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0. INTRODUCTION.

In most engineering fields, the design process begins with the identification
of one or more structural or system configurations which can satisfy the overall
objectives. Once a conflguration is chosen, parameters for the components or
other elements must be determined. The most widespread computer-aided
design systems, whether in automatic control, electronics, or structures, assist
in the parameter determination phase by means of simulation or response
evaluation programs. Such programs are executed to evaluate an initial design.
Next, some procedure is followed for adjustment of selected design parameters

or the system configuration in order to achieve an optimum final design.

Unfortunately, humans are rather inept at solving heuristically the mul-
tiparameter adjustment problems that frequently arise in engineering design. As
a result, engineers are turning more and more frequently to optimization for
final design parameter adjustment. Referring to [Pol 1] we find that quite com-
monly engineering design problems lead to optimization problems with a finite
number of design parameters and ‘an infinite number of nonlinear inequality
constraints. Such optimization problems are often referred to as semi-infinite.
They form a special class of nondifferentiable optimization problems. Because
they have a great deal of structure, it is possible t.o devise reasonably efficient

algorithms for their solution.

These notes collect in one volume the mathematical results in continuity,
differentiability, convexity, properties of max functions, nonsmooth analysis,
and optimality conditions which are essential to the understanding of
nondifferentiable and semi-infinite optimization. In addition, they present an
axiomatic structure which should enable the reader to grasp the essential
features of first order algorithms for semi-infinite optimization. Although

specific problems are dealt with only superficially in these notes, the reader will
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find that the papers dealing with specific problems will be accessible to him or
her, as a result of familiarity with these notes. The only major topic in
nonsmooth analysis which is omitted from these notes is that of semi-smooth
functions. The reason for this is that while semi-infinite optimization problems
frequently involve semi-smooth functions, they have considerable structure
which eliminates the need for the use of the brute force techniques associated
with semi-smoocth optimization algorithms. For details, the reader is referred to

Polak- Mayne-Wardi [Pol 4].
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1. Continuity.

We summarize the various concepts of continuity which play a role in optim-
ization theory. Since in the context of optimization algorithms one generally
deals with sequences rather than with neighborhoods, we shall give sequential

alternatives whenever possible. A good reference on the topics in this section is

[Ber 1].

Definition 1.1: A function f:[R™-/R™ is said to be continuous at Z€IR™ if for

every 6>0 there exists a >0 such that

If (z)-f (Z)li=6 \*z€B(Z.5) (1.1)
where

B(zp) & zeR" ||z -Z|1<p} (12)

S (*) is said to be continuous if f (*) is continuous at all Z€R™, =
Exercise 1.1 Prove the following resuit:

Proposition 1.1: f:/R™-/R™ is continuous at Z if and only if for any sequence

5”%20 in IR™, £, +Z as i+ = (5;)f (Z) as i,

Definition 1.2: A function f:[R™*-/R is said to be upper semi-continuous at T

(us.c.) if for every 6>0 there exists a p>0 such that
J(z)-f (Z)=6 * z€B(Zp) (1.3)

() is said to be u.s.c. if it is u.s.c. at all z€R™. =

Exercise 1.2: Prove the following result:
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Proposition 1.2: f:[R™-+/R is u.s.c. at Z if for any sequence {ziizo in R™ ,

;T as i»o =

Imf (z;)sf (Z) (1.4)

Definition 1.3: A function f:JR"-/R is said to be lower semi-continuous if —f (-)

isus.c. »

Exercise 1.3: Show that if f:/R"~/R is Ls.c. at Z if and only if for any sequence
to1 L R™, 2% = L (=)= (). »

The simplest way to think of lim and lim is in terms of cluster points.

Definition 1.4: Let iz.;i 10 be a sequence in IR®. Then Z is said to be a cluster
point (or accumudation point) of iz,;izo if for any 6>0, k=0 there exists an
integer I=k such that

|l —Z|| < 6 (1.8)
ie., £ is an accumulation point of Ez‘t -;-o if there is a subsequence {zy}iex.

Kﬂ
Kci0,1,2,...] such that z;»z asi-»=. =

Fact 1.1: Let S be the set of accumulation points of a bounded sequence {y; )i io
Then S is compact and

imy; = max{y |y €S} (1.7a)
limy; = minfy |y €S} (1.7b)

Vvdi
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Exercise 1.4: Show that f:[R™-/JF is us.c. if and only if VbelR,
fz€lR™|f(z)<b} is open. Also, f:[R"-IR is Ls.c. if and only if VbelR,
fxcIR™|f (z)>b} is open. =

Next we turn to point-to-set functions. For example, let ¢:[R"x/R™-[F be a

continuous function. We can define the point-to-set valued function
F(z)y eR™ | p(zy)=0} (1.8)
which maps [R™ into 28", As another example, consider

M(z) 2 arg max ¢(z.y) (1.9)

where YCIR™ is compact, which also maps JR™ into 28",

The most important concept for point-to-set maps is that of upper semi-
continuity, though some use can also be made of lower semi-continuity. Note
that the definitions, below, have nothing to do with the ones that we gave for
functions from /R" into R.

Definition 1.5: A function (map) f:/R™-+28" is said to be upper-semi-continuous

(ws.c.) at Z if
a) f(Z) is compact and

b) for every open set G such that f(Z)CG there exists a >0 such that
S {z)CG for all zeB(Z,p) (See Fig. (1.1)).

A function f:[R™-2R™ is ws.c. if it is u.s.c. at every z€IR". «

Definition 1.6: A function f:/R™-2F™ is said to be lower-semi-continuous (Ls.c.)
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at T if for every open set G such that F(Z)NG#Q there exists a >0 such that

J (z)nG# P for all z<B(Z,p) where ) denotes the empty set. (See Fig. (1.2)).

A function f:[R"-+2R™ js Ls.c. ifitislLs.c. at every z€IR". =

Definition 1.8: A function f:/R™-+2E™ is said to be continuous if it is both u.s.c.

and L.s.c. s

Note that when f:[R™ /R is either u.s.c. or l.s.c. in the sense of set valued

maps, it is continuous in the ordinary sense.
Exercise 1.5: Prove the following result:

Proposition 1.3: Suppose that f:[R™-2F™ is Ls.c. at £ and J (£) is compact.

Then for any 3>0 there exists a 5>0 such that

F(z)nB(y.8)=9 ¥ zcB(Zp), Vycf(Z) (1.10)

Upper and lower semi-continuity can also be given a sequential interpreta-

tion in terms of limit points and cluster (accumulation) points.

Definition 1.7: Consider a sequence of sets iA;‘ 3 . in R™.
a) The point Z is said to be a limit point of tA, 10 if d(Z,4 )0 as i, where

d(@.4) & nflllz-Z|| |z} (1.11)

ie., if there exist z; €4; such that z;»ZT as i-»ce,
b) The point Z is a cluster (accumulation) point of {Alizo if 0 is an accumnu-
lation point of §d(Z,4 )iZO' i.e., if there exist z;€4; and a subset Kc{0,1,2,...} such

X
that ;% as i,

«

<
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c) We denote the set of limit points of {4} by Iim4; and the set of cluster
points of {4} by Lim4;. =

Exercise 1.8: Prove the following resulit:

Proposition 1.4:
a) A function f:R™-2F", such that f(z) is compact for all z€/R" and

bounded on bounded sets, is u.s.c. at Z if and only if for any sequence z;-Z as
i»w [imf (z,)Cf (Z).
b) A function f:[R™+28" is Ls.c. at Z if and only if for any sequence ;%

as i, Limf ()2f (Z).

Exercise 1.7: Suppose that ¢(z,') has compact level sets for each z€/R™. Show

that #(-) as defined in (1.8) is u.s.c. =

This conludes our excursion into the world of continuity concepts.



2. Derivatives.

We shall now present the specific concepts of differentiation that we need in

optimization.

Definition 2.1: Let f:/[R™®-JR™. We say that Df :[R"xX[R™-R™ is a differential for
F()atzeR if

a) Df (Z;') is linear.

b)

\FE+h)—f (B)=Df (E:h)I| _
hiisd Tk =0 (2.1)

When f:[R™-JF™ has a differential at all z</F", we say that f() is
differentiable. -

Since Df (Z;) is a linear map from JR™ into JR™, there exists a mxn matrix

Q%Lsuch that Df (E;h)=§'%££)-h for all h€R™; g'%%)—is called a Jacobian

matrix.

T
When f:[R™-/R is differentiable, we use the notation Vf (z)=gLa%)—. and

call Vf () the gradient of f ().

Proposition 2.1: Suppose that the function f:/R™-+/R™ has a differential Df (Z:h)

at Z. Then the ijth component of the Jacobian mis the partial derivative

dz
at‘gé"}

oz’

Proof: Set h=te;, where e; is the jth unit vector in /R"™. Then
—amte,=t 0f (z , the jth column of 87 (=) , and hence, from (2.1), for
oz oz 4 oz

J=1,2,....m,

|74 @+tey)-r+@-t|2LEL |
Iim ¥ _=p (2.2)
£-0 t

-g-
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ar ()| _art@ |
oz Jij ozd

ie.,

Definition 2.2: We say that f:[R™-/R™ is locally Lipschitz continuous at Z if

there exist L&[0,=), >0 such that

7 (z)~f (=)l s Lllz-='|| V= , z'€B(Zp) (2.32)

Exercise 2.1: Suppose that f:/F™-/R™ has a continuous differential Df (:,’) in a

neighborhood of Z. Show that f is locally Lipschitz continuous at Z. =

It should be noted that the existence of partial derivatives does not ensure

the existence of a differential (see e.g. Apostol p. 103 [Apo 1]). Thus consider the

function
J{zy)=z+y ifz=00ry=0
f(z,y) = 1 otherwise (Z-Sb)
In this case
6f§0.0) = ﬁm.f(tuo)—f (0.0) =1 (2.43)
z £ 0 t
y t-0 t

but the function is not even continuous at (0,0). In view of this, the following

result is of interest (see Apostol p. 118 [Apo 1]).

Proposition 2.2: Consider a function f :JR™-+/R™ such that the partial derivatives

: ]
—a%)-exist in a neighborhood of , for i=1,2,...n, =1,2,....m. If these partial

derivatives are confinuous at Z, then the differential Df (Z;h) exists. =

The following chain rule holds.

-10-



DERIVATIVES

Proposition 2.3: Suppose that f:[R®-R™ is defined by f (z)=h(g(z)) with both
h:[R'+IR™ and g:/R"-IR* differentiable. Then

of(z) _ an(g(Z)) ag(z)
dz gz oz (2.5)

We make frequent use of Taylor's formula with remainder up to order 2. It
comes in two forms: in terms of an intermediate point, and in integral form (see
Apostol p. 124 [Apo 1] and Dieudonné p. 188 [Die 1]. Also, refer to Apostol p. 124
[Apo 1] for exposition on higher order differentials). We denote by D*f (*;-) the
differential of order k& of f (-).

Proposition 2.4: Consider a function f:/R"-+/R. Suppose that f(') has continu-

ous partial derivatives of order p at each point z of /™. Then for any z,y€/F™

1w =1 (@) =8 A0 @y )

+ pl—‘DP f(zy—=z) (2.6a)

for some z=z+t(y—z), t€[0,1]. »
When p=1, we recognize (2.6a) as being simply the mean value theorem.

2 2
For p=2, sz(z;y—z)=(y—z,a—a%(§2-(y-z)>, where é—é%::—:)- is a matrix of

2 2
second partial derivatives, i.e., 8 : = 6_%_(.3:_)_
oz i oz azf

For functions f:[R™-IF™, with m>1, formula (2.6a) is not valid since there

is no 2 of the form stated that works for all the components of f (:). Instead we

use the following resuit (see Dieudonneé p. 186 [Die 1]).

