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We determine the improvement* in a multiple mirror reactor ayatem due

to an asymmetrically applied ion cyclotron reaonance field (ICRF). The

resonance field ia used to selectively reflect iona that travel away from the

center of the device, thus creating a net ion drift towards the center. The

ICRF effects in hasting and scattering the iona and modifying the loss cone

geometry are determined in detail. A one dimensional, non-ignited (finite

Q» funon power/recirculating power) model ofamultiple mirror reactor

is developed. Variona scaling laws are numerically derived and compared

to those of a symmetric eystem without ICRF. Radial diffusion due to

classical collisions and ICRF effecta iscalculated. A 21 cell machine witha

P««* fialdof 200 kG and Q = 5isreduced from 845 meters to 580 meter, in

length with the addition ofthe asymmetric ICRF. The total fusion power

generated fay the system is reduced from 8 Gwatta to 6.3 Gwatta.
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I. Introduction

A multiple mirror fusion reactor consists of many magnetic mirror cells

placed end to end along a linear axis. For the collisional regime in which the

ion mean free path is of the order of acell length, ions are continually trapped

and retrapped in adjacent cella. The resulting random walk process along the

axis yields an axial confinement time that scales as the square of the reactor

length.1-7 This scaling has been verified experimentally.6'0 Multiple mirror

plasmas have been stabilised using average-uiiiiimum-2? fields,8,9 and high 0

operation has been achieved.10 A number of reactor feasibility design atudies

have bsen made,11"14 including wetwood burner operation,11 the effects of

impurities,11 high 0 radial diffusion,13 and economic optimisations.19*14 These

studies show that although the diffusive scaling of the axial loss is favorable,

overall reactor lengths tend to be long, of order 400-1200 meters.

In each cell of a normal multiple mirror, half of the particles retrap in

the adjacent cell inwards (towards the center) and half retrap in the adjacent

cell outwards (away from the center). In 1081, Post and Li16 calculated the

effects of changing these probabilities. The confinement time increases if it is

more likely that a particle retraps inwards than outwards. Unfortunately, no

mechanism toproduce this asymmetry was investigated. In this paper, we study

indetail one process that produces asymmetry: ion cyclotron resonance heating

(ICRH). Under the particular conditions present in a multiple mirror system,

and applied in the correct manner, ICRH reduces the volume of the outward

facing loss cone in each cell.1* This makes it more probable that particles

escape inward. We ahow that thia lost con* asymmetry greatly improves the

parameters of a multiple mirror reactor, mostnotably by decreasing its length.
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In Sec. II, the bask multiple mirror model is described. The effects of

the ion cyclotron resonance field (ICRF) are determined in Sec. III. The cal

culation of the cell lengths is performed in Sec. IV. Numerical results of the

power balance optimisation are presented in Sec. V. These include scaling laws,

comparisons with previous studies, and the effects of radial diffusion.

IL The Bank Model

We consider a steady state system consisting of 2N + 1 cells with an axis

of symmetry through the midpoint of the central cell (see Fig. 1). To replace

particles lost from the ends, there is a plasma source in the center of the system.

The plasma consists of equal parte of deuterium and tritium nuclei, and their

electrons. The length L of the system is assumed to be much greater than that

of any individual cell (except, for reasons given later, the central cell). Each

call consists of a relatively long midplane region of constant magnetic field,

and two short mirror regions where the field increases to its maximum value

at the mirror throat. Note that the length and the magnetic field strength of

a mirror cell need not be identical to that of its neighbors. The mirror ratio

R in-each cell is assumed to be large (R2 > 1). In order to use the magnetic

field efficiently, the value of midplane 0 and the value of the m»™hhh vacuum

magnetic field, Bvm , are made as large as possible and are uniform throughout

the system. The maximum values of 0 and Bvm are determined by stability

and engineering constraints that are beyond the scope of this paper.19,17 The

long, thin approximation is used throughout: B[m) = Bt(s). Since the plasma

pressure in cell / is pj = 2niT, the constancy of 0 and Bvm gives
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(rj +T^l)nj =co**' (1)

where n is the iondensityandR is the selfconsistent mirror ratio, whichdiffers

from the vacuum mirror ratio due to finite 0. Since the density decreases as

one moves outward from the center to the ends, the mirror ratios increase and

the midplane fields decrease (see Fig. 1).

Since magnetic flux ia conserved, we have

4t =const , (2)

where A, ia the plasma cross sectional area in cell /.

Unlike most magnetic fusion confinement schemes, the multiple mirror is

collisions! Particles scatter into and out of the loss cone while moving axiaUy

through the system. When the mean free path of a particle is of the order of

the celllength, particles are trapped anddetrapped manytimesbefore escaping

from the multiple mirror. This leads to random walk behavior along the length

of the system, causing the particle confinement time to scale asthe square of the

systemlength. The high colhsionality also thermalises the plasma. Typically,

the particle confinement time is anorder of magnitude larger than the longest

thermalisation time. Coupled with high electron thermal conductivity, the

plasma » considered to be a uniform temperature maxweUian throughout the

system.

The 90° mean free path for an ion of velocity v scattering against a back

ground ion distribution is18

A(v) = /C~, (3)
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where A* is a weak function of v. Equation (3) is used for a single ion species

of mass 2.5 AMU because the two ion species (D and T) have similar masses,

and because ion-electron scattering is negligible.

The mean free path for ion scattering through a loss cone angle is given by

a-w - ^ • w
In a maxwellian plasma, all values of A* will be present. Ions can be divided

into velocity rlissra based on the values of A, A* and the various scale lengths.

Very low velocity particles will have A -C Im , the mirror scale length. Because

the magnetic moment of single particles is not conserved in the mirror region,

there is no mirror effect. The percentage of this class of particles is assumed to

be negligible because due to the smallness of Jjw • Very high velocity particles

have mean free paths that satisfy A* > L. These particles are lost once they

scatter into the loss cone. This class of particles is also negligible because of

the exponential in the maxwellian velocity distribution.

