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Analytical Foundations of Voiterra Series *

Stephen Boyd, L. 0, Chua, and C. A. Desoer **

1. Introduction

A Voiterra Series Operator with kernels hn is one of the form

Mi(0-Efc(0 (lla)
«—i

fc(«)-"/ •• •JMV*-.^.)ti(<-ri)tt(«-r2) • • • i(K)^r, ••• rfr, (1.1b)

and is a generalization of the convolution description of linear time-invariant (LTI) operators to

time-invariant (TI) nonlinear operators. These operators are important because many TI non

linear operators occurring in engineering either have this form or can be approximated, in some

sense, by operators of this form. Voiterra series have been the object of much recent study. The

focus has primarily been on proofs that the input/output (I/O) operators of dynamical systems,

and various generalizations, have a Voiterra series representation, and the relationship between

the Voiterra kernels and the geometry of the dynamical system.1'2 For example M. Fliess et al

have found a simple and elegant formula for the kernels of a dynamical system in terms of vari

ous Lie derivatives.5

In contrast our focus is on the analysis involved with Voiterra series. We first carefully

address the basic issues of the formal Voiterra series (1.1) above: what are the kernels (functions,

distributions...?) and when do the integrals and sums in (1.1) make sense? In the remainder of §2

we examine the elementary properties of Voiterra series operators, both system-theoretic (e.g.

bounds on theirgain and incremental gain) and mathematical (e.g. their relation to Taylor series).

In §3 we use the methods of §2 to prove some well-known formulas for the kernels of various

"system interconnections". We give an elementary and complete proof of the Inversion theorem

for Voiterra series, and work through an illustrative example.

In §4 we explore some frequency domain topics. We start by proving the Steady State

theorem for Voiterra series operators. We then establish the validity of a general formula for the

spectrum of the output in terms of the spectrum of a periodic input.

In the appendix we present more advanced (and esoteric) material: Volterra-like series,

incremental gain theorem for Lp, Taylor series which aren't Voiterra series, conditions under

which the frequency domain formula of §4 holds, and almost periodic inputs.

• Research supported in put by the Office of Naval Research under contract N00014-76-C-O572, the National
Science Foundation nnder grants ECS 80*20-640 and ECS 81-10-768, and the Fannie and John Herti Founda
tion.

•• The authors are with the department of Electrical Engineering and Computer Sciences, and the Electronics
Research Laboratory, University of California, Berkeley 04720.
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The results we present range from "well-known" (e.g. the Uniqueness theorem) to new (e.g.

the material in the appendix), la order to keep the paper interesting and accessible to a wide

audience, we have used only the basic tools of real analysis, in a few places developing some

necessary background material. We do not present the results in their full generality: we have

limited the scope of the paper to single-input single-output (SISO) stable TI Voiterra series in

order to do a more thorough job on this important case. Extensions to other cases will be

presented in a future paper.

The references we give are not meant to be complete but only representative. More com

pletebibliographies can be found in our references, forexample Sandberg [1 ] or Fliess et al [3 ].

2. Formulation

2.1. What are the Kernels?

In most treatments the kernels hn(Tv...,Tn) in equation (1.1) are interpreted as functions

from Rn to R. Unfortunately this interpretation rules out some operators common in engineer

ing. We start with two examples:

Example Is

X rsm-X + tt

and i(0)=0. Then

» = **

i(f)-{£«-*«(t-i)4f)
•//l(n)l(»i)e-<,'+,1!)t,(J-rI)«(<-r2)rfrIiTa

so this operator has a Voiterra series description with just one nonzero kernel,

This kernel k2 is an ordinary function :i?2-*i?.

Example 2s

and x(0)=0. Here

y = x

t

y(t)~Se-*u(t-r?dT
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^ JjHn)l(T2)e'flbXTl-r2)u{t-Tl)u{t--r2)drldr2

if you will condone the notation. So here the kernel h2 is not a function as it was in example 1

but a measure supported on the line iy=»ffc informally given by

These examples are typical- in general the Voiterra series of dynamical systems with the

vector field affine in the input u (e.g. in bilinear systems) have kernels which are ordinary func

tions whereas in other cases more general measures may be necessary.2* 4»*»6 In the latter case

Sandberg has called the series "Volterra-like".6 §A1 contains an in-depth discussion of Volterra-

like series.

A less exotic but widely occurring nonlinear operator whose description requires kernels

which are measures is the memoryless operator

f(0-/(«(0)

where f:R-*R is analytic near 0.

We will allow our kernels to be measures. We will see that the analysis is no harder, and

the resulting theory then includes all the examples above.

2.2. When the Series Converges

00

Recall that the ordinary power series g(x)= 2 auxn converges absolutely for |z|<p, where

the radius of convergence is given by p=»( Urn |<J«|1/")"1. Similarly a radius of convergence p can

be associated with a formal Voiterra series

Nu(t) = y(t) = £/ •••/*,(ri,..vr.)ii(l-r1)...si(<-f.)rfrl...ir. (2.1)

such that the series will converge for input signals with \u(t)\ < p.

More precisely, let B" be the bounded measures on R\ (R+ A{t\t>0})* with

IIHI —J*M» For convenience we will write elements of B" as ifthey were absolutely continuous

("Physicists' style"), e.g. h2(Tltr2)=tb\rv-r2)e~*\ For signals || || will denote the oo-norm, i.e.
IMIHMU"

Definitions By a Voiterra series operator we will henceforth mean an operator given by equation

(1.1) above and satisfying assumptions

•We thus consider only eautal operators, bnt in fact all of the following holds for kernels which are bounded
measures on /?".

••An excellent reference onbounded measures and these norms (and analysis in general) is Rndin's book (7 ].
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(Al) A. € B\ and

(A2) hm||A,H1/"<oo, that is, {HA.II1'" } is bounded.
B-+OD

Our first task is to determine for which u's equation (2.1) makes sense.

Definitions If N is a Voiterra series operator with kernels At, we define the gain bound function
00

of AT to be, for *>0, f(x) * E ||A„||z* (with extended values, that is, f(x) may be oo). The
«*i

radius ofconvergence of N isdefined by praRadJV ^( Sm HA,!!1'*)"1.
•-♦00

Assumption (A2) implies that p>0 and that the gain bound function / is analytic at 0, with

normal radius of convergence p. Since all the terms in the series for / are positive p is also given

by p=inf{x|/(x)=oo}, a formula which will be useful in §3. We can now say when (2.1) makes

sense:

Theorem 2.2.1 (Gain Bound Theorem)*

Suppose AT is a Voiterra series operator with kernels A„, gain bound function /, and radius of

convergence p. Then

(I) the integrals and sum in equation (2.1) above converge absolutely for inputs with ||u||< p,

that is, in Bp the ball of radius p in L00.

(II) N satisfies \\Nu\\ < f(\\u\\) and consequently N maps B9 into I00.

(II) is partial justification for naming / the gain bound function, we'll soon see more.

Theorem 2.2.1 is well known (in various forms).8* 0,2,10,11,5,12,1

Proofs

/ *' •/|A.(^...^)ti(/-ri)...«(<-r.)|rfrl...rfr, < ||A„!||M|"

In particular, the integrals make sense. If ||u||< p, then

00

El/'" /AB(r1,...,r.)tt(*-rJ...o(<-rJrfrl...ir. I

00

^ E J *' •Jlhn{TV"^n)u{t-Tl)...u{t-Tn)\dTl...dT9

< EII*.IIIMI"=-/(IMI)<<»
n—a

which establishes absolute convergence of the series and the gain bound in (II). O

For convenience we adopt the notational convention that throughout this paper N will

denote a Voiterra series operator with kernels A„ gain bound function /, and radius of conver

gence p.
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The Gain Bound theorem has many simple applications. For example, the tail of the gain

bound function gives a bound on the truncation error for a Voiterra series.

Corollary 2.2.2 (Error Bound for Truncated Voiterra Seriea)s

The truncated Voiterra series operator defined by

^(0 IE/' ' -Jhn(Tl,...,T.)u(t-rl)...u(t-Tn)dTl...dTu

satisfies

||Af«-/v<*>«l|< E IIMIIMI"

which is o(||u||*).

2.3. Elementary Propertieas Continuity

We will now show that N is continuous on Bp and Lipschitz continuous on any BT, r<p.

Lemma 2.3.1: Suppose ||u|| + ||v|| < p. Then

||W(«+»)-iV(«)|| s /(ll«ll+IMI)-/(IMI) < /'(IMI+IMI)IMI

Proofs Assume I|«||+ ||tf||<p. Then ||u+ v||<p so N(u+ v) makes sense and

|JV(«+«,)(<HV(«)(0| <

/ A.fo»...,r.)fn(«+ "M'-nJ- ri«(<-'.))

£ E>.IIE(y)NI'iMr

- Eii*.ii((ii»ii+ii<'ii)'-ii«irj
•ml I f

drv..drn

W(IH+IMIW(IMI)

This technique will recur so careful explanation is worthwhile. In (2.2b) the first product, when

expanded, has 2* terms; the second product is precisely the first term in the expansion. Replac

ing the remaining 2"-l terms by their norms and integrating yields(2.2c).

