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We determine the improvements in a multiple mm-or reactor system due
to an asymmetrically applied ion cyclotron resonance field (ICRF). The
resonance field is used to selectively reflect ions that travel away from the
center of the device, thus creating a net ion drift towards the center. The
ICRF effects in heating and scattering the ions and modifying the loss cone
geomotry are determined in detail. A one dimensional, non-ignited (finite
Q = [usion power [recirculating power) model of a multiple mirror reactor
is developed. Various scaling laws are numerically derived and compared
to those of a symmetric system without ICRF. Radial diffusion due to
classical collisions and ICRF effects is calculated. A 21 cell machine with a
peak field of 280 kG and Q = 6 is reduced from 845 meters to 580 meters in
leagth with the addition of the asymmetric ICRF. The total fusion power
generatod by the system is reduced from 8 Gwatts to 6.3 Gwatts.
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1. Introduction

A multiple mirror fusion reactor consists of many magnetic mirror cells
placed end to end along a linear axis. For the collisional regime in which the
ion mean free path is of the order of a cell length, ions are continually trapped
and retrapped in adjacent cells. The resulting random walk process along the
axis yiclds an axial confinement time that scales as the square of the reactor
length.*” This scaling has been verified experimentally.®® Multiple mirror
plasmas have boen stabilised using average-minimum-B fields,>® and high #
operation has been achieved.!® A number of reactor feasibility design studies
have been made,!!-!¢ including wetwood burner operation,!! the effects of
impi;iﬁu,“ high 4 radial diffusion,'? and ecomomic optimisations.!>1¢ These
studies show that although the diffusive scaling of the axial loss is favorable,
overall reactor lengths tend to be long, of order 400-1200 meters.

In each cell of a normal multiple mirror, half of the particles retrap in
the adjacent cell inwards (towards the center) and half retrap in the adjacent
cell outwards (away from the center). In 1981, Post and Li'® calculated the
effects of changing these probabilities. The confinement time increases if it is
more likely that a particle retraps inwards than outwards. Unfortunately, no
mechanism to produce this asymmetry was investigated. In this paper, we study
in detail one process that produces asymmetry: ion cyclotron resonance heating
(ICRH). Under the particular conditions present in a multiple mirror system,
and appliod in the corroct manner, ICRH reduces the volume of the outward
facing loss cone in each cell!® This makes it more probable that particles
escape inward. We show that this loss cone asymmetry greatly improves the

parameters of a multiple mirror reactor, most notably by decreasing its length.
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In Sec. II, the basic multiple mirror model is described. The effects of
the ion cyclotron resonance feld (ICRF) are determined in Sec. III. The cal-
culation of the cell lengths is performed in Sec. IV. Numerical results of the
power balance opti.lnisuion are presented in Sec. V. These include scaling laws,
comparisons with previous studies, and the effects of radial diffusion.

IL The Basic Model ‘

We cousider a steady state system consisting of 2N + 1 cells with an axis
of symmetry through the midpoint of the central cell (see Fig. 1). To replace
particlos lost from the ends, there is a plasma source in the center of the system.
The plasma consists of equal parts of deuteriam and tritium nuclei, and their
eloctrons. The length L of the system is assumed to be much greater than that
of any individual cell (except, for reasons given later, the central cell). Each
cell consists of a relatively long midplane region of constant magnetic field,
and two short mirror regions where the field increases to its maximum value
at the mirror throat. Note that the length and the magnetic field strength of
a mirror cell noed not be identical to that of its neighbors. The mirror ratio
R in-cach cell is assumed to be large (R? > 1). In order to use the magnetic
field efficiently, the value of midplane § and the value of the maximum vacuum
magnetic field, Byas , are made as large as possible and are uniform throughout
the system. The maximum values of # and Byss are determined by stability
and engineering constraints that are beyond the scope of this paper.}317 The
long, thin approximation is used throughout: B(s) = B,(s). Since the plasma

pressure in cell 5 is p; = 2n;T, the constancy of § and B, gives



- ‘ -
(R} + i—g—ﬁ') n; = const , (1)
whare n is the ion density and R is the self consistent mirror ratio, which differs
from the vacuum mirror ratio due to finite §. Since the density decreases as

one moves outward from the center to the ends, the mirror ratios increase and

thé.;llﬂpllle fields decrease (see Fig. 1).

Since magnetic flux is conserved, we have

Aj

A - :

R const , (2)

where A; is the plasma cross sectional area in cell 5.

Unlike most magnetic fusion confinement schemes, the multiple mirror is
collisional. Particles scatter into and out of the loss cone while moving axially
through the system. When the mean free path of a particle is of the order of
the cell length, particles are trapped and detrapped many times before escaping
from the maltiple mirror. This leads to random walk behavior along the length
of the system, causing the particle confinement time to scale as the sguare of the
system length. The high collisionality also thermalises the plasma. Typically,
the particle confinement time is an order of Wnde larger than the longest
thermalisation time. Coupled with high eclectron thermal conductivity, the
plasma is considered to be a uniform temperature maxwellian throughout the

system.

The 90° mean free path for an ion of velocity v acattering against a back-
ground ion distribution is’8

4

Av) = K in- , (3)
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where K is a weak function of v. Equation (3) is used for a single ion species
of mass 2.5 AMU because the two ion species (D and T) have similar masses,
and because ion-electron scattering is negligible.

The mean froe path for ion scattering through a loss cone angle is given by

A(v) = % : (4)

In a maxwellian plasma, all values of \* will be present. Ions can be divided
into velocity classes based on the values of A\, A* and the various scale lengths.
Very low velocity particles will have A(lu,themirmu;'k length. Because
the magnetic moment of single particles is not conserved in the mirror region,
there is no mirror effect. The percentage of this class of particles is assumed to
be negligible becaase due to the smallness of Ips . Very high velocity particles
have mean free paths that satisfy \* > L. These particles are lost once they
scatter into the loss cone. This class of particles is also negligible because of
the cxpountnl in the maxwellian velocity distribation.

