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ABSTRACT

A fuzzy syllogism in fuzzy logic is defined in this paper to be
an inference schema in which the major premise, the minor prem
ise and the conclusion are propositions containing fuzzy
quantifiers. A basic fuzzy syllogism in fuzzy logic is the
intersection/product syllogism

Qi A's are B's

Qz(A and,g)'s are C's

(Qi ® Qz) A's are (B and C)'s ,

in which A, B and C are fuzzy predicates (e.g., young men, blonde

women, etc.): Qi and Qz are fuzzy quantifiers (e.g., most, many,
almost all, etc.) which are interpreted as fuzzy numbers; and
Qi ® Qz is the product of Qx and Qz in fuzzy arithmetic.

We develop several other basic syllogisms which may be
employed as rules of combination of evidence in expert systems.

Among these is the consequent conjunction syllogism which may
be expressed as the inference schema

Qi A's are B *s

QzA's are C's

QA's are (B andC)'s ,

in which Q is a fuzzy number bounded from above by Qi © Q2 and

from below by 0 v (Ci © Gz© 1). where ® , e and ® are the

extensions of the arithmetic operators +, —and a • respectively,
to fuzzy operands. Furthermore, we show that syllogistic reason

ing in fuzzy logic provides a basis for reasoning with dispositions,
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that is. with propositions which are preponderantly, but not neces
sarily always, true.

1. Introduction

Fuzzy logic may be viewed as ageneralization of multivalued logic in that it
provides awider range of tools for dealing with uncertainty and imprecision in
knowledge representation, inference and decision analysis. In particular, fuzzy
logic allows (a) the use of fuzzy quantifiers exemplified by most, several, many,
few, many more, etc; (b) the use of fuzzy truth-values exemplified by quite true,
very true, mostly false, etc; (c) the use of fuzzy probabilities exemplified by
Wcely, unlikely, not very likely, etc; (d) the use of fuzzy possibilities exemplified
by quite possible, almost impossible, etc; and (e) the use of predicate modifiers
exemplified byvery, more or less, quite, extremely, etc.

What matters most about fuzzy logic is its ability to deal with fuzzy
quantifiers as fuzzy numbers which may be manipulated through the use of fuzzy
arithmetic [32]. This ability depends in an essential way on the existence -
within fuzzy logic - of the concept of cardinality or. more generally, the concept
of measure of a fuzzy set. Thus, if one accepts the classical view of KolmogorofI
that probability theory is abranch of measure theory, then, more generally, the
theory of fuzzy probabilities may be subsumed within fuzzy logic. This aspect of
fuzzy logic makes it particularly well-suited for the management of uncertainty
in expert systems [33]. More specifically, by employing a single framework for
the analysis of both probabilistic and possibilistic uncertainties, fuzzy logic pro
vides a systematic basis for inference from premises which are imprecise,
incomplete or not totally reliable. In this way. itbecomes possible - as is shown
in this paper - to derive aset of rules for combining evidence through conjunc
tion, disjunction and chaining. In effect, such rules may be viewed as instances
of syllogistic reasoning in fuzzy logic; however, unlike the rules employed in
mostofthe existing expert systems, they are notad Tioc in nature.

Our concern in this paper iswith fuzzy syllogisms of the general form

pW (11)
q(gg)

r«?)

in union the major premise. p(9,) . is a fuzzy proposition containing a fuzzy
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quantifier Qx; the minor premise. q(Qz), is afuzzy proposition containing afuzzy
quantifier Q2; and the conclusion, r{Q), is a fuzzy proposition containing a fuzzy
quantifier Q. For example, the intersection/product syllogism [32] may be
expressed as

Qi A's are B's (1*2)

Oo(A andBVs are C's

Q A's are {B and C)'s ,

where A, B and Care labels of fuzzy sets, and the fuzzy quantifier Qis given by
the product of the fuzzy quantifiers Qi and Qz, i.e.,

Q=Qi 8 Qz . (L3)

where <3 denotes the product in fuzzy arithmetic [7].1 It should be noted that (3)
may be viewed as an analog of the basic probabilistic identity [15]

p(B,C/A)=p(B/A)p(C/A,B) . (1.*)

Aconcrete example of the intersection/product syllogism is the following

(1.5)
most students are young v

mast young students ore single

most2 students are young and single ,

where most2 denotes the product of the fuzzy quantifier most with itself.
An important application of syllogistic reasoning in fuzzy logic relates to

what may be regarded as reasoning with dxsposUwns. Adisposition, as its name
suggests, is aproposition which is preponderantly, but not necessarily always,
true. To capture this intuitive meaning of adisposition, we define adisposition
as aproposition with implicit extremal fuzzy quantifiers, e.g.. most, almost all,
almost always, usuaUy, rarely, few, small fraction, etc. This definition, should
be regarded as adispositional definition in the sense that it may not be true in
all cases.