Proposition 2:5: Consider a function f:/R™-I/F™. Suppose that f(:) has continu-

ous partial derivatives of order p at each point .2 of /™. Then for any z,y</F",

-11-
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DERIVATIVES
@) -1 @) =" LD (zy-z)
k=1 k!

+ G—éﬁ!—‘Z(l—s)P"DP J{z+s(y—z)y—z)ds (2.6b)

Proof: We shall prove (2.8b) only for p<2. For p=1, consider the function
g(s)=f(z+s(y—=z)). Then

g(1)=f(y).g(0) = f(z) and
g(1) - g(0) =,°fg'(s)ds

= .Z' Df (z+s(y—z)y—=z)ds (2.7a)

which completes the proof for p=1.

Next, letp=2. Then we have
g"(s)(1-5) = S{g(s)(1-s) + g (s)] (2.7b)
Integrating (277b) from 0 to 1 we get
§() ~9(0) ~g'(0) = [(1-s)g"(s)as (2.7c)
which, on rearranging, we recognize as being
1 @)=1 @) = @y =) + [(1=)0% (s sy =)ty =i

after substitution for g(s). =

Finally, ave define directional derivatives which may exist even when a func-

tion fails to have a differential.

Definition 2:3: Let f:IR™-+/R™. We define the directional derivative of f(:) at a
point T€/R™ in the direction A €/R™ (h#0) by

df (Eh) 4 1 LEHRIT E) (2.8)
t>0

-12-

-

-



Cad

DERIVATIVES

if this limit exists. Note that £>0 is required. »

Exercise 2.2: Suppose that f:IR" »/R™ has a differential at Z. Show that for any

h, the directional derivative df (Z;h) exists and is given by

af (E:h) = Df (G:n) = 2LEL,

As we shall see later, directional derivatives play a very important part in

the theory of optimization.



3. Convexity

Convexity is an enormous subject (e.g. see Rockafellar [Roc 1]). We collect
here only a few essential results that we need in optimization. We begin with

convex sets.

Definition 3.1: A set SC/R™ is said to be convez if for any z',2"€S and A€[0,1],
[Az'+(1=A)z"]€S. =

[t

E
Exercise 3.1: Suppose SC/R" is convex. Let iz,;t { , be points in S and let i;.c.“

be scalars such that g*=0 for i=1,2,....k and i/j‘ =1. Show that
i=1

Li p‘z;] €S (8.1)

=1

Definition 3.2: Let S be a subset of [R™. We say that coS is the convex hull of S

if it is the smallest convex set containing S. »

Proposition 3.1 (Caratheodory): Let S be a subset in [JE®. If £€coS, then there

n+1 +1
exists at most {(n+1) distinct points iziill, in S such that ¥ =r2 iz, ut=0,
= i=1

Proof: Clearly, (Rockaffellar, Theorem 2.3 p. 12 [Roc 1])
k ky
coS =fz|z= f,u,‘z,- ,TES , ut=0, z‘,p."=1, k-.cIN} (3.2)
i=1 i=1
where IN-2{0,1,2,3,....}. Now suppose that

z= f Bz,

i=1

with ﬁ"ao, i=1,2,...%k, i)‘ﬁ"=1. Thus, the following system of equations is
4=1

-14-
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satisfied:

with ZZ*=0. Suppose that E>n+1. Then there exist coefficients of , j=1,2,....k,

not all zero, such that

faihi =0 (3.5)

i=1

Adding (8.5) multiplied by ¥ to (3.4) we get

1 [
Susvoarft] <

Suppose (w.l.o.g.) that at least one a!<0. Then there exists a ¥>0 such that

(3.8)

I +3a’ =0 for some j while B¢ +8at=0 for all other 2. Thus we have succeeded in
expressing £ in terms of k-1 vectors in S. Clearly, these reductions can go on

as long as ¥ is expressed in terms of more than (n+1) vectors in S. Q.E.D. =

Definition 3.3: Let S,,S3 be any two sets in /R™. We say that the hyperplane

H = {zeR"|{z,v) = a} (3.7)

separates S; and Sp if
{zw)=a VVzes, (3.8a)
yw)=a Vyes, (3.8b)

The separation is said to be strict if one of the inequalities (3.8a), (3.8b) is

satisfied strictly. =

Proposition 3.2 (Hahn-Banach): Let S,;,S2 be two convex sets in /R™ such that
S1nSz=0. Then there exists a hyperplane which separates S; and S Further-

more, if Subl and Sy are closed and either S; or Sz is compact, then then the

-15-
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separation can be made strict. =

Proposition 3.3: Suppose that SCIR™ is closed and convex and 0£S. Let

Z = arg min{||z{?|z €S} (3.9)
Then

H=iz | ) = BB (3.10)
separates S from 0, i.e., {Z,z}2||z|P for all z€S.

Proof: Let £€S be arbitrary. Then, since S is convex, [Z + A(z-Z)]€S for

all A[0,1]. By definition of Z, we must have

0<||Z|R = || + Mz )|
= |Z|R + 2\{Z.z-Z} + AY|z—Z|] (3.11a)

Hence, for all A<(0,1]
0= 2(Z,z-Z) + Nz -Z|? (3.11b)

Letting A~0 we get the desired result. s

Definition 3.4: Suppose SCIR™ is convex. We say that H={z|[{z—Z,v}=0] is a
support hyperplane to S through Z with inwaerd (outward) normal v if £S5 (the

closure of S) and
{z-Z,v} =0(=0) \fzcS (3.12)

Proposition 3.4: A closed convex set is equal to the intersection of the half

spaces which contain it.

Proof: Let C be a closed convex set and 4 the intersection of half spaces
containing C. Then clearly CCA. Now suppose £Z£C. Then there exists a sup-
port hyperplane A which separates strictly £ and C, i.e., £ does not belong to

one subspace containing C, ie., TZA. Hence (°CA° which leads to the

-16-
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conclusion that ACC. =

Next we turn to convex functions. For an example see Fig. 3.1.
Definition 3.4: A function f:/R™-+IF is said to be convez if its epigraph is convex,
i.e., if for any z',z""€IR™ and A€[0,1],

SOz + (1=-Nz") s Af(z') + (1-A) ] (z") (3.13)

A function f : [R® >R is said to be concave if —f () is convex.

Proposition 3.5: Suppose f:IF"-IR is convex. Then f(') is continuous. (For a

proof, see Berge p. 193 [Ber 1]). =

The following property can be deduced from Fig. 3.1.

. Proposition 3.8: Suppose f:[R"-IR is differentiable. Then f(:) is convex if and
only if

F) -rz)=rz)y—=z) Vz,ycR" (3.14)
Proof: => Suppose f (') is convex. Then for any z,y €IR™, A€[0,1],

J(z + My-z)) = (1-N)f (=) + M (v) (3.15)

Rearranging (3.15) we get

Lt My—z) = 762) < ¢ (y) - 7 (=) v Ac[0.1] (3.16)

Taking the limit as A-»0 we get (3.14).

<== Suppose (3.14) holds. Then for any A€[0,1], z,y €[R™

T @) = 7z +My—=z)) = (Vf (z +My -z)).y -z} (1-7) (3.17a)
S () = f (@+My—=z)) ={Vf (z+My —=z)).y =z} (-N) (8.17p)

Multiplying (3.17a) by A, (3.17b) by (1-A) and adding, we get (3.15), i.e., f(*) is

convex, =

Jadl
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Proposition 3.7: Suppose that f:[R™-/R is twice continuously differentiable.

2
Then f (') is convex if and only if the Hessian (second derivative) matrix a—a%%L

is positive semi-definite for all z €/R™.

Proaf: => Suppose f(*) is convex. Then for any z,y €/JR™, because of Propo-

sitions 3.6 and 2.5

0= f(y) = flz)-{f(z)y-=

1
= .{ (1-sXy-=z. 8%f (= ;:gy =z)) {y—z)}ds (3.17)

2
Hence, dividing by |ly —z|P and letting y »z, we obtain that a—a%('eﬁlis positive

semi-definite.

2
<= Suppose that iaz'LzQ)-is positive semi-definite for all z€/®. Then it follows

directly from the equality in (3.17) and Proposition 3.8 that f (-) is convex. =

Exercise 3.2: Suppose f : JR®- /R is twice continuously differentiable, it attains

2
its infimum and g—z%(z)>0. VYz€lk™. Show that the level sets that for some

2
m >0, {y, %-(z)y >=M|ly|P for all z,yc<IR™.

Exercise 3.3: Suppose f*:JR"-/R,i=1,2,....,m are convex. Show that
Y'(z) £ maxfi(z)
Y(z) £ ), ri(=z)

i=1
are both convex. =
Definition 3.5: Let SC/F™ be convex and compact. We define the support func-
tional gg:IR"-» IR by

os(h) émax{(h,z) | 283 (3.19)

e ol
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Proposition 3.8: Consider o5(:) as defined by (3.19) with S convex and compact.

Then

a) os(') is positive homogeneous, i.e., V* A=0,

as(AR) = Aag(h) (3.20)
b) os(') is subadditive, i.e., \* hy hy,

0s(hy+hg) < os(hy) + os(ha) (3.21)
¢) os(') is convex.
Praof:
a) This is immediate.
b) Let £&S be such that og(h +hs) =(h +he,E) = (h\E) +(ha,Z}. It follows
from (3.19) that gs{#;)=(h;,E}, for i=1,2. Hence (3.21) follows.

c) Let hy,hocR™A€[0,1] be given. Then

os(Mey + (1-Nhg) < as(Mr,) + 05((1-A)he)
= Nos(hy) + (1-MN)os(ha)

which shows that g5(-) is convex. =
Exercise 3.4: Let Sc/A® be convex and compact. Suppose that for a given
helR™ z, €S is such that gs(h)=¢h,z,). Show that

{(-zp,h} =0 FfzeS (3.22)

ie.jzeRY | {z,h}={zs,h}} is a support hyperplane to S with outward normal
h. =

Since by Proposition 3.5 S is the intersection of all the closed half spaces
containing it and og(h) characterizes such a half space, it should be possible to

describe a closed convex set by means of its support function.

Exercise 3.4: Prove the following result. <

-19-
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Proposition 3.9: Let g:JR™ R be a positive homogeneous, subadditive function.
Then the set

= {zeR™ | {z,h} < o(h) \* heR"} (3.23)

is nonempty, convex, compact and o(') is the support function for C. [Hint: use
the fact that z€C if and only if (-1,x) defines an outward normal to a support
hyperplane of the epigraph of ¢(-) at some point {(c(h),h) ] =

Minimex theorems play an important role both in game theory and in

optimization. The following one is among the best known.
‘Theorem 3.1 (Von Neumann): Let f:[R"x/R™-JR be such that f(z,y)is convex
inz and concave in Yy and let XCIR™,YCIR™ be compact convex sets. Then

mip maxf (z.y) = = max mmf (z.y) (3.24)

(For a proof see [Ber 1]).

It is easy to extend the Von Neumann Theorem to the case where either X or ¥

js unbounded, as follows.

Corollary 3.1: Let f:/[F"*xJ/R™ - R be such that f (z,y) is convex in z and concave

in ¥ and let ¥ be a compact, convex set in Jk™. If méa}:,cf (z,y) has compact level
v

sets, then

min magf (z.y) = mag minf (z.y) (3.25)

The result for ¥ unbounded is obtained by assuming that misi}f (z.y) has com-
Z

pact level sets.

The minimax theorems lead to the following important results.