Between these extremes lie the bulk of the particles, with <m<A< RL.

This intermediate mean free path region was split into two parts by Maknqani

et alT Lower velocity particles that satisfy A* < l0, where l0 is the length

of a cell, are said to be in the ideal multiple mirror regime. Higher velocity

particles with mean free paths such that le <C A* -C L are in the low density

multiple mirror regime. Particles in both regimes take random steps through

the system, thus giving the diffusive (L7) scaling. The ions in the low density

regime take longer steps and are therefore lost more rapidly than those in the

ideal regime. For this reason, it is desirable to adjust the cell lengths or A* such

that the great majority of the ions are in the ideal regime. The ions in the low
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density regime are then significant only in the calculation of the end loss power,

because they are lost more quickly than bus in the ideal regime, and because

they carry more than the averageenergy.

All other things being equal, the cost of a reactor system increases with

length. To minimise this length, A* mustbe assmall as possible. Thus, multiple

mirrors operate at high mirror ratios (R > 3), low temperatures (5 keV) and

high densities (10lfl cm"3 in the central cell). Even so, the density is low near

the .ends of the system, and cells tend to be long there. Because l\t <• A, the

mirror regionsare collisionless, and particle motion is governed by conservation

of energy and magnetic moment. The midplane regions and the system as a

whole, however, are colliaional because A* < L.

The only cell that is not governed by the value of A* is the central cell.

Its length is determined by reactor power balance, not by particle trapping

considerations. The optimised central cell length has been found14 to comprise

about half of the total system length.

Electrons play an important role in multiple mirrordynamics. Najmabadi

et at10 made acareful study of ambipolar effect* in a multiple mirror and found

that the traditional correction factor,

1+<Z)|«2,
is reasonably accurate. In our model, this implies a 60 percent decrease in the

ion confinement time.

In the steady state, the ion density in each cell is determined by particle

conservation and the physica of trapping and detrapping in each celL We assume

that each cell contains a number of ions, if, and has ion fluxes F and G entering
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and leaving (see Fig. 2). These quantities are linked by an average confinement

time, r. All of the iona are assumed to be in the ideal regime. This makes

cfrnditjnga in any cell dependent only on the adjacent cells, and it decouples

the flux Fj-i from Fj, andGj from <7/-i.

The continuity equations are

Fj-t = ^-rx^ , (*•)

bJ Bj°I-T$TI*> <8b>
and

^.^Fj +Gj-l. (5c)

The quantities of and bj are defined as

(see Fig. 2). The combinations of6t end bj in (6a) and (6b) are the probabil

ities that a particle will eventually escape to the neighboring cell outward and

inward, respectively.

Since no ions enter the system from the ends, we have

G. = 0 . (6)

In the steady state, we have

Fj-Gj=F0. (7)

If allof the particles were in the ideal regime, the net outward flux throughout

the system would be F0. Numerically, the actual flux has been found0,7 to be

on the order of 6 percent larger for typical reactor designs.
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Using equations (6) and (7), we eliminate Hj/tj , Fj and Fj-i to obtain

Ci-CMGj-a+F.), (»)

where

<% =I n
is the asymmetry faetor.The improved confinement time due to asymmetry is

caused by making Cj larger than unity.

The boundary condition (0) can be used to solve (8) for G\ in terms of C\

and F0. This, in turn, can be used to solve (8) for <73 in terms of C\, Cq, and

F0t and so forth. The general solution for Gj is

Gj - 9jF. , (10)

where

•i-£(6*)-

To determine for the density in cell /, we must evaluate the flux

Gj =Aji%j J vj(y)dv ,

where /(v).is the velocity distribution function. It has been shown10 that the

velocity due to the outward drift is much smaller than the thermal speed for

all but, possibly, the last cell. Therefore, /(v) is assumed to be a stationary

maxwellian. The integral is taken over the inward facing loss cone in cell ;.

There is no ICRH at the inboard end of the cell, so the loss cone boundary is

given by sin2 9LC = l/Rj. Evaluating the integral,
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We can eliminate Gj between (10) and (11) and solve for ny. To account for

the enhanced axial loss due to ambipolar effects, we must divide ny by 2. The

density in cell ; is then

where (2) hasbeen used to eliminate Aj, and thesubscript *c* denotes acentral

cell quantity.

In the absence of asymmetry, Oj = 1 for all /, and the density difference

between adjacent cells is constant. If C > 1 and haathe same value for all cells,

the increment in density versus cell number will increase exponentially as one

moves inwards.

The power flows in a multiple mirror reactor are shown in Fig. 3. Here, we

are concerned only with power flow into and out of the plasma itself. In steady

state, the power entering and leaving the plasma must be balanced,

PL+Pp = hPr+PR. (IS)

The components of this power balance equation are explained in the following

paragraphs.

The total fusion power is given by

Pr = / Wr(ffv)nDnTdx , (14)
Jv

whereWp is the energygenerated by a single fusion event, (av) is the fusion re

activity, i%d and nr are the denaities of deuterium and tritium, and the integral

is taken over the volume of the plasma. Wp is a constant and (av) is a func

tion of temperature only; they can be removed from the integral. The denaities

of deuterium and tritium are equal to n/2. Since the mirror regions are very
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ehort, almost all of the system volume consists of cell midplanes. The integral

can therefore be approximated by asum of midplane quantities. Equation (14)
becomes

Pp =\wF(av)M, (15)
where

N

M=nlAJc +2£ n2Ajlj . (16)

Alpha particles transfer afraction y/\ - 1/J*, of their energy to the plasma

via coulomb collisions.14 Since alpha particles carry 20 percent of the fusion

produced energy, the fraction of the fusion power absorbed directly by the
plasma is

A = -*- \/i -1/*, .