The final inequality in lemma 2.3.1 follows from the mean value theorem, since

/(ll«ll+I|f|l)-/(II«||)-/'(f)||«||

where ||u||<f<||ti||+||v|| and /' is increasing. Thus /' can be mterpreted as an incremental

gain bound function for N.O

February 2, 1984
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Theorem 2.3.8 (Ineremental Gain Theorem): Let B, be the ball of radius r in L00, and sup

pose r <p. Then

(I) N:Br -+B/(r) is Lipschitz continuous,

(II) N:Bp -* L°° is continuous.

Proofs Suppose u and v are in Br. From the Gain Bound Theorem

l|iV»-M>||S/(ll«ll)+/(IMI) (2.3)

We claim that

IIJV" -N»\\ < /(llx-oll + llfII) - /(IMI) (2.4)

For ||ti-v||+||v||<p (2.4) is simply lemma 2.3.1; for ||>-v||"M|v||>p (2-4) is true since its

righthand side is oo. From (2.3) and (2.4) we deduce

HM.-AMI S n"i»{/(ll«-ll+IMI)-/(IMI). /(NI)+/(IMI)>

^MH/<f+ia-/(r'.ai^'Hi
where K is the max of the expression min{ • • •} for 0<||o-v||<2r. A* is in fact

2/(r)/(/"x(3/(r))-r) aQd is quite finite (see figure 1). This establishes (I); since (I) is true for any

r<p(II) follows.O

We will soon see that N is much more than merely continuous; for example, N has Frechet

derivatives of all orders on Bp. But before moving on, we present an extension of the last

theorem which will be important in §4.

Recall that for linear systems y=*Aj*u we have the result ||l/||P < ||Ai||||u||p, for

1 < p < oo.13 It turns out that when properly reformulated the Gain Bound theorem and the

Incremental Gain theorem are also true with general p-norms. First some warnings for p <oo: a

Voiterra series operator need not be defined on any open subset of Lp (e.g.

JVu(f)ssu(t)/(l-u(t))), and even when it is, it need not map Lp back into Lp (e.g.

Nu(f)ssu(f J2). For more details and discussion we refer the reader to §A2.

Theorem 2*3.3 (Gain Bound theorem for L9): For 1 < p < oo

(unmarked norms are oo-norms).

Even though our next theorem is stronger, we give the proof here to demonstrate the basic

argument.
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Prooft

|y.(OI < / **' f \*•{*»--SnMt-Ti)-.Mt-U)\*'Tl.<lTn

<Il«ir7{/ •••/IM^..vrl,)|rfr2...rfr,}|tt(i-r1)|rffl (2.5)
Now the bracketed expression in (2.5) is a measure in T\ with norm ||A«||, hence using the result

for linearsystems cited above we have19

IWIpSIMI-MWINI,

Thus

\m\, <sii».iip <ii«ii, Eiwiiifii-1" iwip^ff

which establishes theorem 2.3.3.0

Lemma 2.3.4:

||(tv(«+<-)-at«)||p <|M|P /(H+lhJIWIIMI) <||»||,/'(||«||+||„||)
The proof combines the proof above with the proof of the Incremental Gain theorem and is in

§A2.

Theorem 2.3.5 (Ineremental Gain theorem for Lp): Let Br be the ball of radius r in I00,

with r <p. Then there is a K such that

||Afo-Afo||,<tf||u-»||,

The proof is identical to that of theorem 2.3.2 and so is omitted.

2.4* Multilinear and Polynomial Mappings

This section contains mostly background material for §2.5 and may be skipped by those

familiar with the topic. There are many good references on this material, both in mathemat-

jcgM, 16 anj engineering.16'17

Note that the nth term yu in a Voiterra series is homogeneous of degree n in the input u.

Indeed much more is true; it is a polynomial mapping in u.

Definitions Let V and W be vector spaces over R. Then M:Vn-+W is said to be multilinear or

n-linear if it is linear in each argument separately, i.e. if

Af(v1,...t;;+<xu/,...t/ll) =» M{vlt...vJt...vn) + aAt{vl,...w,„.vu)

Example Is V = J?\ M{vlfv2)=: vfAv* A € M%xn
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ExampleSsLet V=W = Lco,h €B*and

M{ultu2) =» J/Afa.rdaJs-rJtc^r-rJrfr^rj

Definitions Let M:V* -* W be n-linear. Then a map P-.V-+W of the form

P(v) - M{v,...v)

is said to be an n-order polynomial mapping.

Example 3s Let V=* W<=* L°°t A € B2and

P(ti) - //A^rjajf-rjaft-fjrfrjrfrj

And in general the nth term of a Voiterra series operator is an n-order polynomial mapping in

the input u.

Theorem 2.4.1s An n-order polynomial mapping is homogeneous of degree n, but the converse

is not true.

Proofs P{av) = M(av,...av)» a"A/(i»,...v)= anP(v).

To see that the converse is not in general true, let K=J?2, W»J?, and consider

n*i,*2) - (M+ MP - A + A + W2I

F is homogeneous of degree two but is not a polynomial mapping, since a second order polyno

mial mappingsatisfies />(arl+ x2)+ P(xx-x2)^=* 2P(xl)-r 2P(x2); F does not.

This distinction between a homogeneous mapping and a polynomial mapping is like the

difference between a general norm and a norm which comes from an inner product. To bring the

discussion home to engineering consider the nonlinear TI operator N given by

JVti(0 - F{u(t),u(t-l))

N is homogeneous of degree two. We will see later that the response of a second order Voiterra

series operator to an input of the form u{t)=*cosut has, at most, two components: one at D.G.

and one at 2w. N(coBvt), however, has infinitely many harmonics.O

We need just a few more definitions:

Definitions An n-linear map M is said to be symmetric if for any permutation <r € S*

M{vol,...,van) — M{vlt...,vn)

Thus the bilinear map of example 1 is symmetric iff A*=*A r, and the bilinear mapof example 2 is

symmetric iff A(rlfr2)= Mr2>ri)«

Definitions SYMilf is the multilinear mapping defined by

SYMM(vx t/„) J ±- 2 *(«.!,-..'«.)
<r€S*

February 2, 1984
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and similarly if A, is a function or measure, we define

SYMA.fa,...,*-.) * -L J] A.fo,,...,^,)

SYMA/ derives its importance from:

Theorem 2.4.3s Suppose the polynomial maps Px and P2 are induced by multilinear maps Mx

and A/* respectively. Then Px=» P2 iff SYMA/j = SYMA/*

Thus two bilinear maps of the form of example 1 induce the same polynomial map if and

only if Ai+ A[ = A2+ A2.

Proofs First note that SYMA/ and A/ always induce the same polynomial map, since

8YMM(v,...,v)~-L £ M{v,...,v) = M(v,...,v)

The "ir part follows. In the next section we will prove more than the "only ir part, so here we

will give just an informal sketch of how the "only if proofgoes. The key is the formula

so that Pi = P2 implies SYMA/! =* SYMA/* To "establish1' the formula, note that

The only terms which contribute to

1 a"

n! dcti...dan Iomo

are the n! terms where the ($;) are a permutation of (l,2,...,n), and the resulting sum is

SYMM(vlt...,vn). Of course we don't know yet that these derivatives exist, but we will see later

that if the multilinear operators are bounded, then these derivatives can be interpreted as honest

Frechet derivatives.

This process of determining SYMA/ from the polynomial map P induced by A/ is known as

polarization. In fact, we could replace the formula (2.6) above involving partial derivatives with a

purely algebraic one; for example for n«2 we have the polarization formula

SYMWK.,) =P(i!±^)-P(^)
We gave the formula (2.6) because it generalizes to whole Voiterra Series; the algebraic identities
do not.
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Let us now assume that V and W are Banach spaces. Then an n-linear map A/:V* -• W is

bounded if

„j"?J, II^K...,*. )H < oo (2.7)
II"ill s i

in which case we call the lefthand side of (2.7) the norm of A/ as a multilinear operator and

denote it ||A/||ja. The bilinear operator ofexample 1 is bounded, with ||A/||jii =»5(A).* The bil

inearoperator in example 2 is bounded with norm at most HAJI**.

We now quickly review derivatives in Banach space.15*14 Recall that L(V,W) denotes the

Banach space of bounded linear maps from V into W, with the operator norm

p|| ^sup{\\Av\\ | \\v\\<l}. A map N.G-+W, where G is an open subset of V, is said to have
a Frechet or strong derivative DN{u0)eL(V,W) at u0€ G if

\\N(uQ+u)-N(u0)-DN(u0)u\\ - o(\\u\\)

If the map u0-*DN(uQ) has a Frechet derivative, we say N has a second Frechet derivative

£(2)JV(u0) and it is an element of L(V,L(Vt W)). Fortunately this space can be identified with
L^VfW), the space of bounded bilinear maps :V*-*W, with the norm || Win defined above.

Similarly the nth Frechet derivative, if it exists, can be thought of as a bounded n-linear map

iV"-*- W. It can beshown that Z?<n>JV(u0) issymmetric, e.g. if Z><"+1>/v"(ti0) exists.

We now have all the background material necessary for

2.S. Relation to Taylor Series; Uniqueness ofVoiterra Series

We will now see that Voiterra series operators are Taylor series. As pointed out by M.

