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Analytical Foundations of Voiterra Series s

Stephen Boyd, L. O. Chus, and C. A. Desoer #+

1. Introduction

A Volterra Series Operator with kernels h, is one of the form

Nu(t) = 3 5a(t) | (1.13)
sasl
w(t)=f """ fh,(r;,rz,...,r.)u(t—rl)u(t-rz) cocu(t-r,)drdry - - - dr1, (1.1b)

and is a generalization of the convolution description of linear time-invariant (LTI) operators to
time-invariant (TI) nonlinear operators. These operators are important because many TI non-
linear operators occurring in engineering either have this form or can be approximated, in some
sense, by operators of this form. Volterra series have been the object of much recent study. The
focus has primarily been on proofs that the input/output (I/O) operators of dynamical systems,
and various gemeralizations, have a Volterra series representation, and the relationship between
the Voiterra kernels and the geometry of the dynamical system.!'2 For example M. Fliess et al
have found a simple and elegant formula for the kernels of a dynamical system in terms of vari-

ous Lie derivatives.3

In contrast our focus is on the analysis involved with Volterra series. We first carefully
address the basic issues of the formal Volterra series (1.1) above: what are the kernels (functions,
distributions...?) and when do the integrals and sums in (1.1) make sense? In the remainder of §2
we examine the elementary properties of Volterra series operators, both system-theoretic (e.g.

bounds on their gain and incremental gain) and mathematical (e.g. their relation to Taylor series).

In §3 we use the methods of §2 to prove some well-known formulas for the kernels of various
"system interconnections”. We give an elementary and complete proof of the Inversion theorem

for Volterra series, and work through an illustrative example.

In §4 we explore some frequency domain topics. We start by proving the Steady State
theorem for Volterra series operators. We then establish the validity of a general formula for the
spectrum of the output in terms of the spectrum of a periodic input.

In the appendix we present more advanced (and esoteric) material: Volterra-like series,
incremental gain theorem for L?, Taylor series which aren’t Volterra series, conditions under

which the frequency domain formula of §4 holds, and almost periodic inputs.

¢ Research supported in part by the Office of Naval Research under contract N0G014-76-C-0572, the Natiomal
Science Foundation under grants ECS 80-20-640 and ECS 81-10-763, and the Fannie and John Herts Founda~
tion.

s¢ The authors are with the department of Electrical Engineering and Computer Sciences, and the Electronics
Research Laboratory, University of California, Berkeley 94720,
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The results we present range from "well-known” (e.g. the Uniqueness theorem) to new (e.g.
the material in the apperdix). Ia order to keep the paper interesting and accessible to a wide
audience, we have used only the basic tools of real analysis, in a few places developing some
necessary background material. We do not present the results in their full generality: we have
limited the scope of the paper to single-input single-output (SISO) stable TI Volterra series in
order to do a more thorough job on this important case. Extensions to other cases will be

presented in a future paper.

The references we give are not meant to be complete but only representative. More com-

plete bibliographies can be found in our references, for example Sandberg [1 | or Fliess et al [3 ].
2. Formulation

%.1. What are the Kernels?

In most treatments the kernels A,(r,,...,7,) in equation (1.1) are interpreted as functions
from R" to R. Unfortunately this interpretation rules out some operators common in engineer-

ing. We start with two examples:
Example 1:

Z2=-z2+ o
y=1z
and z(0)==0. Then
t 2
y(t) = {fe"u(t—r)dr}
°
={ [1r)ire " Pu(e-n)u(t-r)dndr
so this operator has a Volterra series description with just one nonzero kernel,

ho(n,m) = l(fl)l(fz)e-('ﬂ.w

This kernel A, is an ordinary function :R%2— R.

Example 23
t=-z+ u?
y=z2

and z(0)==0. Here

y(t) = }e"u(t-r)’dr =
]
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= [f 1(r)Y(r)e Hri—ro)u(t-n)u(t-r2)drdr,

if you will condone the notation. So here the kernel A, is not a function as it was in example 1

but a measure supported on the line r;==7,, informally given by
ho{r,s) = Ur)U(r)o{ry-r)e

These examples are typical- in general the Volterra series of dynamical systems with the
vector field affine in the input u (e.g. in bilinear systems) have kernels which are ordinary func-
tions whereas in other cases more general measures may be necessary.2:456 In the latter case
Sandberg has called the series "Volterra-like”. §A1 contains an in-depth discussion of Volterra-
like series.

A less exotic but widely occurring nonlinear operator whose description requires kernels

which are measures is the memoryless operator

y(t) = f(s(t))
where f:R —R is analytic near 0.

We will allow our kernels to be measures. We will see that the analysis is no harder, and

the resulting theory then includes all the examples above.

2.2. When the Series Converges
(- .
Recall that the ordinary power series g(z)= ), a,z" converges absolutely for |z|<p, where
a0

the radius of convergence is given by p=(lim |4,|¥*)*. Similarly a radius of convergence p can
#=+Q0

be associated with a formal Volterra series
Na(t) = y(t) = 32 [ - [halronta)u(t-r)ons(i=r)dr,...d1 2.1)
sem]

such that the series will converge for input signals with |u(¢)] < p.

More precisely, let B* be the bounded measures on R} (R4 2 ({r|r>0}),* with
[luli = fdlu}. For convenience we will write elements of B* as if they were absolutely continuous
("Physicists’ style”), e.g. ho(ry,7)=8r-r)e " For signals || || will denote the co-norm, i.e.
Hull=llullo.*e
Definition: By a Volterra series operator we will henceforth mean an operator given by equation

(1.1) above and satisfying assumptions

*We thus consider only causal operators, but in fact all of the following holds for kernels whick are bounded
measures o3 R*.

*¢An excellent reference on bounded measares and theso norms (and analysis in general) is Rudin’s book |7 |.

February 2, 1984



(A1) A, € B*, and
(A2) @uh.nll«oo, that is, {||3,]|"/*} is bounded.
L

Our first task is to determine for which u's equation (2.1) makes sense.

Definition: If N is a Volterra series operator with kernels 4,, we define the gain bound function

00
of N to be, for 220, f(z) & ¥ ||A,]|z* (with extended values, that is, f(z) may be co). The
sunl
radius of convergence of N is defined by p==RadN A (iim ||4,|['/*)™.
8—+00

Assumption (A2) implies that p>0 and that the gain bound function f is analytic at 0, with
normal radius of convergence p. Since all the terms in the series for f are positive p is also given
by p=inf{z|f(z)=cc}, a formula which will be useful in §3. We can now say when (2.1) makes

sense:
Theorem 2.2.1 (Galn Bound Theorem):
Suppose N is a Volterra series operator with kernels A,, gain bound function f, and radius of

convergence p. Then

(I) the integrals and sum in equation (2.1) above converge absolutely for inputs with ||s]|< p,
that is, in B, the ball of radius p in L.

(II) N satisfies || Nu]| < /(]|u||) and consequently N maps B, into L™.
(IT) is partial justification for naming f the gain bound function, we’'ll soon see more.

Theorem 2.2.1 is well known (in various forms).8.9:2,19,11,5,12,1

Proofy

[ [Iha(rpeenra)u(t-n).u(t-r) | dry...dry < [IBa1l11ull®

In particular, the integrals make sense. If ||u]|< p, then

i 1S« [halrueta)u(t-n).u(t-r,)dn...d1, |
< if oo [ Balryyeenta)u(t-n)..u(t-2) | d7y...d 7,

< i WA llull* = £(lsl}) < oo

which establishes absolute convergence of the series and the gain bound in (II).O

For convenience we adopt the notational convention that throughout this paper N will
denote a Volterra series operator with kemnels A,, gain bound function f, and radius of conver-

gence p.
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The Gain Bound theorem has many simple applications. For example, the tail of the gain

bound function gives a bound on the truncation error for a Volterra series.
Corollary 2.2.2 (Error Bound for Truncated Volterra Serles)s
The truncated Volterra series operator defined by

t
NO(t) A Y [« [ha(ryeta)u(t-n)...u(t-1,)dy...d7,
nam)
satisfies
(-]
[INe -NOul| < X5 [Aallle]l”
sent4 )

which is o (||ul]*).
2.3. Elementary Properties: Continuity

We will now show that N is continuous on B, and Lipschitz continuous on any B,, r <p.

Lemma 2.3.1: Suppose |{u]| + ||v]| < p. Then
IN(s+ v)}-N(u)ll < £+ [oll)-/ Aol < £/ (lsll+ NoiDilvll

Proof: Assume [|u]|+ ||v]|<p. Then ||u+ v||<p so N{u+ v) makes sense and

| N(s+o)(t)-N(s)(¢)| < (2.29)
< g f oo f h.(r,,...,r.){E(u-l- v)(l-ri)-ili[‘u(t-r‘)} dn..dr, (2.2b)
< BUsIE Ol liolr (2.2¢)
o=y Ju=)
= Simftrot+ o ol (2.24)
sum]
= f(llsll+ llvlD)- 7 (lu]} (2.2¢)

This technique will recur so careful explanation is worthwhile. In (2.2b) the first product, when
expanded, has 2" terms; the second product is precisely the first term in the expansion. Replac-
ing the remaining 2"-1 terms by their norms and integrating yields (2.2¢).