The power lost to bremsstrahlung is

Ps - J k0^Tmn9dxt (17)

where k0 =5.35 •W37 watt/m^tkeV)1/3, n, i. the ion density and n, is the

electron density. Using the same approximations as before, (17) becomes

Pfi » kfi>/TM . (i8)

The power lost axially is given by

Pl = 4kLTF, . (19)

The factor of4 comes from the two ends and the fact that an electron is lost

with every ion. The quantity hLT is the mean energy loot per ion. If all of the

particles are inthe ideal regime, kL = 2.5. In multiple mirrors, kL > 2.5 due to

the more rapid escape ofions in the low density regime. Ambipolar effects have
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been accounted for in equation (12). Eliminating F0 between (19) and (12), we
obtain

p 4kLTvtkAene
L" ^fUac ' (»>

We consider anon-ignited reactor with recirculating power PR. The power
amplification factor ia defined as

«-£• <«)
Alarge value of Qis desirable from an economic standpoint.

We rearrange the power balance equation and substitute from equations
(15), (18), (20) and (21) to obtain

^iTvtkA^nc \ ( l \ a/,/,,) 1
"^3Cr"[vg+/V"4 -*'vyJJI'- <22>

Equation (22) can be manipulated30 to form an expression for the product of
the central cell pressure and the system length:

Pel - X(TikLiNyQ,0,Re,BoAd) . (23)

It ia reasonable to assume that the coat of the system increases monotonkally
with pcL.14 We will therefore minimise it with respect to T and kL. The
quantities to the right of the semicolon in (23) are input parameters of the

eyetem. The optimum values of these parameters must be determined by an
economic analysis which is beyond the scope of this study.13 By fixing fi, /*,,
and Bvh4, pe i. held constant, even ifT varies. This insures that aminimum
of peL is a minimum of L.

Using equations (15), (22), and (16), an expression for the fusion power
per unit central cell cross sectional area, Pr/Ae, can be obtained. There is
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no way within the model itself to set upper and lower bounds on Ac. In Sec.

V, independent criteria are found to set these bounds, but for now, Ac is a

free parameter ofthe system. The quantity Pr/Ac tends to be too large for a

practical power plant. We therefore try to minimise this, as well as pcL. As an

aside, we note that peL does not depend on Ac.

IIL EF Effects

We assume an ion cyclotron resonance field (ICRF) with its electric field

vector perpendicular to the static magnetic field. An ICRF is applied to each

cell on the side closest to the end of the system (see Fig. 4). We assume

that k±rL < 1, and that k\\rL < 1, where rL is the cyclotron radius. The

frequency wof the field is chosen equal to the ion cyclotron frequency 0 at

acme point in the mirror region. Centered about this resonance point, there is

a resonance gone where Qnw. Because the mirror regions have large magnetic

field gradients, the axial extent ofaresonance sone is very small. We therefore

treat any change in particle velocity due to the ICRF as an impulse in the

perpendicular particle velocity delivered atthe resonance point. An ion entering

the resonance sone can gain or lose perpendicular energy depending on its

gyrophase. On the average, energy is gained and the magnetic moment is

increased.

The first order correction was calculated by Jaeger et aL21 to be

V±1--m^(^rJ M-JIcos* , (24)
where Lr is the magnetic field axial scale length at the resonance point, Ai(-x)

ia the airy function, 1> ia the difference between the electric field phase and the
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ion gyrophase, and * = (2w£r/vj.r)3/3(v,r/vj.r)a. The subscript V denotes a

quantity evaluated at the resonance point. The phasedifference 1> is considered

to be randomised between resonance sone encounters by coulomb collisions in

the cell midplane.33 There are, therefore, no adiabatic barriers to heating.

A particle with pitch angle parameter x= 0 turns at the resonance point.

As x increases, the turning point moves away from the resonance sone towards

the mirror throat. Because

3/3 /9F \V»

(£)-(?)»'•
most particles that reach the resonance sone have x > 1.

We average over pitch angle in this limit, so the airy function can be

replaced by its asymptotic, rmsvalue. Equation (24) becomes

2eE /ywL,\1/a
vj-i =

mw \TT) *"•*• (25)

For the same limit, Rognlien and Matauda39 have calculated the phase

averaged part of the second order change in the velocity,

<•->-.-M=)'(^)-
There is also an oscillating part, v±2 = v±2 - (vj.a)>

We introduce energy-magnetic moment variables and define some dimen-

sionless parameters. The velocities vMr and v±r are transformed to Y and 7,

where Y = v/vth • and

1 - n(s) ^R ~W) {)'
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where $(*) is the pitchangle. Y and7 are constants of the motionin the mirror

region, except within resonance sone. The parameters are

which marks the location of the resonance, and

S = eE ( *L* v/a

ameasure ofthe field strength. Here, QM is the ion cyclotron frequency at the

mirror throat. Note that 1 < n < R, where R is the mirror ratio. Equation

(25) becomes

»j.i = 2vth6Vn/Y (1 - W7)-1/4 cos V» , (27)

and (26) becomes

<*±2) =W2 ~ [1*7(1 - W7)] "1/3 . (28)

Pitch angle scattering arises from first order changes in v±. We therefore

discard the second order terms, and choose the rms value ofcos ^ in (27) to
obtain

*. = «f*^V2»7lr(l-a;7)-1/4.

