived in (2.17);
namely,

-1 -9/4 0)[x 0 -7/4 -9/4 21

/8  9/4 -1 || xy |+ |7/8|1x;-0] +| 7/4 [[x)-1] =| 9/4 |+ ]| O

0o -1 Uik 0 0 - 0 0
(4.1)

where X1 A Vis Xo A i,, and x3_A i._. Starting from the initial point

0) “r5 T > = 10 (0) '
X = [-2 -2 -2]' corresponding to Vig = P = -7/2, we apply the B-H algo-
rithm to derive the solution curve T shown in Fig. 20(a). The detailed calcu-
lation is given in Appendix E-]. The three breakpoints of T are found to be
located at:

M=o -1 T, x@ =iz 1 11T, and X3V =10 a3 ap3]”

(4.2a)
with

p(]) ==-1;,p(2) = 1/2, and p(3) =4/3 (4.2b)
The end segment of I' is identified by a point 5(4) = [-6 11/6 11/6]T correspond-
ing to w = o) - _gya.

To obtain the driving-point characteristic, we simply project the solution
curve T along the x3=Q iin coordinate axis (parametrized by Vin)’ The result
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is shown in Fig. 20(b). Observe that it is a multivalued function of Vin and
is undefined for Vin,> 4/3. It is also clear from Fig. 20(b) that whereas the
direction vectors, d(o), 9(1), and 9(2) are pointed in the correction direc-

tion, 9(3) is oppos%te]y directed. o

Example 4.2 (Fig. 6(a))
Consider the simple circuit shown in Fig. 6(a) whose canonical piecewise-

linear equation has been derived earlier in (2.22); namely,

7/6 0 -1 x;| [-25/18 41/36 0
~1-1 -3.2)ixg) Lo 0 0
0 (7/4 0
+|5/2 |x2-2| =12.2(+p|l 0 (4.3)
Lo L0 -1

where x; A v, x, A v, and x5 4 is,- Our objective here is to find the driving-
point characteristic, as well as the two transfer characteristics Vi mvs - v
and Vo = V§ = V..

As usual, the basic problem is to derive the solution curve T in the X1Xo
plane via the B-H algorithm. Since the circuit in Fig. 6(a) is made of only pas-
sive resistors and contains no internal power supply, it is clear that the
solution curve must pass through the origin X 0) . 0, as shown by I‘-| in Fig.

21. It turns out that for this circuit a second solution curve through another
initial point g(o) = [9/8 67/40 9/4]T at Vip = 10 exists concurrently, as
shown by FZ in Fig. 2121)The(g§tai}§3 ca]cu}z&ion is given in Appendix E-2.

The breakpoints X0, X, X and X plus one point in each end seg-

ment of Ty are located as follow:

0 1.2 3 5
x© =l o |, x(M =08 |, x¥) ={0.2 |, x® ={0.8],

0 2.4 1 4
3.4 4.9

M <l 2 |« <las (4.43)
1.6 3.86
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with
0(0) =0, (1) = 230725, 1) = 6.4, o3 -18.6, o(*) =10.52, and o) = 20
(4.4b)

The second solution curve Ty is cyclic with the following breakpoints:
(identified by a hat "~* to distinguish them from those of Iy)

9/8 1.2 78/35 1.2 0.8
O < lermo |, 21 < 16 x| 2 |, 83V =laap1s], ana ¥ <| 2
9/4 2.4 1.6 2.4 1.6
(4.5a)
with
50 <10, 51 = 10,48, $@) = 0.35, 503 = 1115, and $H) = 7.2

(4.5b)
To derive the driving-point and transfer characteristics, we note from
Fig. 6(a) that

iin = X3s Vq = Xy and v, = X, (4.6)

Consequently, these characteristics are trivially obtained from the respective
components of X at each breakpoint of I8 and Ty. The results are shown in
Figs. 22(a), (b), and (c) respectively. Observe that the breakpoints of these
three characteristics with the same v. p(k) corresponds to the breakpoint

1n (k)
in the solution curve P] or Fz with p = o

Example 4.3 (Fig. 8(a))
For our final example, consider the one-trans1stor circuit in Fig. 8(a)
whose canonical piecewise-linear equation has been derived earlier in (2.35);

namely,
-5.59 74.8 0 X1 -0.25 -5.59
“42.7 M20 0 || x, |+|-2.68 ||x-0.4] +| -60 ||x-0.6]
50.4 -49.2 -8000 X3 2.11 47.3
3.16 70.6 40.2 -1
+ | 47.9 ||x,-0.4] +} 1071 |x,-0.6] =| 625 [+p | O (4.7)
-2.10 -47.1 ' 0.146 0

where x],Q Vis Xo B vy, and x3:£ i, Our objective is to derive the driving-
point characteristic.
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Since this circuit is made of only passive elements and contains no inter-
nal power supply, x=0 is an operating point corresponding to Vip =P = 0.
Applying the B-H algorithm with X 0) . 0 as the initial point, we obtain the
solution curve T shown in Fig. 23(a). The detailed calculation is given in
Appendix E-3. The breakpoints 5(1), 5(2), 5(3), and 5(4) and two points in

each end segment of T are located as follows:

0 0.4 0.6
xO bo |, xM =) g3 |, x®B) <08 |,
0 5.02x107 1.81x1074
0.708 0.891 1.02
x3 = 0a |, x® 2] 0 , x®) 2| o0.606 |(4.82)
1.53x1073 ] 3.71x1073 5.29x10"3
with '
00 =0, o1 <703, 6 = 10,9, o3) = 0.78, o) = 1,41, and p(8) =2
(4.8b)
The driving-point characteristic is obtained from the third coordinate,
Xy = iin’ of x (parametrized by Vin) and is shown in Fig. 23(b). o

5. ANAALYSIS OF DEGENERATE CASES

A review of Section 3C would reveal that the breakpoint-hopping algorithm
would get stuck under the following two degenerate situations:

1. The solution curve hits a corner point.
2. The Jacobian matrix g(k) (k)
traversed by the solution curve T.

For canonical piecewise-linear equations with lattice structure, a corner
is reached at p = p* where two or more nonlinear resistors arrive at their
respective breakpoints simultaneously for the same input voltage Vip = p*. The
occurrence of a corner point in piecewise-linear analysis always costs more

in region R is singular for some region R(k)

computational effort in tracing the solution curve since there is more than
one possibility in determining the next regionfor the solution curve upon hit-
ting a corner point. Moreover, the solution curve may split into several dis-
tinct branches as shown in the following example.

Example 5.1 (Fig. 24)
Consider the circuit shown in Fig. 24(a), where the nonlinear resistors
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R1 and R2 are described by the piecewise-linear characteristics shown in Figs.
24(b) and (c) respectively. To trace the solution curve by using the B-H alro-
rithm, we choose x = [v],vz,iin]T and y = [i],iz,vin]T, and write the following
associated canonical piecewise-linear equation (detailed calculation is given
in Appendix D-3):

6 0 O X 1 -1 0 0

1= 0l [ -1 Il + ] 0 Ikl = |2 [+p] -1 (5.1)

0 0 -1 X3 0 0 0 -1

We start from the initial point 5(0) = [-2 -2 0]T which corresponds to
p(o) = 0 and is located in segments (1,1) of the nonlinear resistors Ry and R,.

Hence, region R(O)

is characterized by - < x; < 0 and -» < x, < 0, and by
(3.29) and (3.30), '

a1 0 1
80 = | 0 -1 0, anada(® -7 | (5.2)
0 0 -1 1

It follows from (3.31b) that
80{0) = (0-(-2))/11] = 2, and 80{®) = (0-(-2))/11] = 2 (5.3)

Hence, the solution curve T' hits the boundary hyperplanes X = 0 and Xy = 0
simultaneously at the corner point

xN = oo™  with o0 =2 (5.4)

It is shown in Fig. 24(e) that the corner point x(1) belongs to regions R(a)

R(b), and R(c) (corresponding to segments (1 2), (2,1) and (2,2) of the non- -
linear resistors R] and R2 respectively) in addition to region R 0) where the
solution curve starts, and all these regions are possible candidates for the

solution curve to enter. By (3.14a) and (3.15), the Jacobian matrix and the

direction vector in each region can be found to be:

1 -1 0 1 1 0 1 -1 0
s@ = o1 of,8® -2 o of,aqs®) = |2 21 0
' o o0 -1] 0 0 -1 0 0 -1
(5.5a)
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Since d(a) d(b), and d(c) are in the directionof entering R(a) R(b)
and R(C) respect1ve1y, each direction vector will define a trajectory for the
solution curve and the solution curve starting from 5(0) will split into three
different branches upon hitting the corner point 5(1) =[{0 O 0]T as shown in
Fig. 24(e). a)

Since a corner can exist only for precise element parameter values, it is

a pathological situation which occurs whenever Apgk) = Aoék) for some 31 # 32.
1

When this situation is detected, we simply remodel the circuit by perturbing
one or more element parameters and repeat the analysis.