Botwoen these extremes lie the bulk of the particles, with Iy €« A <« RL.
This sntermediatc mean free path region was split into two parts by Makhijani
et al.” Lower velocity particles that satisfy \° < l,, where [, is the length
of a cell, are said to be in the ideal muitiple mirror regime. Higher velocity
particles with mean free paths such that I; € A* <« L are in the low denssty
multsple msrror regime. Particles in both regimes take random steps through
the system, thus giving the diffusive (L3) scaling. The ions in the low density
regime take longer steps and are therefore lost more rapidly than those in the
ideal regimo. For this reason, it is desirable to adjust the cell lengths or A® such
that the great majority of the ions are in the ideal regime. The ions in the low
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density regime are .then significant only in the calculation of the end loss power,
because they are lost more quickly than ions in the ideal regime, and because
they carry more than the average energy.

All other things being equal, the cost of a reactor system increases with
length. To minimise this length, A* must be as small as possible. Thus, multiple
mirrors operate at high mirror ratios (R > 3), low temperatures (5 keV) and
high densities (10!° cm™3 in the central cell). Even so, the density is low near
the.onds of the system, and cells tend to be long there. Because las < ), the
lllil;l'a' regions are collisionless, and particle motion is governed by conservation
of energy and magnetic moment. The midplane regions and the system as a
whole, bowever, are collisional because \* < L.

The oaly cell that is not governed by the value of A* is the central cell. .
Its length is determined by reactor power balance, not by particle trapping
considerations. The optimised central cell length has been found!* to comprise
about half of the total system length.

Electrons play an important role in multiple mirror dynamics. Najmabadi
et al.’® made a careful study of ambipolar effects in a multiple mirror and found
that the traditional correction factor,

1+(2) 5 52,
(]
is reasonably accurate. In our model, this implies a 50 percent decrease in the
ion confinement time.

In the steady state, the ion density in each cell is determined by particle
conservation and the physics of trapping and detrapping in each cell. We assume

that each cell contains a number of ions, H, and has ion fluxes F' and G entering



and leaving (see Fig. 2). These quantities are linked by an average confinement
time, . All of the ions are assumed to be in the ideal regime. This makes
conditions in any cell dependent only on the adjacent cells, and it decouples
the flux F;-, from F;, and G; from G;-, .

The continunity equations are

4

o H.
Fioy = —24 - 5a

b H;
GJ' = '..—J—""J'r (5b)

by +85 1

aad
H;

-;’_l =F:,'+Gj-1. (56)

The quantities 57 and b; are defined as

Fi_ G;
pt = 1L - = 1
J F, ' 55 G

(see Fig. 3). The combinations of b7 aad b7 in (6a) and (5b) are the probabil-
m- that a particle will eventually escape to the neighboring cell outward and
inward, respectively.

Since no ions enter the system from the ends, we have
G, =0. (6)
In the steady state, we have
Fj-Gj=F,. )

If all of the particles were in the ideal regime, the net outward flux throughout
the system would be F,. Numerically, the actual flux has been found®’ to be
on the order of 5 percent larger for typical reactor designs.



Using equations (5) and (7), we eliminate H;/r;, F; and Fj—, to obtain

G; = Cj(aj-l +F), (8)
where ‘
o
Cj = é (9)

is the asymmetry factor.The improved confinement time due to asymmetry is
caused by making C; larger than unity.

The boundary condition (6) can be used to solve (8) for G, in terms of C,
and F,. This, in turn, can be used to solve (8) for G in terms of C), C3, and
F,, and so forth. The general solution for G; is

where

To determine for the density in cell y, we must evaluate the flux
G; = Ajuj/v,/(v)dv ’

where /(v).is the velocity distribution function. It has been shown!® that the
velocity due to the outward drift is much smaller than the thermal speed for
all 'but, possibly, the last cell. Therefore, f(v) is assumed to bé a stationary
maxwellian. The integral is taken over the inward facing loss cone in cell ;.
There is no ICRH at the inboard end of the cell, so the loss cone boundary is
given by sin” 6, = 1/R; . Evaluating the integral,

G; = Aitiv (11)



We can eliminate G; between (10) and (11) and solve for n;. To account for
the enhanced axial loss due to ambipolar effects, we must divide n; by 2. The
density in cell 5 is then

nj = ‘/n: oiF, (12)

where (2) has been used to eliminate A; , and the subscript “c® denotes a central
cell quaatity.

In the absence of asymmetry, o; = 1 for all 5, and the density difference
betwoen adjacent cells is constant. If C > 1 and has the same value for all cells,
the increment in density versus cell number will increase exponentially as one
moves inwards.

The power flows in a multiple mirror reactor are shown in Fig. 3. Here, we
are concerned oaly with power flow into and out of the plasma itself. In steady
state, the power entering and leaving the plasma must be balanced,

PL+Py = [Pp+Pgr. (13)
The components of this power balance equation are explained in the following
paragraphs.

The total fusion power is given by
Pp = / Wr{ov)npnrdx , (14)
v

where Wy is the energy generated by a single fusion event, (0v) is the fusion re-
activity, np and nr are the densities of deuterium and tritium, and the integral
is taken over the volume of the plasma. Wy is a constant and (ov) is a func-
tion of temperature only; they can be removed from the integral. The densities

of deuterium and tritium are equal to n/2. Since the mirror regions are very
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short, almost all of the system volume consists of cell midplanes. The integral
can therefore be approximated by a sum of midplane quantities. Equation (14)
becomes

Pr = %W, (ou)M , (15)

where

N
M= n?A..le + 22 n}Ajlj

j=1

. (16)