The midplane pitch angle is

$0 = arcsin V^uT •

Before the encounter with resonance, we have

7 - » ^
w »3i . + v3J.f t v#r

After the encounter, the new value of 7 ia

W («JLr + ««)3 + V2r '
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The average change in the midplane pitch angle during one bounce due toICRF

scattering is thus

&E(Vn) - a**8"1 Vftrf - a**™ V^VT • (w)

The phase averaged energy absorbed by asingle ion during a single pass

through the resonance sone is

(AWj.,) =\m f2vj.,(ej.i +(v±2) +*±2) +Mi) J• (3°)
The terms vj.f(v±i) and (vj.a) average to aero. Thus, (30) becomes

<""-> -!££a! • (S1)tnwvir

Two classes of ions flow through the resonance in cell /: ions from cell ; that

can reach the resonance, and loss cone ions from cell j - 1. The RF power

absorbed in cell j is

Pj =njArj f(&W±t)v„f(v)dv
1 (32)
+nj-tArj j(*W±r)v„fW<* .

The first integral is taken over the velocity space of all ions in cell ; that can

reach the resonance point. The second integral is taken over the inward facing

loss cone ofcell / -1. The plasma crosa sectional area at the resonance point is

Arj =Ae*j/Rc. Noting that (AW±r)v,r is independent of velocity, we obtain

Pj =mv?h^[nj(l-y/l-nj/Rs) ^
+ni_1(l-V1-1/i?i-1)] *

In an RF heated system, the recirculating power Pr is given by

JV

PR = lY*Pi'
i=l
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This limits the amount of RF power that can be applied to the system. No

RF at applied to the central cell because it is impossible to produce asymmetry

there.

The asymmetry factor Gj ia due to an RF induced change in the inward

facing loss cone boundary in cell /. Without ICRH, the loss cone volume is

given by

7-^-<0, (34)

When ICRH is applied, 7 changes to

_ lFTLr + AWj.,

7 u» W+AW±r '

The new loss cone volume is thus

(35)

Writing AWXr in terms of the new variables, and clearing the denominators,

(35) becomes

(0M7-l)(l-w7)1/aK3

+4(« - l)N/fS77(l - W7)1/4K8/3*cos^

+4«(s-l)^3 (36)

+ 2»(s-l)*3cos2*i

+2(» - l)^n{l - W7)l/ax-3 j1 <0

The loss cone edge for a given velocity class is found by integrating V> and 7

over that portion of velocity space where (36) is satisfied. In equation (36), the

first term is scrota order in 6, the second term is first order, and the third,

fourth, and fifth terms are secondorder. Upon integration over V», the second,

fourth and fifth terms, which are oscillatory in V», increase by an order.
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One difficulty with (36) is that v±2 was not evaluated. We have found

numerically, however, that the loss cone boundary obtained by using the first

three terms of (36) isvirtually identical to that obtained by using the first four

terms. Since the fourth term is of the same order as the fifth term, it follows

that we can ignore the fifth term.

As it turns out, setting «V = jt/2 and 1- W7 = 1 in (36) produces a loss

cone edge that closely approximates the numerically calculated edge (see Fig.

5). Then (36) becomes

where

rL9<7 = 2»(«-l)*3. (38)

Note that for Y < Yio • there is no loss cone.

Using (37) for the loss cone edge, wecalculate the asymmetry factor. Com

bining (9) with the definitions of6* and bj,

r - Gi 7i
3 1-i Gj

In the limit of sero net outward drift, Tj - Gj. Gj ia given by (11). Fj-i ia

found by evaluating

Fj-i =Ajnjjv,f{v)dv

over the loss cone volume given by (37). We obtain

C-1 - (YlCj +1) exp(-KL3Cj) - yfiYlcj [1- erf(Kw) ]• (39)

Because of its position in the system, the central cell is always symmetric;

Cc = l.
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We now choose the position of the resonance point (choose »j )to maximise
the asymmetry factor for fixed Pj. Since Cj is amonotonkally increasing
function of YLOj, we maximise YLCj with respect to 9i. Using the definition
of Yloj ,we substitute for 6] from (33). The term in (33) involving loss cone
perticles from cell / - 1is independent of the resonance sone location in cell;,
end is ignored. We obtain the function

ihat must be maximised with respect to *,. Setting the derivative equal to

sero yields

,» - 6»J +(4R, +9)«i - *Rj =0• <41>

For large values of Ri.ei-2. Even if Rj ia a. small as 3, n>;- 1.75. We

therefore choose »j = 2 for all j.

XV. CellLencths

The ceU length lj depends on the axial diffusion coefficients, the particle
fluxes in the ideal and low density regimes, and the choice of separation velocity
v0j that separates the two regimes.

The ideal diffusion coefficient in cell /, DU, ia found by assummg that all
of the particles are in the ideal regime. The diffusion equation then yields

where the factor of 2accounts for ambipolar effects. The axial density gradient

mgiven by -Anj/lj , where, from (12),
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Sufestituting this into (42) and solving for Dtjt we obtain

In the symmetric case, this reduces to Makhyani's result,7

n - v*kiiD" - 2^RJ '
Asymmetry is therefore seen to decrease the value of the diffusion coefficient .

The diffusion coefficient in the low density regime is found by using random

walk theory. The calculation ia carried out in appendix A, and yields

ARj

x[l +̂e^wJ^Jl-tl-l/CiJev] ,
where Y =*/«** . When there is no ICRF, (44) reduces to the standard result,7

r* / % VHV)*>Lj(v) =-^ .

The net outward flux in cell/ due to particles in the ideal regime is

Ftj =j Ftj{y)dv .
For a particular velocity class,

Fjj(v)dv =dvv2Ajnj f vcoa$f{v,8)ain$d$ .
Jo

The velocity distribution f[v,$) is a drifting maxwellian. Here, the small drift

term cannot be diacardedaa it is the term that produces the net flux. Evaluating

the integral, we obtain

Fjj(v) =̂ Y**xp(-Y2)AjnjV4j , (45)
where «</ is the drift velocity in cell /.
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Analogouery, in the low density regime, we find

FLj(v) - v3 /%W(t)(-Vn)/M)sim#*w
Jo (46)

= -4-x'aexp(--lra)l)wW(-V») .

