

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

kritiSfeBin

JS=Z&

5 =r=i3

or*-2

CC'.

COMPUTER-AIDED SYNTHESIS OF PLA-BASED SYSTEMS

by

Giovanni De Micheli

Memorandum. No, UCB/ERL M34/31

11 April 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley, CA 94720

COMPUTER-AIDED SYNTHESIS OF PLA-BASED SYSTEMS

by

G. DeMicheli

Memorandum No. UCB/ERL M84/31

11 April 1984

COMPUTER-AIDED SYNTHESIS OF PLA-BASED SYSTEMS

by

Giovanni De Micheli

Memorandum No. UCB/ERL M84/31

11 April 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Computer-Aided Synthesis of PIA-Based Systems

*y

Giovanni De Micheli

Engineer (Polytechnic Institute of Milan, Italy) 1979
M.S. (University of California) 1980

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OR PHILOSOPHY

in

Engineering

in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

f \1 - * - s J >v Date

Computer-Aided Synthesis ofPLA-Based Systems

Copyright O 1983

by GiovanniDe Micheii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor. Prof. Alberto

Sangiovanni Vincentelli. for introducing me to the exciting world of research.

His knowledge, enthusiasm and friendship guided me through my graduate stu

dies at U.C. Berkeley. He taught me patiently a rigorous research method and

showed me how knowledge is perpetuated and enhanced in the university

environment. His continuous availability to discuss scientific issues was valuable

in maturing new concepts and ideas.

I would like to thank the faculty of the EECS department at U.C.Berkeley for

having taught and advised me in several fields. In particular I wish to thank

Prof. Richard Newton for the sharp criticisms and accurate advices that helped

me in understanding some critical issues of Computer-Aided Design. I thank

Prof. Don Pederson, Prof. Charles Desoer and Prof. Shankar Sastry for many

stimulating discussions. I thank Prof. Leo Harrington of the Math department

for reading this thesis.

1 wish to express my gratitude to Dr. Bob Brayton. of IBM T.J. Watson

Research Center. Several discussions on the role of symbolic minimization and

graph embedding helped in developing the state assignment technique

presented in this dissertation.

I wish to thank Prof. Mauro Santomauro of the EE department of Politecnico

di Milano, who advised me during my undergraduate studies. In particular I ack

nowledge his contribution in formulating the PLA partitioning problem.

I thank Prof. Gary Hachtel of University of Colorado. Boulder for the invalu

able discussions on the issues related to PLA folding and partitioning.

I would like to thank the colleague graduate students of the EECS depart

ment at U.CBerkeley. Tlziano Villa contributed to the early efforts of under

standing the state assignment problem. Duksoon Kay helped in maintaining and

improving the PLEASURE program. Stimulating discussions with Jeffrey

Deutsch. Jim Kleckner, Mark Hoffman, Ken Keller. Grace Mah, Dr. William Nye

and Tom Quarles are acknowledged.

I express my gratitude for the financial support that made this research

possible. In particular I acknowledge the IBM Fellowship for VLSI in the years

1962 and 1983, the Rotary International Fellowship for the academic year

1980/81 and the Fulbright Scholarship for the academic year 1979/80. I thank

Harris Semiconductor Corporation for the opportunity of joining the Analog Divi

sion during fall 1981. and in particular Dr. John Cornell and Mr. James Spoto.

TABLE OF CONTENTS

1. INTRODUCTION : 1

1.1. VLSI design methods 1

1.2. Hierarchical design of digital circuits 2

1.3. Array logic design 5

1.4. Automated synthesis of combinatioiial PIA-based systems 9

1.5. Automated synthesis of sequential PIA-based systems 12

1.6. Integrated Circuit Programmable Logic Array implementation 14

1.7. Previous work 20

1.6. Dissertation outline 24

2. PIAPDLDING 27

2.1. Topological design of Programmable Logic Arrays 27

ill

2.2. Multiply folded PLA implementation 30

2.3. Graph theoretic interpretation of the multiple folding problem

37

2.4. An algorithm for multiple PLA folding 45

2.5. Multiple constrained folding 52

2.6. PLEASURE 82

2.7. Experimental results 89

3. PlAPARTmONING 91

3.1. Programmable Logic Array Partitioning 91

3.2. Basic concepts and definitions 92

3.3. Equivalent arrays and partitioning 93

3.4. Graph interpretation of the partitioning problem 95

3.5. Partitioned PLA implementations 106

3.6. A heuristic clustering algorithm for PIA partitioning 110

3.7. SMIUS 117

3.6. Experimental results 121

3.9. A comparison between folding and partitioning techniques 122

4. DESIGN OF PIA-BASED FINITE STATE MACHINES 124

iv

4.1. Sequential Logic Implementation 124

4.2. Sequential function representation 127

4.3. Optimal design of FStfs: state assignment 132

4.4. Logic minimization of the FSM combinational component 137

4.5. Constrained state encoding 146

4.6. An algorithm for optimal state assignment 160

4.7. KISS 174

4.8. Experimental results 176

5. CONCLUSIONS AND FUTURE DIRECTIONS 179

REFERENCES 182

APPENDIX A: Basic definitions of switching theory 196

APPENDIX B: PLEASURE program and examples 206

APPENDIX C: SIDUS program and examples 207

>. APPENDIX D: KISS program and examples 208

CHAPTER 1

INTRODUCTION

1.1 VLSI DESIGN METHODS

Very Large Scale Integration (VLSI) circuits play a major role in the

development of complex electronic systems. As a result of the progress of

semiconductor technology, an increasing number of devices can be realized

on a single chip.

A design method for large scale integrated circuits has to satisfy

different requirements in order to cope with the increased design complex

ity. In particular a method based on a structured and hierarchical design

supported by the use of computer aids can ensure functional correctness

while maintaining a reasonable design time [SEQUS3].

Computer-aided design of VLSI circuits addresses several goals such as

automated synthesis, circuit optimization, design verification, system simu

lation and test pattern generation. A design system for VLSI circuits is an

integrated set of design tools which allows an engineer to produce a design

description ready for manufacturing by using his ingenuity in the creative

design phases and where as many transformations among design representa

tions as possible are automated.

Many different philosophies concerning the automated synthesis of VLSI

systems have been proposed in recent years, e.g. [TRIMSl] [NEWTBl]

[DIRE81], [DUTT81]. [ALLE81] [B0SE83]. Research in the area of VLSI design

systems at the University of California, Berkeley aims at creating a software

frajnework in which modular programs coexist and interact and can be

easily updated according to the advances in semiconductor technology

[NEWTBl]. The design system is accessed by the circuit designer through a

graphic-oriented design station [KELL82] [ELU82] [KELL83] [0UST84]. A

strong emphasis is placed on the optimization of the area, performances and

power of the designed circuit. Therefore the designer monitors and steers

the transformations among the design description by interacting with the

design system and by having access to human-understandable representa

tions of the circuit at the different levels of abstraction .

1.2 HIERARCHICAL DESIGN OF DIGITAL CIRCUITS

This dissertation addresses the synthesis of digital circuits. The design

of a digital system can be viewed as a sequence of transformations of design

representations at different levels of abstraction. A flow-chart showing the

steps in the top-down synthesis ofa digital circuit is included as Fig. 1.2.1.

Thebehavioral specifications of the system are described first by a func

tional representation. For example. Hardware Description Languages (KDL)

such as ISP [BARB77],[BARB81], DDL [D1ET68] and AHPL [KILL78], are com

monly used. The functional representation is transformed into a logic

description , consisting of a net-list of logic gates, including storage gates.

that can be visualized by a logic schematic diagram. Subsequently a topologi

cal description is obtained by determining the mutual positions of the gates

and the related interconnections. The next step is to specify an electrical

representation , according to an implementation technology, which is even

tually transformed into a geometric layout of the integrated circuit imple

menting the given functionality.

I FUNCTIONAL REPRESENTATION

LOGIC REPRESENTATION

TOPOLOGICAL REPRESENTATION

ELECTRICAL REPRESENTATION

GEOMETRIC LAYOUT

Fig. 1.2.1 Synthesis of a digital circuit

Nowadays it is considered impractical to perform these transformations

by hand, because they are tedious, error-prone and very time-consuming. In

an automated synthesis environment, the designer just monitors the

transformations and verifies the practical feasibility of the design at each

step. As a result the length of the design cycle is shortened, the associated

development cost is reduced and the circuit reliability is enhanced greatly.

The transformations involved in the synthesis of a VLSI circuit depend

on the design method used. Several "styles" are used in industrial VLSI

design according to the function and the market of the circuit.

The objective of a fully custom design method is an ad hoc implementa

tion. Therefore each transformation between design representation is optim-

ized for the particular circuit being designed. High performance implemen

tations can be achieved. To date, computer-aided design techniques support

custom design to a limited extent, because customized implementations are

so complex that designers' experience cannot be replaced by automated

transformations between design representation. As a consequence, custom

design has a longer development time compared to other methods. There

fore custom design is profitable to date only for large volume production of

complex systems, such as microprocessors or memories, or for circuits

where special performance is required.

In a gate-array design method, a circuit is implemented in silicon by

personalizing a master array of uncommitted gates using a set of intercon

nections [BLUM79]. Therefore design is constrained by the fixed structure of

the master array and is limited to routing the interconnections. Computer-

aids support widely gate-array design and complex circuits can be imple

mented on gate-arrays in short time. Gate-arrays are widely used, in partic

ular for small volume production or for prototyping new designs.

The design of a VLSI circuit in a standard-cell (or poly-cell) design

method requires partitioning the circuit into atomic units that are imple

mented by pre-committed cells [FELL76]. Therefore design includes place

ment and routing of the cells, that are supported by computer-aided design

tools. The standard-cell and gate-array design methods alone do not support

highly optimized circuits. However standard cell designs are more flexible

than gate-array designs, but require longer development time.

The design of VLSI circuits, using parametrized modules, or macro-cells.

bridges the gap between custom and standard-cell design and is compatible

with both methods. Parametrized macro-cells can implement functional

units that are specified by design parameters and by their functionality

[NEWT81]. Macro-cells are highly regular and structured. Therefore com

puter programs, called module generators, can produce the layout of a

macro-cell from its functional description.

The macro-cell approach is very attractive because of its flexibility, that

allows to exploit the advantages of both custom and standard-cell methods.

Highly optimized and area-efficient modules can be designed in a short time.

In particular, Programmable Logic Array macros [FLEI75] have shown to be

very effective means of designing both combinational and sequential func

tions.

1.3 ARRAY LOGIC DESIGN

Weinberger proposed for the first time a regular one-dimensional array

implementation of a digital circuit [WEIN67a]. Asketch is shown in Fig. 1.3.1.

Weinberger arrays were designed to be implemented on a metal-gate PMOS

technology, where just one level of interconnect was available (metal) in

addition to diffusion. The gates are therefore placed along the position of a

linear array, and metal horizontal segments are used to connect gates.

Weinberger arrays provided a structured technique for implementing

multiple-level logic functions. However the inherent one-dimensional struc

ture of the array limited their applications.

A structured approach for the implementation of combinational logic

functions can also be obtained by look-up tables [FLE175]. In particular Read

Only Memories (ROM) can be used to evaluate a logic function whose entries

are stored in the memory locations corresponding to appropriate addresses.

Read Only Memories are two-dimensional arrays and are implemented in

several technologies. The implementation of a combinational logic function

Oft—i o« I
Fig. 1.3.1 Weinberger array

by means of a ROM yields a very structured design, which can be easily

modified. Moreover the speed of operation can be fast and easily determined

for the set of combinational logic functions requiring the same address

space. Unfortunately a ROM implementation of a combinational function is

not effective in terms of silicon area. A ROM implementation of a n-input

function requires 2f* memory cells. On the other hand, a combinational func

tion may not require the entire address space of a ROM because the function

is not specified for some input combination. Look-up techniques that do not

associate a single memory cell to every specified input combination, as Pro

grammable Logic Arrays do. are more efficient in terms of silicon area.

Programmable Logic Arrays (PLAs) allow to exploit the advantages of

the look-up table approach, while reducing the area penalty [PR0E76]. In

particular, only a subset of input combinations, describing completely the

switching function, is related to the physical implementation.