We :next consider the second degenerate case when the solution curve tra-
verses some region with a singular Jacobian matrix. In this case, the nullity
of g(k) is at least equal to one. We will focus our attention first in the
case when the nullity is equal to one because in this case the solution in
R(k) is a well-defined one-dimensional curve. When the nullity exceeds unity,
we will see in Section 5B that the solution curve T in region R(k) is made up
of points having nontrivial areas. When this happens, we must again remodel
our circuit by perturbing some circuit elements until the nullity is at most
equal to one.

A. One-Dimensional Degenerate Case: nullity of §(k) =1

Suppose the solution curve T enters a region R k) where the corresponding
Jacobian matrix §(k) has nullity equal to one. Let the circuit be characterized
by the linear equation

)y = alk) 4 gur (5.6)

within region R(k) where (5.6) is obtained by substituting all parameters in the
canonical piecewise-linear equation of (2.12) corresponding to region R(k).

Since the breakpoint x(k) € R(k) is a solution at p = p(k) where the solu-
tion curve TI' begins to enter region R(k). Hence,
p(kl (k) = 5(k) 4 (k). (5.7)

Let g(k) be a vector in the one-dimensional null space of g(k) such that
g(k),g(k) = 9 (5.8)
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By (5.7) and (5.8),
§(k)(x(k)+}\.d(k)) = a(k) + p(k).r (5.9)

Hence, x(k) + Ad(k) is a solution of (2.12) at p = p(k) for any real value A

such that x(k) + A d(k) € R(k). Since B(k) has nullity one, any vector satis-

fying (5. 8) must be a multiple of d(k) i It follows that the solution curve of

(2.12) within R(k) is a straight- 11ne segment and the solution curve is still

a one-dimensional curve in spite of the singularity of g(k). However, the

sweep voltage Vin is kept at a constant Vip =P = p(k) throughout region R(k).
It follows from (5.9) that the solution curve in R(k) follows the direc-

tion of d(k) if d(k) is chosen such that it points to the direction of entering

R(k) 1nstead of returnlng back to R(k ]). Hence, the direction vector d(k)
for the region R(k) with a singular Jacobian matrix can be determined as
follows: '

slk).q(k) _ g (5.10a)
and

a{k) Lq{k=1) 5 (k-T) S (5.10)

k-1 Ik

Note that Ap(k) = 0 since p is fixed at the constant p = p(k) for the
solutions within R(k). Hence, the inequalities in (3.16), (3.17), (3.25), and
(5.10) can no longer be applied if B(k'1) is singular with Ap k-1) - 0. How-
ever, d(k 1) will point to the correct direction if we follow the rule of (5.10)

to choose g(k°1) for R with singular Jacobian matrix g(k']); namely,
plk-T)g(k-1) = g (5.11a)
d(k-l) d(k 2) Ap(k 2) >0 (5.1“))

Jg-2 k-2

where we assume B(k -2) is nonsingular and Ap(k -2) # 0. In the case for Ap(k-Z)

= 0, similar ru]e applies to 'the choice of d(k 2)

It follows that if Ap(k -1) . 0 then a]] the inequalities involving Ap(k'1)
must be modified such that Ap(k -1) is aborted from these inequalities in deter-
mining the correct direction vector of the next region since d(k -1) has been
correctly chosen. For example, (5.10) should be modified as follows:

-46-



g(k)g(k) - 0 (5.12a)

gtk gtk (k1) 5 g ¢ ap{ke) 4 g (5.12b)
k-1 k-1
a{k) .qtk1) 5 g if a0k <0 (5.12¢)
-1 Ik

We now modify the B-H algorithm in Section 3D such that it is applicable
for the more general case including the regions with singular Jacobian matrices
of nullity equal to one. Only the steps needed to be modified are listed below,
the other steps will remain unchanged and refer to Section 3D. The complete
flowchart for this modified B-H algorithm is shown in Appendix C.

Modified Breakpoint-Hopping Algorithm:

Step 1. (e) If §(0) is nonsingular then same as Step 1(e) in Section 3D,
else find the null space vector 9(0) such that

B(o)d(o) - 0 (5.13)

(h) If 9(0) is nonsingular then same as Step 1(h) in Section 3D, else
if Ap(o) is finite then set Ap(o) = 0, else go to Step 11.

Remark: If 5(0) is singular and w-Ap(o) = +o (resp.; w-Apéo) = -) then
_ (0, 5400) : _ %) o .
Xo = X + M is a solution at p = p for a1l A > 0 (resp.; A < 0).

~

Step 2. If Ap(k-]) # 0 then same as Step 2 in Section 3D, else if k = 1 then

(141, 1F 3= 3 mﬂwdﬁj)>0 (5.14a)
PRI AR LR A mdw%tp<0 (5.14b)

i P8 #4 (5.14c)
else if k > 1 then

(141, if§=3; and d§::1) >0 (5.15a)
H=<ifh i 3§ =3, aMdgj¥<o (5.15b)

URRILEEE

-47-



Go to Step 3.

If Ap(k'1) = 0 then same as Step 3 in Section 3D, else go to Step 12.
If F # 0 then same as Step 4 in Section 3D, else go to Step 13.

If Ap(k']) = 0 then same as Step 6 in Section 3D, else let

s(k) 4 e 20,5 =1, 2, .o, nd, and for 3 e 5D tet

g.

5 = santdf®).qfk) qlk-T),y (5.16)

k-1 Ik
Go to Step 7.
If Ap(k']) # 0 then same as Step 9 in Section 3D,

208 e wedlK) g1 S g (5.17a)
k-1 k-1
else if k=1 then Ap(k) =
-Ap(k), if w.dﬁk) .dgk'” <0 (5.17b)

Jk-1 Jk-1
notk), g glk) k1) 5 g (5.17¢)
Ig-1 Jk-1
else Ap(k) =
oK), g alk) Lglk-1) g (5.17d)
Ig-1 Jk-1

Go to Step 10.

Step 10.

If B(k) is nonsingular then same as Step 10 in Section 3D, else

(a)~if Ap(k) is infinite then choose
p(k+1) = (k) (5.18a)
§(k+1) = ) o sgn(Ap(k))-g(k) (5.18b)

and go to Step 11;
(b) if Ap(k) is finite then compute

x (K1) oy (k) g (k). g (K) (5.19)

and choose

2otk) = 0 and o(k*1) o oK) (5.19b)
(c) set k = k+1;

(d) go to Step 2.
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Step 12. Compute
i-1 o
k) v J J T
B) o4 T O[T ciit T casdel]
- R j=1 ~J1 1=1j~3‘ ~J

(5.20)

If B(k) is nonsingular then compute [B(k ] and go to Step 5,

else find the null space vector d(k) such that

a(k).a(k) . (5.21a)
o d§:)] dgt :) >0 if k=1 (5.21b)
alk) qk=1) S5 f k> (5.21¢c)
Ik-1 k-1
Go to Step 6.
Step 13. Compute
~2rp{k e, , if kD tkeh)
Sl N k-1 (5 22a)
a(k) _
) -Z[B(k'1)] C: , if d(k -1) Ap(k-1) <0
~ “Jg-1 Jo1 Jk-1 (5.22b)
and choose d(k) the same as d( ) except
1, if d§k :) 2pt1) 5 g (5.23a)
(k) . k-
i
k=11 oq, g afke T (1) g (5.23b)
Jg-1
Go to Step 6.