The final inequality in lemma 2.3.1 follows from the mean value theorem, since

Illsl+ lel)-7(lull) = £/ (ol

where ||u||< ¢<||u]{+||v]| and f’ is increasing. Thus f’ can be interpreted as an incremental
gain bound function for N.O
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Theorem 2.3.2 (Incremental Galn Theorem): Let B, be the ball of radius r in L, and sup-
pose r < p. Then

(I)  N:B, — By, is Lipschitz continuous,
(I) N:B,— L% is continuous.
Proof: Suppose u and v are in B,. From the Gain Bound Theorem
fINe -Noll < 7(llsll) + (101D (2:3)
We claim that

[1¥a - Nofl < £(la-oll+ llo1D) - £(lIoll) (24)
For |ju-v||+ |lv]l <p (2.4) is simply lemma 2.3.1; for ||u—v||+||v]| = p (2.4) is true since its
righthand side is co. From (2.3) and (2.4) we deduce

| Nu-Nol| < min{ f ({{u-v[+[lol)-S (oI}, 7UlslD+ (12} }

ol Lirtlls-vl)-r(r) 2/(r
< ool minf Lt Recell=0) 20} < scfu-ol
where K is the max of the expression min{-:-} for 0<||u-v||<2r. K is in fact
2/(r)/(/7%(31 (r))-r) and is quite finite (see figure 1). This establishes (I); since (I) is true for any
r < p (1) follows. O

We will soon see that N is much more than merely continuous; for example, N has Frechet
derivatives of all orders on B, But before moving on, we present an extension of the last
theorem which will be important in §4.

Recall that for linear systems y==4,%u we have the result ||y|l, <||Ailllls]l,, for
1<p <013 It turns out that when properly reformulated the Gain Bound theorem and the
Incremental Gain theorem are also true with general p-norms. First some warnings for p <co: a
Volterra series operator need not be defined on any open subset of L? (eg.
Nu(t)=u(t)/(1-u(t))), and even when it is, it need mot map L? back into L? (e.g.
Nu(t)==u(t)?). For more details and discussion we refer the reader to §A2.

Theorem 2.3.3 (Galn Bound theorem for L?): For1<p < o0

el < i, LI

(unmarked norms are co-norms).

Even though our next theorem is stronger, we give the proof here to demonstrate the basic

argument.
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Proof:

lua(t)] < I tee I'ba(’b"-:'n)“(t'fl)""‘(“'a)l dn...dr,

S [T (T XN PP YR (PPN P (23)

Now the bracketed expression in (2.5) is a meaeure in 7, with norm ||A,]||, hence using the result

for linear systems cited above we have!3

loally < Null**l1Aallllull,
Thus

INull, < S lisall, < lall, 3 1sI0ult= = flujf, L0210
axx} nma] ' "”"

which establishes theorem 2.3.3.0
Lemma 2.3.4:

¥ (w+ o)~y < i), LAUM=TURD < oy, g2 gragie oy

The proof combines the proof above with the proof of the Incremental Gain theorem and is in
§A2.

Theorem 2.3.5 (Incremental Gain theorem for L?): Let B, be the ball of radius r in L%,
with r < p. Then there is a K such that

| Nu-Nol|, < K[ju-v|l,

The proof is identical to that of theorem 2.3.2 and so is omitted.

2.4. Multliinear and Polynomial Mappings

This section contains mostly background material for §2.5 and may be skipped by those
familiar with the topic. There are many good references on this material, both in mathemat~
iesl% 15 and engineering.15: 17

Note that the nth term y, in a Volterra series is homogeneous of degree n in the input u.
Indeed much more is true; it is a polynomial mapping in .

Definition: Let V and W be vector spaces over R. Then M:V*— W is said to be multilinear or
n-linear if it is linear in each argument separately, i.e. if

M(vy,...0;+ aw,...v,) = M(v,,...v;,...v,) + aM(v,,...w,...v,)

Example 1: V=R*, M(v,,v,)=v]Av, A € M,
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Example 2:Let V=W =L%, 4 € B*and
M(uy,85) == [ [b{r,r)uy(t-n)u (t-r)drdr,
Definition: Let M:V* — W be n-linear. Then a map P:V—W of the form
P(v) = M(v,...v)

is said to be an n-order polynomsal mapping.
Example 3: Let V=W =L>, € B®and
P(u) = [ [B(r,r)u(t-r)u(t-rp)drd 1,
And in general the nth term of a Volterra series operator is an n-order polynomial mapping in

the input u.

Theorem 2.4.1: An n-order polynomial mapping is homogeneous of degree n, but the converse

is not true.
Proofs P(av)= M(av,...av)= a"M(v,..v)= a"P(v).
To see that thé converse is not in general true, let V=R2, W=R, and consider
F(2y,29) = ([z1] + |2])* = 2 + 23 + 2|z,2,]
F is homogeneous of degree two but is not a polynomial mapping, since a second order polyno-
mial mapping satisfies P(z;+ z5) + P(z;-25) = 2P(z,)+ 2P(z,); F does not.

This distinction between a homogeneous mapping and a polynomial mapping is like the
difference between a general norm and a norm which comes from an inner product. To bring the

discussion home to engineering consider the nonlinear T1I operator N given by
Nu(t) = F(u(t),u(t-1))

Nis homogeneous of degree two. We will see later that the response of a second order Volterra
geries operator to an input of the form u(¢)==coswt has, at most, two components: one at D.C.
and one at 2w. N(coswt), however, has infinitely many harmonics.Q

We need just a few more definitions:
Definition: An n-linear map M is said to be symmelric if for any permutation o € S*
M(v54y0eyVq ) = M(vy,...,5,)
Thus the bilinear map of example 1 is symmetric if A==A7T, and the bilinear map of example 2 is
symmetric iff &(ry, 7)== h(m,n).

Deflnition: SYMM is the multilinear mapping defined by

SYMM(vy,...,5,) & % Y M(Va10eVen)
g€ Ss*
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and similarly if A, is a function or measure, we define
SYMb,(1,,...,7.) & -’%- Y. Aa(TorseesTon)
¢ES*

SYMM derives its importance from:
Theorem 2.4.2: Suppose the polynomial maps P, and P, are induced by multilinear maps M,
and M,, respectively. Then P;= P, if SYMM,=SYMM,.

Thus two bilinear maps of the form of example 1 induce the same polynomial map if and
only il Ay+ AT = A+ AL,
Proof: First note that SYMM and M always induce the same polynomial map, since

SYMM(v,...,v) -"l!- ZS.M(U,...,U) = M(v,...,v)
q€

The "if” part follows. In the next section we will prove more than the "only if” part, so here we
will give just an informal sketch of how the "only if” proof goes. The key is the formula

T Tt oo P ) = SYMM(s..,0) (26)

so that P, = P, implies SYMM, == SYMM,. To "establish” the formula, note that
)

p(ga‘. v) = 2 e o 2 d,"...a.'.M(Uilp"'tvi.)

L]
ip=l =l
The only terms which contribute to

1

n! 8ay...0a, Io-o
are the n! terms where the (i;) are a permutation of (1,2,..,n), and the resulting sum is
SYMM(v,,...,v,). Of course we don't know yet that these derivatives exist, but we will see later
that if the multilinear operators are bounded, then these derivatives can be interpreted as honest

Frechet derivatives.

This process of determining SYMM from the polynomial map P induced by M is known as
polarization. In fact, we could replace the formula (2.6) above involving partial derivatives with a
purely algebraic one; for example for n==2 we have the polarization formula

u"" Uy
2

Uy-ty

SYMM(u,,u2) = P( 2

) - P(

We gave the formula (2.6) because it generalizes to whole Volterra Series; the algebraic identities
do not.
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Let us now assume that V and W are Banach spaces. Then an n-linear map M:V* — W is
bounded if

I ::hlg ‘"M(v,,...,v. N < (2.7)

in which case we call the lefthand side of (2.7) the norm of M as a multilinear operator and
denote it ||M[|az . The bilinear operator of example 1 is bounded, with ||M||rz =& A).* The bil-
inear operator in example 2 is bounded with norm at most ||5g]|*s.

We now quickly review derivatives in Banach space.!5:14 Recall that L(V,W) denotes the
Banach space of bounded linear maps from V into W, with the operator norm
[14]] &sup{||Av]|]||v|{<1}. A map N:G—+W, where G is an open subset of V, is said to have
a Frechet or strong derivative DN(uo) € L(V,W) at uo€ G if

[IN(ug+ u)~ N(uo)- DN(uo)ul| = o(]]u]l)

If the map ug—DN(uo) has a Frechet derivative, we say N has a second Frechet derivative
D®N(u,) and it is an element of L(V,L(V, W)). Fortunately this space can be identified with
L{V,W), the space of bounded bilinear maps : V>~ W, with the norm || ||yz defined above.
Similarly the nth Frechet derivative, if it exists, can be thought of as a bounded n-linear map
:V*—W. It can be shown that D(*)N(u,) is symmetric, e.g. if D**+IN(u,) exists.

We now have all the background material necessary for

2.5. Relation to Taylor Series; Uniqueness of Volterra Serles

We will now see that Volterra series operators are Taylor series. As pointed out by M.
Fliess et al® this is not true of unstable Volterra series operators (those not satisfying assumption
(A1)) which are more properly viewed as perturbational expansions.