A Programmable Logic Array implements a two-level combinational

function on a two dimensional array. Each position of the array is pro

grammed by the presence or absence of a gate. Two orthogonal sets of seg

ments provide connection between them (Fig. 1.3.2). The functionality of a

PLA can be represented by a 0-1 matrix. Therefore design and optimization

of a PLA can be performed on a symbolic array, and the physical layout can

be obtained from it in a straight-forward way. Therefore PLAs are attractive

building blocks of a structured design methodology [L0GU75].

i51

13*

4 $, 4 & il | $ a
T T T T

3T

M

dSS

>&

T U
T

*v,

tit
Fig 1.3.2 PLA integrated circuit implementation

'DO

8

Many industrial VLSI circuits, such as the Intel 8096, the Motorola 68000

and the Hewlett-Packard 32-bit micro-processors, use PLAs as building-

blocks.

Programmable Logic Array allow arbitrary two-level logic function imple

mentation, where inputs and their complements are available. Any combina

tional logic function can be represented by a two-level form such as sum~of~

products or product-of'sums . Therefore any combinational logic function

can be implemented by a PLA.

The trade-offs of two-level versus multiple-level implementations of com

binational functions is a subject of intensive investigation [BRAY82b]. To

date, there is no general criterion to decide how many levels of logic

correspond to the most effective implementation in terms of silicon area and

switching-time performance. However PLAs can also be used to implement

multiple-level logic functions by cascading logic arrays [L0GU75].

Recently a more elaborate array architecture has been introduced and

referred to as gate matrix [KANG83]. Gate matrices allow the implementa

tion of multi-level switching functions on a two-dimensional array in CMOS

technology. The gate matrix consists of a set of polysilicon columns inter

secting a set of orthogonal diffusion rows. Gates are formed at appropriate

intersections, and metal segments provide connections. The design of the

BelLmac 32 microprocessor was based on the use of gate matrices [KANGS3].

Sequential logic functions can be represented as Finite State Machines

(FSMs) and implemented by a combinational and a storage component

[HILLBl]. A regular array can implement effectively the FSM combinational

component. In particular. PLA-based Finite State Machines can be designed

efficiently, because the properties of two-level combinational functions are

9

well understood. Therefore PLAs and Memory elements can be seen as primi

tives of a general digital design methodology.

A Storage Logic Array (SLA) is an array implementation of a sequential

function, where both small PLAs and memory elements are placed along the

positions of a two-dimensional array [PATI79]

•n -a •3} '=0

•31 n ltd "ID

tKIS

Fig 1.3.3 Storage Logic Array

1.4 AUTOMATED SYNTHESIS OF COMBINATIONAL PLA-BASED SYSTEMS

The automated synthesis of a combinational system as a Programmable

Logic Array can be partitioned into several tasks: functional design, logic

design, topological design and physical design (Fig. 1.4.1.).

Logic EfljMtiont

X*AB*CD

Y» B + CD+AB

Personality

1100 10

001 I I i

0 100 01

Symbolic Motris Geometric Layout

n io
AND OR

01 01 ft V

f TOPO-\
LOGIC \ /LOGICAL \ /physical
DESIGN j V DESIGN } I DESIGN

Fig. 1.4.1 Computer-aided PLA synthesis

10

Functional design consists of defining the functional specification of the

system. For example, a designer can specify a combinational circuit in a

Hardware Description Language. The functional description is then

transformed into a logic representation in terms of Boolean (logic) variables.

Logic design is a manipulation of the logic representation without modi

fying the circuit functionality. Optimal logic design optimizes the logic

representation to obtain a convenient implementation. In particular logic

minimizaUon. [MCKL56] [K0NG74], [BROWBl], [BRAY82a].[BRAY84] and logic

partitioning [BRAY82b] have been explored. Two-level logic minimization

tries to obtain a logic representation with a minimal number of implicants

and literals. The reduction of the number of implicants allows a PLA imple

mentation in a smaller area, and therefore leads to a faster speed of

11

operation and higher yield. The reduction of the number of literals

corresponds to a reduction of the number of devices and contacts required.

This reduction leads to a faster speed of operation and to an enhanced relia

bility.

Topological design of a PLA involves the definition of the location of the

devices in the array. Note that it is possible to define a straight-forward

mapping from a two-level logic description to the PLA layout. Unfortunately

this strategy leads in general to a non optimal design of the array in terms of

silicon area. In fact, most of the array locations are personalized by the

absence of active devices, especially in large arrays [W00D79]. Hence the

straight-forward implementation would result in a significant waste of silicon

area, i.e. area occupied only by interconnect and not directly contributing to

the implementation of the logic function. Wasted area reduces circuit yield

and degrades the time performance of the PLA by introducing unnecessary

parasitics. Optimal topological design increases the area utilization by rear

ranging the array structure by means of topological operations. Topological

optimization methods fall into two major categories: array folding and

array partitioning and are described extensively in the sequel. Topological

design produces a PLA description with detailed information about the posi

tion of the PLA devices, interconnections and contacts. This information can

be in the form of a symbolic array or a stick diagram, and is independent of

the implementation technology to a large extent.

Physical design is the translation of the topological representation into

the layout of the masks used to manufacture the circuit. This step depends

heavily on the semiconductor process and layout design rules. The final

representation is generally in the form of a geometric design language such

12

as the Caltech Intermediate Form (CIF) [MEAD80] or equivalent mask

language or format.

1.5 AUTOMATED SYNTHESIS OFSEQUENTIAL PIA-BASED SYSTEMS

The design of a sequential logic systems departs from combinational

logic design mainly at the functional and logic level. As in combinational

logic design, the automated synthesis of a sequential circuit as a PLA-based

Finite State Machines can be partitioned in the following tasks: functional

design, logic design, topological design and physical design . Aflow-chart of

the transformations involved in the computer aided synthesis of a PLA-based

sequential functions is shown in Fig. 1.5.1.

FUNCTIONAL

REPRESENTATION

LOGIC

REPRESENTATION

Fig. 1.5.1 Computer aided FSM synthesis

13

functional design consists in defining the system behavior by means of

a functional description such as a flow-chart , a Hardware Description

Language or a state table . Flow chart descriptions, such as the Algorithmic

State Machine (ASM) chart [CLAR75] or the Mnemonic Documented State

diagram (MDS) [FLET30], allow an algorithmic description of the sequential

system and enable the designer to visualize the entire machine functionality.

Hardware description languages allow to describe a sequential function as a

software program. State tables are tabular descriptions of the system func

tionality. Optimal functional design includes state minimization [KART66].

State minimization reduces the number of states of a sequential system,

without modifying its functionality.

Logic design consists of mapping the functional description into a logic

representation in terms of logic variables. In particular, a representation of

the states in terms of Boolean variables is chosen. This step is referred to as

state assignment [HART66]. The memory configuration used to store the

machine state is selected at the same time. This allows to express the exci

tation maps of the memory elements by Boolean equations. Note that the

complexity of the combinational component of the machine depends heavily

on the state assignment and on the excitation maps of the chosen memory

elements. Therefore optimal logic design of sequential functions include

optimal state assignment and selection of memory elements. This step

allows to specify the FSM combinational component in relation to the optimal

implementation of the sequential function.

Logic , topological and physical design of the FSM combinational com

ponent per se are similar to the design steps of combinational circuits. In

addition, memory elements have to be designed and connected to the combi-

14

national component. Therefore an objective of FSM topological design is to

locate the PLA input and output connections as to simplify the routing

between the PLA and memory elements.

1.6 PROGRAMMABLE LOGIC ARRAY IMPLEMENTATION

Programmable Logic Arrays are extensively used in integrated circuit

design. In some cases a PLA, or a PLA-based FSM. occupies an entire chip

[W00D76]. Examples are code-converters or digital controllers. Recently

Programmable Logic Arrays emerged as a new building-block for VLSI circuit

design [MEADBO]. For example PLAs can implement the instruction decoder

of a microprocessor.

PLA design depends heavily on the integrated circuit design method.

PLAs that are built in gate-array chips have to be designed so that they fit

into a given structure. Therefore topological design is very important in

obtaining compact arrays with a given shape. On the other hand, in VLSI cus

tom and macro-cell design, the PLA shape is not the major design constraint.

However PLAs must interact with other functional building-blocks, and a pri

mary objective of topological design is easing the connection of the PLA to

other subcircuits.

Basic concepts and definitions of switching theory and representations

of combinational logic functions are reported in App. A* A combinational

logic function can be described by a logic cover. While designing a PLA

implementation of a combinational function, the logic cover is seen as a pair

of matrices, called input and output personality matrices.

Example 1.6.1: Personality matrices:

•*1**0 1000
•!•()•• 0100

1«»»0 0001
1***1* 0100
Q,*„, 0010

•••••1 0001

The corresponding PLA implementation is sketched in Fig. 1.6.1.

y y y y y y \\\:
Fig. 1.6.1 PLA Schematic implementation

15

Every scalar input of the logic function corresponds to a pair of columns in

the left part of the physical array. Every implicant. or equivalently every row

of the personality matrix corresponds to a row of the physical array. In par-

16

ticular every implicant input part, or equivalently every input personality

row corresponds to a logical product of some inputs. Therefore PLA physical

rows are termed product-term rows or more simply rows. Every output of

the logic function corresponds to a column in the right part of the array.

The implementation of a particular switching function is obtained by pro

gramming the PLA, Le. by placing (or connecting) appropriate gates in the

array in the input (output) column position specified by "l" or "0" ("l").

Note that a PLA can be ideally partitioned into input and output arrays,

corresponding to the sets of input and output columns respectively. For his

torical reasons, the arrays are referred to as AND-plane and OR-plane.

although physical implementations different from sum-of-products are very

common.

The key technological advantage of using a PLA in an integrated circuit

technology relies on the straight-forward mapping between the symbolic

representation (personality) and its physical implementation. Moreover

PLAs are compatible with different technologies and modes of operations, as

shown in the following examples.

Example 1.6.2: AND-OR bipolar transistor PIA implementation

In this case the AND and OR gates can be easily implemented by plac

ing a bipolar transistor in the locations of the physical array

corresponding to the cares of the personality matrix (Fig. 1.6.2.). The

resulting array is very compact and output signal are directly avail

able from the output columns. Note that very fast PLAs can be built

by limiting the logical voltage swing. Fang [FANG83] reported the im

plementation of a 6 nanosecond PLA with 200 product terms.

Vbo
-^w-

•-WV-

-*w-

«^^-

++*r

T a

T

•^
E

•5

V
A A A

v

£
e;

•s £
£-

•=c
3»

Lt U V t
PC

Fig. 1.6.2 AND-OR Bipolar transistor PLAimplementation

Remark 1.6.1: Primitive bipolar PLAs were built with bipolar diodes in

place of transistors. Fan-out considerations limited severely the use

of such arrays for large switching functions.

Example 1.6.3: NOR-NOR NMOS PLA implementation

The most common PLA implementation in VLSI MOS circuits has the

basic structure as depicted in [MEAD80]. In MOS technology it is con

venient to exploit the use of NOR gates. Therefore the PLAs are im

plemented in the form of sum-of-sums (or more exactly

CQmplernerUed-svjn-of~complerriented-suTris). The transformation

17

from a sum-of'products representation can be easily done as shown in

Fig. 1.6.3 . Note that output inverters are required.

18

cfldS
r0D

W51

jSI
j51

i£
it

A A A ii A A A

T T T Y

3T

V

ED **->

*:

St

•*£

T J>
T II

Fig. 1.6.3 NOR-NOR NMOS PLA implementation

Remark 1.6.2: The basic NMOS PLA implementation has been tailored

by several companies to different MOS processes yielding better per

formances. High performance NMOS implementations with static and

dynamic operation are presented in [C00K79]. Dynamic CMOS imple

mentations are achieved by using the same structure shown in Fig.

2.4.2. Small-sized PLAs can be implemented in NMOS technology by a

complemeTUed-product-of^omplemented-products form (NAND-

NAND). Such arrays are also referred to as stack-PLAs, and their use

is limited by fan-in considerations of NAND ports in MOS technology.

19

It is worth mentioning that a choice of a PLA implementation technology

depends on the design goals. However PLA design is independent of the

implementation technology used up to the definition of the device an inter

connection locations. Therefore methods for PLA automated synthesis at the

functional logic and topological level are fairly general and have a wide range

of applications.

Remark 1.6.3: Integrated circuit logic arrays come in two different

flavors. In particular PLA personalization can follow or precede fabri

cation. PLA used as building blocks in large scale designs fall into the

second category.