Remark: 1In the case of Step 13, [B(k 1)] exists but [B(k)]'] does not,
we utilize [B(k ])] to compute the direction vector d(k) which satisfies

(5.10). Since B(k) = B(k [ 2cel  where ¢ = (4
g1 £ S 31

Cc
~ 1.
e Ig-1

the Jk_1-th coordinate axis in region R 3
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(resp.; d§k'])-Ap(k']) < 0). By (5.10a),

plklg(k) o (glk- 1)+2ce )d(k) (5.24)
RS ~
Multiplying (5.24) by [E(k'])]' , we obtain
Bé(k) =0 (5.25a)
where
s +2mlR ] (5.25b)
- “~Jg-1 :

Equation (5.25b) indicates that A d1ffers from I only in the Jk 1-th column
which is equal to 93 + Z[B(k ])] c. Since 5 is singular, the jk_]-th

k-1
diagonal element must be zero and (5.25a) can be easily solved such that
dk) 2 pplk-yle = ppplk-DyTe (5.26a)
~ = "k < “iq iy -1)
k-1
Ik-1
(resp.; dt) = 2k Tc o kil ) (5.26b)
) i ey

except the jk_]-th component of d(k), d(k) , is equal to 1 (resp; -1) if the

solution curve is increasing (resp.; decreas1ng) in the Jk_1-th coordinate axis
in region R(k']), or more specifically, if d( (k 1) > 0 (resp.;
Cl(k 1), Ap(k 1) < 0). el
Ig-1
Example 5.2 (Fig. 7(a))

Consider the simple circuit shown in Fig. 7(a) whose canonical piecewise-
linear equation has been derived earlier in (2.27); namely,

110X -1 1 -2
-1 0 1JlxgJ Lo 0 0
2 3 1
+1 0 [[x,=5] =[ 0 |+o| O (5.27)
0 Lo 0

where x]=£ i], x2=Q iz, and x3:g i, Our goal is to find the driving-point

in’
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characteristic. Clearly, x(o) =0 is an operating point corresponding to

(0) = 0 since both R1 and R2 are passive and there exists no internal power
supply. Note that w = 1 is used throughout the modified B-H algorithm because
we are only interested in the range for p > p(O) = 0.

Step 1. (0) is loca%S? in segment (1,1) of the nonlinear resistors R1 and R2
and region R is characterized by

~© < xXg < 2, and -=< Xo < 4 (5.28)

By (3.29) and (3.30),

1 1 0 172
g(o) = {-1 1 0],and 9(0) = [g(o)]']g = | 1/2 (5.29)
-1 0 1 1/2

By (3.31b),

(0) = T7g = 4, and Apéo) = %5% =8 (5.30)
Since Ap§o) < Apéo), we identify jo = 1 and hence Aéo) = Ap%o) = 4.
Using (3.32) and (3.33), we calculate the next breakpoint:

(1) = -4, and xN cppoo" +anz 121217 = 22 27
(5.31)

It follows from (5.30) that R] first arrives at its breakpoint when

Vin increases from p(O) =0 to p(]) =4,

Step 2. The next region R(]) clearly corresponds to segment (2,1) and is
characterized by 2 < X <3 and -® < X, < 4.

Steps 3,4. Since

11 o) @
F=1+2-[1 0 0] |-1 1 O 0 (=0 (5.32)
-1 0 1 0

we are facing a degenerate case and should go to Step 13 of the modi-
fied B-H algorithm.

Step 13. By (5.22a) and (5.23a),
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dM =117 ana ¢ =’ (5.33)

Step 6. g; = sgn{1-1-1/2:4} = 1, g, = sgn{1-1-1/2:4} = 1 (5.34)
Step 7. By (3.41b),

Apg]) = §%g =1, Ap§1) =_§%§ =2 (5.35)
step 8. apll) = Ap{‘) =1and j; =1 (5.36)

Step 9. By (3.42a), apl!) = 1.

Step 10. Since g(]) is singular, we should follow Step 10 in the modified B-H
algorithm. By (5.19), i
x@l a2 2 277+ 1 T =3 3 3T (5.37a)
o) = o) 2 g and ap{(M) = 0 ' (5.37b)
Step 2. Since Ap(l) = 0, we should follow Step 2 in the modified B-H algorithm.

The next region R(Z) corresponds to segment (3,1) and is characterized
by 3 <xy<wand -= < x, <4.

Step 3. Since Ap(]) = 0, we follow Step 3 in the modified B-H algorithm and
go to Step 12.

Step 12. By (5.20),

1 1 0
8@ = |1 1 o (5.38)
-1 0 1
Since 5(2) is nonsingular we can compute
1/2  -1/2 0
@11 =12 12 o0 - (5.39)
172 -1/2 1

and go to Step 5.
Step 5. By (3.39),

d@ <2 172 el (5.40)
Step 6. Since Ap(]) = 0, we follow Step 6 in the modified B-H algorithm and
by (5.16),
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gy = sgn{1/2-1/2:1} = 1, g, = sgn{1/2-1/2-1} = 1 (5.41)
Step 7. By (3.41b),

2 (2 4-3
§ ) - 1/2 o, ) =33 -2 (5.42)

(2) _ c L
Step 8. Ap = 2 and iy = 2.
Step 9. By (5.17a), Ap(z) = 2. (5.43)
Step 10. By (3.44) and (3.45)

o3 car2-6,x3) =03 3 31T w2n1/2 172 1217 =18 4 4T
) (5.44)
The remaining breakpoint-hopping procedures continue similarly as the
‘above steps and it can be shown that x(4) =[55 5]T with p(4) = 4 is a break-
point and x( ) - (77 7]T with p(s) = 8 is a point in the end segment of the
solution curve shown in Fig. 25(a).
The driving-point characteristic is obtained from the third coordinate of
x and is shown in Fig. 25(b). Note that all points on the vertical segment
project into a singie point Vin® 4. This corresponds to the region R(]) where
B(1) has nullity equal to one. o

B. High-Dimensional DegeheﬁaterCase: nullity of g(k) =m > 1

Suppose the solution curve T enters a region R(k) whose Jacobian matrix
has nullity m with m > 1. Let the circuit be characterized by (5.6) within
region R(k). Since the null space of §(k) has dimension m > 1, there are m inde-

pendent vectors satisfying (5.8); namely,

i

stk g 52,2, L, (5.45)
By (5.7) and (5.45),

(k) (k) § 1M d(k) ) = (k) 4 oK)y (5.46)

21
i
Hence, x + Z A1d(k) is a solution of (2.12) at p = (k) for all real
- i=1 '~ i

values Xy, AZ, «++s A, such that x(k) + Z A d(k) € R(k). It follows that

j=1 !
the solutions of (2.12) within R(k) corresponding to p = p( ) are made up of

points in a subset of m-dimensional hyperplane and can not be covered by any
m-dimensional hyperplane with m <m. In this case, the solution curve T is
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no longer a well-defined one-dimensional curve; it, however, will split into
an m-dimensional hyperplane within R(k) upon hitting the breakpoint §(k)
(which is also a corner point) as shown in the following example:

Example 5.3 (Fig. 26(a))

Consider the circuit shown in Fig. 26(a), where the nonlinear resistors
R] and R2 are described by the piecewise-linear characteristics shown in Figs.
26(b) and (c) respectively. To trace the solution curve by using the modified
B-H algorithm, we choose x = [v1,v2,1’1.n]T and y = [i],iz,vin}T, and write the
following associated canonical piecewise-linear equation (detailed calculation
is given in Appendix D-4):

1 0 0 x -1/2 1/2 0
0 32 0| % [+| 0 |Ixgl+| 0 |ix-2l+ [-1/2 |[x#]]
o o0 1Jlx,. 0 0 0
0 0 1
#1010 |Ixp=1] = |12 | + 0|0 (5.47)
0 0 1

We start from the initial point x(o) [-1 -2 0]T which corresponds to
(0) = 0 and is located in segment (1 1) of the nonlinear resistors R] and R2
Hence, region R(O) is characterized by -« < X] £ 0 and -= < Xo < < -1, and by
(3.29) and (3.30),

1 0 O 1
80 < 0 1 o, ana @ =017k (5.48)
o 0 1 1
It follows from (3.31b) that
0) _ 0-(=1) _ (0) _ =1-(-2) _ .
Ap% ) -~——%——l = 1, and Aoy -—-r———l 1 (5.49)

Hence, the solution curve T' hits the boundary hyperplanes Xy = 0 anq Xo = -1
simultaneously at the corner point

< 20 -1 177 with o) = 1 (5.50)
which is identified as point A in Fig. 26(e). It is shown in Fig. 26(e) that
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the corner point A belongs to regions R(a), R(b), and R(c) (corresponding to
segments (1,2), (2,1), and (2,2) of the nonlinear resistors Ry and R, respec-
tively) in addition to region R 0), and all these regions are possible candi-
dates for the solution curve to enter. By (3.15), the Jacobian matrices in
these regions can be found to be

1 0 0 0 0 0 0 0 0
3@ =0 o of,8®=lo 1 of, a8l =0 0 0] (551
0 0 1 0 0 1 0 0 1

Note that §(a) and E(b) are singular with nullity equal to one. By (5.10),
the direction vectors in these two regions can be found to be

d@ -0 1 0Tana d® =1 0 o (5.52)

The Jacobian matrix g(c)’ however, has nullity equal to two and the direction
vector in R(c) is not unique. Let

d@' on o o and o1 o (5.53)
be two'11near1y 1ndependent vectors which satisfy (5.10). By (5.46),
(1) + A d(c) + A d(c) is a solution of (5.47) at p = p(1) = 1 for all real
values A and A, such that x(]) + N d(c) + d(c) € R(C) It follows that

any point in R( c) is a solution of (5.47) at p = p(]) 1 and the solution
curve T will split over the whole region of R\®/ as shown in Fig. 26(e). Note
ithat the direction vector dciy_z;ésp d(b)) in (5.52) is in the direction of
entering R(a) (resp.; (b))andvn11 define a trajectory for the solution curve
in R(a) (resp.; R(b)). But since x(]) is a corner point, the solution curve
in R a) (resp.; b ) follows the Boundary line AD (resp.; AB) between regions
R(C) and R(a) (resp., R(c) and R( )) which is a boundary for region R ¢

shown in Fig. 26(e). There are three other corner points B, C, and D in R(c),
it can be shown (by finding the direction vector in each neighboring region
and checking whether it points to the correct direction) that point C is the
next breakpoint and region R(f) is the next region for the solution curve with
Jacobian matrix and direction vector .



