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ABSTRACT

The use of an electron-beam lithography system for the inspection of x-ray masks requires

an in-depth understanding of the electron scattering properties of the defects. Mask imperfec

tions can be detected by a comparison of the backscattered electron signal from the mask with

the design data used by the electron-beam system to write the mask.

A new Monte Carlo computer program has been developed to simulate the backscattered

electron signal from three independent, infinitely long, variable width, variable edge-slope, gold

lines on a silicon substrate. The program is based on the continuous slowing down approxima

tion, Bethe energy loss equation, and screened Rutherford collision cross-section. Excellent

agreement with experimental results has allowed the program to be used to investigate the

effects of different collection angle ranges and structure geometries on the backscattered elec

tron signal. The relationships of the inspecting beam size and beam voltage with the quality of

the signal are also investigated. Universal curves of the backscatter coefficient versus material

thickness, normalized to the Gruen and Bethe ranges, have been obtained.

Different types of backscattered electron detectors are analyzed, from a practical

viewpoint, for use in an electron-beam inspection system and it is observed that currently avail

able, high speed, diode detectors are most favorable. The effects of shot noise, the fundamen

tal limitation to reliable high speed inspection, are studied for various structures. It is found

that shot noise will not be a fundamental limitation to electron-beam inspection if the
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comparator thresholds, used to determine the presence or absence of masking material, are

placed correctly.

After gaining fundamental insight into the backscattered electron signal characteristics, the

systems aspects of using electron-beam techniques for mask inspection are then discussed. A

mask inspection algorithm is demonstrated using a vector scan electron-beam system and a

complete mask inspection system is proposed. Finally, electron-beam scanning techniques for

inspection are discussed and it is observed that the proposed inspection system will allow

inspection throughput comparable to existing optical techniques at 2-4 times the resolution.



ACKNOWLEDGEMENT

There have been many people over the past several years who have made contributions,

either directly or indirectly, to the completion of this research. I would first like to thank and

express my sincere appreciation to my Research Advisor, Professor Andy Neureuther, for his

guidance, support, and friendship which made this work possible. His patience and editorial

skills are also greatly appreciated.

I also wish to thank Professor Bill Oldham for his advice and comments throughout this

research. Thanks are also to be extended to Professors Dennis Hess and Ted Van Duzer.

Much of the artwork in this thesis was made possible by the expert drafting of Tom King.

The research which went into this thesis was a bit different than most in that it was a col

laborative effort with people at the IBM T.J. Watson Research Center in Yorktown Heights,

New York. I would like to thank Alan Wilson for giving me the chance to work at IBM and

also for his encouragement and many helpful suggestions. There are many other individuals at

IBM who have made contributions and I would like to show my appreciation. I am indebted to

G.R. Viswanathan (Visu) for his advice and help throughout all phases of this research. I also

would like to thank Hank Voelker for his expert technical assistance in many of the experi

ments using the vector scan electron-beam system. I also wish to thank Walter Molzen for his

patience and help in the post-processing of data for the electron-beam systems. The helpful

advice from John Warlaumont and Dieter Kern is also greatly appreciated. I am also grateful to

Bob Scott and Joe Conte for their technical skills. I would also like to thank Raul Acosta and

Juan Maldanado for their contributions. Thanks are also to be extended to Juan LaFuente and

Arthur Kern for their aid in using the vector scan computer software. I would also like to

thank Warren Grobman, Mike Hatzakis, Bob Simpson, Oliver Wells, Haskell Reich, Jim

Rosenberg, and Norman Bobroff for their contributions. The administrative help and pleasant

ness of Maryann Shaw and Karen Hack are also greatly appreciated. I am also grateful to Grant

Willson of IBM Research in San Jose for helping to expedite this research. Finally, I would like

to thank Jurij Paraszczak and Bob Flavin for their advice and help and also for being my very

good friends over the past several years.



I also wish to thank my colleagues at Berkeley, especially those in the SAMPLE group,

for their contributions. I am indebted to Sharad Nandgaonakar for the countless times he

helped with difficult problems on the computer. I would also like to thank John Reynolds, Ken

Lee, Gino Addiego, Paul Carey, Charlie Giancarlo, Scott Schafer, Keith Bentley, Claudia Liska,

Tom Berger, Wendy Fong, Wing Leung, and Grace Mah for making life in Berkeley that much

more interesting.

I am also grateful to Dave Kyser of Signetics and Y.C. Lin of Texas Instruments for their

help while I was writing the Monte Carlo program for this research.

I would now like to turn my attention to those people who made contributions to this

thesis by being my closest friends and giving me the strength to continue. I would like to

thank Dave Catalano for his friendship over the last 12 years or so and for the use of his couch

on those days when I had to travel down to San Jose. I would also like to thank Francois Hen

ley for many stimulating conversations, some of which even concerned electrical engineering. I

would also like to thank a group of friends, in addition to Maf, whom I've known since high

school. I would like to thank Bill Telia (Waldo), Steve Lancellotta (Lance), Marty Politelli,

Bob Heon, John Roch (Boom-Boom), and John and Patty Thompson for making my visits

home to Rhode Island that much more enjoyable.

I would also like to thank Jeff and Patty Voigt for their friendship and for the many good

times we have had in New York, Philadelphia, Vermont, Rhode Island, Connecticut, and Cali

fornia. I would also like to thank Lad Ricker for his friendship and information on nuclear

power. I also wish to thank Mark Socinski for his friendship and illegible letters. I would also

like to thank Heather Stengel for her friendship and hospitality. Finally, I would like to thank

Kat deCaracena for her faith in me over the years and for being one of my best friends.

I would now like to thank my parents, David and Lois Rosenfield, and sister, Elaine, for

their love, support, and faith in me. Without them, it would have been impossible. Finally, I

would also like to thank my relatives for their kindness over the years.

This work was a collaborative study supported in part by the X-Ray Lithography group at

the IBM Thomas J. Watson Research Center and the National Science Foundation under grant

ECS-8106234.

11



Dedicated to

my parents, sister, friends, and family.

Ill



Table of Contents

Abstract 1

Acknowledgement i

Dedication iii

Table of Contents iv

Chapter 1: Introduction 1

Chapter 2: Fabrication of Inspection Test Patterns 5

2.1. Introduction 5

2.2. Design 6

2.3. Programmed Defects 6

2.4. Fabrication Process 6

Chapter 3: Monte Carlo Simulation Program 14

3.1. Introduction 14

3.2. The Monte Carlo Program 15

3.3. Comparison of Simulation to Experiment 20

3.4. Summary 41

Chapter 4: Simulation of Backscattered Electron Signals for X-ray Mask Inspec
tion 47

4.1. Introduction 47

4.2. Optimization of Experimental Detector Placement 48

4.3. A Study of the Effects of Beam Size and Angle Collection Range 51

4.3.1. ASNR 58

4.3.2. Backscattered Electron Signal Fwhm 65

4.3.3. Threshold (DC Level) 74

4.4. Absorber Thickness Studies 83

4.5. Effects of Scanning Near the Edges of a Structure 92

4.6. Extension to Three Dimensional Simulation 96

4.7. Summary 100

Chapter 5: Backscattered Electron Detectors and SNR 104

IV



5.1. Introduction 104

5.2. Backscattered Electron Detectors 105

5.3. Shot Noise SNR Studies 107

5.3.1. Calculating Shot Noise SNR 107

5.3.2. SNR Requirements for X-ray Mask Inspection 116

5.3.3. A SNR Comparison of Gold and Chrome Masking Material 127

5.4. Relationship of ASNR to SNR 129

5.5. Summary 132

Chapter 6: Mask Inspection Using an Electron-Beam System 134

6.1. Introduction 134

6.2. Optical and Electron-Beam Inspection 134

6.2.1. Optical Inspection Techniques 134

6.2.2. Electron-Beam Inspection Techniques 136

6.3. Inspect Mask or a Copy of the Mask? 138

6.4. Demonstrating Mask Inspection Using a Vector Scan Electron-Beam System 139

6.5. A Mask Inspection System Using a Vector Scan Electron-Beam System 145

6.6. Mask Inspection Experiments 152

6.7. Software and Hardware Requirements 163

6.7.1. Software Requirements 163

6.7.2. Hardware Requirements 164

6.8. Inspection Scanning Techniques 165

6.9. Summary 173

Chapter 7: Conclusion 175

Appendix A: The Monte Carlo Simulation Program 181

A.l. Introduction 181

A.2. Program Operation 181

References 191



CHAPTER 1

INTRODUCTION

A rapid and automated inspection system is a necessity for the detection of defects in x-

ray and optical lithography masks. As masks become more complex and critical feature sizes

shrink below one micron, the limits of optical inspection systems become apparent. Presently,

it is impossible to reliably detect submicron defects in submicron mask patterns with commer

cial inspection systems. However, the use of an electron-beam lithography system, with its

high resolution and overlay capabilities will make it possible to inspect submicron mask patterns

for defects. Mask inspection is a natural extension of an electron-beam system since the data

used to write the mask can be used to inspect it as well. Electron-beam techniques have been

suggested and/or applied to mask inspection by several groups [1-6]. However, there has not

been, to date, any fundamental work characterizing the backscattered electron signal properties

from structures encountered during x-ray mask inspection.

This thesis will be concerned with the many different aspects which must be considered in

using an electron-beam lithography system for x-ray mask inspection. Conceptually, the idea of

using an electron-beam system to perform the mask inspection function is simple. Mask

defects can be detected by a comparison of the backscattered electron signal from the mask

with the design data used by the electron-beam system to write the mask. However, the design

and implementation of a practical electron-beam mask inspection system requires the design

and fabrication of test patterns, a complete analysis and understanding of the backscattered

electron signal from different defect structures, a high speed backscattered electron detector, an

algorithm to detect discrepancies between the backscattered electron signal and design data,

electronics to perform the inspection function, and software to run the entire system.

The basic approach of this research has been to gain an understanding of the factors

involved in implementing a practical electron-beam mask inspection system. The research has

been broken up into several distinct phases. First, test patterns were designed on an IBM com

puter aided design (CAD) system to simulate the various types of defects which would be



encountered on an x-ray mask: indentations, protrusions, isolated holes, isolated pieces of

masking material, bridge structures, and arrayed lines and spaces. A vector scan electron-beam

lithography system [7] was used to pattern these shapes with designed minimum feature sizes

ranging from 0.25 to 1.50 /*m. Typically, x-ray masks are constructed of gold absorber patterns

on a thin, 2-5 /tim, low atomic number substrate [8-12]. Thus, the test patterns were fabricated

as gold on silicon structures to simulate an x-ray mask or copy of an x-ray mask.

The presence or absence of masking material must be detected in some way. Low energy

(< 50 eV) secondary electrons, generated near the surface by the inelastic scattering of primary

and backscattered electrons with loosely bound outer electrons, are often used to form images

in scanning electron microscopes (SEM's) [13-15]. Secondary electrons yield topographical

information since they are generated near the surface of the structure. High energy backscat

tered electrons have also been used in SEM's [16-18] and are widely accepted for use in

electron-beam lithography systems for detection of registration marks [19-21]. Backscattered

electrons are produced by the elastic scattering of the incident electrons with the nuclei of the

target material or with the electron clouds surrounding the nuclei. The energy of backscattered

electrons can range almost up to the incident beam energy and also yield information about the

material make-up of the target structure.

Backscattered electrons are desirable for registration in electron-beam systems since they

allow for the detection of registration marks through resist or other process related planarizing

coatings [19-21]. Backscattered electrons are also favored in lithography systems for a very

practical reason - backscattered electron detectors are simple to install inside the electron-beam

chamber and do not require large (kV range) bias voltages. These high voltages create electric

fields which can negatively influence the electron-beam as it is writing a pattern. As far as x-ray

mask inspection is concerned, backscattered electrons are also favored because of the larger sig

nal difference between high and low atomic number materials as compared to secondary elec

trons [22]. For these reasons backscattered electron signals have been chosen to be used in the

mask inspection system studies described in this thesis.



An in depth understanding of the backscattered electron signal from the various structures

encountered during x-ray mask inspection is therefore necessary in order to achieve the best

possible signal for comparison to design data. This has been accomplished in the second phase

of the research. This phase involved a study of the various characteristics of the backscattered

electron signal. A new Monte Carlo simulation program [19,23] was written to study the

effects of gold thickness, electron-beam size, electron-beam voltage, and backscattered electron

collection range (or detector placement) on the quality of the signal from different structures.

Good agreement with experimental backscattered electron signals gave confidence in using the

Monte Carlo program for the studies outlined in this thesis.

The third phase of this research involved developing an algorithm which would enable the

backscattered electron signal from the mask pattern to be compared with the design data. A

technique, similar to the method described by Simpson and Davis [4], was demonstrated on an

IBM vector scan electron-beam system [6,7]. In this experiment, the inspection was accom

plished by scanning the electron-beam over all areas where there was gold. During this scan,

the backscattered electron signal should have always remained high. If the signal went low, a

clear defect or hole in the gold had been detected. A similar method was used to detect opaque

defects (gold in designed clear areas). From this study and further experiments, a mask inspec

tion system for implementation on a vector scan electron-beam system has been designed.

Chapter 2 will discuss the design and fabrication of the test structures used in the back-

scattered electron signal studies as well as in the mask inspection studies. Submicron gold on

silicon structures were fabricated using a simple single layer resist process, a vector scan

electron-beam lithography system [7], and electroplating.

Chapter 3 deals with the Monte Carlo simulation program written to gain an understand

ing of the scattering properties from a variety of two dimensional structures. Simulated back-

scattered electron signals show good agreement with experiment demonstrating that the simula

tion program will be a very useful tool in the analysis of backscattered electron signals for mask

inspection.



Chapters 4 and 5 are Monte Carlo studies of the backscattered electron signal from

different structures. In Chapter 4, Monte Carlo analysis is used to optimize the placement of

the backscattered electron detector used in the experimental studies. The effects of incident

electron-beam size and different take-off angle ranges on the signal are also discussed in a

quantitative manner. The required gold thicknesses and effects of scanning near the edge of a

shape as a function of beam voltage are investigated. Results are presented in the form of

universal curves with distance units normalized to the range of the incident electrons in the

material. Finally, a simple calculation technique is outlined to predict the signal levels from

simple three dimensional defect structures.

Chapter 5 discusses the detector requirements in an electron-beam inspection system and

investigates the fundamental shot noise limitations to high speed inspection. It is seen that

shot noise will not fundamentally limit the speed of inspection for most electron-beam systems

if the comparator threshold used for determining the presence or absence of masking material

is set correctly for the minimum sized clear and opaque defects.

Chapter 6 begins with an overview of present optical and electron-beam mask inspection

systems. A method of mask inspection using a vector scan electron-beam system will be

demonstrated. An algorithm to perform the inspection function using an electron beam system

will be discussed and hardware and software requirements are listed. Finally, different scanning

techniques are investigated in order to speed up the inspection process. The main body of the

thesis ends with Chapter 7, which is a conclusion.

Appendix A contains a short description of the operation of the Monte Carlo program and

input and output examples.



CHAPTER 2

2. FABRICATION OF INSPECTION TEST PATTERNS

2.1. Introduction

It is important in the development of an electron-beam system for mask inspection to

investigate the characteristics of the backscattered electron signal. This can be accomplished

with experimental studies as well as with Monte Carlo simulation techniques. Computer simu

lation, if accurate, is the preferred approach since the parameters of interest are well known and

easily adjusted. Thus, test patterns were designed and fabricated to experimentally verify the

simulated results from the Monte Carlo simulation program developed for this research.

Another important use for the test patterns was to investigate different mask inspection algo

rithms for the comparison of the backscattered electron signal to design data. In other words, it

was desired to fabricate a group of patterns whose sole purpose was to be used for the studies

outlined in this thesis.

The test patterns were fabricated as gold on silicon structures because the large atomic

number difference, or material contrast, between gold and silicon allows the presence or

absence of gold to be easily detected with backscattered electrons. Backscattered electrons are

preferred since the change in secondary electron yield with increasing atomic number is much

smaller than the backscattered electron yield [14,24]. As we shall see, high speed inspection

requires a significant difference between high (presence of masking material) and low (absence

of masking material) signal levels for adequate signal to noise characteristics. Also, gold on sil

icon is somewhat similar to the materials used in x-ray mask fabrication and is easy to process.

As will be discussed in Chapter 6, it may be desirable to inspect a copy of the x-ray mask made

using x-ray lithography. The logical choice for such a copy would be gold on silicon.



2.2. Design

Inspection test patterns were designed to simulate the various types of defects which are

likely to be found on a mask. These patterns, shown in Figure 2.1, include isolated and arrayed

lines and contact squares, protrusions, indentations, and bridge structures. The negative, or

inverse, images of these shapes were also designed so that both clear and opaque defects could

be investigated. These patterns were designed on an IBM CAD system with minimum feature

sizes ranging from 0.25 to 1.50 fxm.

2.3. Programmed Defects

Since inspection will consist of a comparison of design data to the backscattered electron

signal, pseudo or programmed defects can be introduced by changing the design data. The pro

grammed defect concept is illustrated in Figure 2.2 [6]. The original CAD design is fabricated

as a gold on silicon structure. Then the original design is altered in the CAD system so that

several features are modified. When this modified design is used for inspection, programmed

defects should be detected wherever the original design was changed. Thus, the precise loca

tions of the programmed defects are known before testing the inspection system. Also, since a

wide range of minimum feature sizes and structure types were fabricated on the test patterns,

the size and type of defects can be programmed. The use of programmed defects eliminates

the need to rely on random process related defects in the testing of a mask inspection system.

2.4. Fabrication Process

The techniques used in fabricating the test patterns are relatively simple. A [100] silicon

wafer coated with 0.01 /im chrome and 0.03 /xm gold plating base was used as the starting

material. A thin 0.65 fim layer of PMMA 2010 (10 percent in chlorobenzene) was spun on and

the wafer was then baked at 160 °C for 30 minutes. The wafer was then exposed with a dose of

100 fiC/cm2 using an IBM vector scan electron-beam lithography system [7]. All pattern data

was proximity corrected using internal IBM proximity correction computer programs.
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Figure 2.1. Mask inspection test patterns.
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Development was performed in a 1:2 MIBK:IPA solution and monitored using an exposure

wedge [25]. The developed patterns were etched for several minutes in an oxygen plasma (50

W, 0.1 torr oxygen) to remove debris at the plating base surface. The wafer was then electro

plated in a standard commercially available electroplating solution and the resist was stripped.

A short ion milling removed the plating base leaving the gold on silicon structures.

Figures 2.3-2.5 are SEM micrographs of some of the fabricated patterns. Note the square

contacts and very straight submicron lines fabricated using the electron-beam lithography sys

tem. Sidewalls are fairly vertical and various gold thicknesses, ranging from 0.11 to 0.55 /xm

were fabricated.

It was found, using the single layer resist technique outlined above, that the actual pattern

dimensions were approximately 0.25 to 0.30 /um larger than the designed pattern dimensions.

In other words, there was about 0.25 to 0.30 /imof process bias because of the over develop

ment required to fabricate vertical sidewalls [26]. Thus, the smallest isolated gold structures

had minimum dimensions of about 0.50 fxm (Figure 2.4) because of the bias. However, the

bias also caused the fabrication of very small (on the order of 0.1 fxm) holes in the gold film

(Figure 2.5).

Process bias can be significantly reduced by the use of multi-layer resist techniques [27-

29] in which imaging is done in a very thin 0.2-0.4 /im top layer of resist. A trilevel scheme of

PMMA/polysiloxane/AZ1350J was developed to fabricate smaller features [30]. The process

consisted of exposing the thin top layer of PMMA, reactive ion etching the siloxane with a C/"4

plasma, and then reactive ion etching through the AZ1350J with 02. Figure 2.6 shows some

submicron resist patterns obtained with this process. The sizes of the structures were the same

as the designed feature sizes. The reticulated material in the micrographs is the siloxane after

the 02 etch. The structures fabricated using the the simple single layer PMMA process were

found to be adequate for the studies conducted for this research. However, if gold structures

with much greater than a 1:1 height to width aspect ratio are desired, a multilevel resist scheme

such as the one outlined in this chapter is essential for reproducible results.
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Figure 2.4. SEM micrographs of some of the gold on silicon test structures. The gold line
in the bottom micrograph is about 0.5 fim wide. Gold thickness is 0.46 /xm.
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Figure 2.5. SEM micrographs of some of the gold on silicon test structures. The gaps
between the gold lines are less than 0.1 /xm wide. Gold thickness is 0.46/xm.
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Figure 2.6. SEM micrographs of resist structures fabricated with a trilevel technique.
Minimum dimensions are about 0.25 /xm. Resist thickness is about 0.7 itm.
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CHAPTER 3

3. MONTE CARLO SIMULATION PROGRAM

3.1. Introduction

A mask inspection system using an electron-beam system will use a backscattered electron

signal to determine the presence or absence of masking material. Thus, an in-depth under

standing of the scattering properties of the defects is necessary in order to optimize the back-

scattered electron signal which will be compared to the mask design data. Early in this

research, it was decided that the best way to study the backscattered electron signal would be to

use an accurate simulation program. Thus, it would be easy to examine the effects of different

material and beam parameters on the signal. However, a prerequisite for using simulation was

that the simulated results agree well with experiment. It was important to have confidence in

using the program.

