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INTRODUCTION.

In most engineering fields, the design process begins with the identification

ofone or more structural or system configurations which can satisfy the overall

objectives. Once a configuration is chosen, parameters for the components or

other elements must be determined. The most widespread computer-aided

design systems, whether in automatic control, electronics, or structures, assist

in the parameter determination phase by means of simulation or response

evaluation programs. Such programs are executed to evaluate an initial design.

Next, some procedure is followed for adjustment of selected design parameters

orthe system configuration in order to achieve an optimum final design.

Unfortunately, humans are rather inept at solving heuristically the mul

tiparameter adjustment problems that frequently arise in engineering design. As

a result, engineers are turning more and more frequently to optimization for

final design parameter adjustment. Referring to [Pol 1] we find that quite com

monly engineering design problems lead to optimization problems with a finite

number of design parameters and an infinite number of nonlinear inequality

constraints. Such optimization problems are often referred to as semi-infinite.

They form a special class of nondififerentiable optimization problems. Because

they have a great deal of structure, it is possible to devise reasonably efficient

algorithms for their solution.

These notes collect in one volume the mathematical results in continuity,

.differentiability, convexity, properties of max functions, nonsmooth analysis,

and optimality conditions which are essential to the understanding of

nondifferentiable and semi-infinite optimization. In addition, they present an

axiomatic structure which should enable the reader to grasp the essential

features of first order algorithms for semHnfinite optimization. Although

specific problems are dealt with only superficially in these notes, the reader will
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INTRODUCTION

find that the papers dealing with specific problems will be accessible to him or

her, as a result of familiarity with these notes. The only major topic in

nonsmooth analysis which is omitted from these notes is that of semi-smooth

functions. The reason for this is that while semi-infinite optimization problems

frequently involve semi-smooth functions, they have considerable structure

which eliminates the need for the use of the brute force techniques associated

with semi-smooth optimization algorithms. For details, the reader is referred to

Polak- Mayne-Wardi [Pol 4].
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1. Continuity.

We summarize the various concepts of continuity which play a role in optim

ization theory. Since in the context of optimization algorithms one generally

deals with sequences rather than with neighborhoods, we shall give sequential

alternatives whenever possible. A good reference on the topics in this section is

[Ber 1].

Definitioii 1.1: A function f:lRn-*lRm is said to be continuous at xe27?n if for

every <5>0 there exists a p>0 such that

||/(*)-/(£)|j<tf v*ef?(£,p) (1.1)

where

B(x,p) £ \xslIK" | ||*-£|N;pj (1.2)

/(•) is said to be continuous if / (•) is continuous at all x€ilRn. •

Exercise 1.1 Prove the following result:

Proposition 1.1: / :i7?n -*]Rm is continuous at x if and only if for any sequence

\Xi ] mlRn,JEi-*x as i-*«> =>/(a^)-»/(x) as i-»». •

Definition 1.2: A function f:IRn-*JR is said to be upper semi-continuous at x

(u.s.c.) if for every <5>0 there exists ap>0 such that

f(x)-f(x)*6 V x*B{x$) (1.3)

/(•) is said to be u.s.c. if it is u.s.c. at all ar€i??n. •

Exercise 1.2: Prove the following result:



CONTINUITY

BO

Proposition 1.2: f:lRn-*IR is u.s.c. at x if for any sequence \xt ] in J7?n ,

Xi"*x as i-»oo =>

Eni/&)*/(*) (1.4)

Definition 1.3: A function f:JRn-+]R is said to be lower semi-continuous if —/(•)

is U.S.C. •

Exercise 1.3: Show that if f:IRn-*IR is Ls.c. atie if and only if for any sequence

00

\xiiioei7?n, Xi,-*x => Jin/ fa)^/ (*). •

The simplest way to think of Em and lim.is in terms of cluster points.

Definition 1.4: Let («t.j[ be a sequence in IK*. Then x is said to be a cluster

to

point (or accumulation point) of jxj J if for any <S>0, fc^O there exists an

integer l^k such that

||*i-x||£<5 (1.6)

go

Le., x is an accumulation point of \xi J if there is a subsequence {fl^jieK".
4=0

ircj0,l,2,...j such that x^->x asi-»*>. •

J&ct 1.1: Let 5 be the set of accumulation points of a bounded sequence fat), j

Then S is compact and

limi/i = maxfa | y eS\ (1.7a)

limVi = minfa facSj (1.7b)

-5-
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CONTINUITY

Exercise 1.4: Show that f:JRn^IR is u.s.c. if and only if V6ei??,

fa:€27?n|/(x)<&j is open. Also, fiJR71-*^ is Ls.c. if and only if V6ei7?,

\x^IRn |/ (x)>b J is open. •

Next we turn to point-to-set functions. For example, let (p:IRnxJRm^JR be a

continuous function. We can define the point-to-set valued function

F(x)MyzKm I<p(x,y)^Ol (1.8)

which maps IRm into 2^"*. As another example, consider

M(x) &org max <p(x,y) (1.9)

where YcJRm is compact, which also maps JR71 into 2^"*.

The most important concept for point-to-set maps is that of upper semi-

continuity, though some use can also be made of lower semi-continuity. Note

that the definitions, below, have nothing to do with the ones that we gave for

functions from J7?n into JR.

Definition 1.5: Afunction (map) / -.IR*1 -*2B*m is said to be upper-semi-continuous

(u.s.c.) at x if

a) / (x) is compact and

b) for every open set G such that f(x)cG there exists a p>0 such that

f(x)<zG foraRx(£B(x,p) (See Fig. (1.1)).

Afunction / iIR"-»25?in is u.s.c. if it is u.s.c. at every x€lRn. •

Definition 1.6: Afunction fiJR71-*^™ is said to be lower^emi-continuous (Ls.c.)

-6-



CONTINUITY

at x if for every open set G such that f(x)nG*Q there exists ap>0 such that

f(x)r\G*$for all x(ZB(x,p) where <p denotes the empty set. (See Fig. (1.2)).

A function / \IRn -*2IRm is Ls.c. if it is i.s.c. at every x eJR71.«

Definition 1.8: A function f:IRn^Z}Rm is said to be continuous if it is both u.s.c.

and Ls.c. •

Note that when f-.JR71-*^ is either u.s.c. or Ls.c. in the sense of set valued

maps, it is continuous in the ordinary sense.

Exercise 1.5: Prove the following result:

Proposition 1.3: Suppose that f:]Rn-*2Sim is Ls.c. at x and/(x) is compact.

Then for any3>0 there exists a p>0 such that

f{x)c\B{yS)*$ v*e&(x,p), vye/g) (l.io)

•

Upper and lower semi-continuity can also be given a sequential interpreta

tion in terms of limit points and cluster (accumulation) points.

Definition 1.7: Consider a sequence of sets [A J in JRn.

a) The point x is said to be a limit point of \Ai ) if d(x,Ai)-*Q as i-*°°, where

d@,Ai) ^inf[\\x-x\\ |*€4j (1.11)

Le., if there exist x*€4 such that-Xi-»Ic as i-»«.

BO

b) The point x is a cluster (accumulation) point of \Ai I if 0 is an accumu-

OS

lation point of \d(x,At)l »Le., if there exist Xi^J^ and a subset JCc\Q,1,2,...\ such

that-x^-x as i-*«.
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c) We denote the set of limit points of \Ai j by LimAi and the set of cluster

points of \Ai] by LimAi. •

Exercise 1.6: Prove the following result:

Proposition 1.4:

a) A function /:J?n-»2fl?,r*, such that /(x) is compact for all xeff?71 and

bounded on bounded sets, is u.s.c. at x if and only if for any sequence Xj-»x as

i-*~ LLmf (a?i)cf (x).

b) Afunction f:JRn-*^Rm is Ls.c. at x if and only if for any sequence Xj^x

asi-»«. Igrif fa)?/(x). •

Exercise 1.7: Suppose that <p(x,-) has compact level sets for each xe2En. Show

that F(-) as defined in (1.8) is u.s.c. •

This conludes our excursion into the world of continuity concepts.

-B-



2. Derivatives.

We shall now present the specific concepts of differentiation that we need in

optimization.

Definition 2.1: Let / :.ff?n-*J?m. We say that Df :JRnx]Rn -*IRm is a differential for

/(•) atxeff?* if

a) Df(x\-) is linear,

b)

toll/(x+/,)^/(^-i7/(^)|| =Q (ai)
Who \\h\\

When f:IRn+]Rm has a differential at all x^JRnt we say that /(•) is

dijferentiable. <•

Since .0/ (x;-) is a linear map from IRn into 27?m, there exists a mxn matrix

dfW such that Dffr,h)=dfWh for all /iei7?n; 9^^ is called aJacobian
matrix.

When f-.IR71-*^ is jdifferentiable, we use the notation V/(x)= * ^g' , and

call V/ (•) the gradientof/ (•).

Proposition 2.1: Suppose that the function /li??™ -*IRm has a differential Df (x\h)

at 5. Then the ij'th component of the Jacobian J\x* is the partial derivative

a*'

Proof: Set h=te^ where e;- is the ^'th unit vector in IR71. Then

dx *

7=1,2... .,m,

aii£i
dx

, ±he jth column of v > and hence, from (2.1), for
ox

Jim 7

aim
dx

V _=0 (2.2)

-9-
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DERIVATIVES

Le., S£SH
dx

Definition 2.2: We say that f:JRn-*IRm is locally Lipschitz continuous at x if

there exist Le[0,«>), p>0 such that

||/(x)-/(x')||^X|k-x'|| V^ ,*'€f?(x\p) (2.3a)

Exercise 2.1: Suppose that f:JRn-*IRm has a continuous differential Df(-,) in a

neighborhood of x. Show that / is locally Lipschitz continuous at x. •

It should be noted that the existence of partial derivatives does not ensure

the existence of a differential (see e.g. Apostol p. 103 [Apo l]). Thus consider the

function

f(x,y) = x+y ifx=0 or y = 0

f(x,y) = 1 otherwise (2.3b)

In this case

i£!ML= ^/(*.o)-/(o.o) =1 (2 4a)
MlLL= ^/(o,0-/(o.o) . t (a4b)

but the function is not even continuous at (0,0). In view of this, the following

result is of interest (see Apostol p. 118 [Apo 1]).

Proposition 2.2: Consider a function / :IRn-*JRm such that the partial derivatives

df*(x) ~—\A / exist in a neighborhood of x, for i=l,2,.«f-nI j=1,2 m. If these partial

^derivatives are continuous at x, then the differential-!?/ (x;h) exists. •

The following chain rule holds.

-10-



DERIVATIVES

Proposition 2.3: Suppose that f:IRn->IRm is defined by f(x)=h(g(x)) with both

h:JRl-*!Rm and gilR"^1 differentiable. Then

V(3) = «*fr(3)) frff) (2 5)
8x dx dx K '

a

We make frequent use of Taylor's formula with remainder up to order 2. It

comes in two forms: in terms of an intermediate point, and in integral form (see

Apostol p. 124 [Apo 1] and Dieudonne p. 186 [Die l]. Also, refer to Apostol p. 124

[Apo l] for exposition on higher order differentials). We denote by Dkf(;-) the

differential of order k of / (•).

Proposition 2.4: Consider a function /:2??n-»27?. Suppose that /(•) has continu

ous partial derivatives of order p at each point x of IR*. Then for any x,2/e27?n

+jjpP7(«:V-*) (2.6a)

for some z =x +t (y—x), t e[0,1], •

When jo=1, we recognize (2.6a) as being simply the mean value theorem.

For p=2, Dzf(x:y-x)=(y-x,^-^f^-{y-x)'), where df^x' is a matrix of
3x2 v* ''' dx*

second partial derivatives, Le., a2/fa)
8x'

For functions f:IKn-*IRm, with m>l, formula (2.6a) is not valid since there

is no z of the form stated that works for all the components of / (•)• Instead we

use the following result (see Dieudonne p. 186 [Die 1]).