The minimum net outward flux F. occurs when all particles are in the ideal

regime,

F. =!?/,(-Vn) = / Fij(v)dv =Ajnjvej . (47)
Jo

pjfr,s»«*g.g Ajn;**, between (45) and (47), we obtain,

F/H^^^expt-K3)^. (**)
The ideal flux ia independent of the cell number, so the subscript V has been

dropped in (4«). Eliminating (-Vn) between (46) and (47) gives

We choose the separation velocity in cell / to preserve continuity of flux:

Ft(v.j) = FLj(voj) . («>)

Inserting (48) and (49) into (50), we obtain

1>4/M- fls^ii. (51)
where Y.j - v.j/vtk . Using (43) and (44) in (51), and solving for the length of

cell;, we get

In the absence of the ICRF, (52) reduces to



-tl-

The sensation velocity is determined from the axial power

Pl =2Ajnj j \mv2v,f{v) oV , (M)
where the integral is taken over all ofvelocity space. The integral in (53) can be
mtegrated over gyrophse. and pitch angle, -dsplit at the separation velocity.
Since mv3/2 =TY2, we obtain

Th. tea »hr«k.u i. th. „ul po™,I*. corwcti<m ^ ^
Sab**,*., (48) „„, (49) ^ (M)( ^ obuio

^r^^vK^^^Mi^ (M)
Si«. *t i. COP.U.. tho,,hoo# th. ^ b„t ^ fc ^ ^ntjn ^

•"^•^""^cakal^^h.^.^^

•re used to find the cell lengths.

V. Numerical Results

I» *hi. ^.tion, „ fnml mmmjal i--tai rf ^ ^ ^^^

-"..-*.p*™*,.„cw w. tlmmtlmm ^^dafMioi|^
to ICRH ^, «,„ „„ ,„ coolomb^^whkh yWd> aj^^ on (jM
amtral cell plaun. <„„ ^j,,,.,! . _.^v.uuu an* j^. jrma^fi TO compm oar reactor
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Since the multiple mirror is a collisional device, we expect L to scale aa

the mean free path A*. When 0 and Rc are held constant, A* ~ l/n and

n ~ B»jw 3. The fusion power density should be proportional to Ln2. All

numerical solutions for systems with or without ICRF show

L ~ Bvu ~3 , -7- ~ Bvm ,
Ac

confirming the scaling arguments.

System length and fusion power density are found to be sensitive functions

of mHpHTi* 0. With constant Bvsd and Rc, density increases with increasing

0. L should therefore decrease, while Pr/Ae should increase as 0 increases in

value. Systems with and without ICRF are found to scale identically with 0.

Thus, in Fig. 6, only the curves for the system without the ICRF are shown.

Efficient use of the field demands a high value of 0. In order to easily compare

our results with those of earlier studies,*'14 we choose 0 = 0.8.

When Rc ia varied while holding B9u and 0 constant, A* ~l/nRc. From

(1), nR* m const, and we have L ~ R*. This scaling is borne out by the

numericalresults for systems with no ICRF. The addition of ICRF changes the

numerically determined scaling to L ~Jtv3. A simple scaling argument for the

fusion power density yields

^ ~Ln2 ~LRJ4 .
Ac

This scaling is approximately supportedby the numerical results,whichindicate

that Pp/Ac - Re™ with or without ICRF. We choose Najmabadi's value:14

Re = 3.363. This value of the mirror ratio keeps the system length reasonably

short.
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The numerical results show that both L and Pr/Ae are monotonically

increasing functions of Q (see Figs. 7 and 8). At ignition, (Q = oo) a 21

cell reactor with BvAj = 240 kG is approximately 2 km long and produces 3

Gwatts/cm3 of fusion power. For finite values of Qt the addition of the ICRF

shortens the system length and decreases Pr/Ac. We will choose avalue ofQ

large enough to be economically interesting, but small enough to keep L and

Pr/Ac at reasonable levels: Q = S.

System length and fusion power density are found to be decreasing func

tions ofN (see Figs. 9 and 10). Economic studies show13 that the optimum

number of calk (27V + 1) for a multiple mirror system lies between 21 and 41.

The high magnetic fields needed by mirrors are expensive to produce. Since

the curves in Fig. 9 flatten out as N gets large, there is not much to be gained

by having more than 41 cells.

The addition ofthe ICRF leads toenhanced pitch angle scattering and loss

cone plugging. The loss cone plugging may be concentrated at one end (asym

metric), or split evenly between two resonance sones in the cell (symmetric).

The relative importances ofICRF induced scattering and asymmetry are shown

» Fig. 11. Asymmetrically applied ICRF can shorten a 21 cell system by 27

percent, and shorten a41 cell system by 21 percent (curve *c» Fig. 11). If the

ICRF power is applied in asymmetric fashion (two equal heating sones in each

cell), the system length is reduced by less than 5percent (curve *a* Fig. 11).

If we set e|j = 0 in (44) and (52), the effects of ICRF induced pitch angle

scattering are eliminated from the calculation. Without this scattering, we have

curve "b", the system length reduction due to asymmetry alone. Comparing
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curves "b" and "c", it can be seen that ICRF scattering accounta for only 2

percent of the system length reduction.

So far, the recirculating power haa been divided equally among the cells.

We have studied the effect of varying this distribution, seeking a minimnm in

L. The fraction of recirculating power in cell / iachosen to be

_ hN(h-l)
°j " h*{h» - 1) '

where k > 1. This weights the distribution towards the end cells. An optimum

is found at a « 1.5 for both 21 and 41 cell systems (see Fig. 12). The improve

ment in length is approximately 8 percent when compared to the "flat" input

distribution. All of the scaling laws presented earlier in this section are atill

valid.

Up to this point, radial diffusion has been ignored. Given a radial density

profile, however, ions will be lost by radial diffusion. The radial confinement

time can be written

••'-(*)•••
where r, is the radius of the plasma column, lr is the radial step length, and r

is the radial step time. There are two scattering processes that cancause radial

diffusion: ICRH and coulomb collisions.