Fliess et al3 this is not true of unstable Voiterra series operators (those not satisfying assumption

(Al)) which are more properly viewed as perturbationalexpansions.

Theorem 2.5.1 (Frechet Derivatives ofVoiterra Series Operators):

On B9 N has Frechet derivatives of all orders with

Z)<*>JV(«o)K «*)(0=» (2.8a)

- SYM2 n(»-l)...(»-*+ l)J...jMfi#...,r.)n *(*-*)«>< II tiojf-r.Jrfr, (2.8b)

Thus |p(t)Mti0)||</(t)(Htio||) and (ntJ-WiVp)) is the n-linear mapping associated with the
nth term of the Voiterra series and given by:

^I)<w)N(0)(«lf...,ti,)(0 = /..jA1l(r1/...,f,)tt1(<-fl)...«ll(<-r,)rfr1...ifr,
*8{A) means the largest singnlar value of A; here we assume the Euclidean norm on Rm.
••The actual norm, rather than this npper boond, is hard to compote; see $AS.
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Remark: Theorem 2.5.1 tells us that the Voiterra series we have considered so far are in fact Tay

lor series of operators :L<X>-*L<X>. The reader may wonder whether the Voiterra series constitute

all of the Taylor series of TI nonlinear maps :L<x>-*Lco. In §A3 we show that this is not true,

but that the Taylor series left out are not important in engineering.

Proofs Let Mt denote the multilinear map given in (8b) above. We will show that

which will prove A/* = D^N(u0) as claimed. First note that

IM4U < £ »(»-i)-(»-*+i)ll*.IIIM|-t - f<%\«JA)

Now

N{u0+ u) = S / *'' /SYMA.(^...,r.)i; (J)II«,«-r,)rfr, II «<*>r,)<fr, (2.9)

For |1 u|1 small enough ( ||u|| + ||uc||<p will do) the entire righthand side of equation (2.9) is

absolutely convergent so we may rewrite it as:

- SttE n(»-l)...(n-*+ 1)/ -.. jBYMhn(rl,...,Tn)llui(t-Ti)dTi f[ iiotl-r.Jrfr,
*«0 *l ««•* 1-4 I—*+l

oo j

— E'«"JM*(tt»-»»)

Thus we have

l|iv(«o+«)-i;-i-wt(«,..,«)ii< f ttPWINI*

< S -et/^INoIDIWI' =/(IMI+ ||«ID-1 jrf{tK\\«MM'

which is indeed o(||o||"+1).0

Theorem 2.5.2 (Uniqueness Theorem for Voiterra series): Suppose N and A£ are Voiterra

seriesoperators with kernels A, and g», respectively.

Then N = M iff SYMA. = SYMf. for all n.

Note that N=M asserts equality of maps from some ball in L°° into L°°, whereas the con

clusion asserts equality of a sequence of measures.

Proofs The "iT part is clear, (see theorem 2.4.2). To show the "only iT part we will show that

the measures SYMA, are determined by the operator N. A measure p € B" is determined by its
integral over all n-rectangles in R*t i. e. by the integrals

February 2, 1984
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/ *' "S^\»^uM-rx)...u(-r%)dTl...drn (2.10)

where each ut is the characteristic function of an interval. Now by theorem 2.5.1 we have

/ • • •/SYMA,(r^...,r,)«1(-f1)...till(-f,)<frl...(fr,

- il)<«)jV(tt1,...,all)(0)

so that N determines the integrals in (2.10) and hence the measure SYMA,. A more explicit for

mula for these integrals is:

/ • • •JSYMhn{rl,...,Tn)ul(-rl)...un{-ru)dT1...dTn

which is the formula mentioned in the previous section. O

The Uniqueness theorem tells us that we may as well choose our kernels A, to be symmetric,

and from now on we will assume that all kernels are symmetric. Of course other canonical forms

are possible and in some cases more convenient. For example the triangular kernels satisfy

Afri «0i,...,rii) » 0 unless 0 < rx < ... < r.

and the Voiterra series is then

oo «'• *
Nu{t) - E J J *' ' ShtnniTu.-.,TnMt-Tl)...u(t-Tn)dTl...dTu

•••to 0 0

These kernels are often convenient in the study of dynamical systems.

One point worth mentioning: the triangle inequality implies

l|SYMA.||~ll*frt.ll<ll*.ll

Thus using the symmetric (or triangular) kernels can only decrease the gain bound function /

and hence increase the radius of convergence p. In the sequel we will refer to the gain bound

function and radius of convergence computed from the symmetric kernels as the gain bound func

tion and radius of convergence of N.

8.6. Final Comments on the Formulation

The formulation we have given is by no means the only possible. For example, we could

interpret the norms on input signals and kernels as L2 norms, leaving the norm on output signals

(i.e. y=Mi) an L00 norm. Input signals and kernels would thus be L2 functions with

||AS|| A||AS||2 = (/...Jhn{rl,...,Tn)2dTl...dTn)1f2. Then with the exception of the L* material of
§2.3 all the preceding results hold. This is essentially the Fock space framework proposed by

February 2, 1984
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deFigueiredoet al.*18

3. Applications to Systems Theory

In this section we apply the ideas of the previous section to give simple rigorous proofs of

some well-known theorems. We show that the sum, pointwise product, and composition of two

Voiterra series operators have Voiterra series and we bound their gain functions. We proceed to

find the condition under which a Voiterra series operator has an inverse and compute its kernels.

This is applied to show that the I/O operator of a simple dynamical system is given by a Voiterra

series.

This program of working out the Voiterra series of various "system interconnections" was

first carried out at MIT in the late 1950,s,0*i0 but none of this work is rigorous. This constructive

approach is not really a fully modern approach, where one powerful general theorem would prove

all these theorems (and more).1 Unfortunately this one powerful theorem may be so general and

abstract that the underlying simplicity of the formulas may be lost. In this section we want to

demonstrate two things: First, that supplying the analytical details in the MTT work is relatively

straightforward; and second, that the resulting formulas, though complicated, are just simple

extensions of the same formulas for ordinary power series. This of course should be expected in

view of theorem 2.5.1.

The notation for this section is as follows: A and B will denote Voiterra series operators

with kernels a9 and bnt gain bound functions /a and /*, and radii of convergence Pa and Pb,

respectively.

3.1* Sum and Product Operator

The pointwise product of A and B is defined by

lAB\u(t)=lAu\(t)lBuUt)

Definitions if a€B\ b€B* then the symmetric tensor product a\Jb €B"+* isdefined by:

aV*(rl,...,f.+4) J SYMa(rl,...,rJI)*(rB+i,...,r.+i)

By the product we mean the normal product measure. (Thus h(r)g{r) doesn't necessarily make
sense,but h^gfa) does.) Note that

II'VMI « /»./|SYM«(r1,...rll)6(f1l+1,...f>l+fc)|<fr1...rfr1(+t

~ (n+k)\ ^ J"J\a(T<>l>'--tT<rn)\\HTffn+V'»fr<r*+k)\tTV"tr*+i

•OarVoiterra series with radii exceeding T would be almost aH of the Fock space with weights n\r*'.
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-IMIIIMI

Theorem 3.1.1 (Product Operators A -B is a Voiterra series operator with kernels

«-i

*• =» E a«V»._»

andcharacteristic gain function Jab < Ia!b* In particular, pAB >min{/^,/>s}.

Remark: If we write a Voiterra series as a formal sum

«i + ••• + «,+ •••

then we can write the formal symmetric tensor product of «x+ - • • and bx+ • • • as

(«i+ • • • )V(*i+ • • •) — (•iV«i)+ («iV*2+ «2Vfti)+ • • •

so the Voiterra series of A *B is the formal symmetric tensor product of the Voiterra series of A

and B. Note the similarity with the formula for the coefficients of the product of two power

series.

Proofs Let ||u||<min{p^,pB}. Then Au and Bu make sense and

ABti(i) - (£ J...famiTlf...,TM)fi «(f-r<)«V<) fE /.../t.(»if...,f.)n «(<-r,)<i>,) (3.1a)

00 00 *t+ii

= E S/-/fl»M.)M^+i^«+.)II tt0-f«)rffi (31b)
I*—1 IMS

E /•••/( E «*V*^*U(«-!k)...a(j-r,)rfr1...rff, (3.1c)

All of the changes in the orderof summation and integration in equation (3.1) are justified by the

Fubini theorem, since

00 00 •+»

E E/*"/l«»(,i»-f»)*«(r«+i»-f«+«)II «(*-n)|<fn
naB|n«4 imI

S E Elkllll»-llll«ll"+"-/^(ll«'ll)/«(ll«ll)<«»

Since equation (3.1) holds for any u with Hnl^minliA,/^}, the Uniqueness theorem tells us that
«-i

E a*VA«-* are the kernels of A'B. Now

/ab(*) = EIIM*" = E EII«*Vt^||»"

<EEII<'»IIII».-*II*-*
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JEII«.ll*"jJEII».ll**) =/-i(*)/i.(*)
The final conclusion pAB >min{pAtpB} follows from fAB<fAfB and pAB sainffxl/^ B=co}.

O

Theorem 3.1.2 (Sum Operator): A+ B is a Voiterra series operatorwith kernels

A,(ri,...,7w) =» «.(fi,...,r») + ft,(ri,...,f.)

and gain bound function fA+B < At+ /a* Thus p^+b > min{p^,pB}.