Proposition 2:5: Consider a function f:JRn^IRm. Suppose that / (•) has continu

ous partial derivatives of orderp at each point x of 2Z?n. Then for any x,7/e27?n,

_ a2/ (x)
" dxidxi '

-11-
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DERIVATIVES

/<*>-/(*) =^rf^/(*:v-*>k%k\

+7~~y/(l-s)P-1i?P/(x+s(y--x);v-a:)cfe (2.6b)

Proof: We shall prove (2.6b) only for p^2. For p=l, consider the function

0(s)=/Oc+s(2/^x)). Then

fir(l)=/(y).flf(0)=/(*)and
1

*<l)-flr(0) =/*'(*)*
0

1

- fDf (x+s(y-x)',y-x)ds (2.7a)

which completes the proof forp = l.

Next, letj)=2. Then we have

g"(s)(ls) =£&•<.)(!-*) +*(•)] (2.7b)

Integrating (2T7b) from 0 to 1 we get

9(1)-9(0) -g'(Q) =f(ls)g"(s)ds (2.7c)
o

which, on rearranging, we recognize as being

l

/(y)-/(x) =<V/(x),y-x) +/(l-s)i?2/(x+s(7/-x):(7/-x))ds
0

after substitution for$r (s). •

Finally, me define directional derivatives which may exist even when a func

tion fails to have .a differential.

Definition 2.3: iet / iIR71-*JRm. We define the directional derivative of /(•) at a

point-xei^inihe direction he]Rn (h*Q) by

df(x;h) i ito/ff+^Wffl (2.8)
**0
«>0

-12-



DERIVATIVES

if this limit exists. Note that t >0 is required. •

Exercise 2.2: Suppose that / iIR71 -*JRm has a differential at x. Show that for any

h, the directional derivative df (x;h) exists and is given by

df(x;h)=Df(x;h)=&£fLh

m

As we shall see later, directional derivatives play a very important part in

the theory of optimization.

-13-
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3. Convexity

Convexity is an enormous subject (e.g. see Rockafellar [Roc 1]). We collect

here only a few essential results that we need in optimization. We begin with

convex sets.

Definition 3.1: A set 5ci??n is said to be convex if for any x',x"€.S and Xe[0,l],

[Ax'+(l-A)x"]eS. •

Exercise 3.1: Suppose ScIR71 is convex. Let fx* J be points in S and let j/i,* j

be scalars suchthat /&0 for i=1,2 k and 2 M*=!• Show that
i=l

i=l

eS (3.1)

Definition 3.2: Let S be a subset of IRn. We say that coS Is the convex hull of S

if it is the smallest convex set containing S. •

Proposition 3.1 (Caratheodory): Let S be a subset in IR". If xecoS, then there

n+l _ tl+1
exists at most (n+l) distinct points fx* J , in S such that x=>]u*x<, /r&O,

i=l

i?roq/; Clearly, (Rockaffellar, Theorem 2.3 p. 12 [Roc l])

-i=l i=l

where JA^^0,l,2,3,....j. "Now suppose that

- £-1
-x = 2jM^t

with /feO, i=l,2,....,&, 2/*i=^- Thus, the following system of equations is
4«i

coS = \x \x =s 2/^ ,-Zi€S , fj^O , 2^*=!. Jb^CflVj (3.2)

-14-



CONVEXITY

satisfied:

i=l I
(3.4)

with ju^O. Suppose that fc>n +l. Then there exist coefficients a* , j =l,2 k,

not all zero, such that

»*iof = 0 (3.5)
i=l

Adding (3.5) multiplied by tf to (3.4) we get

£0*+*a*)
i=i

(3.6)

Suppose (w.l.o.g.) that at least one ai<0. Then there exists a i>>0 such that

p*+i$a*=0 for some j while /2i+a?a<^0 for all other i. Thus we have succeeded in

expressing x in terms of k —1 vectors in S. Clearly, these reductions can go on

as long as x is expressed in terms of more than (n+l) vectors in S. Q.E.D. •

Definition 3.3: Let Si,S% be any two sets in IR*. We say that the hyperplane

H = \xzlRn \(x,v) = a] (3.7)

separates Si and S% if

(x,v) &a VxeSx (3.8a)

(y,v) <a Vye52 (3.8b)

The separation is said to be strict if one of the inequalities (3.8a), (3.8b) is

satisfied strictly. •

Proposition 3.2 (Hahn-Banach): Let Si,S2 be two convex sets in JRn such that

SinS2=(p. Then there exists a hyperplane which separates Si and S%. Further

more, if Sub 1 and Sz are closed and either S\ or S% is compact, then then the

-15-
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CONVEXITY

separation can be made strict. •

Proposition 3.3: Suppose that 5ci??n is closed and convex and 0>£S. Let

x = arflrmin{||x||2|x€5l (3.9)

Then

H = (x | <x,x) = ||x||2j (3.10)

separates S from 0, i.e„ (x,x)^||x||2 for allxeS.

Proof: Let xeS be arbitrary. Then, since S is convex, [x + X(x-x)]eS for

all Xe[0,l]. By definition of x, we must have

0<||x||2<s||x + X(x-x)||2

= ||x||2 + 2X<x,x -x> + X2||x-x||2 (3.1 la)

Hence, for all Xe(0,l]

0ss 2<x,x -x) + X||x -i||2 (3. lib)

Letting X-»0 we get the desired result. •

Definition 3.4: Suppose ScIR71 is convex. We say that H=\x |(x-x,'y)=0j is a

support hyperplane to S through x with inward (outward) normal v if x€S (the

closure of S) and

(x-x,v) ;> 0(sS0) VjreS (3.12)

•

Proposition 3.4: A closed convex set is equal to the intersection of the half

spaces which contain it.

Proof: Let C be a closed convex set and A the intersection of half spaces

containing C. Then clearly CcA. Now suppose icjtC. Then there exists a sup

port hyperplane H which separates strictly x and C, Le., x does not belong to

one subspace containing C, Le., xfLA. Hence CoA* which leads to the

-16-



CONVEXITY

conclusion that AcC. •

Next we turn to convex functions. For an example see Fig. 3.1.

Definition 3.4: A function / :2??n-»27? is said to be convex if its epigraph is convex,

Le., if for any x',x"eff?n and Xe[0,l],

/(Xx' + (l-X)x") £ X/(x') + (l-X)/(x") (3.13)

•

A function / : 1R71 -*JR is said to be concave if —/ (•) is convex.

Proposition 3.5: Suppose f:IRn-*IR is convex. Then /(•) is continuous. (For a

proof, see Berge p. 193 [Ber l]). •

The following property can be deduced from Fig. 3.1.

Proposition 3.6: Suppose f'.IR71-*^ is differentiable. Then /(•) is convex if and

only if

f(y)-f(x)t>(Vf(x),y-x) \Zx,yelRn (3.14)

Proof: =£• Suppose / (•) is convex. Then for any x,y^.]Rn, X€[0,l],

fix + \(y-x)) <, (l-X)/(x) + \f(y) (3.15)

Rearranging (3.15) we get

/(*+X(y-*»-/(*)^ f(y)_f (x) v X£[al] (3 16)

Taking the limit as X-»0 we get (3.14).

<= Suppose (3.14) holds. Then for any Xe[0,l], x,y^JRn

f(y)-f(x+\(y-x))7><Vf(x+\(y-x)),y-xy(l-\) (3.17a)
/(x)-/(x+X(y-x))^<V/(x+X(2/-x)),2/-x)(-X) (3.17b)

Multiplying (3.17a) by X, (3.17b) by (l-X) and adding, we get (3.15), Le., /(•) is

convex. •

-17-
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Proposition 3.7: Suppose that f:JRn-*IR is twice continuously differentiable.

Then / (•) is convex if and only if the Hessian (second derivative) matrix —•'v'
dxa

is positive semi-definite for all x€.JRn.

Proof: => Suppose /(•) is convex. Then for any x,y^JRn, because of Propo

sitions 3.6 and 2.5

0^/(y)-/(*)-<?/(x),y-x)

=j(l-s)<l/-x, 32/(*+*(?/-*)) {y-x))ds (3.17)

Hence, dividing by ||v_a:ll2 and letting y-*x, we obtain that f g ls positive

semi-definite.

dx*
Suppose that —^j2 ' is positive semi-definite for all xeff?. Then it follows

directly from the equality in (3.17) and Proposition 3.6 that / (•) is convex. •

Exercise 3.2: Suppose / : lRn-*IR is twice continuously differentiable, it attains

Qzf
its infimum and —j^-(x)>0, Vze^?n. Show that the level sets that for some

m>°. \V> T^i^)V >^M\\y\f for all x,y<z]Rn.
ox

Exercise 3.3: Suppose fi:JRn-*IR, i=l,2,...,m are convex. Show that

i

•fix) A£/*(»)
i=l

are both convex. •

Definition 3.5: Let SdR71 be convex and compact. We define the support Junc

tional as:IRn->]R by

os(h) Amax\(h,x) | x<ESj (3.19)
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CONVEXITY

•

Proposition 3.B: Consider &s() as defined by (3.19) with S convex and compact.

Then

a) ffsO) is positive homogeneous, Le., V X^O,

(7s(X/i) = \os(h) (3.20)

b) O'S'(') ^ subadditive, Le., V /ilt/i2,

ff5(^i+^2) ^ ^5(^1) + <*s(hz) (3-21)

c) os(') is convex.

Proof:

a) This is immediate.

b) Let x"e5 be such that as(hi+h2) =(hl+h2tE} = (/ii,x)+(/i2,x). It follows

from (3.19) that as(hi)^(hi,x), for 1=1,2. Hence (3.21) follows.

c) Let 7ilt/i2eff?n'Xe[0,l] be given. Then

os(M>i + (l-X)/i2) ^ osQJii) + ff5((l-^W

= ^(Jlj) + (1-X)ff5(^2)

which shows that &s() is convex. •

Exercise 3.4: Let ScJR71 be convex and compact. Suppose that for a given

helR" xheS is such that os(h)=(htxh). Show that

(x-xh,h) < 0 V xeS (3.22)

ic.jxei??^ I (x,7i)=(a:fcf7i)J is a support hyperplane to 5 with outward normal

A. -

Since by Proposition 3.5 S is the intersection of all the closed half spaces

-containing it and GsQ1) characterizes such a half space, it should be possible to

describe a closed convex set by means of its support function.

Exercise 3.4: Prove the following result. <

-19-
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CONVEXITY

Proposition 3.9: Let o-.IRP-tIR be a positive homogeneous, subadditive function.

Then the set

C= \xe]Rn | (x./i) ss a(h) V helR71 j (3.23)

is nonempty, convex, compact and ff() is the support function for C. [Hint: use

the fact that iceC if and only if (-l,x) defines an outward normal to a support

hyperplane of the epigraph of a() at some point (a(h),h) ] •

Minimax theorems play an important role both in game theory and in

optimization. The following one is among the best known.

Theorem 3.1 (Von Neumann): Let f:IRnxIRm-*JR be such that /(x.y)is convex

in-x and concave in y and let XcIRn,YcIRm be compact convex sets. Then

min max/ (x ,y) = max min/ (x ,y ) (3.24)

•

(For a proof see [Ber 1]).

It is easy to extend the Von Neumann Theorem to the case where either X or Y

is unbounded, as follows.

Corollary 3.1: Let / :JRn*IRm -*1R be such that / (x,y) is convex in x and concave

in y and let Ybe a compact, convex set in J7?m. If max/ (x,y) has compact level
yey

•sets, then

min maxf(x,y) = max min/(x,y) (3.25)

m

The result for Y unbounded is obtained by assuming that min/(x,y) has com-

pact level sets.