1 0 o0 1
8l el o 2 of, a'f)= |12 (5.54)
0 0 1 0

The trajectory for the solution curve is shown in Fig. 26(e) where it
splits into an area on a two-dimensional plane. The corresponding driving-point
characteristic and Vi= Vs =Vins and Vo= VS = Vg transfer characteristics are
shown in Figs. 27(a), (b), and (c) respect1ve1y a

The high-dimensional degenerate case can be avoided by making a minor

assumption as mentioned in Assumption A.1 in Section 3A; namely,
(i) the starting point lies in a region with a nonsingular Jacobian

matrix; (5.55a)
(i1) the solution curve never hits a corner point. : (5.55b)
Assumptions (5.55a) and (5.55b) can be easily satisfied by perturbing the
element parameter values whenever the degenerate condition is detected. They
guarantee the algorithm is free from the following two degeneracies: 1) hit-
ting a corner point and 2) entering a region with the nullity of the Jacobian
matrix greater than one.

C. Generic Properties of Solution Curves
We end this paper with a careful analysis of the generic properties of the
solution curves. Such properties are best derived by answering the following
questions:
1. Does the solution curve always follow a unique path in each region R(k)
traversed by I'?
2. Can a solution curve T re-enter a region which it has previously traversed?
3. Can a solution curve T remain in a boundary hyperplane instead of penetrat-
ing it?
The above questions are general problems in piepewise-linear analysis
and have been fully discussed in [16,18]. In the following, we describe the
solutions to the above problems in the form of observations and use them to
show that our breakpoint-hopping algorithm would not suffer the above problems
under Assumption (5.55).

Observation 1. [16] If two regions R(j) and R(k), with Jacobian matrices
B(j) and B(k) respectively, have a common (n-1)-dimensional boundary hyper-
p1ane, then the ranks of B(J) and B(k) differ at most by one.

-56-



Observation 2. [16] If 'the. solution curve T starts from an interior point of

a region with a nonsingular Jacobian matrix, and assuming T never hits any
corner point, then 1) T never eneters a region with a Jacobian matrix of nullity
two or more and 2) T intersects any boundary hyperplane at a single point.

Remark: The condition for nonsingular Jacobian matrix in the region where the
starting point is located can be relaxed such that if the Jacobian matrix has
nullity no greater than one and T' never hits a corner point, then it also leads
to the same wresult of 1) in Observation 2. . This can be verified in Appendix A.

Observation 3. [18] If "the nullity of the Jacobian matrix B(k) in region R( )
is not greater than one, and the solution curve T enters R( ) at x(k) and
1?iges R(k) at x(k+]) then T can not re-enter R(k) through a po1nt other than

The answer to Question 1 in general is false as shown in Examples 5.1 and
5.3. It, however, is true under Assumption (5.55) as can be shown by QObserva-
tion 2 and Appendix A: since the solution curve only traverses regions with
the nullity of the corresponding Jacobian matrices no greater than one such
that the direction vector in each region can be uniquely determined,3and the
solution curve will always follow a unique one-dimensional trajectory for each
starting point.

The problem of Question 2 can be answered by Observation 3. Under Assump-
tion (5.55), if the solution curve re-enters any previously traversed region,
then this region must be R(O) where the starting point is located, and the
solution curve becomes cyclic as shown in Fig. 28(a). The driving-point or
transfer characteristic is periodic as shown in Fig. 28(b) if p(m+2) (])
and is a closed cyclic curve as shown in Fig. 28(c) if p(m+2) = p(]).

Under Assumption (5.55), the answer to Question 3 is negative in view of
Observation 2 since the solution curve intersects any boundary hyperplane at a

single point. It follows that both dék']) and d§k) are nonzero where R
k-1 k-1
and R(k) are separated by the boundary hyperplane xJ = constant. Hence, all

-1
the inequalities involving dgk -1) and d(k) which determine the correct direc-
k-1 Jk-1
tion vectors in the B-H algorithm would not suffer from the ill-conditioned

case when d(k -1) or d§k) is zero, as long as Assumption (5.55) is satisfied.
' Jk-1 k-1
As a final remark, if Assumption (5.55) is satisfied (which is true

generically), then the breakpoint-hopping algorithm including the modifications
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in Section 5A will trace every branch of the solution curves in the driving-
point or transfer characteristics, provided one point in each branch is given.
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- APPENDIX

A. If the Jacobian matrix of the starting region has nullity no greater than
one and T never hits a corner point, then it leads to the same result in1) of
Observation 2.

Proof: It is sufficient to show that if the nullity of B(k'1) is no greater
thén one and x(k) is not a corner point, then the nu1lit; of B(k) is also no
greater than gne, where B(k']) and B(k) are the Jacobian matr;ces in the
regions R(k'1) and R(k) ;espective1;, and the solution curve I enters R(k) from

R(k']) at f(k).
Since §(k) is not a corner point, R(k) and R(k']) are separated by an (n-1)-
dimensional boundary hyperplane, xj = constant. By (3.37), B k) and §(k'1)

k-1
are the same except the j, .-th column. Assume B(k) has nullity equal to two
k-1

then §(k']) has nullity equal to one since §(k'17 is assumed to have nullity
no greater than one. Since §(k) has nullity equal to two, there exists

2 ¢ R"™ such that B(k)z = 0 and Zj = 0. Hence, B(k'])z = 0 because B(k)

£ 5 £=7 k-1 2 £ -
differs (1) only in the j,_;-th column. It follows from (5.10) that g(k-1)
is parallel to z with d(k']) = 0 which implies that the solution curve within

j
2(k=1) k-1

is parallel to the boundary hyperplane xj = constant and never enters
k-1
R(k). Hence, §(k) can not have nullity equal to two and must have nullity no
greater than one. o

B. Correction to the ill-conditioned case in [2]

For ease of reference, we follow the same notations and 1ist some equations
of [2]. Assume circuit N in Sec. II of [2] canbe characterized by the canonical
piecewise-linear equation

f(x) =a + Bx + E c;l<ayx) =8| = 0 (B.1)
ARSI £ R

nxn

’ n . o .
where B € R, a, C; €ER, Bi is a scalar, and a, is a unit vector along some

coordinate axis for each i =1, 2, ..., p.
Consider an arbitrary k-th partition hyperplane Hk defined by

Hk:(gk’5> - Bk =0 (B.2)

In general, Hk will be further partitioned into several sections by other
hyperplanes which intersect it. Let 9,9, be one arbitrary section on Hk such
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that two regions Ra and Rb are separated by S For x € 0,0, We can expand
the absolute-value term in (B.1) and obtain

f(f) = ék + gk X (B.3)
9,5 9,9,
where P
B, T2tk g | (8.4)
a’b 1«
i#k
- p T
§ko o B + .2151 *0;) (B.5)
a°b i
i#k

and the choice of + sign in (B.4) and (B.5) depends on the sign of <93’§ ) - B
fori=1,2, ..., pand i # k. .
"When Ek is nonsingular, the image H& of Hk under the mapping f(-) in
0.0
ab
(B.3) is an (n-1)-dimensional hyperplane, we can follow Eqs. (20)-(23) in [2]
to find Hé and perform the sign test by Eq. (24).