The Monte Carlo method, in which the trajectories of many incident electrons are fol

lowed through a target [19,23,31-41], was chosen for the simulation technique. The main rea

sons for this choice were that the Monte Carlo method is fairly well documented and that it

could be modified to investigate the backscattered electron signal from the complicated struc

tures encountered during x-ray mask inspection.

A short history of Monte Carlo simulation at Berkeley seems to be in order. Adesida [31]

developed a Monte Carlo program to investigate electron scattering and the reduction of prox

imity effects in electron-beam lithography. Adesida's program simulated the backscattered elec

trons, transmitted electrons, and absorbed energy density in a planar layer of PMMA resist on

substrates of variable thicknesses and composition. Lin [19] used parts of Adesida's program to

write a Monte Carlo program to investigate the quality of electron-beam alignment signals from

a resist covered silicon step.
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Stephani and others not at Berkeley have also used Monte Carlo techniques to study the

registration signals from simple structures [33,34]. Hembree et al [34] have used a Monte

Carlo program to look at submicron linewidth measurement in the SEM and George and

Robinson have used the method to investigate contrast in the SEM [35]. However, the inspec

tion of x-ray masks requires an understanding of the backscattered electron signal from submi

cron structures which exhibit material as well as the topographical contrast seen in registration

marks. Moreover, it is necessary to understand the relationship of incident electron-beam size,

incident beam energy, collection angle range, gold thickness, and defect type to the quality of

the backscattered electron signal.

3.2. The Monte Carlo Program

A new Monte Carlo computer program has been developed to simulate the backscattered

electron signal from a variety of two-dimensional gold on silicon structures expected to be

encountered during x-ray mask inspection. The program uses the standard continuous slowing

down approximation with the screened Rutherford collision cross-section and Bethe energy loss

equation [19,23]. The program, written in Fortran 77, uses some of the techniques introduced

by Lin [19,41] to keep track of the electron as it scatters into different areas of the target struc

ture. Whereas Lin's program calculated the backscattered electron signal from an infinitely long

long resist covered silicon step, this new program is used to simulate the backscattered electron

signal from three independent, infinitely long, variable width, variable edge slope, gold lines on

a silicon substrate. Through appropriate placement of the three gold on silicon lines, the back-

scattered electron signal from different types of defects typically found on x-ray masks or mask

copies can be simulated. Although gold on silicon was primarily simulated, other combinations

such as PMMA on gold or chrome on silicon can be specified. Appendix A contains a more

detailed description of the operation of the program as well as input and output examples.

As is well known, the Monte Carlo technique involves tracking many electrons incident

from a zero width S-function electron-beam as they scatter through the target. An example
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which illustrates the program's capabilities is shown in Figure 3.1, a plot of 15 electron trajec

tories projected onto the x-z plane. The target is composed of two 0.25 *im full width at half-

maximum (fwhm) gold steps and a 0.85 /urn fwhm gold step separated by 0.3 j*m. The four

backscattered electrons in this example can clearly be seen. The energy, take-off angle, azimu-

thal angle, and position of each backscattered electron is stored and the resulting total energy

and number distribution of backscattered electrons are output for the take-off angle, azimuthal

angle, and backscatter energy [19, see Appendix A].

A backscattered electron signal for a given structure is calculated by first simulating the

8-function signal. This is done by stepping the position of the incident beam in small (.0125-

.05 fim) steps over the structure. This process is illustrated in Figure 3.2. Figure 3.2a shows

the Gaussian beam shape used in most of the simulations and also a rectangular beam shape

whose use will be discussed later in this chapter. Figure 3.2b shows the 5-function electron-

beam stepped over the target and also the convolution of the 8-function beam with the Gaus

sian beam shape. This simulates the actual finite sized electron-beam scanning over a target.

Note how symmetry of the structure necessitates only one half of the signal being calculated.

The advantage of this approach is that the 8-function response can be convolved with a variety

of beam sizes and shapes. For the experiments to be described here, a Gaussian beam shape

was assumed. To save computer time, symmetry was used whenever possible. For the simula

tions in this paper, 5000-10000 electrons per incident 8-function electron-beam were used. The

calculations were mostly performed on an IBM 3081 computer. The required CPU time is

approximately 1 minute per 1000 trajectories for a 25 kV incident beam voltage.

The 8-function signal for a given target consists of typically twenty to thirty output files of

the type shown in Appendix A. Thus, a tremendous amount of data describes the signal from

even a simple structure. A graph of the backscattered electron signal from a structure is made

by first adding up the electrons or electron energy which strike the backscattered electron detec

tor. This partial 8-function signal must then be convolved with a given beam shape and the

output must be put into a format suitable for plotting. The process of adding up the electrons
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striking the detector is too time consuming to be done by hand. It is for this reason, and also

to have the option of processing the data in different ways, that the output file of the Monte

Carlo program can be read in as an input file to an external post-processing program. This

post-processor can read in the files describing the 8-function signal, selectively pick out the

desired information, and put the processed signal into plotting format. Another post-processor

was written to take a given 8-function signal, convolve it with different beam sizes and/or

shapes, quantitatively analyze the resultant backscattered electron signals, and put the results in

plotting format. These external post-processors consist of Fortran 77 programs linked by

EXECS in IBM's CMS operating system. The reason for developing these post-processors was

to automate the analysis as much as possible in order to be able to investigate the many

different parameters which affect the backscattered electron signal.

3.3. Comparison of Simulation to Experiment

It is important in the development of any simulation program to show that there is good

agreement with experimental results. In this study, backscattered electron signals were experi

mentally measured using an annular silicon diode detector (GW Electronics Type 113), Figure

3.3, in an IBM vector scan electron-beam machine [7]. Gold on silicon structures, whose fabri

cation was outlined in Chapter 2, were used in the experiments to represent typical mask

defects. The take-off angle ranges used in the experiments were measured to be approximately

35-62.5 and 55-75 degrees as measured from the plane of the wafer. This corresponds to the

detector being at heights of 7.4 and 15 mm, respectively, above the wafer (Figure 3.3). A

beam current of 1.5 nA and a SEM scan rate of 10 msec/line were used in all the experiments.

The gain and contrast settings of the diode amplifier were kept the same throughout the experi

ments by using the pattern of Figure 3.4a at 25 kV and 35-62.5 degrees as a reference.

Two types of simulated signals were calculated: (1) The energy signal was evaluated by

adding up the total backscattered energy into the desired take-off angle range and then normal

izing this quantity to the total input energy for a 25 kV electron beam. (2) The number signal



BACKSCATTERED ELECTRON DETECTOR

INCIDENT ELECTRON BEAM

RB =10.4mm

RA=3.9mm -Annular Diode Detector

/Take-off,
/<ran5e-'"

Target

Experimental h Take-off range

7.4 mm

15 mm

35-62.5°

55-75°

Figure 3.3. The backscattered electron detector used in the experiments.
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was calculated by simply adding up the electrons which scatter into the desired take-off angle

range and normalizing to the total number of incident electrons. A Gaussian beam fwhm of

0.2 /xm was used in all the simulations. A SEM analysis of the experimental gold on silicon

structures showed approximately vertical sidewalls; therefore, 90 degrees gold sidewalls were

used in all the simulations.

Figure 3.4 shows the experimental and simulated backscattered electron signals from

different structures for the two experimental take-off angle ranges. Figure 3.4a shows the sig

nals from two 0.7 /um holes in gold separated by a 0.7 /xm gold step and Figure 3b shows the

signals from an isolated 0.55 tim gold on silicon step. Figure 3.4c is a comparison for two 0.85

/xm gold on silicon steps separated by a 0.5 /xm space and Figure 3.4d shows the signals from a

0.25 /xm hole in a gold film. The gold thickness is approximately 0.46 /xm and the beam vol

tage is 25 kV for these cases. Figure 3.4e shows the signals from two 0.6 xim holes in a 0.2 ttm

thick gold film separated by a 0.6 /um step at 25 kV. Figure 3.4f is the same as Figure 3.4c

except that the beam voltage has been reduced to 15 kV.

Good qualitative agreement between simulation and experiment was obtained for the two

take-off angle ranges, different gold thicknesses, and different beam voltages. For example, the

simulation correctly predicts that the low signal levels in Figures 3.4a and 3.4d are smaller than

the low levels in Figures 3.4b and 3.4c. This is because most of the electrons are being trapped

under the gold when the beam passes over the holes. The simulation also correctly predicts

that the signals are reduced at the higher take-off angle range.

Signal contrast was used to quantitatively compare simulation and experiment. The con

trast is defined as:

c m S™* ~ 5™" (3.1)

Note that it is independent of the diode amplifier gain and DC level setting. Figure 3.5 gives a

comparison of experimental and simulated contrasts for the various structures. The energy and

number signal contrasts are listed for the simulations. As can be seen, the agreement between
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experiment and number contrast is good in some cases; but, is low when the structure is an iso

lated gold step on silicon. This is because the diode detector's initial amplification is propor

tional to electron energy. The backscattered electron energy distribution for gold has a max

imum near 9/10 of the incident beam energy while that for silicon has a maximum at about

7/10 of the incident energy [19]. Thus, the backscattered electrons from gold tend to have

higher energies and create more diode current than those from silicon. For small holes in the

gold, this difference in backscattered electron energies is not as important since so few electrons

escape from underneath the gold.

The simulated energy signal properly takes the backscattered electron energies into

account and the resultant simulated contrasts show better agreement with experiment, espe

cially for gold steps on silicon. This is especially true for the 15 kV case of Figure 3.4f. The

energy signal correctly predicts the reduction in high signal level because of the lower energy

electrons. Note that even for the simulated energy signal, the agreement is not as good for the

0.25 fim hole in gold. This is because for this size of structure, the measurement is very sensi

tive to factors which are not accurately known such as beam size, focus, and the slope of the

gold sidewalls.

While being useful for comparisons of simulation and experiment, contrast is not a good

measure of the quality of the backscattered electron signal. This is because contrast does not

contain any information about the signal to noise ratio, SNR, of the signal. It is well known

that for high speed inspection of masks with an electron-beam, a high SNR ratio is desirable to

guard against false defect detection and the missing of defects [2,4]. Assuming a shot noise

limited signal, the most noise will be found in the maximum part of the signal and this noise is

proportional to the square root of the maximum signal [19]. A parameter, ASNR which gives

information about the SNR quality of the signal for alignment has been introduced by Lin [19].

For defect detection, it is more appropriate to normalize to the energy ASNR between 0.5 fim

thick gold on silicon and bulk silicon. The ASNR can be written:
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'max '•'mm

ASM? =-j 2f1sB (3.2)
^max—Au ^max—Si

"V^ntax—Au

Note that this parameter is in terms of the energy signal levels and that the normalizing signals

from the gold and silicon are total signals covering the entire 90 degrees take-off angle range.

A direct comparison of ASNR's between experiment and simulation is not practical since

the diode amplifier gain is unknown. However, the ASNR ratio for the two different take-off

angle ranges can be compared. Figure 3.6 is a comparison of the experimental and simulated

ASNR ratios for the 35-62.5 and 55-75 degrees ranges. The simulated energy and number sig

nals, predicting a higher quality signal for the 35-62.5 degrees range, are in very close agree

ment with experiment. Thus, the Monte Carlo simulation program will be a very accurate and

useful tool in determining the optimum take-off angle collection range for a given backscattered

electron detector.

Agreement between simulation and experiment was investigated in several other ways to

gain even more confidence in using the Monte Carlo program. Figure 3.7 is a plot of the simu

lated and experimental [42] total number backscatter coefficient, r)B, versus atomic number. It

can be seen that the present Monte Carlo program agrees well with experiment as well as with

the simulation results from Lin's program [19].

The Bethe range, RB> is defined as the total path distance of an electron in a given

material [43]. It can be calculated analytically by a direct integration of Bethe's energy loss

equation for an electron in a solid [43,44] or simply by adding up all of the path lengths in an

electron's Monte Carlo calculated trajectory [19,31,45]. Figure 3.8 compares the Bethe ranges

calculated using other Monte Carlo programs and analytical techniques [19,31,45,46,46a].

Again, the agreement is very good.

Large gold on silicon pad structures on the test wafers described in Chapter 2 were used

to determine whether the change in backscatter coefficient with varying gold thickness could be

correctly predicted. A 25 kV electron-beam and a backscattered electron collection angle range



o
o

in
O

CVJ
in

C
O

r
*

i
i

in
in

c
n

in

c
r

z<

c
r

zc
n

zo<-
J

30
)

>c0
1

cU
J

c
n

inC
O

•

oc
n

c
n

•

c0
1

E3Z

0
)

c
n

0
)

•

CVJ•

oc
n

•

c
n

•

ZU
J

l-H

Q
C

U
J

Q
L

XU
J

c
n

CVJ
inCVJ•

c
n

.

c
n

•

C
V

I•

U
J

c
r

i
-

u3c
r

i
-

tn

•

3<C•
r
i

U
)

0
)

a
r
-i

0
)

O
-
P

£
W

E
E

a0
)

•
p(A

0
)

U
3

(0
<

a

Enmc
d

m

a0
)

3<Emm

3<C•
r
t

0
)

i
i

OJ
ZEinO
J

•

3<C•
n

i-
i

0
)

3
O

-M
<

£
CO

E

e
§

^

C
D

C
O

•

EC
OII

U
)

U
J

z<>inCVJ

C
D

c
r

U
J

zU
J

<U
J

C
D

F
igure

3.6.
A

com
parison

o
f

experim
ental

and
sim

ulated
A

S
N

R
ratios

for
th

e
35-62.5

and
55-75

degrees
ta

ke-o
ff

ranges.

3
2



CD

0.7

0.6

0.5

0.4

0.3

0.2

i
0.1

0.0

t r

i

J L

i r

§

• - Present Work

T -Lin [19]

0 -Niedrlg[42]

I L

0 10 20 30 40 50 60 70 80 90 100

Atomic Number (Z)

Figure 3.7. A plot of the simulated and experimental [42] total number backscatter
coefficient versus atomic number.

33



34

Calculated Bethe Ranges

Beam

Material Voltage Rb (/am)

(kV)

Present Work Parikh and Kyser [45] Hawryluk [46] Wolf et al [46a]

Au 10 0.40 0.42 — 0.40

Au 20 1.20 — 1.10 1.16

Au 25 1.73 1.68 — —

Au 30 2.34 — — 2.24

Si 10 1.51 1.58 1.52 —

Si 20 5.07 5.00 5.08 —

Si 30 10.40 10.00 — —

PMMA 5 0.63 — 0.65 —

PMMA 10 2.12 — 2.18 —

PMMA 20 7.32 — 7.55 —

Figure 3.8. Comparison of Bethe ranges calculated using different Monte Carlo programs
and analytical techniques.
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of 35-62.5 degrees were used in the experiments. Figure 3.9 is a plot of simulated energy sig

nal and experimental contrasts versus gold thickness. Again, we see good agreement between

simulation and experiment.

Much of the material to be presented in Chapters 4 and 5 is concerned with the effects of

the electron-beam fwhm on various backscattered electron signal characteristics. Thus, it is

important to verify that the Monte Carlo program and convolution routines will correctly track

the change in signal as the beam size changes. A 0.55 um wide gold on silicon step and a 0.40

um wide hole in gold on silicon were used in the experiments. The gold thickness was 0.46

um and the beam energy was 25 kV. The backscattered electron detector was used in the 35-

62.5 degrees take-off angle collection position. An incident beam current of 1.5 nA was used

and the beam size was changed by defocusing. The beam was defocused by increasing the

current in the final lens of the vector scan electron-beam system. The resulting backscattered

electron signal was photographed on an oscilloscope. The horizontal or distance axis of the

scope trace was calibrated by either moving the laser interferometer controlled stage [47] a

specified distance or by measuring the period of accurate grating structures fabricated on the

test wafer.

The experimental contrast, 10-90 percent rise distance, and threshold of the signal were

measured from the scope tracings. Note that when measuring the 10-90 percent rise distances,

the 10 and 90 percent points were measured, for the step, from the bulk silicon and peak gold

levels, respectively. For the hole, the reference levels were the bulk gold and minimum signal.

The threshold was defined as the middle of the two levels used in describing the signal's 10-90

percent rise distance and was normalized to the peak signal level at the focused condition. The

same levels were used in determining the position to measure the signal fwhm.

Once this data was collected, some method had to be found to compare it with simulation.

It was decided to match the experimental and simulated 10-90 percent rise distances for a given

structure and then investigate the agreement for the signal fwhm, contrast, and threshold as the

beam size was changed. Good agreement would imply that the simulation program was
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correctly predicting the change in signal characteristics with increasing beam size. We decided

to match the simulated and experimental rise distances since the size of the electron-beam did

not linearly scale with the defocus settings. Also, the rise distance is a very sensitive function

of the beam's fwhm; but, is relatively insensitive, compared to other signal characteristics, to

small changes in the structure's linewidth. During the experiments there was some misalign

ment of the electron-beam in the vector scan system causing unsymmetrical signals as the beam

was defocused. Thus, the experimental 10-90 percent rise distances were measured by averag

ing the rise distances of the left and right sides of the signal.

The experimental and simulated results for the 0.55 um step and 0.40 um hole are shown

in Figures 3.10 and 3.11. A Gaussian beam shape was assumed in the simulations. For both

structures, the simulated signal fwhm does not rise as quickly with increasing beam fwhm as

the experimental signal fwhm does. However, there is a good reason for these discrepancies.

Figure 3.12 shows what happens as the beam is defocused in the vector scan electron-

beam system [48]. When the beam is focused, the electron-beam can be thought of as the con

volution of a Gaussian with a point - i.e a Gaussian. However, when the beam is defocused,

the final electron-beam shape can be described by the convolution of a Gaussian with a disk. In

two dimensions, this is essentially a rectangular shaped electron-beam which can be described

as the sum of two error functions [49]. Rectangular shaped beams are currently used in several

high throughput electron-beam systems [50,51].

A program was written to convolute the 8-function backscattered electron signal with a

rectangular beam shape [49,52]. The size of the beam is specified by the fwhm and a parame

ter known as the edge slope or 10-90 percent rise distance. By making the edge slope equal to

the edge slope of a Gaussian beam, the rectangular beam will resemble a Gaussian. If the edge

slope is reduced, then the beam becomes more rectangular in shape.

The simulated beam fwhm was varied from 0.10 to 1.0 um with the beam shape arbi

trarily changing from a Gaussian at near focus conditions to rectangular at defocused condi

tions. The resulting agreement with experiment is shown for the two structures in Figures
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3.13-3.16. The agreement between the experimental and simulated signal fwhm for the step

structure, shown in Figure 3.13, is still not perfect; but, shows considerable improvement over

that of Figure 3.10. The agreement for the hole structure signal fwhm, Figure 3.14, is rela

tively good and shows improvement over that of Figure 3.11. It should be noted that the

experiments for the step and hole were done on different days with possibly different lens

current settings. Figures 3.15 and 3.16 show the experimental and simulated contrasts and nor

malized thresholds. As can be seen the agreement is quite good, even for the step structure.

Keeping in mind that as the beam is defocused, the actual beam shape is unknown, the

agreement between simulation and experiment is quite good for the two complementary struc

tures. Note that the simulation was sensitive enough to determine that the defocused

electron-beam had deviated from having a strictly Gaussian beam shape. Another way in which

the beam size could have been changed, without defocusing, would have been to increase or

decrease the beam current. However, the backscattered electron detector pre-amplifier and

amplifier saturated at about 4-5 nA of beam current. Thus, it was impossible to observe a large

change in beam size without saturating the detector.

The actual beam size of a given electron-beam system can be determined by scanning the

focused beam over a mark and matching the resulting signal rise distance to the simulated rise

distance for the same structure. Focused beams with currents of 0.75, 1.5, and 3.0 nA were

scanned across the 0.55 um step and the measured rise distances were matched with the simu

lated rise distances shown in Figure 3.10. The calculated beam sizes for the three currents were

0.086, 0.12, and 0.15 um, respectively.

3.4. Summary

A new Monte Carlo program has been developed to simulate the backscattered electron

signal from complicated submicron structures encountered during x-ray mask inspection. The

program uses the standard continuous slowing down approximation, screened Rutherford colli

sion cross-section, and the Bethe energy loss equation. The simulated energy signals from
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different submicron gold on silicon structures agree well with experimental backscattered elec

tron signals for different take-off angle ranges, beam voltages, and gold thicknesses. The pro

gram has been shown to correctly predict the change in signal characteristics as the incident

electron-beam size is changed. Thus, we have confidence in using the Monte Carlo program to

investigate various aspects of defect detection and signal quality in x-ray mask inspection - the

subject of the next two chapters.
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CHAPTER 4

4. SIMULATION OF BACKSCATTERED ELECTRON SIGNALS FOR X-

RAY MASK INSPECTION

4.1. Introduction

The Monte Carlo program, outlined in Chapter 3, has been shown to give results which

agree well with experimental backscattered electron signals. In this chapter, we will use the

simulation program to investigate important parameters which affect the characteristics and

quality of the backscattered electron signal. The usefulness of the program will be demon

strated by using simulation to optimize the placement of the solid state diode detector used in

the experiments of Chapter 3. The signal quality from this detector in its optimum position will

then be characterized.