The minirnax theorems lead to the following important results.

Proposition 3.10: Let J5 be a compact convex set in JR71 and let
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B=\h^.IRn | \\h\\ < lj. Then, with as() the support function of S,

min <JS(h) = -min Ilxll (3.26a)

and

min& ||/i||2 + cr5(/i)i = -min}£ |M|a (3.26b)

Proof: By definition of as()>

min 0s(h) = min max(/i,x) (3.27)
hsB hsB x&S

Since 5,S are convex and compact and (^^) is convex-concave, by the Van

Neumann Theorem we get

min os(h) = max min (x,h*) (3.28)

Now min(x,/i) is solved by /i=-x/ ||x||. Hence, substituting in (3.28) we get

n^n(75(/i) =maxH|x||

==-min||x|| (3.29)

Next, by Corollary 3.1,

ntiiniJ6l|A||a + ffsWl
hemn

= minmaxM|/i||2 +</t.x)j

= max min^||/i||2 +(h,x)] (3.30)

Now minj^||/i||2+(A,x)j is solved by /i=-x (by taking derivatives and setting
heJRn

them to zero). Substituting into (3.30) we obtain

minMWI2 + ffS(h)l = max-^||x||2
hem* zeS

= -nun)*||x||2 (3.31)

Q.E.D. •
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The following obvious corollary plays an important role in the development

of optimality conditions for optimization problems.

Corollary 3.2: Let 5 be a compact convex set in IR71. Then us(h)^0 for all h e]Rn

if and only if OeS. •

Exercise 3.5: Prove the following.

Proposition 3.11: Let C.D be two convex, compact subsets in IR71. Then CcD if

and only if oc(h) ^ uD{h) for all htlR71. •
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4. Max Functions

Max functions play a central role in optimization problems that arise in

engineering design. They are also a particularly tractable kind of

nondifferentiable functions. We establish some of their most important proper

ties [Dan l].

Proposition 4.1: Let <p:IRnx]Rm*lR be continuous and Y:IRn-*2^m u.s.c. Then

#r) &max.\<p(x%y)\y<LY(x)\ (4.1)

is U.S.C.

Proof: Let x^x as i-»*>, be arbitrary and let yt^Yfa) be such that

^(xi)=p(x4tyi). Since Y() is u.s.c. and x^x, j^j is bounded and hence, since

p(v) is continuous, Kmtpfe.yi) exists. Suppose yit ieJTc{0,l,...j is such that
g

)hnxp(xi,yi)=]ic^p(xiityi) andT/t-»T/*. Theny*eY(x) by u.s.c. of Y() andhence

V(x) ^ <p(x,y*) = Um<p(xi,yi) = ISnVfo) (4.2)

which completes our proof. •

Corollary 4.1: Consider <p and Y as in Proposition 4.1 and suppose that Y{x) is

continuous. Then^(x) is continuous.

Proof: We only need to show that if/() is Ls.c. under the stronger assumption

on Y(). For the sake of contradiction, suppose there is a point x^.JRn and a

sequence xt -»x as i-»« such that

lur#(xi)<^(x) (4.3)

Suppose that i*(x)=<p(x,y) with y^Y{x). Let ^erfa) be such that

fM=<p(*i.yi) and let y^argmmlVty-y^yzYixi)]. Then, since Y() and p(v)

are continuous, &-»£ as i-*«, so that lim^(xi,yi)=^(x,y). Hence there exists an

io such that pfe.i/i^^fo), which contradicts the definition of i/fa). •
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Proposition 4.2: Consider the function

i*(x) = max\<p(x,y)\y<z:Y(x)l (4.4)

with <p:JRnxJRm~*IR continuous and Y:lRn-*^Rm. Let

T(x) A ii/er(x)|iKx) = <p(x,y)] (4.5)

Then ?() is u.s.c.

Proof: Qearly T() is bounded on bounded sets and T(x) is compact

because Y(x) is compact and <p(x,-) is continuous. By Proposition 1.4 we only

need to show that LlmY(xi)cY(x) for any sequence jx* j converging to a point
i=0

x. Suppose this is false, Le., there exists a point x and a sequence x^x such

that for yi€.¥(xi) we have yi-*y£¥(x). But this means that V'(xi)=^(xi,|/i)-»

p(x\y)<^(ic), which contradicts the continuity of V(') (Corollary 4.1). •

Next we turn to max functions of the form (4.4) with <p(x,y) differentiable in

x and Vxtp(xty) continuous. First consider the simplest case where

Y-ly^yz* • • ' ym\- Letting fi{x)=(p{x,yi)t i=l,2 m, (4.4) becomes

f(x) = max/^x) (4.6)
ido.

where

m ^(1,2 m I (4.7)

Drawing the graph of the function ^(x+X/i), for fixed x he]Rn, which is a func

tion of A. only, we obtain Fig. 4.1 and conclude that ^(x) is not differentiable

everywhere. However, its directional derivative seems to exist and should be

equal to the steepest slope of the "active functions", Le., if we denote

/(«)={ism|^(ar)=/i(a:)J. then

df(x;h)=maxdfi(x[h)
iel<z)
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MAX FUNCTIONS

We now show that this result is true in general.

Proposition 4.3: Consider the function

if(x) = max\(p(x,y)\yeYi (4.9a)

where <p:IRnxJRm'*]R is differentiable in x, Vx(p(x,y) is continuous in both argu

ments, and YcIRm is compact. Then for any x,/ie27?n,

*i1t(x\h) = max(Vx(p(xty),h) (4.9b)

where T() is defined as in (4.5).

Proof: Since <p{x,y) is continuously differentiable in x and y is compact,

<p(>y) is uniformly locally lipschitz continuous. Hence for x',x in a bounded set,

-aff(x')-i!(x) = (p(x\y<) - <p(x,y)

= l>{*'4/') - p(*.y')] + l>(*.y*) - p(*.i/)]
£L\\x'-x\\ (4.10)

where s/'e?(x'), y€?"(x) .and L is the Lipschitz constant for <p(',y). (Clearly,

since y€.T(x), <p(x,y')—p(pty)^0). Since we can interchange x' and x in (4.10),

we conclude that i/(~) is locally Lipschitz continuous. Hence both

i>(x+th)-f{x) andm1/{x+th)^x) must ex.st

^^dE+SjifcteL {4.lla)

since Y(x)cY(x). Sincejp(x,y)=Tf/(x) for all y €?(x), we obtain from Proposition

2.5 that

j/(x+th)-j/(x)
t

l

^[gi m^xf(Vx<p(x+sth,y),h)ds

%m^)<V*^*'̂ ;i> (4'llb)
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where we have made use of the fact that the max function in (4.11b) is continu

ous in t and h for x fixed. Next,

—.^(xUh)-^(x)
<*o t

=E5 max rtx+th-V)^x) (4.12)

=Ejajjifc)f|(7.rt*+^,y)1A)4 +rf*'VHK*){ (4.13)
Now, p(x,y)^(x) for all ye?"; ?(•) is u.s.c. and Vz^(-,) is continuous. Hence the

max of the integralin (4.13) is u.s.c. in t, for x and h fixed, and we get

uo t

< Tn^x(7xtp(x,y),h) (4.14)

Hence the desired result follows. •

The following result is obvious.

Corollary 4J£ Let ^(-)-be defined as in (4.9) and suppose that the assumptions of

Proposition-4.3 hold. 3f-xe.ff?n is such that ¥(x)=[yl a singleton, then f() has a

gradient at:x*. with'V^(x)=Vxp(x,j/). •

Before we can proceed further we must establish a result in the theory of

linear cost optimization problems.

Lemma 4.1: let m,m'-be defined by

m £ max|(c ,x) |xeX] (4.15a)

m' Amax((c ,x) |xecoATj (4.15b)

where XcIR71 is a compact set and c elR" is given. Then m =to'.
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MAX FUNCTIONS

Proof: Since XccoX, we must have m'^m. Let m'=(c,x), x€.coX. By

^ n+i
Caratheodory*s Theorem (Proposition 3.1), x = 2l/Jrxit with xteX and /^0,

t=i

i=l

2^ = 1. Hence,

m' =<c £) =̂ (c ,Xi) £:,gV
i=l i=l

<C'**>

= (c ,Xjt) ^ 771 , (4.15c)

where (c,xfc) = max^c.x*) andn+1 £ (1,2 n +lj. This completes our proof. •

Proposition 4.4: Consider the function ^(x) defined in (4.9), with assumptions as

in Proposition 4.3. Let

3^(x) 4 co\Vx<p(xty)\ySL?(x)\ (4.15)

Then the directional derivative dif/(x\) is the support function for d^(x).

Proof: By (4.9b), for any heIR",

di/(x;h) = maxj(yx<p(x,y),h)
ye?[zy '

= max{(A,z) Iz=Va.^(x,y), yef(x)}
= maxi(/i>z) Izea^(x) j (4.16)

by Lemma 4.1, which completes our proof. •

Exercise 4.1: Determine whether Proposition 4.3 remains valid when the con

stant set Y is replaced by a continuous set valued map Y(x). •

Exercise 4.2: Consider the function ^(x) = max\<p(x,y)\y€.Y] where

<p:lRnx]Rm->]R is continuous in x,Vx(p(x,y) exists and is continuous, and YcIRm

is compact. Show that a steepest descent direction for nff can be computed in two

ways by showing that

argmin{d^(x;7i) | \\h\\^l] - argminf)£|N2 + df(x;h)\ (4.17)
h h
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5. First Order Optimality Conditions: The Differentiable Case.

We shall now develop first order optimality conditions for two

"differentiable" optimization problems: one unconstrained and one with inequal

ity constraints. Optimality conditions for problems with both equality and ine

quality constraints then follow by extension.

Definition 5.1: Consider the problem P:nun{f(x)\xeX] where f:JRn-*IR is con

tinuous and Xc]Rn. We say that x is a global solution to P if /(x)^/(x) V

xtX. We say that x is a local solution to P if there exists a p>0 such that

/(x)-s/(x) V xeX such that ||x-x||<p. -

Proposition 5.1: Consider the problem

mini/ (z) Ix zlR* J (5.1)

where / :JRn -*IR is continuously differentiable. Suppose that x is a global solu

tion to (5.1), then V/ (x)=0.

Proof: Suppose x is a global solution to (5.1). Then we must have

df(x;h)^0 Vfceff?" (5.2)

for otherwise there would be a direction K such that

df (x;fi) £UmtP+tty-fffi <0 (5.3)
tiO t

and hence for a finite ?>0, f(x+tfi)<f(x) would hold. Now, since /(•) is

differentiable,

d/(x;7i)=<V/(x),7i) (5.4)

and hence (5.2) can hold for all h€.IRn if and only if V/ (x)=0. •

The following result is obvious.

Corollary 5.1: Consider the problem (5.1) under conditions stated in Proposition
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FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE

5.1. Suppose that x is a local solution to (5.1). Then V/ (x)=0. •

The following result is suggested by Fig. 5.1 for the simple case where there

is only a finite number of inequality constraints. Note that for the "active" gra

dients in Pig. 5.1 the origin is moved to the optimal point x.