We now discuss the ill-conditioned case that Ek is singular or
B =0. 7%
9%
Degenerate Case I: Ek is singular
0.0,
ab
In this case, the rank of B is at most n-1 and the domain for the
a%b

mapping f( ) in (B.3) is the (n-1)-dimensional hyperplane Hy s CopsX )= By = 0
containing ¢ 2% hence the image H& = f(Hk) has at most a dimension equal to
n-1 and it is still possible to perform the sign test when it is an (n-1)-
dimensional hyperplane.

The normal vector % for the hyperplane Hk is a unit vector along one of
the coordinate axis. We assume o = and Hk can be expressed as Xx; = Bk

Let b be the j-th column of Bk and Bk be the submatrix of Bk
0aC%b Ca% Calb

obta1ned by deleting b from B For any X € Hk,we can decompose X by

~Kg,0

9a%

X=X+ xjej =X + Bke » Where x is the same as x except the j-th component of
X is zero.

A

Lemma B.1. If B has rank n-1, then Hé is an (n-1)-dimensional hyperplane

k°a°b
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and can be expressed as

Hk: (gk,x ) - Bk =0 (B.6)
where ak is the basis of the null space of §T , 1.€.,
a%
8T = Q (8.7)
~Kg ob"k ~ )
and .
= (o) T[3y, o, B3] (8.8)
Proof:
Let y be any vector such that y € H! , then there exists an X € Hk such
= B + i iny =B + +
that y gko o X gkc 5 Decomposing x, we obtain y Eko (x Bke ) +3 5
a’b a’b a%b
= §k X + (B,b, +ak ), where X is an (n-1)-dimensional vector obtained by
~Kogop~ K~ ~kagop - .
deleting the j-th component from x. Since BT is an (n-1) x n matrix and has
- a Ch

rank n-1, there exists a unique basis vector ak (modulo scalar mu1t1p11cat1on)

in its null space. Hence eachy ¢ Hk must satisfy (ak,y Y=o (Bkb +a )
a%
and since gk is unique, the span of y in the range space has dimension n-1.

Hence Hk can be expressed as (ak,y ) Bk where Bk = ¢ (Bk93+§koa b)

satisfies the conditionof Lemma B.l, and Bk # 0, we can

(n]

Hence, if Bk
Uaab

sti1l find the (n-1)-dimensional hyperplane H by (B.6)-(B.8) and perform the
sign test.

If the condition of Lemma B.1 is not satisfied, then the rank of B o
a’b
is at most n-2 and the image H& will shrink to a hyperplane with at most a

dimension equal to n-2. Hence we can no longer perform the sign test. Due to

a continuity, the image of Ra (or Rb) will be contained in a hyperplane with

at most dimension n-1. Hence ga (or gb), the Jacobian matrices in region Ra

(or Rb), will be singular and we have two cases to discuss. For simplicity,

we only present results concerning Ra’ they can also be applied to Rb’

(a) If J, has rank n-1, then the image Ré of Ry is contained in an (n-1)-dimen-
sional hyperplane

Hy :<9$’Z )-8, =0 . (B.9)

where



B3 = 0 (8.10)

] oy IT
By = %3 35 (8.11)

and f(f) = gaf ta, for any x ¢ Ra‘ Equations (B.9)-(B.11) can be obtained
similarly fromthe proof of Lemma B.1. IFB; # 0 then there is no solution
within Ra and there is no need to perform the sign test for Ra' However,
we can utilize the hyperplane Hé to perform the sign test on all the
neighboring regions °f'Ra with nonsingular Jacobian matrices.

(b) If ga has rank less than n-1 or has nullity m with m > 2, then the image

: m o s
Ré of Ry is contained in an (n-m)-dimensional hyperplane H; = N H'(1)

. Na

where i=1

H ()i () y s gl o g , (8.12)
T.6) .

aTar (1) = g (8.13)
fori=1,2, ..., m If not all of s;("), i=1,2,...,m, are zero,

then Ra contains no solution and there is no need to perform the sign test

for Ra‘

Degenerate Case II: B' =0

- - L3 3 l = 0.

() §k°a°b is nonsingular and BkUan

In this case the origin of the range space is in the hyperplane H& de-

i i . - . B +a = 0 has a solution
flned 1?-$q (21)-(23) of [2]* Hence ~k°a°b§* L.
X = - a , and if x € 0.0., then x  is a solution of (B.1).
~ ~ kcaob~ ko‘ao'b ~ a b ~

If ga (resp.; gb) is nonsingular, then there is no solution within the
interior of R, (resp.; Rb) since the image of the interior of R, (resp.; Rb)
is on one side of Hi and does not contain the origin y = 0.

If ga (resp.; gb) is singular then by continuity it must have rank n-1
and the image of R, (resp.; Rb) must be contained in H&. Let na:g {5|ga§
+§a=9} (resp.; nb,Q {§|gb§+§b=g}),since Hy is a boundary hyperplane’for Ry
(resp.; Rb), B&Uacb = 0 implies n, (resp.; nb) is nonempty. Henceﬁ.enanRa

(resp.; 5* €ny N Rb) is a solution of (B.1) if the intersection is nonempty.
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(i1) E is singular.

a%
- | = A B
(a) Bkoacb has rank n-1 and 8, =0 in (B.8). Let nko =_{§|§koacbx
=0 v = 0 implies , and € n is a
”k°a°b }, By P Mea0h ¢, an x %% " Mg 0,

solution of (B.1) if the intersection is nonempty.

If ga (resp.; gb) is nonsingular, then there is no solution within
the interior of R, (resp.; Rb).

If J, (resp.; Jb) is singular, then B& = 0 implies n, (resp.; nb) is
nonempty Hence, x €n, NR, (resp.; x €ny N Rb) is a solution of
(B.1) if the intersection is nonempty

(b) Ek“a“b has rank less than n-1.

(1) Jy has rank n-1 and B' = 0 in (B.9). Since Hk is a boundary hyper-
p]ane for Ra’ Ba =0 1mp11es ny # @, then x €n, n R is a solu-
tion of (B.1) if the 1ntersect1on is nonempty.

(2) Ja has rank less than n-1 or has nullity m with m > 2 and B;(i)<=0
fori=1,2, ..., min (B.12).

85(1) =0fori=1,2, ..., mimplies ny # @, then 5* €n, NR
is a solution of (B.1) if the intersection is nonempty. Cases (1)
and (2) can also be applied to Ry
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D. Formulation of the Canonical Piecewise-Linear Equations

1. Equation (3.46) in Example 3.1: :
Using the explicit formulas in [1], we obtain the following canonical

piecewise-linear equations for R, and Ryt

Ry 11 =9/8 vy + 7/8 lv1| (D.1a)

Ry:Vy = 9/4 i, + 7/4 |i2-1l - 9/4 (D.1b)

Extracting the two nonlinear resistors, we obtain the linear 3-port N
shown in Fig. 18(e) which is described by the following generalized hybrid

representation:

10 0\[v 0o -1 [ 0
1 o fli, f={ v 0 ofv |+]o0 : (D.2)
\—
P X Q Y s

Substituting (D.1) into (2.10) and (2.11), we obtain
0 9/8 0 0 7/8 0

B17=0, Byy=1,a=|-9/4{,B= 0 94 0|, cy=| O s Cpy=| 7/8
0 0 0 0 0 0
e s (D.3)
Substituting (D.2) and (D.3) into (2.13), we obtain
-1 -9/4 0 -9/4 -1 0 -7/4
§= 17/8 '] 0 | 'Y §= 0 [ r= 0 . S-I-‘ = 7/8 9 Sz‘l = 0 (Do4)
0 1 -1 0 .0 0 0

Substituting (D.4) into (2.12), we obtain the canonical piecewise-linear equa-
tion (3.46) for the circuit in Fig. 18(a).

2. Equation (3.58) in Example 3.2:

By Fig. 19(b), the canonical piecewise-linear equation of R.l can be found
to be

i, =-1/2 + v, - 5/4 [v]-2| +3/4 |v1-4| (D.5)

The generalized hybrid representation for the 2-port ﬁ in Fig. 19(d) can be
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found to be

1 2 vq 0 1 i] 0
) = + (D.6)
0 1 Yin 1.0 Vin 1
P X Q y s
By (D.5), (2.10), and (2.11),
~ "]/2 A ] 0 A -5/4 A 3/4 (D 7)
Bi1=2, B1n =4, a= s B= s Ciq= y Cun = .
1M %P2 "2 0 ~ 10 0 <1 0 <12 0
By (D.6), (D.7), and (2.13),
; -1 -2 0 -1 -0 .10 (0.8)
B= a= r= s Caq = s Cap = D.8
Sl al e ae T Lo P s |2 3

Substituting (D.8) into (2.12), we obtain the canonical piecewise-linear equa-
tion (3.58) for the circuit in Fig. 19(a).