Theorem 2.5.1 (Frechet Derivatives of Volterra Series Operatora):
On B, N has Frechet derivatives of all orders with

DWON(uo)(uy,...,us)(t) = (2.8a)

= 8YM in(n-l)...(u-b-l- nf..[ h,(rb...,r.)‘lli[.ui(t—r,»)d r,-_lf_!:nuo(t-r.-)drg (2.8b)

Thus {|DON(uo)|l < 7*X||uo]]) and (n!)2DIN(0) is the n-linear mapping associated with the

nth term of the Volterra series and given by:

;1!- D™IN(O)(uy,..., 5, )(t) = J oo Ba(rpyeesta)us(t-n)...uq(t-12)d 7y...d 7,

*F(A) means the largest singular value of A; here we assume the Euclidean norm on R®.
¢sThe actual norm, rather than this upper boand, is hard to compute; see §AS.
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Remark: Theorem 2.5.1 tells us that the Volterra series we have considered so far are in fact Tay-
lor series of operators :L®— L%, The reader may wonder whether the Volterra series constitute
all of the Taylor series of TI nonlinear maps :L*°— L*®. In §A3 we show that this is not true,
but that the Taylor series left out are not important in engineering.

Prooft Let M; denote the multilinear map given in (8b) above. We will show that
L3
N(uot 8) = 35 grMu(,en8) = o(flu]|**)
[ 1]
which will prove M; = D*)N(u) as claimed. First note that
' ©
1M1 S 35 -1 (n=t+ Dallladll™* = 1SYluol)

Now

00 L] k ]

N(ugtu)= Y [ -+ - [SYMb,(ry,...,ra) ¥ (DIT wi(t-r)dr TI wolt-ri)dr  (29)
n=n] b0 famy fmabdel

For ||u]| small enough ( |lu]| + ||ug)] < will do) the entire righthand side of equation (2.9) is

absolutely convergent so we may rewrite it as:
00 k ]
=3 -,}!-2 n(n-1).{n-b+1)f - - - [SYMby(ryor) [T wi(t-r:)dn T udlt-r,)dr
k=0 iy immb1

a0

= Y T‘,—-M;(u,...,u)
t=0
Thus we have

Vot o)~ B grbitoreall S 55 Ml

< hg“;‘,-!"’(lluoll)llull* = 1 (lsdli+ lsl- 5 57wl
which is indeed o(]|u]|*+?).O

Theorem 2.5.2 (Unlqueness Theorem for Volterra series): Suppose N and M are Volterra
series operators with kernels &, and g,, respectively.

Thea N= M if SYMh, = SYMy, for all n.

Note that N == M asserts equality of maps from some ball in L= into L, whereas the con-

clusion asserts equality of a sequence of measures.

Prooft The "if” part is clear, (see theorem 2.4.2). To show the "only if” part we will show that
the measures SYMA, are determined by the operator N. A measure p € B* is determined by its
integral over all n-rectangles in R*, i. e. by the integrals
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I fplryeta)u(-n)...o(-r,)dn...d7, (2.10)
where each u; is the characteristic function of an interval. Now by theorem 2.5.1 we have

[ [SYMby(ry,e.,t)us(-n)..ctiy (-1 )d .. d 7y
= L DOIN(u,.,4,)0)

g0 that N determines the integrals in (2.10) and hence the measure SYMA,. A more explicit for-
mula for these integrals is:

I ° fsm,’u(rl:”vra )"1(-”1)-..“.(—1’, )dfx...df,

l al L]
= nl day...0a, IMN('éa,-u,-)(O)

which is the formula mentioned in the previous section.Q

The Uniqueness theorem tells us that we may as well choose our kernels 4, to be symmetric,
and from now on we will assume that all kernels are symmgtric. Of course other canonical forms

are possible and in some cases more convenient. For example the triangular kernels satisfy
Biri a(71yees7s) = 0  unless 01 < ...< 7,
and the Volterra series is then
o th 2
Nu(t)= Y, [ [ [bia(ri,eesta)u(t-ny)...u(t-r14)d,...d7,

s==i0 0 [ ]

These kernels are often convenient in the study of dynamical systems.
One point worth mentioning: the triangle inequality implies
"sm,.l" == "’*m-" < ",‘a"

Thus using the symmetric (or triangular) kernels can only decresse the gain bound function f
and hence increase the radius of convergence p. In the sequel we will refer to the gain bound
function and radius of convergence computed from the symmetric kernels as the gain bound func-

tion and radius of convergence of N.

2.6. Final Comments on the Formulation

The formulation we have given is by no means the only possible. For example, we could
interpret the norms on input signals and kernels as L2 norms, leaving the norm on output signals
(ie. y=Nu) an L™ norm. Input signals and kernels would thus be L? functions with
1Al AlIAalle =([...[Bu(ryye.s7afPdTy...d7, )2 Then with the exception of the L? material of
§2.3 all the preceding results hold. This is essentially the Fock space framework proposed by
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deFigueiredo et al.»!8

3. Applications to Systems Theory

In this section we apply the ideas of the previous section to give simple rigorous proofs of
some well-known theorems. We show that the sum, pointwise product, and composition of two
Volterra series operators have Volterra series and we bound their gain functions. We proceed to
find the condition under which a Volterra series operator has an inverse and compute its kernels.
This is applied to show that the I/O operator of a simple dynamical system is given by a Volterra

series.

This program of working out the Volterra series of various "system interconnections” was
first carried out at MIT in the late 1950's,% 19 but none of this work is rigorous. This constructive
approach is not really a fully modern approach, where one powerful general theorem would prove
all these theorems (and more).! Unfortunately this one powerful theorem may be so general and
abstract that the underlying simplicity of the formulas may be lost. In this section we want to
demonstrate two things: First, that supplying the analytical details in the MIT work is relatively
straightforward; and second, that the resulting formulas, though complicated, are just simple
extensions of the same formulas for ordinary power series. This of course should be expected in

view of theorem 2.5.1.

The notation for this section is as follows: A and B will denote Volterra series operators
with kernels s, and J,, gain bound functions f, and [z, and radii of convergence p, and pg,
respectively.

3.1. Sum and Product Operator
The pointwise product of A and B is defined by

[4-Blu(t) = [Au](¢)|Bu)(¢)
Definition: if a €B", b €B* then the symmetric tensor product a\/b € B**+* is defined by:
a\/5(TyeeTug i) 2 SYMa(ry,...,7, Y3(TagrseeesTast)

By the product we mean the normal product measure. (Thus A(7)g(r) doesn’t necessarily make
sense, but 4(r)g(r;) does.) Note that

HaVb]| = [...[ISYMa(ry,...t,)8(Tuirre-Taie i} dT1e T s

1
< —— e [18(To1seesTon |8 (Trntepyeees . dn...dr
(n+ k)[ ’e§+.! .“ ( als cu)" (c +1 n+t)| 1 (T

¢Our Volterra zeries with radii exceeding 7 would be almost all of the Fock space with weights n!r®.
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Theorem 3.1.1 (Product Operator)s A-B is a Volterra series operator with kernels

a-1

by = Y 0, Vbyy
=1

and characteristic gain function f4.5 < f4/5. In particular, p,.5 > min{p4, p5}.
Remark: If we write a Volterra series as a formal sum
Syt Bt
then we can write the formal symmetric tensor product of 6,+ - - and by+ - as
(art =+ V(byt -« - ) == (8:1V8))+ (a,Vdo+ a5V/b))+ - -+

so the Volterra series of A-B is the formal symmetric tensor product of the Volterra series of A

and B. Note the similarity with the formula for the coeflicients of the product of two power

series.

Proofs Let ||u||<min{p,,p5)}. Then Au and Bu make sense and

A-Bu(t) = { g f.. fa,(rb...,f.)g u(t-r,-)dr.-} { i oS baripenrtn )I-I. u(z-r.-)ar,-} (3.13)

= 3 B[S omlrita)bulrasriTnga) LT 8(t-r)d1, (3.15)
mexinem] oy
= f; Jf {'2" a,vb._,,}u(t-r,)...u (¢-14)dn...d7, (3.1¢)
L) twny

All of the changes in the order of summation and integration in equation (3.1) are justified by the
Fubini theorem, since

f: i I...fl G (Tn...f. )6. (1'-+1,...f'+.)-.+ .tl(‘-f,' )ldf,'
maxines] jaml

< g g NaallllBallllall™+* = £4Qlull)/a(lul) < oo

Since equation (3.1) holds for any u with ||u||<min{p4,r5}, the Uniqueness theorem tells us that
-1

Y 6,\/b,_; are the kemels of A-B. Now
e
Qa0 e s-1
I48(z) = Llhllz” = 3 ¥ lloeVoail|z"
neml noml bl

o o -3
< Y Y laelllibeili=®
[T ¥ %
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={£ loallz*} 10l } = 7a(21152)

The final conclusion p4.5 2> min{p,,pp} follows from /4.5 < f/p and p,.5 =inf{z]|f4 g=00}.
o)

Theorem 3.1.2 (Sum Operator): A+ B is a Volterra series operator with kernels
Ba(r1,eesTa) = 8a(T1yeee, ) + Bu(71yeeesTa)
and gain bound function f445 < f4+ 5. Thus psyp > min{p,,08}.
The proof is left to the reader.