In the first case PLAs are manufactured with a programmability

feature [S1GN79]. Field Programmable Logic Arrays (FPLAs) are user-

programmed by applying an electric field in appropriate array loca

tions, which induces a short (or open) circuit. Laser Programmable

Logic Arrays (LPLAs) are programmed by cutting appropriate connec

tions after manufacturing.

In the second case PLAs are programmed before manufacturing by

appropriate patterns on one or more masks. In particular bipolar

PLAs can be programmed by the contact mask. Mead suggested a

diffusion-mask program for NMOS PLAs in [MEAD80J. However more

complex mask-programming techniques are generally used in order

to eliminate unnecessary parasitics [H0FF81].

It is therefore unappropriate to refer to the second category of cir-

cuits as Programmable Logic Arrays. A better term should be Pro

grammed Logic Arrays. Unfortunately it is very common to refer to

Programmable Logic Arrays for both cases.

In the sequel only Mask Programmed Logic Arrays for VLSI design are

considered. They will be referred to as Programmable Logic Arrays

for the sake of uniformity.

20

1.7 PREVIOUS WORK

There are several contributions related to the optimal synthesis of PLA-

based systems. Here they are grouped in three major categories:

i) papers describing systems using PLAs as a macro building blocks:

ii) papers related to the optimal synthesis of sequential circuits:

iii) papers presenting PLA optimization techniques.

The contributions related to the first and third group are quite recent.

Optimal synthesis of sequential functions was a popular research subject in

the sixties. However no major result was achieved in recent years in connec

tion with VLSI circuit design. It is a goal of this dissertation to bridge this

gap.

PLA-based systems have been used extensively in controller and data

path design [FLE175] [L0GU75]. Jones [J0NE75] described the design of a sys

tem where PLAs were used as logic macros. Weinberger [WE1N79] first used

PLAs to design adders and Schmookler [SCKMSO] designed large ALUs by

means of PLAs.

21

Computer-Aided Design tools and methods for PLA-based system design

have been studied extensively. However many research problems are still

open and under investigation.

Ayres [AYRE79] and Weber [WEBE79] addressed the use of high level

language to design PLAs. Dietmeyer et ai. [DIET6S] used a DDL description to

synthesize a digital system using PLAs. The APLAS system [KANG81] allowed

the complete design of a FSM controller from a DDL-P description, though

several transformations (as the state assignment) were not implemented as

to yield an optimal synthesis. Recently, Floyd and Ullmann [FL0YB2]

addressed the syntesis of sequential functions, described by regular expres

sions, by means of PLAs.

The state assignment problem has been the object of extensive theoreti

cal research. Hartmanis [HART61], Stearns [STEA61] Karp [KARP64] and

Kohavi [K0HA64] developed algebraic methods based on partition theory.

Their approach was based on a reduced dependence criterion, which lead to

a good assignment. However no theoretical result was presented that related

reduced dependencies to optimal FSM implementation. Moreover no sys

tematic procedure was developed that could be used to encode large

machines. Armstrong [ARMS62a] [ARMS62b] developed a method capable of

coding large machines based on a graph interpretation of the problem. How

ever his approach was still ineffective in obtaining a substantial reduction of

the complexity of the FSM combinational component, because i) he did not

take into account the techniques of fast heuristic logic minimizers. ii) he

transformed the state assignment problem into a graph embedding problem,

that represented only partially the state encoding problem, iii) his graph

embedding technique was ineffective (see Section 4.3). Dolotta and McKlus-

22

key [D0L062] introduced the concept of codable columns, used for finding

near-optimal solutions. Their algorithm was able to estimate the complexity

of the combinational component of the FSM as a function of partial-length

state assignments. However the method was computationally efficient only

for small machines. Their method was later improved by Weiner et al.

[WEIN67b], Torng [T0RN6B] and Story et al. [ST0R72]. Curtis [CURT69]

[CURT70] considered the problem of using different types of storage ele

ments in relation with the state assignment problem and generalized the

methods proposed in [D0L062] and [WEIN67b]. Tracey [TRAC66] and Saucier

[SAUC72] addressed the state assignment problem in connection with race-

free asynchronous machine design. Despite all these efforts, to the best of

my knowledge, no tool for designing FSMs is in use today for a time-effective

encoding of industrial digital controllers.

The logic minimization problem has also been object of extensive investi

gation. Most classical minimization algorithms [MKCL56] [R0TH58] [TIS067]

are based essentially on a similar procedure. All the prime implie ants of a

logic function are generated first, and a minimal cover is selected by deter

mining an appropriate subset. Classical algorithms have shown to be imprac

tical for large combinational functions, because of computing time and

memory space requirements. Heuristic logic minimization algorithms are

based on an iterative improvement of the cover of a logic function. Hong et

al. [H0NG74] presented an algorithm that is capable of handling large logic

functions and that was implemented in program MINI. Kang [KANG81]

addressed the problem of minimizing very large switching functions. He

used a divide et impera strategy. Logic functions are partitioned first and

then minimized using a technique similar to the one reported in [H0NG74].

Programs PAPA and SPAM implemented the algorithms. Svoboda described

23

in an unpublished manuscript a minimization algorithm which was imple

mented in programs PREST0[BR0W80] and POP [SYMA83].[DEM184]. Brayton

et al. [BRAY84] developed minimization techniques based on Shannon decom

position and the properties of unate covers. The related program,

ESPRESSO-II, has shown performances superior to other minimizers.

Topological design has been studied only recently. Greer [GREE76] and

Wood [W0OD79] presented for the first time a folded PLA implementation. A

theoretical formulation of the optimal PLA folding problem was given for the

first time by Hachtel et al. [HACT80] [HACH82a] who presented a heuristic

algorithm as well. Hoffman [K0FF81] implemented a branch-and-bound fold

ing algorithm in program BLAM, that could handle small PLAs. Luby et al.

[LUBY82] addressed the complexity of the PLA folding problem. Ku [KUB3]

studied graph theoretic properties of folded PLA structures and a folding

algorithm based on grouping. Grass [GRASS2] and Paillotin [PAlLSl]

explored different folding strategies. A taxonomy of the folding techniques is

given in [HACT82b].

PLA compaction by means of topological partitioning was addressed first

by Kang [KANG81], who proposed a heuristic algorithm. His technique was

perfected lately by Hennessy [HENNB3]. Egan [EGAX32] presented a method

for PLA partitioning which is referred to as bipartite folding. Suwa [SUWASl]

presented a technique to design compacted arrays, called segmented-folded

PLAs. In particular, Suwa uses both partitioning (segmentation) and folding

techniques. The PLA is segmented first in multiple planes, and then columns

of each plane are pairwise folded.

The physical automated layout of PLAs has been developed mainly in the

industrial environment for internal purposes. Few results have been pub-

24

lished. Glasser presented an interactive PLA generator in [GLAS80]. Land

man [LAND81] wrote program MKPLA that generates the PLA layout from a

logic description. Hoffman wrote program PLAID to lay-out simple-folded

arrays [H0FF81]. A program to lay-out multiple-folded PLAs is being

designed at U.C.Berkeley [MAH83]. More complex PLA structures can be

laid-out by the PAOLA system [CKUQ82]. Patil [PAT179] described a design

system for Storage Logic Arrays, where the layout of the combinational and

the memory components of a FSM are considered along with the related

interconnections.

1.8 DISSERTATION OUTLINE

The design of an automated system for the design and optimization of

PLA based integrated circuits involves the concurrent work of several

researchers, because of the complexity and the wide span of the problems

involved.

This dissertation addresses two major points:

i) the description of a framework for optimal topological design, based

on PLA folding and partitioning techniques;

ii) an effective technique for the optimal state assignment of PLA based

FSM.

An innovative PLA folding method is presented in Chapter 2. First a general

folding technique is introduced, called multiple constrained folding. Two PLA

architectures are proposed to implement effectively multiply folded arrays

[DEMI83a]. The problem of interconnecting a PLA to other building blocks is

then considered. In fact, the folding techniques that have been previously

proposed by other researchers have a major drawback. The connection of a

25

folded PLA to the outside circuitry may involve complex and area-consuming

routing, because the positions of the inputs and outputs of a folded array are

permuted by folding. In order to use effectively PLA folding for VLSI design.

it is crucial to allow the positions of inputs ad outputs to be constrained.

Therefore a set of constrained multiple folding techniques are introduced to

compact the PLA area while ensuring effective routing of the folded array

[DEMI83b] [DEM183c].

A new approach to PLA topological partitioning is described in Chapter

3. The PLA partitioning problem is presented for the first time in graph

theoretic terms [DEMlS3d]. An algorithm for PLA partitioning based on a

cluster search is presented. The algorithm uses array transformations based

on logical operations to ease partitioning. Partitioned PLAs can then be

implemented as block-folded arrays or alternatively as parallel-connected

arrays [DEMIB3eJ.

In Chapter 4 the design of PLA-based Finite State machines is

addressed, and, in particular, the optimal state assignment problem. The

optimal state assignment problem is studied in connection with logic minimi

zation of the FSM combinational component, that is implemented here by a

PLA [DEM183f]. In particular a binary encoding (assignment) of the states is

optimal when the unfolded/unpartitioned PLA area is minimal. Due to the

computational complexity of the problem, a heuristic technique for state

assignment is presented. First the class of present-states assignments that

minimize the PLA rows is determined. Then a minimal-length assignment

(leading to a minimal-column PLA) is selected. This technique has shown to

be effective in achieving minimal area PLA implementations of the FSM com

binational component on a set of industrial benchmark circuits.

26

The methodology used to approach the above problems is based on a

rigorous mathematical formulation. Graph theory has been used extensively

as a vehicle to understand the problem structure and to develop heuristic

strategies. The proposed solutions have been always considered in relation

with the actual implementation on a VLSI chip. Therefore electrical proper

ties and limitations of the physical implementation have been taken into

account. The algorithms have been coded and tested. The resulting pro

grams are a part of the U.C. Berkeley VLSI design system. Experimental

results on a set of industrial examples are reported.

CHAPTER 2

ARRAY FOLDING

27

2.1. TOPOLOGICAL DESIGN OF PROGRAMMABLE LOGIC ARRAYS

The straight-forward translation of the PLA personality matrix into a

physical layout, leads in general to a non optimal design of the array. In fact,

the input (output) personality matrices representing minimal covers of

switching functions contain a large number of don't cares ("0"s),

corresponding to the absence of a personalizing device. A straight-forward

implementation would result in a significant waste of silicon area : i.e. area

occupied only by interconnect and not directly contributing to the imple

mentation of the logic function. The wasted area reduces circuit yield and

degrades the time performance of the PLA by introducing unnecessary

parasitics.

Topological design aims to reduce the wasted area. A topological com

paction technique called array folding is described in this Chapter, while an

alternative technique based on array partitioning is reported in Chapter 3.

For the sake of uniformity, PLAs are assumed to be implemented by one

of the architectures shown in Example 2.4.1 and Example 2.4.2, as sketched

in Fig. 2.1.1. Input signals and their complements run vertically in the AND

plane, product-terms run horizontally in both planes and outputs run verti

cally in the OR plane.

In the sequel the folding technique presented by Wood [W00D76] and

studied theoretically by Hachtel et al. [HACK82b] is referred to as simple

1 T 1 1—*f ¥ i 1 1
h V: !l

1 j f j I
> i . k

, "•*""~™ •"•"""! •"•"••• """^ "™,""^™"^~'^™"" "~™""™" 4 J"™"""•

1 1 1 1—i 1 1 1—j:

r* i

5 at

r6

t t t t t t
C| Cg c3 c4 c5 c6

i i i i

C7 C8 C9 CI0

Fig. 2.1.1 Basic PLAstructure

28

folding . Simple folding aims at determining a permutation of the rows

(and/or columns) of the array which permits a maximal set of column pairs

(and/or row pairs) to be implemented in the same column (row) of the phy

sical array (Fig. 2.1.2). Folding comes in two flavors : column folding and

row folding . Since large arrays are usually very sparse, a considerable area

reduction can be achieved by folding rows and columns.

A generalization of simple folding is multiple folding . The objective of

multiple column (and/or row) folding is to determine a permutation of the

rows (and/or columns) of the PLA which allows to implement in each column

(and/or row) of the physical array a set of logic columns (rows) (Fig. 2.1.3).