3. Equation (5.1) in Example 5.1:
By Figs. 24(b) and (c), the canonical piecewise-linear equations of R, and
R2 can be found to be

=2 + vy t |v1| (D.8a)

o]
-—
.o
]
-t
[l

2 + vy + |V, (D.8b)

The generalized hybrid representation for the 3-port N in Fig. 24(d) can be
found to be

1 -1 0 v1 1 -1 0 il 0
0 1 0 Vo |= -1 0 1 i2 +]1 0 (D.9)
0 0 1 iin 0 0 1JI Vin 0
e R BN N
P X Q y s

By (D.8), (2.10), and (2.11),
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2
B17=0s Bpy=0,a=| 2 |, B=

By (D.9), (D.10), and (2.13),

0 0 O 0 1 -1

0
B= | -1 -1 0 f,a=| 2], rs= -1 » C11° -1 » Coy = 0 (D.11)
0 0 -1 0 -1 0 0
Substituting (D.11) into (2.12), we obtain the canonical piecewise-linear
equation (5.1) for the circuit in Fig. 24(a).

4. Equation (5.47) in Example 5.3:
By Figs. 26(b) and (c), the canonical piecewise-linear equations of R, and
R2 can be found to be

Rytin = 1/2 +3/2 v, = 172 |vp+l| + |vp-1] (D.12b)

The generalized hybrid representation for the 3-port N in Fig. 26(d) can be
found to be

0 o o 1o -1, 0
000 0f|lv, [=]0 1 -1{i, [+]o0 (0.13)
o o -1JLi,, 0 o -l 0
4 X q Y s
By (D.12), (2.10), and (2.11),
0 1 0 0
Bn=0: B]2=2s BZ1=-]’ 822=]:§= 1/2 s§= 0 3/2 0,
0 o 0 o
S I U R PR I ERC VI UG P (0-14)
0 0 0 0
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By (D.13), (D.14), and (2.13),

T 0 O 0 1 -1/2
§ = 0 3/2 0 s §= -]/2 ’ r= 'I . S-']= 0 °
0 0 1 0 1 0
172 0 0
S-‘z = 0 ° Sz-l = ']/2 Y 522 = 1 (0'15)
0 0 0

Substituting (D.15) into (2.12), we obtain the canonical piecewise-linear
equation (5.47) for the circuit in Fig. 26(a).

E. Detailed Calculations in Examples 4.1, 4.2, and 4.3

1. Example 4.1:
- . (0) _ T s _ (0) _ .
Starting point x =[-2 -2 -2] withp=p = -7/2 is located at
R(O): -° < X1 2 0 and -= < Xo < 1. By (3.29) and (3.30),

A -2 o 4/5
8O = |1a 12 1|, and d® | 25 (€.1)
0 -1 1 2/5

By (3.31b),
Ap%0) - 0-552) = 5/2, Apéo) = l%}%gl = 15/2 (E.2)

Since Ap%o) < Apéo), we identify j0=1 and hence Ap(0)=Ap](0) =5/2. Using
(3.32) and (3.33), we calculate the next breakpoint:

-2 4/5 0
oM = esp=-1, xM = |2 Les2) 25 |= |- (E.3)
-2 2/5 -1

The next region R(1) corresponds to segment (2,1) and is characterized by
0<%y and -®< X, < 1. Using (3.35), (3.36), and (3.39), we obtain

¢ =173 a3 431" (E.4)

Since dg])'dgo)-Ap(o) = 1/3-4/5-5/2 > 0, the direction vector 9(1) points in



the correct directionand it follows from (3.41b) that

Ap§]) - ?5% - Apél) = lié%ll = 3/2 (E.5)

Since Ap§1) > Ap§1), we identify j.l = 2 and hence Ap(]) = Apél) = 3/2. Using
(3.44) and (3.45), we calculate the next breakpoint

0 1/3 1/2
p(2)=-1 +3/2 = 1/2 and 5(2) =] -1 +3/2| 4/3 | = 1 (E.6)
-1 4/3 1

The next region R(Z) corresponds to segment (2,2) and is characterized by
0<xy<=and 1 <x, <= Using (3.35), (3.36), and (3.39), we obtain

d@) < [-35 25 2/51" ) (£.7)

Since d§2)~d§])-Ap(])-= 2/5-4/3-3/2 > 0, 9(2) points to the correct direction
and it follows from (3.41)

) - Ss6, 0o

1575 7 Ak - (E8)

Since Ap(z) < Apg ), we identify 32 = 1 and hence Ap(z) s Ap(z) = 5/6. Using
(3.44) and (3.45), we calculate the next breakpoint

1/2 ~3/5 0
o3) =172 + 576 = a3, 5(3) =| 1 |+5/6| 2/5| =1 4/3 (E.9)
1 2/5 4/3

The next region R(3) corresponds to segment (1,2) and is characterized by
-® <X <0and 1< x <= Using (3.35), (3.36), and (3.39), we obtain

a3 - a2 -7 i8] (E.10)

since d{3).a{2).00) = 3/2-(-3/5)-5/6 < 0, the solution curve in R3) win
follow the d1rect10n of -d 3) and goes to infinity without hitting any boundary

hyperplane of R(3). Hence, we choose
‘[o 3/2 -6
20B3) = -a, o) = 4/3 - 4 = -g/3, and xH) =l-4/3 -4 | -8 |=| 1176
4/3 -1/8 11/6
(E.11)
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as a point inthe end segment of the solution curve. Equations (E.3), (E.6),
(E.9) and (E.11) will give breakpoints 5(1), 5(2), 5(3) and a point x 4) n
the end segment.

2. Example 4.2: -

(a) Iy branch:
Starting point §(0) ={0 0 0]T with p = p(o) = 0 is located at

R(O) pme< Xy < 1.2 and - =< %y < 0.8. By (3.29) and (3.30),
2 0 -1 5/39
8- 0 5 1|, a®=| 239 (E.12)
-1 =32 10/39
By (3.31b), ‘
20{0) = 120 < 230725, aof®) = 8583 < 78/5 (E.13)

Since Ap%o) < Apéo), we identify jo = 1 and hence Ap(o) = Ap%o) = 234/25.
Using (3.32) and (3.33), we calculate the next breakpoint:

0 5/39 1.2
o) = 0 + 234725 = 234725, x\1) =| o |+234/25| 2/39 | =| 0.48 | (E.18)
0 10730 L 2.4

The next region R(1) corresponds to segment (2,1) and is characterized by
1.2 < x; < 3 and -= < x, < 0.8. Using (3.35), (3.36), and (3.39), we obtain

¢V < 45774 7778 357741 (E.15)

since a{1).a{0). af®) < _45/74.5/39-234/25 < 0, ¢!} points in the opposite
direction and it follows from (3.41) that

Ap%1) = T%i%?%IT = 74/25, Apé]) = Q;%%%é:ﬁi = ® (E.16)

Since Ap%l) < Apé]), we identify j1 = 1 and hence Ap(]) = -Ap%l) = -74/25,
Using (3.44) and (3.45), we calcualte the next breakpoint
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1.2 -45/74 3
o) =23as25- 787252 6.4, x1?) =| 0.48 | -74725| 7778 | = | 0.2 | (E7)
2.4 35/74 1
The next region R(z) corresponds to segment (3,1) and is characterized by
3<% <=and -=» < x, <0.8. Using (3.35), (3.36), and (3.39), we obtain
a@) = noser 361 1576177 (E.18)

Since d1(2)~d1“)-Ap“) = 10/61- (-45/74)+ (-78/25) > 0, d(2) points to the correct
direction and it follows from (3.41),

20{?) = T7eT = = 2of?) = 288 = 12.2 (E.19)
Since Apéz) < Ap§2), we identify jz = 2 and hence Ap(z) = Apéz)'= 12.2. Using

(3.44) and (3.45), we calculate the next breakpoint

3 10/61 5
ol3) =6.4+12.2=18.6, 5.(3) = {o.2{+12.2.] 3/61 | = |o.8 (E.20)
1 15/61 4

The next region R(3) corresponds to segment (3,2) and is characterized by
3<% < and 0.8 < Xy < 2. Using (3.35), (3.36), and (3.39), we obtain

d3) < 20101 -15/101 30110177 (E.21)

since ¢{%)-a{2)-20(2) = _15/101-3/61-12.2 < 0, 4'®) points to the opposite
direction and it follows from (3.41),

(3) . __5-3
0

3). 2-0.8
By = 7701 13-

= 10.1, Apz 'lero-ﬂ' = 202/25 . (E.22)

Since ApéB) < Ap§3), we identify j3 =2 andhenceAp(3) = - Aoés) = -202/25.