Proposition 5.2: Consider the problem

Tmn\f(x)\<p(x,y)^0 VyeFj (5.5)

where f:IRn-*JR is continuously differentiable, <p:JRnxIRm-*]R is continuous and

continuously differentiable in x (Le., Vx<p(x,y) is continuous), and Yc]Rm is

compact. If x is a local solution to (5.5), then

0 € co(V/(x); Vx<p(x,y) . ye?(x)j
if ^(x) = 0

0 = V/ (x) otherwise (5.6)

where, as before,

if(x) Amax\<p(xty)\yzY] (5.7a)

T(x) A \yzY\<p(x,y) = i{x)\ (5.7b)

Proof: Let

F{x) A maxj/ (x) - / (x),f(x){
= max\f(x) -/(x); <p(x,y), y^Y\ (5.8)

Note that F(x)=Ot since ^(x)^0 and that F(x)^0 for all xe£(x,p), for some p>0 ,

because f (x)—f (x)^Q when ^(x)<0 and xel?(x,p). Hence x is a global minim-

izer of F(x). Since F(-) is directionally differentiable by Proposition 4.3, we

must have

dF(x;h) 3s 0 V helR" (5.9)

since the existence of a /ii*0 such that dF(x;fi)<Q implies that F(x+tE)<F(x)<0

for some t >0, which is clearly impossible.
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FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE

Now, by Proposition 4.4

dF(x;h) = max[<z,/i)|zeZ(x)j (5.10)

where

Z(x) A co[Vf(x); VMx.y), yeY*(x)j (5.11)

with Y*(x)=T(x) if ^(x)=0 and y*(x) the empty set otherwise. It now follows

from Corollary 3.2 that 0€Z(x), Le., that (5.6) holds. Q.E.D. -

Exercise 5.1: Prove the following.

Corollary 5.2: Suppose that x solves (5.5) and that the assumptions of Proposi

tion 5.2 are satisfied. Then there exist at most (n+2) points in the set

Z(x): V/(x), Vx<p(x,yi) i=1.2 n+l, such that

n+l

M°v/(x) + 2 fifiVM'*Vi) = 0 (5.12)
t=i

n+l ^ ^
where /r^O for i=0,l,...,n+l, J] ji4=l. Furthermore, if either ^(x)<0 or ^(x)=0

an&0£u\Vx<p(x,y)\y<z:7(x)l then fj?>0. •

Exercise 5.2: Use the fact that an equation /i(x)=0 can be replaced by the two

inequalities /i(x)^0, —/i(x)-S0, to prove the following result.

Proposition. 5.3: Consider the problem

minf/(x)|/i(x) = 0, <p(x,y) <S 0 V y^Y\ (5.13)

where fzIR71-*^ and h-.IR^-^lR1 are continuously differentiable and (p:JRnxJRm is

continuous and continuously differentiable in x (Le., Vx<p(x,y) is continuous),,

and YcIRm is compact. If x solves (5.13) then for some if/€lRl, yieY*(x),

i=l,2,...n+l, and fJ?,^1, • • • ,/u,n+1^0 such that (jJL,ip)*0 (where

M=(MV /*n+1))
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FIRST ORDER OPTIMALITY CONDITIONS: THE DIFFERENTIABLE CASE

M°v7<£) +SVv^x.yO +^^i =0 (5.14)
i=l ox

Exercise 5.3: Develop conditions which ensure that jjP&Q in (5.14). •
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6. Nondifferentiable Analysis and Optimization

We now turn to real valued functions on IR71 which are assumed to be only

locally Lipschitz continuous (I.L.C.) (see Definition 2.2). Functions within this

category that are particularly important in engineering design are the max

functions discussed in Section 4, eigenvalues and singular values of various sys

tem matrices [Pol 6], and max min max functions discussed in [Pol 7], in con

nection with tolerancing and tuning problems. We begin by stating a key pro

perty of l.L.c. functions, the Rademacher Theorem [Ste l].

Proposition 6.1: Suppose /:27?n-»2?? is locally Lipschitz continuous. Then V/(x)

exists for almost all xei??n. •

The following results are culled from the book by F. H. Clarke [Cla 1]. First,

a LL.c. function may fail to have directional derivatives at a point x€i??n. This

has led to the following extension of the concept of directional derivative.

Definition 6.2: Let fiH^-^JR be LLc. We defined the generalized directional

derivative of / (•) at xelR" in the direction h eJF?n by

dof(x;h)Amf<y+ty-fW (6.1)

•

Since there exist e>0 , L>0 such that \f (y+th)-f (y)\^tL\\h\\ , for all

y€.B(x,s), 0^ t<s, it is clear that d0f(x\h) is well defined.

Exercise 6.1: Let p:lRnxJRm-*lR be a continuous function such that Vx<p(x,y)

exists and is continuous and let Y be a compact subset of JRm. Let

i//(x) imax \<p(x,y)\yzY] (6.2a)

t(x) = min \<p(x,y)\yzYl (6.2b)

show that for anyic./ieU?1*,
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

dif/(x;h) = d0f(x;h) (6.3a)

d£(x;/i) ^ d0^(x;h) (6.3b)

Hint: Use Proposition 4.3. •

Proposition 6.1: The generalized directional derivative d0f(x;h) of a LLc. func

tion / -.JR71 -*IR , defined by (6.1), has the following properties:

a) h-*dof(x;h) is (i) positive homogeneous and (ii) subadditive on JRn.

b) IfL is a local Lipschitz constant for /(•) at x, then for any h€lRn

|d0/(x;/i)|^L||/i|| (6.4)

c) (x,h)-*dof(x;h) is u.s.c.

d) h-*dof (x;h) is Lipschitz continuous with constant L% where ii is a local

lipschitz constant for / (•) atx.

e) For anyh€]Rn , do/(x;-/i)=d0(-/)(x;/i).

Proof:

a) (i) For any \>0. and x.heJR" ,

*40 t

-7MJf(v+txh)-f(x)
uo tX

= \do/(x;/i) (6.5)

which shows that dof(x\') is positive homogeneous,

a) (ii) For any x,hlth2 eff?n,

w (^,+m=ins f(y+<^y)-f(v)
' MO t

- ee jf(y-r'th^thz))-f(y+thi)
tiO t
y-»s

, /(y+thj-fjy),
+ 7 J
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

s£ dof(x]h2) + dofixfrt) (6.6)

which shows that d0f (x;-) is subadditive.

b) Since \f(y+th)-f(y)\*zLt\\h\\ for any ||y-x|| and * sufficiently small,

(6.4) follows.

c) Let x^x and h^-^h as i-*«. We must show that Hmd0/(xi,/i£)^d0/ (x,h).

By definition of lim , for every i there exists y^IR71 and tt>0 such that ^4.0 as

^->QO . Ife/i-Xill+^-r-and

Hence,

i ti

_ f(yi + Uh)-f(yi) . f (in + bin) - f (Vi + tjh)
*" + <" (8'7)

Wo/tol.ElU f (yi +W)-fM
i ti

+ L\\hi-h\\]

<Zdof(x;h) (6.8)

which shows that d$f (•;•) is u.s.c.

d) For any y in a neighborhood of x€.JRn,h1,hz€.IRn and t sufficiently small,

we have

f(y + thl)-f(y)^f(y + thz) - f (y) + Lt H/i! - h2\\ (6.9)

Hence

dofixihj-z dtf{x\h2) + L\\hx -/i2|| (6.10)

Since we can interchange hx and /12 in (6.10), it follows that

\dfJ(x-thl)^dzf(x-M)\^L\\hl -hz\\ (6.11)

which shows that dQf (x;-) is Lipschitz continuous.
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

e) For any/ieil?71,

rfo/(x;-/0=IS^fa-^-/fr> (6.12)
uo t
y-»a

Let z=y-th, then (6.12) becomes

= d0(-/)(x;/i) (6.13)

which completes our proof. •

By Proposition 3.9, the generalized directional derivative do/(x;) can be

used to define a convex set for which it is the support function.

Definition 6.1: Let f-.IR^^IR be LLc. We define the generalized gradient of / (•)

atx by

df(z) A^elRn\d0f(x;h) => <£,A), V hZlR"] (6.14)

•

Exercise 6.2

Let p:lRnxIRm->]R be a continuous function such that Vx<p(x,y) exists and is

continuous and let Y be a compact subset of JRm. Let

f(x) A max^(a?,y)\y€7) (6.2a)

We now elucidate the reasons for calling the set df (x) the generalized gra

dient of /(•). First, suppose that /(•) is differentiable at x. Then,

dtf (x;h)=df (x',h)=(Vf (x),h) for any helR" . By definition (6.14), for any

f€8/(«)

(V/ (x) - £. h) > 0 V hzlR" (6.15)

Hence we must have V/(x)-£=0 for all £e9/ (x), Le., d/(x)=(V/(x)J. Next, sup

pose that f:JRn-*IR is l.L.c. and convex. Then its epigraph is convex and, at any

point (£,/ (x)) the epigraph has one or more support hyperpianes, with normal
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NONDIFFERENTIABLE ANALYSIS AND OPTIMIZATION

(-l.£)e2ffn+l, such that

<(-U). (f(x)-f(x),x -x))^0 VieF (6.16)

as shown in Figure 6.1. Hence

<£. (x -x)) «s/(x) - /(x) Vxeiff* (6.17)

Now let x=x+tfi, for any Aei7?n , £>0. Then we get

/flA) *Em /ff +*y-/(*)* do/(x;/i) (6.17b)

Le., £e9/ (x). Finally we have

Proposition 6.2: Suppose that f-.IR^+IR is LLc. with constant Z, in a ball cen

tered on x. Then

a) 3/ (x) is nonempty, convex and compact, and ||£|M-£ for aU £e9/ (x).

b) For every h e]Rn,

do/ (x;fc) = max i<£./i) | £e6/(ar)j (6.18)

c)

a/(x) = G(x) Acq limfv/fe)) (6.19)

where the convex hull is taken over all sequences fa ], such that the V/(xj) exist

CO

for allied and (V/(x<) j converges,

d) 9/(x) isu.s.c.

Proof:

a) The fact that df(x) is nonempty, convex and compact follows from Pro

position 3.9. Next we have by definition of df (x) that for any £ed/ (x)

(£,h)^d0f(x;h) VhelR71 (6.20)

It now follows from (6.4) that for ft=£.
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WSW^doffrtf^LMW (6.21)

which shows that ||£||^2i.

b) This follows directly from Proposition 3.9.

c) Let Xi-*x as i-»«> be such that V/fe) exists for all i€.IN and V/(xi)-»'J as

i-»oo. Then for anyheIR71 , t^O as i-»«,

dof \x\h) ^ lim 7

= lim[<V/(xi),7i) + 0(^)]

=<£./i> (6.22)

Hence *?€3/ (x). It remains to show that 3/ (x) is contained in G(x) the convex

hull of the gradient limits. We shall make use of Proposition 3.11. We note that

G(x) defined by (6.19) is convex and compact. Hence to show that 3/(x)cG(x)

we only need to show that dof (x;h)^UQ^)(h) for all hG-JR™, where o"g(x)() is the

support function of G(x). Let e>0 be arbitrary and h^.IRn be given. We denote

by XcIR71 the set of measure 0 where V/(x) does not exist. Let

a AU^ {(V/ (y),h) \y£X\ (6.23)
y-*z N '

By definition of lim, there exists a 6>Q such that if \\y—x\\<6 and y£X, then

(yf(y),ti)^a+s. Furthermore, for almost all y€.B(x,6), the gradient V/(y+s7i)

exists for almost all s. Hence, for sufficiently small t and almost all y such that

||x—i/||<—-(by an extension of Proposition 2.5)

1 t

f(y+th)-f(y) =ft(Vf(y+sth),h)ds =f(Vf(y+sh),h)ds (6.24)
0 0

-^ t (a+e)

because \\y+sh—x\\<6 for f^s^O sufficiently small. Since /(•) is continuous, sets

of measure zero can be discarded in computing lim, and hence

dof (x.h) =uE/(y+^)^/(y)^ «+e (6.25)
y-»»
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Since (6.24) holds for all s>0, we conclude that dof (x;h)^a=max \(h,£) |

^memberco (UmV/ (x*), xt£X\t

Le., that (6.19) holds.

d) Since 3/ (x) is compact for all x and bounded on bounded sets, to prove

that it is U.S.C., we only need to show that if x^-*x as £-»<», then Limdf (x^cdf (x)

(Proposition 1.4). Thus, suppose that-x^x as i-**> and |iG3/(xi) are such that

4i-?%. Since d0f (;h) is u.s.c, for any h€.IRn,

do/ (x;/i) Ss iEitfo/ (x^/i) ^ Hm<£t,/i> =Q,h) (6.26)

Hence"?e3/ (x), which completes our proof. •

.Exercise 6.3

Let (p:lRnxIRm-*JR be a continuous function such that Vx<p(x,y) exists and is

continuous and let y be a compact subset of IRm. Let

^(x) A max \<p(xty)\ytYl (6.27a)
35how that

3^(x)= co JV^(x,y)j (6.27b)
yef(z)

where

?(*) = \y<lY\<p(x,y)= #r)j (6.27c)

Proposition 6.3: Suppose that / i,/2:i2?n -+1R are LLc. Then for any x eff?n,

3[/i + /z]Wc3/,W+ 3/2(x) (6.28a)

Proof: Clearly, for all x, /i€J7?n,

*o(f i + fz)(x*h) "^ ^o/ i(«'A) -+ do/2(a:;^) (6.28b)

Hence for all h elR71,

max l($,h) leedC/i-1-./sK*)!
^s max {<fx.fr) |*iea/l(a:)J+ max;f(&fr) |&e3/2(x)J
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= max {<fi+f&*> IMViOO. ^3/(x2)j (6.29)

The desired result now follows from Proposition 3.11. •

Proposition 6.4: Suppose that/1,/2, • • • %fm:JRn*IR are LLc. and let

^(x)^max/^(x) (6.30)

Then

3^(x) c co|3/J'(x)Jie/(x) (6.31)

where I(x)A\jem\fi(x)=Tf/(x)l and mA\i,2,...,m\.