The proof is left to the reader.

3.2. Composition Operator

The composition of A and B, which we denote by the juxtaposition AB, is defined by

[AB\u{t) £ A(Bu)(t)

To motivate the formula for the kernels of AB, recall that the nth coefficient of the compo

sition ofthe ordinary power series E °'x' and E ***' " J5*ven by

E . E S»Sft • • • A^

Theorem 3.2.1 (Composition Theoremji AB is a Voiterra series operator with kernels

M«i.«.,*„)« SYME
t—if

E /•••J«*fau-»f*>

Moreover /^(sJ^AiI/af*)). Thus P^minfpB./B'W}-

Proofs Let A, be defined by the formula (3.3) above. First note that

IIM < E' . E
•it~t'j 2il

IMDM •• •DM

(3.2)

(3.3a)

(3.3b)

(3.4)

and the righthand side of (3.4) is the nth coefficient of fA(fB(')), so fH(*)< fA(/b(*))« This
computation justifies the changes of order of integration and summation in the following.

Suppose .M/bOMD)< co. Then Bu makes sense and pu||</fl(||ti||) soABu makes sense and:
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^«(0 =§/•*• /Mv-^jaiJI-fJ •••Bu[t-rk)drv..drk

3=3 E /•.-/«*K«v*k)ll( E /• •jM'i.. .^)tt(f-n-«i)...ti(/-rl-fai)£ffl...rff,)rfr(

oo

= E Mri*—'f*M E l*«i(^-^il-n)-^('il+-.+ii_l+i/-.v'i.+^+it)-
*•* \«i>i^t»i>ij

•tt(<-rHi)...u(<-rl-^J...tt(r-fH.i+^+,^l+i)...«(<-r*-f,x+„+,Jrf<i...^

We now collect terms by degree in a to get:

• d V00

E/ ••/E l.s I
i—l i—1 •x»«~«^^i

Finally, we change the ft variables:

J...Js»(ri,...,r*)'E/- •/ E . E
••4 t—I •j^Mtt^^l

,

dtx,..dtn dTx...dTk

\(ll-^'»liCTl) ' ' ' hitUn^+l-Tkf»'fln-U)^i...drk u{t-rl)...u{t-r9)dtl...dtu

1=3 E *»(n#»v»,«)M(<-ri)...a(f-r,)rfrl...ir.

and the uniqueness theorem tells us A, are the kernels of AB. Equation (3.4) establishes the

bound fAB </^/b» and the lower bound on the radius of convergence of AB follows.O

3.3. Inverses of Voiterra Series Operators

We now ask the question: when does a Voiterra series operator have a local inverse near 0

given by a Voiterra series operator and what are its kernels? Whole papers have been written on

this important topic.16*20 Just like ordinary power series, the condition is just that the first term

be invertible.

Theorem 3.3.1 (Inversion Theorem for Voiterra Serles)s

A has a local inverse at 0 if and only if its first kernel ax is invertible in B1, i.e. there exists a

measure 6X6BX with al*bl—6.*

•Sincethe convolution of measures in B* is commutative, ajtojas** implies »i*«x=o\
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Remark: Since the Frechet derivative of A at 0 is given by convolution with ax (theorem 2.5.1),

the Inversion theorem can be thought of as a generalized Inverse function theorem. We will not

pursue this idea further: instead we take a constructive approach.

Proofs To see the "only ir part, suppose A has a local inverse B, that is

AB — BA - / (3.5)

where / is the identity operator (Ix = 6,19 =» 0 for n>0). Using the composition theorem to com

pute the first kernel of the operators in equation (3.5) yields

ax*bx «= bx*ax sa 6

Thus Si is invertible in B1.

The proof of the "ir part will proceed as follows: we first construct a right inverse for A

under the assumption that the first kernel is just S. Using this we show that A has a right inverse

in the general case, ax invertible in B*. We finish the proof by showing that the right inverse

constructed is in fact also a left inverse for A.

Special Case: Assume for now that fli = 8. To motivate what follows, consider an ordinary

power series a(x)£J}a9x* witn •i"3*- Since <x'(0)=l, a(-) has an analytic inverse

A °°Hx) a E °*x% Dear °* Using formula (3.3) for the coefficients of the composition a(b(x))**x

yields *i=»l and the following recursive formula for b9:

-E E
«y~t»»>l

atbix • • • bik (3.7)

Note that since the index k starts at two, the righthand side of (3.7) refers only to blt...,bn.x.

Incidently this process of recursively computing the coefficients of the inverse of an analytic func

tion is known as reversion of a power series.21

We now use the same construction for Voiterra series. Let bx = 6 and for n>l define meas

ures b9 € B" recursively by

U'i,...,M»-SYME E
»lp~f«t>l

/.../flk(r„...,rt)'

•*i1(ti-'i»».'ix-*i)''' \(l—ik+i-rkt"t9-rk)drx...dTk

(3.8a)

(3.8b)

As in (3.7) above this comes directly from the composition formula and (AB)9 =0, n>l. We

now have to show that bn, as defined in (3.8) above, are actually the kernels of a Voiterra series
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operator: we must verify that assumptions (Al) and (A2) hold.

We establish (Al) by induction. First note that bx*aS^B1. Assuming that bj^W for
;=l,...,n-l (3.8) implies that A,€B\ with

IWI < E
k—al

E INIINI • • • iim (3.9)

We now establish (A2). Let g{x) A2x-fA(x). Since f'(0)=l (recall that «i= £) g has an
00

analytic inverse h(x)A Ea«*" near °- We claim that /b(^)<A(z) and thus pB>RadA().

The coefficients a9 aregiven by formula (3.7): 0^=1 and for n> 1

E IMfo, • •• aik (3.10)

By induction we now show

ll».ll<<«. (341)

for all n. (3.11) is true for n=l, suppose (3.11) has been established for n<m. Then (3.9),

(3.10), and the inductive hypothesisestablish (3.11) for n*=*m and hence for all n. Consequently

/•(*)-£l|t.R**£ E«.»"-»(»)

which proves our claim above that the measures bn do satisfy assumption (A2) and hence are the

kernels of a Voiterra series operator which we naturally enough call B. From the formula (3.8)

for b9 we conclude

AB**I

B is thus a right inverse for A. This concludes the proof for the special case.

General Case: Suppose now that ax is invertible in B1. We will use the proofof the special

cast presented above to prove the general case. Let bx € B1 satisfy ax*bx=*6. Let Ali9 be the

Voiterra series operator with first kernel ax and other kernels zero. Altm is invertible, with inverse

Aiii (which has first kernel 6} and other kernels zero). Consider the operator A^A whose kernels

we could easily compute with the composition theorem. Its first kernel is 6, so using the construc

tion above find a local right inverse C to A^A. Then B «• CAtJi is the local right inverse of A,

since

AB a A*A&ACA£ - AU9Aui - / (3.12)
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Our final task is to show that the right inverse B is also a left inverse for A. Since the first

kernel of B is invertible (indeed it has inverse ax) we can find a right inverse D for B. Then we

have

A =» Al — A{BD) — (AB)D = ID « 0 (3.13)

(3.13) and £Z> = / shows

BA «/

which with (3.12) proves that B really is the local inverse of A at 0 and completes the proof of

theorem 3.4.1.0

Remark: If ax€ OL, the subalgebra of B1 of those measures lacking singular continuous part, then

we have the criterion13

A is invertible iff inf |<Ji(ff)|>0

3.4* Dynamical System Example

To illustrate the theorems of this section we now work an example.

Examples Consider the one-dimensional dynamical system:

i =» /(*) + g(u) (3.14a)

*(0)» 0 (3.14b)

y «= l{*) (3.14c)

Suppose /, g and q are analytic near 0, /(O)«=0(O)=g(O)=O, and /'(0)<0. Then the system is

exponentially stable at 0, and for ||u|| small there isa unique state trajectory x satisfying (3.14).

Wewill nowshow that the I/O map :u—y is a Voiterraseries operator.

Proofs We first use a loop transformation to reexpress equations (3.14a) and (3.14b) in terms of

Voiterraseries operators. (3.14a) and (3.14b) are equivalent to

,-•/'»• *(/«/(*)+*(«))

where f^i*) = /(*)-/'(0)* (the strictly nonlinear part of /). (See figure (2)). Let H^ be the

Voiterra series operator with first kernel l(r)e/'(°)r and other kernels 0. Let Ft%l, G, and Qbe the
memoryless Voiterra series operators associated with the functions ftnl, g, and q, respectively,

«•«. Qutrv—iTn)** n\-lq^\0)bXTx)...b\r9). Then the system equations (3.14) are equivalent to

* — Hli9{Ftnt(x)+ G{u)) (3.15a)

U= Q{*) (3.15b)
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Since #/,» is linear

(I-HfoF*)* - Hti9 Gu (3.16)

By the sum and composition theorems {I-H(inFtu{) is a Voiterra series operator with first kernel

6. By the inversion theorem (/-/faF^f) has a Voiterra series local inverse near0 (I-H[tnFtrtl)~l.

Since as mentioned above (3.16) has only one solution x when ||u|| is small, it mustbe

• -(/-F^lkFGsj (3.17)

Thus for ||a|| small, the output y is given by a Voiterra series operator in u:

y-QV-FrtHu^Gu (3.18)

A few comments are in order. (3.14) may have multiple equilibria when ti=0 (for example

if /(x)=-fiinx), or even a finite escape time for some u's (for example if /(*)=-*+ x2). We've

shown that as long as ||u|| is small enough, say less than K, then the state x and the output y

are given by a Voiterra series in a. In particular ||u|| <K must keep the state x from leaving

the domain of attraction of 0, for otherwise the Steady State theorem (see §4.1) or the Gain

Bound theorem would be violated.