Alpha particles transfer a fraction V1=1/R, of their energy to the plasma
via coulomb collisions.!* Since alpha particles carry 20 percent of the fusion
produced cmergy, the fraction of the fusion power abscrbed directly by the
plasma is

h= VIR, .
The power lost to bremsstrahlung is
Py = / Icp/Tn,-n.dx ’ (17)
v

where kg = 5.35 - 1077 watt/m®-(keV)*/2, n, is the ion density and ne is the

eloctron denaity. Using the same appraximations as before, (17) becomes

Py = kyVTM . (18)
The power lost axially is given by
Py = 4k, TF, . (19)

The factor of 4 comes from the two ends and the fact that an electron is lost
with every ion. The quantity 4,7 is the mean energy lost per ion. If all of the
particles are in the ideal regime, k;, = 2.5. In multiple mirrors, £z, > 2.5 due to
the more rapid escape of ions in the low density regime. Ambipolar effects have
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been accounted for in equation (12). Eliminating F, between (19) and (12), we

obtain
_ 4k TvepAcn,

Fu \/; R.o,

(20)
We consider a non-ignited reactor with recirculating power Py . The power
amplification factor is defined as '
= —, (21)
A large value of Q is desirable from an economic standpoint.

We rearrange the power balance equation and substitute from equations
(15), (18), (20) aad (21) to obtain

4k Tvep Aon, _ 1 Wp(ov) -
_\/_;Rc_oc-.- [(-Q-+f1) n k’ﬁ]M. (22)

Equation (22) can be manipulated? to form an expression for the product of
the central coll pressure and the system length:

Pel = X(T9kL;N'QvﬂchvaM) . (23)

It is reasonable to assume that the cost of the system increases monotonically
with p,L.1* We will therefore minimise it with respect to T and k;. The
quaatities to the right of the semicolon in (23) are input parameters of the
system. The optimum values of these parameters must be determined by an
oconomic analysis which is beyond the scope of this study.!> By fixing 2, R,,
and Bya¢, pe is held constant, even if T varies. This insures that a minimum

of p.L is a minimam of L.

Using equations (15), (22), and (16), an expression for the fusion power

per unit central cell cross sectional area, Pr[Ac, can be obtained. There is
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Ro way within the model stself to set upper and lower bounds on A;. In Sec.
V, independent criteria are found to set these bounds, but for now, A, is a
froe parameter of the system. The quantity Pr[A. tends to be too large for a
practical power plant. We therefore try to minimise this, as well as p.L. As an
agide, we note that p.L does not depend on A, .

IOL RF Effects

We assume an ion cyclotron resonance field (ICRF) with its electric field
vector perpendicular to the static maguetic field. An ICRF is applied to each
coll on the side closost to the end of the system (see Fig. 4). We assume
that 4,7, < 1, and that hyr, < 1, where r; is the cyclotron radius. The
fnqnmywdthoﬁeldhchaeneqndtotheioncyebtronhquencyﬂ&t
some point in the mirror region. Centered about this resonance point, there is
& resonance sone where () & w. Because the mirror regions have large magnetic
field gradients, the axial extent of a resonance sone is very small. We therefore
treat any change in particle velocity due to the ICRF as an impulse in the
perpendicular particle velocity delivered at the resonance point. An ion entering
the resonance sone can gain or lose perpendicular energy depending on its
gyrophase. On the average, energy is gained and the magnetic moment is
incroased.

The first order correction was calculated by Jaeger ot al.?! to be

2xcE ( 2wl,
mw Yip

/s
) |Ai{~2)|cony , (24)

vy, =

where L, is the magnetic field axial scale length at the resonance point, Ai(—z)
is the airy function, y is the difference between the electric field phase and the
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ion gyrophase, and z = (2wL,/v,,)?/3(v,r/v.,)?. The subscript “r* denotes a
quantity evaluated at the resonance point. The phase difference ¢ is considered
to be randomised between resonance sone encounters by coulomb collisions in

the cell midplane.?? There are, therefore, no adiabatic barriers to heating.

A particle with pitch angle parameter z = 0 turns at the resonance point.
As 2 increases, the turning point moves away from the resonance sone towards

the mirror throat. Because

' 2/3 2/3
(32) - (%) =
\ I rL

most particles that reach the resonance sone have z > 1.

We average over pitch angle in this limit, so the airy function can be
replaced by its asympiotic, rms value. Equation (24) becomes

1/3
v, = 2E (“’L') cosy . (25)

mw Var

For the same limit, Rogulien and Matsuda®® have calculated the phase
averaged part of the second order change in the velocity,

(raa) = - (—“2)2 (k). (26)

Vie mw Vge

Thmi.ahouacﬂhtmgpm, 3;2=0*3—(0_L3).

We introduce energy-magnetic moment variables and define some dimen-
sionless parameters. The velocities v,, and v, , are transformed to Y and 1
where Y = v/w;, , and

1 ei(s) 1,
7= 06G) 3G) ~ a0G)
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where 9(s) is the pitch angle. Y and 7 are constants of the motion in the mirror
region, except within resonance sone. The panmcte;s are

Y

" w

which marks the location of the resonance, and

5 = ek xL, )l/ 2
muea \ Qo !

a measure of the field strength. Here, () is the ion cyclotron frequency at the
mirror throat. Note that 1 < § < R, where R is the mirror ratio. Equation
(25) becomes

C wis = 2006VAfF (1-w)Yicony (27)

and {26) becomes

-1/2

(v13) = v 83 ;,’-'; [w-](l - w-y)] (28)

Pitch angle scattering arises from first order changes in v; . We therefore
discard the second order terms, and choose the rms value of cosy in (27) to
obtain

ve = uadV/29/Y (1 -wy)~ V4,
The midplane pitch angle is
0o = arcsin/fl,7 .