Proof:First, given any x, h£.IRn, there exists p>0 , ?>0 such that if j£l(x), then

j£I(y+th) for al *e[0,£], ||y-x||s£p. Hence I(y+th)cl(x) for all such y and t.

Therefore, for such y, t,

=max /%^)-/'(y) (6.32)
since lim and max are interchangeable operations, we get that

d0^(x;fr) sS max d0/*(x;fr) (6.33)

that is,

max f<£,fr> |£e3V(x)j=£ ma^ max $<&.>*> I&e8/'(x)}
= max i<£.A> |$tco [3/^(x)Jie/(z)j (6.34)

which, in light of Proposition 3.11, completes our proof. •

It is also possible to establish a chain rule. We shall present only the sim

plest case.

Proposition 6.5: Suppose that f:JRn^IR is LLc. and, for any x,yeff?n given, let

g:JR^JR be defined by
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g(t)Af(x+t(y-x)) (6.35)

Then for any t e]R

d9(t) C \7\y = <£,y-x),£€3/(xt)j A G{t) (6.36)

where xt =x +t (y —x).

Proof: Clearly, g() is LLc. Since the sets on the left and the right of (6.36) are

intervals, to establish (6.36), it suffices to prove (see Proposition 3.11) that for

h-±l,

max \yh \yzdg(t)\ ss max \yh \yeG(t)\ (6.37)

Now, the left hand side of (6.37) is just dog(t;h). Hence

max$7/i|7e3sr(0J = dog(t;h)
-^^s(s+\h)-g(s)

s-t \
MO

-ftm /fr+fa+MW*/ -*))-f(*+s(y -x))
8-t X
MO

MO

= d0/(x<;fr(y -x))

= max{<f.A(y-ar))|e€d/(a%)J
= max \hy\y<£G(t)] (6.38)

which completes our proof. •

More generally, we can prove the following result, which, again, can be gen

eralized to vector valued functions.

Proposition 6.5: Let h:JRn-*JRm and g:IRm-*JR be LLc. ( for fr(-) component

wise) and let / :27?n-»2?? be defined by

f(x)Ag(h(x)) (6.39)

Then
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3/(x) Cco(27i77i|77i€3frt(x),7t€35r(fr(x))i (6.40)
i=l

The last result in nondifferentiable analysis that we wish to establish is the

Lebourg Mean Value Theorem. However, its proof requires a knowledge of

optimality conditions, which we will therefore present first.

Proposition 6.6: Consider the problem

min \f(x)\x£]Rnl (6.41)

where f:JRn-*JR is l.L.c. If x solves (6.41) (global or local solution) then

0€3/(x).

Proof: Suppose that x solves (6.41). Then we must have for all fr eJ7?n

dof (x;fr) = max J<£,fr) | £€3/ (x)j S: 0 (6.42)

For suppose that there exists an h^JR" such that d$f (x;fr)<0. It then fol

lows from the definition of do/ (x;fr) that there exists a T>0 (sufficiently small

for the local solution case) such that /(x+?fr)</(x) which contradicts the

optimality of x. It now follows from Corollary 3.2 that 0e3/ (x). Q.E.D. •

Proposition 6.7: Consider the problem

min (/ (x) \gj(x) <s 0, ; em} (6.43)

where /:^?n-»J?, g3':JRn-*JRt ;'em are LLc.

If x solves (6.43), then

0 € co {3/(x);3flrJ(x),je/*(x)j (6.44)

where I*(x) A [jem\g3(x) = 0}.

Proof: (c.f. proof of Proposition 5.2). Let F:IRn+JR be defined by

F(x) A max \f (x) - / (x);gf(x),j em J (6.45)
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Clearly, F() is LLc. and F(x)z>0 for all xeJ?n. Hence, since F(x)=0, x is a glo

bal minimizer for F() and hence we must have 0e3.F(x). Making use of (6.31)

we obtain (6.44). Q.E.D. •

An extension of the result in (6.31) leads to the following extension of Propo

sition 6.7.

Proposition 6.8: Consider the problem

min$/(x)|p(x,y)<;0 VyeFj (6.46)

where f\IRn-*IR and <p:IRnxJRm^IR are LLc, and Y is a compact subset of Em.

If x solves (6.46), then

0 e co (3/(x);3rp(x,y), ye7*(x)j (6.47)

where Y*(x)=\y<=:Y\<p(x,y)=0]. •

Finally, we present the Lebourg Mean Value Theorem.

Proposition 6.9 (Mean Value Theorem): Let f :!&*-*& be LLc. Then, given any

x,yeJ?n,

f(y)-f(x)=(Ss.y~x) (6.48)

for some £se3/(x+s(y-x)), se(O.l).

Proof: Consider the function h:JR-*IR defined by

MO £f(x + Hv -*)) + *[f(x) -/(y)] (6.49)

Then /i(0)=/(x), ft(l)=/(x), so that /i(0)=/i(l). Clearly, A(') must have either a

local min or a local max for some s e(0,1). Hence, for some s e(0,1),

0 e 3/i(s) e G(s) + [/(x) -/(y)] (6.50)

where we have made use of Proposition 6.5 and the definition (6.36) for G(s).

But (6.50) is equivalent to (6.48) and hence our proof is complete. •
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We now turn to a class of optimization problems which correspond to an

important class of engineering design problems. We shall consider in detail only

the simplest problem in this class since it captures all the essential features of

this class. Thus, consider the problem

minf/(x)|p(x,y)<0 Vyeyj (7.1)

where f:JRn-*JR and (p:lRnxIRm^>JR are locally Lipschitz continuous (l.L.c.) and

y"is a compact subset of lRm (a more general problem would have many inequal

ity constraints). Quite often, in engineering applications, Yis an interval on the

real line. If we define

#r) imaxte(x,y)|yerj (7.2)

we can express (7.1) in the equivalent form

mini/(x)|^(x)^0( (7.3)

We recall that first order optimality conditions for the problem (7.2) were

given in Proposition 6.8. In this section we turn to the development of algo

rithms for solving problems of the form (7.2). All the algorithms that we will

present can be thought of as being evolved from the method of steepest descent

for unconstrained differentiable optimization. We therefore begin by recalling

this method.

Consider the problem

min(f(x)|x€i??nJ (7.3)

where ir.IR71-*^ is-continuously differentiable.

Algorithm 7.1: (Differentiable Steepest Descent)

Dota:jc0eJRn,

-43-

C'6 L



SEMI-INFINITE OPTIMIZATION ALGORITHMS I.

Step 0: Set i=0.

Step 1: Compute the search direction

hi = h(xi) A org min $||/i||2 + df{xi\h)\heJRni

= -?#*) (7.4)

Step 2: Compute the step size

Step 3: Update:

XieX(x<) A org min^(xi+XAit) (7.5)
AutO

*m = z% + Vk| (7.6)

Replace i by i + 1 and go to Step 1. •

00

Theorem 7.1: Consider a sequence fo j constructed by Algorithm 7.1. IfXi~*Kx

as i-»~ (ieirc(0,1.2,...J) then V^(x)=0.

Proof: Suppose that V^(x)?*0. Then

di/(x;h(x)) = -||V^(x)||2 < 0 (7.7)

Hence anyXe\(x) satisfies *X>0 and

i/(x+7h(x)) - f (x) = -3 < 0 (7.8)

Since h{) is continuous by assumption, the function if/(x•\-'%h(x))—^(x) is con

tinuous inx and hence there exists an i0 such that for all ieA", i^i0«

fte+Xih) -#*)<̂ (xi+^i(xi)) -#*)^-§- (7.9)
so

Now, by construction, ftK2*) ] is monotone decreasing and if/fa)-*ktI/(jc) as £-»<»

by continuity of if/(-); we must therefore have that ^jf(xi)-*ij/{x) as i-»«». But this

contradicts (7.9). Hence we must have had V^(x)=0. •

We must point out at this time that practical algorithms do not use the

stepsize rule (7.5), but the much more efficient Armijo stepsize [Pol l], rule
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which uses two parameters ct,/3e(0,l) and which is defined by

Xi^maxf\|A =/3*,A:eiV,
/(xi+X/ij) -fM * -XallM2! (7.10)

where 27V={0,1,2,3,...J. The geometry of this stepsize rule is given in Fig. 7.1.

The convergence analysis of the algorithms 7.1, modified to accept the

Armijo stepsize rule is somewhat more complex than in Theorem 7.1 and is left

as an exercise for the reader (alternatively, see [Pol l]).

Now suppose that ^() in (7.3) is only l.L.c. Since in this case the directional

derivative dff/(x;h) need not exist, a first attempt at generalizing Algorithm 7.1

to the nondiflerentiable case would consist of replacing dipfafa) in (7.4) by

dtfj/ix^h). This amounts to computing the search direction according to the for

mula

fh = h(xi) A org mm \%\\h\\z + drft&'.h)]
hemn

= org min max 8fl|fc||« +<£./i»

= org max min \fflpitf +<£>0!