The effects of beam size at three different angle collection ranges will then be investi

gated. The required gold thickness for the maximum signal will be determined for various

beam energies. Required chrome thicknesses will also be determined and we will see that the

required thicknesses can be related, in a universal fashion, to the Gruen and Bethe ranges [43]

of the electrons in the scattering material. It will be observed that the backscattered electron

signal will drop off if the beam is scanned near the edge of the gold. A universal curve using

the Gruen range will be presented to determine at what point inside a gold structure, the

electron-beam will see essentially bulk gold. Effects of collection angle range will also be con

sidered. Finally, a simple technique for calculating signal levels for two and three dimensional

structures will be presented.
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4.2. Optimization of the Experimental Detector Placement

The optimum placement of the annular diode detector used in the experiments of Chapter

3 will now be considered [53]. The Monte Carlo program was used to determine the optimum

placement of this detector to achieve the best signal from a wide range of structures.

Histograms of the partial energy backscatter coefficient versus take-off angle for 0.5 um

gold on silicon, bulk silicon, and the center of a 0.25 um gold step on silicon are shown in Fig

ure 4.1. The material contrast between the gold and silicon can clearly be seen. The distribu

tion of backscattered electrons changes from a cosine distribution (cos0sin0) for the 0.5 um

thick gold to a distribution weighted towards the lower angles for the small gold step. On the

other hand, a small hole in a gold film will essentially look like bulk gold (i.e. a cosine distribu

tion) except in the immediate vicinity of the hole. The backscattered electron signals from

most defects will range from the signal from a small gold step to the signal from a small hole in

a gold film. Thus, it is instructive to examine the take-off angle distribution from these two

types of defects in order to optimize the placement of the detector.

The simulated energy signals for a 0.25 um gold step and 0.25 um hole in a gold film at

25 kV and 0.5 um gold thickness are shown in Figure 4.2. A minimum detectable defect size

of 0.25 um and beam fwhm of 0.20 um was assumed when optimizing the placement of the

detector. Vertical sidewalls were used in all simulations. Three different take-off angle ranges

corresponding to different detector heights above the wafer surface are shown to illustrate the

change in signal as the collection range changes. It can be seen from Figure 4.2 that the 15-35

degrees range gives the maximum ASNR of the three ranges shown for the gold step. This is

expected after examining the take-off angle distributions of Figure 4.1. However, since the

angle distribution from a small hole in a gold film is almost a cosine distribution, it is clear why

the 15-35 degrees signal for the 0.25 um hole has such a poor ASNR.

A trade-off is needed so that the signals from the small step and small hole will be max

imized. The 30-57.5 degrees take-off angle range, corresponding to a detector height of 6.1

mm above the wafer, is a good compromise as can be seen from Figure 4.2. A more detailed
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analysis of ASNR's for 25-50, 30-57.5, and 35-62.5 degrees ranges for these structures as well

as the various structures simulated in Figure 3.4 showed that the 30-57.5 degrees range gives

better signals than the other ranges. It should be mentioned that this optimum range is

different than the optimum range (0-30 degrees) calculated for the detection of registration sig

nals [19,32,41]. This is expected since gold on silicon structures exhibit material as well as

topographical contrast while registration marks have mostly topographical contrast.

At the optimum detector height, it was found that small gold steps show the worst ASNR

while holes in a gold film show the best. A plot of the ASNR for various defect types is shown

in Figure 4.3 for the optimum take-off range determined earlier. It can be seen that holes in

the gold film and similar structures have much higher ASNR than steps and similar structures.

Note that the 0.4 um hole has a better ASNR than the 0.25 um hole. This is because the over

lap of the 0.2 um beam on the gold raises the low part of the signal from the 0.25 um hole.

The information in Figure 4.3 coupled with the information in Figure 4.1 seem to suggest that

it would be advantageous to use different detector arrangements to detect different defects. A

low angle detector would be favored for steps while a middle angle range detector would be

favored for holes in a gold film.

4.3. A Study of the Effects of Beam Size and Angle Collection Range

As was shown in section 4.2, we can gain much information about the scattering proper

ties of various defects by examining the limiting cases of an isolated gold on silicon step and an

isolated hole in gold on silicon. We are interested primarily in submicron structures since it is

the minimum detectable defect size which will influence the design of the mask inspection sys

tem [4]. From a practical viewpoint, an electron-beam system with a 0.25 um fwhm beam will

have much more difficulty detecting a 0.125 um defect than in detecting a 1.0 or 2.0 um defect.

In this section, the effects of Gaussian beam size (fwhm) and angle collection range on the

backscattered electron signal from the following structures will be discussed: 0.125, 0.25, and

0.55 um fwhm gold on silicon steps with vertical sidewalls; a step structure with a 0.10 um top
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dimension and a 0.25 um bottom dimension; 0.125, 0.25, 0.40 um holes in gold on silicon; and

a hole structure with a 0.25 um opening at the top and a 0.10 um opening at the bottom. The

gold thickness is 0.50 um and the beam energy is 25 kV. The effects of beam voltage on the

required absorber thickness will be discussed later. The angle ranges of 10-40, 30-60, and 50-

80 degrees will be studied. The 0-10 and 80-90 degrees angle ranges were neglected since elec

trons scattered into these ranges will be extremely difficult to detect inside an electron-beam

chamber. All backscattered electron signals were calculated as the energy signal which was

shown to give good agreement with experiment.

The effects of beam size and angle collection range will be studied by looking at the back-

scattered electron signal fwhm, threshold, and ASNR. The threshold is defined as the midpoint

between the changing signal of interest for a given structure and the bulk signal level of the

material surrounding the structure. For example, the threshold for a hole in a gold film would

be the midpoint between the level for the bulk gold surrounding the defect and the minimum

signal level caused by the hole. Conversely, the threshold for a step or line is the midpoint

between the signal for bulk silicon and the high signal generated by the gold step.

It is important to first show why the signal contrast, very useful for comparisons of simu

lation to experiment, is not a useful indication of signal quality for backscattered electron sig

nals. Figures 4.4a and 4.4b show contrast versus beam fwhm at the three different angle ranges

for the 0.25 um gold on silicon step and 0.25 um hole in gold on silicon. Figures 4.5a and 4.5b

are similar graphs for the ASNR signal characteristic. As can be seen, the contrast shows the

difference in signal quality for the step structure for different angle ranges; however, the con

trast would lead one to believe that the signal quality from the hole is relatively independent of

angle collection range. Figure 4.2 shows that this is clearly not the case. The problem with

using contrast is that because so few electrons escape from the bottom of a small hole struc

ture, the minimum signal is relatively independent of the geometry of the hole and changes

with different angle collection ranges in a similar manner to the maximum signal. Thus, even

though the high signal level, and consequently, the difference between high and low levels,
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show large changes with different angle collection ranges, the contrast remains high for holes.

As was discussed in the previous section and will be shown in Chapter 5, the difference

between the gold and silicon signal levels is an important factor in determining the noise quality

of the signal. Therefore, it is the ASNR graph of Figure 4.5b which correctly shows the effects

of angle collection range on the noise quality of the signal. Note that the contrast curves for

the 0.25 um step do show the effects of changing the angle collection range. This is because a

step structure's signal levels change differently with different angle collection ranges. Thus, the

ASNR will be used as one measure of signal quality in this chapter.

4.3.1. ASNR

The effects of beam size and angle collection range on the noise quality of the backscat

tered electron signal are shown in Figures 4.5a-h, ASNR versus beam size for the different

structures simulated. The first observation which can be made is that for submicron step struc

tures, the lower angle range gives the best signal. This is because many electrons exit from the

sides of the step at low take-off angles. However, the 30-60 degrees range appears to be best

for the holes. This is what was shown in section 4.2 and implies that if a single detector is used

for mask inspection, some type of tradeoff in placement will be required. Note that the 10-40

and 50-80 degrees ranges are almost identical for the hole structures. This agrees with the

observation made in section 4.2 that holes look like bulk gold except in the immediate vicinity

of the defect. Thus, the optimum detector placement for clear defects will be the same as for

bulk gold. The fundamental shot noise limitations of the backscattered electron signals will be

discussed in Chapter 5.

As far as the effects of beam size are concerned, a degradation in ASNR starts when the

beam size becomes at least four-tenths of the structure fwhm. For the steps, a 25 percent loss

of ASNR occurs when the (beam fwhm)/(structure fwhm) ratio is about 1.2. Similar results

are seen for the holes with a 25 percent reduction in ASNR being observed at a ratio of about

1.1.
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4.3.2. Backscattered Electron Signal Fwhm

The effects of beam size and angle collection range on the fwhm of the backscattered

electron signals are shown in Figures 4.6a-h. As would be expected, the lower angle range

tends to give a signal fwhm which is closer to the actual fwhm of the structure. This becomes

more apparent as the structure size increases. For the smaller structures, 0.25 um and below,

the angle collection range does not appear to have a significant influence on the signal fwhm.

For the larger structures, in which the two sides of the structure are isolated (as far as the elec

trons are concerned), the higher angle range gives a smaller signal fwhm than the lower ranges.

This is because the electrons scattering near the edge are concentrated in the lower angle

ranges; therefore, the signal rises more slowly if only higher angles are collected. Generally,

and especially for the middle angle ranges, the signal fwhm from steps are slightly smaller than

the step fwhm and signals from holes are slightly larger than the hole fwhm. This, of course,

pertains to beam sizes which do not significantly affect the signal fwhm. The discrepancy of sig

nal fwhm and structure fwhm has implications when using an electron-beam system or SEM for

linewidth measurement [3,54].

Generally, the signal fwhm is fairly constant for small beam sizes and then begins to

increase steadily when the incident beam size becomes larger than about 0.4-0.5 of the structure

fwhm. In other words, there are two distinct regions of the signal fwhm versus beam fwhm

curves. The first is the level area of the curve in which material and scattering properties dom

inate and the other is the rising area of the curve in which the beam size dominates. For steps,

a signal fwhm 50 percent larger than the structure fwhm occurs for a (beam fwhm)/(structure

fwhm) ratio of about 1.3-1.4. For holes, a 50 percent increase is seen for a ratio of about 1.1-

1.2. This has implications in mask inspection if the desired minimum detectable defect size is

smaller than the probing electron-beam. Depending on the threshold setting of the comparator

used to digitize the signal, the detected size of the defect could be considerably larger than the

actual size.
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4.3.3. Threshold (DC Level)

The threshold, or midpoint between high and low signal levels, will change with increas

ing beam size. For small steps, the high signal level will drop towards the silicon level as the

beam size becomes larger than the structure. In other words, the presence of the structure has

less of an effect on the scanning beam. A similar process occurs for holes in a gold film with

the minimum signal level rising towards the gold signal level as the beam size increases.

Graphs of threshold versus beam fwhm are shown in Figures 4.7a-4.7h. The units for the

threshold are in terms of the partial energy signal.

As would be expected for holes, the 10-40 and 50-80 degrees angle collection ranges have

essentially the same thresholds. The 30-60 degrees range gives higher thresholds since the high

signal level is larger (see Figures 4.2, 4.5b, and 4.5f-h). For the 0.25 um and smaller step

structures, the lower angle ranges give higher thresholds. As the structure size increases (Fig

ure 4.7d, the 0.55 um step), the 30-60 degrees range gives a higher threshold since the max

imum signal level is generated from an area which, to the electrons, almost resembles bulk

gold.

It can be seen by examining Figure 4.7 that for a given beam size, there is a difference in

threshold or DC level between steps and holes. The threshold of a signal is a complex function

of the beam size, beam voltage, structure size, and detector configuration. The DC level

difference is important since in most cases a comparator threshold will have to be set so that

the mask inspection system can electronically determine the presence or absence of masking

material. As will be seen in Chapter 5, the placement of the comparator threshold, in relation

to the high and low signal levels, will greatly influence the SNR characteristics of the backscat

tered electron signal.
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4.4. Absorber Thickness Studies

The previous section was concerned with the effects of beam size and angle collection

range on structures with a fixed 0.50 um gold thickness and with a fixed incident 25 kV

electron-beam energy. To repeat the work of the previous section for every combination of

defect type, gold thickness, and beam energy would clearly be impossible. Therefore, we will

look at infinite films on silicon to gain an understanding of the film thickness requirements for

maximum signal levels in mask inspection. Gold on silicon as well as chrome on silicon films

will be considered. The simulations were done by calculating the number and energy back-

scatter coefficients for a single 8-function electron-beam incident on different thicknesses of

gold and chrome on silicon.

One of the goals of this study was to see if some simple rules of thumb could be

developed for absorber thickness requirements. In his study on alignment signals, Lin [19],

introduced a quantity, Z, which was the step depth of the silicon alignment mark normalized to

the Bethe range of the electrons in silicon. By normalizing to the Bethe range, Lin obtained

universal curves describing the alignment signal characteristics for beam energies ranging from

5-30 kV [19].

A similar technique was used in this study by plotting the backscatter coefficient versus

film thickness normalized to the Bethe range, RB and also the Gruen range [43]:

•04£o175
Rg = — (4.1)

P

where £0 is the incident beam energy in kV, p is the density in g/cm\ and Rc is in um. Note

that many authors use 0.046 instead of 0.04 in their expression for the Gruen range. The

expression containing 0.046 was Gruen's original expression for electron energy dissipation in

air [43]. In any case, it is only a constant and will not have an effect on the results obtained in

this study. Values for RG and RB for gold, chrome, and silicon at different beam energies are

listed in Figure 4.8. It is important to remember that RB is calculated using the Monte Carlo

program while the Gruen range expression originally was derived from experimental
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Gruen and Bethe Ranges

Beam

Voltage

(kV)

Au Cr Si

Rg

(um)

Rb

(um)

Rg

(urn)

Rb

(um)

Rg

(fim)

Rb

(um)

10

20

25

30

0.12

0.39

0.58

0.80

0.40

1.19

1.50

2.32

0.31

1.05

1.56

2.14

0.60

1.97

2.91

4.01

0.97

3.24

4.80

6.60

1.44

4.84

7.50

9.97

Figure 4.8. Gruen and Bethe ranges for gold, chrome, and silicon at different beam vol
tages.



85

observations.

Figure 4.9a is a plot of the total number backscatter coefficient, tjb, versus gold thickness

normalized to the Bethe range of electrons in gold. Figure 4.9b is a similar curve for the total

energy backscatter coefficient, t)E. Figures 4.10a and 4.10b are similar to Figures 4.9a and 4.9b

except the gold thickness is normalized to the Gruen range. A range of beam voltages from 10

to 30 kV is shown and it can be seen that a universal relationship is obtained by normalizing

the gold thickness to RB or RG. It can be seen from these curves that tjb reaches 90 percent

of its maximum at a gold thickness of approximately 0.15 RB or 0.37 Rc. The more important,

from a simulation and practical viewpoint, r)E reaches 90 percent of its peak at about 0.13 RB

or 0.33 RG. The thickness requirements for tj£ are slightly lower than those for r)B since -t\B

weights all electrons the same, even though those backscatterd electrons scattered from deep in

the gold will have a very low energy. These electrons will not contribute a significant amount

to the signal since most backscattered electron detectors are energy sensitive. Universal curves

from partial angle ranges (10-40 and 30-60 degrees) were found to give similar results as those

shown in Figures 4.9 and 4.10. This is expected since there is no surface topography to

influence the electron scattering.

As was previously mentioned, RB must be calculated using the Monte Carlo program or

else by interpolation on a universal curve [43]. The Gruen range can be calculated by anyone

possessing a periodic table. It is because of this ease of calculation that RG will be used when

normalization is required for all of the proceeding discussion. The universal quality of the

curves of Figure 4.10 is very interesting since the values for t)B and t)E were calculated using

the Monte Carlo program while the normalization factor was calculated using an unrelated

independent equation.

Universal curves for chrome films on silicon are shown in Figures 4.11a and 4.11b. There

is more scatter in the curves; but, the results are essentially the same as for gold. The

increased scatter may be due to different materials having slightly different exponents in the RG

expression at different beam voltages [43]. However, a good rule of thumb is that to obtain
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more than 90 percent of the available signal, a film thickness greater than 0.33 RG is required.

For a 25 kV electron-beam, a gold thickness of about 0.2 /xm would be required.

4.5. Effects of Scanning Near the Edges of a Structure

We have seen, in section 4.2, the increased scattering into lower take-off angles for sub

micron step structures and have observed the effects of different angle collection ranges in sec

tion 4.3. A practical problem, as far as inspection is concerned, caused by these scattering

effects is that the backscattered electron signal does not instantly rise to a maximum signal as

soon as the beam begins scanning over a step or into a hole. This is a function of electron

scattering and the incident beam size and is true even for very small fwhm electron-beams or

the 8-function signal. The electron-beam must be somewhat inside the structure before the sig

nal reaches a maximum (or minimum). How far inside the structure will depend on the angle

collection range, the beam size, and the beam voltage. This effect is most important if one is

adopting a mask inspection scheme [4,6] in which the inside or positive areas of a mask are

scanned for clear defects and the outside or negative areas are scanned for opaque defects. A

dead zone or non-inspection area is left around all shapes to allow for registration error. The

problem is that if the dead zone region is small, it is possible that the backscattered electron

signal level could drop when the beam scans near the edge of a gold structure. A complemen

tary occurrence takes place when the beam is scanning on silicon in the vicinity of a gold struc

ture. In this case, the signal rises because of overlap of the beam onto the gold. These

changes in signal levels, depending on the comparator threshold settings, could cause false

defects to be detected.

The effect is illustrated in Figures 4.12a-4.12c, showing the backscattered electron energy

signal for a 0.55 /im gold step on silicon. The beam fwhm is 0.25 /xm, the beam energy is 25

kV, and the gold thickness is 0.46 /xm. The signal can be seen to drop off 0.1-0.2 /xm inside

the step for the 30-60 and 50-80 degrees angle ranges. This reduced signal is what would be

detected if the electron-beam was scanning near the edges of that shape.
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A simulation experiment was conducted to further investigate the effect of the signal level

dropping near the edges of gold shapes. The partial energy backscatter coefficient was plotted

versus half the step linewidth (or distance from the 8-function beam to the shape edge) nor

malized to the Gruen range. The results for the three angle ranges and 10 and 25 kV beam

energies are shown in Figure 4.13. A sharp drop in signal occurs for the 50-80 degrees range

starting about 0.33 RG from the edge. For the 30-60 degrees range, the signal begins to drop

off about 0.2 RG from the edge. The signal actually increases if the lower angle range is used.

A possible compromise would be to collect backscattered electrons in the 20-50 degrees angle

range. In this case, there would only be a 6 percent loss of signal from bulk materials and a

significant increase in the signal level near the edges of steps.

4.6. Extension to Three Dimensional Simulation

In its present form, the Monte Carlo program simulates the two dimensional backscat

tered electron signal from two dimensional structure. However, it is possible to predict the

maximum and minimum signal levels from submicron three dimensional structures using a

simple technique.

First, assume that the three dimensional defects, small holes in a gold film and small

pieces of gold on silicon, are relatively circular. To calculate the minimum signal level from a

hole in a gold film, simply calculate the fraction of the beam, when positioned at the center of

the structure, which overlaps onto the surrounding gold film. To obtain the minimum signal

level, this fraction can then be multiplied by the partial energy backscatter coefficient, t\E (9) for

bulk gold at the desired beam energy, gold thickness, and angle collection range. This simple

calculation is based on the knowledge that almost all of the electrons which enter the small hole

will be trapped under the gold and will not backscatter. This simple method for calculating the

signal levels can also be applied to two dimensional structures as well.

It is slightly more difficult to calculate the maximum signal level for a three dimensional

circular piece of gold on silicon. The maximum signal level can be calculated by determining
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the fraction of the beam, positioned at the center of the structure, which covers the gold and

the corresponding fraction which covers the silicon. To obtain tj£(0), multiply the fraction of

the beam over silicon by t)£_s, (0) and add to that result the fraction of the beam over gold

multiplied by tj£(0) for a 8-function electron-beam at the center of the structure. t)E(9) for

bulk gold cannot be used since tj£(0) for the three dimensional structure can be much larger

due to the increased scattering of the electrons from the sides. At this point in time, it is not

possible to use the Monte Carlo program to directly calculate i)E (9) for a 8-function beam at

the center of a three dimensional structure. However, it is reasonable to assume that if a two

dimensional step (i.e. a line) increases i?£(0) by a certain amount over the value for bulk gold,

then a three dimensional structure will increase the bulk value of t)£(0) by twice that amount.

Consider 1000 electrons incident at the center of a small two-dimensional gold on silicon step.

Assume 500 of the electrons scatter from the top of the step and 75 electrons scatter from each

of the two sides of the structure. By symmetry, it follows that if the infinitely long step is cut

into a three dimensional structure, then 150 more electrons out of the incident 1000 would

scatter from the two newly created sides.

In their paper on mask inspection, Simpson and Davis [4] present a somewhat similar

method for calculating the 5max-Smin signal of a rectangular shaped electron-beam incident on

defects of various sizes. Their calculations graph the changing percentage of the Smax—Smin s'8"

nal versus (defect diameter)/(spot size). In their analysis, they do not consider the electron

scattering and assume the reduction in signal levels with increasing beam size is caused strictly

by a smaller portion of the beam being incident on the defect. This is true, however, the 100

percent signal difference listed in their graph will not be the same for all structures. For exam

ple, a hole in a gold film will have a different Smax—Smjn signal than a gold step on silicon.