From the description given above , it is clear that multiple folding contains

simple folding as a special case. Thus, the area saving achieved by this

I C3. C5 C6

I • *
^A '

r2

«"3 *

•"5 *

re

t t
C2 C4

'7 ^8

t t

1

1 1
C9 C|0

Fig. 2.1.2 Simply folded array

29

technique can always be made better than (or. in the worst case, equal to)

the one achieved by simple folding. Note that if simple folding is used , the

area of the PLA can be reduced at most to 25% , no matter what the sparsity

of the personality of the PLA is. If multiple folding is used, the PLA sparsity

is the ultimate limit.

All existing folding techniques have a major drawback. The connection of

a folded PLA to the outside circuitry may involve complex and area-

consuming routing , because the positions of the inputs and the outputs of a

folded array are permuted by the folding algorithm. In order to use

effectively PLA folding for VLSI design . it is crucial to allow the positions of

inputs and outputs to be constrained.

«5

»*4

'*£
*—it-

ii Jr

c,i—i.

I4
Cio

t

Fig. 2.1.3 Multiply folded array

30

Constrained folding techniques are strictly related to the folded PLA

implementation. Multiply folded PLAs are implemented by structures which

are more complex than those shown in Fig 2.2.1 and Fig. 2.2.2. Therefore a

more detailed description of the constrained folding problems is postponed

to the next Section.

2.2. MTJLTIPLY FOLDED PLA IMPLEMENTATIONS

The implementation of simple column (and/or) row-folded PLA is

straight-forward, since at most two columns (rows) are folded together and

connection to the outside circuitry can be done from the top or the bottom

of the array. (Fig 2.1.2) [HACH82a] [W00D79]. The implementation of a

multiply-folded PLA is more complex. The implementation of multiply

31

column-folded logic arrays is considered first

The implementation of several logic columns in the same physical loca

tion requires the physical (metal, poly or diffusion) columns be split into

segments (Fig 2.1.3). Therefore a path must be provided to route input and

output signals to/from the split physical columns inside the array. Thus stan

dard PLA architectures cannot be used to implement multiply column-folded

PLAs. Several authors [GREE76] [CHUQ82] [DEM181] have proposed different

architectures for multiply-folded arrays. The following two structures are

considered, which can be implemented in nMOS or cMOS technology. The

extension to bipolar technology is straight-forward.

The first architecture is shown in Fig. 2.2.1. It requires two levels of

metal (polysilicon), in addition to the usual levels of poly (metal) and

diffusion. The PLA is implemented using two arrays (the AND plane and the

OR plane) personalized by MOS transistors. Input signals run vertically in the

input columns of the AND plane, product terms run horizontally in the rows

of both planes and output columns run vertically in the OR plane. Two levels

of interconnect are used for these rows and columns, in addition to ground

diffusion rows and columns. The third level of interconnect (second metal or

second poly level) is used to run horizontal connection-rows above the pro

duct term rows to route the input and output signals to/from the input and

output column segments to the outside circuitry.

An alternative architecture supports multiple folding with only one level

of metal, poly and diffusion. Input and output signals are routed

inside/outside the array by connection-rows parallel and alternated to the

product term rows and implemented on the same level. This structure is

simpler than the previous one but the area used by a multiply-folded PLA is

32

larger (Fig. 2.2.2).

Ci

C4

c5 —

C3 —

C6—>

LEGEND:

c2

CI

C4

CS

C3

C6

_ -J>tTT^.
-.^xm

r6| L_i }

%P
rs—t
'.!

_.—..#

metol I

poly

metal 2

— T—*

--,:--
«- A

9

* *--

x

— C8

— c7

— c9

—* CI0

octive device

cut

contact

(Diffusion around lines not shown)

Fig. 2.2.1 Multiply-folded PLA implementation

U ^

I

'* f

•*—*

1
1

'5 t-4-

«-—._.*

+-»

«™—I.

I k ..

nr-
—*—»

Fig. 2.2.2 Multiply folded PLA implementation

c8

c7

C9

ClO

33

It is important to note that PLAs implemented with either structure are

essentially circuit blocks through which input and output busses run straight

in the connection-rows. They are therefore excellent building blocks ofa reg

ular and structured VLSI design methodology.

Moreover it is important to point out that column folding induces a per

mutation of product terms and connection-rows. While product term rows

provide connection internal to the PLA only, connection-rows join the array

to the outside circuitry and their ordering is essential to an optimal routing

of the PLA to the other functional blocks of the circuit.

Amultiple constrained column folding problem is therefore defined. The

goal of multiple constrained folding is to compact the PLA area subject to an

ordering of the connection-rows. Constrained multiple folding is necessary,

for example, for an area-effective compaction of PLAs implementing switch

ing functions whose inputs and outputs are signal data busses inside a VLSI

processor.

Two constrained column folding are addressed: column folding with

ordered connection-row assignment and column folding with bounded

connection-row assignment In the former problem, each PLA input (and/or

output) column is given a position index. Folding is constrained so that

connection-rows can be positioned according to the sequence of indexes of

the connected columns, as shown in Fig. 2.2.3.

In the latter, each input (and/or output) is given an upper and a lower bound

on the position of the contacted connection-row. Folding is constrained so

that each connection-row can be assigned to a position with an index satisfy

ing the given bounds (Fig. 2.2.4).

C, —

c2—«

e8 —

C4—•

c8 —

c« —

—> s—1 I—1

—it_

<

—

d
r—

»

i "J
r«

J
h\ —i:

T|

•

;

C7

Ce

C9

C10

Fig. 2.2.3 Multiply folded PLA with connection-row oder constraint

34

Unconstrained multiply row-folded PLAs can be implemented with a

single-poly, single-metal technology [MEAD80]. Row folding induces a permu

tation of input and output columns, which leads to a segmented array, con

sisting of a sequence of AND and OR planes. This may be a technological

drawback, because product terms require area-consuming connections

between adjacent planes, in addition to an increased complexity of input and

output routing.

Simple row folding may be constrained so that the folded array shows an

AND-OR-AND or an OR-AND-OR structure [HACK82b]. In this case input or out

put signals can be routed to both external planes by connection-rows.

C|

C2

c4

c6

c6

i—1

5 r—J

!
<-j [

h 9

i

*

*

i

fe 1 J

b 1

!
i

fi r^l 1

1 .

J i

— c7

— c.

— Cl0

— c9

Connection Row Lower Bound Upper Bound
1 1 3

2 1 3

5 4 6

6 4 6

7 1 1

9 4 6

Fig. 2.2.4 Multiply folded PLA with bounded connection-row assignment

35

On the other hand multiple row folding leads to a segmentation of the

array into more than three planes [GREE76] [SUWABl]. Since routing of the

columns of the internal planes may be difficult, we introduce a new multiple

constrained row folding problem : row folding with bounded column assign-

36

ment . Each column is given a left and right bound and row folding is con

strained so that each column can be assigned to a position within the bounds.

Multiply row and column-folded arrays can be implemented with the

described architectures, provided that only columns in the external planes

are multiply folded. To connect a multiply row and column-folded array

effectively, it is important to be able to determine which signals are routed

to the external planes through connection-rows and which are routed from

the top and the bottom of the array.

The related constrained multiple row and column folding problem con

sists of constraining the fold so that input and output signal can be routed

from the desired (left, right, top, bottom) direction.

8

! I
r4

i '
6 1 *—1

>

—15
•

* i ***
>

r3

J .r~?? ! T 1r2

=i 3*

< h k'6

;

1 1
c7 cw

Fig. 2.2.5 Row and column folded array

c6

c3

37

2.3. GRAPH THEORETIC INTERPRETATION OF THE MULTIPLE FOLDING PROBLEM

Topological design concerns PLA devices location only. A convenient

representation is achieved by two 1-0 matrices, called input and output topo

logical personality matrices (TPM). The PLA topological personality matrix

is the partitioned matrix whose components are the input and output per

sonality matrices. The TPMs are obtained from the (logical) personality

matrix in a straight-forward way.

In general it is assumed that the physical columns carrying each input

signal and its complement are kept adjacent. Therefore both columns are

dealt with as a single entity. Then the input TPM is obtained from the (logi

cal) personality matrix by replacing each "0" by a "1" and each "*" by a "0".

The output TPM is obtained by replacing each •*•" by a "0". Fig. 2.3.1 shows

the TPM for the PLA structure of Fig. 2.1.1 .

001001 1000
010100 0100

100001 0001

100010 0100
100000 0010

000001 0001

Fig. 2.3.1 Topological personality matrix

However the adjacency requirement between each input column and its com

plement may be relaxed, and every physical input column be dealt with as a

single entity. In this case the input TPM is a matrix having twice as many

columns as the (logical) personality matrix, and obtained by replacing each

"0M by "10", each "l" by M01M and each "•" by M00".

In other terms, for the sake of generality, the topological personality

matrix of a PLA can be defined as a 1-0 matrix, whose (i. j /h entry is "0" if

38

the (i, j fh location of the physical array is occupied by interconnect only.

As far as folding is concerned. PLAs are conveniently represented by

means of the set of columns and rows of its topological personality matrix.

Let \cit i = 1. 2. • • • . nc j (jrit i = 1, 2, • • • , nr\) be the set of columns

(rows) of the personality matrix. Each column is labeled input (output), if it

carries an input (output) signal in the physical array. A maximal set of adja

cent input (output) columns is called input array or ANDplane (output array

or OR plane). Let R f ct)(C(ri)) be the set of rows (columns) with a nonzero

entry in the Xth column (row) of the personality matrix. Two columns ct, c3

(rows ritrj) are disjoint if R(Cx)f\R(cj)= 0 (C(ri)f\C(rj)= $). A

column-folding list (row-folding list) is a set of either input or output disjoint

columns /< = (c<# l(c<2. • • •Cj.J (rows /< = fo. l§ ri>2. • • ri#n{). An

ordered column-folding list ot = (cit lt ci#2, • • • ci#n) (ordered row-folding

list Oi = (rit j. r<#2, - ' - ritJi)) is a. column (row) folding list whose elements

are ordered. A column (row)-folding set is a set of disjoint column (row)-

folding lists F = |/lt /2, • , fk\ and ordered column (row)-folding set is a

set of disjoint column (row) ordered folding lists 0 - \ox, oz, • • • , ok\. Let V

be the set of unfolded columns (rows), Le. U = [c \Ek s.t. c e ok\

(V « \r\2k s.t. r e o*J). The column (row) cardinality of a folded PLA is

C(0) = \0\ + \ U \ (R (0) = \ 0\ + \ U\). An ordered folding

list of columns (rows) induces a set QR(O) (QC(O)) of ordering relations

among the rows (columns):

QR(0)= \rs<ry\rs eR(ctJ) ; r„ eR(citj^) ;ci#;. c^^eo^ e 0\

(QC(0)=\cz<cy\cx £ C(ru) ; cy e C(riti+1) ;riJt rii+1 e o<:0i € 0\)

Let QR*(0) (QC*(0)) be the transitive closure of QR(O) (QC(O))

[AH074]. A column (row) ordered folding set is implementable if

39

QR* (0)(QC+ (O)) is a partial order of the set Z*.

The optimal unconstrained column (row) folding problem can be stated as

follows:

Find an implementable ordered folding set that minimizes the column (row)

cardinality of the PLA.

Remark 2.3.1 : In the simple folding case j U\ = (initial column/row

set cardinality) -2| 0\. Hence the optimal unconstrained simple fold

ing problem is to find an implementable ordered folding set with max

imum cardinality.

A graph theoretic interpretation of the multiple folding problem is intro

duced, in order to gain a better insight into the problem and to study heuris

tics for the related algorithm. Column folding is considered first. According

to [HACH80], a column-intersection graph G(V, E) is defined to be a graph

whose nodes v € V are in one-to-one correspondence with the columns of the

logic array and the set E is defined as E = \vit v, \R(Ci)C)R(cj)* 0 \. Given

an ordered column-folding set 0, an associated mixed graph

G(0) = G(V, E. A(0)) is introduced. Amixed graph G(V, E,A)is& graph

with two sets of edges, a set of undirected edges E and a set of directed

edges A. V and E are defined as in the column-intersection graph. A(0) is

defined as:

A(0)= fat. «i.*-nlfa. j, c(>2. • •• citk. Ci.t +x, • •Cj.nJeO;

k = 1.2. • • n-lj

40

A x-yoi/i in G(V, E, A(O)) , is a directed path x = [vi. vz vp] sucn

i) the first edge in x Is directed and the last undirected; Le.