= -org min f)flN2|/ie3^(x)j (7.11)

where we have interchanged the min and max operations on the authority of

Corollary 3.1 and have eliminated the min on the basis that if h$ solves

min&||/i||2+<£,/L> \h£ftnl then /if=-£, so that M**\\Z+(&**)='WW?-

Because d^(-) is not continuous, h(x), as defined by (7.11), is not continu

ous. Hence it is not possible to simply mimic the proof of theorem 7.1 in trying

to show that the extended algorithm is convergent in the sense that Xi-*Kx

implies that 0e3^(x). In fact, there are known counter examples which show

that the accumulation points .x constructed by the extension of Algorithm 7.1

using (7.11) fail to satisfy 0e3^(x). Clearly, a much more sophisticated

approach than using (7.11) is needed.
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To try to obtain some intuitive insight into techniques for generating con

tinuous search directions, let us examine the simple case where

^(x)=max/J"(a;), with the f^-.IR71-*^ continuously differentiable. In this case,

3^(x)=co{V/J(x)Jj€/(a.), where /(x)=(ye7s:|^(x)-/^(x)=0j. Since the index set

I(x) can change abruptly, it is clear that 3^(x) is not continuous. Now, if x is a

minimizer of f() over IR71, then we have 0e3^(x), Le., for some jJz*0 such that

2 M*=l» we have 2 MJV/*(x)=0. A commonly used trick to avoid introduc-
je/(*) ye/(z)

ing the index set I(x) into the optimality condition is to express it in the

equivalent form of two equations

2m'V/>(x) =0 (7.12a)
/=i

2/i>Mx) -/'<*)) =0 (7.12b)

with the jrfzzQ such that 2/^=1- Since fj?>0 and ^(x)-/'(x)^0, (7.12b) implies
i=i

that fJ=0 for all j£I(x). Now, (7.12a) and (7.12b) state that 0 is an element of

the set G^(x)cff?n4-1 defined by

&$(x)Aco \£jZlRn+i |
Ii = AK*) -fi(x),VP(Z)),3*m\ (7.12c)

where we have abused notation in denoting vectors in J?n+1 as ?=(£°,£) with

£ej?n. Rather interestingly, the set valued map &$(•) is continuous and hence,

/t(x)=(/i°(x),/i(x)), with h(x)em*t defined by h(x) A org mm $||/i||2|/reG^(x)J,

is also continuous. The principle of wishful thinking suggests that h (x) must be

a "good" continuous search direction for solving min^(x)|xe27?n). We shall now

establish an axiomatic structure for utilizing this guess. In the next section we

will present a more complicated approach which leads to computationally more

efficient algorithms.
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Definition 7.1: Let i//:lRn-*]R be LL.c. We shall say that GfilR71 -»2JRn+1 is an aug

mented convergent direction finding (a.c.d.f.) map for^(-) if:

a) Gf() is continuous (Le., both u.s.c. and Ls.c.) and Giff(x) is convex for all

areiff*.

b) For any id?n . if ?=(£°,£) ei??n+l is an element of Gf(x), then £°^0.

c) For any xeIR71, a point ?=(0,f) is an element of G^/{x) if and only if

$Zdij/(x). •

Proposition 7.1: Suppose that it:IRn-*]R is I.L.C. and G^f() is c.d.f. map for f(-).

Then for any x eJR",

a) 0e3^(x) <=> OeCfy(x)

b) The functions *JRn-»J? and /T:i??n-*i7?n+1 defined by

«<*) Ammm\\2\leGf(x)l (7.13a)
/l(x) i-a^ min yyi?||2|$eC?/(x)j (7.13b)

are .both continuous and tf(x)=0 <=> 0e3^(x).

c) Writing K(x)=(h°(x)M^)\ vfithh(x)e]Rnt

d01>(x;h(x)) as —fl(x) (7.13c)

Proof:

a) => Suppose 0e3^(ir). Then, by Caratheodory*s theorem (Proposition

3.1), there exist at most (n+l) vectors ^eS^x), i =l,2,...,n +l, such that for

some /r^O, 2^=1. 2jMx&=0- Now, the vectors &=(0,£i) eG^(x) by definition

-rt*:i ._ _
and 2 A* «=0 which proves that 0eCty(x).

4=1

Suppose that OeG^(x). Then there exist (by Caratheodory) at most n+2

^^=0 with fifeO and ^
i=l i=l

vectors &.€Cty(x) such that ^^^=0 with ^0 and ^^=1. Now, &=&?.&)
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n+2

and by b) of Definition 7.1, &°^0. Since 2/^=0. we must nave f^^i=0 for
i=l

i=l,2 n+2. Hence, for all i such that /^>0, ff=0 and hence ^e3^(x). We con

clude that 0e3^(x).

b) Since £?/(•) is continuous, it follows from Corollary 4.1 and Proposition

4.2 that tf(x) is continuous and h(x) is u.s.c. Since the solution of (7.13a) is

unique, it follows that h(x) is a point-to-point map and hence continuous.

c) By definition (7.13b) we have

<-^(x),I)^)g^(x)||2 =^(x) V£eG/(x) (7.14)

Now suppose that ?=(0,£). so that fe3^(x). Then

<-£(x),£> =(-h(xU) *tf(x) (7.15)

consequently, we have

dtf(xMx)) = max </i(x),f) <. -tf(x) (7.16)
tewpyz)

which completes our proof. •

Exercise 7.1: Suppose that ir.JRn-*lR is defined by

f(x) Amaxf^x) (7.17)
j da

where f*:lRn-*lR are continuously differentiable functions. Let

Show that this set is an augmented convergent direction finding map. •

(7.18)

Exercise 7.2: Suppose that f:lRn->]R is defined by

^(x) = max \<p(x%y)\ys.Y\ (7.19)

with <p:lRnx]Rm-*IR continuous and Vx(p{x,y) continuous and Y<zJRm compact.

Let
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**•> *%^)$%i% (7-20)
Show that this set is an a. c.d.f. map. •

We shall now see that if we modify the search direction computation in (7.4)

as shown below, then we can mimic the proof of Theorem 7.1.

Algorithm 7.2: (Nondiflferentiable Steepest Descent) (Requires an a.c.d.f. map

G/O).

Data:x0GjRn.

Step 0: Set i=0.

Step 1: Compute the search direction fy as the last n elements of hfa)

defined in (7.12b).

Step B: Compute the step length

ki€\(Xi) A org mmi/fa+Mii) (7.21)

Step 3: Update x^sxt+X^; replace i by i+1 and go to step 1. •
r

Theorem 7.2: Consider a sequence {x$ J constructed by Algorithm 7.2. If Xi-*Kx

as i->« ( £ejrc$0,l,2,...J ) then 0e3^(x).

Proof: Suppose that x^x and 0£3^(x). Then 0£GV(x) and hence

d0^(x,/i(x)) <; -tf(x) < 0 (7.22)

Hence, for the stepsize %>0 computed at x, we must have that

f(x + Vi(x)) - ^(x) = -3 < 0 (7.23)

Since -#(•) and h(-) are both continuous (Proposition 7.1), it follows that there

exists an i0 such that for all ieA*, i&iQ.

•*(*Ui)-*(aO^*te +1hi)-i>(*i)* -|~ (7-24)
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Now \if(xi) j is monotonically decreasing and i/(Xi)-*Kil/(x) as i-»«\ Hence

^(xiJ-^^x) as i-*°°. But this contradicts (7.24), and hence we must have

Q€df(x). •

The main objection to the use of a.c.d.f. maps is that they usually turn out

to be complex, as in (7.20), so that the computation of h(x) is next to impossi

ble. However, they have been known to be used (with a slightly modified direc

tion computation) in optimal control. We give a relatively simple example.

Example 7.1: Suppose we are given a dynamical system

z(t) = f(z(t)M*)). *(0) = z0 (7-25)

where f:]Rnx]R-*]Rm is continuously differentiable, and suppose that we are

required to find a control u(t) such that g (z (t))^0 for all t e[0, l], with g iIR" -*IR

continuously differentiable. First, denoting the solution of (7.25) by zu(t), we

define

<p(u,t)Ag(zu{t)) (7.26)

and

^Oinjax^KO (7.27)

Clearly, this is no longer a problem in 2??n. We can either assume that u(t) is

piecewise constant (with at most n discontinuities) , which reduces the problem

to JR71, or else assume that izeZjO.l], which leads us to produce a formal (but

justifiable) extension of our results to an infinite dimensional space. We elect to

do the Latter.

First, we define Gi?(u) as in (7.20). To obtain an expression for

(yu(p{u,t),6u^z* where \V/2 is the X2 scalar product, we note, formally, that to

first order (in LjO.l])
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<p(u+6u,t) -<p(u) =g(zu+6"(t)) -g(z"(t))

* &(z"(t))6z(t)
di

= (Vu<p(u,t),6u)z (7.28)

d*(*> =f£<«"(*>.«(0)*«(0 +f£<*"(0.u(0)MO
<5z(0) = 0 (7.29)

Next, replacing df(x) by G^(x) in (7.11), we find that h(u), defined in (7.13b), is

computable by solving (via an extension of Corollary 3.1)

h(u) = arg max min {Jfl|tfO||| +<f.tfO)eJ (7.30)

where ||-||2 is the Lz norm and 8u=(6u°,6u) assumes values in JRZ\ 6u°(-) is an

artificial control variable. Next let P denote the set of all probability measures

on [0,1], Le., u€.P is an integrable function such that fi(t)s»0 for all £e[0,l] and

Jjj.(t)dt =l. Then, a vector £eG^(u), which is a convex combination of vectors
0

1

of the form ($(u)—^(u,r),Vu^(it,r)), has the form (J'/j,(t)[i(/(u)—<p(u,t)]dtt
0

1

JV^Ovupfa.*)<#)• Hence (7.30) becomes
0

_ 1
h(u) = org max min {%f[6u°(tf + 6u(t)2]d£

t*eP aoe£2[0.l] *o
l 1

/
0

+M*)bl>(u) -g(z»(t))]dt+ fji{t)^{z^(t))6z{t)dt\6z{t)
(7.31)

We see that the inner (min) problem is a simple linear quadratic optimal control

problem solvable by the Pontryagin Maximum Principle [Pon l]. The outer

(max) problem is solvable by means of dual algorithms. Thus we see that the

algorithm that we have described is extendable to optimal control as well. •
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Finally we turn to the problem (7.3). We assume that an algorithm of the

form of Algorithm 7.2 has been used to find a point x0 such that ^(rc)<0. Note

that if min^(x)<0, then such an x0 is obtained in a finite number of iterations.
zzlRn

We need to postulate a continuous set valued map Gj-y(x) such that OeCy/Yx)

holds if and only if the optimality condition (6.44) holds. We proceed by exten

sion from the unconstrained case.

Definition 7.2: Let /iIR71 -+IR , ^:2F?n-»tf? be LLc and let Fijxei??71|^(x)<0j. We

shall say that Gj,-fJR11 -*2Bin is an augmented convergent direction finding map

for (7.3) if

a) Gf#(') is continuous and Sy^(x) is convex for allxeif?n.

b) For any xe^, if?=(|°,£)ei??n+1 is an elementof GTtiHz), then ^0.

c) For any xeF, a point?=(0,£) is an element of G/.^(x) if and only if either

^e3/(x) or^eco(3/(x), 3^(x)j and^(x) = 0.

d) For any x^F, such that f{x)<0, a point ?=(^(x),£) is an element of

Gf$(x) for all £e3^(x). •

Proposition 7.2: Suppose that f .ir.JRn^lR are l.L.c. functions and that Gfi,(-) is

an a.o.d.f. map for (7.3). Then for any xeifi?71 such that ^(x)<0,

a) (i) if f(x)<0, 0e3/(a:) <^ 0eG/f^(x).

(ii)if ^(x)=0, 0ecoj3/(x),3^(ar)j «^ QeGf#(x).

b) The functions ^'.JRn -*IR and h:IRn -»27?n+1 defined by

*<*) Amm\m\\\l^Gftif(x)i (7.32a)
K(x) A-arg min m$\\\l*&f.il*)l (7.32b)

are both continuous.

c) Writing h(x)=(h°(x)th(x))* with/i (*)£#?". we have
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-h°(x)f(x) + dQf(x;h(x)) 4 -tf(x) (7.33a)

do/(x;/i(x)) < -4(x) (7.33b)

Proof:

a) =*> if Oe3/(x), then OeGyt^(x) because of c) in definition 7.2.

Now suppose that OeGy^(x). Then, because of c) in definition 7.2, we must have

0e3/(x).

b) The continuity of i>() and h() follows from Corollary 4.1 and the fact

that the argmin in (7.32b) is a singleton.

c) By definition (7.32b), h(x) satisfies

<-/T(x),£> ;> $|£(x)||2 = <*(*) v eeq.^x) (7.34)

Now, let ?=(0,^)eG/t^(x) be such that fe3/ (x). Then we get

h°(x)0 + <h(x),$) ss -tf(x) (7.35)

Maximizing (7.35) over £e3/ (x) we obtain (7.33b).