3.2. Composition Operator
The composition of A and B, which we denote by the juxtaposition AB, is defined by

[4B]u(t) & A(Bu)(t)

To motivate the formula for the kernels of AB, recall that the nth coefficient of the compo-

sition of the ordinary power series Y, 6,2’ and Y] bz’ is given by
f= fr=]

2 73 b," b b,. (3.2)
L e |
N

Theorem 3.2.1 (Composition Theorem): AB is a Volterra series operator with kernels

»
'l.('l,...,t.) = SYMZ E f...fdg(fb...,fg)° (3.33)
bemil Vypemyip 21
iy ek iy
’6."(“-1'1,...'.“—?1) s b,‘.('.-,'..,.l—fg,..."-fg)dfl...dfg (3.3b)

Moreover f45(2)</f4(f5(z)). Thus psp>min{pp,f57(p4)}-
Prooft Let A, be defined by the formula (3.3) above. First note that

< S 2 fastitegr-- - ol (3.4)
bam}

Tty 21
l'1+..+ 1 -

and the righthand side of (3.4) is the nth coeflicient of f,(/5(*)), s0 fx(2)< f4(f5(2)). This
computation justifies the changes of order of integration and summation in the following.

Suppose f4(f8(||u])) < 0o. Then Bu makes sense and ||Bu||</5(||u||) so ABu makes sense and:
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ABu(t) = tf: J -+ Jor(ry....rs)Bu(t-n)) - - - Bu(t-r;)dn,...d7,
= i f...fag(ﬁ,...,fg)f[{ i f...fb.(ll,...t.)u(t—r;-tl)...u(t—r.-- .)d‘l...df' }df.'
baond fund \mtam]

= Eag(n, -Tt) >12 bi(bueenrtii 1)y (b b iyt bi i)'
1121eemfy 2

‘U (t-r;-tl)...u(t-r;—t.-l)...u(t-r,-l,-‘.,._“.,. ,}_‘.‘.1)... u(f-fg-','l+,_+ i,)dtl'--d‘il-l-...-i’ i dn..dn
We now collect terms by degree in u to get:

- g ; fl""{ P

Fqremip 21
1+...+ i -

'bi‘(tbooo' ‘,"-ﬂ)...b,'.(t'-,'k.',,,...,‘. )u (t—fx—‘ x)...ll (t—r,-t,-l)...u (‘—fg-t._,'t.'.l)... u (‘-fg—‘.) d‘l...dt. dfl...dfg
Finally, we change the ¢; variables:

= Zf f‘ { I...fag(fl,...,fg)'

Sgpmmrlp 2
Egtonti 't-“

’5,"(‘1—1'”...,‘,'1—71) e b,"_(‘..,‘....‘—fg,...,‘,—fg)dfl...dfg 8('—fl)...u(‘—f,)d‘;...d‘.

= i hy(ryye.rme)u(t-1y)...u(t-1,)d 7, ..d7,

and the uniqueness theorem tells us A, are the kernels of AB. Equation (3.4) establishes the
bound f45 <S4 /[3, and the lower bound on the radius of convergence of AB follows.Q

3.3. Inverses of Volterra Series Operators

We now ask the question: when does a Volterra series operator have a local inverse near 0
given by a Volterra series operator and what are its kernels? Whole papers have been written on
this important topic.16:20 Just like ordinary power series, the condition is just that the first term
be invertible.

Theorem 3.3.1 (Inversion Theorem for Volterra Serfes):

A has a local inverse at 0 if and only if its first kernel g, is invertible in B?, i.e. there exists a

measure 5, € B! with a,#),=6.+

eSince the convolation of measures in B! is commutative, s, 45,==5 implies §, 93,4
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Remark: Since the Frechet derivative of A at 0 is given by convolution with a, (theorem 2.5.1),
the Inversion theorem can be thought of as a generalized Inverse function theorem. We will not
pursue this idea further: instead we take a constructive approach.

Proof: To see the "only if” part, suppose A has a local inverse B, that is
AB == BA = | (3.9)

where / is the identity operator (I;==§, I, =20 for n>0). Using the composition theorem to com-
pute the first kernel of the operators in equation (3.5) yields

‘l'bl 61’61 = §
Thus a, is invertible in B!,

The proof of the "if* part will proceed as follows: we first construct a right inverse for A
under the assumption that the first kernel is just 5. Using this we show that A has a right inverse
in the general case, s, invertible in B'. We finish the proof by showing that the right inverse
constructed is in fact also a left inverse for A.

Special Cage: Assume for now that ;=25. To motivate what follows, consider an ordinary

(-
power series o(z) & Y a,z* with a;=1. Since a'(0)=1, a(-) has an analytic inverse
faxl

b(z) & i buz" pear 0. Using formula (3.3) for the coefficients of the composition a(5(z))==z
saxc] .

yields 8;==1 and the following recursive formula for 5,:

.
b. = -2 2 ng.'x S b.'b (3.7)
] '.pmﬁ’.}zt

Note that since the index k starts at two, the righthand side of (3.7) refers only to b,,...,5,;.
Incidently this process of recursively computing the coefficients of the inverse of an analytic func-

tion is known as reversion of a power series.2!

We now use the same construction for Volterra series. Let 5, =& and for n>1 define meas-

ures b, € B* recursively by

. L)
balryysta) = -SYM Y | 2” Jofor(ryeents) (3.8a)
 p—
il-it-...i-ki‘.-
'b;‘(‘!—fl,...f,"-f‘) ce b,‘t(t._,".’.‘-Tg,...‘.-fg)d Tl...dfg (3.8b)

As in (3.7) above this comes directly from the composition formula and (AB), =0, n>1. We
now have to show that 8,, as defined in (3.8) above, are actually the kernels of a Volterra series
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operator: we must verify that assumptions (A1) and (A2) hold.

We establish (A1) by induction. First note that b;==5E€B’. Assuming that 5, €B’ for
j=1,...,n-1 (3.8) implies that b, € B*, with

2
Heall < 351 X [Haelllidal - - - 11841 (3.9)
b2l igpunfy 2%
iy i

We now establish (A2). Let g(z) A22-1,(z). Since g’ (0)=1 (recall that s, = 8) g has an
x

analytic inverse h(z) & Y a,2" near 0. We claim that f5(z) < h(z) and thus pp>Radh(:).
nom]

The coefficients a, are given by formula (3.7): a;=1 aad for n>1

. ,
a=3| X |lallai---ay (3.10)
=" g —-3
iyt ot
By induction we now show
"ba" La, (3.11)

for all n. (3.11) is true for n=1, suppose (3.11) has been established for n <m. Then (3.9),
(3.10), and the inductive hypothesis establish (3.11) for n==m and hence for all n. Consequently

15(2) = Sallz" € 3 anz* = b(z)
sl sl

which proves our claim above that the measures b, do satisfy assumption (A2) and hence are the
kernels of a Volterra series operator which we naturally enough call B. From the formula (3.8)

for b, we conclude
AB = |

B is thus a right inverse for A. This concludes the proof for the special case.

General Case: Suppose now that g, is invertible in B!. We will use the proof of the special
case presented above to prove the general case. Let 3, € B! satisfy a4,#b;=5. Let A, be the
Volterra series operator with first kernel s, and other kernels zero. Ay, is invertible, with inverse
A} (which has first kernel 5; and other kernels zero). Consider the operator A;;!A whose kernels
we could easily compute with the composition theorem. Its first kernel is &, so using the construc-
tion above find a local right inverse C to A;}A. Then B == CA;} is the local right inverse of 4,

since

AB = A A ACAG = A Al = 1 (3.12)

February 2, 1984



oxgo

Our final task is to show that the right inverse B is also a left inverse for A. Since the first
kernel of B is invertible (indeed it has inverse 4,) we can find a right inverse D for B. Then we

have

A=Al = A(BD) = (AB)D = ID = D (3.13)
(3.13) and BD = I shows

BA =1

which with (3.12) proves that B really is the local inverse of A at 0 and completes the proof of
theorem 3.4.1.0 '
Remark: It a, € (X, the subalgebra of B? of those measures lacking singular continuous part, then
we have the criterion!3

A isinvertible if _inf |d\(s)] >0
Res >0

3.4. Dynamlecal System Example
To illustrate the theorems of this section we now work an example.

Example: Consider the one-dimensional dynamical system:

z== f(z) + g(u) (3.14a)
2(0) = 0 (3.14b)
v=q(z) (3.14¢)

Suppose f, g and ¢ arve analytic near 0, f(0)=g(0)=¢(0)=0, and f'(0)<0. Then the system is
exponentially stable at 0, and for ||u|| small there is a unique state trajectory z satisfying (3.14).

We will now show that the I/O map :u—y is a Volterra series operator.