Figure 4.14 is a graph of the fraction of a Gaussian beam which falls over the gold versus

the ratio of (beam fwhm)/(defect fwhm) for holes in gold on silicon. This graph can also be

used to calculate the fraction of the beam falling into the hole or onto a three dimensional gold

step on silicon. The calculations which produced this graph assume the beam is centered on
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the structure and that the defects are circular.

The technique outlined above was tested with the two dimensional 0.25 tim step and hole

structures at 25 kV. As can be seen from Figure 4.15, the simple calculations agree rather well

with the Monte Carlo results obtained by the standard method outlined in Chapter 3. There are

some discrepancies for the hole structure at the 0.1 /xm beam fwhm. This is because most of

the beam is falling into the hole and; therefore, the backscattered electrons from the hole,

which are usually insignificant, are the dominant part of the very small signal level.

It can be seen from this simple analysis that the results for the two dimensional hole case

will be similar to the results for the three dimensional circular hole. This is because electrons

which enter the hole, in either case, will usually not backscatter. Thus, the results in this

chapter and in Chapter 5 for hole structures will be valid for the three dimensional case as well.

As far as steps are concerned, the effect of a three dimensional structure will be to

increase the maximum signal level due to increased scattering at the edges of the structure.

Thus, the results in this chapter and in Chapter 5 for step structures can be considered worst

case results; therefore, conclusions drawn from these studies will be valid.

It is understood that as the size of the hole structure increases, the assumption of zero

contribution from the portion of the beam over the silicon becomes invalid. However, the size

of the hole at this point (defect size greater than about 1.0 fim) will be much larger than the

minimum detectable defect sizes important in x-ray mask inspection. As we will note in later

chapters, it is the smallest defect which will influence the inspection system parameters.

4.7. Summary

In this chapter, the Monte Carlo program has been used to investigate the effect of

material, detector, and beam parameters on the backscattered electron signal quality. The

placement of the diode detector used for the experiments in Chapter 3 was optimized by con

ducting a series of simulation experiments. It was shown that the middle backscattered electron

take-off angle collection range gives the best results for submicron hole and step structures.
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The effects of Gaussian beam size on the backscattered electron signal was also investi

gated. It was found that signal contrast gives misleading results as far as the noise quality of

the backscattered electron signal is concerned. The ASNR parameter, introduced in Chapter 3,

gives a more realistic representation of the degradation in signal noise quality with increasing

beam size and changing angle collection range. A degradation in ASNR starts when the beam

size becomes at least four-tenths of the structure fwhm. For steps, a 25 percent loss of ASNR

occurs when the (beam fwhm)/(structure fwhm) ratio is about 1.2. Similar results are seen for

holes with a 25 percent reduction in ASNR being observed at a ratio of about 1.1.

It was observed that the graph of signal fwhm versus beam fwhm has two distinct regions

for various structures. There is a flat region for beam sizes up to about 0.5 of the structure

fwhm and a region for larger beam sizes in which the signal fwhm rises steadily with the beam

fwhm. For steps, a signal fwhm 50 percent larger than the structure fwhm occurs for a (beam

fwhm)/(structure fwhm) ratio of about 1.3-1.4. For holes, a 50 percent increase is seen for a

ratio of about 1.1-1.2. It was also found that the thresholds or DC levels of the signals from

step and hole structures are different and behave in different manners as the beam size is

increased. For steps, the threshold drops towards the silicon signal level as the beam size

increases. For holes, the threshold rises toward the gold signal level. The effect of beam size

on the preceding signal characteristics was illustrated through a series of signal characteristic

versus beam fwhm curves for different take-off angle collection ranges and various submicron

gold on silicon structures.

Universal curves for various beam energies showed that to collect 90 percent of the avail

able backscattered electron signal, the scattering material should be about 0.13 RB or 0.33 RG

thick. It is desirable to use the Gruen range, RG since it is easily calculated using a simple

analytical expression. The universal relationship of the backscatter coefficients to material

thickness normalized to RG is interesting because the backscatter coefficients are calculated

using the Monte Carlo program while RG is calculated using an empirically derived equation.

Similar universal curves were introduced to illustrate the effect of scanning the electron-beam
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near the edges of shapes. As the beam scans near the shape edges, it is possible that the back-

scattered electron signal can fall off. If low take-off angle electrons are collected, an increase in

signal is observed. For a 30-60 degrees angle collection range, the signal begins to drop off at

about 0.2 RG from the edge while for a 50-80 degrees range, the signal begins to drop off at

about 0.33 RG from the edge. This decrease in signal level is important since it can cause the

signal to fall below the comparator threshold used for determining the presence or absence of

masking material. Collecting backscattered electrons in the 20-50 degrees range should reduce

the drop in signal near a step edge with only a 6 percent loss in signal from bulk materials.

Finally, a simple technique of calculating signal levels for two and three dimensional

structures was introduced. The method is based on knowing the fraction of the beam which is

incident on the structure along with knowledge of the scattering properties of that structure.
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CHAPTER 5

5. BACKSCATTERED ELECTRON DETECTORS AND SNR

5.1. Introduction

There are several different types of detector and amplifier combinations which can be used

for generating the backscattered electron signal. These include scintillator-photomultiplier, sili

con diode, and channel plate detectors. The first part of this chapter will discuss the available

detector options and look at the practical issues one is confronted with when installing a detec

tor system in an electron-beam lithography system.

The fundamental limitation of a mask inspection system which uses a backscattered elec

tron signal for defect detection will be the shot noise in the signal. A noisy signal can cause the

detection of false defects (false alarms) and the missing of real defects. The shot noise comes

from the statistical fluctuations of the number of electrons incident on the backscattered elec

tron detector [19,55]. This portion of the signal path between the sample and the detector is

frequently called the noise bottleneck since the number of signal carrying electrons is at a

minimum [19,56-58]. It has been shown that the limiting shot noise signal to noise ratio

(SNR) of a signal is the SNR calculated at the noise bottleneck [19,55]. In the second part of

this chapter, we will examine how the limiting SNR can be calculated for structures encoun

tered during x-ray mask inspection. The influence of various parameters, such as threshold set

ting and beam size, on the SNR from small defect structures will be examined and the funda

mental shot noise limitations to electron-beam mask inspection will be discussed. The relation

ship of the ASNR signal characteristic to the actual SNR will also be investigated.
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5.2. Backscattered Electron Detectors

There are three types of backscattered electron detectors which are of practical use in an

electron-beam system. In a scintillator-photomultiplier detector [42,59-71], backscattered or

accelerated secondary electrons strike a scintillation material. Photons are generated and

transferred by a light pipe to the photocathode of a high gain photomultiplier tube. In a silicon

diode detector [55,72-74], energetic electrons produce an electron-hole pair for every 3.6 eV of

energy. This current is then conventionally amplified. These detectors have initial

amplification gains which are energy dependent. We have seen this in Chapter 3 for the case of

the diode detector. A third type of detector is the channel plate electron multiplier [75]. It

consists of an array of micro channel tubes connected axially to form a disk. Each microchan-

nel is internally coated with a semi-insulating layer of high secondary electron yield. The gain

of the channel plate depends upon the channel length to diameter ratio and the channel bias

voltage [75].

Most references for electron detectors are concerned with the use of these detectors in

SEM's. However, electron-beam lithography systems have their own set of restrictions as far as

detectors are concerned. Typically, there will be very little space for the detector in the

chamber of an electron-beam system because of the requirements of an extremely accurate

deflection system and precise knowledge of the table position (requiring an x,y laser inter

ferometer). Also, depending on the operating field size of the system, there is a minimum

width for the hole in the detector which the beam passes through. The detector must be con

structed of non-magnetic materials so that the beam deflection is not affected and any detector

bias voltages must be shielded from the electron-beam. Once the detector is in place, the signal

must be transferred out of the chamber and to external amplifiers. Ports for this purpose are

restricted since room is required to load and unload the wafers or masks. More room is

required for the laser interferometer for the sample stage. The minimum distance of the detec

tor above the sample may also be restricted if the system is capable of using different sample

holders which position the mask or wafer at different distances from the pole piece of the
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electron gun. These practical limitations in an electron-beam system are quite important and

will limit the choice of detectors which can be used to collect the backscattered electrons.

If one examines the references for scintillator detectors [59-71], the conclusion would

probably be reached that a P-47 scintillator detector would theoretically allow high speed (

about 10 Mhz) inspection and large angle collection ranges. However, the P-47 detector is lim

ited in practice for several reasons. The P-47 scintillation material degrades with exposure to

high energy electrons [59,62]. This degradation may not be important in an SEM with

electron-beam currents below 10"9 amps; but will become a problem in electron-beam lithogra

phy systems using beam currents in the 10"6 to 10"8 amp range. Also, once photons are gen

erated in the scintillation material, they must travel to the photomultiplier tube (PMT) for

amplification. It is not desirable to locate the PMTs inside the chamber so long light pipes are

required to get the photons out of the chamber and into the PMT. Consequently, some of the

signal will be lost. It is desirable to collect electrons scattered into all azimuthal angles so that

the backscattered electron signal will be symmetrical. This requires a 4 quadrant or annular

detector, which, in turn requires 4 light pipes. For minimum loss of photons, it is obvious that

the light pipes should be straight. However, this will be difficult to accomplish in many systems

because of the lack of space inside the chamber and the limited availability of ports to the out

side. Thus, the light pipes must be curved, leading to more signal loss, or else some type of

fiber optic scheme [76] must be used. In any case, the scintillator detector system looks

promising on paper; but, will be difficult to implement in a practical electron-beam system.

The channel plate detector, on the other hand, is relatively compact [75] and is easily

installed in an electron-beam system's chamber. However, a complicated biasing scheme is

required [75] in which the collection plate bias must be periodically recharged. This is fine for

SEM or registration scans; but, this recharge delay would limit the throughput of a mask

inspection system. Also, as discussed earlier, the gain of the channel plate detector is not a

function of the incident electron energy. Thus, the detected signal difference between gold and

silicon will be reduced somewhat from that of an energy sensitive detector. As we shall see.
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the difference in signal levels between gold and silicon is directly related to the SNR of the sig

nal.

The silicon diode detector, especially in an annular form, is easy to fabricate and simple to

install in an electron-beam system. Annular diodes which operate at 5-10 Mhz bandwidths and

collect electrons backscattered into the 30-60 degrees range are currently available [55] and

present no practical problems when installed in an electron-beam system. The diode should be

reverse biased to reduce the bandwidth limiting capacitance and there must be some type of cir

cuitry which compensates for variations in the DC output level due to leakage current varia

tions. The diode can also be broken up into several sections and each section amplified

independently to reduce capacitance. The angle range of collected electrons is somewhat

reduced by an annular detector since the diode area (and thus capacitance) increases dramati

cally if it is desired to collect low as well as middle range backscattered electrons. A more

efficient method of collecting electrons would be to construct a multi-channel diode detector

placed at a 45 degree angle to the sample surface. Thus, there is a trade-off between angle col

lection range and the size and speed of the diode which is beyond the scope of this chapter.

Thus, for inspection speeds up to approximately 10 Mhz, an annular silicon diode detector

appears to be most promising. Annular diode detectors are currently available and easily

installed. Inspection bandwidths much greater than 10 Mhz will require smaller diode areas and

more efficient geometries.

5.3. Shot Noise SNR Studies

5.3.1. Calculating Shot Noise SNR

Lin [19], following a derivation by Davis [21], obtained.the following expression for the

SNR of a shot noise limited signal:

SNR, = {yi)BlBl2edLfyh - (rnBn<J2AfT)* (5.1)
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where y is the ratio of the number of backscattered electrons intercepted by the detector to the

total number of backscattered electrons, t\B is the total number backscatter coefficient, e is the

electronic charge, IB is the primary beam current in amps, A/ is the bandwidth of the system,

/i0 is the number of electrons incident on a pixel element, and r is the time the beam stays on

each pixel. The shot noise has been shown to be a Poisson distribution which can be described

by a Gaussian [4,19,55]. The quantity, yt)B is just the partial number backscatter coefficient

for a given angle collection range. Also, not all the electrons which are backscattered into the

detector will be counted. Some electrons will backscatter from the diode detector and others

will not have enough energy to penetrate into the depletion region and create electron-hole

pairs. Since the backscatter coefficient for silicon is approximately 0.15 for normal incidence,

the calculations in this chapter will assume a conservative twenty percent loss of electrons back-

scattering from the diode. Note that the backscatter coefficient increases for electrons striking a

sample at oblique angles [42]. Equation 5.1 becomes:

A - SNR, - (0.8^ (9)lBlleA/)* (5.2)

where t\B(9) is the partial number backscatter coefficient.

Equation 5.2 gives the SNR of an isolated signal referenced to a zero level (Figure 5.1).

For example, consider a 10 Mhz bandwidth, 20 nA beam current, and a collection range of 30-

60 degrees. Using the Monte Carlo program to calculate riB(9), SNRj comes out to be 37. The

same conditions for silicon give a SNR, of about 20. However, these numbers are extremely

misleading if applied to mask inspection where the signal of interest is the difference between

the gold and silicon levels. Somewhere in between these two levels, a comparator threshold

must be set so that the electronics can determine the presence or absence of masking material

(i.e. digitize the analog backscattered electron signal). The signals and threshold important for

mask inspection are shown in Figure 5.2. The Gaussian describing the noise around the gold

signal is larger than that around the the silicon signal because of the larger number of electrons

backscattered from gold. Although Figure 5.2 is labeled for gold and silicon, it applies to any
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two materials.

As can be seen in Figure 5.2, the SNR of interest is not the isolated signal to noise ratio,

SNR,; but, the SNR of the signal described by the signal level of interest and the comparator

threshold. Thus, we are interested in:

S- T
(5.3)

where T is the comparator threshold level. Using equation 5.2, we obtain:

^-£ - SNRt * (S cn <5-4>

Equation 5.4 is the SNR of interest since it is concerned with the level of the signal above or

below the threshold and not with the meaningless zero level.

A first order calculation would assume that the ratio of the gold and silicon signal levels

would be equal to the ratio of their respective number backscatter coefficients (approximately

3.5). However, a diode or energy sensitive detector's gain is proportional to the energy of the

incident electrons. Thus, the actual ratio of gold and silicon signal levels can be described by:

£xl =h^L „ G*<{E)y7>*JB _ Gau(e)vbau (5 5)
$Si I0U,Si GSj(E)yr)BsilB GSl(E)-nBsi

where GAu (£) and (7s, (E) are the energy dependent gains of the detector for gold and silicon

respectively. Iout and Ioul are the detector output currents from the backscattered electrons

from gold and silicon respectively. It is easily seen that the Monte Carlo program can be used

to evaluate equation 5.5 since:

<^(£)^ . HeW,, (5 6)
GSi(E)r)Bs. -nE(9)Si

where yE(9)Au and "nE(9)Si are the partial energy backscatter coefficients for gold and silicon

for a given angle collection range. The effective -=r- for bulk gold and bulk silicon, collecting
Ssi
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all electrons, at 25 kV calculated using the Monte Carlo program and equation 5.6 is 4.4, a 27

percent increase over the ratio of the number backscatter coefficients.

As an example, assume that the threshold is set midway between the bulk gold and silicon

signal levels as shown in Figure 5.3. For a 30-60 degrees collection range, the SNR< for gold is

37 and the SNRj for silicon is 20 for a 25 kV incident electron beam. Using 5.4, the inspection

SNR comes about to be 14.4 for the gold and 34.4 for the silicon. We see an increase in the

effective SNR for silicon since the difference in signal levels between the threshold and silicon

is greater than the difference in signal levels between the silicon and zero. For similar reasons,

the effective SNR for gold drops from the isolated value. It can be seen that the SNR for gold

can be increased at the expense of the SNR for silicon by moving the threshold closer to the

silicon level.

In summary, the shot noise limited SNR for a given backscattered electron signal can be

calculated in the following manner: First, the isolated SNR can be determined using equation

5.2. Knowing the ratio -^ from Monte Carlo analysis, and the location of the threshold set-

ting, the effective inspection SNR can be calculated using equation 5.4.

As was stated in the introduction to this chapter, the SNR is important in mask inspection

since its value determines how reliable the inspection results will be. From Figure 5.2 it can be

seen that if the electron-beam is scanning over a gold area, it is possible for the random noise

fluctuations to trip the comparator threshold. A similar event can occur when the beam is scan

ning over silicon. The probability of these false alarms occurring is given, using a Gaussian

noise distribution, as [77]:

Pe =-7=- f e'2d\ (5.7)
V27T s-r

where Pe is the probability of an error occurring. Values of Pe for different SNR's are shown

in Figure 5.4 [77]. Note that Pe is an indication of the probability of a false alarm or the
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probability ofmissing an actual defect. The total probability oferror can be written [4]:

Pe " V«f + PndPend <58>

where Pd is the probability of having adefect, Ped is the probability of missing that defect, Pnd

is the probability of not having a defect, and Pend is the probability of a false alarm. Since

Pd + Pnd must equal 1, Pe - Ped - />,„,* if the threshold is set so that the SNR's for both levels

are equal. The number of false alarms and missed defects can be calculated by multiplying Ped

and Pend by the number of defect locations and number of inspection locations, respectively. It

can be seen that by adjusting the location of the threshold, the probabilities of error for detect

ing different defects can be changed. A study of the required SNR's for mask inspection will

be undertaken in section 5.3.2.

The threshold location, Topn at which the SNR's for both levels are equal is not at the

midpoint of the signal; but can be calculated fairly easily. For a gold on silicon structure, equa

tion 5.4 gives:

SNR* - l$f£)SNRlM (5.9a)

SNRS, - (I=22L)SNRu (5.9b)

Equating 5.9a and 5.9b yields:

SNR. +SNR„
t „ ± *- (5.10)

op' SNR. SNRI<:
'Au , Si

+
<*Au °S/

For the 30-60 degrees and 25 kV case for bulk gold and silicon, the optimum threshold, F0/,M is

calculated from equation 5.10 to be 0.1 in i)£(0) units. riE(9) from gold is about 0.22 and

riE(9) from silicon is about 0.05 for this angle range. The resulting SNR calculated from either

equations 5.9a or 5.9b is 20.2. The Topl is significantly closer to the silicon level than to the
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gold level. Topt, as calculated from equation 5.10, is independent of the ratio, /a/A/. It is a

function of the number backscatter coefficient for the high and low levels as well as the magni

tudes of those levels. These are in turn dependent on collector geometry, structure type and

size, beam size, and beam voltage.

5.3.2. SNR Requirements for X-Ray Mask Inspection

To insure error-free inspection of a mask, a certain SNR quality is required for the back-

scattered electron signal. This required SNR will depend on the number of inspection locations

on the mask, the number of defect locations, and also the number of false alarms which can be

tolerated. Let us consider a typical x-ray mask which would be used for a step-and-repeat x-ray

lithography system. Assume a 2.5 cm by 2.5 cm mask area and 0.5 /xm minimum feature sizes.

This mask would most likely be written using 4-8 electron-beam scans per minimum feature

size. On an IBM vector scan electron-beam machine [7,78], a 1.024 mm field size would be

used with (16384)2 addressable beam locations. Thus, it would require 625 fields or 1.678 x

10n beam locations to cover the entire mask with 100 percent coverage. For false alarm free

inspection over the entire mask, it can be seen from Figure 5.4 that a SNR of about 7 is

required. This SNR requirement can be reduced if the inspection scheme allows for a certain

number of false alarms which are checked in a re-inspection of all defect locations [4]. The

SNR requirement can also be reduced if the effective number of inspection locations are

reduced. Fewer pixels translates into lower SNR requirements. Various scanning techniques

such as these will be discussed in Chapter 6. For now we shall concentrate on the complete

inspection of a 2.5 cm x 2.5 cm mask requiring a SNR of 7.

The minimum detectable defect size will influence the settings of the comparator thres

hold levels of the mask inspection system. If the system is set up to reliably detect this

minimum sized defect, it follows that larger defects will be detected with even greater certainty.

The optimum thresholds and SNR's will now be calculated for 0.125 and 0.25 fim steps and

holes for a 25 kV beam voltage and 0.5 /im thick gold on silicon. Results for a 10 kV beam
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voltage and 0.25 /urn defects will also be listed. For step structures, the level for bulk silicon

was used as the low level and for hole structures, the bulk gold signal level was used for the

high level. This is identical to the way the levels were chosen for the calculations of Chapter 4.

Recall that at the optimum threshold level, the SNR for both signal levels are equal. Thus, the

SNR calculated at Top, will determine the number of false alarms during the inspection. For

example, when scanning for opaque defects, the electron-beam will be scanning over silicon. It

Topl is being used for the minimum sized defect, the SNR calculated for that signal can be used

to calculate the number of false alarms while the beam is scanning over silicon. The threshold

level can be increased from Top, for steps and reduced for holes to reduce the false alarm rate.

This will increase the chances of missing a defect by lowering the SNR of the defect signal.

However, there will be much fewer defect locations than inspection locations.