Using (3.44) and (3.45), we calculate the next breakpoint |
5 20/101 3.4

o#) =18.6- 202/25= 10.52, x(*) = | 0.8 |-202/25 - |-150101 | =| 2 |(E.23)
4 307101 L1.6

The next region R(4) corresponds to segment (3,3) and is characterized by



3< Xp X @ and 2 < xp < Using (3.35), (3.36), and (3.39), we obtain
a2 neses 563 52117 - ' | (E.24)

since a{*)-af3).2003) = 5/63. (-15/101)- (-202/25) > 0, ¢'#) points to the cor-
rect direction and it follows from (3.41) that

(4) _ 3.4 _ (4) _ =2 _
S (7 B B 7 (E.25)

Hence, the solution curve goes to-infinity without hitting any boundary of
R(4). Hence, we choose

3.4 10/637 (4.9
20(®) = 9.48, o{5) = 10.52+9.48 = 20, x(5) =| 2 |+9.48.| 5/63 =] 2.75
1.6 L) Ls.es

(E.26)

as a point in the end segment of the solution curve. Equations (E.14), (E.17),
(E.20), (E.23), and (E.26) will give breakpoints 5(]), 5(2), 5(3), 5(4), and a
point X 5 in the end segment.

(b) T, branch:
2 ~(0) T oop 2(0)
Starting point x = [9/8 67/40 9/4]" with p = 10 is located at

RO): s < x; < 1.2 and 0.8 < xp < 2. By (3.29) and (3.30),
2 0 -1 5/32
8@ 1o 2 |, 3O |5z (E.27)
11 -3.2 5/16
By (3.31b),
G0 LY o, ) - O e

Since AB%O) < ASéO), we identify 30 = 1 and hence AS(O) = AS%O) = 12/25. Using
(3.32) and (3.33), we calculate the next breakpoint:

o/8 5/32 1.2
50 = 10 + 12/25 = 10.48, £ = | 67740 | + 12/25- | -5/32 | =| 1.6
- Loa 5016 2.4

(E.29)
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The next region §(1) corresponds to segment (2,2) and is characterized by
1.2 < Xy £ 3 and 0.8 < x5 < 2. Using (3.35), (3.36), and (3.39), we obtain

a1 = 1011 -35799 707997 (E.30)

Since &{‘)-8§°)-A8(°) = -10/11-5/32-12/25 < 0, ") points in the opposite
direction and it follows from (3.41) that

~(1) _ 3-1.2  _ ~(1) __2-1.6
Ap-l = -FWTTI' = 1,98, Ap = 135799 198/175 (E.31)

Since Aﬁé]) < AS$1), we identify 31 = 2 and hence AS(]) = - Aﬁél) = -198/175.
Using (3.44) and (3.45), we calculate the next breakpoint:

1.2 -10/11 78/35
5(2)=10.48-198/175=9.35, §2)=| 1.6 |-198/175-| -35/99 |=| 2
2.4 70/99 1.6
(£.32)

The next region §(2) is characterized by 1.2 < x; <3 and 2 < x, < = and
corresponds to segment (2,3). Using (3.35), (3.36), and (3.39), we obtain

d) - [-135/236 35/236 105/236]7 (E.33)

since d§2)-4{1.2511) = 35/236. (-35/99)- (-198/175) > 0, d?) points in the correct
direction and it follows from (3.41) that

~(2) _ 78/35-1.2 _ N
By " = Toi357z36] - 18 4% C 336 T (E.34)

6
(2)

Since AS%Z) < Aséz), we identify 32 =1 and Ap AB§2) = 1.8. Using (3.44)

and (3.45), we calculate the next breakpoint:

78/35 -135/236 1.2
53) < 9.3541.8=11.15, 2(3)= 2 | +1.8-| 35/236 |= |34/15
1.6 105/236 2.4

(E.35)

The next region R(3) is characterized by =< x; <1.2and 2 < x, <= and
corresponds to segment (1,3). Using (3.35), (3.36), and (3.39), we obtain

d®) = psp21 10121 3012177 | (E.36)

-77-



Since 3%3)-a$2)-Ap(2) = 15/121-(-135/236)-1.8 < 0, §(3) points to the opposite
direction and it follows from (3.41) that

A(3) _ 1.2=(==) _ _ .A(3) _ 34/15-2
23 = ‘T§7§§Tl ®, 8553 = 3L = 20275 | (E.37)

Since Ap(3) < Ap(3), we identify 33-= 2 and hence A6(3) = - A6§3) = -242/75.
Using (3 44) and (3.45), we calculate the next breakpoint:

1.2 15/121 0.8
s(M) 21115 - 202/75=7.92, 8V = | 3015 | - 202775 | 1021 | = | 2
2.4 30/121 1.6

(E.38)

The next region R(4) corresponds to segment (1,2) and is characterized by
® <X < 1.2 and 0.8 < x, < 2, which is exactly the same as region R(O). It
follows that the solution curve re-enters region R(o) and by Observation 3 in
Section 5C, it becomes cyclic as shown in Fig. 21. Equat1ons (E 29), (E.32),
(E.35), and (E.38) will give breakpoints g(]§

. g . 5 3 , and x
3. Example 4.3
Starting point 5(0) =[0 0 0]T with p(O) = 0 is located at

RE) ;e < %) < 0.4 and == < x, < 0.4. By (3.29) and (3.30),
0.25 1 0 5.05x10"2
8-l 20 1 o |, d®-| g (.39)
"1 0 -8000 6.33x107°
By (3.31b),

Since Ap(o) < Ap(o), we identify jo = 1 and hence Ap(o) = Ap%o) = 7.93. Using
(3.32) and (3. 33), we calculate the next breakpoint:

0 5.05x10™2 0.4
oM 20 4+7.93=7.93, xV=| 0 |+7.93.] -1.00 = | -8.03
0 6.33x10°0 5.02x10™°
(E.41)
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The next region R(]) corresponds to segment (2,1) and is characterized by

0.4 < x; < 0.6 and -= < X, < 0.4. Using (3.35), (3.36), and (3.39), we obtain

d) = [6.69x1072 -9.84x10"7 4.37x107°7" (E.42)

Since d%1)°d$0)'Ap(0) = 6.69x10°2.5.05x1072-0.4 > 0, d{1) points to the
correct direction and by (3.41),

poit) = D804, -5 g7, pofl) - =8.08Lm) - (E.43)
6.69x10

2 |-9.84x10""|

Since Ap§1) < Apé]), we identify j] = 1 and hence Ap(l) = Ap§1) = 2.97. Using
(3.44) and (3.45), we calculate the next breakpoint:

0.4 6.69x1072 0.6
o) = 7.93+42.97=10.9, x(2)= | -8.03 +2.97| -9.84x107 |= | -10.9
| 5.02x107° 4.37x10°° 1.81x1074
(E.44)

The next region R(z) is characterized by 0.6 < x; < = and - < x, < 0.4 and
corresponds to segment (3,1). Using (3.35), (3.36), and (3.39), we obtain

¢®) = 1061072 <12 133077 (E.45)

Since dsz)-d%])-Ap(]) = -1.06x1072-6.69x1072-2.97 < 0, d?) points to the
opposite direction and by (3.41),

(2) =0, 6 (2) _ 0.4-(-10.9) _
Ap = - = Q’ Ap = - ]0.12 (E046)
" l--l.osx]O 2| 2 -].]2

Since Apéz)'<Ap§2), we identify 32 = 2 and hence Ap(z) = - Apéz) = - 10.12.
Using (3.44) and (3.45), we calculate the next breakpoint:

0.6 -1.06x10"27 ("0.708
03 =10.9-10.12=0.78, x3) =| -10.9 -10.12] -1.12 =| 0.4
1.81x107% -1.33x107 J [1.53x1073
(E.47)

The next region R(3) corresponds to segment (3,2) ard is characterized by



0.6 <xy <= and 0.4 < x, < 0.6. Using (3.35), (3.36), and (3.39), we obtain
d®) - [0.289 0.315 3.48x1073]" (E.48)

Since dé3)°d§2)-Ap(2) = 0.315-(-1.12)-(-10.12) > O, 9(3) points to the correct
direction and by (3.41),

2o{3) = =OIB - o pp{3) = B804 0,63 (E.49)

Since Ap§3) < Ap§3), we identify j3 = 2 and hence Ap(3) = Ap§3) = 0.63. Using
(3.44) and (3.45), we calculate the next breakpoint:

0.708 0.289 0.891
pM)=0J8+0£3=1A1,§M)= 0.4 +0.63-| 0.315 =| 0.6
1.53x1073 3.44x10"3 ) | 3.71x1073
(E.50)

The next region R(4) corresponds to segment (3,3) and is characterized by
0.6 < Xp <@ and 0.6 < x, < = Using (3.35), (3.36), and (3.39), we obtain

2

¢ - [0.225 1.06x107 2.68x1073]" (E.51)

Since d(4) d(3) Ap(3) = 1.06x10°2-0.315:0.63 > 0, the solution curve follows
the d1rect1on of d(4) and goes to infinity without hitting any boundary of R
Hence, we choose

(4)

0.891 0.225
20 =0.59, %) =1.41+0.59=2.0, x®)= | 0.6 +0.59| 1.06x1072
3.71x1073 2.68x1073
1.02
= | 0.606 (E.52)
5.20x10°7

as a point in the end segment of the solution curve. Equations (E.41), (E.44),
(E.47), (E.50), and (E.52) will give breakpoints x(1), x(2), x(3), «(4) ang
X 5) in the end segment of the solution curve.