Before the encounter with resonance, we have

2
YVie

1
After the encounter, the new value of 7 is

(".Lr + ”.)2
(vir+v,)3 + v2,

— 1
1= =
w
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The average change in the midplane pitch angle during one bounce due to ICRF

scattering is thus
©z(Y,v) = arcsin /1,7 — arcsin v{le7 . (29)

The phase averaged energy absorbed by a single ion during a single pass

through the resonance sone is
(AW,,) = -;-m' [2?14(’11 +(via) +512) + ("’.u)] . (30)

The terms vy ,{v.1) and (513) average to sero. Thus, (30) becomes

2A .
Z'L'(GE) i (31)
MYy

Two classes of jons flow through the resonance in cell j: ions from cell 5 that

. (AWJ.r) =

can reach the resonance, and loss cone ious from cell § — 1. The RF power
absorbed in cell j is

Pj = njAj / (AW Lr)vsef(v) dv (s2)
3
+nj-1Apj / (AW 1, )vgpf (V) dv .

Theﬁntinteud'ntakenmrthevelocityapueofuﬂiouincolljthucan
reach the resonance point. The second integral is ;ahn over the inward facing
loss cone of cell § — 1. The plasma cross sectional area at the resonance point is
Ayj = Acnj/R. . Noting that (AW 1,)v,, is independent of velocity, we obtain

Pj = muj) Ac:zs’? [":‘ (1-\/1-'1:'/3:')
+nj_1(i-\/l—l/3j_l)] .

In an RF heated system, the recirculating power Pg is given by

(33)

N
Pr = 221’,' .

j=1
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This limits the amount of RF power that can be applied to the system. No
RF is applied to the central cell because it is impoesible to produce asymmetry

there.

The asymmetry factor C; is due to an RF induced change in the inward
faéing loss cone boundary in cell 5. Without ICRH, the loss cone volume is
given by

1

-——<0.
v 0M_O_ (34)

When ICRH is applied, ¥ changes to

l Wi, +AW,,
W W + AW_" '

The new loss cone volume is thus

1 1 1 AW,
- —— —_——ee— | ——— <L 0.
On + (w QM) W <0 (38)

¥y=

Writing AW, , in terms of the new variables, and clearing the denominators,
(35) bocomes '
(Qacy — 1)(1 - w)'/?Y?
+4(n - )VOu7 (1 - w7)/4Y 25 cony
+ 4n(y - 1)6? ' (36)
+29(n — 1)6% cos 2¢

+2(n = 1)VaT (1 - wy)/3Y? 3”*—’ <0
th

The loss cone odge for a given velocity class is found by integrating ¥ and 7
over that portion of velocity space where (36) is satisfied. In equation (38), the
first term is seroth order in §, the second term is first order, and the third,
fqu-th. and fifth terms are second order. Upon integration over ¢, the second,
fourth and fifth terms, which are oscillatory in ¥, increase by an order.
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One difficulty with (36) is that §,2 was not evtlna.t;d. We have found
sumerically, however, that the loss cone boundary obtained by using the first
three terms of (36) is virtually identical to that obtained by using the first four
terms. Since the fourth term is of the same order as the fifth term, it follows
that we can ignore the fifth term.

As it turns out, setting ¥ = x/2 and 1 — wy = 1 in (36) produces a loes
cone odge that closely approximates the numerically calculated edge (see Fig.
5). Then (36) becomes

S PO Ez]
¥ " [1 Ys <0, (37)
where

Yo = tn(n-1)8%. (38)

Note that for Y < Y, o, there is no loss cone.

Using (37) for the loss cone edge, we calculate the asymmetry factor. Com-
bining (9) with the definitions of b}' and b7,

G; Fj

C; = = .
R Gj

In the limit of sero net outward drift, F; = G;. Gj is given by (11). Fj_, is
found by evaluating
Fij_, = A,-n,-/v,j(v)dv

over the loss cone volume given by (37). We obtain
C;t = (Yig; + 1) exp(-Yic;) — VaYic;[1- ef(Yici)] . (39)

Because of its position in the system, the central cell is always symmetric; .
Cg = 1-
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We now choose the position of the resonance point (choose 7, ) to maximise
the asymmetry factor for fixed P;. Since Cj is a monotonically increasing
fanction of Y,0j, we maximise Yoc;j with respect to ;. Using the definition
of Y105, we substitute for §} from (33). The term in (33) involving loss cone
particles from cell j — 1 is independent of the resonance sone location in cell 5,
and is ignored. We obtain the function

g(n;) = ﬂ;}}'(l- - i/R )~ (40)

that must be maximised with respect to %; . Setting the derivative equal to
sero yields

n} - 697 + (4R; +9)n; —8R; = 0. (41)
For large values of Rj, nj =~ 2. Eveniij'-uomanus,q,-=l.75. We
therefore choose g = 2 for all 5.

IV. Cell Lengths

The cell length {; depends on the axial diffusion coefficients, the particle
fluxes in the ideal and low density regimes, and the choice of scparation velocsty
ve; that separates the two regimes.

The ideal diffusion coefficient in cell 5, Dij, is found by assuming that all
of the particles are in the ideal regime. The diffusion equation then yieclds

d
F, = —24;Di; 7‘% , (42)

where the factor of 2 accounts for ambipolar effects. The axial density gradient
_is given by —Angj/l;, where, from (12),

* R,
Aﬂj = fnj = Nj-1 = :y/‘:A: [1+(1—1/Cj)0j]F. .
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Substituting this into (42) and solving for D;;, we obtain

Dyj = o [1+0- 1Cies] ™ (43)

In the symmetric case, this reduces to Makhijani's result,”

]
D[" VeA J

‘ 2y/7R;’
Asymmetry is therefore seen to decrease the value of the diffusion coefficient .

The diffusion coefficient in the low density regime is found by using random
walk theory. The calculation is carried out in appendix A, and yields

D.j(v) "m\m [ c',1+1y_1‘;%£]2
X [l+—0 (v)]-l[l (1—1/6',)0;]_1,

where ¥ = v/v¢s . When there is no ICRF, (44) reduces to the standard result,”

(44)

Dijlv) = %;—’- .
i

The net outward flux in cell j due to particles in the ideal regime is
= /F;j(v) dv .
For a particular velocity class, |
Fij(v)dv = dvo?Ajn; /;' vcosdf(v,0)sind df .
The velocity distribation f(v,0) is a drifting maxwellian. Here, the small drift

term cannot be discarded as it is the term that produces the net flux. Evaluating

the integral, we obtain
Fii(v) = 7_— Yy exp(—Y’)A,-n,-v‘,- ’ (45)
where vy is the drift velocity in cell ;.