Proposition 3.10: Let S be a compact convex set in /R™ and let

-20-
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B=fthcR™ | ||h||=< 1}. Then, with os(') the support function of S,

mip 05() = ~mig iz (3.262)
and
min % ||k + o5(r)} = —min % |l=|P (3.28b)
heR® z€

Proof: By definition of o5('),
. - . \ . 7
e o5 ) = pip paxhe (3.2
Since B,S are convex and compact and {k,z} is convex-concave, by the Van
Neumann Theorem we get

. - s / \
min os (h) max min {z 8! (3.28)
Now r'{u;g(z,h> is solved by h=-z/ ||z|. Hence, substituting in (3.28) we get

mipos(h) = max —|z|
= ~mip |lz| (3.29)
Next, by Corollary 3.1,
min {4|a|? + a5(h)]
helR™

= mi h|? + ¢(h,2
Join maxtAllr|f + {hoz)s

= 1 2 / \
max )fglagi}éllhll +<¢h,z)) (3.30)

Now ’% g4llR|R+{h.z}} is solved by h=-z (by taking derivatives and setting
them to zero). Substituting into (3.30) we obtain

min (4IAIF + o5(h)} = max—Hlz|F

= —mi 2
mighlz| (3.31)

Q.ED. =
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CONVEXITY

The following obvious corollary plays an important role in the development

of optimality conditions for optimization problems.

Corollary 3.2: Let S be a compact convex set in JR®. Then o5{h)=0 for all hc/R"

if and only if 0€S. =
Exercise 3.5: Prove the following.

Proposition 3.11: Let C,D be two convex, compact subsets in JF®*. Then CcD if

and only if o¢(h) < op(h) for all RER™. =
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4. Max Functions

Max functions play a central role in optimization problems that arise in
engineering design. They are also a particularly tractable kind of
nondifferentiable functions. We establish some of their most important proper-

ties [Dan 1].

Proposition 4.1: Let ¢:JR™*x/R™ -+ R be continuous and Y:/R™-+28™ u.s.c. Then

¥(z) £ maxtp(z,y)|y<¥(z)} (4.1)
is u.s.c.

Proof: Let z;~Z as i-o, be arbitrary and let y;€Y(z;) be such that
Wz )=p(z.%). Since Y(') is u.s.c. and z;~%, {1} is bounded and hence, since
¢(-.') is continuous, limgp(z;,;) exists. Suppose y;, 1€KC{0,1....} is such that

—_— K -
limgo(z,.yt)=£ier§¢(z¢.y¢) and y; »y* Theny*cY(Z) by u.s.c. of ¥(-) and hence

=) = p(Z,y*) = limp(z.) = Emy(z;) (4.2)
which completes our proof. =

Corollary 4.1: Consider ¢ and Y as in Proposition 4.1 and suppose that Y(z) is

continuous. Then ¥(z) is continuous.

Proof: We only need to show that ¥(-) is Ls.c. under the stronger assumption
on Y(:). For the sake of contradiction, suppose there is a point Z€/R™ and a

sequence z; »Z as i-o such that

Hmy(z;) < Y(Z) (4.3)
Suppose that WZ)=¢(Z,§) with FeY(Z). Let w<€Y(z;) be such that
Y= )=p(z,%) and let §;=argminf|ly—5|?|y<¥(z;)}. Then, since ¥(-) and ¢(-,")
are continuous, ¥; ¥ as i, so that limg(z;,#;)=¢(Z.7). Hence there exists an
ig such that p(2,%;)>¥(z;), which contradicts the definition of ¥%(z; ). »
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MAX FUNCTIONS
Proposition 4.2: Consider the function
¥(z) = maxlp(z.y)|y<¥(z)] (4.4)
with ¢:JR"xJR™ - IR continuous and Y:[R™-+2B", Let
Y(z) £ yeY(z)|¥z) = o(z.y) (4.5)
Then ?(-) is u.s.c.

Proof: Clearly ¥(-) is bounded on bounded sets and P(z) is compact

because Y(z) is compact and ¢(z, ) is continuous. By Proposition 1.4 we only
need to show that Zim ¥(z;)c ¥(Z) for any sequence Ez"?o converging to a point
i

Z. Suppose this is false, i.e., there exists a point Z and a sequence z;~Z such
that for y€¥(z;) we have y;~»y£¥(Z). But this means that ¥(z;)=¢(z;. %)~
@(Z,9)<y¥(Z), which contradicts the continuity of ¥(-) (Corollary 4.1). =

Next we turn to max functions of the form (4.4) with ¢(z,y) differentiable in
z and Vyp(xz,y) continuous. First consider the simplest case where

Y={y1.Ya * - - Ym}. Letting fi(z)=¢(z.1), i=1.2.....m, (4.4) becomes

W(=z) = maxf(z) (4.8)
where
m $§1,2...m} (4.7)

Drawing the graph of the function ¥(z +Ah), for fixed z h€/R™, which is a func-
tion of A only, we obtain Fig. 4.1 and conclude that ¥(z) is not differentiable
everywhere. However, its directional derivative seems to exist and should be
equal to the steepest slope of the "active functions”, ie., if we denote

I(z)=liem |¥(z)=F*(z)}, then

dy(z;h) = maxaf Yz:h)
= ie[a(g;)(Vf" (z ).h) (4.8)
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MAX FUNCTIONS

We now show that this result is true in general.

Proposition 4.3: Consider the function

Y(z) = maxip(z,y)|y<Y]} (4.92)

where ¢:[R"xR™ - IR is differentiable in z, V;¢(z,y) is continuous in both argu-

ments, and YCR™ is compact. Then for any z,h€R™,
dY(Z;h) = yrgﬁg)(vzsv(i.y).h) (4.9b)

where P(') is defined asin (4.5).

Proof: Since p(z,y) is continuously differentiable in £ and Y is compact,
¢(*,y) is uniformly locally Lipschitz continuous. Hence for z',z in a bounded set,
Yz )Y(=z) = o(z'y") — p(z.y)
=[p.y) — o(z.y)] + [¢(z.y") — o(z.y)]

< Llz' - z|| (4.10)

where y'e¥(z'), ye¥(z) and L is the Lipschitz constant for ¢(-,y). (Clearly,
since y€¥(z), ¢(z,y')—p{z,y)<0). Since we can interchange z' and z in (4.10),
we conclude that %(-) is locally Lipschitz continuous. Hence both

Jgg”'(“'ﬂ?d‘“”) and@”’(”"t"t)‘“’(’)

must exist. Now,

. Yz +th)—y(z)
L z

. ¢z +th,y)—y(z)
2%% yrg?éc) i (4.11a)

since ¥(z)cY(z). Sincep(z,y)=y(z) for all y€¥(z), we obtain from Proposition
2.5 that

13%30(2 +tht )—Y(z)

1
3 / \
=ljm max _0[ {Vz9(z +sth y).h)ds

=ye%§)<Vz¢(x.y).h> (4.11b)

VoL



MAX FUNCTIONS

where we have made use of the fact that the max function in (4.11b) is continu-

ous int and h for xfixed. Next,

i Yz +th)—y(z)
$40 t
- T ma 2(E ) —¥(z)
t40 yeY t
=T ¢(z +th,y)—¥(z)
=lm mex : (4.12)
1
=Lm max | { (Vop(z +sth,y)h)ds + w(x-y)t—v/(z); (4.13)

Now, ¢{z,y)=y(z) forall yY; P(') is u.s.c. and Y, ¢(-,") is continuous. Hence the

max of the integralin (4.13) is u.s.c. in t, for x and h fixed, and we get

im Yz +th)—¥(z)
40 t
= vglﬁg)(vzw(x.y),h) (4.14)

Hence the desired result follows. s

The following result is obvious.

Corollary 4.2: Let %(-) be defined as in (4.9) and suppose that the assumptions of
Proposition 4.3 hold. Jf Z€/R™ is such that $(Z)={#} a singleton, then ¥(:) has a
gradient atZ, with Vy(E)=V, ¢(Z,y). =

Before we can proceed further we must establish a result in the theory of

linear cost optimization problems.

Lemma 4.1: Let m ,m' be defined by

m 4 max{{c.z}|z€X] (4.15a)

m' A max{{c .z} |z €coX] (4.15b)

where XCJ/R™ is acompact set and ¢ €/R™ is given. Thenm=m".
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MAX FUNCTIONS
Proof: Since XcCcoX, we must have m'=m. lLet m'={c,Z}, ZccoX. By

~ ntl
Caratheodory’s Theorem (Proposition 3.1), Z = ), ufz;, with z;€X and u*=0,
i=1

+1
’2 ut = 1. Hence,
i=1

={c.zy=m, (4.15c)

where {c,Z;} = pax(c,zo and n+1 A {1,2,...,n+1}. This completes our proof. s

Proposition 4.4: Consider the function 9(z) defined in (4.9), with assumptions as
in Proposition 4.3. Let
oyY(z) 2 co{V.p(z.y)ly(z)) (4.15)
Then the directional derivative d9/(z;') is the support function for ¢(z).
Proof: By (4.9b), for any h€/R™,
dy(z:h) = yrgg)(vzv(x,y).h)

= max{(h,2} | 2=V p(z.y), y2(z)}
= max{{h,z} | z€d¥(z)} {4.18)

by Lemma 4.1, which completes our proof. =

Exercise 4.1: Determine whether Proposition 4.3 remains valid when the con-

stant set Y is replaced by a continuous set valued map Y(x). =

Exercise 4.2: Consider the function %(z)= max{p(z,y)|y€Y] where
@:IR"xJR™ -+ IR is continuous in z,V;¢(z,y) exists and is continuous, and YcR™
is compact. Show that a steepest descent direction for 9 can be computed in two
ways by showing that

argmintdy(z:h) | [Il<1} = argmingilh | + dy(z:h)} (4.17)

JyL .



5. First Order Optimality Conditions: The Differentiable Case.

We shall now develop first order optimality conditions for two
"differentiable” optimization problems: one unconstrained and one with inequal-
ity constraints. Optimality conditions for problems with both equality and ine-

quality constraints then follow by extension.

Definition 5.1: Consider the problem P:min{f (z)|z <X} where f:/R™-/R is con-

tinuous and XC/R™. We say that T is a global solution to P if f(Z)sf (z)\*

zeX. We say that Z is a local solution to P if there exists a p>0 such that
J(Z)=f (z) V* z€X such that ||z -Z]|<p. =

Proposition 5.1: Consider the problem
min{f (z)|z<IkR™} (5.1)

where f:[R™-/R is continuously differentiable. Suppose that Z is a global solu-

tion to (5.1), then Vf (Z)=0.
Proof: Suppose Z is a global solution to (5.1). Then we must have
df (Z:h) =0 \f heR™ (5.2)

for otherwise there would be a direction A such that

ar @R) by LEHRLE) o (5.3)

and hence for a finite £>0, f(Z+th)<f(Z) would hold. Now, since f(*) is
differentiable,

df (z:h) = {Vf &)1} (5.4)
and hence (5.2) can hold for all A€/R™ if and only if Vf (Z)=0.

The following result is obvious.

Corollary 5.1: Consider the problem (5.1) under conditions stated in Proposition

-28-
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FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE

5.1. Suppose that T is a local solution to (5.1). Then Vf (Z)=0. =

The following result is suggested by Fig. 5.1 for the simple case where there
is only a finite number of inequality constraints. Note that for the "active"” gra-

dients in Fig. 5.1 the origin is moved to the optimal point Z.