1. Hare generally, acircle around an arithmetic operator represents its extension to fuzzy
operands.
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Examples of commonplace statements of fact which may be viewed as
dispositions are: overeating causes obesity, snow is white, glue is sticky, icy
roads are slippery, etc. An example of what appears to be aplausible conclusion
drawn from dispositional premises is the following

icy roads are sappery

slippery roads are dangerous

icy roads are dangerous .

As will be seen in Section 3. syllogistic reasoning with dispositions provides a
basis for a formalization of the type of commonsense reasoning exemplified by
(1.6).

The importance of the concept of a disposition stems from the fact that
what is commonly regarded as commonsense knowledge may be viewed as acol
lection of dispositions [34]. It is widely recognized that commonsense
knowledge plays an essential role in human reasoning and decision-making.
Viewed in this perspective, one of the objectives of the present paper is to sug
gest that syllogistic reasoning in fuzzy logic may contribute to abetter under
standing of commonsense reasoning and its role in decision analysis.

2. Fuzzy Quantifiers. Compositionality and Robustness
As was stated in the Introduction, the concept of a fuzzy quantifier is

related in an essential way to the concept of cardinality - or, more generally,
the concept of measure - of fuzzy sets. More specifically, afuzzy quantifier may
be viewed as afuzzy characterization of the absolute or relative cardinality of a
collection of fuzzy sets. In this sense, then, afuzzy quantifier is asecond-order
fuzzy predicate.

The cardinality of afuzzy set may be denned in avariety of ways [31]. For
simplicity, we shall employ the sigma-count for this purpose, which is denned as
follows [6], [30].

Let A be a finite fuzzy subset of the university of discourse. V. with A
expressed as

A=pl/ul+...+fJLn/un . (21)

where ux/ux .i=1 n- siSmfles that * is the grade °fmembership °f ^ "m
Aand +denotes the union. Then, the sigma-count of Ais denned as the real
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number

£Cbunt(il)s£tPi • ^2^

with the understanding that the sum may be rounded, if need be. to the nearest
integer. Furthermore, one may stipulate that the terms whose grade of
membership fails below a specified threshold be excluded from the summation.
The purpose of such an exclusion is to avoid asituation in which alarge number
of terms with low grades of membership become count-equivalent to a small
number of terms with high membership.

The relative sigma-count, denoted by ZCount(B/A), may be interpreted as
the proportion ofelements of B in A. More explicitly.

ZCount{Bf\A) ,-„*
ZCbunt{B/A) = ZCaunt{A) • <2*3)

where BC\A, the intersection of B and A, is defined by

fJLBnA(u) =uB(u) A uA(u) ,ueU . (2.4)

Thus, in terms of the membership functions of Band A, the relative sigma-count
of B in A is given by

*r* ifn J1 W«t)AM<M (2.5)ZCount(B/A) = ^(tii) ' K

The concept of arelative sigma-count provides abasis for interpreting the
meaning of propositions of the form p ±Q A's are B's, e.g.. most young men
are healthy. More specifically, the fuzzy quantifier Q in the proposition
QA's are B's may be regarded as a fuzzy characterization of the relative
sigma-count of B in A, which entails that the proposition in question may be
translated as

QA's are B's -*ZGaunt(B/ A)is Q . (2.6)

The right-hand member of (2.6) implies that Q, viewed as a fuzzy number,
defines the possibiUty distribution of ZCount (B/A) . This may be expressed as
thepossibility assignment equation [30]

UX =Q . <*7>

in which the variable X is the sigma-count in question and II, is its possibility
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distribution.

As was stated earlier, a fuzzy quantifier is asecond-order fuzzy predicate.
The interpretation expressed by (2.6) and (2.7) shows that the evaluation of a
fuzzy quantifier may be reduced to that of afirst order predicate if Qis inter
preted as afuzzy subset of the real line. Thus, let us consider again the proposi
tion p&<? A•• are B's. in which Aand B are fuzzy sets in their respective
universes of discourse. Vand V; and <?. regarded as asecond-order fuzzy predi
cate, is assumed to be characterized by its membership function n9(X,Y), with
Xand Yranging over the fuzzy subsets of Uand V. Then, based on (3.6) and
(8.7). we can define hq(X.Y) through the equality

M«(*. Y) =A»offCbunf (X/ Y)) , (2-8>
in the right-hand member of which Qis a unary first-order fuzzy predicate
whose denotation ifafuzzy subset of the unit interval. Consequently, in the pro
position QA's are B's. Qmay be interpreted as (a) asecond-order fuzzy predi
cate defined on Wx V . where V and V are the fuzzy power sets of Uand V;
or (b) afirst-order fuzzy predicate defined on the unit interval [0.1].