Analogously, in the low density regime, we find

Fujlo) = o /o " Dyj(s)(~Vn)f(v,0)sind df -
. 46

-\% Y2 exp(~Y?)Dy;(v)(—Vn) .

The minimum net outward flax F, occurs when all particles are in the ideal

regime,
F, = Dyj(=Vn) = ./o Fij(v)dv = Ajnjvg - | (47)
Eliminating Ajn;o4 between (45) and (47), we obtain,
Fy(v) = —\/_: Y4 exp(-Y?)F, . (48)

The ideal flux is independent of the cell number, so the subscript *;* has been
d:oppod in (48). Eliminating (—Vn) between (46) and (47) gives

Fuile) = Zoo= ¥ e (Y’)"""”’r (49)

We choose the separation velocity in cell j to preserve continuity of fux:
Fi(vos) = Fujlvos) - (50)
Inserting (48) and (49) into (50), we obtain
Dyj(ve) = ;Y‘?,-Du , (51)

where Y, = vo; /v . Using (43) and (44) in (51), and solving for the length of

cell j, we get

3yx 1 Y 3
i {mm, [1 G+l 153’] -9%:0’«-:)}*(1’.;)- (52)

In the abeence of the ICRF, (52) reduces to

3vx
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The separation velocity is determined from the axial power
PL = 24in; / %mvzv,f (v)dv, (53)

where the integral is taken over all of velocity space. The integral in (53) can be
integrated over gyrophase and pitch angle, and split at the separation velocity.

Since mv?/2 = TY?, we obtain

v, o .
P = 2[/ ’Yzﬂiv—)dv +/ Y’MduJTF. . (54)
A 7. S

Substituting (48) and (49) into (54), we obtain
hy = /o " %w exp(~¥?) dY + L T %-Y‘m(—yz)%y-) dy . (56)
Since A, is constant thoughout the system, but Dy, is not, Vo5 Varies from
cell to cell. Given &, , equation (55) can be solved numerically for v,;. When
performing the numerical cakculations in the next section to minimise p, L, trial
values of T and A, are chosen. These are used to find the v,'s, which, in turn,
ﬁ ased to find the cell lengths.

V. Numerical Results

In this section, we present numerical solutions of the power balance equa~
tions, showing the variation of the system length L and the fusion power density
Pr /A, with respect to the input parameters. Reference design values for some
of the inpat parameters are chosen. We then estimate the radial diffusion due
to ICRH and that due to coalomb collisions, which yields a lower bound on the
central cell plasma croes sectional area A4.. Finally, we compare our reactor
results to those of previous studies.
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Since the multiple mirror is a collisional device, we expect L to scale as
the mean free path A*. When # and R, are held constant, A* ~ 1/n and
n ~ Byn 3. The fusion power density should be proportional to In?. All
numerical solutions for systems with or without ICRF show

- P
L“'BvM 2, 'AL“'BVM
: c

confirming the scaling arguments.

System length and fusion power density are found to be sensitive functions
ol nudphne f. With constant B,y and R., density increases with increasing
8. L should thercfore docrease, while Py /A, should increase as # increases in
value. Systems with and withoat ICRF are found to scale identically with 2.
Thus, in Fig. 6, oaly the curves for the system without the ICRF are shown.
Efficient use of the field demands a high value of 5. In order to easily compare
our results with those of carlier studies,% ¢ we choose §# = 0.8.

When R, is varied while holding B,as and £ constant, A* ~l/uR;.. From

(1), nR? msconst, and we have L ~ R,. This scaling is borne out by the

namerical results for systems with no ICRF. The addition of ICRF changes the

 numerically determined scaling to L ~R:/?. A simple scaling argument for the
fusion power density yields

Pr

This scaling is approximately supported by the numerical results, which indicate
that Pr /A, ~ R;%8 with or without ICRF. We choose Najmabadi's value:'*

~In?® ~LR;*.

R, = 8.363. This value of the mirror ratio keeps the system longth reasonably

short.



The namerical results show that both L and Pp [A; are monotonically
increasing functions of Q (see Figs. 7 and 8). At ignition, (Q = oo) a 21
cell reactor with Byps = 240 kG is approximately 2 km long and produces 8
Gwatts/cm? of fusion power. For finite values of Q, the addition of the ICRF
shortens the system length and decreases Pr/A;. We will choose a value of Q
large enough to be economically interesting, but small enough to keep L and

Pr{A; st reasonable levels: Q = 5.

System length and fusion power density are found to be decreasing func-
tions of N (sce Figs. 9 and 10). Economic studies show! that the optimum
aumber of cells (2N + 1) for a multiple mirror system lics betweon 21 and 41.
The high magnetic ficlds needed by mirrors are expeasive to produce. Since
the curves in Fig. 9 flatten out as N gets large, there is not much to be gained

by having more than 41 cells.

" The addition of the ICRF leads to enhanced pitch angle scattering and loss
come plugging. The loss cone plugging may be concentrated at one end (asym-
metric), or split evenly betwoen two resonance sones in the coll (symmetric).
The relative importances of ICRF induced scattering and asymmetry are shown
in Fig. 11. Asymmetrically applied ICRF can shorten a 21 cell system by 27
perceat, and shorten a 41 cell system by 21 percent (curve “c” Fig. 11). If the
ICRF power is applied in a symmetric fashion (two equal heating sones in each
cell), the system length is reduced by less than 5 percent (curve “a” Fig. 11).
If we sct ©%; = 0 in (44) and (52), the effects of ICRF induced pitch angle
scattering are oliminated from the calculation. Without this scattering, we have

curve “b”, the system length reduction due to asymmetry alone. Comparing
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curves “b” and “c”, it can be seen that ICRF scattering accounts for only 2

percent of the system length reduction.