(vlt v2)£ A(O) and lvp.ltvpl e E

ii) every undirected edge in x ls followed by a directed edge; i.e.

fo.v^jjeS- (vi +1. v^z)zA(0) Vi = l,2. • .p-3

that:

Example 2.3.1 : For the PLA sketched in Fig. 2.3.1 and the ordered

folding set 0 = fo,{ ; ox s (cl0, c7, c9), the associated mixed graph is

shown in Fig. 2.3.2 and the partially folded array in Fig. 2.3.3. A

X-path is [vlQ, V7. v9, i^].

Fig. 2.3.2 x-path

C| C2 C3 C4 C5 c6 ce C10

M 4 1 I I t t

f4

—f—I—T—I—I f—l
\ \\ 1

,—4
1 1 t 1 1 y ii'5 *

Fig. 2.3.3 Partially folded array

1
c9

41

A " x~cycle in C(V, E, A(O)) is a closed g-pato having at least two

undirected edges.

Tbeorem 2.3.1: An ordered column-folding set 0 is implementable if

and only if the induced mixed graph G(V, E, A(O)) has no x~cyctes.

Proof:

(if)

Assume that the folding set is implementable. For the sake of con

tradiction, suppose that 3 ax-cycZe in G(V, E, A(O)). Without loss

of generality, the vertices of the cycle can be labeled so that:

\vp.x.vp\eE

\vltv^x\^E.

(Vk>Vk +\)*-A VJb efl. 2. • • • . J-l) u {1+1. Z+2. • • • .m-lj

It is always possible to achieve such a labeling, because a x~^ycle has

at least two undirected edges (\vp.x, vp\ and [vt, vx +x\) and two paths

of directed edges (joining vx to vx and vt +xto vm.x). Moreover a path

of directed and undirected edges (possibly of zero length) joins vm to

Since paths of directed edges are related to column ordered folding

lists, and the column ordered folding lists induce a row order rela

tion, we have :

R(cx)<R(cx);

and :

R(c^x)<R(cm).

Take any row r € R(cl)f)R(cl +x):

R(cx)<r<R(cm)

and from the definition of transitive closure :

\R(cx)<R(cm)\ C QR+(0)

Since there is a finite number of vertices along the x~cycle from ver

tex vt +x to vertex vp.x, by repeating the same argument and by the

transitivity of QR+(0):

\R(ci +x)<R(cp.x)\ C QR +(0).

Let row r e R(cp.x)f\R(cp) . From the transitive closure relation:

42

R(*i +\) < r

and in particular:

r <. r

But since cx =cp and R(cx) < f, then :

r < r

Hence we have a contradiction because QR*(0) is not a partial order

on the set Z*'.

(only if)

Assume that G(V, E, A(0)) has no x-cycles. For the sake of contrad

iction suppose that QR*(0) is not a partial order. Therefore there

exist two rows, rx and rx , such that:

and:

tx<+tx

Hence there exists a sequence:

[rli r2« ' ' • rn. Tl]

such that:

Tj*-R(cx4)C\R(c24) j = 1.2. • -.n

where: 0,4 = 02,! . c1#n = c2n , (cZ4-x, cx4)eA j = 2, 3, • • . n

and either Cjj- = cgj or |c,j, c2j-J € £*, j = 2. 3. • • • , n-1 . Hence

there is a directed path from cL1 to c2.n having no more than one

consecutive undirected edge. Moreover rx e R(c i/and(c2#n, c j^ e 4.

Furthermore there exist a sequence:

43

irx.rz. • • ,rn,Tx]

such that:

?i c * (?1j)r\R(cZj) j = 1, 2, • • .n

where Cj,, = c2il , c1#n = c2.n . fc2i>_,, cu; € i4 ; = 2. 3. • • . n

and either Cjj = cE<3- or fcjj, c2j{ e £\ jf = 2. 3. • • • , n-1. Hence

there is a directed path from c1#1 to c2#n having no more than one

consecutive undirected edge. Moreover rx e R(cx)a.nd(c2,n< ci) ^ A,

and either cXmX and c, (c1#1 and cx) coincide or jcu. ct) e £ (

Jc,.,. c,j e £").

Ihus [cu, • • • , c2>n, cx, c1#J, • • • , c2#n, c1§ cu] is a cycle having at

least two undirected edges by definition of G(V, E, A(O)). Hence

G(V, E, A(O)) has a x-cycle and we have a contradiction.

Remark 2.3.2: Theorem 2.3.1 allows to verify the existence of a row

ordering compatible with a column ordered folding set by checking

relations among columns only. This procedure is much simpler (and

therefore much faster to be executed on a digital computer) than to

verify directly cyclic relations in QR*(0).

Remark 2.3.3: The graph interpretation and Theorem 2.3.1 applies

"mutatis mutandis" to the multiple unconstrained row folding prob

lem. In this case G(Vt E) is the row-intersection graph and

G(V. E. A(O)) is the mixed graph obtained by adding to G(V. E)

the set of directed edges:

44

45

A: =1.2 n-lj

A graph interpretation of unconstrained row and column folding is more

complex, because it involves bookkeeping of the ordering relations among

rows and among columns. For this problem the information contained in the

column and row intersection graphs is not sufficient.

Example 2.3.2 : Consider the partially column folded array shown in

Fig. 2.3.3. Let us question the implementability of the array after

folding row r5 with row r6. The folded array is clearly not implement-

able, even though it does not introduce any cycle in both intersection

graphs.

Therefore the row constraint graph Gp and the column constraint graph Gc

are introduced. Directed graphs Gr and Gc correspond to the transitive clo

sure relations QR*(Oc) and QR*(Qr) induced by the column and row fold

ing sets 0C and Op [HACHB2b]. By definition, the ordered folding sets 0R and

Oc are implementable if graphs Gp and Gc are acyclic.

2.4. AN ALGORITHM FOR MULTIPLE PLA FOLDING

The optimal multiple PLA folding problem was shown to be NP-complete

in [LUBYB2]. Therefore a heuristic algorithm is proposed. The algorithm can

be considered an extension of the simple folding algorithm presented in

[HACH80].

46

Multiple column folding problem is considered first. The ordered

column folding set and the mixed graph G(Vt E, A(0)) are constructed by

the algorithm. At each step the algorithm tries to increase the cardinality of

the folded column set and verifies the implementability of the folding by

checking that the mixed graph has no \-cycle.

A conceptual description of the algorithm is the following:

MASTER ALGORITHM

Step 0: Initialize the folding procedure

Step 1: If the set of columns which have not been processed is empty , stop.

Else select a pair of unfolded disjoint columns or an unfolded column

and a column folding list as folding candidates.

Step 2: If the fold induces x-cycZe in graph G(V, E, A(O)), reject it and

go to Step 1.

Step 3: If folding has secondary constraints and constraints are not satisfied

reject the fold and goto Step 1.

(This step is performed by the algorithms described in Section 2.5.)

Step 4: Fold the candidates, modify the PLA accordingly. Go to Step 1.

A detailed description of the algorithm for simple column folding is

given in [HACHBO]. This Section deals primarily with the generalization to

multiple folding and with the procedure for multiple folding candidate selec

tion.

47

The selection of the candidate columns for multiple folding can be done

according to one of the following folding patterns:

1) a new folding list can be formed by folding two unfolded columns.

2) an unfolded column can be folded on top (bottom) of an existing fold

ing list.

3) a folding list can be "opened" and an unfolded column can be folded

"by insertion" into an existing folding list.

A selection of the folding pattern and candidate column is done at each step

according to a heuristic strategy.

Let us define first the set of descendants D(v) (ancestors A(v)) of a vertex

V as follows:

a vertex d is descendant of v if there is a \-path from v to d.

a vertex a is ancestor of v, if v is descendant of a.

The adjacency set ADJ (v) of a vertex v is defined to be the set of vertices

connected to v by an undirected edge. By definition, every vertex is con

sidered adjacent to itself.

The pseudo-descendant set D(v) of a vertex v is the union of the adjacency

set of v and the descendant sets of each vertex adjacent to v.

D(v)= \J D(v) u ADJ(v)
vEADJ(v)

Remark 2.4.1 : It follows from Theorem 2.3.1 that for each pair of

consecutive columns in an implementable ordered folding list, the

corresponding vertices vx and v2 are such that:

ADJ(vt)r\A(vl)s if>

Let us consider now the selection strategy for folding pattern 1.

Example 2.4.1: When two columns, say c xand c2, are folded, a direct

ed edge (vx. Vz) is added to A(0). Hence a x-P&tk joins vx to each

vertex in D(vz). Therefore all pseudo-descendants D(vz) of vz are

descendants of vx.

D(vx)<- D(vx)uD(vz)

Moreover, since a x—path joins each ancestor of vx to vx, the descen

dants of vx are descendants of each ancestor of vx

D(v) «- D(v)uD(vx) Vv € A(vx)

It follows that an upper bound on the number of ancestor-descendant

relations induced by the column folding is :

Pi = \A(vx)\\D(v2)\

4B

It is reasonable to conjecture that the fewer relations are induced, the lower

is the probability of finding x~cVc^es at further steps of the algorithm.

Hence a good choice for a candidate folding pair vx. vz is the one for which px

is minimal. Unfortunately —' ' ' candidate pairs have to be tried to find

the minimum px for an array with n unfolded columns. This procedure is too

time consuming for large arrays. Therefore, an alternative selection stra

tegy is used: select the candidate folding pair (vx,vz) such that:

*i««»t,n£VM<»')l

"8 =a^v™np|2J(«)

49

where 7cVis the vertex subset corresponding to the unfolded columns.

Similar considerations apply to the candidate selection according to

folding pattern 2. When a column cx is folded on top of an ordered folding list

fc2. i. • • • . cZji), a directed edge (vx, v2.x) is added to A(O). Hence a

X-patfi joins vx to each vertex vk, such that vk eD(v2,x). Therefore an

upper bound on the number of ancestor-descendant relations induced by the

column fold is:

Pt=\A(vx)\\D(vz.x)\.

Conversely when a column c2 is folded on the bottom of an ordered fold

ing list fcUl cI#2. • • , cXtU) an oriented edge (vx,n. Vz) is added to A(0).

Hence a x-pvth joins every vertex A(vXtn M° every vertex in D(v2). There

fore, an upper bound on the number of ancestor-descendant relations

induced by the column fold is:

Pz=\A(vi.*)\\B(v2)\
The strategy for candidate selection according to folding pattern 2 is based

on the same considerations used for folding pattern 1.

A slightly different strategy is used for candidate selection according to

folding pattern 3.

Example 2.4.2: Consider the PLA shown in Fig. 2.1.1. Let us suppose

that column c7 is folded into the folding list o, = (clQ, c9) to give

(ciq. c7, c9), as shown by Fig. 2.3.3. The ancestors of c7 become

ancestors of eg and the ancestors of cx0 become ancestors of c7.

In the general case suppose that column c is folded into a folding list

50

fa.i, ci.8. *' *. ci.n) to give (cix, ci<2, • • • . cik-i. c. ciJb, • • , ctnJ. An

oriented edge joins vertex x't.t-i to 17 and v to vik. Hence the ancestors

A(v) become ancestors of the vertices in D(vit k) and the ancestors

A(Vi.k-i) become ancestors of the vertices in D(v). Therefore, an upper

bound on the number of ancestor-descendant relations is:

Ps = \A(v^k.x)\ \B(U)\ +\A(v)\ \D(vitk)\

Unfortunately the computation of the minimum pa may be too time con

suming for large arrays. Hence the candidate for insertion is determined

first as:

-s «Vgf(\D(v)\ +\A(v)\)

and then the folding list and the insertion position such that:

P3=\A(vi.k.x)\\Stf)\ + \A(Z)\\3(vi.k)\

is minimal.

When the "best" folding candidates have been selected according to the

three folding patterns, the selection of the folding pattern is based on a

weighted comparison of the upper bounds Pi , i = 1, 2, 3. Weighting factors

allow to privilege a folding pattern with regard to the others, as. for example,

multiple folding versus simple folding.

Remark 2.4.2: The Master Algorithm and the candidate selection stra

tegy applies mutatis mutandis to the multiple unconstrained row

folding problem.

The Master Algorithm is used for multiple row and column folding also.

Order relations induced by the folds are described by the row constraint and

51

column constraint graphs. A candidate fold is rejected at Step 2 of the algo

rithm if it induces a direct cycle in any of the two graphs. The folding candi

date selection strategy is similar to the one used for column folding, pro

vided that some definitions are changed to be compatible with the different

graph representation.