~
~
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

(a) A piecewise-linear one-port N driven by Yin? which can be either
a voltage source Vip» Or a current source 11n (b) Typica1 piecewise-
linear driving-point characteristic plotted with Yin= ’as the inde-

pendent variable. (c) Typ1ca] piecewise-linear dr1v1ng-po1nt charac-
teristic plotted with Yin 11 ‘as the independent variable.

(a) A piecewise-linear two -port N driven by Yin which can be either
a voltage source Vips Or 2 current source 1in’ and the open-circuit
voltage Vo taken as the output variable. (b) Same as in (a) but with
the short-circuit current i0 taken as the output variable. (c) Typi-
cal piecewise-linear transfer characteristic.

(a) Resistor R, with two breakpoints Vi = - 1 and vy = 2. (b) Resis-
tor R2 with one breakpoint at iz = 37 (c) The two vertical lines
(parallel to xz) Xy = - 1 and X] = 2 and the horizontdal line (parallel
to x1) Xp = 3 partition the X| = %o plane into 6 distinct rectangular
regions inside each of which the circuit is described by an affine

function. Region (j,k) corresponds to the linear circuit where resis-
tor R.I is operating in segment j and resistor R2 is operating in

segment k.
(a) Linear (n+1)-port N terminated by voltage-controlled resistors’
R], RZ’ cees R on the left, current-controlled resistors R2+1, R2+2,
ces R on the r1ght and the input voltage source Vip across the
driv1ng port (n+1). (b) Linear (n+1)-port N from (a) terminated by
voltage sources Vis Vs «-. V, OR the left, current sources i£+1,
iz+2""” in on the right, and the input volitage source Vip across
port (n+1).

(a) Circuit for Example 2.1. (b) Linear 3-port N terminated by non-
linear resistors R1 and R2 and voltage source Vin (c) Voltage-

controlled vi- 1.I curve for R] (d) Current-controlled 12-v2 curve

for R2'

(a) Circuit for Example 2.2. (b) Linear 3-port N terminated by vol-
tage-controlled resistors R1 and R2 and voltage source Vin (c) v v —i]
curve for Ry (d) 7% i, curve for R,.

(a) Circuit for Example 2.3. (b) Linear 3-Port N terminated by
current-controlled resistors R] and R2 and voltage source v. in’

(c) vy - 11 curve for R,. (d) vz-12 curve for R2.
(a) Circuit for Example 2.4. (b) Linear 3-port N terminated by



voltage-controlled resistors R.I and R2 and voltage source Vin

(c) Ebers-Mol1 circuit model of npn transistor. (d) The exponential
law of the pn junction diode in Ebers-Mo11 circuit model in (c) is
modeled by a 3-segment piecewise-linear function f(-).

Fig. 9. (a) The circuit in Fig. 8(a) redrawn with transistor and voltage

source V.o extracted across the new (without controlled-sources) 3-port

N . (b) Representing the 3-terminal device in (a) by two coupled
2-terminal resistors R1 and RZ‘

Fig. 10. A hypothetical piecewise-linear solution curve T traced on the Xq = %o
plane in Fig. 3. Note that T does not pass through region (1,2).

The notation x(j)(p(j)) means the location of X J) corresponding to
o= o), T -

Fig. 11. (a) The direction vector 9(0) originating from 5(0) intersects the
boundary line Xq = 811 at 5(]) before its extens%on (§hown dotted)
intersects the second ]boundary Tine Xo = 821 at 5(1) . (b) The
direction vector 9(0) from 5(0) intersects thé boundary plane x2==621
at 5(]) before its extension (shown dotted) intersects the boundary
plane Xy = 51(1 -1) (back sid%) at 5(])' and finally the boundary
plane x5 = Bas (top) at 5(1) .

Fig. 12. (a) Solution curve in region R 1) connects two breakpoints x(]) and
x(z). (b) Solution curve in region R(1) goes from x(]) to ;.

Fig. 13. }ypicaI example showing the direction vector d(k) l;ing along the
solution curve T on R(k) but pointing outward;; i.e. back towards the

region R(k']) where we came from. The horizontal axis is labelled as

1

x. L ]
-1

Fig. 14. (a) A current-controlled driving-point characteristic which is not a
single-valued function of v, = p. (b) A multivalued driving-point
characteristic which is not a single-valued function of Vip = P-
(c) A driving-point characteristic which is a single-valued function

of Vip = P except at one point Vip = o* where the entire vertical line

segment maps into one-point Vin = p*.

Fig. 15. (a) A bow-tie shape driving-point characteristic which does not inter-
sect the load 1ine Vin = Pmin’ (b) A driving-point characteristic
which intersects the load line Vin = Pmin at three points.

Fig. 16. (a) A driving-point characteristic having a vertical end segment

located at p* < Pmax (b) A driving-point characteristic which does

not intersect the load line v._ = p

in max’
Fig. 17. The load line Vin = intersects one branch at 3 points but not

min



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

the second branch.

(a) Circuit for Example 3.1. (b) vy - i] characteristic for R;-

(c) i, - v, characteristic for R,. (d) Driving-point characteristic
derived by graphical method and by the breakpoint-hopping algorithm.

(e) Linear 3-port N terminated by voltage-controlled nonlinear resis-
tor R], current-controlled nonlinear resistor R2 and voltage source

Vi .

in

(a) Circuit for Example 3.2. (b) vy - 11 characteristic for R,
(c) Driving-point characteristic derived by the breakpoint-hopping

- algorithm. (d) Linear 2-port N terminated by voltage-controlled non-

1near resistor R.I and voltage source Vin

(a) Solution curve T of the circuit in Fig. 5(a). (b) Driving-point
characteristic of the circuit in Fig. 5(ag

Two distinct solution curves I‘1 and rz for the circuit in Fig. 6(a).
Horizontal axis denotes x1,g vy and vertical axis denotes x2=£ Vo

(a) Two distinct branches of the driving-point characteristic of the
circuit in Fig. 6(a). (b) Vi = Vs = Vi transfer characteristics.

(c) Vo = VS = Vi transfer characteristic..

(a) Solution curve T of the circuit in Fig. 8(a). (b) Driving-point
characteristic of the circuit in Fig. 8(ag

(a) Circuit for Example 5.1. (b) vy - i] characteristic for R,.

(c) vy = i, characteristic for R,- (d) Linear 3-port N terminated by
voltage-controlled nonlinear resistors R1 and R2 and voltage source
Vin: (e) Solution curve of the circuit in (a). Note that it splits
into 3 branches upon hitting the corner point 5(1).

(a) Solution curve of the circuit in F;?;)l(a). (b) Driving-point

3

characteristic of the .circuit in Fig.
(a) Circuit for Example 5.3. (b) vy - i] characteristic for R,.

(c) Vo = 12 characteristic for R,. (d) Linear 3-port N terminated

by voltage-controlled nonlinear resistors R.l and R, and voltage source
Vin® (e) Solution "curve" for the circuit in (a).

(a) Driving-point characteristic for the circuit in Fig. 26(a). (b)
Vi - Vs - Vi transfer characteristic. (c) Vo = VS = Vio transfer
characteristic. Note that the solution curve splits into the whole
2-dimensional area of region R(c).

(a) Solution curve re-entering a previously traversed region. (b)
Driving-point or transfer characteristic for p(m+2) # p(]). (c) Driv-
ing-point or transfer characteristic for p(m+2) = 0(1).
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