Proposition 5.2: Consider the problem
min{f (z)|¢(z.y) s 0 V yeY] (5.5)

where f:JR™-IR is continuously differentiable, ¢:/R™X/R™ - /R is continuous and
continuously differentiable in z (ie., Vz¢(z,v) is continuous), and YCR™ is

compact. If T is a local solution to {5.5), then

0 € co {Vf (Z); Vop(Z.y) , ye¥(Z)

if ¥(z) =0
0 = Vf (Z) otherwise (5.8)
where, as before,
¥(Z) 2 maxip(z.y)|yeY} (5.72)
Yz) £ eYle(z.y) = ¥(z)} (5.7b)

Proof: Let

F(z) & max{f (z) - f (£)¥(z)}
= max{f (z) - f(Z): ¢(z.y), y€Y} (5.8)

Note that F(Z)=0, since ¥(Z)<0 and that F(z)=0 for all z€B(Z,p), for some p>0,
because f (z)—f (Z)=0 when ¥(z)<0 and z<€B(Z,p). Hence T is a global minim-
izer of F(z). Since F(:) is directionally differentiable by Proposition 4.3, we
must have

dF(Z;h) =0 \* helR"™ (5.9)

since the existence of a A#0 such that dF(Z;R)<0 implies that F(Z+tR)<F(Z)<0

for some £ >0, which is clearly impossible.
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- FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE
Now, by Proposition 4.4
dF(Z;h) = max{{z,h}|2z€Z(Z)} (5.10)
where
Z(Z) £ co (V7 (); Vo p(E.y), yTHE) (5.11)
with Y*(Z)=P(Z) if %(Z)=0 and Y*(Z) the empty set otherwise. It now follows

from Corollary 3.2 that 0€Z(Z), i.e., that (5.8) holds. Q.E.D. =

Exercise 5.1: Prove the following.

Corollary 5.2: Suppose that Z solves (5.5) and that the assumptions of Proposi-
tion 5.2 are satisfied. Then there exist at most {(n+2) points in the set

Z(x): VF(Z), Vzo(Z,yy) i=1,2....,n+1, such that

uVF (E) + "il’uiv,;a(s.yn =0 . (5.12)

ﬁ"'l - o~
where p*>0 for =0,1,...m+1, ), p*=1. Furthermore, if either ¥(Z)<0 or ¥(Z)=0
i=0
and 02w{V ¢(Z,y) |y P(Z)], then u°>0. »

Exercise 5.2: Use the fact that an equation h(z)=0 can be replaced by the two

inequalities h(z )=0, —h(z)<0, to prove the following resuilt.

Proposition 5.3: Consider the problem
min{f (z)|2(z) = 0, ¢(z.y) <0 VVyeY] (5.13)

where f:/R" IR and h:IR™-IR' are continuously differentiable and ¢:[R®XR™ is
continuous and continuously differentiable in z (i.e., V.¢(z,y) is continuous),,
and YC/R™ is compact. If Z ‘solves (5.13) then for some YelR!, y,cY¥Z),
i=12..n+1, and Oul, - -, u**'=0 such that (u¥)#0 (where

p=@dt )

/
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FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE

- n+l - dh e\T
WS @)+ L HVp (@) + —{,@-L% =0

xr

Exercise 5.3: Develop conditions which ensure that u®#0 in (5.14). =
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6. Nondifferentiable Analysis and Optimization

Wé now turn to real valued functions on /R™ which are assumed to be only
locally Lipschitz continuous (L.L.c.) (see Definition 2.2). Functions within this
category that are particularly important in engineering design are the max
functions discussed in Section 4, eigenvalues and singular values of various sys-
tem matrices [Pol 8], and max min max functions discussed in [Pol 7], in con-
nection with tolerancing and tuning problems. We begin by stating a key pro-

perty of 1.L.c. functions, the Rademacher Theorem [Ste 1].

Proposition 6.1: Suppose f:[R™-[R is locally Lipschitz continuous. Then Vf (z)

exists for almost all z<IR™. »

The following results are culled from the book by F. H. Clarke [Cla 1]. First,
a LL.c. function may fail to have directional derivatives at a point z€JR™. This

has led to the following extension of the concept of directional derivative.

Definition 8.2: Let f:/R™-»/K be LL.c. We defined the generalized directional
derivative of f (-) at €IR™ in the direction h€R™ by

dof (z:h) & T LUHAI-T () (6.1)

Y-z

Since there exist £>0, L>0 such that |f(y+th)—f(y)|<tL|h]| ., for all

y<€B(z.c), 0 t<e, it is clear that dof (z;h) is well defined.

Exercise 6.1: Let ¢:[R"x/R™ IR be a continuous function such that V.¢(z,y)

exists and is continuous and let ¥ be a compact subset of JR™. Let

Y(z) £ max {p(z.y)|y<cY] (6.2a)

¢(z) = min {g(z,y)|y<Y]} (8.2b)

show that for any z,h</F™,

P& o



NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION
dy(z:h) = dgy(z:h) (6.3a)

d¢(z:h) < dof(z:h) - (83p)

Hint: Use Proposition 4.3. =

Proposition 8.1: The generalized directional derivative dof (z;h) of a L.L.c. func-
tion f:IR™-IR , defined by (6.1), has the following properties:

a) h-+dgf (z;h) is (i) positive homogeneous and (ii) subadditive on IRF™.

b) If L is a local Lipschitz constant for f(:) at z, then for any h€/R™

|dof (z:h)| = L||R| (8.4)
e) (z,h)-dof (z;h) is u.s.c.

d) h—dof (z;h) is Lipschitz continuous with constant L, where L is a local
Lipschitz constant for f(-) at z.

e) For any helR™ , dof (z;~h)=do(—f Y(z:h).
Proof:

a) (i) For any A>0, and z,heR"™ ,

dcf(x;M) =1‘i"§ .f(y"'tM) —_f(.'S)

t
vz
= \im F(y+t\r) - f(z)
g a
= Ndof (z;h) (8.5)

which shows that dof (z;') is positive homogeneous.

a) (ii) For any z,h,,hp €R™,

dﬁf (z‘.hl‘l'hg) = T}I—El f(y+t(hl":h'2))-f (y)
y-z

= g (L@t thatthe)) =f (y +thy)
40 it

Y-z
+ L (y+tht1)-f (y);
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

< dof (Z3he) + dof (z:hy) (8.8)
which shows that dof (z;') is subadditive.

b) Since |7 (y+th)—f (y)|<Lt]jh| for any |ly—=z|| and ¢ sufficiently small,
(6.4) follows.

c) Let z;»z and h;-»h as i+, We must show that limdyf (z;.h;)<dof (z.h).

By definition of lim , for every i there exists y;€/R™ and £;>0 such that £,40 as

i, Iny-ZaiIH‘-si.—and

1_ L+ th) - 7 ()

dof (zih) = 5 %
_f+ th) —f) St tiht)t:f(yi + Lh) 6.7)
Hence,
Timdof (zehy) Smi:‘}:‘* Sy + ttg)-f(yt)
+ Lk —r |13
=dgf (z:h) (6.8)

which shows that dof (-;-) is u.s.c.

d) For any ¥ in a neighborhood of z€/R™,h,,h€IR™ and ¢ sufficiently small,

we have

Fy+th) = f)=s(y +the) = f(y) + Lt||lhy = hell (6.9)

Hence
dof (z:h1) < dof (zihe) + Lilhy = hel| (6.10)
Since we can interchange &, and Az in (8.10), it. follows that
|dof (zih1) — dof (zihe) | = LRy = Rall (6.11)

which shows that dof (z;-) is Lipschitz continuous.
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

e) For any helR™,

dof (z:-h) = Tm Ly =th) = 7 (y) (6.12)
Y2

Let z=y—th, then (8.12) becomes

dof (zi-h) = m (=r )z + ﬂ;) = (=1 (z))

= do(~f )(=z:h) (6.13)

2

which completes our proof. =

By Proposition 3.9, the generalized directional derivative dgof (z;') can be

used to define a convex set for which it is the support function.

Definition 6.1: Let f:/R™ /R be L.L.c. We define the generalized gradient of f ()
at z by

of (z) A f¢eR™ |dof (z;h) = (&1, * helR™) (6.14)

Exercise 8.2

Let p:IJR*xIR™ - JR be a continuous function such that V. ¢(z,y) exists and is

continuous and let ¥ be a compact subset of [f™. Let

¥(z) £ max {p(z.y)|y <Y} (6.22)
We now elucidate the reasons for calling the set 8f (z) the generalized gra-

dient of f(-). First, suppose that f(') is differentiable at z. Then,
dof (z:h)=df (z:h)={Vf (z),h} for any h€R™ . By definition (6.14), for any
¢cdf (z)

{(Vf(z)—¢& R} =0 helR" (8.15)

Hence we must have Vf (z)—£=0 for all £€df (z), i.e., 8f (z)={Vf (z)}. Next, sup-
pose that f:/R™ /R is L.L.c. and convex. Then its epigraph is convex and, at any

point (Z,7 (Z)) the epigraph has one or more support hyperplanes, with normal

Vit



NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION
(-1,¢)eR™*!, such that
(-6, f(z) - f(ZE)z —2)) =0 VzeR" (6.16)
as shown in Figure 6.1. Hence
{6 (z -2} =f(z)-f(F) VzeRr" (6.17)

Now let z=Z+th, for any h€IR™ , t>0. Then we get

L(Z) o g7 (3:h) (6.17b)

\f,h/SIHgl :

iLe., ¢€df (Z). Finally we have

Proposition 6.2: Suppose that f:/[R™-/R is LL.c. with constant L in a ball cen-

tered on z. Then
a) 87 (Z) is nonempty, convex and compact, and ||¢]}sL for all £€3f (Z).

b) For every h€IR™,

dof (£:h) = max {{.h}|4<0f (=)} (6.18)
c)
af(z) = G(z) B co ’I"iglzivf (z:) (8.19)

where the convex hull is taken over all sequences {z;}, such that the Vf (z;) exist
for alli€/N and {Vf (2")1 3 , converges.

d) af (z)is u.s.c.
Proaof:

a) The fact that 8f (z) is nonempty, convex and compact follows from Pro-

position 3.9. Next we have by definition of 8f (z) that for any ¢€3f (z)
(6.} <= dof (z;h) VFheR™ (6.20)

It now follows from (8.4) that for A=¢£,
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

€l = dof (z:£) < L]j¢] (6.21)
which shows that ||¢||<L.
b) This follows directly from Proposition 3.9.

c) Let z;+Z as i»= be such that Vf (z;) exists for all i€V and Vf (z;)-¢ as

i-00, Then for any h€IR™ , £;40 as i+,

Fzi+tih) = f(z:)

dof (T:h) = %122, Z
= Uml(V7 (k) + 0 (8)]
= Q. (6.22)

Hence 2€df (Z). It remains to show that 8f (%) is contained in G(Z) the convex
hull of the gradient limits. We shall make use of Proposition 3.11. We note that
G(Z) defined by (8.19) is convex and compact. Hence to show that 8f (Z)CG(Z)
we only need to show that dof (Z;h)<o¢(z)(h) for all heR®, where og@)(") is the
support function of G(Z). Let £>0 be arbitrary and h€/R™ be given. We denote

by XCIR™ the set of measure 0 where Vf (z) does not exist. Let
o £ I V7 (y).h} ly X3 (6.23)

By definition of lim, there exists a >0 such that if |ly—Z||<é and y£X, then
{Vf (y).h}sa+e. Furthermore, for almost all y€B(Z,6), the gradient Vf (y +sh)

exists for almost all s. Hence, for sufficiently small { and almost all ¥ such that

||E—yl|<g—(by an extension of Proposition 2.5)

1 1
Fly+th) — fly) = _of t{Vf (y+sth),h)ds = {(Vf(y+sh).h)ds (6.24)

=< t(a+e)

because |ly+sh—Z||<§ for £=s=0 sufficiently small. Since f (') is continuous, sets

of measure zero can be discarded in computing lim, and hence

dof (.h) =%ﬂmtbﬂlﬂ_s x+e (6.25)
y~3
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION
Since (6.24) holds for all £>0, we conclude that dof (Z;h)sa=max {(h.£)|
¢memberco {zli{&Vf (=), z £ X3,
i.e., that (6.19) holds.

d) Since 8f (z) is compact for all z and bounded on bounded sets, to prove
that it is u.s.c., we only need to show that if z;-Z as i-»c, then Iimdf (z;)<of (Z)
(Proposition 1.4). Thus, suppose that z;»Z as i- and ¢ €3f (2;) are such that

£+% Since dof (:h) is u.s.c., for any h€R™,

dof (Z:h) = imdof (zi;h) = Tm{g,h) = Gk (6.28)
Hence 2€af (Z), which completes our proof. s
FExercise 6.3

Let p:/[R™"xJR™ -+ IR be a continuous function such that V,¢(z,y) exists and is

continuous and let Y be a compact subset of JR™. Let

Wz) 2 max {p(z,y)|y<Y) (6.272)
Show that
2(z) = co V.p(.y)} (8.27)
ye¥(z)
where
Yz) = yeY|p(z.y)= ¥z )} (6.27c)

Proposition 6.3: Suppose that f,f2:/F" +/R are lL.c. Then for any z</R",
aLf 1+ fol(z) C8f 1(z)+ 8f 2(=z) (6.28a)
Proof: Clearly, for all z, h€R™,
do(f 1 + F2)(z:h) = dof ((z3h) + dof 2(z:h) (6.28b)
Hence for all heR™,

max {{£,h) | £€3(f 1+ F2) (=)}
=< max {{.h} | s1€0f 1(z)}+ mgxé(&,h) | 2601 oz )}

-38

L oL



NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

= max {§1+€2,h) | £,€01 1(z), £2€8f (z2)3

The desired result now follows from Proposition 3.11. =

Proposition 6.4: Suppose that f1,f2 - - ,f™:[R*-R are LL.c. and let

¥(z) £ max 74(z)
Then

0Y(z) C codf7 (z)}jeiz)

where I(z)2{jem | £ (z)=y(z)} and m 2§i.2.....m].