So far, the recirculating power has been divided equally among the cells.
We have studied the effect of varying this distribution, seeking a minimum in

L. The fraction of recirculating power in cell 5 is chosen to be

_ W¥(h-1)
YW -1’

where A > 1. This weights the distribution towards the end cells. An optimum
is found at A s 1.5 for both 21 and 41 cell systems (see Fig. 12). The improve-
ment in length is approximately 8 percent when compared to the “flat® input
distribution. All of the scaling laws presented earlier in this section are still
valid.

Up to this point, radial diffusion has been ignored. Given a radial density
profile, however, ions will be lost by radial diﬂ'ui;n. The radial confinemeont

time can be written

where r, is the radius of the plasma column, /, is the radial step length, and r
is the radial step time. There are two scattering processes that can cause radial
diffusion: ICRH and coulomb collisions.

Consider self collisions among hydrogen isotope ions. This gives rise to
like particle diffusion, which, to lowest order, results in no net radial diffusion.
Tussewski and Lichtenberg?* found a higher order correction which gives a

radial confinement time of

"
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where 7;; is the jon-ion 90° scattering time and the step length is an ion gyro-
radius. When ions collide with electrons, ambipolar diffusion results. For this

process, we cstimate a radial confinement time of

e (2)" (2

Typically, rp/rL m 10, therefore Tri m §T,,. The radial diffusion rate due to
ICRF is calculated using single particle theory in appendix B. We find that it
is much slower than the diffusion rate due to coulomb collisions. Hence, the

radial confinement time is determined by the ambipolar diffusion rate.
Another way to enhance coulomb scattering and shorten the system length

is to add high Z impurities to the plasma.!! We have the effect of these impu-

rities on radial loss. The radial confinement time is given by

3
g f’
l - e—— — oo
[Z] Za P rL 10

_where n; is the impurity density. An optimum 2 and ny (ni/Z%n; s 3) can

decrease L by about 25 percent.” However,
T'[ s oMn .

ThoinduionofhishZimpnritiainmmthendidbumbymordaof
magnitude. This leads to unacceptably large fusion power output in a steady

state reactor.

The value of T, changes from cell to cell. Defining v; as the radial loss rate
in cell j, the average radial loss rate is

1 Venele +2 2;‘:1 vingl;

Tr nele+2X5oim5ls
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In order that our one dimensional model be reasonably accurate, the radial

confinement time must be large compared to the axial confinement time:
1 N
T. = g [Actene + 22.4,:,»,-] :

Tussowski and Licberman!? made a detailed study of this problem, and con-
cluded that if T, > 4T, , radial loss will reduce the particle confinement time
by loss than 10 percent. We use this criterion to determine the minimum value
of Ag:

e ().

where Ao/T, is independent of A,. Multiplying Pr/As by this value of 4.,
and correcting for the radial density profile (/i? s 0.5n?) yields the fusion power
generated.

In 1974, Logan et al.® made a multiple mirror reactor calculation assuming
20 five meter cells on either side of a central solenoid. The average B was 0.8,
and the peak field was 300 kG. By choosing the cells to be uniform in length,
Logan et al. ignored the fact that the mean free path changes throughout
the system. This results in an underestimation of the power lost out of the
ends, and therefore, an underestimate of the system length. By varying the
length of the central cell, Q could be changed. The length of a self sustaining
reactar (Q = o) was calculated to be 1100 meters. The minimum Q for an
economically viable reactor was judged to be 3. In this case, the length was
ecstimated at 400 meters. Note that that the central cell comprises at least half .
of the system length in these designs.

Najmabadi et al.!* made a more careful calculation assuming 20 cells of
varying length on each side of a central solenoid. The plasma remains in the
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intermediate mean free path regime throughout the system. The midplane fis
0.8 in each cell, and the peak field is 280 kG. With a Q of 5, the system length
is 770 meters, where an optimisation over the temperature was performed. The

central cell accounts for half of this length.

We made a reactor calkculation using Najmabadi’s input parameters, opti-
mising over k. as well as temperature. Without the ICRF, the system length is
750 meters, which agrees well with previous results. The addition of the ICRF
‘reduces L to 530 meters, an improvement of 30 percent. The fusion power
produced by this system is 8.6 GW.

Because ICRH is more efficient in a system with fewer cells (soe Fig. 11),
we favor & 21 cell machine. With Boy = 280 kG, L = 580 meters and Pr = 6.3
Gwatts. Thus, we can eliminate half of the mirror coils at the cost of 50 meters
of longth. In the event that a peak field of 280 kG is too large to be practical,
the ficld can be lowered for an increase in length, with the scaling L ~Bon 2.
Four detailed reactor designs with B,y = 240 kG are presented in appendix
C. A 21 cell system is then 790 meters long.

In conclusion, we have shown that asymmetrically applied ICRH can sig-
nificantly reduce the system length in a multiple mirror cell reactor. A 21 cell
reactor with a peak field of 280 kG and @ = 5 is reduced from 845 meters to 580
-mcten in length, an improvement of 30 percent. The fusion power produced
by the system is approximately 6300 MW, a reasonable amount for a practical

power plaat.
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Appendix A: The Low Density Diffusion Coeficient

A particle in the low density regime will be trapped in a single cell for an
average time 7¢(v). When scattered into the loss cone, it will travel an average
distance {, (v) before being retrapped in an average time 7;(v). In a system with
large mirror ratics, 7 (v) > r/(v) and ls(v) m v7y(v). The diffusion coeflicient

.
s

_ i (v) HQ)
PO = @ o0 ™ e (A1)

For an isotropic distribution (with large mirror ratios), the ratio of free time to
trapped time is

%‘3 - % in?60(v) . (A2)

- Loss cone asymmetry reduces 7/ (v) by shrinking the outward facing loss
come. (A “+° superscript denotes the direction away from the center, while
a “* superscript denotes the opposite.) The outward step length is therefore
shorter than the inward step length. This asymmetric random walk process
produces an inward drift

B(s) = by vr;(v) _ -b;-" vt (v)
b +bf n(v) 67 +bF (o)

_vG sin? 8zc(v) = sin’ 0

Ci+1 !