It is useful to classify fuzzy quantifiers into quantifiers of the first kind,
second kind, third kind. etc.. depending on the arity of the second-order fuzzy
predicate which the quantifier represents. Thus. Qis afuzzy quanUfier of the
first kind if it provides a fuzzy characterization of the cardinality of a fuzzy set;
Qis of the second kind if it provides afuzzy characterization of the relative car
dinality of two fuzzy sets; and <? is of the third kind if it serves the same role in
relation to three fuzzy sets. For example, the fuzzy quantifier labeled several is
of the first kind; most is of the second kind; and many more in there are many
mare AS in BS Hum AS in CS is of the third kind. It should be noted that, in
terms of this classification, the certainty factors employed in such experts sys
tems as MYCIN [23] and PROSPECTOR [8] are fuzzy quantifiers of the third kind.

The concept of a fuzzy quantifier gives rise to anumber of other basic con
cepts relating to syllogistic reasoning among which are the concepts of compost-
tumality and robustness.

Specifically, consider afuzzy syllogism of the general form (1.1). i.e..
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r(9)

We shall say that the syllogism is strongly compositional if (a) Qmay be
expressed as a function of <?, and «?. independent of the denotations of the
predicates which enter into p and g. excluding the trivial case where Qis the
unit interval; and (b) if Qi and Qz are numerical quantifiers, so is <?. Further
more, we shall say that the syllogism is weakly compositional if only (a) is
satisfied, in which case if <?, and Qz are numerical quantifiers. Qmay be
interval-valued. As will be seen in the sequel, in order to achieve strict composi-
tionality. it is necessary, in general, to make some restrictive assumptions con
cerning the predicates inp and g. For example, the syllogism

(2-10)
QiA's are B s v

QaB's are C's

(Ci ® Qz) A's are (B and C)'s

is strictly compositional if B C A.
Turning to the concept of robustness, supppose that we start with anon-

fuzzy syllogism of the form

g(«*0

r(aU)

an example of which is

(2-12)all A's are B's v

yll fi's are C's

all A's are C's .

The original syllogism is robust if small perturbations in the quantifiers in pand
gresult in asmall perturbation in the quantifier in r. For example, the syllo^
gism represented by (2.12) is robust if its validity is preserved when (a) the
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quantifier all in p and qis replaced by almost all', and (b) the quantifier all in r
is replaced by almost almost all. (In more concrete terms, this is equivalent to
replacing all in p and q by the fuzzy number 16*. where e is a small fuzzy
number; and (b) replacing all in r by the fuzzy number 102e.) More generally,
asyllogism is selectively robust if the above holds for perturbations in either the
major or the minor premise, but not necessarily in both. For example, it may be
shown that the syllogism expressed by (2.12) is selectively robust with respect
to perturbations in the major premise but not in the minor premise. In fact, the
syllogism in question is brittle with respect to perturbations in the minor prem
ise in the sense that the slightest perturbation in the quantifier all in q requires
the replacement of the quantifier all in r by the vacuous quantifier none to all.

3. F\izzy Syllogisms and Reasoning with Dispositions
As was stated earlier, one of the basic syllogisms in fuzzy logic is the

intersection/product syllogism expressed by (1.2).

In what follows, we shall employ this syllogism as a starting point for the
derivation of other syllogisms which are of relevance to the important problem
of combination of evidence in expert systems.

Aderivative syllogism of this type is the multiplicative chxrining syllogism

QxA's are B's ^3ml'

Qc>B's are C's

^(Gi® Qz)A's are C's ,

in which HQi ®Qz) should be read as at least Qx ®Qz- This syllogism is aspecial
case of the intersection/product syllogism which results when B c A, i.e..

IJLBM^UAiVi) . UiSLU. i =l (3-2)

For. in this case AOB - B, and since Bf) Cis contained in C, it follows that

(Qi ®Qz)A 's are (B and C) 's => 2*(<?i ®Qz)A 's are C's . (3.3)

(It is of interest to note that if Qin the proposition QA's are B's is interpreted
as the degree to which Ais contained in B, then the multiplicative chaining syl
logism shows that, under the assumption Bc A, the fuzzy relation of fuzzy-set-
containment isproduct transitive [28], [32].)
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If, in addition to assuming that B c A, we assume that Q\ and Qz are mono

tone increasing [3], i.e.,

±Qi = Qi (3.4)

* Qz = Gz

which is true of the fuzzy quantifier most, then

*(Qi®Qz) = Qi®Qz (3.5)

and the multiplicative chaining syllogism becomes

QiA's are B's (3.6)

Qz B 's are Cjs

(Qi& Q2)A's are C's .