The bulk signal levels (partial energy backscatter coefficients) and the SNR, values calcu

lated using equation 5.2 for 0.5 fim thick gold and bulk silicon at 10 and 25 kV are shown in

Figure 5.5 for the 10-40, 30-60, and 50-80 degrees angle collection ranges. The 10-40 and 50-

80 degrees values are the same since a bulk sample's backscatter distribution can be described

by a cosine function [see Figure 4.1, 19,42]. Since a Monte Carlo program has statistical varia

tions in its output, the rjE values were calculated by averaging the results from the 10-40 and

50-80 degrees angle ranges. The SNRt values are left in terms of UB/Lf)xk where IB is the

beam current in nA and A/ is the bandwidth in Mhz.

The SNR characteristics of the 0.125 and 0.25 /im structures as well as bulk gold and sili

con were studied using the Monte Carlo program and equations 5.2-5.6 and 5.10. Figure 5.6

shows the partial number and energy backscatter coefficients for the signals of interest (max

imum signal for steps and minimum signal for holes) and the optimum thresholds for the three

different angle ranges. Figure 5.6a shows the results for the 0.125 /im structures for 0.1 and

0.25 /im Gaussian electron-beam fwhms. Figure 5.6b shows the results for the 0.25 /xm struc

tures at 25 kV for 0.2 and 0.5 /xm beam sizes. Figure 5.6c shows some results for the 0.25 fxm

structures at 10 kV. Figure 5.7a lists the SNR values for the 0.125 /urn structures at the
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25 kV Incident Beam Energy

Angle Range

Ve SM?,/(/s/A/)* *

Au Si Au Si

10-40°

30-60°

50-80°

00-90°

0.163

0.220

0.163

0.426

0.036

0.050

0.036

0.096

22.51

26.22

22.51

36.40

11.70

14.21

11.70

19.56

10 kV Incident Beam Energy

Angle Range

Ve SNRjUslbf)* *

Au Si Au Si

10-40°

30-60°

50-80°

00-90°

0.063

0.087

0.063

0.168

0.018

0.024

0.018

0.045

22.42

26.22

22.42

36.50

13.25

15.60

13.25

21.34

* lB is in nA, A/ is in Mhz

** normalized to 25 kV incident beam energy

Figure 5.5. Partial energy backscatter coefficients and isolated SNRs for bulk gold and sili
con at 25 and 10 kV.
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25 kV Incident Beam Energy

0.125 um hole

Angle

0.1 um fwhm 0.25 um fwhm

Range ^min ^min T'opt ^min ^min
7*'opt

10-40° 0.027 0.022 0.060 0.110 0.090 0.121

30-60° 0.034 0.027 0.077 0.145 0.117 0.160

50-80° 0.025 0.019 0.059 0.109 0.085 0.120

0.125 um step

0.1 um fwhm (3.25 um fwhiri

Angle

Range ^max *£«* 'opt ^max ^max T'opt

10-40° 0.283 0.238 0.088 0.170 0.137 0.068

30-60° 0.211 0.167 0.088 0.148 0.110 0.073

50-80° 0.117 0.089 0.056 0.093 0.065 0.048

Figure 5.6a. Partial backscatter coefficients and optimum thresholds for the 0.125 um hole
and 0.125 um step structures.
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25 kV Incident Beam Energy

0.25 um hole

Angle

0.2 um fwhm 0.5 um fwhm

Range ^min ^min 'opt ^min ^min 'opt

10-40° 0.031 0.026 0.065 0.116 0.096 0.130

30-60° 0.038 0.030 0.081 0.151 0.121 0.160

50-80° 0.028 0.022 0.059 0.113 0.089 0.120

0.25 /um step

Angle

0.2 um fwhm 0.5 um fwhm

Range ^max ^max 'opt ^max ^max 'opt

10-40° 0.296 0.237 0.089 0.176 0.137 0.068

30-60° 0.242 0.190 0.094 0.159 0.118 0.075

50-80° 0.152 0.118 0.064 0.106 0.077 0.052

Figure 5.6b. Partial backscatter coefficients and optimum thresholds for the 0.25 um hole
and 0.25 um step structures.
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10 kV Incident Beam Energy

0.2 um beam fwhm

Angle

Range

0.25 um hole 0.25 um step

'"•to ^min* T *'opt ^max ^max
T *'opt

10-40°

30-60°

0.041

0.053

0.013

0.016

0.028

0.037

0.200

0.255

0.062

0.080

0.032

0.042

normalized to 25 kV incident beam energy

Figure 5.6c. Partial backscatter coefficients and optimum thresholds for the 0.25 um hole
and 0.25 um step structures at 10 kV.
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25 kV Incident Beam Energy

0.125 um hole

Angle

Range

0.1 um fwhm 0.25 um fwhm

SNRopl m

(V*/)*

(VA/) for

SNR-1

SNR„

(V*/)*

(/B/A/) for

SNR=7

10-40°

30-60°

50-80°

14.27

17.02

14.93

0.241

0.169

0.220

5.81

7.12

6.26

1.450

0.967

1.252

0.125 um step

Angle

Range

0.1 um fwhm 0.25 um fwhm

SNR*
(VA/)*

(VA/) for

SNR*>1

SNR*,
(VA/)*

(VA/) for

SNR^l

10-40°

30-60°

50-80°

16.78

10.84

6.35

0.174

0.417

1.220

10.39

6.47

3.89

0.454

1.170

3.240

* IB is in nA, A/ is in Mhz

Figure 5.7a. Optimum SNRs and required VA/ ratios for a SNR of 7. 0.125 um hole and
0.125 um step structures.
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optimum threshold locations. Also listed are the VA/ values required for a SNR of 7.

Results for the 0.25 um structures at 25 kV and 10 kV are shown in Figures 5.7b and 5.7c,

respectively. Results for bulk gold and silicon at 25 and 10 kV are shown in Figure 5.7d for

comparison purposes.

The results of Figure 5.7 are left in terms of (V^/)'* so that one can calculate SNRs for

IB given A/ and vice versa. As can be seen, the optimum threshold position with respect to

the bulk gold and silicon signal levels changes with beam size, beam voltage, defect type, and

defect size. Thus, the information in Figure 5.7 can be used to correctly set the threshold posi

tion for a variety of minimum detectable defect sizes over a range of beam sizes. Note that the

effect of using a lower beam voltage is to increase the VA/ requirements, especially for the

step structures at low take off angle collection. This is because at the lower voltage of 10 kV,

most electrons incident near the center of the 0.25 um step see only gold and; therefore, the

maximum signal level at the middle of the structure is not very different than the signal from

bulk gold.

As was discussed earlier, the threshold level can be increased from Topt for detecting

opaque defects and decreased for detecting clear defects. This is because a typical mask will

contain very few defect locations relative to the number of inspection locations. Thus, the SNR

requirement for detecting all the defects is less than that for false alarm free detection. As can

be seen from equations 5.9a and 5.9b, the SNR for the maximum and minimum signal levels

have a linear dependence on the threshold location. The SNR values at Topl listed in this

chapter should be thought of as limiting values which can be increased by appropriate setting of

the threshold, depending on the expected defect distribution on the x-ray mask.

Figures 5.7a-c show a principal reason the 30-60 degrees angle range is favored for mask

inspection. For detecting defects smaller than the incident beam size, the 30-60 degrees range

gives more balanced SNR characteristics for the step and hole structures. In other words, the

required /fl/A/ for inspection is limited by the poorest quality signal and the required VA/ is

less for the 30-60 degrees angle range. Also, an annular diode detector collecting backscattered
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25 kV Incident Beam Energy

0.25 um hole

Angle

Range

0.2 um fwhm 0.5 um fwhm

SNRopl m

(VA/)*

(VA/) for

SNR-1

SNRopl

(VA/)*

(VA/) for

SNR=1

10-40°

30-60°

50-80°

13.51

16.55

14.35

0.269

0.179

0.238

5.23

6.79

5.87

1.790

1.060

1.420

0.25 um step

Angle

Range

0.2 um fwhm 0.5 um fwhm

SNRopt m

Ob/*/)*

(VA/) for

SNR~7

SNRopt

(VA/)*

(VA/) for

SNR=1

10-40°

30-60°

50-80°

17.04

12.52

8.98

0.169

0.313

0.608

10.47

7.21

5.23

0.447

0.943

1.790

* IB is in nA, A/ is in Mhz

Figure 5.7b. Optimum SNRs and required VA/ ratios for a SNR of 7. 0.25 um hole and
0.25 um step structures.
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10 kV Incident Beam Energy

0.2 urn beam fwhm

Angle

Range

0.25 um hole 0.25 um step

SNR* .

(VA/)*

(VA/) for

SNR=1

SNR*,

(7B/A/)*

(VA/) for

SAT? =7

10-40°

30-60°

11.81

15.03

0.351

0.217

10.92

11.86

0.411

0.348

* IB is in nA, A/ is in Mhz

Figure 5.7c. Optimum SNRs and required VA/ ratios for a SNR of 7. 0.25 um hole and
0.25 um step structures at 10 kV.
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Bulk Gold on Silicon

Angle

Range

25 kV 10 kV

T *'opt
SNRopt „

(VA/)*

(VA/) for

SNR=1
'opt

SNRopl

(VA/)*

(VA/) for

SNR =7

10-40°

30-60°

00-90°

0.074

0.100

0.194

12.31

14.27

19.87

0.323

0.241

0.124

0.033

0.044

0.084

10.80

12.97

18.33

0.421

0.291

0.146

* normalized to 25 kV incident beam energy

** IB is in nA, A/ is in Mhz

Figure 5.7d. Optimum SNRs and required VA/ ratios for a SNR of 7. Bulk gold on silicon
at 25 and 10 kV.
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electrons in the 30-60 degrees range has less surface area than one collecting electrons in the

10-40 degrees range.

It is instructive to see at what bandwidth, shot noise will become the fundamental limita

tion to the speed of mask inspection. Consider a new electron-beam system being developed

by the Electron Beam Corporation [79]. It has been reported that its thermal field emitter gun

can put 0.4 uA in a 0.125 um spot and 2.4uA in a 0.5 um spot. Using these currents and the

VA/ requirements for the 0.125 um structures gives a conservative shot noise bandwidth lim

itation of over 600 Mhz. Using the reported beam currents and the VA/ requirements for

the 0.25 um defects at 25 kV gives limiting bandwidths of 1.3 and 2.3 Ghz for the 0.2 and 0.5

um beam sizes, respectively. Clearly, shot noise will not be a fundamental limitation for

inspection of x-ray masks with a machine of this type.

Consider an IBM EL-3 variable shaped beam electron-beam system [80]. An EL-3

modified to produce a 0.5 x 0.5 um rectangular shaped spot has about 25 nA of beam current

at 25 kV. Using the results for a 0.5 um beam and 0.25 um structures gives a limiting

bandwidth of 23.6 Mhz. This is still well above the bandwidth of most currently available

solid-state detectors. Thus, it can be seen that with the beam currents available in electron-

beam systems, shot noise will not be a fundamental limitation unless the beam size is

significantly greater (> 2x) than the minimum defect size. However, as can be seen from

analysis of Figures 5.6 and 5.7, shot noise can be a problem if the thresholds for detecting clear

and opaque defects are not set correctly, especially when the beam is larger than the defect.

5.3.3. A SNR Comparison of Gold and Chrome Masking Material

Although this research is primarily concerned with x-ray mask inspection, it is interesting

to explore the SNR characteristics of the backscattered electron signal from a typical optical

lithography mask. Typical optical masks will consist of a thin layer (0.08 um) of chrome on

SiO* For simulation purposes, the backscattered electron signal characteristics from chrome on

silicon were calculated using the Monte Carlo program. Figure 5.8 lists the SNR information
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Bulk Chrome, Thin Chrome, Thin Gold on Silicon

Material

Beam

Voltage

(kV)

SNRj m

(VA/)*
T)£*t T'opt

SNR0PI m

(VA/)*

Bulk Cr

0.08 um Cr

0.08 um Cr

25

25

10

19.24

14.62

17.25

0.098

0.054

0.034

0.070

0.052

0.029

5.65

0.64

2.90

0.08 um Au

0.08 um Au

25

10

19.95

25.52

0.139

0.084

0.080

0.044

8.54

12.25

* 30-60° angle collection range

t all results normalized to 25 kV incident beam energy

Figure 5.8. Signal to noise characteristics of chrome and gold on silicon.
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for thick chrome at 25 kV and 0.08 um chrome on silicon at 25 and 10 kV. As can be seen,

the thin chrome requires a large VA/ for adequate SNR. The situation is improved somewhat

if the beam energy is lowered. Using the beam currents available from the electron-beam

machines discussed in the previous section, calculations for a SNR of 7 show that the EBC

machine is shot noise limited, for thin chrome at 25 kV, at about 20 Mhz and the EL-3

machine is shot noise limited at about 200 Khz. Remember that these bandwidths are funda

mental limitations and that system noise will likely reduce the actual inspection bandwidth.

Figure 5.8 also shows the SNR results for 0.08 um gold on silicon at 25 and 10 kV. Note

the large increase in SNR at the optimum threshold level. Essentially, these results show that

at higher beam voltages, it will be difficult to inspect optical photomasks using an electron-beam

system. However, if the beam voltage is lowered to around 10 kV, the fundamental shot noise

limitations become less severe. However, as the beam voltage is lowered, the amount of

current in a beam of a given size is reduced [14]. If optical masks are fabricated out of a thin

gold or other high atomic number layer [4], there would not be any fundamental shot noise

limitations to inspecting optical masks with an electron-beam system. Similar results could be

obtained if a gold on silicon copy of the mask was fabricated using optical lithography.

5.4. Relationship of ASNR to SNR

The ASNR was introduced in Chapter 3 as a means of quantitatively evaluating the noise

quality of the backscattered electron signal. After the discussion of SNR requirements in this

chapter, it is worthwhile to see how the ASNR actually relates to the SNR for various struc

tures. Figures 5.9a and 5.9b list the ASNR, SNR with the threshold set at the middle of the two

signal levels, and SNR with the threshold set at Topl for the 0.25 um step and hole. The three

angle ranges are used and the beam sizes are 0.2 and 0.5 um. The ASNR accurately tracks the

calculated middle threshold SNR over all angle ranges, beam sizes, and defect types. This is

important since it verifies that the ASNR correctly predicts limiting behavior of the noise

characteristics of the signal. As shown in Figure 5.9, the SNR of the high signal is always lower
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0.25 um Hole

0.2 um beam fwhm

Angle

ASNR
SNRopl . SNRAu-Middte-T SNRSl-Middle-T

Range (VA/)* (VA/)* (VA/)*

10-40° 0.67 13.51 9.48 23.50

30-60° 0.80 16.55 11.36 30.64

50-80° 0.69 14.35 9.75 27.27

0.5 urn beam fwhm

10-40° 0.33 5.23 4.65 6.00

30-60° 0.42 6.79 5.90 7.96

50-80° 0.36 5.87 4.15 6.98

* IB is in nA, A/ is in Mhz

Figure 5.9a. A comparison of the ASNR with the SNR at the optimum threshold and with
the SNR at the middle threshold. 0.25 um hole structure.
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0.25 um Step

0.2 um beam fwhm

Angle

Range
ASNR

SNRopt m

(VA/)*
SNRAu~Middie-T

(VA/)*
SNRsj-Middle-T

(VA/)*

10-40°

30-60°

50-80°

0.82

0.64

0.48

17.04

12.52

8.98

11.53

9.09

6.77

32.59

20.10

13.34

0.5 um beam fwhm

10-40°

30-60°

50-80°

0.53

0.39

0.29

10.47

7.21

5.23

7.71

5.76

4.31

16.33

9.73

6.55

* IB is in nA, A/ is in Mhz

Figure 5.9b. A comparison of the ASNR with the SNR at the optimum threshold and with
the SNR at the middle threshold. 0.25 um step structure.
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than the SNR of the low signal. It is this limiting high signal level's SNR which the ASNR

tracks.

Generally, the ASNR also tracks, in a relative manner, the SNR at the Top, level. How

ever, since the ASNR uses the maximum signal level to estimate the noise in the signal, there

are differences between the ASNR and SNR if the low signal level is relatively high. This is the

case for the 30-60 degrees angle range and 0.5 um beam size. The ASNR is slightly higher for

the hole; but, the optimum threshold SNR is slightly higher for the step. This is because the

low signal level's shot noise has more of an effect than the high signal level's shot noise when

the threshold is set to Topt. It can be concluded; however, that the ASNR is still a good figure

of merit in estimating the noise quality of backscattered electron signal.

5.5. Summary

In this chapter, we examined the various backscattered electron detectors which can be

used in an electron-beam system. From a practical point of view, the diode detector would

seem to be the best choice over the scintillator-photomultiplier and channel plate detectors.

The effects of shot noise, the fundamental limitation to reliable high speed mask inspec

tion using an electron-beam system, were studied on the backscattered electron signal for a

variety of structures. It was shown that the difference in signal levels between gold and silicon

along with the placement of the comparator threshold level were critical in determining the

SNR quality of a backscattered electron signal. The SNR characteristics of shot noise limited

signals were investigated for 0.125 um, 0.25 um, and bulk structures. All results were left in

terms of (/B/A/)* so that they could be applied to a variety of electron-beam systems. The

optimum threshold was introduced as the threshold location at which the SNR for both the high

and low signal levels are the same.

For beam sizes smaller than the structure fwhm, the placement of the threshold is not as

critical as it is for larger beam sizes in which the signal level difference is reduced. Analysis

shows that the shot noise will not be a fundamental problem until the beam size is over twice
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the defect size. The shot noise limited SNR depends on the (/B/A/)* value and tables show

ing the shot noise SNR characteristics of the backscattered electron signals from various struc

tures were presented to aid in the design of an electron-beam inspection system.

It was also shown that thin (0.08 um) chrome structures, such as those found on optical

lithography masks, will be difficult to inspect at high electron-beam voltages because of poor

SNR quality. The situation can be improved somewhat by increasing the chrome thickness or

by lowering the beam energy. Using gold instead of chrome as the masking material also

greatly improves the SNR.

Finally, the ASNR parameter introduced in Chapter 3 was shown to track the actual shot

noise limited SNR fairly well and is therefore a valuable figure of merit for backscattered elec

tron signal quality.
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CHAPTER 6

6. MASK INSPECTION USING AN ELECTRON-BEAM SYSTEM

6.1. Introduction

The previous chapters have been concerned with the simulation and analysis of the back-

scattered electron signal used to detect the presence or absence of masking material. The goal

of this chapter is to see how the backscattered electron signal from the mask or mask copy can

be compared to design data in order to detect defects. The design data is derived from the

computer aided design (CAD) data and specifies what patterns should be present on the mask.

In this chapter, an overview of optical and electron-beam inspection systems will be

presented. The question of whether to inspect the mask or a copy of the mask will also be dis

cussed. An inspection scheme using a vector scan electron-beam lithography system will be

proposed. Finally, using the results of the previous chapters, various electron-beam scanning

techniques will be discussed.

6.2. Optical and Electron-Beam Inspection

6.2.1. Optical Inspection Techniques

Automatic inspection techniques have been used on optical lithography masks and reticles

since the middle 1970's. Early methods [81-83] involved scanning two neighboring chip pat

terns with two laser beams. The two signals, each generated by the transmitted laser light

through the mask, are compared and any deviations are recorded as defects. Surface defects,

which can easily be removed unlike actual mask defects, can be distinguished by sensing non-

specularly scattered light in coincidence with the normal defect detection signal [81-83]. These

early systems identified the location of defects and an operator was required to manually charac

terize each of the detected defects. Systems were also designed which used two microscope
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objectives to detect transmitted light through the mask. These light signals were then detected

using video sensors, such as photodiode arrays, correlated, and then compared [84]. The

minimum detectable defect size for these first systems was reported to be in the 2-5 um range

[81,83] with a complete inspection time, including manual characterization, for a 4 inch by 4

inch mask being about 1 hour [83].

The chip to chip comparison technique outlined above is limited in its resolution limit to

1-2 um, does not allow the inspection of single die reticles, does not allow complete automatic

characterization of defects, neglects defects caused by lithographic exposure errors, and is inca

pable of detecting lost or missing patterns which can occur when a pattern is transferred from a

reticle to a master mask [85,86]. New optical techniques have been developed which allow the

inspection to take place by a comparison of the pattern image with CAD data [85-90]. Typi

cally, the image is acquired by detecting transmitted light through a microscope objective. The

light is then amplified using photodiodes [88] or video pick-up tubes [85] and the resulting sig

nal is digitized. Recent image acquisition schemes have allowed the images from resist patterns

on wafers to be detected and digitized [89-90]. The resulting digitized signal is then compared

with a database prepared from the original CAD data describing the mask.