(A3)

~N

where we have used the definition of Cj and (A2). To evaluate (A1), we find
the average step length /,(v) = (I} (v) +{; (v))/2. U;ing the definition of {,(v),
the definition of C;, and (A2), the diffusion coefficient becomes

v3 iain2 97, (v in? 07, (v Cirs(v) +rt(v
D(s) = T[C, in oﬁéj):l. aﬁ,&“ ,r,éj):l,( )J. (A4)
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The mean free time r/(v) is the time for an ion to scatter through a loes cone
angle. There are two independent scattering mechanisms: ICRH and coulomb

collisions. For coulomb collisions, the mean free time is

A .
1e(v) = -@ sin? 01c(v) ,
while for the ICRH, we have
. gin?
re(v,0) = 4 52 Buo(e)

A vy o%(',a) '
where Op is given by equation (29). We eliminate the pitch angle dependence
of g by choosing sin?# = 1/R; and replacing v, by v in rz. The mean froe

time is thus
o) = 2 [14 Aday ) " it 0s0(e) - (AB)
The loss cone odges are given by
Wil =g, wib=x(1-3), e

where ¥ = v/wp and Y, o is defined by (38). The drift and the diffusion
(equations (A3) and (A4)) can now be completely evaluated.

The low density diffusion coefficient must satisfy an equation similar to
(42). To this end, we use B(v) and D(v) obtained above to determine n(s) the
axial density profile of ions in the low density regime. This n(s) is then used
to find Dy (v), the low density diffusion coefficient .

Combining the continuity cquation and the momentam equation, we have

D)2 +Bw 3 = 0 (A7)

in the steady state, where we have assumed that D(v) and B(v) are weak
fanctions of 5 over the length of the system L. With the center of the system at
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s = 0, we have the boundary condition n(L/2) = 0. Solving (A7) and applying
the boundary condition yields

r B(v) (L
n(:,v):m{exp B(T)(E-’)]_l}' (A8)
where I is the net outward ion flux. We now find Dy (v, s) from
= —DL(v,x)g% .

Substituting for n(s,v) from (A8), we obtain

Dy(v,3) = D(v)exp | - g:‘;; (% -,)] . (A9)

i we assume that asymmetry causes the same exponential dependence in the
low deasity regime as in the ideal regime, we have

-%((%;'(g"’)] ~ [1"}-(1—l./C'j)aj]-l .

The low density diffusion coefficient in cell j can then be written

Duy(o) = vk‘(v) [c,- sin® 07 (v) + sin® 05 (v) ]‘

Cj+1

x [1+ -'L‘(;Qei;j(o)]-l[l+(l—1/6‘,-)0,-]-1.

Using equations (A6) yields (44) in section IV.

Appendix B: Radial Diffusion due to ICRH

The passage of an ion through the resonance sone will change its guiding
center radius. To compute this change, we model the resonance sone as a
uniform B field in the s direction and a resonant E field. This E field rotates
in the x-y plane and is a fanction of 5 only, being nonsero only in the space
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between 5 = O and 5 = L,. We assume that an ion spends many gyroperiods

-in the resonance sone.

The equations of motion are

’

‘% = Qv + -;.-E, ,
d—d'f‘! = —flvg + %E, y
where
Ey = —E(s)sinf} ,
and

Ey = —E(s)cosflt .

In a uniform field, the guiding center coordinates are given by

Taking the time derivatives of the guiding center equations, we substitute from
the oquations of motion and form the complex quantity AR, = X, — 1Y, . We
then obtain

‘%. = -5 B(s)explith) (B1)

To find the change in Ry, we integrate (B1) from 3 =0 to 3 = L,:

AR, = -5 [ Bls) expliu) s (82)

Time is related to 5 by 5 = v,{ where v, is constant.
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We will find the general solution to (B2) if £(3) andE its first two deriva-
tives are continuous for all 5. The fact that the ion spends many gyroperiods
in the resonance sone permits an asymptotic solution to (B2). We deform the
contour of integration into the complex plane as shown in Fig. 12. Writing

s = a + 18, (B2) becomes

AR;—-—/ E(t)exv( ) 33)
B3
—ﬂ-/o E(z)exp - ﬁ-i- )dﬂ,

where the integrals are over C) and Cj, respectively. The integral over C; does
not contribute to AR, . Because of the exponential, the dominant contribution
to (B3) will come from the parts of the contour near the real axis. We therefore
expand E(s) in a Taylor series about the points where § = 0,

E(s) = -—-;-E"ﬁ’ +...

(*® denotes differentiation with respect to 5). The first two terms of the Taylor
series vanish due to the continuity condition on E(s). Integrating (B3), we
obtain _

ar, = =% (50 - e (122 .