As an illustration, we shall consider an example in which the containment

relation B c A holds approximately, as in the proposition

p Lmost American cars are big- . (3.7)

Then, if

q kmost big cars are expensive . (3.8)

we may conclude, by employing (3.6), that

r 4 most2American cars are expensive ,

with the understanding that most2 is the product of the fuzzy number most with

itself [32].

It can readily be shown by examples that if no assumptions are made
regarding A, B and C, then the chaining inference schema

Qi A's are B's (3.9)

QzB's are C's

Q A's are C's .

is not weakly compositional, which is equivalent to saying that, in general, Q is
the vacuous quantifier none to all. However, if we assume, as done above, that
B C A% then it follows from the intersection/product syllogism that (3.6)
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becomes weakly compositional, with

Q= HQi®Qz) . (3-10>

and, furthermore, that (3.6) becomes strongly compositional if Qx and Qz are
monotone increasing.

Another important observation relates to the robustness of the multiplica
tive chaining syllogism. Specifically, if we assume that

Qi-ieei

Qz~ 1 © e2

where tx and £2 are small fuzzy numbers, then it can readily be verified that,
approximately,

Qi®Qz - 16510*2 . (3.H)

which establishes that the multiplicative chaining syllogism is robust. However,
in the absence of the assumption B c A, the inference schema (3.9) is robust
only with respect to perturbations in Qx. To demonstrate this, assume that Qi =
almost alt and Qz - oil- Then, from the intersection/product syllogism it follows
that Q=ss (almost all). On the other hand, if we assume that Qi = all and Qz =
almost all, then Q = none to all. Thus, as was stated earlier, the inference

schema(3.9) is brittle with respect to perturbations in the minor premise.

The MPR chaining syllogism

In the preceding discussion, we have shown that the assumption B c A
leads to a weakly compositional multiplicative chaining syllogism. Another type
of assumption which also leads to a weakly compositional chaining syllogism is
that of major premise reversibility or MPR, for short. This assumption may be
expressed as the semantic equivalence

QiA's are B's *-* QiB's are A's . (3.12)

which, in most cases, will hold approximately rather thanexactly. For example,

most American cars are big «-* most big cars are American .

It canbe shown [34] that under the assumption ofreversibility the following
chaining syllogism holds in an approximate sense
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QiA'sareB's (313)

Qp B 's are C 's

fe(0®((Gi® Q2ei))A's are C's .

We shall refer to this syllogism as the MPR chaining syUogism. It follows at once
from (3.13) that the MPR chaining syllogism is weakly compositional and robust.
Aconcrete instance of this syUogism is provided by the following example

=t most American cars are big \ - )

most bin rmrs are heavy .

0®(2most 01) American cars are heavy .

The consequent conjunction syllogism

The consequent conjunction syllogism is an example of a basic syllogism
which is not a derivative of the intersection/product syllogism. Its statement
may be expressed as follows:

QtA'sareB's ^3'15'

Q?A's are C's

Q A's are (B and C)'s ,

where

0<2>(Gi© &01) ^ Q* Qi®Qz (3*16)

From (3.16). it foUows at once that the syllogism is weakly compositional and
robust.

An Ulustration of (3.15) is provided bythe example

most students are young

most sfayrfpwig nre single

Q students are single and young

where

2mos* 0 1^ Q2£ most (3-17)
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This expression for QfoUows from (3.16) by noting that

most ® most = most

and

0 ® (2most © 1) = 2most © 1 .

The importance of the consequent conjunction syllogism stems from the
fact that it provides a formal basis for combining rules in an expert system
through a conjunctive combination of hypotheses [33]. However, unlike such
rules in MYCIN [23] and PROSPECTOR [8], the consequent conjunction syllogism
is weakly rather than strongly compositional. Since the combining rules in
MYCIN and PROSPECTOR are ad hoc in nature whereas the consequent conjunc
tion syUogism is not. the validity of strong compositionality in MYCIN and PROS
PECTOR is in need of justification.

The antecedent conjunction syllogism

An issue which plays an important role in the management of uncertainty in
expert systems relates to the question of how to combine rules which have the
same consequent but different antecedents.