(6.29)

(8.30)

(6.31)

Proof: First, given any z, k€IR™, there exists >0, >0 such that if j27(z), then

j&I(y+th) for al t€[0,], |ly—z||<p. Hence I(y+th)cI(z) for all such ¥ and ¢.

Therefore, for such v, £,

Wy+th) =Y(y) _ - fily+th

)
t jem t
Fi(y+th) = Fi(y)
t

- %)

= max
Jei(=z)

since lim and max are interchangeable operations, we get that
doy{z;h) = dofi{z;h
o¥(z:h) Joax of (z;:h)
that is,

max {{¢,h} | ¢€8Y(z)i=< Jmax max {Ej.hy | €50 (z))
= max {¢.h} |é€co (0F7(z)}jer)}

which, in light of Proposition 3.11, completes our proof. =

(6.32)

(8.33)

(6-34)

1t is also possible to establish a chain rule. We shall present only the sim-

plest case.

Proposition 6.5: Suppose that f:[R™"-/F is LL.c. and, for any z,y €/R™ given, let

g:IR-»IR be defined by
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g(t) 87 (z+t(y—=z)) (6.35)
Then for any t €/R
8g(t)  tyly = {&y—z).t<df (=)} £ G(¢) (6.36)

where z, =z +t(y —z).

Proaof: Clearly, g(-) is LL.c. Since the sets on the left and the right of (6.38) are
intervals, to establish (6.36), it suffices to prove (see Proposition 3.11) that for

h=%1,
max {yh |y€dg ()] < max {yh |yeG(t)} (8.37)
Now, the left hand side of (8.37) is just dog(£;h). Hence

max {yh |y€dg(t)] = dog (£:h)
=T g(s+>\h£ -g(s)

gt
MO

= iy LEHE+ M)y -z’Z) —f(z+s(y —x))

gt
MO

< iy L2+ (y ;z)) =f(z)
"t
= dof (zi:h(y - z))
= max {§.h(y - z)}|é<df (=)}
= max thy|yeG(t)} (6.38)

which completes our proof. =
More generally, we can prove the following result, which, again, can be gen-

eralized to vector valued functions.

Proposition 8.5: Let h:[R™"+/R™ and g:IR™-IR be LLc. ( for A(:) component-

wise) and let f:JR™-[R be defined by

f(z) 29(h(z)) (6.39)

Then
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af (z) cavtg‘.fmlmeah%z).y*eag(h(z)); (6.40)

The last result in nondifferentiable analysis that we wish to establish is the
Lebourg Mean Value Theorem. However, its proof requires a knowledge of
optimality conditions, which we will therefore present first.

Proposition 8.6: Consider the problem
min {f (z)|z<F™} (6.41)
where f:[R™-JR is LL.c. If Z solves (6.41) (global or local solution) then
0€df (z).
Proof: Suppose that T solves (6.41). Then we must have for all h€/R™
dof (Z;h) = max ¢.h) | £€85 (Z)} =0 (6.42)

For suppose that there exists an h€IR™ such that dof (Z;R)<0. It then fol-
lows from the definition of dof (Z;k) that there exists a >0 (sufficiently small
for the local solution case) such that f(Z+Zh)<f(Z) which contradicts the
optimality of Z. It now follows from Corollary 3.2 that 0€df (Z). Q.E.D. =
Proposition 6.7: Consider the problem

min {f (z)|g’(z) <0, jem] (6.43)
where f:[R"-IR, g?:IR* IR, jEm are LL.c.
If T solves (6.43), then
0 € co {8 (£):097(Z).j €I*(Z)} (6.44)

where /*(Z) A {jem |gi(Z) = 0.

Proof: (c.f. proof of Proposition 5.2). Let F:I[R™- IR be defined by

F(z) £ max {f (z) - f (£):g’(z).j em]} (6.45)
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Clearly, F(-) is LL.c. and F(z)=0 for all z€/R™. Hence, since F(Z)=0, 7 is a glo-
bal minimizer for F(*) and hence we must have 0€8F(Z). Making use of (6.31)
we obtain (6.44). Q.E.D. =

An extension of the result in (8.31) leads to the following extension of Propo-
sition 8.7.
Proposition 6.8: Consider the problem
min {f (z)|¢(z.y) S0 VyeY]} (6.48)

where f:IR" IR and ¢:[R"xIR™-IR are lLL.c., and Y is a compact subset of R™.

If T solves (6.48), then
0 € co {0f (2):0=9(Z.y), y€YX(Z)} (8.47)
where YXZ)={y Y| ¢(Z,y)=0}. =
Finally, we present the Lebourg Mean Value Theorem.
Proposition 6.9 (Mean Value Theorem): Let f:/R*-+IR be LL.c. Then, given any
z,y<lR™,
F @) -7 (=) ={y-x} (6.48)

for some {;€8f (z +s(y—=z)), s€(0,1).

Praof: Consider the function h:/R-+IR defined by

h(t) 21 (z + tly —z)) + t[f(z) - F ()] (8.49)

Then h(0)=f (z), ~(1)=f (z), so that ~(0)=h(1). Clearly, 2(-) must have either a
local min or a local max for some s€(0,1). Hence, for some s€(0,1),

0 € 8h(s) € G(s) + [f(z) - F (¥)] (8.50)

where we have made use of Proposition 6.5 and the definition (6.36) for G(s).

But (6.50) is equivalent to (6.48) and hence our proof is complete. =



7. Semi-Infinite Optimization Algorithms I.

We now turn to a class of optimization problems which correspond to an
important class of engineering design problems. We shall consider in detail o;:ly
the simplest problem in this class since it captures all the essential features of

this class. Thus, consider the problem
min{f (z)| ¢(z.y) <0 VVye¥] (7.1)

where f:/R™-/F and ¢:JR*X[R™-/R are locally Lipschitz continuous (LL.c.) and
Y is a compact subset of JR™ (a more general problem would have many inequal-
ity constraints). Quite often, in engineering applications, Y is an interval on the

real line. If we define

¥(z) 2 maxip(z.y)|y<cy) (7.2)

we can express (7.1) in the equivalent form

min{f (z)|¥(z) = 0} (7.3)
We recall that first order optimality conditions for the problem (7.2) were

given in Proposition 8.8. In this section we turn to the development of algo-
rithms for solving problems of the form (7.2). All the algorithms that we will
present can be thought of as being evolved from the method of steepest descent
for unconstrained differentiable optimization. We therefore begin by recalling

this method.

Consider the problem
min{y(z)|z€IR™} (7.3)

where ¥:IF" - R is continuously differentiable.

Algorithm 7.1: (Differentiable Steepest Descent)

Data: zoelR™.
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SEMI-INFINITE OPTIMIZATION ALGORITHMS 1.
Step 0: Set i=0.
Step 1: Compute the search direction

hi = h(z;) & arg min (IR + dy(zih) | hER™]

= -Vy(z;) (7.4)
Step 2: Compute the step size
MEN=) £ arg ming(z;+ M) (7.5)
Step 3: Update:
Tyey = T + My (7.6)

Replace i by i+1 and go to Step 1. «

Theorem 7.1: Consider a sequence izii io constructed by Algorithm 7.1. If z;+XZ
as i-+ee (1€KC{0,1,2,...}) then Vy¥(z)=0.
Proof: Suppose that V(Z)#0. Then
dY(Z:h(Z)) = -IV@)IF < 0 (7.7)
Hence any AeA(Z) satisfies A>0 and
WZ+I(Z)) - Y(E)= -3 <0 (v.8)

Since k(') is continuous by assumption, the function ¥(z +A(z))—¥{(z) is con-

tinuous in z and hence there exists an i such that for all i €K, i=ig,
Wt hede) = 9(z) S YoM () — Ya) < - (7.9)

Now, by construction, W(x")t-io is monotone decreasing and ¥(z;)+XY(Z) as i+

by continuity of ¥(-); we must therefore have that ¥(z;)»¥(Z) as i». But this

contradicts (7.9). Hence we must have had V¥(Z)=0. »

We must point out at this time that practical algorithms do not use the

stepsize rule (7.5), but the much more efficient Armijo stepsize [Pol 1], rule

~
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which uses two parameters a,8€(0,1) and which is defined by

M 2 max A|A = g% ke,
I (@t My) = £ (z) < =Nl 3 (7.10)

where IN={0,1,2,3,...}. The geometry of this stepsize rule is given in Fig. 7.1.

The convergence analysis of the algorithms 7.1, modified to accept the
Armijo stepsize rule is somewhat more complex than in Theorem 7.1 and is left

as an exercise for the reader (alternatively, see [Pol 1]).

Now suppose that ¥() in (7.3) is only LL.c. Since in this case the directional
derivative d(z;h) need not exist, a first attempt at generalizing Algorithm 7.1
to the nondifferentiable case would consist of replacing d¥(z;;h) in (7.4) by
do¥(z;;h). This amounts to computing the search direction according to the for-

mula

hy = h(z) £org min GRIP + doy(z:h)3
= i R + (&)
arg min max GAR[F + {6
= i 2 +7 ‘h\
arg max min k(" + &R
= —arg min {4h|F|hedy(z)} (7.11)
where we have interchanged the min and max operations on the authority of

Corollary 3.1 and have eliminated the min on the basis that if h; solves
min{¥|h|+{¢,h) | h €R™} then h=—¢, so that JllhgP+{&.h =Kl F.