Multiplying by the complex conjugate and taking the square root,

“fl' ) ]m . (B4)

ev} 3 003 ' '
(8R| = 2 [ B0 + B(r) ~ 28" 015" (L) con

We assume that

E"(0) m E"(Ls) w {‘i; ,

where £ is the average value of the electric field. The cosine term in (B4) is
gyrophase dependent and will be discarded. Approximating v, by v, , (B4)
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becomes
3

R (Bs)
The term in square brackets is the ratio of electric field energy to thermal
. energy, which is usually much less than unity. The ratio r./L, is typically
1072, This makes the radial step length much shorter than that due to coulomb
collisions. The radial step time r5(v), calculated in appendix A, has been shown
numerically to be much longer than r.(v), its coulomb counterpart. Therefore,
the radial diffusion rate due to ICRH is much less than that due to coulomb

Appendix C: Reactor Designs

All of the designs in this appendix have Q = 5, R, = 3.363, B,y = 240 kG,
A =0.8 and a vacoum magnetic field strength of 137 kG in the central cell. In
these tables, n is the hydrogen ion density, given in units of 10 cm~>, [ is
the cell length, in meters, and R is the finite £ mirror ratio. For the examples
with ICRF, the column labeled “RF® is the percentage of RF power injocted
into the cell, £ is the magnitude of the electric field, in kV/cm3, and C is the
asymmetry factor. The components of the power flow are: the total fusion
power Pp, the axial power loss P, , and the bremsstrahlung power loss Py .

central cell cross sectional area basis.

" The numbers are given to three or more places in some cases. However,
the accuracy of the model is only to within 10 percent, so only two figures are
significant. Note that the cell number increases as one moves towards the center

of the system (cell 1 is the end cell).



Design 1: 21 cells, no ICRF

T = 6.37 keV

Tmm = 44.7 msec

poL = 6.90 - 10*° joules/m?
L = 1152 meters

hy = 3.19

Y, = 192

-85-

Pr /A, = 1.34 gigawatts/cm?
PL[A, = .408 gigawatts/cm?
Py/A, = 088 gigawatts/cm?

ne = 2.94-10'% cm™3
lc = 566 meters
A; = 6.0 cm?

E

EO®maoemwe-

2.67

5.34

8.01
10.70
13.40
16.00
18.70
1140
24.00
26.70

54.6
39.9
33.3
295
369
25.0
3.6
2.5
216
20.9

12.82
8.96
1.23
6.17
5.45
4.91

4.13
3.84
3.58
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Design 2: 41 cells, no ICRF

T = 5.42 hkeV

Tmm = 77.5 msec

Pol = 6.09 - 10'° joules/m3
L = 1017 meters

h, = 3.70

Y, = 1.75

Pr/A; = 366 gigawatts/cm?
PL[A; = .228 gigawatts/cm?
Py/A; = .080 gigawatts/cm?
ne = 3.45-10' cm—3

lec = 412 meters

A, = 12.7 cm?

2

EEBexwavrmw
©
&

BeEREeEEG
8



Design 3: 21 cells, ICRF

T = 6.43 heV

Tmm = 48.1 msec

pel = 4.72 - 10'° joules/m?

L = 788 meters
ki = 3.54
1872 Y, > 1.84

Pr[A; = 1.00 gigawatts/cm?
PL/A; = .304 gigawatts/cm?
Py/A; = 084 gigawatts/cm?

ne = 2.91-10'% cm™3

{o = 338 meters
A, = 6.3 cm3

&
»

4.92

9.06
12.30
16.10
17.50
19.60
31L.70
33.60
35.50
37.40

Eoncanemwemm=

31.2
6.9
4.4
2.7
L5
208
200
194
19.0
18.8
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R

9.30
.13
587
464
033
407
3.67
351

RF

3.9
116
15.1
10.1
6.7
4.5
3.0

13
0.9

0.19
0.14
0.11



Design 4: 41 cells, ICRF

“T = 5.53 heV

Tmm = 81.7 msec

pol = 4.31-10'° joules/m?
L = 720 meters

ky = 4.10

1762 Y, > 171

Pr[A; = .678 gigawatts/cm?
PL/A, = .183 gigawatis/cm?
Py/A; = .087 gigawatts/cm?
ne = 3.38 - 10%° cm™?

i, = 228 meters

A, = 12.7 cm?
cell n l
1 3.72 19.6
32 7.01 16.7
3 9.68 154
4 11.80 14.2
§ 13.70 13.4
¢ 15.40 12.9
 f 16.90 12.4
8 18.20 12.3
9 19.60 11.7
10 20.80 1.5
11 22.00 11.4
12 23.30 11.0
13 24.40 11.0
14 26.60 10.7
15 26.80 10.7
16 28.00 10.5
17 29.20 10.3
18 30.30 10.1
19 31.50 10.1

- 88 -

E
3.38

0.99
0.70
0.52
0.39
0.31
0.24
0.19
0.16
0.12
0.10

0.08
0.05

0.03
0.03
0.02
0.02
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Fig. 1. The magnitude of the vacuum magnetic field versus z. Note the
cell numbering. There is a plasma source of strength 2S in the

center of the system.
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Fig. 2. Various particle fluxes affecting cell j.
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Fig. 3. The power flows in a multiple mirror reactor.
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Fig. 4. The asymmetric application of ICRF. The dark bars are the

resonance zZones.
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Fig. 5. The solid line is the Joss cone edge generated by numerical
integration of the known terms of equation (36). The dashed

line is the loss cone edge generated by equation (37).
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Fig. 6. System length (“L") and fusion power density ("P") versus B

for the system with no ICRF.
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Fig, 7. L versus Q for a system with no ICRF and a system with ICRF.
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Fig. 8. PF/AC versus Q for a system with ICRF and a system without ICRF.
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Fig. 9. L versus 2N+]1 for a system without ICRF and a system with ICRF.

-51-



2.6 | T T | 1
2.4} -
2.2
2.0
“e 1.8
D
g 1.6
4
(& ]
2
(VR
&0
8
'6 | | | ] 17

e 20 30 40 S0 60
2N+

Fig. 10. PF/AC versus 2N+1 for a system without ICRF and a system with
ICRF.
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Fig. 11. Fractional reduction in L versus 2N+1. A system with symmetric
ICRF "a," a system with asymmetric ICRF but without ICRF

scattering "b," and a system with asymmetric ICRF and scattering
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Fig. 12. L versus h.
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Fig. 13. The complex z plane, showing contours. The original contour

. (solid line) is deformed to the dashed line.

-55-



	Copyright notice 1984
	ERL-84-19