Prooft We first use a loop transformation to reexpress equations (3.14a) and (3.14b) in terms of
Volterra series operators. (3.14a) and (3.14b) are equivalent to

z = e" O 2 (f,(z)+ g(u))

where [(z) A f(z)-f'(0)z (the strictly nonlinear patt of f). (See figure (2)). Let Hj, be the
Volterra series operator with first kernel 1(r)e’ ’OF and other kernels 0. Let Fu, G, and @ be the
memoryless Volterra series operators associated with the functions f,., g, and g, respectively,
e8. Qu(ry...,7a)= n11g(*)0)&r,)...%r,). Then the system equations (3.14) are equivalent to

z = Hyp(Fou(z)+ G(u)) (3.15a)

v=Q(z) (3.15b)
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Since H),, is linear

(I = HjiaFyni)2z = Hy;y Gu (3.16)
By the sum and composition theorems (f - Hjin F,y;) is a Volterra series operator with first kernel
§. By the inversion theorem (I - Hy;, Fyy;) has a Volterra series local inverse near 0 (I - Hy Fo ).
Since as mentioned above (3.16) has only one solution z when ||u|| is small, it must be

z = (’-Fn‘ Hh’nr‘ Gu (3.17)

Thus for ||u|] small, the output y is given by a Volterra series operator in u:

y = Q(I-FouHy)™ Gu (3.18)

A few comments are in order. (3.14) may have multiple equilibria when u =0 (for example
if f(z)=-sinz), or even a finite escape time for some u's (for example if f(z)=-z+ z%). We've
shown that as long as [|u|| is small enough, say less than K, then the state z and the output y
are given b}' a Volterra series in u. In particular ||u|] < K must keep the state z from leaving
the domain of attraction of 0, for otherwise the Steady State theorem (see §4.1) or the Gain
Bound theorem would be violated.

4. Frequency Domain Toi)lu

In this section we consider frequency domain topics, concentrating on the simplest case:
periodic inputs. Even in this case the analysis is not simple. Nevertheless we show that an intui-
tive formula for the output spectrum in terms of the input spectrum holds in essentially all

engineering contexts.

Before starting our topic proper, we prove:

4.1, The Steady State Theorem

Theorem 4.1.1 (Steady State theorem): Let u and u, be any signals with
lleil, llusll < p=RadN, and suppose that as t—co u(t)—u,(¢)

Then Nu(t)—Nu,(t) as ¢ = co.

This is a very different concept from N's being continuous as a map from L*®—L*, which
tells us e.g. that if u, — u uniformiy as n — 0o, then Nu, — Nu (uniformly).*
Prooft Suppose ||u]|, ||u,]|<p and u(t)—>u,(t) as ¢ = co. Let v=1u,~u so v(t)—0 as t —oo.

The proof is a modification of the proof of the incremental gain theorem, we simply break the

eIndeed the Steady State theorem is false for some pathological LTI bounded (and therefore continuous) opera~
tors from L™ into L™: see §AS.
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Remark: unlike linear systems, the rate of convergence can depend on the amplitude of the input.
For example, consider N given by
-]

Na = ) u(t-k)*
. bum}

N has radius of convergence one. Now consider step inputs of amplitude a, 0<a<l. As a
increases to one, the time to convergence to within, say, 1% of the steady state grows like (1-a)™.
For linear systems the time to convergence is independent of the amplitude of the input.
Although in the Steady State theorem u, can be any signal with |[u,]| < p, usually u, has
the interpretation of a steady state input, for example in
Theorem 4.1.2 (Periodic Steady State theorem): If the input u is periodic with period T for
$ 20 then the output Nu approaches a steady state, also periodic with period T'. (Soon we'll
compute the Fourier Series coeflicients of Nu).
Prooft Let u, be u extended periodically to ¢==-co. Clearly u(t)->u,(¢) as ¢ — oo (indeed
u(t)=u,(t) for ¢20) so by the Steady State theorem Nu(t)—Nu,(t) as t —co. Nu, is periodic
with period T since

(Nu,(-))(¢+ T) = N(u,(-+ T))t) = Nu,(t)
where the first equality is due to the time-invariance of N and the second equality is due to the
T-periodicity of u,.O
Note in particular that Volterra series operators cannot generate subkarmonics. A related
application of the Steady State theorem is:

Theorem 4.1.3 (Almost Perlodlc Steady State Theorem): If the input u is almost periodic
for ¢ >0 then the output approaches an almost periodic steady state. (we’ll compute the frequen-
cies and spectral amplitudes of the output in §A5).

Prooft The hypothesis simply means that there i» some u, which is almost periodic and agrees
with u for £>0. By the Steady State theorem we know y(t)— y,(¢) 2 Nu,(t) so we need only
show that Volterra series operators take almost periodic inputs into almost periodic outputs. The
proof of this, as well as the formula for the spectral amplitudes of the output, are in §AS. This
last topic has been studied by Sandberg.2?

4.2. Frequency Domain Volterra Kernels

As with linear systems, it is often convenient to use the Laplace transforms of the kernels,
defined by

Hy(sy,en8a) = [+ h,(rl,...,r,.)e’("""""*'"")drl...dr.
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We call H, the nth frequency domain kernel or just kernel of the operator N. Since b, €B*, H,
is defined af least in C}. (C} means { s | Res;>0 }).# H, is symmetric, bounded and uniformly
continuous there; it is analytic in C} .» We should mention that the unicity theorem for Laplace
transforms tells us that two measures in B* are equal (h, =g,) if and only if their Laplace
transforms are equal (H, = G,).

The formulas of §3 are somewhat simpler in the frequency domain. Using the notational
convention that C, denotes the nth frequency domain kernel of a Volterra series operator C, we

bave:

Theorem 4.2.1: Suppose A and B are Volterra series operators. Then the frequency domain
kernels of A+ B, A-B (pointwise product), and AB (composition) are given by:

(A+ B)a(81)e18) = Ag(81).0182) + By(81,--,8)

n-1 L]
(A-B)y, = Y, A;VB, s 2 SYMY Ay(21,02)Baci(8t4100-02)
b=} e}

»
(AB)s(2y,-.48) =SYM Y| Y |Ai(ey+..+ 8y Banip 1t -t 8)°
Emmd] igmip 21
b ok fy

.Bi‘(al,...,O'.!) c e B,i(a,.,}.,.l,...,a,)

These well-known formulas follow easily from the formulas of §3.

4.3. Mulititone Inputs; the Fundamental Frequency Domain Formula

We start with a simple calculation. Suppose that u(t) is a trigonometric polynomial, that is
M .
s(t) = Y a,e®
M

where a_; == &;*. Suppose also that ||u|| < p=RadN. Then

Q0 s M .
y(t)=Nu(t)= Y [ - [h(rieem )] X akew('-")dr,- (4.5a)
ne] ju fu- A
- { }a.‘...a,.H,(jwk,,...,jwk, Je/Whrr Pkt (4.5b)
sl | NS by, SM
The term a;....a;, H,(jwkl,...,jwb,)cj(“"'"”"" is often called an nth order (wky,...,wk, ) inter-

modulation product. Since it is proportional to H,(jwk,,...,jwk,) this suggests the interpretation

¢The Laplace transforms of the trisngular kernels are called the regulsr tramsfer functions of the operator.3
*Thus s is real. Complex signals are easily handled bat lesz useful in the study of Volterra series operators
than linear operators.
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of H,(jwk,,...,jwk,) as a measure of the (wk,,...,wk, ) intermodulation distortion of N.

Now we've already seen that the first sum in (4.5b) is an honest {* sum, in fact for each ¢,

ﬂg

{ Yy }a,‘...a..H.(jwk‘,...,jwk.)cﬂﬂﬁmwh) ‘1<rs (=D

~MS bk, <M

where f is the gain bound function of N. Consequently we may evaluate the nth Fourier

coefficient of y

2
§(m) A 2%! y(t)e 7™t de
0

inside the first sum in (4.5b) as:

2r

9(m)==§‘—2“3-1[

ag‘...ag. H’(jwkh”.'jwk')ej(uﬁf- erol)t c'j“"‘ it

Mk k, <u}

Each integral is easily evaluated (the integrands are trigonometric polynomials) yielding

n=x] k,f

B(m)= % }o(ko (), (kg fky) (4.6)

since d(k)=ay for [k| <M and O for | k] >M (and thus the inner sum in (4.6) is finite). We
call (4.6) the fundamental frequency domain formuls since it expresses the output spectrum in
terms of the input spectrum. Of course we've only established it for inputs which are tri-
gonometric polynomials, but we will see that it is true for more general periodic inputs, and an

analogous formula holds for almost periodic inputs as well (see § A5).

Remark: Suppose a trigonometric polynomial signal u is passed through a unit nth power law
device so that y(¢)=u(t)*. Then
j(m) = " (m) = { d(ky)...d (k)
"f' .+ -ﬂ

where @™ means the n-fold convolution G#i#..#i (the sum in the convolution is finite here!).
The first equality makes sense: it is just the dual of the correspondence between convolution in the
time domain and mulliplication in the frequency domain. The second equality makes the funda-
mental formula (4.6) seem quite natural; the nth term of (4.6) can be thought of as an n-fold con-
volution power of i, weighted by H,(jwky,...,jwk,).

Before esiablishing the fundamental formula for more general periodic inputs, we have to
carefully examine the question of whether it even makes sense for more general periodic inputs.