4* Frequency Domain Topics

In this section we consider frequency domain topics, concentrating on the simplest case:

periodic inputs. Even in this case the analysis is not simple. Nevertheless we show that an intui

tive formula for the output spectrum in terms of the input spectrum holds in essentially all

engineering contexts.

Before starting our topic proper, we prove:

4.1* The Steady State Theorem

Theorem 4.1.1 (Steady State theorem)s Let v and ut be any signals with

ltttll> I1««H <p=RadAT, and suppose that as t->oo u(t)-m,(t)

Then Nu(t)-*Nus{t) as <— oo.

This is a very different concept from N*s being continuous as a map from Zr00-^00, which

tells us e.g. that if u9 -* u uniformly as n -♦ oo, then Nttn -» Nu (uniformly).*

Proofs Suppose ||u||, ||u,||<p and u(t)-*u9(t) as /-•oo. Let v= ttt-u so v(t)-+0 as s-»oo.

The proof is a modification of the proof of the incremental gain theorem, we simply break the

•Indeed the Steady State theorem is /«/•« for some pathological LTI bounded (and therefore continuous) opera,
ton from I00 into I00: see §AS.
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estimateintotwoparts,oneduetotherecentpastonly.ForT>0

(Nut-Nu){t)»(JV(u+v)-Nu)(t)-Ix(t,T)+I&l.T)

where

her)ie/•••jM'i,...,r.)(n«.(i-f<)-n«(«^)W'̂. ««4fo,r|*^™*•"•*'

W.r)IE/"•/A.(^...,r.)fnu.(«-f,)-ntt(<-r,))rfrl...rfr,

WenowestimateIxandI2separately.

Thus

•._.*

EJ•••/A.(^...,r.)E©IN'-'.)'',II«(«-nW*. nodj^fjasn4iMtibbH"!

Ux(^m<EIIMIEdfe)lkll^lll«ir-*(4.1a) »-4fc-4

=/(ll«ll+ll»lll.-r.«|)-/(ll«tl)Hlb)

where||v||(t-r,f|meanssup{|v(r)||t-T<T<t}and/isthegainboundfunctionofJV.Note
that(4.1b)maybeooforsomet,T.Butast-T-+oo,|M|p_r,t|->0so(4.1b)eventuallybecomes
andstaysfiniteandinfactconvergestozero.Thusweconclude:

Ix(ttT)-*0asI-T-*oo(4.2)

NowweestimateI2:

\W.T)\<£ll*.IU.^rp(H«.ll"+IMP)(43)

where

ll*»IU--forpra/'''/1Mn,...,'.)Idrx...drn(4.4)

Foreachn(4.4)decreasestozeroasTincreasestoeo,sinceeachA,isaboundedmeasure.

Henceeachterminthesumin(4.3)decreasestozeroasTincreasestooo.Therighthandsideof

(4.3)isalwayslessthan/(|K||)+/(||u||),sothedominatedconvergencetheoremtellsusthat

therighthandsideof(4.3),andhenceIj^t,T),convergestozeroas7*-*co.

IfwenowsetT=t/2thenas(-toobothTandt-Tincreasetooo.Henceasi-*co

Nu,(t)-Nu(t)=Ix(t,t/2)+/2(M/2)-0.O
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Remark: unlike linear systems, the rate of convergence can depend on the amplitude of the input.

For example, consider N given by

jVo*. E«M)*

N has radius of convergence one. Now consider step inputs of amplitude a, 0<a<l. As ot

increases to one, the time to convergence to within, say, 1% of the steady state grows like {l-a}Tl.

For linear systems the time to convergence is independent of the amplitude of the input.

Although in the Steady State theorem u9 can be any signal with ||u,|| < p, usually u9 has

the interpretation of a steady state input, for example in

Theorem 4.1.2 (Periodic Steady State theorem)s If the input u is periodic with period T for

t >0 then the output Nu approaches a steady state, also periodic with period T. (Soon we'll

compute the Fourier Seriescoefficients of Nu).

Proofs Let u9 be u extended periodically to J=-oo. Clearly u(t)-+u,(t) as <-*oo (indeed

u(t)=tut(t) for f >0) so by the Steady State theorem Nu(t)-*Nu9(t) as t -»oo. Nu, is periodic

with period T since

(iv«,()Ki+ r)« #(«,(•+ r)M0 - *M0

where the first equality is due to the time-invariance of N and the second equality is due to the

r-periodicity of u$.0

Note in particular that Voiterra series operators cannot generate subharmonics. A related

application of the Steady State theorem is:

Theorem 4.1.3 (Almost Periodic Steady State Theorem)! If the input u is almost periodic

for t>0 then the output approaches an almost periodic steady state, (we'll compute the frequen

cies and spectral amplitudes of the output in §A5).

Proofs The hypothesis simply means that there is some ut which is almost periodic and agrees

with u for i>0. By the Steady State theorem we know y{t)-*yt(t) £ Nu9(t) so we need only

show that Voiterra series operators take almost periodic inputs into almost periodic outputs. The

proof of this, as well as the formula for the spectral amplitudes of the output, are in §A5. This

last topic has been studied by Sandberg.22

4.2. Frequency Domain Voiterra Kernels

As with linear systems, it is often convenient to use the Laplace transforms of the kernels,

defined by

*.(»!,...,•.) - / ' ' ' Sh9(Tlf...fT9)e<'^'¥^a^)dTX...dT9
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We call Hn the nth frequency domain kernel or just kernel of the operator N. Since h9€B", Hn

is defined at least in C\ (C+ means { s | Rea>>0 }).* Hu is symmetric, bounded and uniformly

continuous there; it is analytic in C\ * We should mention that the unieity theorem for Laplace

transforms tells us that two measures in B" are equal (h9*B*g9) if and only if their Laplace

transforms are equal (H9 = G9).

The formulas of §3 are somewhat simpler in the frequency domain. Using the notations!

convention that C9 denotes the nth frequency domain kernel of a Voiterra series operator C, we

have:

Theorem 4.2.1s Suppose A and B are Voiterra series operators. Then the frequency domain

kernels ot A-r B, AB (pointwise product), and AB (composition) are given by:

{A+ B)a{sXt...ts9) as A9fa,...,*,) + B9{8h...t89)

(AB)9 = E^*VB..» * 8Ym£Ak{sx sk)B9^(sk+h...ts9)
t—i t—i

(AB)BK...,^) = SYME
t«4 1},^,|^>1

Ak{sx+...+ ff$l,...,»«-ii+i+ «•+ »«)*

'^ijt'lf't'ij) *' *Bik{*n-ik+V—t9u)

These well-known formulas follow easily from the formulas of §3.

4.3. Multltone Inputs} the Fundamental Frequency Domain Formula

Westart with a simple calculation. Suppose that u(t) is a trigonometric polynomial, that is

«(0 - E «*•**
bm-M

where a.k » ak*. Suppose also that ||u|| < p=RadiV. Then

y(t) « Nu(t) «. g / ' ' */M'i,..vr,)II E "kS^dTi (4.5a)

= Ef E K--^^(>*i-^w*.)cy(wtl"""^ (4.5b)n^-U<,kv^kM<UJ

The term atl...ott||if,(ya;*1,...,;i1;*ll)eJ "V" *"*.)' ^ 0ften cgji^ 3,, ntn order ^ukv...ru/kn) inter-
modulation product. Since it is proportional to H9(jukx,...,jwk9) this suggests the interpretation

•The Laplace transforms of the triangular kernels are called the regular transfer funetieiu of the operator.23
•Thus « is real Complex signals are easily handled bat less useful in the study of Voiterra series operators
than linear operators.
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of H9(jwkXt...Jutk9) as a measure of the {wkx,...,uk9) intermodulation distortion of N.

Now we've already seen that the first sum in (4.5b) is an honest /l sum, in fact for each t,

E < /(ll«ll)

where / is the gain bound function of N. Consequently we may evaluate the nth Fourier

coefficient of y

inside the first sum in (4.5b) as:

Each integral is easily evaluated (the integrands are trigonometric polynomials) yielding

y(m)«E/ E \Hkx)..Mk9)H9Uukx,...Ju;k9) (4.6)

since u(k)*=ak for \k\<M and 0 for \k\>M (and thus the inner sum in (4.6) is finite). We

call (4.6) the fundamental frequency domain formula since it expresses the output spectrum in

terms of the input spectrum. Of course we've only established it for inputs which are tri

gonometric polynomials, but we will see that it is true for more general periodic inputs, and an

analogous formula holds for almost periodic inputs as well (see § A5).