For this problem, a vertex d is descendant of v if there is a direct path

from v tod; the adjacency set of a vertex is not defined and the pseudo-

descendant set is equivalent to the descendant set. Hence the "best" column

and the "best" row folding candidates and patterns can be found by a pro

cedure similar to the one described above. Let pc (pr) be the related upper

bounds on the number of relations induced in Gp (Gc) by a column (row)

fold. A column (row) fold is attempted if :

a • pc < 0 • pr

(a • pc & § • pT)

where a = g/ n\ and P = r(n\— are dvnamic weighting fac

tors which take into account the relative area saving achieved by a column

(row) fold at that step of the algorithm and C(0) (R (0)) is the column

(row) cardinality.

It is important to remark that this strategy allows to achieve more folds

in comparison with other algorithms performing column (row) folding after

row (column) folding. Nevertheless it is straight-forward to constrain the

selection so that all column (row) folds are tried first, if desired.

52

2.5. MULTIPLE CONSTRAINED FOLDING

As stated in Section 2.2 the PLA constrained folding problems are

related to the interconnection of the array to the outside circuitry. Con

straints on folding are classified into two major categories:

1) Architectural or primary constraints

2) Secondary constraints.

Architectural constraints are related to the structure of the array and to the

positions of input/output busses relative to the array. Secondary con

straints are related to the positions of input and output lines inside the

busses. Examples of architecture constrained folding problems are:

1A) Simple column folding with a subset of inputs and/or outputs con

nected to the top (bottom) of the array.

IB) Simple row folding with AND-OR-AND or OR-AND-OR architecture.

1C) Segmented arrays: the column set is partitioned into subsets, each

forming a segment of the array. Columns are folded with columns in the

same segment only and the sequence of segments is preserved.

The following folding problems involve secondary constraints:

2A) Column folding with bounded product-row assignment.

2B) Row folding with bounded column assignment.

2C) Column folding with bounded connection-row assignment.

2D) Column folding with ordered connection-row assignment.

The Master Algorithm presented in Section 4 can handle both architectural

and secondary constraints. Different strategies are used in the two cases.

To satisfy architectural constraints it is sufficient that folding candidates

satisfy the following requirements for the related problems:

53

1A) Cbtumns connected to I/O cusses on the top (bottom) of the array

are folded either on top (bottom) of an unfolded column or folding list

or not folded at all.

IB) AND-OR-AND (OR-AND-OR) architecture. Rows connected to input

(output) columns that are connected to rows folded on the left or on the

right are selected as candidates to be split on the left or on the right of

the array respectively.

1C) Selected candidates for column folding are constrained to be in the

same segment. In the case of no more than three segments and simple

row folding, the selection of candidates for row folding is as follows:

rows connected to columns in the leftmost (rightmost) segment are

folded on the left (right) only or not folded at all.

Unfortunately we cannot be sure that secondary constraints are satisfied

only on the basis of an appropriate selection of folding candidates. The rea

son is that secondary constraints are related to the row (column) positions

induced by a column (row) folding. Therefore assignment algorithms are

presented in this Section that assign positions to rows and/or columns and

check if the secondary constraints are satisfied. The assignment algorithm

for problem 2A is presented first. From this, an algorithm for problem 2B can

be easily derived by interchanging rows with columns. Problems 2C and 2D

are solved by a double assignment algorithm, based on the assignment algo

rithm of problem 2A.

2.5.1 Column folding with bounded product-row assignment

In this Section the problem of constraining product-term row positions

only is considered. Therefore product-term rows are referred to as rows

throughout this Section.

54

The lower (upper) row bound map:

Ljt'fc'. * = 1. 2, ••, nr) •+ jl, 2, • • • , nr\

(UR:\ri: i = 1. 2, • • • . nr\ - Jl. 2. , nr\)

is a map relating each row to a lower (upper) position bound.

A row assignment P : {rt; i = 1, 2. • • • . nr\ -* jl. 2, . nrj is a per

mutation of the rows and an implementable row assignment a permutation

compatible with an ordered column-folding set 0\ i.e. P(rz)<P(ry)

Vrz<ry G QR +(0)

An implementable bounded row assignment is an implementable row

assignment such that

L*(r$) * P(r$) * Vnfri) V j = l. 2. • • • ,nr

Example 2.5.1.1 : For the logic array shown in Fig. 2.1.1. the following

lower and upper bounds are given:

LR = 1, 1, 1, 4. 4, 6

Up = 1. 3. 3. 6, 6. 6

This means that rx is constrained to the first position, r2 and r3 are

constrained between position 1 and 3 , and so on. The implementable

row assignment (rx, r4, r2, r3, r5l rfl) induced by the column folding

shown in Fig. 2.2 does not satisfy the given bound maps. On the con

trary, the folded PLA shown in Fig. 5.1 has the following implement-

able row assignment: (rx, r2, r3, r5, r4, r6). Note that rows are num

bered from the top to the bottom of the array.

C| C2 C3 C5 C7 C3 Cjo

till t t t

55

• 1 ' 3 i <i J^

z *0

^2
*4rf

r^^^™

r3 :

'5 :

? '

<

k J C*~"^^

^ ;
+ rf

^» 1

1t t 1
c 5 C4 C9

Fig. 2.5.1 Fold<»d array with bounded row-assignment

The optimal bounded row column folding problem can be stated as follows:

Find an implementable ordered column-folding set and a related imple

mentable bounded rout assignment that minimizes the column cardinal

ity of the folded PLA.

Let us consider a graph interpretation of the following subproblem:

Given an ordered column-folding set and a lower and upper row bound

maps, find an implementable bounded row assignment, if it exists.

The graph interpretation is useful to understand the underlying structure

and to develop an algorithm and related heuristics. This subproblem is

56

described by a directed graph G(R, N, A), with two node sets N and R, and

a set of directed edges A.

The node sets R and TV are in one to one correspondence with the row

set and the set of the first nr natural numbers representing the possible row

positions. The problem consists in finding a matching between R and N, i.e.

coupling each row-node to a position-node, so that all the required bounds

are satisfied. Position bounds are represented by a set of directed edges :

A = Ax u Az u Az u ;44 u As

where : Ax^\(nj, nj +x)\ j = 1, 2, • • • , n-l{ represents the order on the

sequence of the first nr natural numbers;

AzBMni.TjftLCr^si+l, j = 1, 2, • • • , nr J and

A^\(rj, ni)\ U(rj) =i-1, j = 1, 2, • • • , nr\ take into account the lower

and upper bound maps ; A^\(rit r^)\ri<rj € QR(0)\ represents the order

relations among the rows induced by the column folding.

Example 2.5.1.2 Fig. 2.5.2a shows graph G(R.N,A)

A' = AxuAzVAtfJAi for the PLA of Fig. 2.1.1, the row bounds of example

2.5.1.1 and the ordered folding set 0 = jfc7l cQ), (c3, c4), (c2. c5>)j.

A

AtUA,

G(RNA')

••o

»• o

•i o

»T O

57

-' // /
/// 0%

•uo / // °'4

*• tf' ^ o r»
«• cf o '•

•»w*» Fig. £5.2 Graph G(R, TV, i4#; and A5

Note that an edge from a node in TV (R) to a node in R (TV) represents now a

strict lower (upper) bound. If a lower (upper) bound on a row position is 1

(nr) , it can be represented by appending nodes n^ (tw+1) to set TV and by

adding appropriate directed edges to A.

Moreover note that if a row, say r , has the position w as strict upper

bound (i.e. (r,nUt)£A3) and must follow another row, say r (i.e.

(r,r) € A^)% then row r has as strict upper bound a position lower or equal

to ta-1 .

Example 2.5.1.3 : Row rx must be above r2 which in turn must be

above r4. Since r4 is required to be assigned to a position lower or

equal to 6, rx must be assigned to a position lower or equal to 4. (In

this case rx has already the more stringent constraint to be in posi

tion 1).

58

Therefore: Ai*\(rk,ni.l)\'3rj such that (r^ni) Z A$ and5 1*1 distinct

nodes in R along the directed paths in A4 from rk to r,- J. Similar considera

tions apply to lower bounds, but the assignment algorithm does not require

that the set of directed edges is further increased.

Example 2.5.1.4 : The edges in subset A$ are represented by dashed

lines in Pig. 2.5.2b.

Our problem is to find an additional set of undirected edges E matching

every node in R to one and only one node in N so that the resulting mixed

graph G(R, N, E. A) is acyclic.

Remark 2.5.1 : Column folding with bounded row assignment is

equivalent to the sequencing problem with release times and dead

lines where all task length are equal to one [GARE7B][LAWL73b] and

where a partial order on the tasks is given.

The following algorithm will either construct a set of undirected edges such

that graph G(R, N, E, A) is acyclic or will return a flag if no possible edge

set exists. The in-degree of a node is the number of directed edges incident

to that node and the deletion of a node from a graph corresponds to remove

the node from the node set and all edges incident to/from it from the edge

set. The algorithm is described in Pidgin C.

ASSIGNMENT ALGORITHM

delete n, from graph G\

for (isl;i£nr;isi + l){

if (in-degree (n^^O) return (FALSE } ;

Q= (r E /? ;in-de^ree (r ^ = 0 j;

If (Q = 0) return (FALSE);

Tj = r e Qsuch that (r^n*) € A and A: is minimal:

£ = £Tu (n*. r;);

delete n* from graph G;

delete r;- from graph G;

}

return (TRUE) ;

59

The algorithm runs in linear time since it cycles at most nr times through

the main loop. The algorithm uses a greedy strategy: at each iteration it

matches the available position with lowest index to the most constrained

node in R (Le. selects the product-row with lowest upper bound). The algo

rithm finds an implementable bounded row assignment, if one exists, as pro

ven by the following theorem.

Theorem 2.5.1 : The Assignment Algorithm returns TRUE if and only

if there exists a matching E such that graph G(R, TV, E, A) is acy

clic.

Proof:

(if)

Suppose that the algorithm returns " false " at step i ; i.e. after hav

ing matched i-1 row nodes to position nodes. For the sake of con

tradiction, suppose that there exists a matching

E' = \ \rj.njl . ; = 1. 2. • ,nr\t such that G(R, N.E',A) is

acyclic.

The algorithm returns "false" in one of the following two cases:

Case 1: Q = 0 at step i.

There are nr -i +1 row nodes that must be matched to position nodes

n;-. j>i. Since ||n; €AT,j>ij| =nr-i , no row assignment can be

found satisfying the given bounds. In fact, since 3j > i such that (

n,-. r\) e A, then [n*. • • • , nJ# r't, n*] is a cycle in G(R, TV, E, A).

Therefore we have a contradiction.

Case 2 : in-degreefo) *0 at step i.

Let Ep be the partial assignment constructed by the algorithm, i.e.

^ = H^.rfj.jf = 1.2. •••.i-lj.

We show first that the matching E' can be transformed into another

matching E'\ such that G(R, N, E", A) is acyclic and the row nodes

matched to n^, j = 1, 2. • • • , i-1 in Ep and E" are identical. For

this reason let:

a = org min \j \r'j*rf j

Nodes r'a and r§ have no incoming directed edges from {n;, j&a] .

60

Moreover an*, n* e N, k^h>a, such that (r'a. nk) E A and

(ri.nh)^A. Let n* e TV, s.t. [n*. rjj e £\ Then a<b<h&k. Let us

consider the matching:

E" = ^'uir'a, nftjulrf, n^-lr',,, na]-\rg. n*j

We claim that G(7?, TV, £"', i4^ is acyclic. If not, there would be at

least a directed path joining one of the following node pairs:

i)nb,r'a

ii)na.r£

iii) r'a, n*

iv) r£, 7i„

and G(R, TV, E\ A)would have a cycle. In fact:

i) Since 6 >a and there is a directed path from n^ to n^. there would

be the cycle [n$, r'a, n,, • • • ,nb].

ii) Since r£ has no incoming directed edges from n;. ;'^a there would

be a directed path from n* to a node nj,j<a and therefore there

would be the cycle [nB, • • • , nj, • • • , ntt].

iii) Since r'tt has no directed edges into nj,j<h, there would be a

directed path from a node n;, ;'^/i to n$, and therefore there would

be the cycle [n^, • • . n^, • • • , n^].

iv) Since 6>o and there is a directed path from t^ to 715, there would

be the cycle [rf, n», • • • , n*. rfl.