Consider self collisions among hydrogen isotope ions. This gives rise to

like particle diffusion, which, to lowest order, results in no net radial diffusion.

Tttssewshi and Lichtenberg34 found a higher order correction which gives a

radial confinement time of

Tn 12 \rL) '"'
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where r„ ia the ion-ion 90° scattering time and the step length is an ion gyro-
radiua. When iona collide with electrons, ambipolar diffusion results. For this

process, we estimate aradial confinement time of

«.-(£)"(*)•-
Typically, r,/n m10, therefore Tri m5TM. The radial diffusion rate due to
ICRF is calculated uaing single particle theory in appendix B. We find that it
is much slower than the diffusion rate due to coulomb collisions. Hence, the
radial confinement time is determined by the ambipolar diffuaion rate.

Another way to enhance coulomb scattering and ahorten the system length
is to add high Zimpurities to the plasma.11 We have the effect of these impu

rities on radial loss. The radial confinement time is given by

where n/ is the impurity density. An optimum Zand n/ (m/Z3!./ m3) can

decrease L by about 25 percent.30 However,

Tri « -03T,, .

The inclusion of high Zimpurities increases the radial loss rate by an order of
magnitude. This leads to unacceptably large fusion power output in aeteady

state reactor.

The value of Tr changes from cell to celL Defining *j as the radial loss rate

incell ;, the average radial loss rate is

Tr' nc.c+2 £;=i»i<;
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In order that our one dimensional model bereasonably accurate, theradial

confinement time must be large compared to the axial confinement time:

Tl =2k [i4'/'nc +2£Ai,ini] •
Tussewski and Lieberman13 made a detailed study of this problem, and con

cluded that if Tr > 4Tl , radial loss will reduce the particle confinement time

by less than 10 percent. We use this criterion todetermine the minimum value

of A,:

where Ac/Tr is independent of Ac. Multiplying Pr/Ac by this value of Ac,
and correcting for theradial density profile (W3 « 0.5n3) yields the fusion power

generated.

In 1974, Logan et ai° made amultiple mirror reactor calculation assuming

20 five meter cells on either side of a central solenoid. The average 0 was 0.8,

and the peak field was 300 kG. By choosing the cells tobe uniform in length,

Logan et aL ignored the fact that the mean free path changes throughout

the system. This results in an underestimation of the power lost out of the

ends, and therefore, an underestimate of the system length. By varying the

length ofthe central cell, Qcould be changed. The length ofaself sustaining

reactor {Q = 00) was calculated to be 1100 meters. The minimum Q for an

economically viable reactor was judged to be 3. In this case, the length was

tutimaVH at 400 meters. Note that that the central cell comprises at least half

of the system length in these designs.

Najmabadi et aL14 made a more careful calculation assuming 20 cells of

varying length on each side of acentral solenoid. The plasma remains in the
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intermediate mean free path regime throughout the system. The midplane 0 is

0.8 in each cell, and the peak field is280 kG. With aQ of5, the system length

is770 meters, where an optimisation over the temperature was performed. The

central cell accounta for half of this length.

We made a reactor calculation using Najmabadi's input parameters, opti

mising over k£ as well as temperature. Without the ICRF, the system length is

750 meters, which agrees well with previous results. The addition ofthe ICRF

reduces L to 530 meters, an improvement of 30 percent. The fuaion power

producedby this system is 8.6 GW.

Befauri ICRH is more efficient in a system with fewer cells (see Fig. 11),

we favor a 21cellmachine. With B9u » 280 kG, L =• 580meters and Pr « 6-3

Gwatta. Thus, we caneliminate halfof the mirror coils at the coat of 50meters

of length. In the event that a peak field of280 kG is too large to be practical,

the field can belowered for an increase in length, with the scaling L ~Bvm~3.

Four detailed reactor designs with Bvhl = 240 kG are presented in appendix

C. A 21 cell system is then 790 meters long.

In conclusion, we have shown that asymmetrically applied ICRH can sig

nificantly reduce the system length in a multiple mirror cell reactor. A 21 cell

reactor with a peak field of280 kG and Q= 5isreduced from 845 meters to 580

meters in length, an improvement of 30 percent. The fusion power produced

by the system is approximately 6300 MW, areasonable amount for a practical

power plant.
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Appendfac A: The Low Density Diffusion Coefficient

A particle in the low density regime will be trapped in asingle cell for an

average time rt(v). When scattered into the loss cone, it will travel an average

distance l,(v) before being retrapped in an average time r,(v). In asystem with
large mirror ratios, r.(e) » Tf(v) and l,(v) « vrf(v). The diffusion coefficient
is

<?M _ /?M
U 2[rr(e) +r,(v)] W2MvT* (Al)

For an isotropic distribution (with large mirror ratios), the ratio of free time to
trapped time is

sfBi*,|wW. (A2)
Loss cone asymmetry reduces r/(v) by shrinking the outward facing loss

cone. (A «+• superscript denotes the direction away from the center, while
» •-• superscript denotes the opposite.) The outward atep length ia therefore

shorter than the inward atep length. This asymmetric random walk process
produces an inward drift

*(*) =_JL!£M___^iz/>)
67+6+ r.(v) ftj+,+ Tt(v)

= vCiS^^H-.sin3^^)
2 Gj• +1

(A3)

where we have used the definition of Gj and (A2). To evaluate (Al), we find
the average step length l,(v) =(/?(•) +l7(.))/2. Using the definition of /,(*),
the definition ofCj, and (A2), the diffusion coefficient becomes

nH - »a r^'"2^(t>)-fain3^(v)1 \CjtJ(v) +r+(v) ]
4 I c, +i J[—cpTx J' <A4>



-30-

The mean free time r/(v) ia the time for an ion to scatter through a loss cone

angle. There are two independent scattering mechanisms: ICRH and coulomb

collisions. For coulomb collisions, the mean free time ia

re(v) =^i.in3^cH,
while for the ICRH, we have

EK'} *, ejM) »
where 0£ is given by equation (29). We eliminate the pitch angle dependence

of rB by choosing sin3 $ = l/R, and replacing «, by v in te . The mean free

time is thus

'/(•) =*j? [l +̂e|(»)]"rina»loW • (AS)
The loss cone edges are given by

™a To(») =j. .»'»£,(.)=£(i - 5Jf ) , (a«)
where Y = v/v(A and Klc ia defined by (38). The drift and the diffuaion

(equations (A3) and (A4)) can now be completely evaluated.