Remark: Suppose a trigonometric polynomial signal u is passed through a unit nth power law

device so that y(t)*=* u(t)n. Then

y(m) = u•»»( E l«(*iM(**)

where u** means the n-fold convolution u*u*...*v (the sum in the convolution is finite here!).

The first equality makes sense: it is just the dual of the correspondence between convolution in the

time domain and multiplication in the frequency domain. The second equality makes the funda

mental formula (4.6) seem quite natural; the nth term of (4.6) can be thought of as an n-fold con

volution powerof u, weighted by Hn(jwkx,...,jwkn).

Before establishing the fundamental formula for more general periodic inputs, we have to

carefully examine the question of whether it even makes sense for more general periodic inputs.

Despite its resemblance to the composition formula and the fact that every sum and integral
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encountered so far has converged absolutely, we have:

4.4. SURPRISE! Fundamental Formula Doesn't Converge Absolutely

Remarkably the fundamental formula is not absolutely convergent even for u as simple as a

two-tone input signal! That is

E / E IIHk^uiWAjuk^jukjiE( E )
—4*i+•••♦*.-■J

can equal oo even in the case considered above, u a trigonometric polynomial (but our calculation

was correct).

Remark: Practically, this means that we cannot arbitrarily rearrange the terms in the sum above.

We must first perform the inner (bracketed) sum (which in this case is a finite sum), and then per

form the outer sum over n.

Examples Let u= —(cos/+sin2<)> Then ||u|| can be shown to be

91 32 J
5fl5+>/53l (3+V33)

which is about 0.978 < 1. Let N be the memoryless operator with //»=! for all n, that is

y{t)=u{t)/(l-u(t)). Then p»l so y[t) makes sense and satisfies ||tf|| < ||«||/(1-|MI) (which is

about 45). According to the fundamental formula (4.6) of the last subsection, the D.C. term of y

is given by:

*(o)»Ef E W*iM(*.) (4J)
•-*l*i+ +*.-*/

Now we claim that (4.7) does not converge absolutely. To see this,

S / S P(*.M(*.)I > £ ( S P(*.)-*(*.)l
•nil*!*.. +ra«Oj nevenyki* .+kt-4J

u9V9n\kx+... +kt>MmO(

where v(t) *|-(cosr+cos2f) so that \u(k)\» v{k) for aU Ir.
2r

uevau *"* 0 ««w»™

since v(t) >1 for -25</<.25. Thus the fundamental formula isn't absolutely convergent in this

simple case.
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It is surprising that the trouble in (4.6) occurs when the input is a simple trigonometric

polynomial signal; we might expect it to give us trouble only when, say, a does not have an abso

lutely convergent Fourier series.

There is one obvious but rare case in which (4.6) does converge absolutely. Suppose u € /\

i.e. u has an absolutely convergent Fourier series, and in addition /(||«||i)< oo. Then |«|€/1

and |a|*" 6 tl with || | « | **||x < \\u\\x\ thus we have the estimate

E / E mkx)..Mk9)H9(ji,kx,...jwk9)\ < E ll«lli1IMI - /(IMIi)
»«ll k.+... + km—m I *Mt

In conclusion, then, we must proceed with extreme care in establishing the fundamental for

mula for more general periodic input signals.

4.5* Proof of Fundamental Formula for General Inputs

We start with some calculations. Suppose ti is any periodic input with ||u||<p. Recall

that the A/th Cesaro sum of the Fourier series of u is defined by

«"(<)= E (i-^W*)''"" £ E^/(*)«(*)«'*"
t—U M k

uujbu convolved with an approximate identity and thus satisfies ||ujf|| < ||u|| and ||u*r-ttlli~*0

as A/-»oo.24 From the first fact we conclude that NuM makes sense since

\\um\\ < II"II < P= RadiV. Using the Incremental Gain theorem for Ll (theorem 2.3.5), we con

clude that llAfa-iVujfl^-tO as M -*oo. Hence Nuu= yu converges uniformly to y as Af-+oo.

Um is a trigonometric polynomial so we know the fundamental formula holds for Nuu; putting all

this together we have shown

y(m)= limEf E \^i)^u(K)Mn{^kXt...Ju,kn) (4.8)
"-"—i^...♦♦.-■J

^Ei™/ E l«(*i).^(*.)II^(*.)^.(^*i-^*.) M)
nmV

The dominated convergence theorem justifies the interchange of limit and sum in (4.8) since as we

have mentioned before the first sum in (4.8) and (4.9) is always absolutely convergent and

I^Wl 5; !• Since lim CM(k)=il for each k, if we knew that the inner sum also converged abso-

lately we could apply dominated convergence once again to conclude

- E / E U{k1)...u(k9)Hu(jwklt...Jujk9) (4.10)

which would establish the fundamental formula in the general case.
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Unfortunatery the inner sum

Wx)...u(k9)H9Uu,kx,...ju,k9) (4.11)

is not always absolutely convergent (and thus does not always make sense). In such a case for

mula (4.9) is as close as we can get to the fundamental formula. But in fact the inner sum is

absolutely convergent in almost all situations arising in engineering. We now present two condi

tions which suffice:

Lemma 4.5.1s Suppose u has bounded variation over one period. Then

f E ll*(*iM(*.)l < oo

In particular, the inner sum (4.11) in the fundamental formula converges absolutely. The proof is

given in §A4.

Lemma 4.5.2s Suppose that Hn(jukx,...,juku)= 0(———). Then the inner sum (4.11) is abso-
*i"«*»

lately convergent.

Remark: This condition can be mterpreted as: AT is strictly proper. For example the kernels of

the input/output operator of a dynamical system with vector field affine in the input have this

properly.

The proof is in §A4. We summarize the results of this section in

Theorem 4.5.3 (Fundamental Frequency Domain Formula): Suppose ||u||<p and that

either

(I) the input u has bounded variation over one period, or

(A) the operator N is strictly proper, that is, H9(jukXt...Jvk9)=B 0(———).
kx...k9

Then the fundamental frequency domain formula is valid, that is:

*(>»)= ti E Wkl)..Mkn)H9Uvkl,...juk9))t E )

Proofs Theorem 4.5.3 follows from the discussion at the beginning of this section and the lemmas

above. O
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Appendix

Al. Volterra-Llke Serlea

In the study of (linear) convolution operators in engineering it is common to consider only a

subalgebra of the bounded measures, for example the subalgebra of measures lacking singular con

tinuous part.13 This algebra is large enough to capture all of the commonly occuring distributed

systems such as distributed transmission lines, transport delays in control systems, etc. Similarly

in the study of Voiterra series operators only certain types of measures occur in practice; the

singular kernel 1(tx)1(t2)c~*x6(tx-t2) ofexample 2of§2.1 is typical. Sandberg calls series with ker
nels of this form Volterra-Like;6 the idea occurs as early as 1953 in L. Zadeh's paper.25

In a Volterra-like series we index the series not by the order n but by a multi-index

n* = (n1,...n*) (n,>0). k is called the length of ft; the degree ot ft is defined by

fln*= ni+...+ nk.

AM0 = EM0

y*(0 =*/••• /M^.^)ti(<-r1)"l...tt(r-rt)"*rfr1...rfrk

where now the kernels A* are ordinary Ll functions instead of bounded measures. Each

Volterra-likekernel h? can be turned into an equivalentVoiterra kernel &» by:

hvfji>»Tk) £ SYMyr1,f,l+I,...f1l.,t+j)«(rrfj(...«(f,rrf,i)...«(r1l.rfl,)

We call ftp] the associated Voiterra kernel of the Volterra-like kernel hg. Collecting the associ

ated Voiterra kernels by degree

*. - E *pi (A1.1)

yields a Voiterra series equivalent to the Volterra-like series. Via this associated Voiterra series,

Volterra-like series inherit the concepts of gain bound function and radius of convergence.

Note that h*g* is supported on the ^-dimensional set given by*

Cjf = I{rXt...r9)T nx of the r's are xlt •••nk of the r's are xk J

Thus the associated kernel is singular (with respect to Lebesgue measure) unless n*»(!,...!).

•We appeal to the reader's intnithre notion, of dimension, bat it can be shown that the Haasdorff-Besicoritch di
mension ot Oris indeed k.
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We extend the notion of SYM to Volterra-like series by:

SYMhg(Tx,...Tk) a-jj] ktfg(r<tXt...rak)

where art= (naX,...nok)\ we say hg is symmetric if 8YMhg=shg. This agrees with our earlier

notation if we think of the old order n as the n-long multi-index (l,...l), since <7(l,...l)=(l,...l).

Note that SYMhg involves not just the Volterra-like kernel hg but all Volterra-like kernels of the

form fh = art. We say fit and ft have the same type in this case. A Volterra-like series thus has

P(n) different types of kernels of degree n, where P(n) is the number of partitions of n.** If the

Volterra-like series is symmetric then the kernels of the same type have identical associated ker

nels and are simply related by:

hm(Tv-"rk) ^ h<nt(Ti>~Tk) = MW"***)

This extension of SYM will also be useful in the study of multi-input Voiterra series.

Theorem Al.l (Uniqueness theorem for Volterra-Llke aerlea)s

Suppose N and M are Volterra-Like series operators with kernels hg and gg, respectively. Then

N = M iSSYMfir = SYMgt tor all ft.