The inspection of the mask, wafer, or reticle is not done all at once. Only a small portion,

512 x 512 pixels for example, is inspected at a given time and the mask and design images are

correlated to eliminate registration errors [88]. Image processing techniques are then used to

identify and characterize the defects [85,88-90]. Minimum detectable defect sizes are usually

reported as between 0.5 and 1.0 um for 90 percent detection reliability. The minimum feature

sizes of the patterns to be inspected are usually between 1.25 and 1.5 um. The actual inspec

tion time for these systems depends upon the amount of image processing required, the com

plexity of the patterns, and the size of the mask. For example, the Contrex system [89,91]

specifications state that it can inspect a 7.6 x 7.6 mm die in one hour at a defect detection reso

lution of 0.5 um. The inspection pixel size for this resolution is 0.15 um. The Cambridge sys

tem [90,92] reports a typical inspection time of 10 minutes for a 10 mm x 10 mm die with a
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defect resolution of 0.8 um. Both the Contrex and Cambridge systems can inspect resist

images on wafers. The KLA system [88,93] is reported to be able to inspect a 10 mm x 10

mm pattern with 0.9 um defect detection resolution in 6 minutes. The pixel size used for this

resolution is 0.5 um. All of these systems use image processing to characterize the defects and

also to correct for registration errors. Note that these times listed here do not include the time

to convert from CAD data to inspection data. Also, the amount of time required to inspect will

depend on the pattern complexity. The approximate costs for these advanced optical inspection

systems runs from 700,000 (KLA) to 850,000 (Contrex) dollars. In a later section, we will

examine the time required by an electron-beam system to scan x-ray mask patterns of similar

sizes.

6.2.2. Electron-Beam Inspection Techniques

There have been only several reports of electron-beam systems being modified to perform

the mask inspection function [1-4]. It is worthwhile to examine the techniques outlined in

these papers.

The method of Goto et al [1] uses a scanning electron microscope and a feature extraction

(image processing) algorithm to inspect a mask for defects. Essentially, a portion of the mask

is scanned with the SEM and the image is digitized. A window of pixels slightly smaller than

the minimum linewidth of the pattern is used to extract the defects using a pattern recognition

algorithm. A defective pattern in a window has several parallel contour lines while a normal

pattern has none. It is assumed that a defect has a complicated fine structure which can be

electronically detected while normal structures are smoother and have specified directions [1].

There are several disadvantages to this technique. As presented in the article, a defect's

type (presence or absence of masking material) and location on the chip are not recorded.

However, there are more fundamental problems. The main problem lies in the assumption that

defects usually have complicated fine structures and that they are smaller than the minimum

linewidth. This neglects any defects which might consist of missing lines or spaces, shifted
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patterns, patterns too large or too small, and defects larger than the minimum linewidth

(although it is possible that the edges of a large defect would be detected). As far as inspection

speed is concerned, the time it takes to inspect the digitized mask pattern data is reasonable (a

2 inch square mask with 9xl010 pixels is estimated to take 2 hours to inspect for 0.3 um

defects). However, no indication is given to the significant amount of time it takes to collect

and process the mask pattern data into the digitized form needed for inspection. Although not

mentioned, parallel processing would enable windows to be inspected while other windows were

being scanned in the SEM. Advantages of this technique are that registration is not required

and a CAD data set is not needed.

The mask inspection method proposed by Wada and others [2] uses an electron-beam sys

tem and software comparison of CAD data to mask pattern data. Registration to the mask is

performed and measured pattern data for the inspection field is detected, digitized, and stored

in a memory matrix. This data is then compared to the design data matrix in the control com

puter. To allow for registration error, a dead region is set up around pattern shapes. Any

defects detected in this region are not recorded.

The major limitation of this method is that the inspection is not done in real time. The

defect inspection is done after the pattern data is gathered. Memory requirements are also sub

stantial. Recall that the 2.5 cm x 2.5 cm mask described in Chapter 5 contained over 10"

beam locations. Therefore, only portions of the mask could be inspected at a given time. The

electron-beam system would then be idle while the control computer is involved with the com

parison of the image data to design data. Note that another requirement is that design data be

converted into bit map format. To do this efficiently, another pattern generator would be

required to convert the compressed shapes of the design data into the bit map. It has been

reported that the mask inspection system described in [2] is being modified to perform the

inspection by a real time comparison of design data to the backscattered electron signal [94]

although this work has not appeared in the literature to date.
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Migitaka and others [3] have reported a more recent automated mask inspection system.

However, their paper deals with a system which is designed to automatically measure pattern

width, pattern position, and chip position. It was reported that the system was being modified

to detect pattern defects on the mask.

Simpson and Davis [4] have reported a real-time mask inspection system which utilizes

the IBM EL-3 variable shaped electron-beam system. Their technique, similar to the one which

will be discussed for use on a vector scan electron-beam system later in this chapter, involves

scanning over the positive areas of a mask (where masking material is present). Therefore, the

backscattered electron signal should always remain high. A low signal during this scan indicates

a clear defect. A similar technique is used to scan the negative areas of the mask. In this case,

a defect is detected when the signal goes high. A dead zone is put around all shapes to allow

for registration error. Inspection is performed by breaking the pattern data into subfields and

then registering to each subfield before inspecting. The detection scan is performed as quickly

as possible and detected defects are then checked in another scan to rliminate false alarms

caused by low SNR. Different thresholds are used for clear and opaque defects. The advantage

of this technique is that the backscattered electron signal does not have to be compared with a

stream of specially processed design data. The comparison is taken care of by scanning the

electron-beam over the positive and negative regions of the mask using data sets similar to the

data used to write the mask. One disadvantage of this technique is that if the system used to

write the mask is used to inspect it as well, any systematic machine problems (such as rotation

or offset) will not be detected.

6.3. Inspect Mask or a Copy of the Mask?

An important question which must be considered is whether to inspect the actual mask

itself or a copy of the mask made using its associated lithography tool. The mask copy can be

fabricated with material parameters which allow for the optimum detection of defects. For

example, we have seen that a typical chrome on Si02 optical mask will be very difficult to
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inspect using an electron-beam system because of noise limitations. However, a copy of the

mask could be fabricated out of about 0.20 um of gold on silicon and be perfectly suitable for

electron-beam inspection at 25 kV. Also, by inspecting a copy of the mask, the effects of the

resist and the lithographic process bias are included. Thus, only defects reproduced by the

lithography system for which the mask is used are detected. This is important in x-ray lithogra

phy in which some particles will have very little influence on the x-rays transmitted through the

mask. Moreover, the copy is not as fragile as the actual mask, especially for the thin mem

brane x-ray mask, and the mask is not subject to additional defects introduced by the inspection

process (such as someone putting his or her thumb through the mask membrane).

Obviously, some false defects will be introduced by the fabrication of the mask copy; but,

these can be overcome fairly easily, especially if a step-and-repeat mask is being inspected. In

that case, the mask pattern can be exposed in several locations on a wafer. One pattern can be

completely inspected and then the other patterns can be inspected only in the defect location

areas in order to eliminate the random defects introduced during the fabrication of the mask

copy. Inspection of a mask copy has been mentioned as an attractive option by several authors

of papers dealing with optical mask inspection [87,89,94]. It has also been suggested that for

optical mask inspection with electron-beams that the optical masks be fabricated with gold,

instead of chrome, as the masking material [4].

6.4. Demonstrating Mask Inspection Using a Vector Scan Electron-Beam System

The vector scan electron-beam system [7] used in fabricating the test patterns of Chapter

2 and in the experimental backscattered electron signal studies of Chapter 3 was used in an

experimental demonstration of an x-ray mask inspection system [6]. This is important since

this same electron-beam system was designed to write the actual x-ray mask.

The inspection technique consists of comparing the backscattered electron signal from the

copy of the mask with the design data stored in the memory of the electron-beam system con

trol computer. This is accomplished in real time by first registering to the alignment marks
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contained in the pattern to be inspected and then scanning the electron-beam over all areas

where there is gold. During this scan over gold, the backscattered electron signal should always

be high. If the signal goes low, a clear defect (i.e. a hole) in the gold has been detected. A

similar method is used to detect opaque defects (gold in designed clear areas). This technique

is similar to the method discussed by Simpson and Davis [4]. For the gold on silicon patterns

fabricated for this study, the positive scan detects clear defects in the gold while the negative

scan detects opaque defects. The dead zone, formed by reducing the size of the rectangles in

the inspection pattern, is needed to allow for registration error and is illustrated in Figure 6.1.

In this study each rectangle was reduced 0.25 um per side.

The system used for demonstrating the proposed mask inspection technique is shown in

Figure 6.2. The control computer instructs the pattern generator to deflect the electron-beam

over the positive or negative zone of a portion (128 um x 128 um subfield) of the test pattern.

The x,y position signals are amplified and along with the beam blanking signal are input to the

storage tube. At the same time, the backscattered electron signal is inverted and sent to the

video input of the storage tube. Thus, for a positive scan over gold, holes in the gold will

appear as bright images on the storage tube. The next step is then to switch the video input of

the storage tube to the background bias and rewrite the design image so that the designed pat

tern is stored at a reduced intensity. The net result as seen on the TV monitor shows bright

defects on a low intensity image of the designed pattern. Thus, the approximate size and loca

tion of the defects are known.

Detection of sub-micron defects using this method is illustrated in Figures 6.3 and 6.4.

Figure 6.3a shows the inspection (design) pattern with reduced size rectangles. The design pat

tern was an array of 0.5 um gold squares surrounded by gold. Figure 6.3b shows the effect of

misregistration during an inspection scan. The bright bands around the outer portions of the

rectangles as well as the many pseudo-defects in the central area are due to poor registration in

both the x and y directions. However, an actual clear defect can easily be seen. Figure 6.3c

shows the actual defect detected after proper registration. For this study, registration was



Figure 6.1. An illustration of the dead zone as well as the positive and negative scan regions
for the proposed mask inspection system.
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performed manually. This irregularly shaped defect was 0.5 um at its smallest and 0.9 um at

its largest dimension.

Figure 6.4 illustrates the use of programmed defects. Figure 6.4a shows the designed pat

tern of 0.75 um x 15 um and 0.75 um x 0.75 um indentations. The actual fabricated pattern's

feature sizes were reduced to 0.5 um because of process bias. Figure 6.4b shows 7 pro

grammed clear defects detected over a background of the actual designed pattern. Figure 6.4c

shows just the detected programmed defects. Note the linewidth of the line defect was 0.5 um

while the square programmed defects were 0.5 um x 0.5 um. Because of the 0.25 um dead

zone around the inspection rectangles, the 0.5 um x 0.5 um clear defects were detected by

scanning over only a 0.25 um x 0.5 um portion of each defect.

These experiments were carried out using a 15 nA beam current and a scan frequency of

100 kHz. The rather slow scan speed was due to bandwidth limitations in the amplifiers used to

amplify the x,y position signal of the electron beam. Using wide band amplifiers specifically

designed for this purpose, automatic registration, and a fast diode detector, it should be possible

to scan at TV rates. The storage tube is used for display purposes only. In an actual system,

the defect location and type would be stored in the memory of the control computer. A block

diagram of the mask inspection system is shown in Figure 6.5.

6.5. A Mask Inspection System Using a Vector Scan Electron-Beam System

The work of the previous section demonstrated that a vector scan electron-beam system

could be modified to perform the mask inspection function. In this section, a mask inspection

system will be proposed for a Gaussian beam shape vector scan electron-beam system. The use

of raster scan and variable spot size electron-beam lithography systems will also be investigated.

The complete outline of the mask inspection system is shown in Figure 6.6 The system is

similar to that proposed by Simpson and Davis [4] except that it is applied to a vector scan

electron-beam system. The first step in using this system to inspect a mask is to take the origi

nal design data set and etch the pattern shapes to allow for an inspection dead zone. The
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negative of the design data set is obtained using proprietary IBM software and the resulting

negative pattern is etched to create a dead zone. The two data sets are then post-processed into

the format required by the electron-beam system. The pattern data post-processing is relatively

straightforward since proximity correction is not required. Also, note that very little additional

software is required to prepare these data sets since they are of the same type as those which

are used for resist exposure. The inspection data sets are then downloaded to the IBM Series I

control computer.

The actual mask inspection process is conceptually very simple. The x-ray mask copy

(hereafter referred to as the wafer) is loaded into the system and the inspection system

electron-beam deflection field is matched to the pattern to be inspected. This is performed by

calibrating the inspection field to the pattern field [96]. In most electron-beam systems, the

movement of the table is monitored by an x,y laser interferometer. Any movement of the

table produces a signal which is amplified and then sent back to the beam deflection circuitry to

keep the electron-beam positioned in the proper location, independent of small table position

variations. Thus, it is important that the interferometer and deflection systems be matched

very accurately. The amount of beam deflection amplifier gain required for a given inspection

field size must also be calibrated [47]. Any rotation of the wafer with respect to the x,y axis of

the stage must also be compensated for. This is done by a process known as wafer mapping

[97] in which four marks near the outside of the wafer are used to match the chip locations on

the wafer with the actual stage movement. Depending on the minimum detectable defect size,

detector amplifier settings, beam current, and beam voltage, the comparator thresholds dis

cussed in Chapter's 4 and 5 are then set. One threshold is for detecting clear defects (scan over

gold) and the other is for detecting opaque defects (scan over silicon). After these initial cali

brations are complete, the first field can be inspected.

A registration [98] is first performed to overlay the inspection pattern to the wafer pat

terns. This can either be done globally by aligning to registration marks at the corners of the

chip or by aligning to smaller portions of the field using subfield registration [4].



149

The positive portion of the pattern is then scanned with the electron-beam and the

amplified backscattered electron signal is compared to the clear defect threshold level. The

scanning of the beam is controlled by the pattern generator [99] which reads in the inspection

data set and deflects the beam over the specified locations. If the signal drops below the thres

hold while the beam blanking signal is high, a defect has been detected and the x,y location is

stored in memory. Note that a high beam blanking signal indicates that the beam is scanning

over a pattern and not moving from one shape to another. After scanning the positive portion

of the field, another registration can be performed and the negative field can be inspected for

opaque defects. Upon completion of the inspection for a field, the defect locations, if any, are

transferred to the control computer and the stage is moved so that the next field can be

inspected.

Once an entire copy of the mask has been inspected completely, the other copies of the

mask on the wafer are inspected only in the area of the defects to eliminate false defects intro

duced by the fabrication of the mask copy. Since most masks will only have a few defects, the

defects can be categorized by an image processing scan, such as the one in reference [1], over

the defect locations.

This type of inspection technique can easily be applied to the other types of electron-beam

systems since it takes full advantages of the capabilities inherent in any electron-beam machine.

These capabilities include automatic registration, field calibration, precise table movement, and

pattern scanning. The inspection capability is added to the electron-beam machine by making

peripheral changes to the system. The lithography capabilities of the system are not changed.

For example, consider a raster scan electron-beam system [100-102] in which the beam and,

sometimes, table move so that the chip area is scanned in a raster manner. The electron-beam

is simply blanked on in areas where exposure is desired. Thus, it can be seen that the raster

scan data is in a bit map format with one bit signifying beam on and the other signifying beam

off. The inspection method outlined above can be easily incorporated into a raster scan system.

The original design data shapes can be etched to allow for an inspection dead zone and a
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corresponding negative inspection data set can also be created. An alternative is to analyze the

position of the beam by comparing its location to the designed data in bit map form. The bit

map data will specify what type of inspection is to be performed (clear or opaque defect detec

tion) and when the beam is in a dead zone (disable inspection). The presence of the dead zone

can be detected by real time electronic analysis of the pattern data surrounding the location of

the beam [2]. The rest of the inspection system is similar to that proposed for a vector scan

system.

As far as variable shaped electron-beam systems are concerned, Simpson and Davis [4]

have demonstrated that a technique similar to the one above for a vector scan system can be

incorporated into an IBM EL-3 electron-beam tool.

The advantages of the proposed inspection system are that it is conceptually easy to imple

ment on existing electron-beam systems and that it takes advantage of the capabilities already

present in the electron-beam systems. Major changes to the electron-beam system are not

required to enable it to be used for real time inspection. Also, the cost of adding this relatively

simple inspection capability to an existing electron-beam system will be far lower than the cost

of a stand alone inspection system (if one existed which could detect 0.25 /tm or smaller

defects). The main disadvantage of this technique is that accurate overlay of the inspection

field to the wafer is required since the beam must scan the inside and outside of the pattern

shapes. If the overlay error is about the same or greater than the dead zone width, many false

defects will be recorded. Thus, this technique is limited by the registration and overlay capabil

ities of the electron-beam tool and; therefore, will not allow the inspection of masks for defects

smaller than the overlay specifications of the tool. Also, if the same system which writes the

mask is used to inspect it as well, any systematic errors caused by problems with the electron-

beam system will most likely not be detected. However, problems such as these are usually

apparent as soon as the resist is developed. Moreover, all electron-beam systems are periodi

cally checked for registration, overlay, and stitching accuracy at which time system errors are

usually detected. In a production environment, it may not be desirable to tie up an electron-
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beam lithography system for mask inspection. However, in a research and development

environment, this will not be as much of a problem. Finally, this inspection technique requires

that additional offline processing of the defect data be performed to categorize the defects.

It is possible that defect characterization and the problems due to overlay error could be

alleviated by using a more complicated image processing or pattern recognition scheme [1,88-

90] as is used in some optical inspection systems. This would require that the pattern data be

put into a different format (such as a bit map) for comparison to design data. Parallel process

ing would also be needed so that one area could be scanned by the electron-beam while the pat

tern to design comparison was being done on another area. Basically, this type of inspection

method uses very few of the advantages inherent in an electron-beam lithography system since

it uses image processing techniques to replace the need for the electron-beam system's exten

sive overlay and calibration electronics. Also, the development costs of such a complicated

inspection system would be much higher than the simpler system outlined above. Thus, this

more complicated image processing approach is not a good match to an electron-beam lithogra

phy system and would be better suited for use in a stand alone inspection system. If a stand

alone high resolution mask inspection system is required for a production environment (in

which the electron-beam systems are being used for lithography 100 percent of the time), it is

reasonable to suggest that an electron-beam front end be put onto one of the optical image pro

cessing mask inspection systems [88-90]. A complicated electron-beam system would not be

required since the beam would only have to scan in a raster fashion and the advanced image

processing electronics could be used to alleviate registration error.

At this point in time, x-ray lithography is still in the experimental stage and there are few

electron-beam systems which can write an x-ray mask, let alone inspect it. Thus, in this

research and development atmosphere, it seems wise to develop a mask inspection system

which is capable of high resolution defect detection and which uses the capabilities present in

the electron-beam system to align the inspection pattern to the wafer. Once this simple and

relatively inexpensive mask inspection system is functioning, the complicated task of building a
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more advanced stand alone mask inspection system can be undertaken, if needed.

6.6. Mask Inspection Experiments

Mask inspection test electronics were designed and built to determine the difficulties in

using an electron-beam system for mask inspection. The circuit diagram is shown in Figure

6.7. The circuit consists simply of two comparators with variable thresholds along with the

associated gating to compare the digitized backscattered electron signal to a beam blanking sig

nal. The beam blanking indicates when the electron-beam is turned on and scanning over a

pattern. For example, suppose we are interested in scanning for opaque defects. Thus, the

beam will be scanning over silicon and the backscattered electron signal should always be low.

Therefore, the top comparator in the circuit of Figure 6.7 will be used so a low signal normally

disables the comparing AND gate. If an opaque defect is encountered, then the comparator

output will go high and the AND gate output will go high if the blanking signal is also high.

This defect is then counted and defect signal sent to the output stage of the electronics where it

can be observed on a CRT display. These electronics, along with an IBM vector scan electron-

beam system and the diode detector used in the experiments of Chapter 3, were used in the

studies which follow.

Test patterns, as described in Chapter 2, were fabricated by first fabricating gold on silicon

registration marks and then manually or automatically registering to those marks before expos

ing the desired test patterns. After exposure, the process outlined in Chapter 2 was used to

fabricate the gold on silicon test patterns. The inspection was carried out by registering to the

marks and scanning over the shrunken positive and negative images of the test patterns.

Defects were observed by connecting the output of the defect inspection electronics to a CRT

display.

It is worthwhile to discuss the manner in which the vector scan system scans the beam

over patterns as it will help explain some of the results which follow. Figure 6.8 illustrates the

type of fill pattern used to expose the shapes. The beam starts in the lower left corner and



CO
O

z
o
cr
H
O
Ul
-I
UI

O)
Ul

I-

I-
O
UJ
0.
CO

<

Ll.

o

o

o

5+
O

(J) v>

i* > Pip*
>vw-t*vsaHI

CM ^

I-
34
o

o
«A
s

o
o
A

O
34
O

16 16

o

3A

Figure 6.7. The mask inspection test electronics.

o
o
A

153



STOP

SHAPE

START

=DELAY

Figure 6.8. The manner in which the vector scan electron-beam machine scans a shape.
The delays are required by the pattern generator electronics.

154



155

scans upward in a serpentine manner to the top of the shape. The solid dots indicate areas in

the shape where the beam is blanked off during a delay period required by the vector scan pat

tern generator electronics [103]. Shapes are scanned in a vector scan fashion within subfields

comprised of 512 x 512 beam locations and the subfields are scanned in a raster fashion [78].

The first problem encountered in using the test inspection electronics was due to the

above mentioned delays while scanning a shape and limited frequency response of the diode

detector (which was not optimized for Mhz scanning bandwidths). At first, while scanning a

shape, the beam was blanked on and off along with the blanking signal. However, the diode's

response time, as shown in Figure 6.9a, is on the order of 2-3 /xsec. The problem can easily be

seen: If the beam is scanning over a gold pattern, the signal will be high while the beam is on.