Because 8%(:) is not continuous, h{z), as defined by (7.11), is not continu-
ous. Hence it is not possible to simply mimic the proof of theorem 7.1 in trying
to show that the extended algorithm is convergent in the sense that z;~%Z
implies that 0€8%(Z). In fact, there are known counter examples which show
that the accumulation points Z constructed by the extension of Algorithm 7.1
using (7.11) fail to satisfy 0€dy¢(Z). Clearly, a much more sophisticated

approach than using (7.11) is needed.
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To try to obtain some intuitive insight into techniques for generating con-
tinuous search directions, let us examine the simple case where

'w(x)=r}1€¥f5 (z), with the fJ:/R™-+/R continuously differentiable. In this case,

8Y(z)=co {VfI(z)};jer(z) where I(z)={jem |¥(z)—f7(z)=0}. Since the index set
I(z) can change abruptly, it is clear that 3¥(z) is not continuous. Now, if Z is a
minimizer of ¥(-) over [R®, then we have 0€d¥(Z), i.e., for some &/=0 such that

Y, W=1, we have ), p/VfI(Z)=0. A commonly used trick to avoid introduc-
jel(z) jel(z)

ing the index set /(z) into the optimality condition is to express it in the

equivalent form of two equations

S uivri@E) =0 (7.12a)
=1
Lwe@ -ri@)=o (7.12b)

with the /=0 such that ﬁ #=1. Since u/=0 and Y(Z)—f7(Z)=0, (7.12b) implies
=t

that 4/=0 for all j2I(z). Now, (7.12a) and (7.12b) state that O is an element of
the set Gy(Z)</R™*! defined by
G¥(E) £ 0o FyeRH |

& = @QE) - FI@).VfI(E))jem) (7.12¢)
where we have abused notation in denoting vectors in R™*! as £=(¢°,¢£) with
¢c</R™. Rather interestingly, the set valued map G¥(‘) is continuous and hence,
h(z)=(h%z),h(z)), with h(z)€R™, defined by i (z) 2 arg min {¥||r||R<Cy(z )},
is also continuous. The principle of wishful thinking suggests that & (z) must be
a ""good" continuous search direction for solving min{¥(z)|z</F"}. We shall now
establish an axiomatic structure for utilizing this guess. In the next section we
will present a more complicated approach which leads to computationally more

efficient algorithms.
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Definition 7.1: Let ¥:/R™+/R be LL.c. We shall say that Gy:[R"-2F"" is an aug-
mented convergent direction finding (a.c.d.f.) map for (:) if:

a) GY(-) is continuous (i.e., both w.s.c. and Ls.c.) and Gy(z) is convex for all
zelR™.

b) For any z<R™ , if £=(¢%,¢) €/R™*! is an element of Gy(z), then £°=0.

¢) For any z€/R™, a point £=(0,f) is an element of Gy(z) if and only if
gedy(z). »
Pmposiﬁl;n 7.1: Suppose that ¥:/IR*-+/R is LL.c. and Gy() is c.d.f. map for ¥(-).
Then for any z€/F™,

a) 0€dy(z) < 0eGy(x)

b) The functions ¥:JR® /R and h:IR™-[R"*! defined by

¥(z) £ min {Y[ER|Z<Cr (z )] (7.13a)
h(z) £ —arg min {Y|[E|?|Z<Cr (=)} (7.13b)

are both continuous and ¥(z)=0 <> 0<dy(z).
¢) Writing A (z)=(h%z).k(z)), with k(z)cR"™,
doy(z:h(z)) < ~8(z) (7.13c)
Proof':

a) => Suppose 0€d¥(z). Then, by Caratheodory’s theorem (Proposition

3.1), there exist at most (n+1) vectors £;€89(z), i=1,2,...,n+1, such that for

+1 n+l | - -
some u'=0, ’12-1 =1, ‘qu 4 £,=0. Now, the vectors £;=(0,£;) €G¥(z) by definition

ntl —
and ) u*£ =0 which proves that 0€Gy(z).
=

~& Suppose that 0Gy¥(z). Then there exist (by Caratheodory) at most n+2

—_ — +2 +2 -
vectors £:€G¥(z) such that 'Ep‘eFo with x*=0 and '2 u=1. Now, &=(&2.&)
=1 i=1
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n+2
and by b) of Definition 7.1, £’20. Since ), u'£’=0, we must have u‘£d=0 for
i=1

i1=1,2,....,n+2. Hence, for all i such that x*>0, £#=0 and hence {;€9¥(z). We con-

clude that 0dy(z).

b) Since Gf (') is continuous, it follows from Corollary 4.1 and Proposition

4.2 that ¥(z) is continuous and A(x) is u.s.c. Since the solution of (7.13a) is

unique, it follows that ~(z) is a point-to-point map and hence continuous.

c) By definition (7.13b) we have
{(~h(z).8) = YIh(z)IF = 3(z) VEcCS (z)
Now suppose that £=(0,£), so that ¢€8¢(z). Then
(~h(z).& ={-h(z).} = ¥(z)
consequently, we have
doy(z:h(z)) = max (h(z).6) < —¥(z)

which completes our proof. =

Exercise 7.1: Suppose that ¥:/R™- IR is defined by

11/(2).41}1&3:]”(2-')

where f7:JR™-R are continuously differentiable functions. Let

=) éjg[ i §z’]]

Show that this set is an augmented convergent direction finding map. =

Exercise 7.2: Suppose that ¥:/R™-IF is defined by

Y(z) = max {g(z.y)|y<Y]

(7.14)

(7.15)

(7.18)

(7.17)

(7.18)

(7.19)

with @:/JR*xIJR™-+/F continuous and V,¢(z,y) continuous and YC/R™ compact.

Let
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v Ve 20

Show that this set is an a.c.d.f. map. =

We shall now see that if we modify the search direction computation in (7.4)

as shown below, then we can mimic the proof of Theorem 7.1.

Algorithm 7.2: (Nondifferentiable Steepest Descent) (Requires an a.c.d.f. map
Gr)).

Data: zgcIR™.

Step 0: Set i=0.

Step 1: Compute the search direction h; as the last n elements of & (z;)
defined in (7.12b).

Step 2: Compute the step length

MEN(z;) £ arg miny(z+N) (7.21)

Step 3: Update zy, =2 +NRy; replacei by i+1 and go to step 1. »

’

Theorem 7.2: Consider a sequence izi‘ -;-o constructed by Algorithm 7.2. If ;X2

as 4= (1€Kc{0,1,2,...] ) then 0€3y(Z).
Proof: Suppose that z; »*Z and 0£8¢¥(Z). Then 0£Gy¥(Z) and hence
d¥(E h(E)) s —8(E) < 0 (7.22)
Hence, for the stepsize A>0 computed at Z, we must have that
YT +A(Z)) -¥(Z)=-3<0 (7.23)

Since 9¥(') and R(:) are both continuous (Proposition 7.1), it follows that there

exists an 1g such that for all i€k, i=ig

WTia1) — Y(2e) < Yz + W) —Y(z) = -:g- (7.24)
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Now W(z;)i_l_o is monotonically decreasing and ¥(z;)~%¥(Z) as i-+=. Hence

Y(z)»Y(Z) as i-=. But this contradicts (7.24), and hence we must have
0edy(Z). =

The main objection to the use of a.c.d.f. maps is that they usually turn out
to be complex, as in {7.20), so that the computation of A(z) is next to impossi-
ble. However, they have been known to be used (with a slightly modified direc-

tion computation) in optimal control. We give a relatively simple example.

Example 7.1: Suppose we are given a dynamical system

2(t) = f(z(t)u(t)). z(0) = 2z (7.25)
where f:[R"xJR-IR™ is continuously differentiable, and suppose that we are
required to find a control »(¢) such that g (z(¢))=<0 for all £<[0,1], with g:[R" >R

continuously differentiable. First, denoting the solution of (7.25) by 2%(¢), we
define

plu.t) £g(=*(t)) (7.28)

and
¥z) £ maxp(u.t) (7.27)

Clearly, this is no longer a problem in /F®. We can either assume that u(t) is
piecewise constant (with at most n discontinuities) , which reduces the problem
to IR™, or else assume that u€L.[0,1], which leads us to produce a formal (but
justifiable) extension of our results to an infinite dimensional space. We elect to
do the latter.

First, we define Gy(u) as in (7.20). To obtain an expression for
{Vup(u,t),0u}s, where {:, 3z is the L; scalar product, we note, formally, that to

first order (in L.[0,1])

A
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plu+du,t) — p(u) = g(2¥*%%(t)) — g (2%(t))
. gg-(zu(t))az (t)
= {(Vup(u,t).0u)s (7.28)

where
82(t) = %g(zu(t),u(t))az(t) + %g(zu(t),u(t))au(t)
52(0) =0 (7.29)

Next, replacing 8¥(z) by Gy¢(z) in (7.11), we find that A(u), defined in (7.13b), is

computable by solving (via an extension of Corollary 3.1)

h 6 + {£,6 7.30
()=arg max  min HI6TIE + E.6T)e) (7.30)

where |||z is the Lz norm and 6Z=(6u006u) assumes values in IR?% 6u®(:) is an
artificial control variable. Next let P denote the set of all probability measures

on [0,1], i.e., u€P is an integrable function such that w(f)=0 for all £€[0,1] and

1
f u(t)dt=1. Then, a vector {€G¥(u), which is a convex combination of vectors
0
1
of the form (Y(u)-p(u.t).Vup(u.t)), has the form (fu(t)[W(u)-p(u.t)]ldt,
()

1
f u(t)Vyp(u,t)dt). Hence (7.30) becomes
0

R(u) = arg max 1 L;m ; §3 f [6u(t)? + 6u(t)?]dt

1
0 .
+ Ju)(w) - g (¥ (E)]dt + { u(t) gz (£))0z (¢ )dt | 82 (¢)
(7.31)
We see that the inner (min) problem is a simple linear quadratic optimal control
problem solvable by the Pontryagin Maximum Principle [Pon 1]. The outer

(max) problem is solvable by means of dual algorithms. Thus we see that the

algorithm that we have described is extendable to optimal control as well. =
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Finally we turn tc the problem (7.3). We assume thal en algoritam of tne
form of Algorithm 7.2 has been used to find a point .«"':g~ such that ¥{rg)<0. Notie
that if rn;pr’:t ¥(z)<0, then such an z, is obtained in a finite number of iterations.

ZEL
We need to postulate a continuous set valued map G, () such that 0€G, ()
holds if and only if the optimality condition (6.44) hoids. We proceed by exten-

sion from the unconstrained case.

Defnition 7.2: Let f:[R* IR , ¥:JR*~IR be LL.c and let F2{zcR™|¥(x)=<0}. We
shall say that @,,V:ﬂ?"-azl‘?"“ is an augmented convergeni direction finding map
for {(7.3) if

aj Gy 4(*) is continuous and G, 4(z) is convex for all z€R™.

b) For any z€F, if £=(¢%£)<iR™*! is an element of Gy y(z}, then {°=0.

c¢) For any z€F, a point £=(0,£) is an element of Gy 4{z) if and only if either
YEBS (z) or Yecoldf (z), 0¢(z)} and ¥(z) = 0.

d) For any z<€F, such that ¥{z)<0, a point é=(—¥(z),£) is an element of
Gy 4(z) for all {€dy(z). »

Proposition 7.2: Suppose that f,¥:JR" R are LL.c. functions and that G, 4(*) is

an a.c.d.f. map for (7.3). Then for any z€/R™ such that ¥(z)=0,
a) (i) if ¥(2)<0, 0€df (z) <> 0€Gy 4(z).
(ii) if Y(z)=0, Occo {8f (z).09(z)]} <> 0€G; y(z).

b) The functions ¥:/R™+/R and h:/JR"-/R"*! defined by

¥(z) £ min (Y&l E<By y(z)} (7.32a)
Ri(z) £ —erg min 4F||FeB; 4(z)} (7.32b)

are both continuous.

e) Writing A(z)=(h%x),h(z)), with h(z)<IR"™, we have
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—h%z)Y(z) + doy(z:h(z)) < —¥(z) (7.33a)
dof (z:h(z)) < —¥(z) (7.33b)
Proof:

a) = if 0€df (z), then 0€Gy 4(z) because of c) in definition 7.2.