Despite its resemblance to the composition formula and the fact that every sum and integral
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encountered so far has converged absolutely, we have:

4.4. SURPRISE! Fundamental Formula Doesn't Converge Absolutely

Remarkably the fundamental formula is not absolutely convergent even for u as simple as a

two-tone input.signall That is

SU T 6 (b)E, 0k fuk)]

susl) b+ + b mm

can equal co even in the case considered above, u a trigonometric polynomial (but our calculation

was correct).

Remark: Practically, this means that we cannot arbitrarily rearrange the terms in the sum above.
We must first perform the inner (bracketed) sum (which in this case is a finite sum), and then per-

form the outer sum over n.

Example: Let u = %(cost-i- 8in2¢). Then |Ju|| can be shown to be

[15+¢—] (3+;/3'§]

which is about 0.978 <1. Let N be the memoryless operator with H,=1 for all n, that is
y(t)=u(t)/(1-u(t)). Then p==1 so y(¢) makes sense and satisfies ||y|| < [|u|l/(1-{|u]|) (Which is
about 45). According to the fundamental formula (4.6) of the last subsection, the D.C. term of y
is given by:

i(0) = "("1)‘"'3(‘«'-) (4.7)

--l{ b+ +k,
Now we claim that (4.7) does not converge absolutely. To see this,

[a(y)-.8(k)| 2 X }I"(kx) -3 (k, )|

{k‘f .+ b =0 8 cven| by+ .. +t.-o

=X

® sven k,*...-rk,—o}

o(k1)...5(ka)
where v(t) & -g-(coat-l- cos2t) so that i (k)] = o(k) for all k.

==2 fu(t)"dt> 2—=oo

nmn

since v(t) >1 for —.25<¢<.25. Thus the fundamental formula isn’t absolutely convergent in this

simple case.
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It is surprising that the trouble in (4.6) occurs when the input is a simple trigonometric
polynomial signal; we might expect it to give us trouble only when, say, u does not have an abso-

lutely convergent Fourier series.

There is one obvious but rare case in which (4.6) does converge absolutely. Suppose i €[},
i.e. u has an absolutely convergent Fourier series, and in addition f(||é]|,) < co. Then |&]€ !
and [4]™ € I with ||] 4 | **||, < [|é]]], thus we have the estimate

swzl] byt + b owmm

ﬁ{ ), }lﬁ(‘-‘x)---ﬁ(’«'.)H.(J'wbn--~,iwb.)| < g"ﬁ"ﬂlh-" = f(llalh)

In conclusion, then, we must proceed with extreme care in establishing the fundamental for-

mula for more general periodic input signals.

4.5. Proof of Fundamental Formula for General Inputs

We start with some calculations. Suppose u is any periodic input with ||u|] < p. Recall
that the Mth Cesaro sum of the Fourier series of 4 is defined by

up(t) = é lw(l--I%L)a(lc)eﬂ"" - §:Cy(k)ﬁ(k)ef”“

uy is u convolved with an approximate identity and thus satisfies ||uy || < ||| and [|up—u]], —0
as M—+c02* From the first fact we conclude that Nuy makes sense since
llunll € lls]l < p=RadN. Using the Incremental Gain theorem for L! (theorem 2.3.5), we con-
clude that [|Nu-Nuy||;—0 as M —co. Hence 1@"=ﬁu converges uniformly to § as M — co.
uy is a trigonometric polynomial so we know the fundamental formula holds for Nuy,; putting all
this together we have shown .

im)=lim (L \uulk)ovielk ) Ha (ks jok,) (438)

M=o g byt .+ b

=S tm (8 Yol o)L Culh ok fubs) (49)

= Lt PRy T

The dominated convergence theorem justifies the interchange of limit and sum in (4.8) since as we

have mentioned before the first sum in (4.8) and (4.9) is always absolutely convergent and

|Cul £ 1. Since a}xm Cuy(k)=1 for each k, if we knew that the inner sum also converged abso-
-.“

lutely we could apply dominated convergence once again to conclude

= i 2 }ti (kl)"'ﬁ(bu )Hu(j"’bb---ijku) (4.10)

amad | byt b emm

which would establish the fundamental formula in the general case.
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Unfortunately the inner sum

(k). 8 (ks ) Hy (Fwhky, .., fwhky) (4.11)
byt +l'.-
is not always absolutely convergent (and thus does not always make sense). In such a case for-
mula (4.9) is as close as we can get to the fundamental formula. But in fact the inner sum is
absolutely convergent in almost all situations arising in engineering. We now present two condi-

tions which suffice:

Lemma 4.5.1: Suppose u has bounded variation over one period. Then

{; 5 [ (k). (k)] < 00

In particular, the inner sum (4.11) in the fundamental formula converges absolutely. The proof is
given in §A4.

Lemma 4.5.2: Suppose that H,(jwk,,...,Jwk,)= 0( ) Then the inner sum (4.11) is abso-

lutely convergent.
Remork: This condition can be interpreted as: N is strictly proper. For example the kernels of
the input/output operator of a dynamical system with vector field affine in the input have this
property.

The proof is in §A4. We summarize the results of this section in

Theorem 4.5.3 (Fundamental Frequency Domain Formula): Suppose ||u||<p and that
either

(I) the input u has bounded variation over one period, or

() the operator N is strictly proper, that is, H,(jwk;,...,jwk,)= O( :
1

1
k, )
Then the fundamental frequency domain formula is valid, that is:

§(m) = 2 Y \d(k).d(k)Ho(wky,....jwky)

seol)] byt + b mmm

Proof: Theorem 4.5.3 follows from the discussion at the beginning of this section and the lemmas
above.Q
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Appendix

Al, Volterra-Like Serles

In the study of (linear) convolution operators in engineering it is common to consider only a
subalgebra of the bounded measures, for example the subalgebra of measures lacking singular con-
tinuous part.!3 This algebra is large enough to capture all of the commonly occuring distributed
systems such as distributed transmission lines, transport delays in control systems, etc. Similarly
in the study of Volterra series operators only certain types of measures occur in practice; the

singular kernel 1(r;)1(r;)e " *5r;-r;) of example 2 of §2.1 is typical. Sandberg calls series with ker-
nels of this form Volterra-Like;® the idea occurs as early as 1953 in L. Zadeh’s paper.25

In a Volterra-like series we index the series not by the order n but by a multi-index
@t =(ny,...n:) (n;>0). k is called the length of #; the degree of # is defined by
o= n;-i- et .

Nu(t) = gur(t)

ve(t) = [« [hy(ryemi)u(t-n) " u(t-r;)  dry..d

where now the kernels h, are ordinary L! funclions instead of bounded measures. Each

Volterra-like kernel A, can be turned into an equivalent Volterra kernel lzm by:
,'m(fltmft) A smhl(rbfafl-hmfa-npl-1)5(71_79'"&fn‘-—l"fat)"'qra-l‘fn)

We call hm the associated Volterra kernel of the Volterra-like kernel Ay. Collecting the associ-
ated Volterra kernels by degree

By = "& 1 (A1)

yields a Volterra series equivalent to the Volterra-like series. Via this associated Volterra series,
Volterra-like series inherit the concepts of gain bound function and radius of convergence.

Note that I:m is supported on the k-dimensional set given by+
Cy = {(r,,...r,)’ I n, of the 7’5 are z,, - - - n; of the 7’5 are z; }

Thus the associated kernel is singular (with respect to Lebesgue measure) unless # =(1,...1).

*We appeal to the reader’s intuitive notion of dimension, but it can be shown that the Hausdorf-Besicovitch di-
mension of O is indeed k.
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We exteﬁd the notion of SYM to Volterra-like series by:

SYMhy(ry,...1:) = kL! % B ye(Foreetas)
[4

q

where o7 =(n,y,...n,:); We say B, is symmetric if SYMh,=h,. This agrees with our earlier
notation if we think of the old order n as the n-long multi-index (1,...1), since o(1,...1)=(1,...1).
Note that SYMA; involves not just the Volterra-like kernel A, but all Volterra-like kernels of the
form 7 =on. We say i and ¥ have the same fype in this case. A Volterra-like series thus has
P(n) different types of kernels of degree n, where P(n) is the number of partitions of n.** If the
Volterra-like series is symmetric then the kernels of the same type have identical associated ker-
nels and are simply related by:

hy(7y,...7) = B y(11,...78) = By(TorseeTon)
This extension of SYM will also be useful in the study of multi-input Volterra series.
Theorem Al.l (Uniqueness theorem for Volterra-Like series):
Suppose N and M are Volterra-Like series operators with kernels &, and g, respectively. Then
N=M if SYMh, =S8SYMy, for all 7.

Prooft The "if” part is clear. By the Uniqueness theorem (theorem 2.5.2) we know &, == g,,
where A, and g, are the kernels of the associated Volterra series (given in (Al.1) above). We will
finish the proof by showing that A, determines the Volterra-like kernels SYMA,.

Theorem A1.2 (Decomposition theorem for Volterra-Like series):

Suppose A, are the kernels of the Volterra series associated with a Volterra-like series with kernels
h;. Then A, uniquely determines the Volterra-like kernels SYMA,.

Thus if a Volterra series comes from a Volterra-like series, then each kernel can be uniquely
decomposed into the 2*~! symmetric Volterra-like kernels with which it is associated. Another
way to think of the Decomposition theorem is: the (linear) map of the symmetric Volterra-like
kernels into the associated Volterra kernels (given by formula (A1.1)) is injective.