Let now E" = {{»^, r'^J e £•", j = 1, 2, • . i-lj. If E" = E? . then

n* has no incoming directed edges from \r"j € R\j>i\. Suppose that

\(r"k. rk)^ A and k>i . Then [r"k, n,, • • • , nk, r"k] would be a cy

cle in G(R, TV, E". A). We therefore have a contradiction. If E"^EP ,

then we can construct a finite sequence of matchings

61

E", E'", • • •, E" using the procedure shown above , so that

G(R, N,E\A) is acyclic and E*= E? . where

£* = Wnj> r/t Z. E*> j = 1. 2. • • • . i-lj. Also in this case we have a

contradiction.

(only if)

The algorithm terminates in a finite number of steps, because it at

tempts at most nr assignment. Let E = [|n;-, r;j, j = 1, 2. • • • , tit j

be the assignment constructed by the algorithm. Since n,- and r;

have no incoming directed edges from

{{nk\k>jMrk\k>Jl j = 1, 2, -.nrj by construction, then

G(R, TV, £,4; is acyclic.

Example 2.5.1.5 : Consider the column folded logic array shown in

Fig. 2.5.1, and the related graph G(R, TV, A) shown in Fig. 5.2. The

implementable bounded-row assignments given by the algorithm is

(>,.r2, r3. rs. r4, re).

62

The Assignment Algorithm replaces Step 3 of the Master Algorithm for

column folding with bounded row assignment.

A different strategy for folding candidate selection is used. Since folding is

limited by row positions, we try to fold columns incident to rows constrained

to be in the top part of the array with columns incident to rows constrained

to be in the bottom part of the array. Therefore two "induced bound" maps

can be computed for each column:

63

D(cl) =r<rR?Cj) U*(r) *=l-2. * ••nc-
The column with the lowest (highest) entry in U (L) is the most con

strained to be folded on the top (bottom).

Example 2.5.1.6: For the logic array of Fig. 2.3.1 and the row bound

maps of Example 2.5.1. the induced bound maps are the following:

L- 1, 1, 1. 1, 4, 1. 1. 1,4. 1

V = 6, 3, 1, 3, 6, 6, 1. 6, 6. 6

Hence columns c3 and c7 are the most constrained to be folded on

the top part of the array and c5 and c8 on the bottom.

Hence a "good" selection is the candidate pair (cit ck) such that

max

A more considerate choice takes also care of the number of ancestor-

descendant relations induced in the mixed graph, as shown in Section 4.

Therefore a weighted selection criterion is used:

0* =•»j.1;jr.i,lc[«w«»;i *fv(vjjn

Example 2.5.1.7 : The first folding pair selected by the algorithm is

(c?. c9).

64

Similar considerations apply, mutatis mutandis, to the multiple folding can

didate selection.

Remark 2.5.2: The graph interpretation and an algorithm for the row

folding with bounded column assignment problem can be derived mu

tatis mutandis from this problem.

2.5.2 Column folding with bounded connection-row assignment

This Section deals with a logic array implemented with connection-rows

for routing input and output signals as described in Section 2. According to

these architectures, there are two sets of connection-rows contacting the

columns of the left and right array respectively. For the sake of simplicity,

constrained folding of one array only will be considered.

Both proposed architectures support at most as many connection-rows

as product-rows. Since each column is contacted to a connection row, the

number of columns in the considered array is required to be at most equal to

the number of rows throughout this Section. Most PLAs satisfy this assump

tion.

A connection-row assignment is a one-to-one map:

T:\cit i = 1, 2. • • • . nc j -• Mq\1, 2. • • tnr\ such that ; = T(ct) if

column Cj is contacted to the connection row in the jth position.

Example 2.5.2.1 : Consider the OR plane of the PLA shown in Fig.

2.3.1. Fig. 2.5.3 shows the unfolded array with the connection-row as

signment:

7(c7;=i r(cfl; = 2 r(c8; = 5 t(c10; = 6.

I *

\\

o

< >
- _-^^ I "J k

V;

n

1 1 i>

Fig. 2.5.3 Unfolded OR plane

B

10

65

The physical connection-row set Mis the image of T. Its elements are the

position of the connection-rows which are physically implemented. Note that

there are A= nr -nc slack connection-rows which are not implemented and

whose positions are irrelevant to the problem.

66

A lower (upper) connection-row bound map is a map:

Lc'.\Cx. i = 1. 2. • • • , ncj -» 1.2, ,nr

(Uc'-fci. i = 1, 2. • • • , nc] -» 1,2, • ,nr)

relating each column to a lower (upper) position bound on the position of the

contacted connection-row.

Example 2.5.2.2 : For the OR plane of the PLA shown in Fig. 2.3.1 , the

following bounds are given:

Lc = 1, 1, 4. 6

Uc = 1. 3, 6. 6

This means that the first column of the OR plane (c7) must be con

nected to a connection-row in position 1 ; the second one (c8) to a

connection-row whose position is bounded between 1 and 3 ; and so

on.

An implementable connection-row assignment is an assignment compatible

with a column ordered folding set. i.e. is an assignment such that:

max(P(R(cifj.x))) < T(citj) < inin(P(R(ciJ +x))) j = 1, 2. . n

V column ci# j in folding list ot with cardinality n, where by definition:

maix(P(R(cit0))) = 0 and min(P(R(ctn +l))) = «>

Example 2.5.2.3 : Consider the folded OR plane shown in Fig. 2.1.2

with the ordered folding set 0 = |fc7, c9), (cB, clQ)\. An implement-

able connection-row assignment would be:

r(c7;=i 7-(c8; = 2 t(cq) = 3 r(c10; = e

The connection-row contacted to cfl is in position 2 , and therefore is

above (has lower index than) the product rows connected to c10 (in

positions 4 and 6). The connection row contacted to c10 is in position

6 and is below (follows) the product rows connected to c8 (in positions

2 and 3).

67

An implementable bounded connection-row assignment is an implementable

connection-row assignment such that:

Lc(^i) * T(Cj) ss Uc(Cj) j = 1, 2. • • . nc

Example 2.5.2.4 : The implementable connection row-assignment of

Example 2.5.2.3 does not satisfy the bounds given in Example 2.5.2.2.

An implementable bounded connection row-assignment is:

r(c7;=i r(cB; = 2 7-(cfl; = 4 r(c10; = 6

Fig. 2.5.4 shows a folded implementation of the OR plane compatible

with the bounded connection-row assignment.

•« I Jl

r2 3;

n Y: !'
r r

'6 k

'5 11

r3 ;:

'8

C9

10

Fig. 2.5.4 Folded OR plane with bounded connection-row assignment

66

The column folding with bounded connection-row assignment problem can be

stated as follows:

Find an implementable ordered column-folding set and a related imple

mentable bounded connection-row assignment which minimizes the

column cardinality of the folded PLA.

A graph interpretation of the following subproblem is considered:

Given an ordered column-folding set and a lower and upper connection-

row bound maps, find an implementable bounded connection'row

assignment, if it exists.

69

Note that an implementable bounded connection row assignment requires,

by definition, a product row assignment, because the positions of rows in

both sets influence each other. Hence the problem consists in finding the

two row assignments compatible with the ordered column-folding set. if they

exist.

This subproblem is represented by a directed graph G(R. N, C, A), with

three node sets R, TV and C and a directed set of edges A. The node sets

R% C and TV are in one to one correspondence with the row set, the column

set and the set of the first nr natural numbers respectively.

Bounds on the row positions are represented by a set of directed edges:

A a Axv i42 u A3u A4 Ui4s uA6 uA7 uAB

where Ax and A4 are defined as in Section 2.5.1,

Az= Ifa. Cj)\Lc(Cj) = i +\ ; ;' = 1, 2, •• . ncj and

As = \(cj, ni)\ Uc(cj)- i-1; j = 1. 2, • • . nc J take into account the

lower and upper bound maps.

Example 2.5.2.5 : Fig. 2.5.5a shows graph G(R. TV, , C, A') .

A' = AxuAzuA3uAA in the case that the OR plane of the PLA of Fig.

2.3.1 is folded and the ordered column-folding set

O = l(c7, c9), (cB, cl0)\ is compatible with the bounds given in Exam

ple 2.5.2.2.

70

Fig. 2.5.£a Graph G(R, TV, , C,A')

The mutual relations among products and connection-rows is represented by

the edge subsets: j4fl = \(r, c)\r e R(c) and c is split on top of c\ and

Ay = l(c. r^|r € R(c ^and c is split on top of c J. In words , if column c is

folded on top of c , then all the rows (product and connection) connected to
IN.

c must be assigned to positions with index lower than the positions of all the

rows connected to c.

Example 2.5.2.6 : Fig. 2.5.5b shows the edges in subsets Ae and A7 for

the problem of Example 2.5.2.5.

^\ •• ^

«»0^ ><^ ^.w-°M

Fig. 2.5.5b Edge sets A6 and A7

71

Moreover note that if a column , say c, has as strict upper bound the position

w (i.e. (c,nw)^. A$)% (r, c) € Aq and (r,r)zAA , then r has as upper

bound the position w—2 . Therefore: i45=i(rfc, n*^ Jl3r (r not necessarily

distinct from rk) and 3c such that (r, c) e A$, (c, n^) e A3 and

3i + 1 distinct nodes along the directed paths in A+uAq from rk to cj. The

edges in this set represent the upper bounds on the position of each

product-row induced by folding. Note that all nodes in R must be assigned to

a position lower than nr + 1. Hence the edges (rk, nnr^x) Vr* € R having no

explicit upper bound are appended to vi5.

Example 2.5.2.7 : Fig. 2.5.5c shows the edges in subset A5 for the

problem of Example 2.5.2.5.

•©o

•• o Ptl
/

n, O '' P *

-o // P '•
/' /

-o // /,<*>*

•• Cr / „' *,~~

*T ^ Fig. 2.5.5c Edge set A5

72

Similarly , upper bounds induced on the column positions are represented

by: 4esifcfc. n(.j J|3£>0 nodes re/?, such that (ck,r) € A7 and

/r.nJCitsi.

Example 2.5.2.8 : Fig. 2.5.5d shows the edges in subset 48 for the

problem of Example 2.5.2.5.

73

on*

Fig. 2.5.5d Edge set AB

In graph terms, this problem is to find a set of undirected edges E

matching every node in R and in C to one and only one node in TV so that the

resulting mixed graph G(R, TV, C, E, A) is acyclic. Note that in general the

number of columns and hence of physical connection-rows required is

smaller than the number of rows by A and the double assignment algorithm

takes advantage of this.

74

DOUBLE ASSIGNMENT ALGORITHM

e- i\

A -nr-nc;

delete n« from graph G;

for (i = l;i£nr;i=i + l){

if (in-degree fn* J*0) return (FAISE);

Q = \r € R \vi-degree (r) = Oj;

If (Q = 0) return (FALSE) ;

rj=r€Q such that (Tj,nk)zA and A: is minimal:

E^Evfc. r;;:

// = [c € C ; in-degree (c ^**0);

if (//= 0){

A = A-1;

if (A < 0) return (FALSE) ;

J

else |

Ci - c e H such thatfct, n* ^ e j4 and k is minimal:

E- Eu(ni, cx);

delete cx from graph G\

\

delete Tj from graph G;

delete n* from graph G;

i

return (IBDB) ;

75

The double assignment algorithm runs in linear time and uses a greedy stra

tegy. At each iteration, it tries to match the available position with lowest

index with the most constrained product and connection-rows. Note that a

connection-row need not be assigned at each iteration, but the total number

of slack positions must be lower or at most equal to A.

Theorem 2.5.2: The assignment algorithm returns TRUE if and only if

there exists a set of undirected edges E matching each node in R and

in C to one and only one node in TV such that G(R, TV, C, E, A) is

acyclic.

Proof:

(if)

Suppose that the algorithm returns " false " at step i . For the sake

of contradiction, suppose that there exists a matching E' such that

G(R, TV, C, E'. A) is acyclic. In particular:

£'= 1 Ir'j.nil . ; =1.2. ••-.nrjui ic'>(n;{,

Vj e M'Q\1, 2, • • • , nr j j, where M' is the physical connection row

set corresponding to the matching E'.

The algorithm returns "false" in one of the following three cases:

Case 1: Q = 0 at step i.

There are nr -i +1 row nodes that must be matched to position nodes

nj, j>i. Since \\n^ €N,j>i{\ -nr-i , no row assignment can be

found satisfying the given bounds. In fact, since 3j>i such that

(nj,r\)eA, then [n*. • • • , n,, r'(, n*] is a cycle in

G(R, TV, C, E\ A). We therefore have a contradiction.