Proofs The "iT part is clear. By the Uniqueness theorem (theorem 2.5.2) we know hn*=*gu,

where h9 and g9 are the kernels of the associated Voiterra series (given in (Al.l) above). We will

finish the proof by showing that h9 determines the Volterra-like kernels SYMAf.

Theorem A1.2 (Decomposition theorem for Volterra-Llke series):

Suppose h9 are the kernels of the Voiterra series associated with a Volterra-like series with kernels

hg. Then hu uniquely determines the Volterra-like kernels SYMhg.

Thus if a Voiterra series comes from a Volterra-like series, then each kernel can be uniquely

decomposed into the 2*~l symmetric Volterra-like kernels with which it is associated. Another

way to think of the Decomposition theorem is: the (linear) map of the symmetric Volterra-like

kernels into the associated Voiterra kernels (given by formula (Al.l)) is infective.

Before starting the proof, let us consider a simple example which illustrates the idea. The

second kernel of the associated Voiterra series is:

Mn,**) = *ku)i+ *R2)l= *(wy(ri>r2) + 2-*(2j(n)^i-^) + •^k&faW1'*-7*)

Decomposing h2 is easy: the terms A|2)j and ^Kufl are mufuatfy singular measures (The first is
supported on the line {tx=t2} and the second is absolutely continuous). To be quite explicit we

••There isnonice formula for P(»). For those interested it isasymptotic to (4%/3«)-'1expjrV2»/3.

February 2, 1984



-31-

have the formulas:

*(U)(fi»r2) = Wwd fof T\&2
- r+tr+t

»(2)M •" Um0"5^57 / / M*i.*a)«V»»

The proof of the Decomposition theorem uses the same idea: the associated kernels of kg

and hK are mutually singular unless ft and fh are of the same type. To prove this, note that the

associated kernel of hg has all its mass in the set

Cg = I (rlf...rn)r nx ofthe r's are xx,...nt ofthe r's are xk; x, are distinct 1

This is no more than the assertion that

/ ' ' *Jhg{TXt...Tk)u{t-rx)ni...u{t-Tk)*kdTx...dTk = / •••Jhg{Tx,...Tk)u{t-Tx)*l...u{t-Tk)HdTx...dTk
r, dbttnet

(remember that hg is an Ll function).

The sets Cg and C£ are disjoint if ft and nt are of different type, and equal if the types are

the same. This establishes the claim that the associated kernels are mutually singular unless the

multi-indices are of the same type. The Ll function Mri>—>M *9 determined by the integrals

/ •'" /Mfi*-#*3r)«iW...«*hWli-'rk (A1.2)

where the ut, i=l,...,fc are in L°°. According to the discussion above we have

/ • ••/««(n#—#ra)tt1(r1)...a1(rM«ft1)«^r.lf1)...«t(ra)dr1...dra

*• KJ • • • /Mri*-^*)«i(n)-«*h)d»i...rfrt

where JC is the number of Volterra-like kernels with the same type as ft. Thus the integrals

(A1.2), and hence the function hg, are determined by h9. This proves the Decomposition

theorem.

Remark: The Decomposition theorem is not so obvious as it might seem. For example consider

the consequence that (nonzero) operators of the form

y{t) - JJh^r^uit^fuit^d^dTt

can never be put in the form

»(0 —JAi^i^M'-nM*-^)8^^

This is so even though the associated kernels are both supported on two-dimensional sets. The

frequency domain version of the example above is: Suppose H^^s^s^ and H^^s^s^ are the
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Laplace transforms of symmetric functions in Ll(R+). The Decomposition theorem says we can

extract #(2^) and /f(i,s) from the fourth order frequency domain kernel

H^sXt...sA) = 8YMlHi2fipx+ »2, a8+ s4)+ H{l^sXt s2+ »8+ sj]

(which has nine terms!) There are explicit formulas which effect this decomposition, but we will

not give them here.

Corollary A1.3s If a., are symmetric, then

ll*.ll= E DM

Thus the gain bound function, which we originally defined via the associated Voiterra series, is

simply given by:

/(») - Ell VII*
1

st

AS. Ineremental Gain Theorem for L ?

To demonstrate the difficulty of a theory of Voiterra series operators for Lpt p <oo, which

is unadulterated by reference to ||u||oo» consider just the memoryless operator Nu(t)—f(u(t)). If

N is to be defined on any open subset of Lp then we must have RadyV=»p=oo. It is not hard

to show that N maps Lp back into Lp if and only if / is sector bounded, i.e. |/(j)|</f|*|.

Sandberg has recently shown that if N has a Frechet derivative at 0 (as an operator from Lp into

Lp) then / is in fact linear I22

We now give the proof of

lemma 2.3.4s

l|iv(u+ v)-n«\\, < imi, /(llttIMMlH(IMI> <imi,/'(IMI+IMI)

(Remember that unmarked norms are co-norms).

Prooft The conclusion is, if anything, sharpened, if we assume the kernels are symmetric (see

§2.5) so we will assume they are. Then:

(AT(«+v)-Nu)(t) - g J•••/A.(r1,...,r,)(n(a+ ^t-ri)-flu{t-ri)]dr1...dr9 »

«™i M 1-4 M-*+l

Thus
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\N(u+v)-Nu\{t)<

<e e$imi*-w-7(j--^

As in theorem 2.3.4 the bracketed expression is a measure in rx with norm \\h9\\, so we have18

Hiv(«+ »)-iv«||f <mi, g ll*.ll E (JJII-II'-'IIMI-' - |M|/(M+IMI)-/(IH1)

The last inequality in the conclusion of lemma 2.3.4 follows from the mean value theorem.

A3. Taylor Serlea Which Aren*t Voiterra Series

In §2.5 we showed that the Voiterra series operators are simply Taylor series of TI operators

.L^-^L00, but noted that the Voiterra series are not all of the Taylor series. In this section we

discuss this point in more detail.

Much of the theory of Voiterra series holds for the more general Taylor series

JV»= £iy«)- E^K •>«)

where M9 is the bounded TI n-linear map jL00-*/,00 given by A/, =(n!)_1/)(,,)N(0). With the

gain bound function /(z)=EII^»ll** on^v rotational changes are required to prove all the

results of §3. For example, such an N has a Taylor series inverse near 0 if and only if Mx is

invertible.

The differences between our formulation of Voiterra series and a more general formulation

based on Taylor series are:

(I) Not all bounded TI n-linear maps :L°°" -*L°° have a convolution representation

Mn(uXf...U9) •» / •• •Jh9{TXt...,T9)ux{t-Tx)...U9{t-T9)dTl...dT9 (A3.1)

with n,€B".

(II) The norm we use, \\h9\\, is not equivalent to the norm || ||ml on ^(L^L00), it is stronger

(larger). That is (with some abuse of notation)

IIA.IU J^npJI^ <IIA.II

and the ratio of the two is not bounded away from zero. Indeed we will give an example where

the ratio is zero.

(I) is true even for n=l. We now give an example. Consider the subspace of L00 of those

it's with a limit at l=»-oo, that is
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fticl* I lim u(r) exists]

On this subspace we define F(u) £ lim u(t). F is clearly s> LTI bounded functional on this sub-
l-»-00

space. Using the Hahn-Banach theorem and the Axiom of Choice F can be extended to a LTI

bounded functional on all of L°°( which we denote LIM.7 LIM can also be thought of as a

bounded LTI operator :Lco-*Lco (though its range is just the constants).

For any u which vanishes for t <0 we have LIMu =0. This establishes that LIM is causal,

and that LIM has no representation as a convolution with a measure. It also shows that the

Steady State theorem does not hold for LIM. To mention just one more bizarre property of LIM,

it is a bounded LTI operator which maps sinusoids to constants*.

Clearly this example is absurd from an engineering point of view. LIM's perfect memory of

the infinitely remote past (and indeed, total amnesia for the finite past) contradicts our intuition

that bounded LTI physical devices and systems should have a decaying memory.*

*

Let us now give an example of (II). For n>l JjLIMu, furnishes an example of a bounded
1-4

multilinear operator not given by a convolution as in (A3.1). Less bizarre examples can also be

given for n>l. For example we can have a convolution representation with h9 an unbounded

measure. ** Consider the kernel

r-^oo'o o

(1+riXl+ia)

Then IMI = /lMri»r2)| dTxdr2=* oo. Nevertheless this kernel induces a bounded bilinear map

:L°°2-» L°°. First we have to say what we mean by the convolution since the integral in (A3.1) is

not absolutely convergent with this h2. We mean

TT

A#2(tti»Oa) & Jim /J h2(Tl,r2)u(t-rl)u{t-T2)drldT2

To see that this limit exists and that M2 is bounded, we rewrite this as

As T-+C© the lefthand bracketed expression in (A3.2) converges in L* to the L2 function

tts(r2)/(l+ r2)i by the Plancherel theorem the righthand bracketed expression in (A3.2) converges

in I2 to the L2 function Re|ux(')/(l+('Mlfe)' Consequently the limit in (A3.2) exists and is

'Moral: don't Eddie with the Axiom of Choice.

••la the Uteratnre this is often stated: •/ • •• f \hu(rv...,ru)\irl...drn <oo is a sufficient bat not necessity
condition for BIBO stabilityof a second order Voiterra operator." An incorrect example is given in [26}.