Before starting the proof, let us consider a simple example which illustrates the idea. The

second kernel of the associated Volterra series is:
1 1
Adn,m) = by + By = haafn,r) + ‘2"‘(2)(71)5("1-’2) + '2"‘(2)(1'2)5(”1-’2)

Decomposing 4, is easy: the terms Ay,y and Ay, ,y are mutually singulsr measures (The first is
supported on the line {r,=r,} and the second is absolutely continuous). To be quite explicit we

esThere is no nice formula for P(»). For those interested it is asymptotic to (4V3n)texprv2n/3.
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have the formulas:

haafrum) = befn,m)  for ngén

1 12 225 13
heyr) = lim == ’L '._f‘ heryur)dndr,

The proof of the Decomposition theorem uses the same idea: the associated kernels of A,
and A, are mutually singular unless 7 and 7 are of the same type. To prove this, note that the
associated kernel of A, has all its mass in the set

Cy = { (r1yee7a)T I n, of the 7’5 are z,,...n; of the 7's are z; ; 2 are distinct }

This is no more than the assertion that

[ [hrpenn)u(t-n) " u(t-r) drdry = [« - [hy(ner)u(t-n) " u(t-r) * dry...d 7,
v, distinet

(remember that A, is an L! function).

The sets Cy and Cy are disjoint if 7 and 7 are of different type, and equal if the types are
the same. This establishes the claim that the associated kernels are mutually singular unless the
multi-indices are of the same type. The L! function Ay(ry,...,7;) is determined by the integrals

I [hlryr)uy(n)i(re)dry...dr (A1.2)

where the u;, i=1l,...,k are in L™, According to the discussion above we have

f e fhu(Tb“-’r.)"1(1'1)...“I(Tmu)udf.‘+1)...03(1’. )dfg...d‘l"

K[ -+ [hy(tyyeesti)s(n)vp(re)dry...dry

where K is the number of Volterra-like kernels with the same type as #@. Thus the integrals
(A1.2), and hence the function A, are determined by hk,. This proves the Decomposition

theorem.

Remark: The Decomposition theorem is not so obvious as it might seem. For example consider

the consequence that (nonzero) operators of the form

v(8) = [ [hearur)u(t-nfu(t-r)fdrdr,
can never be put in the form

¥(t) = [ [baafrr)u(t-n)u(t-rp)tdndr

This is so even though the associated kernels are both supported on two-dimensional sets. The
frequency domain version of the example above is: Suppose Hzz)(21,92) and Hiy g2,,2,) are the
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Laplace transforms of symmeiric feactions in L'(R}). The Decomposition theorem says we can

extract H(;z) and H(ys) from the /carth order frequency domain kernel
H(8y,...0,) = SY'M{H(zg)(a;-i- 92, 85+ 84) + Hiy 38y, 25+ 25+ 30}

(which has nine terms!) There are explicit formulas which effect this decomposition, but we will

not give them here.

Corollary A1.3: If &, are symmetric, then

15.11= 35 ikl

dWams
Thus the gain bound function, which we originally defined via the associated Volterra series, is
simply given by:

/(z)= g"":"’“

A2, Incremental Gain Theorem for L*?

To demonstrate the difliculty of a theory of Volterra series operators for L?, p <co, which
is unadulterated by reference to ||u|fq, consider just the memoryless operator Nu(t)==f(u(t)). If
N is to be defined on any open subset of L? then we must have RadN == p== 00. It is not hard
to show that N maps L? back into L? if and only if f is sector bounded, ie. |f(z)|<K]z|.
Sandberg has recently shown that if N has a Frechet derivative at 0 (as an operator from L? into
L"?) then [ is in fact linear)2?

We now give the proof of

lemma 2.3.4:

IN(u+ v)-Nall, < lioll, ﬂ"—"ﬂH,LﬂUﬂ < lloll, £* (sli+ lioll)

(Remember that unmarked norms are co-norms).

Prooft The conclusion is, if anything, sharpened, if we assume the kernels are symmetric (see

§2.5) 8o we will assume they are. Then:

(N(u+ v)-Nu)(t) = g] oo fh,(f,,...,r,){'f-[‘(u-b v)(t—r;)—gu(t-r,»)}drl...dr, =

= f}f R fh.(rl,...,r.)i [:)I!I o(t-r,)d7; fI u(t-r;)dr;
saxl by g ' 1

—i

Thus

February 2, 1984



-33.
[N(s+0)-Nu|(t) <

Q0 ]
<Yy [2)"”"“"“"'4.[ {f o ] ha(ryeenta)] d"z---"s}l v(t-n)]dn
nam] feul
As in theorem 2.3.4 the bracketed expression is a measure in r; with norm [|4,]], so we have!$

NG+ 0)-Nlly < lolly 351181135 (DllolI™4lu>* = fo}, LUeli+ ot/ Qlull)
== Il

The last inequality in the conclusion of lemma 2.3.4 follows from the mean value theorem.

A3. Taylor Serles Which Aren’t Volterra Serles

In §2.5 we showed that the Volterra series operators are simply Taylor series of TI operators
:L®°— L™, but noted that the Volterra series are not all of the Taylor series. In this section we
discuss this point in more detail.

Much of the theory of Volterra series holds for the more general Taylor series
-] [ -]
N = Y, P,(u) = Y, M,(s,...,3)
aaml [T}

where M, is the bounded TI n-linear map :L®— L™ given by M, =(n!)""D(")N(0). With the
gain bound function f(z)=Y||M.||z* only notational changes are required to prove all the
results of §3. For example, such an N has a Taylor series inverse near 0 if and only if M, is

invertible.

The diflerences between our formulation of Volterra series and a more general formulation
based on Taylor series are:

(I) Not all bounded TI n-linear maps :L®* — L™ have a convolution representation
My (vy,etts) = [ oo [Ba(ryecta)tg(t-r).cun(t-r2)d Ty .. d7, (A3.1)

with 4, €B".

() The norm we use, ||4,]], is not equivalent to the norm || |[sz on L4(L*®,L), it is stronger

(larger). That is (with some abuse of notation)

Aellag 2 Ilg-'lll% I f voe [ Ba(Papeces?a )8 (8-11)...8(t -1, )d 7. d ]| < ||Bs]]

and the ratio of the two is not bounded away from zero. Indeed we will give an example where

the ratio i zero.

(I) is true even for n=1. We now give an example. Consider the subspace of L* of those

u’s with a limit at {==-co, that is
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{ uel® I ‘Ii_&u(t)exists }

On this subspace we define F(u) & ‘Eu_x:ou (¢). F is clearly a LTI bounded functional on this sub-

space. Using the Hahn-Banach theorem and the Axiom of Choice F can be extended to a LTI
bounded functional on all of L®, which we denote LIM.” LIM can also be thought of as a
bounded LTI operator :L™ — L™ (though its range is just the constants).

For any u which vanishes for { <0 we haye LIMu = 0. This establishes that LIM is causal,
and that LIM has no representation as a convolution with a2 measure. It also shows that the
Steady State theorem does not hold for LIM. To mention just one more bizarre property of LIM,

it is a bounded LTI operator which maps sinusoids to constants!

Clearly this example is absurd from an engineering point of view. LIM's perfect memory of
the infinitely remote past (and indeed, total amnesia for the finite past) contradicts our intuition
that bounded LTI physical devices and systems should have a decaying memory.»

]
Let us now give an example of (II). For n>1 [[LIMu, furnishes an example of a bounded
=1

multilinear operator not given by a convolution as in (A3.1). Less bizarre examples can also be
given for n>1. For example we can have a convolution representation with A, an unbounded
measgure. ** Consider the kernel

hofryrs) = 1(r,)l(rz)‘(1.:—¥;%}ffj.l;§

Then ||ho]] = flhe(n,7)] drid7s==co. Nevertheless this kernel induces a bounded bilinear map
:L®%— L™, First we have to say what we mean by the convolution since the integral in (A3.1) is
not absolutely convergent with this 4;, We mean

TTr
Mouy,u0) & ,l-'_'.‘;,{ { hofry, ro)u(t-n)u(t-rr)dndr,

To see that this limit exists and that M, is bounded, we rewrite this as
T
Iun f {——l(f,( T)} {Re 1) e-""’u—l(fl)-d r,}drg (A3.2)
0 l+ T

As T —oco the lefthand bracketed expression in (A3.2) converges in L2 to the L3 function
u{r2)/(1+ 75); by the Plancherewthe righthand bracketed expression in (A3.2) converges
in L? to the L? function Re[u,(-)/(1+ ()))(2). Consequently the limit in (A3.2) exists and is

sMoral: don't fiddle with the Axiom of Choice.
ee]n the literature this is often stated: * f <o flb,(r,,...,r,)]dr‘...lr. < oo is a sufficient but not necessary
condition for BIBO stability of a second order Volterra operator.” An incorrect example is given in [26 ].
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bounded by

=
tof’)
1+()

uy(")
. ”’“lu(o) }l
< 2% ol

which establishes |[MJllsxz < 2v27/3. This example was suggested by D. J. Newman. Like the
first example LIM above, it is rather forced.