However, if the beam is blanked off while scanning a shape and then blanked on again, the

beam blanking signal will be high; but, the signal to the comparator input will be low for

several /isec because of the diode's response time. Therefore, false defects will be detected

until the diode signal crosses the comparator threshold. This problem will also occur at the

beginning of a scan over a shape and when the beam is scanning the negative patterns. A sim

ple programmable digital delay network, Figure 6.10, was constructed to shift the blanking sig

nal in time to correspond to the delayed diode signal (Figure 6.9b) [103]. Also, the beam was

disconnected from the blanking signal and left on during the entire scan. The blanking signal

was used only to indicate to the electronics when the beam is scanning over a pattern. The

delay circuitry is needed when the beam jumps from one gold pattern, over silicon, to another

gold pattern. A higher bandwidth detector, currently being fabricated, will eliminate much of

this problem.

It was found that it was not possible to align simply to the registration marks and overlay

the inspection pattern (with a 0.125 /xm per side etch) with the pattern on the wafer. The

inspection pattern would be overlayed correctly in some areas and incorrectly in others, leading

to false defect detection. If the stage was moved to compensate for the mismatch in overlay in

one area, new overlay errors would be produced in other areas. Therefore, it was decided to
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investigate the effects of overlay error on the proposed mask inspection algorithm.

Figure 6.11a shows the blanking signal and the backscattered electron signal from a 1.8

um square inspection shape overlayed on a 2.1 um per side gold square. The overlay was good

enough so that the defect inspection electronics did not indicate a defect. The inspection field

size was 1 mm, indicating a beam location separation of 0.0625 /tm. The beam off delays

inherent in the scanning of a shape can be seen every 28 usee (28 beam locations x 1.0

usec/beam location). The beam was kept on during the entire scan. The effects of moving the

stage 1.0 um in the y direction can be seen in Figure 6.11b. Note how the signal is low while

the beam is scanning over the silicon and gradually rises as the beam begins to scan over the

gold. It can be seen from the scope tracing that the signal is back to high level after approxi

mately 16 beam locations (1.0 um). The gradual fall off in signal is predicted by the effects of

the beam scanning near and past the edge of the gold shape as discussed in Chapter 4. Recall

that the detector was placed so that backscattered electrons in the 35-62.5 degrees range were

picked up. The signal is not smooth due to curvature in the pattern being inspected. For some

scans near the edge, the beam scanned partly on gold and partly on silicon.

Effects of misregistration in the x direction can be seen in Figure 6.11c. Since the beam

scans in the serpentine fashion shown in Figure 6.8, a false defect signal is generated on every

horizontal scan when the beam is located over silicon.

In order to determine that the electron-beam and inspection electronics were capable of

correctly imaging the test patterns, the electron-beam was scanned over the entire test chip and

the output of the test electronics, indicating opaque defects, was recorded on the CRT. Thus,

we would expect to be able to image the test patterns using the electron-beam and electronics

as a digital SEM. A camera was held against the CRT screen while the electron-beam was scan

ning and the digital SEM images are shown in Figure 6.12. The dark areas (except for the long

horizontal cracks caused by camera movement) are the gold patterns on silicon and the light

area is silicon. Even at a 10 Mhz scan rate (0.1 usec/beam location), the detector was able to

isolate 1.2 um alignment marks. This is to be expected since the 1.2 um marks are about 19
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Figure 6.11. The effects of poor registration (a) scanning over a 1.8 um square with no
defects detected (b) scan after moving the table 1.0 um in the y direction (c)
scan after moving the table 1.0 um in the x direction.
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(c)

Figure 6.11. (cont.)



(a)

(b)

Figure 6.12. Using the mask inspection test electronics as a digital SEM (a) a 1 Mhz full field
scan over the test patterns (b) a 10 Mhz full field scan over alignment marks.
Long horizontal cracks are due to camera motion.
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beam locations wide, giving a signal with a bandwidth of about 500 Khz - well within the limita

tions of the diode detector.

The most important result of this experimental study was to emphasize that the overlay of

the inspection pattern to the wafer pattern is critical. The proposed mask inspection algorithm

requires precise overlay of the wafer patterns or else many false defects will be recorded. Since

an accurate overlay study has not been performed on the vector scan system used in the experi

ments, it has not been possible to determine the cause of the overlay errors. In the future,

after an overlay study as done, it will be possible to determine the resolution of the inspection

method. It may be desirable to overlay the inspection pattern by registering to the wafer pat

tern itself and not to the separately fabricated registration marks. The amount of offset, rota

tion, and trapezoidal error in the pattern can then be measured. If registration to the pattern is

found to be inadequate, then subfield registration [4] will be required. The size of the subfield

will be determined by the overlay capabilities of the electron-beam system.

We have also seen that the type of false defect signal will depend on the type of overlay

error as well as the manner in which the beam scans over the shapes. The response time of the

diode detector is also important in that the gating blanking signal must be delayed in order to

have a proper comparison with the backscattered electron signal. It would also appear that it is

best to keep the beam on during the entire inspection and only use the blanking signal as a

means to indicate when the beam is scanning a pattern.

6.7. Software and Hardware Requirements

6.7.1. Software Requirements

The proposed inspection method utilizes much of the software built into the electron-

beam system. However, some peripheral software is required. Some type of control program is

needed to enter inspection instructions and execute the inspection. This would include identi

fying the names of the inspection data sets and the locations of the corresponding patterns on
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the wafer. The location of registration areas and the times to perform automatic registration

must also be known to the system. Moreover, pauses and interrupts for data transfer between

the defect electronics and control computer are needed. There also has to be a method of

transferring the defect locations from memory to the control computer. Once the defect loca

tions are in the control computer, the defect data should be categorized and a data set for the

re-inspection of the defect areas be created. Software similar to that needed for mask inspec

tion is already incorporated into most electron-beam operating systems. Therefore, much of

the required inspection software can be written by modifying existing routines.

Positive and negative inspection patterns, derived from the original CAD data, are also

required. Software already exists to transfer CAD designs to electron-beam format and it is not

difficult to adapt this software to reduce or expand the sizes of the shapes. The problem of

inverting an image is not new and programs exist which can perform this function [104].

6.7.2. Hardware Requirements

It will be assumed in this section that an electron-beam system with automatic registration

capabilities already exists. Additional hardware requirements for mask inspection include a fast

(5-10 Mhz) backscattered electron detector and amplifier along with the comparison electronics.

As we have seen, the required comparison electronics are rather simple and present no real

problem to construct. Once a defect is detected, electronics are needed to transfer the x,y loca

tion of the electron-beam to a memory array. This involves taking the address in the pattern

generator and transferring it to memory. An interface is also needed between the memory and

the control computer. Due to possible diode frequency limitations, a delay system for the

blanking signal may also be required. It should be noted that the hardware requirements for

the proposed mask inspection system are very straightforward and should not be difficult to

design and fabricate.

As mentioned previously, the overlay of the inspection pattern to the wafer pattern is

important. Thus, the causes and magnitude of the overlay error in the inspecting electron-
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beam system must be known. Since there is no image processing of the defect data, the

electron-beam system cannot be used to inspect a pattern with better overlay than when it

writes the pattern. In other words, if a system has a specified 0.25 um overlay accuracy, many

false defects will result if only a 0.125 um wide dead zone is used around the inspection pat

terns. However, if the electron-beam system has such poor overlay capabilities, then it also will

not be able to write masks with minimum feature sizes below about 1.0 um.

The effects of scanning with a miscalibrated inspection field are illustrated in Figure 6.13.

The inspection pattern suffers from offset as well as trapezoidal distortions [96]. Thus, the rec

tangular inspection patterns are offset and slanted resulting in false defect detection. Even with

an image processing mask inspection technique, in which an entire subfield would be scanned

in a raster fashion, the shapes would not be interpreted as being rectangular. Since an

electron-beam system already can compensate for offset, rotation, and trapezoidal distortions

[96], it would seem wise to do this with existing hardware if possible. Any inspection system

should report how much field correction was required before the actual inspection could take

place. This would indicate whether the wafer patterns are distorted.

Good temperature control inside the electron-beam chamber is also required since the

laser interferometer output is extremely temperature dependent. There is also the compression

and expansion of the silicon wafer with temperature to contend with. Small temperature varia

tions could cause apparent shifts of the wafer position on the stage, resulting in a misregistered

inspection field and many false defects. A stable temperature environment is also required for

writing masks and it is reasonable to expect that the electron-beam column will be kept at a

constant temperature.

6.8. Inspection Scanning Techniques

Recall that a 2.5 cm x 2.5 cm area written with a 1.0 mm field size is made up of about

1.678xl0n beam locations (or pixels) spaced 0.0625 um apart. It would take 4.66 hours to

scan each beam location at a 10 Mhz scan rate (0.1 usee/pixel). This does not include
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Figure 6.13. The effects of scanning with a poorly calibrated inspection field.
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overhead times such as registration, load and unload, and pattern generator delays. At 5 Mhz,

the time increases to 9.32 hours and at 1 Mhz, it would take 46.6 hours for inspection. How

ever, these times can be reduced by a factor of 4 by skipping every other beam location in x

and y and by another factor of 4 by stepping between every fourth beam location. The required

SNR of the signal for false alarm free detection drops from about 6.8 for inspecting every beam

location to 6.4 for every fourth beam location.

The electron-beam remains on as the beam is deflected from one beam location to the

next. The effect of inspecting every fourth pixel, for example, would be that it would take

Miscan rate) seconds for the beam to travel from one beam location to the next. Assuming

that the scan rate is 10 Mhz, a 0.25 um defect, four beam locations wide, would give a back-

scattered electron signal with a bandwidth of approximately 10 Mhz. Thus, the detector and

associated electronics would have to have at least that bandwidth to detect 0.25 um defects reli

ably. If it was required that 0.125 um defects be detected using this scan scheme, a detector

bandwidth of 20 Mhz would be required even though the electron-beam is scanning at a 10

Mhz rate.

The effects of scanning by skipping beam locations can now clearly be seen. A substantial

reduction in inspection time can be achieved at the expense of increasing the minimum detect

able defect size. For example, by inspecting every fourth beam location in x and y, the

electron-beam would be assured of passing over all defects of about 0.25 um or greater size.

However, smaller defects could lie between the inspection pixels in the y direction (Figure

6.14). A solution to this problem, which would increase the inspection time somewhat, would

be to skip beam locations only in x and not in y. Also, the signal from a defect smaller than

the distance between inspection beam locations would require detector bandwidths greater than

the inspection scanning bandwidth. By skipping beam locations, the 2.5 cm x 2.5 cm mask pat

tern could be inspected for 0.25 um defects at a 1 Mhz scan rate in about 3 hours. The

required detector bandwidth would only be about 2 Mhz to detect 0.125 um defects. Thus, we

see that a large amount of area can be inspected in a reasonable time with very modest
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Figure 6.14. An example of how a small defect can be missed if the separation of inspection
scan lines is too large.
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bandwidth requirements.

The minimum detectable defect size specification will also determine the size of the

inspecting electron-beam. We saw in Chapter 5 that signals with adequate SNR were generated

from structures which were one-half the size of the inspecting electron-beam. Thus, if the

specification on the mask inspection system is to be able to detect 0.25 um defects and also

0.125 um defects if possible, a beam size of about 0.25 um should be used. Keep in mind that

the larger the beam size, the more severe the drop in signal will be if the beam begins to scan

near the edge of a shape. Also the larger the size of the beam, the more current, and; there

fore, the better the SNR at a given bandwidth.

It is possible with certain electron-beam systems that the chosen scanning technique is

hindered by poor SNR quality of the signal, generating many false alarms. One method of

compensating for poor SNR is the scan, rescan technique reported by Simpson and Davis [4].

It was shown that if the signal is SNR limited, then the scan, rescan technique allows the

inspection to take place faster than with a single scan technique. In this scheme, the defect

locations stored after a first pass inspection are used to create a data set which instructs the

electron-beam to re-inspect the defect locations. Thus, many, if not all, of the false alarms will

be detected on the second inspection pass. This second inspection can be done at a slower

speed to increase SNR quality. This will have little effect on inspection time since the number

of false alarms and/or defects is much smaller than the number of inspection beam locations.

For example, consider a system which has a SNR of 7 for the backscattered electron sig

nal at a 2.5 Mhz bandwidth. However, the system is capable of scanning at a 10 Mhz rate. At

the 2.5 Mhz scan rate, the required scan time for the 1 square inch mask would be about 18.6

hours with no false alarms. If a 10 Mhz scan rate was used, the SNR would drop to 3.5 (Pe =

2.4 x 10"4) and the scan time would decrease to 4.7 hours. However, there would be about

4.03 x 107 false alarms requiring an additional 16 seconds of re-inspection time at 2.5 Mhz. To

save memory, the false alarms could be re-inspected after the inspection of each 1.0 mm field.

Thus, by using a scan, rescan technique, a 4x increase in inspection speed is realized.
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Figure 6.15 shows the effects of using a signal with low SNR for inspection of the 2.5 cm

x 2.5 cm mask. It can be seen that the SNR requirement is reduced from approximately 7 to 4

or 5 depending on the scan technique and the number of re-inspection passes. The calculations

in the figure assume that the second and third inspection passes are performed at the same

inspection speed as the first inspection scan. The need for a third pass could be eliminated by

decreasing the scan speed on the second pass to improve the SNR.

The scan, rescan technique can be used to decrease inspection time in another manner.

Scanning by skipping beam locations with a corresponding increase in beam size will improve

inspection throughput. In this case, the beam may not directly pass over the defects; therefore,

the threshold levels must be set to detect small changes in the signal level. The false alarms

generated by this technique can be eliminated in a second scan. The use of this technique will

be limited by the detector bandwidth, as discussed earlier, and the size of the dead zone around

the shapes.

It is interesting to compare the required inspection times for similar patterns using optical

and electron-beam techniques. It will be assumed that a high atomic number copy of the mask

has been fabricated or that high atomic number masking material, such as tungsten or gold, is

used on the mask. Inspecting a copy of an optical mask has been suggested by several groups

[87,89]. Consider an 8 mm x 8 mm inspection field. Using a vector scan electron-beam sys

tem and 1 mm field size, it would be possible to inspect for 0.25 um defects in about 7 minutes

at a very reasonable 2.5 Mhz inspection scan rate (not including overhead times). This can be

compared to the Contrex optical system [89,91] which reports an inspection time of 1 hour for

a 7.6 mm x 7.6 mm field and 0.5 um defects. Note that the Contrex system inspects copies of

the mask fabricated out of photoresist on silicon. This material combination would be

extremely difficult to inspect with an electron-beam system because of the poor backscattered

electron signal quality of resist on silicon. However, both techniques involve making a copy of

the original mask and the electron-beam technique requires the simple additional step of elec

troplating.
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Scan, Rescan Technique

Scan every pixel *

SNR

# of false alarms

1* pass 2nd pass 3rd pass

6 168 <1 <1

5 50340 <1 <1

4 5.54 x 106 183 <1

3 2.18 x 108 2.84 x 105 369

Scan every other pixel (x,y)

6 42 <1 <1

5 12585 <1 <1

4 1.39 x 106 46 <1

3 5.45 x 107 7.09 x 104 92

Scan every fourth pixel (x,y)

6 11 <1 <1

5 3147 <1 <1

4 3.48 x 105 12 <1

3 1.36 x 107 1.77 x 104 23

* 1.6777 x 1011 total pixels

Figure 6.15. The effect of reduced SNR on the number of false alarms and the use of a scan,
rescan technique to eliminate the false alarms. The bandwidth is the same for
all passes.
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The KLA optical inspection system [88,93] reports the inspection of a 10 mm x 10 mm

field for 0.9 um defects in 6 minutes. A vector scan electron-beam system could scan for 0.5

um defects over the same area in slightly less than 3 minutes (plus overheads).

It is also important to realize that, unlike the optical inspection techniques, the inspection

time for the proposed electron-beam system is relatively independent of pattern complexity.

Pattern complexity is not an issue during the inspection process since the electron-beam is

already scanning over the entire inspection field. The complexity of these patterns only affects

the processing time of the CAD data into inspection data and will have much less of an effect

on the actual inspection time.

The proposed inspection method requires a dead zone around the edges of shapes to allow

for registration errors. The size of this dead zone will limit, to some extent, the minimum

detectable defect size. If the inspection pattern is perfectly overlayed on the wafer pattern, then

the dead zone will make it improbable to detect protrusions or indentations smaller than the

dead zone width. In a worst case scenario, with the inspection pattern misregistered by an

amount equal to the dead zone width, protrusion and indentation defects equal in size to twice

the dead zone width could go undetected. However, the registration of the inspection pattern

to the wafer pattern should be quite good (< 0.1 um) since the gold on silicon patterns make

extremely accurate (high SNR signal) registration marks [19,21]. As stated earlier, the overlay

specifications of the electron-beam system is an extremely important parameter which will affect

the inspection resolution fo the electron-beam inspection system.

Bias, or difference in linewidth between the CAD patterns and the wafer patterns, should

also be considered when specifying the size of the dead zone. However, the CAD data

represents the required size of the features and any large discrepancies should be categorized as

a defects. Therefore, the width of the dead zone should allow for permissible linewidth varia

tions of the wafer patterns.
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6.9. Summary

In this chapter, we have discussed the systems aspects of using electron-beam techniques

for mask inspection. A review of current optical and electron-beam inspection systems was

presented. At present, there are no commercially available inspection systems with reliable

defect detection resolution below 0.5 um. The question of inspecting the mask or a copy of the

mask was addressed and it was concluded that, for x-ray mask inspection, a copy of the mask is

preferred. A mask inspection algorithm was demonstrated using a vector scan electron-beam

system and a complete mask inspection system was proposed. The inspection consists of scan

ning over the positive (gold) areas of a wafer and detecting clear defects if the backscattered

electron signal goes low. Opaque defects are detected by scanning over the negative (silicon)

areas and detecting defects if the signal goes high. Experiments showed that accurate overlay

of the inspection pattern to the wafer pattern is required if the proposed algorithm is to be

implemented. If accurate overlay over an entire writing field is not easily obtained, it may be

required to overlay smaller subfields [4]. The experiments also illustrated that if the detector's

response time is too slow, false defects may be detected at the points where the beam begins its

scan over the gold. The software and hardware requirements for an electron-beam inspection

system were also discussed.

It was observed that the proposed inspection system utilized all of the capabilities inherent

in an electron-beam lithography system such as, accurate registration, precise beam positioning,

and easy design data manipulation. These capabilities allow the mask inspection to take place in

real time with no image processing requirements. Also, the conversion of an existing electron-

beam system into a mask inspection system using the proposed algorithm is likely to be much

less expensive than implementing a more complicated image processing approach. The pro

posed system uses the built in electronics of the electron-beam system to compensate for field

distortion and overlay errors instead of image processing. The proposed system is intended for

a research and development environment in which heavy demands are not made on the

electron-beam system for lithography. If a stand alone high resolution inspection system is
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required, it seems advantageous to put an electron-beam front end onto an image processing

based optical inspection system. A very simple electron-beam system could be used because of

the limited scanning requirements.

Some inspection scanning techniques were also discussed. It was shown that the

minimum sized detectable defect will influence the manner in which a pattern is scanned. It

will be possible to decrease the inspection time by skipping over beam locations used in writing

the pattern. A scan, rescan technique [4] was also mentioned as a method to reduce SNR

requirements. Finally, it was shown that the proposed inspection system will allow inspection

throughput comparable to existing optical techniques at 2-4 times the resolution.
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CHAPTER 7

7. CONCLUSION

The design and implementation of a high resolution mask inspection system using an

electron-beam probe is a difficult task. Many different areas must be investigated and under

stood before a reliable high speed inspection system can be built. In this thesis, we have dis

cussed the fundamental aspects of x-ray mask inspection using an electron-beam system. The

goal of this research was to gain a complete understanding of the nature of the backscattered

electron signal from submicron structures and use this knowledge in the design of a mask

inspection system.

A Monte Carlo program has been developed to simulate the backscattered electron signal

from the complicated structures encountered in mask inspection. The program is based on the

standard continuous slowing down approximation, Bethe energy loss equation, and the screened

Rutherford collision cross-section. It was found that the simulated energy signal, the total

energy of the electrons striking the detector, gave good agreement with experiment for different

submicron structures, collection angle ranges, beam voltages, gold thicknesses, and beam sizes.

This excellent agreement with experiment was important since it gave confidence in using the

program to investigate the backscattered electron signal properties of interest for mask inspec

tion.

It has been shown that electrons scattered into the middle take-off angle ranges (30-60

degrees from the plane of the target) gave the best overall backscattered electron signal quality

for clear and opaque defect structures. Although the 30-60 degrees range is best overall, the

signal for submicron step structures can be enhanced by also collecting the lower angle back-

scattered electrons.

The effect of electron-beam size on the backscattered electron signal characteristics was

also described. A Gaussian electron-beam shape was used in the simulations. A quantity,

ASNR [19], was used as a figure of merit for the noise quality of the signal. Curves of ASNR,
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signal fwhm, and threshold (DC level) versus beam fwhm were presented for a variety of sub

micron gold on silicon structures over three different angle ranges. The ASNR was shown to

give a more realistic representation of the degradation in signal noise quality with increasing

beam size than the signal contrast. A fall off in ASNR was found to begin to occur when the

beam size becomes about 0.4 of the structure fwhm. For steps, a 25 percent loss of ASNR

occurs when the (beam fwhm)/(structure fwhm) ratio is about 1.2. Similar results are seen for

holes with a 25 percent reduction in ASNR being observed at a ratio of about 1.1.