February 2, 1984



-35-

bounded by

WA*»*A*H <
•+)
i+()

Re

<^KlUNIe
- 3

which establishes ||A/2|Iml < 2\/5ff/3. This example was suggested by D. J. Newman. Like the
first example LIM above, it is rather forced.

There are thus at least three costs associated with generalizing Voiterra Series operators to

arbitrary Taylor series:

(1) We lose the concrete convolution representation (A3.1);

(2) The norm ||An|| = / • • •/1 h91 drx ...dr9 is replaced by HMJI^ which is nearly impossible
to compute;

(3) We includeclearly nonphysical operators such as LIM.

It is the authors' feeling, and we hope the examples above have convinced the reader, that the

mathematical elegance and completeness of a general Taylor series formulation is not worth (1)-

(3).

li+HJ

A4. Absolute Convergence of the Inner Sum

In §4.5 we established the Fundamental Frequency Domain Formula under the hypothesis

that

f E )Wkl)...u(k9)H9Uu;kl ju,k9)\ (A4.1)

be finite. In this section we give two simple conditionswhich ensure that (A4.1) is finite, the first

a condition on the input signal u, and the second a condition on the kernel H9.

A4.1 Conditions on the Input Signal

We seek conditions which ensure that

l*i* +*.•—/
(A4.2)

is finite. This of course implies that (A4.1) is finite, since \H9\ < \\h9\\. Note that (A4.2) is sim

ply (A4.1) when N is the simplest possible n-order operator: the memoryless n-power law device

Nu(t)=*u(t)n.
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Since u^L™, u€L2, song/8. Thus for n=*2 (A4.2) is just a convolution of two sequences

in I2 and thus is finite by the Cauchy-Schwarz inequality:

E l/(*i)*(**)l - E t/(*)l U(w-*)l ^ Wf\U\\9h (A4.3)

Since the convolution of two I2 sequences is not, in general, in I2, the finiteness of (A4.2) already

is dubious for n=3. On the other hand if u €'\ then convolutbn iterates of u make sense and

are still in I1: (A4.2) is then bounded by ||u||f.

It is a remarkable fact that for most u (A4.2) is finite, even when fi b not in tl. It is not

true for all u € £°°, cos(l/t) (extended periodically) is a counterexample.*

Theorem A4.1.1 Suppose that u(*)= 0(1/*). Then (A4.2) is finite, that is

r E N*(*iM(*.)l <«>
\V ♦*.—j

Proofs Suppose that u(Jb)= 0(1/*). Then there isa constant 0 such that |u(*)|< 0i>{k) where

W»{l/|*| *p8
Since v€ P, it is indeed the Fourier series of some L2 function which we will call, surprisingly

enough, v. In fact

v(t)=» 1- log2 - !og(l-cosj)

the verification of which we will spare the reader.

Now

( E ll«(*iM(*.)l </H E W*iM(M" (A4.4)

so it will suffice to show that the righthand side of (A4.4) is finite. We break up the proof of this

into three lemmas:

Lemma It Suppose / and g are in L2. Then {fg)=*f*g.

Even though this is well known we give a short proof here for completeness.

Prooft We have already seen in equation (A4.3) that the convolution f*g converges absolutely.

Recall that (Plancherel theorem)

II * - E m*m Ik - 0 as U - oo (A4.5)

•D. J. Newman, personal communication.
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By the Cauchy-Schwarz inequality

2nrx

h I /(«Xf(0- E gW")e-J°mtdi
2* kmm-ti

<ll/Il2!U-E«*)^wttll2 (A4.6)

By (A4.5) the righthand side of (A4.6), and therefore the lefthand side of (A4.6), converges to 0 as

A/-*oo. But the lefthand side of (A4.6) is just

(Mm)- E *(*)/>-*)
kmm~M

Letting M-*oo yields the conclusion. O

Lemma 2: v(t)n €Ll tot all n. (That is, v6Lp for all p<oo).

Prooft Clearly we need only worry about the singularity at M, that is v(t)* £Ll if and only if

(log(l-cosf))" is integrable near <=0. This is true iff (logs)" is mtegrable near <«0, which is true

since

1 -kc<

/|logi|"rf<«= / e-*xndx < n!
< o

which establishes lemma 2.0

Lemma 3:

E W*i)...iKM = KKm)
U* **.-*}

(A4.7)

Prooft By induction on n. Suppose we have established (A4.7) for n. By lemma 2 v" and v are

in L2, so applying lemma 1 wehave (t;"+1)T=* {vn}*v; using the inductive hypothesis

(v^)(m) » S I E I*(*iM(*») «(m-m) = / £ )0(ir1)...0(*8+1)( S )l*i* **.—j

the change of order valid since the summand is positive (Fubini Theorem). This completes the

proof of lemma 3.0

We can now finish the proofof theorem A4.1.1. From (A4.4), (A4.7), and lemma 2 we have

r E M«(*iM(*.)l < WW < IKIU < co

establishing theorem A4.1.1.0

One useful condition which implies u(n)~0(l/n) is that u have bounded variation over

one period.
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Lemma 4.5.1: Suppose u has bounded variation overone period. Then

r E t!*(*iM(MI <«)

Prooft If u has bounded variation over one period then tf(n)=» 0(ljnfA (theproof is essentially

integrating by parts the formula for d(n)) and thus theorem A4.1.1 proves lemma 4.5.1.0

A4.2 Conditions on the Kernel H9

Lemma 4.5.2i Suppose that Hn{jwkXf...Juk9)=* 0( 1 ). Then (A4.1) is finite, that is:
KX...K9

i E ll«(*i)...«(*.)H.(yw*i,...,yw*.)I < <»
i*i^ **.—j

Prooft Suppose Hn(ju>kx,...jwk9)= 0{lfkx...k9). Then /f.(;w*x,...,;w*.) € C\Z%). Since uel2,
u(kx)...u(k9) 6 P{Z*) with norm ||ti||£ so the Cauchy-Schwarz inequality yields

i E mkx)...u{k9)H.Uvkh..J<**Jk < E \Hkx)...&{k9)H9{jukXt...Juk9)\

£ ||ti(*l)...u(JbJ()||8||H.(yW*l,...,;u;*,)||8 - \\u\\mn(J^i^J^n)\\2

which proves lemma 4.5.2.0

AS* Almost Periodic Inputs

Recall that r is said to be an c-translation number for u if ||u (•)-«(•+ r)|| < c. u is almost

periodic if for all e>0 there is an L such that all L-long intervals contain at least one c-

translation number for u. Formally

Ve>03LVa3r(fl<r<a+L and ||n()-ti( + r)||<€ )

These definitions and a concise discussion can be found in Wiener's book.27

Theorem A5.lt Suppose u is almost periodic and ||ti||</>=RadJv*. Then Nu is almost

periodic.

Prooft Let e>0. Choose r with ||u|| < r < p. By the Incremental Gain theorem (theorem 2.3.2)

there is a A" such that on B, \\Nu-Nv\\ < JC||u-t;||. For any r, ||n(-+ r)|| < r, hence if r is an e-

translation number for u then

||Afo(-HV..(-+r)|| < tf||«()-u( + r)|| < Ke

so r is a /Te-translation number for Nu.
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Now to finish the proof: Since u is almost periodic find L such that all L-long intervals con

tain at least one e/Jf-translation number for u. From the discussion above these translation

numbers are e-translation numbers for Nu, thus Nu is almost periodic.O

We will now establish the analogous fundamental formula for almost periodic inputs.

Theorem A5.2 (Fundamental Frequency Domain Formula for Almost Periodic Inputs):

Suppose that u is almost periodic and ||u|| < pmRadiV, and in addition

f E \|fiK).»»K)^»(Mx»-.-"KM < °° (A51)

Then for any u£R

(JVo)(a/)« S J E \^kl^M^ka)Hn{jufkl,...Jijkm) (A5.2)
TV-♦•\—I

Prooft Due to the similarity to the case of periodic inputs, we give a shortened proof. As in §4.3

we first assume that the input has the form

•(0- E «*'**'
km-M

We will call such ana multitone signal It is easily verified that for multitone signals

ritaij.(0^*-{0 othcrwiTO (A5.3)

The limit in (A5.3), which can be shown to exist for any almost periodic function and any veR,

is denoted u(v). The same argument as in §4.3establishes

Nu(u) = g ( J] \^kyH^km)Hn(Mx M.) (A5.4)

for the case of a a multitone signal. We now appeal to Bohr's characterization of almost periodic

functions: they are precisely the uniform limits of multitone signals.2"? Thus there is a sequence of

multitone signals uu with ||ujif|| < P and u^-* a uniformly as M -*oo. By the Incremental Gain

theorem Nuu-^Nu uniformly as A#-*co. Hence for any v in R (Num)(v)-*(Nu}(v). Since for

mula (A5.4) above holds for multitone signals we have

(Nu)(u>) = £ Jim f 2 rtw(wg...ttM(wfcJiMM.,...,/"*.) (A5.5)
n*=iM~¥CO\uk +...+»* «w j

Since uu-*u uniformly, uw(o;)-• u(u/) uniformly. Dominated convergence and hypothesis (A5.1)

yield
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AsallCok^...tukmm,j

which is the conclusion of theorem A5.2.0

-40-
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