Expressed as an inference schema in fuzzy logic, the question may be
stated as

QxA's are C's (3*18)

Q? B's are C's

Q (AandB)'s ore C's ,

inwhich Qis the quantifier tobe determined as a function of Qx and Qz.
It can readily be shown by examples that, in the absence of any assump

tions about A, B, C. Qx and Qz, whatcan be said about Qis that it is the vacuous
quantifier none to all. Thus, to be able to say more, it is necessary to make
some restrictive assumptions which are satisfied, at least approximately, in typi
cal situations.

The commonly made assumption in the case of expert systems [8], [23] is
that the items of evidence are conditionally independent given the hypothesis.
Expressed in terms of the relative sigma-counts of A, B and C. this assumption
may be written as
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ECount (AC\B/C) = ZCount (A/ C)S Count (B/ C) . (3.19)

Using this equaUty, it is easy to show that

ZCount(C/A P[B) =KZCount(C/A)ZCount{C/B) . (3.20)

where the factor K is given by

K £Count(A)ZCount(B) /3 21)
A = ZCount(AC\B)ZCbunt(C)

The presence of this factor has the effect of making the inference schema
(3.18) non-compositional. One way of getting around the problem is to employ -
instead of the sigma-count - a count defined by

pBCb^W-^ag^ (3-22)

in which -B denotes the negation of B (or, equivalently, the complement of B, if
B is interpreted as a fuzzy set which represents the denotation of the predicate
B). These counts wUl be referred to as psigma-counts (with p standing for
ratio) and correspond to the odds which are employed in PROSPECTOR [8].
Thus, expressed in words, we have

pZCount(B) kRatio of B's to non-B's (3.24)

pZCount (B/A) bRatio of B's to non-B's among A's . (3.25)

In terms of psigma-counts, it can readily be shown that the assumption
expressed by (3.19) entails the equality

pZCount(C/A f\B) =pZCount(C/A)pZCount(C/B)pZCbunt(-C) (3.26)

This equality, then, leads to what will be referred to as the antecedent conjunc
tion syllogism

ratio of C's tonon-Cs among A's is Rx (3.27)

ratio of C's tonon-Cs among B's is Rz

ratio of C's to non-C's among (A and B)'s is Rx®Rz®R*

where
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J?34rario of C's tonon-Cs .

It should be noted that this syllogism may be viewed as the fuzzy logic analog of
the likelihood ratio combining rule In PROSPECTOR [8].

In the foregoing discussion, we have focused our attention on some of the
basic syllogisms in fuzzy logic which may be employed as rules of combination of
evidence in expert systems. Another important function which these and
related syllogisms may serve is that of providing a basis for reasoning w,th
dispositions, that is. with propositions in which there are implicit fuzzy
quantifiers.

The basic idea underlying this appUcation of fuzzy syUogisms is the follow
ing. Suppose that we are given two dispositions

icy roads are slippery

slippery roads are dangerous .

Can we infer from these dispositions what appears to be a plausible conclusion,
namely.

icy roads are dangerous ? \ • /

As a first step, we have to restore the suppressed fuzzy quantifiers in the
premises. For simpUcity. assume that the desired restoration may be accom-
pUshed by prefixing the dispositions in question with the fuzzy quantifier most,
i.e.,

icy roads are slippery -» most icy roads are slippery

slippery roads are dangerous - most slippery roads are dangerous .

Next, if we assume that the proposition most slippery roads are dangerous
satisfies the major premise reversibiUty condition. i.e.,

most icy roads are slippery «- most slippery roads are icy .

then by applying the MPR chaining syllogism (3.13), we have
(3.29)most icy roads are slippery

most slippery to*"** "•« dangerous

(Zmost Gl) icy roads are dangerous .
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RnaUy, on suppressing the fuzzy quantifiers in (3.29), we are led to the chain of
dispositions

icy roads are slippery t3-3 '

slippery roads are dangerous

icy roads are dangerous ,

which answers in the affirmative the question posed in (3.29). with the under
standing that the implicit fuzzy quantifier in the conclusion of (3.29) is 2mos* ©1
rather than most.

Concluding remark

This paper may be viewed as an initiation of a study of syllogistic reasoning
in the context of fuzzy logic. Such reasoning has adirect bearing on the rules of
combination of evidence in expert systems and. in addition, provides a basis for
inference from commonsense knowledge by viewing such knowledge as a collec-
tion of dispositions.

The results presented in this paper are preliminary in nature. The issue of
syllogistic reasoning in fuzzy logic has many ramifications which remain to be
explored.
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