It was observed that the graph of signal fwhm versus beam fwhm has two distinct regions

for various structures. There is a flat region for beam sizes up to about 0.5 of the structure

fwhm and a region for larger beam sizes in which the signal fwhm rises steadily with the beam

fwhm. For steps, a signal fwhm 50 percent larger than the structure fwhm occurs for a (beam

fwhm)/(structure fwhm) ratio of about 1.3-1.4. For holes, a 50 percent increase is seen for a

ratio of about 1.1-1.2. It was also found that the thresholds or DC levels of the signals from

step and hole structures are different and behave in different manners as the beam size is

increased. For steps, the threshold drops towards the silicon signal level as the beam size

increases. For holes, the threshold rises toward the gold signal level.

Universal curves for various beam energies showed that to collect 90 percent of the avail

able backscattered electron signal, the scattering material should be about 0.13 RB or 0.33 RG

thick. It is desirable to use the Gruen range, RG since it is easily calculated using a simple

analytical expression. The universal relationship of the backscatter coefficients to material

thickness normalized to RG is interesting because the backscatter coefficients are calculated

using the Monte Carlo program while RG is calculated using an empirically derived equation.

Similar universal curves were introduced to illustrate the effect of scanning the electron-beam

near the edges of shapes. As the beam scans near the shape edges, it is possible that the back-

scattered electron signal can fall off. If low take-off angle electrons are collected, an increase in

signal is observed. For a 30-60 degrees angle collection range, the signal begins to drop off at

about 0.2 RG from the edge while for a 50-80 degrees range, the signal begins to drop off at
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about 0.33 RG from the edge. This decrease in signal level is important since it can cause the

signal to fall below the comparator threshold used for determining the presence or absence of

masking material. Collecting backscattered electrons in the 20-50 degrees range should reduce

the drop in signal near a step edge with only a 6 percent loss in signal from bulk materials.

A simple technique of calculating signal levels for two and three dimensional structures

was introduced. The method is based on knowing the fraction of the beam which is incident on

the structure along with knowledge of the scattering properties of that structure.

The various backscattered electron detectors which can be used in an electron-beam sys

tem were examined from a practical point of view. The diode detector seems to be the best

choice over the scintillator-photomultiplier and channel plate detectors as far as ease of installa

tion, complexity, and bandwidth are concerned.

The effects of shot noise, the fundamental limitation to reliable high speed mask inspec

tion using an electron-beam system, were studied on the backscattered electron signal for a

variety of structures. It was shown that the difference in signal levels between gold and silicon

along with the placement of the comparator threshold level were critical in determining the

SNR quality of a backscattered electron signal. The SNR characteristics of shot noise limited

signals were investigated for 0.125 um, 0.25 um, and bulk structures. All results were left in

terms of UB/&f),/! so that they could be applied to a variety of electron-beam systems. The

optimum threshold was introduced as the threshold location at which the SNR for both the high

and low signal levels are the same.

For beam sizes smaller than the structure fwhm, the placement of the threshold is not as

critical as it is for larger beam sizes in which the signal level difference is reduced. Analysis

showed that the shot noise will not be a fundamental problem until the beam size is over twice

the defect size. The shot noise limited SNR depends on the (/S/A/)'* value and tables listing

the shot noise SNR characteristics of the backscattered electron signals from various structures

were presented to aid in the design of an electron-beam inspection system.
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It was also shown that thin (0.08 um) chrome structures, such as those, found on optical

lithography masks, will be difficult to inspect at high electron-beam voltages because of poor

SNR quality. The situation can be improved somewhat by increasing the chrome thickness or

by lowering the beam energy. Using gold instead of chrome as the masking material also

greatly improves the SNR.

The ASNR parameter introduced in Chapter 3 was shown to track the actual shot noise

limited SNR fairly well and is therefore a valuable figure of merit for backscattered electron sig

nal quality.

The systems aspects of using electron-beam techniques for mask inspection were also dis

cussed. A review of current optical and electron-beam inspection systems was presented. At

present, there are no commercially available inspection systems with reliable defect detection

resolution below 0.5 um. The question of inspecting the mask or a copy of the mask was

addressed and it was concluded that, for x-ray mask inspection, a copy of the mask is preferred.

A mask inspection algorithm was demonstrated using a vector scan electron-beam system and a

complete mask inspection system was proposed. The inspection consists of scanning over the

positive (gold) areas of a wafer and detecting clear defects if the backscattered electron signal

goes low. Opaque defects are detected by scanning over the negative (silicon) areas and detect

ing defects if the signal goes high. Experiments showed that accurate overlay of the inspection

pattern to the wafer pattern is required if the proposed algorithm is to be implemented. If

accurate overlay over an entire writing field is not easily obtained, it may be required to overlay

smaller subfields [4]. The experiments also illustrated that if the detector's response time is too

slow, false defects may be detected at the points where the beam begins its scan over the gold.

The software and hardware requirements for an electron-beam inspection system were also

presented.

It was observed that the proposed inspection system utilized all of the capabilities inherent

in an electron-beam lithography system such as accurate registration, precise beam positioning,

and easy design data manipulation. These capabilities allow the mask inspection to take place in
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real time with no image processing requirements. Also, the conversion of an existing electron-

beam system into a mask inspection system using the proposed algorithm is likely to be much

less expensive than implementing a more complicated image processing approach. The pro

posed system uses the built in electronics of the electron-beam system to compensate for field

distortion and overlay errors instead of image processing. The proposed system is intended for

a research and development environment in which heavy demands are not made on the

electron-beam system for lithography. If a stand alone high resolution inspection system is

required, it seems advantageous to put an electron-beam front end onto an image processing

based optical inspection system. A very simple electron-beam system could be used because of

the limited scanning requirements.

Some inspection scanning techniques were also discussed. It was shown that the

minimum sized detectable defect will influence the manner in which a pattern is scanned. It

will be possible to decrease the inspection time by skipping over beam locations used in writing

the pattern. A scan, rescan technique [4] was also mentioned as a method to reduce SNR

requirements. Finally, it was shown that the proposed inspection system will allow inspection

throughput comparable to existing optical techniques at 2-4 times the resolution.

There are several areas in which further work is needed. It would be interesting to extend

the Monte Carlo program to simulate three dimensional structures to follow up on the simple

analytical techniques discussed in Chapter 4. Also, a study of more complicated defect struc

tures, besides steps and holes, could be performed with the program in its present form. In

this research, we have mainly looked at the backscattered electron signal. It would be

worthwhile to extend the simulation so that the secondary electron signal could be simulated as

well. The signal and SNR characteristics of the backscattered and secondary electron signals

could then be compared for the inspection of low atomic number material combinations, such

as resist on silicon.

Overlay studies should be performed and the proposed mask inspection algorithm should

be implemented on the vector scan electron-beam system. Also, the possibilities of putting an
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electron-beam front end onto an optical image processing inspection system should be explored

more completely. It is also important to develop techniques which will allow for the repair of

the x-ray masks after the defects have been detected.

Mask inspection is one of the few areas remaining in the electron-beam system field

which has not been fully explored. It is hoped that this work will be of use to others interested

in the development of high resolution mask and wafer inspection systems.



181

APPENDIX A

THE MONTE CARLO SIMULATION PROGRAM

A.l. Introduction

The Monte Carlo computer program described in this work uses the standard continuous

slowing down approximation with the screened Rutherford collision cross-section and Bethe

energy loss equation. Parts of the code are based on a Monte Carlo program written by Lin

[19] in a study of the backscattered electron alignment signal from resist covered silicon steps.

The new program, described in this work, has been used to calculate and analyze the backscat

tered electron signal from structures encountered during x-ray mask inspection. The simulated

target structures are two dimensional in that they extend to infinity in both directions on the y

axis. The program is written in standard Fortran 77 and consists of about 3900 lines of code.

In this appendix, we will briefly describe the operation of the program and list an input and out

put example.

A.2. Program Operation

The structure to be simulated is specified by a piecewise approximation as shown in Fig

ure A.l. XO, XP, XQ, etc. are the variables used in the program to specify the structure. The

entire region is broken up into 17 zones, numbered in the figure. Zones 8, 9, and 10 comprise

the top layer while zones 11-17 make up the bottom layer. Zones 1-7 are considered to be

vacuum. Planes 1-13 separate the zones from the vacuum and also the top layer from the bot

tom layer. The top layer structure has a constant thickness of ZT.

A sample input file is shown in Figure A.2. The resulting target structure, incident beam

position, and trajectories of the firsts 25 electrons are shown in Figure A.3. The input file is for

the most part self explanatory, with a few exceptions. To simulate a PMMA top layer, it is

necessary to enter a value of 0.0 for the atomic weight of the top layer element. It does not

matter what values are given to the atomic number and density of the top layer in this case.

Note that all units of distance are in cm. The thickness of the top layer must be entered as a
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196.967000

79.

19.30000

28.0860000
14.

2.330000

001.000E-4

001.050E-4

001.250E-4

001.300E-4

001.550E-4

001.600E-4

001.800E-4

001.850E-4

002.100E-4

002.150E-4
002.350E-4

002.400E-4

-00.250E-4

25000.0000

00100

00850.0000

001.700E-4

010.000E-4

00.16754756D+8
0

-00.000E-4

004.000E-4

-02.500E-4

000.750E-4

ATOMIC WEIGHT, TOP LAYER
ATOMIC NUMBER, TOP LAYER
DENSITY (G/CM**3), TOP LAYER
ATOMIC WEIGHT, BOTTOM LAYER
ATOMIC NUMBER, BOTTOM LAYER
DENSITY (G/CM**3), BOTTOM LAYER
PIECEWISE FIT TO TARGET (CM) — XO

XP

XQ
XR

XS

XT

xu

XV

xw

xx

XY

xz

THICKNESS OF TOP LAYER (CM)
INCIDENT BEAM ENERGY (EV)
NUMBER OF TRAJECTORIES

ENERGY AT WHICH CALCULATIONS STOP (EV)
X POSITION OF INCIDENT E-BEAM (CM)
Z POSITION AT WHICH CALCULATIONS STOP (CM)
INITIAL RANDOM NUMBER

1 = PRINT POINTS FOR EACH TRAJECTORY 0 = NO PRINT
XMIN (CM)
XMAX (CM)
ZMIN (CM)
ZLAR (CM)

Figure A.2. An example of an input file to the Monte Carlo program.
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negative number. Also, it would be wise to keep the numbers in the column fields shown in

Figure A.2. Some computer systems may be upset if the numbers are placed outside the

specified format fields. This restriction could be eliminated by replacing the specified formats in

the input subroutine with general *•' formats. The minimum energy for calculations is neces

sary since at low values of electron energy, the argument in the logarithm of the Bethe equation

becomes less than one causing the electron to gain energy. For gold, this minimum energy is

about 750 eV while for silicon it is about 200 eV [37].

Routine MAIN executes the simulation of the electron trajectories. The program is

extremely modular in nature and contains many subroutines. It is fully realized that some of

the subroutines are repetitive and could be combined into one. It is also realized that there

may be slightly more efficient ways of writing the program code; however, this program has one

big advantage over more efficient programs which one could write: it works. However, care was

taken to eliminate repetitive calculations as much as possible and the search and energy loss

routines are written so that the most likely event is checked for and executed first.

An electron's trajectory is simulated in the following manner. The last position of the

electron is known along with the number of the zone in which it is located. Subroutine

NXTXYZ is called and in turn calculates the AX, AY, and AZ values for the previous two steps

in the trajectory. Subroutines STEPL, DIRETN, and XYZ are then called to calculate the step

length for the next part of the trajectory, the direction of scatter, and the new location of the

electron. This assumes that the electron stays in the same zone which it began scattering in. A

SRCH subroutine is then called, depending on what zone the electron was in at the beginning

of this scattering event, to determine where the new location (or next scattering location) is

located. The most likely locations (zones) are checked first. The appropriate ENLS subrou

tines are called to calculate the energy loss of the electron as it travels from the old location to

the new location. These subroutines calculate the energy lost during the step length, the cross

ing of zone boundaries, and the tabulation of the backscattered electron data. Again, the most

likely events are checked for first.
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The SRCH and ENLS subroutines assume that an electron can, in one step length, travel

completely through one of the bottom layer zones. For example, an electron could travel from

zone 11 to zone 13; but, could not travel from zone 8, through zone 9, and into zone 10 in one

step length. A variable step length is used so that it is possible for an electron to travel up to 5

times its calculated mean free path [19,39]. The assumption of scattering into surrounding

zones limits the minimum size of complicated structures to about 0.1 /mm at 25 kV. This is pri

marily due to the larger step length of an electron in silicon.

The resulting output file after the program has been run with the input file shown in Fig

ure A.2 is shown in Figure A.4. Again, most of the output file is self explanatory. The energy

distribution of electrons shows the number of backscattered electrons, in histogram form, with

energies ranging from 0 to ENIN (input energy) in ENIN/40 steps. Directly below is the

corresponding energy histogram which lists the amount of electron energy deposited in each bin

of the histogram.

The theta angel distribution is in a similar format and lists the number and total energy of

electrons backscattered into the 90-0 degrees take-off angle range. The histogram size is 2.5

degrees and starts with electrons backscattered into a take-off angle range of 90-87.5 degrees as

measured from the plane of the substrate.

The phi angle distribution lists the number and then total energy of the electrons back-

scattered into the 0-360 degrees azimuthal angle range. The histogram size is 5 degrees and it

starts with electrons backscattered into the 0-5 degrees azimuthal angle range. Looking down at

the target, this range starts to the right of the 8-function electron-beam and goes counterclock

wise.

Finally, the separation into different theta and phi regions is left over from Lin's Monte

Carlo program [19]. Again, the number and energy of the electrons scattered into the specified

regions are listed. PHI1 is 0-90 degrees in the azimuthal range, PHI2 is 90-180 degrees, etc.

As can be seen, quite a bit of information is generated by the program for one S-function

electron-beam. This is why, for the results presented in this thesis, programs were written to
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MONTE CARLO SIMULATION PROGRAM - IBM VERSION 2.0

JULY 20, 1983

**************INPUT DATA**************

ATOMIC WEIGHT, ATOMIC NUMBER, AND DENSITY OF TOP LAYER
196.9670 79. 19.3000

ATOMIC WEIGHT, ATOMIC NUMBER, AND DENSITY OF BOTTOM LAYER
28.0860 14. 2.3300

PIECEWISE FIT TO TARGET

XO,XP,XQ,XR,XS,XT,XU,XV,XW,XX,XY,XZ,ZT-IN CM
0.1000E-03

0.1050E-03

0.1250E-03

0.1300E-03

0.1550E-03

0.1600E-03

0.1800E-03

0.1850E-03

0.2100E-03

0.2150E-03

0.2350E-03

0.2400E-03

-.2500E-04

rs

<
v

3
90

il
<—

O

21
CC

3
C
C

SO
c

b.

4>

(C

3
O.

3
O

0>
SZ

BEAM ENERGY = 25000.00 EV

MINIMUM ENERGY FOR CALCULATIONS =

100 TRAJECTORIES SIMULATED

850.00 EV

X POSITION OF INCIDENT E-BEAM = 0.1700E-03 CM
Z POSITION AT WHICH CALCULATIONS STOP = 0.1000E-02 CM

INITIAL RANDOM NUMBER 0.16754756D+08

PRINT FLAG = 0

<

1—

3

**********************

* SIMULATION RESULTS *
**********************

THE TOTAL NUMBER OF BACKSCATTERED ELECTRONS IS 66
THE TOTAL BACKSCATTERED ENERGY IS 1305964.000000

THE FOLLOWING RESULTS ARE FOR THE NUMBER AND ENERGY
(IN UNITS OF EV) SIGNALS RESPECTIVELY.

THE ENERGY DISTRIBUTION (ENIN/40 PER DIVISION)

EV

0 0 0 0

0 0 0 0

5 3 6 4

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.38177133E+05

0.45872223E+05

0.53740422E+05

0.10094662E+06

0.22786937E+06

0.00000000E+00

0 0 0 1 0 0 0 0 0 0

3 3 0 1 3 2 1 0 3 3

10 3 8 3 0

0..00000000E+00 0. 00000000E+00 0.,000000

0..00000000E+00 0. 00000000E+00 0..496883

0..00000000E+00 0..00000000E+00 0..000000

0..00000000E+00 0..91352031E+04 0..959849

0..00000000E+00 0..00000000E+00 0..000000

0..40229637E+05 0..00000000E+00 0,.149908

0,.31685074E+05 0..16497312E+05 0,.000000

0,.55340887E+05 0..19174238E+05 0..197098

0,.62763527E+05 0,.12962094E+06 0,.890826

0 .70487375E+05 0,.19271394E+06 0 .733666

THE THETA-ANGLE DISTRIBUTION (2.5 DEG PER DIVISION)



0 2 0 0

0 5 4 1

0 10 0

0.00000000E+00

0.13160574E+05

0.00000000E+00

0.00000000E+00

0.00000000E+00

0.62777613E+05

0.64445633E+05

0.90944875E+05

0.00000000E+00

0.00000000E+00

1 1 1 2 0 2 4 1 0 2

3

0

3 5 1 3 3 1 4 4 5

0..31196352E+05 0..00000000E+00 0..000000

0.,12791312E+05 0..14990824E+05 0..438490

0..30837238E+05 0..78628562E+05 0..239389

0..38376578E+05 0,.69956187E+05 0..339816

0..10929044E+06 0..81217812E+05 0..237203

0..70192125E+05 0,.82934250E+05 0..225056

0..51430988E+05 0..22963520E+05 0..858295

0..10141187E+06 0,.24468758E+05 0..000000

0..20130895E+05 0,.00000000E+00 0..000000

THE PHI-ANGLE DISTRIBUTION (5 DEG PER DIVISION)

1 0 1 0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 1 2 0 0 1 2 0 1 0 2

2 2 0 2 1 2 1 0 0 2 1 1 0 0

0 1 0 1 0 2 2 1 2 2 0 1 0 1

0 0 1 2 2 3 2 2 0

0..13160574E+05 0..00000000E+00 0.,19174238E+05 0.,000000

0..00000000E+00 0..15896980E+05 0..20073020E+05 0..000000

0..00000000E+00 0..23065512E+05 0..13713160E+05 0.,000000

0..00000000E+00 0..00000000E+00 0,.00000000E+00 0.,458247

0..0O0000O0E+OO 0..00000000E+00 0..00000000E+00 0..000000

0..24174086E+05 0,.31966387E+05 0..00000000E+00 0..000000

0..23244297E+05 0,.33019602E+05 0..00000000E+00 0,.157880

0..00000000E+00 0..43806566E+05 0..22875340E+05 0..783772

0..28336758E+05 0..44806020E+05 0..00000000E+00 0..370190

0..21159504E+05 0..35174687E+05 0..18740172E+05 0..000000

0..00000000E+00 0,.43700453E+05 0..22366801E+05 0..200873

0,.00000000E+00 0,.00000000E+00 0..17950609E+05 0..000000

0,.00000000E+00 0..23522719E+05 0..00000000E+00 0,.182398

0,.00000000E+00 0,.46615254E+05 0,.45726340E+05 0,.226955

0,.43212734E+05 0,.24376691E+05 0,.00000000E+00 0,.496883

0,.00000000E+00 0,.20455805E+05 0,.57740090E+05 0,.183608

0,.00000000E+00 0,.00000000E+00 0,.22504172E+05 0,.488601

0,.43474977E+05 0,.59060715E+05 0,.46683902E+05 0,.459722

0.00000000E+00

THE TOTAL NUMBER OF ABSORBED ELECTRONS IS 34

THE TOTAL ENERGY ABSORBED IN SUBSTRATE IS 1194022.000000 EV

188

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 1 6

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 2 0

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 3 3

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 4 0 ♦j

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 5 2
c
o

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 6 10
u

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 7 29 .

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 8 8
•^

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 9 0 <

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 10 0 Um

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 11 2
3
SO

THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 12 1 t£
THE BACKSCATTERED ELECTRONS COMING OUT FROM PLANE 13 5

SEPARATION INTO DIFFERENT THETA AND PHI REGIONS

THE ROWS ARE 0-30, 30-60, AND 60-90 DEG
AND THE COLUMNS ARE PHI1,PHI2, PHI3 AND PHI4.

4 4 8

7 6 10

6 0 4

0.88986875E+05

6

7

4

0.85613375E+05 0.15845856E+06 0.128567



0.15120631E+06 0.10939431E+06 0.20636294E+06 0.127988

0.11302831E+06 0.00000000E+00 0.67416187E+05 0.689483

THE RANDOM NUMBER FOR NEXT RUN IS 0.866674200D+07

TOTAL BACKSCATTER COEFFICIENT = 0.65999997E+00

Figure A.4. (cont.)
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automatically read in the output files describing the signal from a target and selectively pick out

the desired information. In this manner, it was possible.to effectively utilize the program to

perform a variety of simulation studies.
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