[Mo(uy,ug)(t)] <

There are thus at least three costs associated with generalizing Volterra Series operators to
arbitrary Taylor series:

(1) We lose the concrete convolution representation (A3.1);

(2) Thenorm ||A,)|=f -+ [|h,]dr, ...d7, is replaced by ||[M,|[sz which is nearly impossible
to compute;

(38) We include clearly nonphysical operators such as LIM.

It is the authors’ feeling, and we hope the examples above have convinced the reader, that the

mathematical elegance and completeness of a general Taylor series formulation is not worth (1)

(3).

A4. Absolute Convergence of the Inner Sum

In §4.5 we established the Fundamental Frequency Domain Formula under the hypothesis
that

{, 3 _m}lﬁ("x)—nﬂ(b.)H.(.iwkx.---.iwb. ) (Ad.1)

be finite. In this section we give two simple conditions which ensure that (A4.1) is finite, the first

a condition on the input signal «, and the second a condition on the kernel H,.

A4.1 Conditlons on the Input Signal

We seek conditions which ensure that

{ ) _}Iﬁ(kx)---ﬁ(k.)l (A4.2)

b+ .+t

is finite. This of course implies that (A4.1) is finite, since [H,| <||A.||. Note that (A4.2) is sim-
ply (A4.1) when N is the simplest possible n-order operator: the memoryless n-power law device
Nu(t)=u(t)".
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Since u €L®, u € L? so 4 €. Thus for n=2 (A4.2) is just a convolution of two sequences
in {2 and thus is Bnite by the Cauchy-Schwarz inequality:

Y 1 (ka(k)] = 5.3 17(E) Lo(m-E)| < I ll:Mloll (A43)

Since the convolution of two [2 sequences is not, in general, in {3, the finiteness of (A4.2) already
is dubious for n=3. On the other hand if & €{*, then convolution iterates of u make sense and
are still in {%: (A4.2) is then bounded by ||d]|;.

It is a remarkable fact that for most u (A4.2) i finite, even when @ is not in {%. It is not
true for all u € L™, cos(1/t) (extended periodically) is a counterexample.*

Theorem A4.1.1 Suppose that 4(k)= O(1/k). Then (A4.2) is finite, that is

{ }l i(ky)...d (k)| < o0
ISR I A
Prooft Suppose that d(k)= O(1/k). Then there is a constant J such that |d (k)| < A9(k) where

o) 2114 i

Since # € {2, it is indeed the Fourier series of some L2 function which we will call, surprisingly
enough, v. In fact

v(¢) == 1 - log2 - log(1—cos?)
the verification of which we will spare the reader.

Now

[6(Ey)..d(k)| < ﬂ“{ B(ky)...9(ka) (A4.49)

{k,-r RIA ) ISR IA )

so it will suffice to show that the righthand side of (A4.4) is finite. We break up the proof of this
into three lemmas:
—~~ .
Lemma 1: Suppose / and g are in L2, Then (fg)=f4.
Even though this is well known we give a short proof here for completeness.

Prooft We have already seen in equation (A4.3) that the convolution f#j converges absolutely.
Recall that (Plancherel theorem)

u .
No- ¥ ik)e* ;=0 a8 M—oeo (A4.5)
1

¢D. J. Newman, personal communication.
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By the Cauchy-Schwarz inequality

2r71

—- f 7(t)a(2)- E J(k)er et | S |1 Ml2llg- 2 JE)e [l (A46)

By (A4.5) the righthand side of (A4.6), and therefore the lefthand side of (A4.6), converges to 0 as
M—+0o. But the lefthand side of (A4.6) is just

|mm»- 5 §(6) (m-k)
LM

Letting M —co yields the conclusion.O
Lemma 2; v(t)" € L! for all n. (That is, v € L? for all p <oo).

Proof: Clearly we need only worry about the singularity at ¢=0, that is v(¢)* € L! if and only if
(log(1-cost))* is integrable near ¢£=0. This is true iff (logt)" is integrable near ¢==0, which is true

since
1 -3og¢
fllogt|*dt = [ e*z"dz < n!
[ ]

which establishes lemma 2.0

Lemma 3:

{ PN }"'(h)---ﬁ(b.) = (v*)(m) (A47)
byt .t hwmm

Proofs By induction on n. Suppose we have established (A4.7) for n. By lemma 2 v* and v are
in L2, so applying lemma 1 we have (v**!) = (v"J#5; using the inductive hypothesis

(""’")(""') =3, { 9(ky)...0(k,) (7-m) = { 9 (k1)-r. 0(Eaq1)

byt >t mmm kv . +hmi

the change of order valid since the summand is positive (Fubini Theorem). This completes the
proof of lemma 3.0

We can now finish the proof of theorem A4.1.1. From (A4.4), (A4.7), and lemma 2 we have

}l"(kx) (k)] < (%) (m) < lo*fl < oo

k‘++ -—

establishing theorem A4.1.1.0

One useful condition which implies i(n)= O(1/n) is that ¢ have bounded variation over
one period.
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Lemma 4.5.1: Suppose t has bounded variation over one period. Then

{“ u,-.}'u“’) (k)| < 0

Prooft If u has bounded variation over one period then d(n)== 0(1/n)?* (the proof is essentially
integrating by parts the formula for 4(n)) and thus theorem A4.1.1 proves lemma 4.5.1.0

A4.2 Conditions on the Kernel H,

Lemma 4.5.2: Suppose that H,(jwky,....jwk,)= O(Tl_k—)' Then (A4.1) is finite, that is:
Leeoly

}l"("x) (kg )H, (Fwky,..., jwky )] < 00

{kﬁ .+ kb amm

Proofs Suppose H,(jwky,....jwk,) = O(1/k;...k,). Then H,(jwk,,....jwk,) € (*(Z*). Since & €,
i(k,)...8(k,) € $¥(Z2*) with norm ||| so the Cauchy-Schwars inequality yields

{H 2, 16(kx)... d (ke )Ha (jwhy,..fwks)] € E 6 (By)... G (a) Hy (§wky, .. jwha )]

< " d(ky)...a (ks )"2“”- (j“’bb'"rj“’b- )"2 = “"‘ "‘:"Ha (Fwkyyeerrjwky )I |2

which proves lemma 4.5.2. O

AS. Almcst Periodle Inputs
Recall that 7 is said to be an e-translation number for u if |Ju(-)}-u(-+7)]| Se. © is almost
periodic if for all ¢>0 there is an L such that all L-long intervals contain at least one ¢
translation number for u. Formally
Ve>03L Y 3r(a <r<a+L and Jlu(-)-u(+7)||<¢)
These definitions and a concise discussion can be found in Wiener's book.2”

Theorem AS5.1s Suppose u is almost periodic and ||z||<p=RadN. Then Nu is almost
periodic.
Prooft Let ¢>0. Choose r with ||u]] < » <p. By the Incremental Gain theorem (theorem 2.3.2)

there is a X such that on B, [|[Nu-Nv|| € K||u-v||. For any », [|u(-+7)]| < r, hence if 7 is an e
translation number for u then

INa(}-Nu(+ )| < Klju()u(+ 9l < Ke

so 7is a Ke-translation number for Nu.
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Now to finish the proof: Since ¢ is almost periodic find L such that all L -long intervals con-
tain at least one ¢/K-translation number for s. From the discussion above these translation

numbers are e-translation numbers for Nu, thus Nu is almost periodic. O

We will now establish the analogous fundamental formula for almost periodic inputs.
Theorem A5.2 (Fundamental Frequency Domain Formula for Almost Perlodie Inputs):
Suppose that u is almost periodic and [|u]| < p==RadN, and in addition

{ z |6 (we)-..d(wp JHo (Fwpyesju )| < 00 (A5.1)
Then for any w€ R
(Nu)(w) = g {.. B Yilr)o i) (A5.2)

Prooft Due to the similarity to the case of periodic inputs, we give a shortened proof. As in §4.3
we first assume that the input has the form

M ,
u(t)= %5 age’™
kam-M

We will call such a u a multitone signal. It is easily verified that for multitone signals

V=W

(A5.3)

1 T e {ak
’!x_:.n”-r-{u(t)c" dt = 0 otherwise

The limit in (A5.3), which can be shown to exist for any almost periodic function and any veR,
is denoted @(v). The same argument as in §4.3 establishes
* “ - ’d .
M(w)= Y] Y (wg)---8(w JHa(Fwp e i) (A5.4)
nm=] ug‘*...«tv,.-u
for the case of u a multitone signal. We now appeal to Bohr’s characterization of almost periodic
functions: they are precisely the uniform limits of multitone signals.2? Thus there is a sequence of
multitone signals uy with ||uy|| < p and vy — v uniformly as M — co. By the Incremental Gain
e

theorem Nuy — Nu uniformly as M — co. Hence for any v in R (Nuu)(v)—vﬁ )(v). Since for-
mula (A5.4) above holds for multitone signals we have

o ) . A ~ - .

(Nu)(w) = Y, lim Y Un(we)-. Unr(wr, )Hy (Fw e J W) (AS5.5)

M~ wp o H 0y

Since uy — u uniformly, up(w)— i(w) uniformly. Dominated convergence and hypothesis (AS5.1)
yield
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= §{ Y (s )b (0n ) Ha (s i) (A5.6)
a1

H“* vee “'U‘.m

which is the conclusion of theorem A5.2.0
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