The low density diffusion coefficient must satisfy an equation similar to

(42). To this end, we use B(v) and D(v) obtained above todetermine n(s) the

axial density profile of ions in the low density regime. This n(s) is then used

to find Dt(e), the low density diffusion coefficient.

Combining the continuity equation and the momentum equation, we have

Wp+'Wj-l (A7)
in the steady state, where we have assumed that D(v) and B(v) are weak

functions of s overthe length of the system L. With the center of the system at
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s » 0, we have the boundary condition n(L/2) = 0. Solving (A7) and applying

the boundary condition yields

•fc"-efeMi$(l-)H. <A8>
where T is the net outward ion flux. We now find £/,(«,*) from

dn
T = -DL(*,s)

d%

Substituting for n(*,v) from (A8), we obtain

Z>4(,,,) =0(,)«p[-|g (£-,)]. (A9)
If we assume that asymmetry causes the same exponential dependence in the

low density regime as in the ideal regime, we have

The low density diffusion coefficient in cell j can then be written

n, lv\ - !*fei [gjain'^H +sin3^^)]3
LA) ~ 4 L Oj +1 J

Using equations (A6) yields (44) in section IV.

Appendix B: Radial Difluatan due to ICRH

The passage of an ion through the resonance sone will change its guiding

center radius. To compute this change, we model the resonance sone as a

uniform B field in the s direction and a resonant E field. This E field rotates

in the x-y plane and ia a function of s only, being nonaero only in the space



L

-32-

between s = 0 and * = Lr. We assume that an ion spends many gyroperiods

in the resonance aone.

The equations of motion are

dt m

where

Ea - -E(s)t\nftt ,

and

Et - -E(z) coe Ot .

In a uniform field, the guiding center coordinates are given by

Zt =s .

Taking the time derivatives ofthe guiding center equations, we substitute from

the equations ofmotion and form the complex quantity AR, =Xt - %Yt. We

then obtain

?-a«w^i' (B1)
To find the change inRf , we integrate (Bl) from x=0 to s =» !>:

AR, =~JE(x) exp(iOt) dt . (B2)
Time is related to s by * = *,i where v, is constant.
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We will find the general solution to (B2) if E(x) andS its first two deriva

tives are continuous for all s. The fact that the ion spends many gyroperiods

in the resonance sone permits an asymptotic solution to (B2). We deform the

contour of integration into the complex plane as'shown in Fig. 12. Writing

* = or + i0t (B2) becomes

AR, =
mO4

Multiplying by the complex conjugate and taking the square root,

11/3

'0

where the integrals are over Ct and C3t respectively. The integral over G2 does

not contribute to AR, . Because of the exponential, the dominant contribution

to (B3) will come from the parteof the contour near the real axis. We therefore

expand E(x) in a Taylor series about the points where 0 = 0,

E(x) =-\E"02 +...
("" denotes differentiationwith respect to x). The first two terms of the Taylor

aeries vanish due to the continuity condition on E(x). Integrating (B3), we

obtain

F'(0)-^(Lf)exp(^)].

—2

E"2{0) +E"2[Lr) - 2E"{0)E"{L

We assume that

£"(0) *E"(L,) «^ ,

(BS)

(B4)

where 27 is the average value of the electric field. The cosine term in (B4) is

gyrophaae dependent and will be discarded. Approximating vM by vtk , (B4)
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The term in square brackets ia the ratio of electric field energy to thermal

energy, which is usually much less than unity. The ratio rL/Lr is typically

10"3. This makes the radial step length much shorter than thatdue tocoulomb

collisions. The radial atep time te(v),calculated inappendix A,has been shown

numerically to be much longer than re(v)t its coulomb counterpart. Therefore,

the radial diffusion rate due to ICRH is much less than that due to coulomb

collisions.

Appendix C: Reactor Designs

Allofthe designs in this appendix have Q= 5, Rc =3.363, BvAi = 240 kG,

0 = 0.8 and a vacuum magnetic field strength of 137 kG in the central celL In

these tables, n is the hydrogen ion density, given in units of 1016 cm"8, / is

the cell length, in meters, and R ia the finite 0 mirror ratio. For the examples

with ICRF, the column labeled "KF* is the percentage of RF power injected

into the cell, £ is the magnitude ofthe electric field, in kV/cm3, and C is the

asymmetry factor. The components of the power flow are: the total fuaion

power Pr, the axial power loss Pi, and the bremsstrahlung power loss Pfi.
central cell cross sectional area basis.

The numbers are given to three or more places in some cases. However,

the accuracy of the model is only to within 10 percent, so only two figures are

significant. Note that the cellnumberincreases asone movestowards the center

of the system (cell 1 is the end cell).