Now suppose that 0€Gy 4(z). Then, because of c) in definition 7.2, we must have

0e3f (z).

b) The continuity of ¥(:) and A(‘) follows from Corollary 4.1 and the fact

that the argmin in (7.?2b) is a singleton.
c) By definition (7.32b), A(z) satisfies
{(~(z).€} = IR (z)IF = 3(z) V*EcC; 4(z) (7.34)
Now, let £=(0,£)€G; 4(x) be such that £€8f (z). Then we get
hO(z)0 + (R (2 ).} < —8(z) (7.35)

Maximizing (7.35) over £€8f (z) we obtain (7.33b).
Next, suppose that §€89(z). Then (—y¥(z).£)€Gy y(z) and hence (7.34) yields

—h¥z)Y(z) + (h(z).£) s —¥(z) (7.36)
Maximizing (7.38) over {€8y(z), we obtain (7.33a). Q.E.D. =
Exercise 7.3: Suppose that f:/R™-+/F and ¢:[R"X/R™-IR are differentiable func-

tions and that ¥(z)2maxie(z,y)|ycY} with YCR™ compact. Show that the

map

Gp 4(z) 2 co [[Vf%z )]:[6; ‘; i’z}) ,ye)’} (7.37)

satisfles the assumptions of definition 7.2. =

We conclude this section by stating an algorithm model for solving {7.3) and

giving a proof of its convergence.

Algorithm 7.3: (Constrained Nondifferentiable Optimization) (Requires an a.c.d.f.
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map Gr (') ).
Data: zg€/R™ such that ¥(zq)=<0.
Step 0: Set 1=0.

Step 1: Compute the search direction h; as the last n elements of A (=),
defined in (7.32b).

Step 2: Compute the step size

A € Mz;) & arg Hgglff(zi + M) |
Yz + My) =0} (7.38)
Step 3: Update: z;,,=z;+A\h;, replace i by i+1 and go to step 1. =

Theorem 7.3: Suppose that f,4:[R® -+ are LL.c, that Gy y(-) is an a.c.d.f. map
L] KA

for (7.3). If iz‘t—’-o is a sequence constructed by Algorithm 7.3 and z;-»Z as

i-e(K<C{0,1,2,...}) then Y(Z)=0 and 0€G; 4(Z). (ie., T satisfies the first order

condition of optimality).

Proof: To obtain a contradiction, suppose that 0£G,y(Z). We consider two

cases. (Clearly, since ¥{z;)<0 for all i, we must have ¥(Z)<0 ).

a) Y(z)<0. Then, since ¥(Z)>0, (see 7.32a), we have from (7.33b) that
dof (Z:h(Z)) .= —(Z) <0 (7.39)

Consequently, since f (-), ¥(-) and (') are continuous, there exist a >0, a A>0,
and a 3>0 such that

flz +n(z)) - f(z)=-3 (7.40a)
Yz +W(z)) =0 (7.40b)

for all z€B(Z,p). Hence, since z;+XZ as i+, there exists an ig such that

(@) = F(m) s -8 Vizdg ick (7.41)

Now {f (z;)‘zo is monotone decreasing and f(z;)+Xf(Z) because f(:) is
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continuous, hence f (z;)-f(Z). But this contradicts (7.42) and hence we must

have 0€ 5, 4,(5 ) .

b) ¥(Z)=0. In this case, since 0£ Gy 4(Z), it follows from (7.33a) that
do¥(Z;h(Z)) < —9(Z) <0 (7.41)

holds in addition to (7.39). It now follows from the continuity of f (), ¥(:) and
h(:) that for some >0, R>0, 3>0 (7.40a), (7.40b) hold for all z€B(Z,5). Hence,

we obtain a contradiction as for case a). »

This concludes our exposition of a first approach to the construction of
semi-infinite optimization algorithms. While the approach is simple, it results in
unacceptably difficult search direction finding problems. Our second approach
will therefore be to reduce this computational difficulty at the expense of an

increase in algorithmic complexity.
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8. Semi-Infinite Optimization Algorithms II.
We continue with the problem
min {f (z)|¥(z) = 0} (8.1)
where f:I[R™ IR and ¥:IR™-IR are both L.L.c. In particular, we are interested in
the case where

¥z) £ max ¢(z.y) (8.2)
ye

where ¢:[R*x/[R™ - R is l.L.c. and Y is a compact subset of [R™.

As in the preceding section, we begin by first considering the problem of
finding a feasible point, ie., finding an z€/R™ such that ¥(z)=<0 by solving the

problem
min {¥(z)|z <R} (8.3)

In Section 7 we found that if we used 3Y(z) to compute search directions, we
could not prove convergence. On the other hand, when we embedded 8%(z) in
an augmented convergent direction finding (a.c.d.f.) map G¥(z), we could prove
convergence. However for ¥(-) as in (8.2), the computation of the search direc-
tion involved the solution of an infinite quadratic programming problem which,
at best, is extremely hard to carry out. To develop our intuition, we turn again

to the simple case where
= ]
¥(z) = max f¥(z)
with f7:IR®-IR continuously differentiable. For this case we have

8y(z) = co VI (z))jerz) (8.4)

where I(z) 2 {jem|f?(z)=¥(z)} and we can define an augmented convergent

direction finding map by (see Exercise 7.1)
e 2 o [P 5)E17) =
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Our first attempt at reducing dimensionality of the search direction finding
problem may consist in discarding from (8.5) all the vectors such that
Y(z)-fi(z)>e>0 for some ¢ and somehow adjust £>0 as the computation

proceeds. This yields a candidate map

— —Fi
e £ g5, {87 @
where
I@)=ljem|¥(z) - fi(z) = &} (8.7)

Indeed, this is a perfectly good starting point for a convergent direction finding
map. However, our knowledge of methods of feasible directions (see [Pol 1], [Pol
5], [Gon 2]) leads us to guess that once ¢ is introduced, we no longer need to
retain the values of ¥(z) and fi(z) in G,¢(z), ie., that a convergent direction
finding map with set values in JR™ rather than in #™*! can be used. The obvious

candidate for such a c.d.f. map is

Gy(z) £ co 979 ))jere) . £20 (8.8)
We proceed again on the basis of the principle of wishful thinking, which
leads us to believe that we must be right and construct an axiomatic structure

which abstracts the properties of the set in (8.8).

Definition 8.1: We shall say that {G,¥(-)}.20 Where G,¥:IR™-2F", is a family of
convergent direction finding (c.d.f.) maps for the L.L.c. function ¥:/R" - R if

a) For all z€R™, 3y(z )= Goy(z).

b) For all z€IR™, O<e<e'=> G Y(z)CGA(z).

¢) For any £20 and z€/R™, G,¥(z) is convex.

d) For any £20, G,¥(z) is bounded on bounded sets.

) G(z) is ws.c. in (e;x) at (0,Z) for all T€IR™.
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f) Given any Z€R®, >0 and >0 there exists a p>0 such that for any

T€dY(Z) and any z€B(Z,p), there exists an é€G¥(z) such that |[£-2|<3. «

We note that the property f) above is that G.9¥(') is "almost" l.s.c., which is

quite close to continuity.

Before we proceed, we shall prove that G,¥(-) as defined in (8.8) indeed has

the properties specified in Definition 8.1.

Proposition 8.1: Suppose that f/:[R"-/R, j€m are continuous differentiable

functions. Then the family of maps {G.¥() Q{ o defined by (8.8) is a family of c.d.f.

maps.

Proaf:
a) Clearly Goy(z)=8%(z) for all z€R™.
b) Since 0<e<e'=> I (z)</,(z) we must have G,¥(z)CG,¥(z).
¢) GY{(z) is convex by definition.
d) For any £20, Gy¥(z )< co{Vy! (z)j ém Since the Vf7(:) are all continuous,

it follows that G, ¥(x)cco {Vf7 (z)j ém is bounded on bounded sets for any £=0.

é) Consider the point (0,Z). If jem is such that j£Ix(Z), then
WZ)—f7 (Z)>0. Hence there exists a p>0 and an £>0 such that j£/.(z) for all
z€B(Z.p), £€[0,2]; i.e., for all z€B(Z,p) and £€[0,2], Jo(Z)>I.(z). Hence, if ;-0
and z;-ZT as i- are arbitrary sequences then, since the Vf7(z) are continuous,

we must have IimG, ¥(z,)<Go¥(z:), i.e.. Ge¥(z) is us.c. at (0.Z).

f) Let X, >0 and 3>0 be given. First, since j&€/o(Z)=> ¥(Z)—f7 (Z)=0, there
exists a p;>0 such that ¥(z)-fi(Z)<e for all z€B(Z.0,) and jelo(F). ie.
IoZ)clx(z) for all z€B(Z,p,). Next, there exitst a pe(0,0;] such that

[V£I(z)—Vri(z)||<B for all z€B(Zp) and jEm. Hence, if 3= 2( );:J Vri(Z) with
jely(#
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=0 and 2(5);‘11’ =1 is any point in 89(Z), then for any z€B(Z,p) there exists a
jEIo

¢= e; @ Vri(z) in Goy(z) such that
Jely(®)

le=2I=1l ¥ &) -vri@Ni=3
i<Te)

Exercise B.1: Prove the following.

lemma B.1: Suppose that Go¥(') , >0, is an element of a family of c.d.f. maps,
defined as above. Then for any Z€R™, 3>0, there exists a >0 such that for any
zx'.z"€B(Z.p) and any £<d¥(z') there exists an £"€G¥(z") such that [|¢"—¢|}<?.

[ Hint: use f) in Definition 8.1 and the fact that 3%(-) isu.s.c. ]. =

The purpose for the augmentation of 8¢(z) in the construction of G.¥(z) is
io provide us with a "look ahead” property which should enable us to detect
“corners” in the equal cost contours of ¢¥(:). Hence, the most naive such aug-
mentation is to let

GY(z) 2 co {89(z" )z eBie.e) (8.9)

Obviously, this definition is quite unattractive for the case of max functions.
However, it may have merrit in the case of less structured semi-smooth func-

tions, see, e.g., [Pol 7].

Exercise B.2: Consider ¥(:) defined by (8.2) and suppose that V,¢(z,y) and

Vyp(z,y) exist and are continuous. Let
Gep(z) 2 co (Vo0(z.¥)yer (=) £20 (8.10a)
‘where

Yulz) 2 yeY|vz) —p(z.y) s e
and ¥ is .a local maximizer of ¢(z,') in Y3 (8.10b)
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Suppose that ¥o(z) is a finite set for all z€/R™. Show that (8.10a) defines a fam-
ily of c.d.f. maps for ¥(-) (Hint: see [Pol 3], [Gon 2]). =

Exercise B.3: Let @(z) be an nXxn symmetric, positive semi-definite, complex
valued matrix whose elements are continuously differentiable in z and let its
eigenvalues be denoted by Al(z)=A%(z)=- - - =A"(z). Define ¥(z) A A\}(z). For
any £20, let Uygz) be a matrix of ordered ortho-normal eigenvectors
corresponding to the eigenvalues M (z) of @(z) such that ¥(z)—N (z)<s. Show
that

Gat(z) & co (e & =(Uy(e)e: 22y (a)e)
i=12...n, |lz]| = 1] (8.11)
defines a family of c.d.f. maps for ¥(-) Hint: see [Pol 3], [Pol 6]). =

Finally, we need to define a feedback law for decreasing £ in a family of

c.d.f. maps.
Definition 8.2: Let {G,¥(z)}.20 be a family of c.d.f. maps. Let a€(0,1). We define
the ¢ -search direction at z<IR™ by
he(z) £ —arg min Y|P heCy(z)] (8.12)
and the & adjustment law by
&(z) £ max {e€E | ||he(z)IF = ] (8.13)
where

E 2§0,1,0,0%03, - - -} (B.14)

Before we continue, it is worthwhile to pause and re-examine the & -search
directions k,(z) defined by (8.12). We can define an s-generalized directional

derivative by
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dy(z;h) 2 (B K&h) (8.14a)

Then we find that, because 3y(z)CG.¥(z),
do¥(z k) < dy(z:h) (8-14b)

so that any h which makes d.¥(z;h) negative is a descent direction for ¥(-).

Also, it is easy to see that

he(z) = arg min RhlIn|F + d¥(z:h)} (8.14c)

which, by comparison with (7.11) shows that we are fairly close to the most naive
extension of the method of steepest descent to the nondifferentiable case,

except that, now, hopefully, we have generated some near continuity properties.