Next, suppose that £e3^(x). Then (-^(x),£)eGy#^(x) and hence (7.34) yields

-7i°(x)V(x) + (h(x),$) «s -tf(x) (7.36)

Maximizing (7.36) over f e3^(x), we obtain (7.33a). Q.E.D. •

Exercise 7.3: Suppose that / :IRn-*JR and <p:JRnx]Rm^JR are differentiable func

tions and that it(x)Am.ax\(p(xty)\y€.Y\ with YcJRm compact. Show that the

map

Gftif(x) A co WwbfcfllH (7-3?)
V I J J

satisfies the assumptions of definition 7.2. •

We conclude this section by stating an algorithm model for solving (7.3) and

giving a proof of its convergence.

-Algorithm 7.3: (Constrained Nondiflerentiable Optimization) (Requires an a.c.d.f.
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map Gftif() ).

Data: x0eJ7n such that ^(x0)^0.

Step 0: Set i=0.

Step 1: Compute the search direction /i* as the last n elements of hfe),

defined in (7.32b).

Step 2: Compute the step size

\ e \(x*) A org min(/ (xi + TJiA \

#1^ +X/O-S0J (7.38)

Step 3: Update:Xi+^Xi+Xihi, replace i by i+1 and go to step 1. •

Theorem 7.3: Suppose that f,ir.lRn-*]R are I.L.C., that Gftf(-) is an a.c.d.f. map

for (7.3). If \Xi j is a sequence constructed by Algorithm 7.3 and x^-^x as

i-»«(JTc(0,l,2,...J) then if/(x)^0 and OeGfti,(x). (i.e., x satisfies the first order

condition of optimality).

Proof: To obtain a contradiction, suppose that Q£Gy#(x). We consider two

cases. (Clearly, since ^(x^^O for all i, we must have -^(x)^O ).

a) i/(x)<0. Then, since #(x)>0, (see 7.32a), we have from (7.33b) that

do/ (x;A(x)) ,= -tf(x) < 0 (7.39)

Consequently, since /(•). 1^(0 and h() are continuous, there exist ap>0, aX>0,

and a*o>0 such that

/ (x + Vi(x)) - / (x) •< -3 (7.40a)
it(x + fti(x))<=0 (7.40b)

for allxef?(x,p). Hence, since Xi-*Kx asi-*°°, there exists an i0 such that

/(Xi+1) - / (a^) <S -3 V i > i0, ieK (7.41)

•CO

Now \f(xi) ] is monotone decreasing and f(xi)-*Kf(x) because /(•) is
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continuous, hence / (x*)-*/ (x). But this contradicts (7.42) and hence we must

have OeGy t^(x).

b) ^(x)=0. In this case, since 0£Gf#(x), it follows from (7.33a) that

d0V(x;/i(x)) ^ -*&) < 0 (7.41)

holds in addition to (7.39). It now follows from the continuity of /(•)• i*() and

h() that for some p>0, *X>0, 3>0 (7.40a), (7.40b) hold for all x<£B(x,p). Hence,

we obtain a contradiction as for case a). •

This concludes our exposition of a first approach to the construction of

semi-infinite optimization algorithms. While the approach is simple, it results in

unacceptably difficult search direction finding problems. Our second approach

will therefore be to reduce this computational difficulty at the expense of an

increase in algorithmic complexity.
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We continue with the problem

min(/(x)|^(x)^0j (8.1)

where f:JRn^]R and ir.JRn-*JR are both LLc. In particular, we are interested in

the case where

if/(x) A max <p(xty) (8.2)
y£Y

where <p:lRnxlRm-*lR is LLc. and Y is a compact subset of IRm.

As in the preceding section, we begin by first considering the problem of

finding a feasible point, Le., finding an x€.]Rn such that ^(x)<0 by solving the

problem

minty(x)|xeJ?nj (8.3)

In Section 7 we found that if we used dif/(x) to compute search directions, we

could not prove convergence. On the other hand, when we embedded difs(x) in

an augmented convergent direction finding (a.c.d.f.) map Gnf/(x)t we could prove

convergence. However for if/() as in (8.2), the computation of the search direc

tion involved the solution of an infinite quadratic programming problem which,

at best, is extremely hard to carry out. To develop our intuition, we turn again

to the simple case where

^(x) = max/*(x)
j cm

with /3:2F?n-».ff? continuously differentiable. For this case we have

8^(x) = co }V/>*(x)jie/(x) (8.4)

where I(x) A j?em \f1(x)=if/(x)\ and we can define an augmented convergent

direction finding map by (see Exercise 7.1)

&$(x)A co
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Our first attempt at reducing dimensionality of the search direction finding

problem may consist in discarding from (8.5) all the vectors such that

^(x)—f*(x)>e>Q for some t and somehow adjust e>0 as the computation

proceeds. This yields a candidate map

where

/c(a:)= foem|iKx) -/'(x) <: s] (8.7)

Indeed, this is a perfectly good starting point for a convergent direction finding

map. However, our knowledge of methods of feasible directions (see [Pol l], [Pol

5], [Gon 2]) leads us to guess that once £ is introduced, we no longer need to

retain the values of ^(x) and/*(x) in Se^(x), Le., that a convergent direction

finding map with set values in JRn rather than in 2F?n+1 can be used. The obvious

candidate for such a c.d.f. map is

Gcif(x) Aco SV/'(x))/e/e0c), £>0 (8.8)

We proceed again on the basis of the principle of wishful thinking, which

leads us to believe that we must be right and construct an axiomatic structure

which abstracts the properties of the set in (8.8).

Definitioii B.1: We shall say that [G^i;)]^ where Gci/:IRn•*2Bfn, is a family of

convergent directum finding (c.d.f.) maps for the LLc. function iff'.IR7^-*^ if

a) Tor allx£]Rn, dif/(x)= Gtfj/(x).

b) Forall«xei??n, Q^e<£'=> £e^(x)cGc^(x).

c) Forany.e^Oand-xeiF?n, Geif/(x) is convex.

d) For any £&0, Gsf(x) is -bounded on bounded sets.

«) Gei/(x) is u/s.c. in (ejc)at (0,x) for all xei??7*.
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f) Given any xej?n, £>0 and 3>0 there exists a p>0 such that for any

*£e3^(£) and anyxe£(x,p), there exists an £e<£^(x) such that ||^-^||^3. •

We note that the property f) above is that Gef() is "almost" Ls.c, which is

quite close to continuity.

Before we proceed, we shall prove that Gtif(-) as defined in (8.8) indeed has

the properties specified in Definition 8.1.

Proposition. 8.1: Suppose that f^:JRn-*JR, jem are continuous differentiable

functions. Then the family of maps j Geff/(-) j defined by (8.8) is a family of c.d.f.

maps.

Proof:

a) Clearly Go^(x)=3^(x) for all xeJF?n.

b) Since Q££<e'=> 7c(x)c/c.(x) we must have Gef(x)cGc»i/(x).

c) Ge^(x) is convex by definition.

d) For any sSsO, Gef(x)c co{V/*(x) j . Since the V/'() are all continuous,

it follows that Ge^(x)cco }V/J (x) j is bounded on bounded sets for any £^0.

e) Consider the point (0,x). If jem is such that j£Io(x), then

i>(x)—fJ'(x)>0. Hence there exists a p>0 and an £>0 such that j£Is(x) for all

.xei?(x\p), £e[0,£]; Le., for all xef?(x,p) and £e[0,£], IQ(x)z>Ie(x). Hence, if £t-»0

andXi-*x as i-»*> are arbitrary sequences then, since the Vf*(x) are continuous,

we must have XimG^feJcG^xe). Le., Gei*{x) is u.s.c. at (0,x).

f) Let-x, £>0 and3>0 be given. First, since je/0(x)=^ ^(x)-/J"(x)=0, there

exists a Pi>0 such that ^(x)-/J*(x)<£ for all x€.B(x%pi) and 7'e/0(x), Le.,

J"0(x)c/g(x) for all x€.B(x,p\). Next, there exitst a pe(0,pi] such that

||V/*(x)-V/'(x)||«;3 for aUjre5(x,p) and 7em. Hence, iff= 2 #V/'(x) with
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J?^0 and 5j jy=l is any point in dif/(x), then for any xei?(x,p) there exists a
Je/0(S)

|= 2 A^V/^(x) in Gg^(x)-such that

111-111=11 S #(V/>(x)-V/'(x))||*3

Exercise 8.1: Prove the following.

lemma 8.1: Suppose that (Tei/() , £>0, is an element of a family of c.d.f. maps,

•defined as above. Then for any xei7?n, 3>0, there exists ap>0 such that for any

2c'j:"eB(x,p) and any f e8#E') there exists an £"e<£f(x") such that ||£"-£'|M&

[ iftni: use f) in Definition 8.1 and the fact that df(-) is u.s.c. ]. •

The purpose for the augmentation of dij/(x) in the construction of Ge^f{x) is

to provide us with a "look ahead" property which should enable us to detect

"corners" in the equal cost contours of *$('). Hence, the most naive such aug

mentation is to let

G*1>(x) A co \ty{x')\x.mxx) (8.9)

Obviously, this definition is quite unattractive for the case of max functions.

However, it may have merrit in the case of less structured semi-smooth func

tions, see, e.g., [Pol 7].

Exercise 8.2: Consider ip(-) defined by (8.2) and suppose that Vx<p{x,y) and

Vyip(x,y) exist and are continuous. Let

G,tf(x) A co \VMx,y)lye7fx), s^Q (8.10a)

where

¥c(x)^\yzY\f(x)-<p(x,y)^E
and y is a local maximizer of <p(x,) in Y\ (8.10b)
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Suppose that ?o(x) is a finite set for all xe27?n. Show that (8.10a) defines a fam

ily of c.cLf. maps for ^(') (Hint: see [Pol 3], [Gon 2]). •

Exercise 8.3: Let Q(x) be an nxn symmetric, positive semi-definite, complex

valued matrix whose elements are continuously differentiable in x and let its

eigenvalues be denoted by X1(ar)^X2(x> • • •^Xn(x). Define if/(x) A\l(x). For

any £^0, let Ue(x) be a matrix of ordered ortho-normal eigenvectors

corresponding to the eigenvalues XJ'(x) of Q(x) such that ^(x)-X;'(x)^£. Show

that

GJtx) Aco ttelR* |f =<C/e(x)e; MfW£(x)2)
i=l,2 n(||s|| = Ij (8.11)

defines a family of c.d.f. maps for tf/(-) Hint: see [Pol 3], [Pol 6]). •

Finally, we need to define a feedback law for decreasing £ in a family of

c.d.f. maps.

Definition 8.2: Let iGc^(x)jeaft0 be a family of c.d.f. maps. Let ae(0,l). We define

the £ -search direction at x ej??n by

he(x) A -org min f}£||/i||2|/ieGc^(x)! (8.12)

and the £ adjustment law by

£(x) imax |£etf|||/ic(x)||2:> £j (8.13)

where

E A \0tl,a,az,a3, • • • j (8.14)

•

Before we continue, it is worthwhile to pause and re-examine the £ -search

directions he(x) defined by (8.12). We can define an e-generalized directional

derivative by
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deiKx;h) A max ($,h) (8.14a)

Then we find that, because 9f(x)cGef(z),

d0if/(xth) <> denj/(x;h) (8.14b)

so that any h which makes deif/(x;h) negative is a descent direction for $(•).

Also, it is easy to see that

he(x) = org min(^|/i||2 + ds^(x;/i)j (8.14c)
heJR"

which, by comparison with (7.11) shows that we are fairly close to the most naive

extension of the method of steepest descent to the nondifferentiabie case,

except that, now, hopefully, we have generated some near continuity properties.