Dcrign 1: 21 cells, no ICRF

T = 6.37 keV

Tmm = 44.7 msec

peL = 6.90 •1010 jouks/m3
L = 1152 meters

*X = 3.19

K# = 1.92

Pr/Ac = 1.34 gigawatu/cm3
^l/Ac a .406 gigawatu/cm3
f>Mo = *088 gigawatu/cm3

ne = 2.94 • 10" cm-3
lc = 556 meters

A« = 6.0 cm3

cell
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2.67 (4.6 12.82

6.34 39.9 8.96

8.01 33.3 7.22

10.70 29.6 6.17

13.40 26.9 6.46

16.00 26.0 4.91

18.70 23.6 4.48

21.40 22.6 4.13

24.00 2L6 3.84

10 26.70 20.9 3.68



Design 2: 41 cells, no ICRF

T = 5.42 keV

fmm =* 77.5 msec

PcL = 6.09 1010 joules/m3
L = 1017 meters

kL = 3.70

Yc = 1.75

Pr/Ac = .866 gigawatU/cm3
*VA> = .228 gigawatU/cm3
fllAte •» .090 gigawatU/cm3
»ic = 3.45 • 10le cm"8

lc = 412 meters

Ac - 12.7 cm3

cell
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1 1.64 36.0 17.82
2 3.29 26.1 12.62
3 4.93 2L7 10.16
4 6.68 19.1 8.74
6 8.22 17.3 7.77
6 9.86 16.0 7.04
7 11.60 16.0 6.48
8 13.20 14.2 6.02
9 14.80 13.6 6.63

10 16,40 12.9 6.31
11 18.10 12.4 6.02
12 19.70 12.0 4.77
13 21.40 1L7 4.66
14 23.00 11.4 4.36
16 24.70 11.1 4.18
16 26.30 10.8 4.01
17 27.90 10.6 3.86
18 29.60 10.4 3.72
19 31.20 10.2 3.69
20 32.90 10.1 3.47



Deaign 3: 21 cells, ICRF

T - 6.43 keV

Tmm = 48-1 ms«C

pcL = 4.72 •1010 joules/m3
L = 788 meters

AL = 3.64

1.87 > Y0 > 1.84

Pr/Ac = 1.00 gigawatU/cm3
Pl/Ac = -304 gigawatU/cm3
PelAc = .064 gigawatu/cm3

n« = 2.91 • 1016 cm"3
lc = 338 meters

ii« = 6.3 cm3
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Cull n I R RF E

1 4.92 31.2 9.30 33.9 3.44 2.778
2 9.06 26.9 6.73 22.6 1.68 1.363

3 12.30 24.4 6.67 16.1 0.96 1.140

4 16.10 22.7 6.06 10.1 0.64 1.069

6 17.60 21.6 4.64 6.7 0.46 1.036

6 19.60 20.8 4.32 4.6 0.34 1.021

7 21.70 20.0 4.07 3.0 0.26 1.013

8 23.60 19.4 3.86 2.0 0.19 1.007

9 26.60 19.0 3.67 1.3 0.14 JL006

10 27.40 18.8 3.61 0.9 0.11 LOOS



Detign 4: 41 celb, ICRF

T = 533 keV

Tmm = 81.7 msec

peL = 431 1010 joules/m3
L = 720 meters

*L = 4.10

1.75 > Yc > 1.71

Pr/Ac = .678 gigawatU/cm3
flM* = .183 gigawatU/cm3
Pj/A« = .067 gigawatu/cm3

nc = 3.38 •10w cm"3
l0 = 228 meters

ii« = 12.7 cm3

-38-

ceil n I R RF E

1 3.72 19.6 11.62 28.6 3.38 3.229

2 7.01 16.7 8.36 20.4 1.60 1.438

3 9.66 16.4 7.04 14.6 0.99 1,183

4 1X80 14.2 6.31 10.4 0.70 1.096

6 13.70 13.4 6.81 7.4 0.62 1,066

6 16.40 12.9 6.46 6.3 0.39 1.034

7 16.90 12.4 6.17 3.8 0.31 1,021

8 18.20 12.3 4.94 2.7 0.24 1.013

9 19.60 11.7 4.74 1.9 0.19 1.009

10 20.80 11.6 4.67 1.4 0.16 1.006

11 22.00 11.4 4.42 1.0 0.12 1.003

12 23.30 11.0 4,27 0.7 0.10 LOOS

13 24.40 11.0 4.16 0.6 0.08 1.001

14 26.60 10.7 4.03 0.4 0.06 1.001

16 26.80 10.7 3.92 0.3 0.06 L001

16 28.00 10.6 3.81 0.2 0.04 1.001

17 29.20 10.3 3.71 0.1 0.03 1.001

18 30.30 10.1 3.62 0.1 0.03 1.001

19 31.60 10.1 3.63 0.1 0.02 1.001

20 32.70 10.0 3.44 0.0 0.02 L001
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Fig. 1. The magnitude of the vacuum magnetic field versus z. Note the

cell numbering. There is a plasma source of strength 2S in the

center of the system.
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Fig. 2. Various particle fluxes affecting cell j.
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Fig. 3. The power flows in a multiple mirror reactor.
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Fig. 4. The asymmetric application of ICRF. The dark bars are the

resonance zones.
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Fig. 5. The solid line is the loss cone edge generated by numerical
integration of the known terms of equation (36). The dashed

line is the loss cone edge generated by equation (37).

-47-



CM

e
o

if)

o

<

Li.

a.

£

Fig. 6. System length ("L") and fusion power density ("P") versus 3

for the system with no ICRF.
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Fig. 7. L versus Q for a system with no ICRF and a system with ICRF,
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Fig. 8. Pjr/Ac versus Q for a system with ICRF and a system without ICRF.
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Fig. 9. L versus 2N+1 for a system without ICRF and a system with ICRF,
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Fig. 10. Pc/Ar versus 2N+1 for asystem without ICRF and asystem with

ICRF.
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Fig. 11. Fractional reduction in L versus 2N+1. A system with symmetric

ICRF "a," a system with asymmetric ICRF but without ICRF

scattering "b," and a system with asymmetric ICRF and scattering

"c."
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Fig. 12. L versus h.
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Fig. 13. The complex z plane, showing contours. The original contour

(solid line) is deformed to the dashed line.
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