Remark B.1: In practice, it is common to add a second parameter 6>0 to the
definition of £(z), using the test || (z)|[*=d¢ , which enables us to "balance” the

computation better. =
We are ready to state an algorithm model and establish its convergence.

Algorithm B8.1: [Requires a family of c.d.f. maps {G:¥( )0 and a€(0,1) for
(8.13)]

Data: zqclR™.

Step 1: Compute £(z;) according to (8.13) and the search direction
hy=h(z,)(z;) according to (8.12).

Step 2: Compute the stepsize
M € M=) £ arg miny(z; + M) (8.15)

Step 3: Update: z;,,=2;+Mh;; replacei by i+1 and go to Step 1. =

Lemma 8.2: For every Z€IR™ such that 0£3%(Z), there exist a p>0 and £€E, >0
such that &(z)=% for all z€B(Z.p).
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Proof: Since G ¥(z) is ws.c. in (&,z) at (0,Z), it follows that ||k (z)|P is Ls.c. in
(s.z) at (0,Z). Since ||ho(Z)]|>0, it now follows from the Ls.c. of ||h.(z)|? at (0.Z)
that there exist a p>0 and an >0, $€F, such that ||k (z)|?P—as=0 for all z€B(Z.p)
and 0=<§=<§ . Hence [h3(z)|P=2=0 for all z€B(Z,p). But this implies that

&(z)=% for all z€B(Z.,p). Q.E.D. =

Theorem B.1: Suppose {xiiio is a sequence constructed by algorithm 8.1 in

K
minimizing a lL.c. function ¥:[R"-IR. If z;-Z as i-»~ (Kc{0,1,2,....}), then
osdy(z).

Proof: Suppose that 0£3y(T) for the sake of obtaining a contradiction. Then
£(Z)>0 and by Lemma 8.2, there exist ig and >0 such that £(z; }=£>0 for all i>1,,

1€K. Now, by the mean value theorem of Lebourg (Proposition 6.9),

Yz + Mu) ~ Yz) = Kb b (8.16)

where §,€0%(x;+sMy), for some s€(0,1). Now, since G.¥(z) is bounded on
bounded sets and G.¥(z)CG¥(z), we have that there exists a b <= such that for
all i€K , i2iy 0<e<e(z;)<|/h(z;)|?<b? Referring to Lemma B.1, let p>0 be such
that for any z',x"'€B(Z,p), and any ¢'€dy(z') there exists a £'€Gi(z") such that
b||&—¢"||<2/ 2. Hence there exists an i,=i¢ and a A>0 such that for all i=i,, 1€X,
both z;€B(Z.,p), and (z;+s\y)€B(Z,p) for all s€(0,1) and for £&x€dy(z;+sAhy;)
there exists a £x'€Ge¥(%;)CGe(g,) such that [éix—£xlb <%/2. Substituting in

(8.18) we now obtain, for all i>i,, i€K

Yl + Mhy) —Y(z) =
Yz + Ny) — (=)
=Nh x> + (haobax — €]
=N —lA [P + <hy,éix — £x>]
= N=E(=) + [l llax — £axll]
= -Ne/2<0 (8.17)
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Now, W(z;)i io is monotone decreasing and ¥{z;)~+X¥(Z) since ¥(*) is continuous.

But this implies that ¥(z;)»¥(Z) as i+, contradicting (8.17). Hence we must
have had 0€3y(Z). Q.E.D. »

Next, we develop an algorithm model for solving (8.1) under the assumption
that we have an zg€/R™ such that 9¥(z¢)<0. As we have indicated earlier, when-

ever min{y(z)|z<€F™}{<0 such an zo can be computed by means of a finite

number of iterations of Algorithm 8.1.

Definition B.3: Let {G.f (')]e20 and {G.¥(-)}ex0 be given families of c.d.f. maps for
the LL.c. functions f(-) and %(') in (8.1). We define the family of (phase II) c.d.f.

maps §Gf 3 (*)}ea0 for (8.1) by setting

Gfy(z) 2 G.f (z) if Y(z) < —¢ (8.18a)
Gf y(z) £ co {G.f (2), Gz )} if Y(z) = —¢ (8.18b)
Next, we define
he(z) £ arg min 4l|R|F|h€Gf4(z)3 (8.19)
and
g(z) £ max {s€E| [h(2)IF = ¢} (8.20)

where E was defined in (8.14). =

Algorithm 8.2: [Requires {G.f (‘)lea0, §Ge¥()}ea0 families of c.d.f. maps for f(:)

and ¥(-) ; a€(0,1) for the set £ in (8.14) ].
Data: o IR™ such that ¥(zq)=0.
Step 0: Set i=0.
Step 1: Compute &(z;) according to (8.20) and the search direction

hy=—h(z,)(z:), according to (8.19).
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Step 2: Compute the stepsize

MEMz:) £ arg min{f (z: + M)
Yz + M) = 0f (8.21)
Step 3: Update: z;,,=z;+N\;h;, replace i by i+1 and gotoStep 1. =

Exercise 8.4: Prove the following.

Lemma 8.3:

a) For every Z&€/R™ such that 0£Gf4(Z), there exist a >0 and an¢€E , £>0

such that &(z )=% for all z€B(Z,p).

b) Suppose that Z solves (8.1), then £(Z)=0. =

Theorem B.2: Suppose iz‘t io is a sequence constructed by Algorithm 8.2 in solv-

ing (8.1), with £ () , ¥(*) LL.c. If ;+XZ as i+ ( KC{0,1,2,...] ), then ¥%(Z)=<0 and
0€Gf 4(Z) (and &(Z)=0).

Proaf: First, since ¥(z;)<0 for all i, we must have ¥(Z)=<0 for any accumulation
point T of {r;}. For the sake of contradiction, suppose that z; +XZ and
0£Gf4(Z). Then £(Z)>0 and, by Lemma 8.3, there is an i and an 2€E such that

&(z;)=%>0 for all i>ig and i €K.

a) Suppose that ¥(Z)<0. Then, by essentially repeating the arguments of
the proof of Theorem B.1 we can show that there is an ;=i and a A>0 such that
for all i €K, i=1,, ¥(z; +\h; )<0 while

Sz + ) = Fz) = -Ne/2 (8.22)
since f (Zy41)—f (zi)<f (z;+ N )—F (i), we are led to a contradiction, exactly as
in the proof of Theorem 8.1.

b) Suppose that ¥(Z)=0. Then there exists an iz=i4 such that for all i€X,

i>ig, Y(zy )=—=—e(z;) so that G; f:‘) (z;) is given by (8.18b). Consequently,
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hy = arg min i%llhllz + max ids(z‘)f (zi:h),
ds(z.‘)"l’(zi )3 (8~23)
and is a descent direction for both f (-) and ¥(-). Repeating again the arguments
in the proof of Theorem 8.1, this time both for f(-) and for ¥(:), we conclude

that there is an ig>i; and a A=0 such that for all i€K, i>ig,

oz + M) = f(z) s —Xe/2 (8.24)

Wz + W) = Y(z) < X/ 2 (8.25)

which, clearly, leads to a contradiction of the fact that f(z;)-f (Z) as i-ee.

Hence our proof is complete.

So far, we have assumed that to solve (8.1) we use one algorithm to obtain a
feasible starting point zg (such that 4(z¢)<0) and then apply a second algorithm
to optimize the design. There are two disadvantages to this: (i) two codes need
to be written and used, and data must be transferred from one to the other; and
(ii) the phase 1 process {computation of a feasible initial design) can produce
bad initial designs since it pays no attention to the cost. We ﬁow show that these
disadvantages can be mitigated by constructing a phase I-phase II algorithm for
solving (8.1). |

Let {:IR-IR be a continuous, monotonic increasing function such that
¢(0)=0 and ¢{(t)-e as £ -+, We define the phasel-phase II c.d.f. maps as having

values in 28™*,

Definition 8.4: Let {G.f (.)a;o and {G.¥(") Ao be given families of c.d.f. maps for

the LL.c. functions f(-) and ¥() in (8.1), let ¥(z).2max{0,%(z)} and y>0 be

given. We define the family of phase I-phase II c.d.f. maps {Gf (") h},o for (8.1) by

setting

Gfy(z) = FcR™|E = (0.8), ¢€G.f (z)}
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if Y(z)<-¢ (8.26a)
Gf y(z) = cofEe R E = (¢(y¥(z)+) , £) with ¢€G.f (z) or E = (0, &) ,with ¢€GyY(z))
if Y(z)=—2 (8.26b)
Next, we define
he(z) = (hd(z)he(z) 2 argmin ik |?|
heGfy(z )] (8.27)
and
£(z) 2 max {e€E |||k (z)|F = ¢} (8.28)

Exercise B.5: Show that ~.(z) defined by (8.27) satisfies

maxid.f (z:h) — VrU(z) A, d.9(z:h )} (8.29)

where d,f (z; h)-A max, é‘ R} and dy(z;:h) 2 ma’é)\f

Note the effect of Y(z) on h.(z). When ¥(z), is large, then
hg(z)ﬁargmin{%ﬂh||‘°'|h€G¢(z)i. When ¥(z)<0, h (z) is the same as computed
in Algorithm 8.2 (phase II). When ¥(z)>0 and decreases to zero, the effect of the
cost ( G.f (z)) on k. (z) becomes progressively more pronounced. For the case

where f(cdot) and ¥() are differentiable, this effect is illustrated in the figure

below.

We can now state a phase I-phase II algorithm for solving (8.1). (Note that in

[Pol 3], a less efficient phase I-phase II scheme is described).

Algorithm 8.3: [Requires {G,f (") § . {G,¥(") }_families of c.d.f. maps for f () and
¥(-); «€(0,1) for the set £ in (8.14)].

Data: zgeR™.

Step 0: Set i=0.

Step 1: Compute &(z;) according to (8.28) and the search direction

Vo U



hy=—h,(z,)(z;) according to (8.27).
Step 2: Compute the step size

MeMy(z:) £ orgming(z; + Mu) if $(z:)>0
MEMy () £ argmintf (z; + Ny)|
Wz + My) <0} if P(z)=0 (8.30)
Step 3: Update: =z, =2+ Ry, replace i by i+1 and go to step 1. =

Exercise B.6: Prove the following.

Theorem 8.3: Suppose Iz.‘jo is a sequence constructed by Algorithm 8.3 in solv-

ing (8.1) with f (), %(:), LL.c. and suppose that 0& Gy¥(z) for all z€/R™ such that
k_ - =0 /s~

Y(z)=0. If z;»T as i-»e { KC{0,1,2,...}), then Y(Z)=0 and 0G4 (Z). =

This concludes our brief exposition of semi-infinite algorithm theory. It is
worth noting that the step size rules of exact minimization that we have
presented can be replaced by much more efficient Armijo-like step size rules
without affecting the convergence properties of the algorithms. The important
question of approximations in evaluating max functions in the execution of algo-
rithms was not touched in these notes. The interested reader is referred to
[Gon 2], [Pol 1] and [Tra 1] for details on implementation of conceptual algo-
rithms. Finally, we point out that when the maximalization is over a multidimen-
sional set or when the maximand is not differentiable, it may be more con-
venient to decompose an optimization problem by means of outer approximation

techniques. For details see [Gon 1], [Pol 7].

Research sponsored in part by the Office of Naval Research Contract
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83-03861.
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Fig. 1.1. f(-) is u.s.c.

Fig. 1.2. f(+) is 1.s.c.
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Fig. 3.1. A convex function.

Fig. 4.1. Graph of y(x) = max fj(x).
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Fig. 5.1. X solves min {f2(x)|¥(x) < 0, § = 1,2,3}



f(x)

Fig. 6.1. Subgradients of a convex function.
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Fig. 7.1. The Armijo step size rule.
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Fig. 8.1. Effect of cost on search direction for y(x) > 0.
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