Remark B.1: In practice, it is common to add a second parameter <5>0 to the

definition of £(x), using the test ||/ic(x)||2S:(5£ , which enables us to "balance" the

computation better. •

We are ready to state an algorithm model and establish its convergence.

Algorithm 8.1: [Requires a family of c.d.f. maps fG^OJsfeO and ae(0,l) for

(8.13)]

Data:xQ^JRn.

Step 1: Compute fife) according to (8.13) and the search direction

/it=Ac(Z()(x<) according to (8.12).

Step 2: Compute the stepsize

X* e X(Xi) A org min^fe + XAj) (8.15)

Step 3: Update.-jCi+i^Xi+Xihi; replace ibyi+1 and go to Step 1. •

Lemma &2: For every xeiff* such that 0£dif/(x), there exist ap>0 and £e£\ £>0

such that £(x)fe£ for ail-xei?(x,p).
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Proof: Since G€f(x) is u.s.c. in (£,x) at (0,x), it follows that ||/ic(x)||2 is Ls.c. in

(£,x) at (0,x). Since ||/i0(£)H>0, it now follows from the Ls.c. of ||/ie(x)||2 at (0,x)

that there exist ap>0 and an £>0, £ei?, such that ||/ic(x)||2-a£^0 for allxei?(x,p)

and 0=<£=<£ . Hence ||/i3(x)||2-£S:0 for all xe#(x,p). But this implies that

£(x)s>£for allxej0(x,p). Q.E.D. •

Theorem 8.1: Suppose {xi ) is a sequence constructed by algorithm 8.1 in

minimizing a 1.L.C function ir.IR71-*^. If Xj-»x as i->«» (Kc\0,l,2 J), then

0ea^(ie).

Proof: Suppose that 0/£9^(x) for the sake of obtaining a contradiction. Then

fi(x)>0 and by Lemma 8.2, there exist io and £>0 such that £(xi)&:£>0 for all i^io»

izK. Now, by the mean value theorem of Lebourg (Proposition 6.9),

fix,, + \hi)- I'M = X^.fcx) (8.16)

where fcx^^fe+sX/ii), for some se(0,l). Now, since Geir(x) is bounded on

bounded sets and Geif/(x)cGiil/(x)t we have that there exists ab<» such that for

all ieiT , £^i0 0<£^£(x£)^||7i(xi)||2^62. Referring to Lemma 8.1, let p>0 be such

that for any x',x"ei?(x,p), and any g€.di/(x') there exists a £"eGg(x") such that

61||'—£"||^£/2. Hence there exists an i^io and a"X>0 such that for all isai, i€.K,

both XiG.B(x,p), and (xi+s4%hi)€.B(x,p) for all se(O.l) and for to€.dif/(xi +sVii)

there exists a ^i7!^Gt^(xi)cGs(Xi) such that H&x—£a!\\b ^ £/2. Substituting in

(8.16) we now obtain, for all i^ij, i€.K

i>(xi +Xi/ii)-^(xi)^

^te+ftO-^Xe)

=^[<^.^')+<^'^-^')]
^HI^II2 + <^.£«-£ix'>ll]

^X-^^ + IMIIIte-WlD
^-^£/2<0 (8.17)
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CO

Now, fyfe) ] is monotone decreasing and TJ/(xi)-*Ki{/(x) since ^() is continuous.

But this implies that ^(xt)-»^(x) as i-»°°, contradicting (8.17). Hence we must

have had 0e3^(x). Q.E.D. •

Next, we develop an algorithm model for solving (8.1) under the assumption

that we have an x0ei??n such that ^(x0)s£0. As we have indicated earlier, when

ever minMa;)|xe.Z7?nJ<0 such an x0 can be computed by means of a finite

number of iterations of Algorithm 8.1.

Definition 8.3: Let iGe/(-)ic*o and fG^OSeatO be given families of c.d.f. maps for

the i.L.c. functions /(•) and if/(-) in (8.1). We define the family of (phase II) c.d.f.

maps {G/.^Oieao for (8.1) by setting

Gf,i(x) A Gtf(x) if ^(x) <-£ (8.18a)
Gfti,(x) A co \Gef(x), Geif(x)l if i/(x) ^ -£ (8.18b)

Next, we define

he(x) Aorg min $||/i||2|heGf^(x)\ (8.19)

and

s(x) A max \ezE\ ||/ie(2)l|8 ^ £J (8.20)

where E was defined in (8.14). •

Algorithm 8.2: [Requires $Ge/()ie&o. i^()ieao families of c.d.f. maps for /(•)

and^(-); ae(O.l) for the set £ in (8.14) ].

Data:JCfieJRn such that f (x0)^Q.

Step 0: Set i=Q.

Step 1: Compute fife) according to (8.20) and the search direction

fk^—hcfgjfa), according to (8.19).
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Step 2: Compute the stepsize

XieX(xi) A org minj/fe + Xfy) |

f(xi + Xihi) < Oj (8.21)

Step 3: £#>date:xi+1=xi+Xi/Li, replace i by i+1 and go to Step 1. •

Exercise 8.4: Prove the following.

Lemma 8.3:

a) For every x^JR71 such that 0£Gf$(x), there exist ap>0 and an £€# , £>0

such that £(x)S:e for all xei?(x,p).

b) Suppose thatx solves (8.1), then £(x)=0. •

Theorem 8.2: Suppose (xj j is a sequence constructed by Algorithm 8.2 in solv

ing (8.1), with / (•) , i/() LLc. If x^x as i-»« ( JTc(0,l,2,...j ). then ^(x)«£0 and

0eG£^(£) (and £(x)=0).

Proof: first, since tf/(xi)^0 for all i, we must have ^(x)<0 for any accumulation

point x of (Xij. For the sake of contradiction, suppose that x\-*xx and

O£Gfj,0c). Then £(x)>0 and, by Lemma 8.3, there is an io and an £e£* such that

£(x4)s»£>0 for all i^i0 and i^K.

a) Suppose that ^(x)<0. Then, by essentially repeating the arguments of

the proof of Theorem 8.1 we can show that there is an i{^iQ and aX>0 such that

for all ieJsT, teilf ^(x»+%hi)^Q while

f(xi +7hi) -/(Xi)^ -rs/2 (8.22)

since f (xi+^—f (xi)^f (xi+%hi)—f fa), we are led to a contradiction, exactly as

in the proof of Theorem 8.1.

b) Suppose that ^(x)=0. Then there exists an i^i0 such that for all ieA",

isrf2, ^(xjjs^e^—£(x*) so that Gf$ (x<) is given by (8.18b). Consequently,
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hi =org min B£IMI2 +max [d^f faih),
dtMfKxiihm (8.23)

and is a descent direction for both / (•) and ^(). Repeating again the arguments

in the proof of Theorem 8.1, this time both for /(•) and for ^(-)i we conclude

that there is an £3^2 and a^O such that for all i€.K, 1^3,

/ (Xi + Kit) - f (xt) ^ -*£/ 2 (8.24)

f(xi + Vit) - fixi) sS -Xfi/ 2 (8.25)

which, clearly, leads to a contradiction of the fact that /(xi)-»/(x) as £-♦<».

Hence our proof is complete. •

So far, we have assumed that to solve (8.1) we use one algorithm to obtain a

feasible starting point x0 (such that ^(x0)^0) and then apply a second algorithm

to optimize the design. There are two disadvantages to this: (i) two codes need

to be written and used, and data must be transferred from one to the other; and

(ii) the phase I process (computation of a feasible initial design) can produce

bad initial designs since it pays no attention to the cost. We now show that these

disadvantages can be mitigated by constructing a phase I-phase II algorithm for

solving (8.1).

Let %:1R-*]R be a continuous, monotonic increasing function such that

f(0)=0 and f(r)-»°° as r-»<». We define the phasel-phase II c.d.f. maps as having

values in 2J?n+1.

Definition 8.4: Let \GJ() \ and \GeTf/() J be given families of c.d.f. maps for

the LLc. functions /(•) and f{-) in (8.1), let ^(x)+^max$0.^(x)} and y>0 be

given. We define the family of phase I-phase II c.d.f. maps \Gf#(-) \ for (8.1) by

setting

GU(x) = }?eifi>»+1|? = (0,|). *€<?./(*)}
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if f(x) < -£ (8.26a)

Gf,i,(x) = co{?ei??»+1| £ = («7^(x)+) , £) .with $eGBf (x) or ? = (0. fl W** ^G^{x)\
if ^(x)^-£ (8.26b)

Next, we define

he(x) = (h°(x)the(x) .A arflfminM|/i||2|
AeG/,^(x)J (8.27)

and

£(*) ^ max (fie^l ||/T€(x)||2 ^ £J (8.28)

Exercise 8.5: Show that he(x) defined by (8.27) satisfies

maxide/(x;h) - x/r^xpi0, dttff{x\h)\ (8.29)

where def (x;h)A max v(£,/i) and def(x;h) A max /£,A\ •

Note the effect of ^(x) on hc(x). When ^(x)+. is large, then

7ie(x)2ar^min{--||/i||8|/ieC?^(x)j. When ff/(x)^0t he(x) is the same as computed

in Algorithm 8.2 (phase II). When i/(x)>0 and decreases to zero, the effect of the

cost ( Gef(x)) on he(x) becomes progressively more pronounced. For the case

where f(cdot) and V() are differentiable, this effect is illustrated in the figure

below.

We can now state a phase I-phase II algorithm for solving (8.1). (Note that in

[Pol 3], a less efficient phase I-phase IIscheme is described).

Algorithm &3: [Requires | £«/(*) ( . \Gef() \ families of c.d.f. maps for /(•) and

^(•); cte(O.l) for the set E in (8.14)].

Data: .x0eJF?n'.

Step 0:Seti=0.

Step 1: Compute sfe) according to (8.28) and the search direction
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/ii=—/ie(a.1)(xi) according to (8.27).

Step 2: Compute the step size

XieX^(x4) Aargmmf(xi + X/if) if ^(x<)>0

XieX*(xi) A argminlffe + A/OI

f(Xi + Xht) < Oj if ^(xi)^O (8.30)

Step 3: Update: Xi^i^Xi+K^hi, replace i by i+1 and go to step 1. •

Exercise 8.6: Prove the following.

as

Theorem 8.3: Suppose fxj J is a sequence constructed by Algorithm 8.3 in solv
it

ing (8.1) with /(•), ^(), LL.c. and suppose that Q£Gtfl?(x) for all xei??n such that

if/(x)^Q. lfXi-*x as i-*« ( Kc\0,l,2,...l), then ^(x)^0 and OeG/.^ic). •

This concludes our brief exposition of semi-infinite algorithm theory. It is

worth noting that the step size rules of exact minimization that we have

presented can be replaced by much more efficient Armijo-like step size rules

without affecting the convergence properties of the algorithms. The important

question of approximations in evaluating max functions in the execution of algo

rithms was not touched in these notes. The interested reader is referred to

[Gon 2], [Pol 1] and [Tra I] for details on implementation of conceptual algo

rithms. Finally, we point out that when the maximalization is over a multidimen

sional -set or when the maximand is not differentiable, it may be more con

venient to decompose an optimization problem by means of outer approximation

techniques. For details see [Gon l], [Pol 7].
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Fig. 1.1. f(») is u.s.c.

Fig. 1.2. f(») is 1.s.c.



Fig. 3.1. A convex function.

Fig. 4.1. Graph of i|>(x) = max fJ(x)
J63



f*(x)*

Level lines
for f°(.)

Fig. 5.1. x solves min {f°(x)|fj(x) <0, j =1,2,3}



f(x)A

Fig. 6.1. Subgradients of a convex function.



^(Xj+XhjhXxj)

Fig. 7.1. The Armijo step size rule

A
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-Xallhill

Fig. 8*1, Effect of cost on search direction for \|i(x) > 0.
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