76

Case 2 : H - 0 and A<0 at step i.

There are nr-i + 1 connection-row nodes that must be matched to

position nodes nj,j>i. Since |{n;- e TV, j>i\\ = nr-i , no

connection-row assignment can be found satisfying the given bounds.

In fact, since 3j>i such that (nj,c\) e^, then

[n-t. • • • , n;, c\, n*] is a cycle in G(R, TV. C, E\ A). We therefore

have a contradiction.

Case 3: in-degreefo) *0 at step i.

Let Ep be the partial assignment constructed by the algorithm.

We show first that the matching E' can be transformed into another

matching E", such that G(R, N, C, E", A) is acyclic and row and

connection-row nodes matched to n,-. j = 1, 2, • • • . i-1 in Ep and

E" are identical. For this reason let:

o = org min \j \r'j*rf\

d -org min \j |c^cf or (c';-, n;|/t£" and \cf, n^c^j

If (a£rf) let:

E" - E'ulr'a.ntMrg, ^$-^'0. na\-\rl n^

If (d<a) . c'd*ci and (c'd. n^ € £" let:

E" - E'u\c'*. n, ju|c£. nal-lc'a, n^l-lcl n,|

where n, c TV s.t. \n,, cjj e £".

If (d<a) , { c'd. n;{ j££" and | c$, n, j € £* let:

E-s^VjcJ, n^l-lcj, nB\

We can show with an argument similar to the one used in the proof of

theorem 5.1, that graph G(R, N, C, E", A) is acyclic, because other

wise graph G(R, TV', C, E\ A) would have a cycle and violate our as

sumption.

Let now E"QE" be the subset of the undirected edges having an end-

point in n,-, j = 1, 2, • • • , i-1. If E" - E* , then n^ has no incoming

directed edges from \r"j e R\j>Hv\c"j e C\j>i\. Suppose that

l(r"k> ik) e A and k>i . Then [r'%, nj. • • • , n*. r"fc] would be a cy

cle in G(R, TV. C, E",A). Suppose that \(c"k,ni)^A and *>i .

Then [c"k,ni, • • • . n*. c"*] would be a cycle in Gf/?, TV, C, E", A).

We therefore have a contradiction.

If E'^EP , then we can construct a finite sequence of matchings

E'\ E"\ - - • , E* using the procedure shown above , so that

G(R, TV. C, E*, A) is acyclic and E*- E? . where : £*££** is the sub

set of the undirected edges having an end-point in

nj, j = 1, 2, • • • , i—1. Also in this case we have a contradiction.

(only if)

The algorithm terminates in a finite number of steps, because it at

tempts at most 2 • nr assignment. Let E be the assignment con

structed by the algorithm. Since nj, r; and Cj have no incoming

directed edges from

{{n*|Jb>jfjufrfc|fc>7{u{ck|A:>jj j s 1, 2, • • • , nr J by construction,

then G(R, TV, C, E, A) is acyclic.

77

76

The double assignment algorithm replaces Step 3 of the Master Algorithm for

column folding with bounded connection-row assignment

The selection of folding candidates is based on the following strategy.

Try to fold columns incident to connection-rows constrained to be in the top

part of the array with columns connected to connection-rows constrained to

be in the bottom part of the array. Therefore the candidate selection follows

the outlines presented in Section 5.1, where L(cj) = L(cj) and

U(cj)= U(Cj) j = 1,2, • • • ,nc. Also in this case, a considerate choice of

folding candidates uses a selection criterion weighting the number of

ancestor-descendant relations induced by the fold and the required row posi

tions in the array.

2.5.3 Column folding with ordered connection-row assignment

The considerations on multiple column folded PLA implementation and

the basic definitions presented in Section 5.2 are extended to this Section.

An order map 5:{Ci; i = 1, 2, • • • , ncj -»Jl, 2, •••, nc) is a one to one

map relating each column to the required relative position of the contacted

connection-row. A implementable ordered connection-row assignment is an

implementable connection-row assignment such that:

T(cJ < T(Cj) if S(Ci) < S(Cj) Vi, j = l, 2, • • • ,nc

Example 2.5.3.1 : Consider the OR plane of the PLA shown in Fig. 2.3.1

and the following order map:

5(c7; = 2 s(cB; = i s(c9; = 3 s(c10; = 4

This means that column folding is constrained so that the

connection-row to ce is in the topmost position, followed by those

connecting c7. c9 and c10 in the order. Fig. 2.5.6 shows a folded im-

plementation with the implementable ordered connection-row assign

ment: r(c7; = 2 t(cb)=i jT(c9; = 3 t(c10) = 4.

r4 *

T2 %

C10

Fig. 2.5.6 Folded OR plane implementation

79

The column folding with ordered connection-row assignment problem

can be stated as follows:

Find an implementable ordered column-folding set and a related imple

mentable ordered connection-row assignment, which minimizes the

column cardinality of the folded PLA.

80

This problem is equivalent to column folding with the following bounds on

connection-row positions:

Lc(ci)-S(ci) Vi s i, 2, . • • ,nc

Uc(Ci)-S(ci)^6 Vi = i, 2, --.nc

with the additional constraint on the order of the connection-rows.

A graph representation of a subproblem is considered:

Given an ordered column-folding set and an order map, find an imple

mentable ordered connection-row assignment, if it exists.

The graph representation of this subproblem is given by graph

G(R,N, C,A) introduced in Section 5.2 where an additional subset of

directed edges is added to take care of the order map:

A9s\(Ci.Cj)\i = S(ck),j = S(ck +X), fc =1.2. • • • ,nc-lj

The Double Assignment Algorithm can be used to replace Step 3 of the Master

Algorithm for the column folding with ordered connection-row assignment

problem.

Example 2.5.3.2 : Fig. 2.5.7 shows graph G(R, TV. C, A) for the order

map of Example 2.5.3.1 and the ordered folding set 0 - \(cB, c9)\

Fig. 2.5.7 Graph G(J?, N,C,A)

pr,

SIPH

Remark 2.5.3 : In the case that there are no slack positions or in the

case that we are not interested in taking advantage of the slack posi

tions, the column-folding with ordered connection-row assignment

problem can be solved more easily by the following equivalent formu

lation: column folding with bounded product-row assignment, where

bounds on row positions are dynamically induced by column-folding.

In particular:

Vp(ci,i)=S(citi<rX) +6-\

Lji(cx.j+i) = S(ci.j) +b'+l

61

Vcitj € o4 , Vot c 0 and any fixed 6 s.t. 0 £ 6 £ A

An implementable product-row assignment satisfying the above

bounds is a necessary and sufficient condition for the existence of the

implementable ordered connection-row assignment

T(Cj) = S(Cj)+6.

82

The selection of folding candidates is based on the following strategy. Try to

fold columns incident to connection-rows constrained to be in the top part of

the array with columns connected to connection-rows constrained to be in

the bottom part of the array. Therefore the candidate selection follows the

outlines presented in Section 5.1, where now: L(cj)= S(cj) and

U(cj) = S(cj) j a 1, 2, • • • ,nc. Also in this case, a considerate choice of

folding candidates uses a selection criterion weighting the number of

ancestor-descendant relations induced by the fold and the required row posi

tions in the array.

2.6. PLEASURE

PLEASURE is an interactive program for simple/multiple

constrained/unconstrained row and/or column folding of Programmable

Logic Arrays.

The PLA description is given as input to the program in the form of two-

level sum-of-products logical implicants. The output file of logic minimizer

POP can be used as input to PLEASURE.

The output of the program is a symbolic table representing the folded

array with the positions of the active devices corresponding to the cares of

the logic function, the locations of the cuts and the contacts between

63

columns ad connection rows. The symbolic table is suitable to be processed

by a silicon assembler program which generates the mask layout of the

array according to a given technology. Note that the symbolic table gen

erated by PLEASURE is technology independent.

The program is a command interpreter: input files can be read and

edited; logic arrays can be folded in a single run or one fold at a time. This

allows the user to monitor PLA folding step by step, by displaying the par

tially folded array. The user can enter column and/or row folding candidates

of his choice and verify the implementability of his selection. When PLAs are

folded in a single run, a soft interrupt capability allows the user to halt the

compaction at any point to see the partially compacted array before resum

ing folding execution. The program can be run in a silent mode (i.e. with no

interaction with the user), so that it can be interfaced with other programs

in a system for automated synthesis of PLA's.

Folding instructions are entered to the program along with the PLA

description in the input file. PLEASURE allows column (row) folding only and

row and column folding.

Column folding can be simple or multiple, constrained or unconstrained

in either or in both planes. Architectural constraints can be set on column

positions. Columns can be required to be folded on the top (bottom) of the

array or not folded at all. Column folded arrays can be segmented into three

adjacent planes, so that columns in the external planes, can be multiply

folded and contacted by connection rows. Secondary constraints can be put

on product and connection row positions. In particular column folding with

bounded or order connection-row assignment can be achieved.

64

Row folding can be simple or multiple. Simply row folded arrays can be

constrained to have an AND-OR-AND or OR-AND-OR architecture. Secondary

constraints can be put on the column positions.

Row (column) folding can follow column (row) folding. Row folds can be

alternated with column folds, by allowing the program to choose the local

"best" fold at each step. This procedure achieves the best results as far as

compaction is concerned. Multiple row and column folded PLA can be con

strained by input/output position. An input (output) can be required to be

connected to the top, bottom, left or right of the array.

Program PLEASURE is coded in ratfor and consists of about 5000 lines.

Intermediate code in fortranll is available. PLEASURE runs in a VAX-UNIX®

environment, but is easily transportable to other machines.

We consider now a simple example to show how the folded array struc

ture can be implemented. The representation of a PLA as a sum-of-product

logical implicants is shown in Fig. 2.6.1.

••1»*0 1000
•1*0*» 0100
1««0 0001
!•••!• oioo

0»»«*» 0010

•••••1 0001

Fig. 2.6.1 Logical PLA description

The topological structure is represented in Fig. 2.1. Assume that the rows

and the columns of the array have to be folded so that:

i) the folded array has an AND-OR-AND structure;

85

ii) inputs to columns 1, 2 and 4 are connected from the left side of the

array;

iii) inputs to columns 3, 5 and 6 are connected from the right side of the

array;

iv) outputs from columns 8 and 9 are connected to the top of the array:

v) outputs from columns 7 and 10 are connected to the bottom of the

array.

The PLEASURE output file is shown in Fig. 6.2. Fig. 2.6.3 shows a nMOS imple

mentation according to the design rules suggested in [MEADSO].

The same PLA can be folded with the additional constraint that input

connection-rows are positioned according to the input-column label order.

Fig. 6.4 shows the PLEASURE output file. Note that the additional constraint

leads to a less compacted structure. For example, it is not possible to fold

the bottom two rows in Fig. 6.4. because two connection-rows are needed to

contact both column segments c2 and c4 and be positioned below the fourth

row from the top.

The layout of small folded arrays (Fig. 2.6.3) shows that a considerable

area fraction is taken by the extra contacts and power and ground lines

required by the folded structure. However this overhead is negligible in

larger arrays.

•Mat* •>!•

m*m —* IK
phi •»#•» a • *
•w ••

— h m

66

l«»MB)UB*« «

lUR • •

Fig. 6.2 PLEASURE output file

87

% 1

Fig. 2.6.3 Layout of the folded PLA

••MM •*••
•»!••• mn
•M»M SMI

•M awl* m
•**«• i— • a •
•W •«*»• II*

i mmm tiai • a

Fig. 6.4 PLEASURE output file

88

89

2.7. EXPERIMENTAL RESULTS

Some PLEASURE output files are reported in App. B • Pleasure has been

tested on a large set of industrial arrays. To compare results obtained with

arrays of different sizes, the following foldings have been tried: i) uncon

strained folding: ii) column folding with constrained row positions:

L(rt)~ max(i-a.O); U(rt) = min(i-¥a,nr)\ a = -rr-\ iii) column folding

with constrained connection-row positions: Lc(cx) = max(i-a.O);

Uc(ci) - min(i+a%nr)-, a = -rrr- ; iv) column folding with ordered

connection-row assignment: S(ci) = i, i = 1. 2, • ,nc. The folding results

and execution time on a VAX 11/780 computer are reported in Table 2.1.

90

Comparison of PLAs folded by PLEASURE with different constraints.

PLA

PLA1

PLA 2

PLA 3

PLA 4

PLAS

PLA 6

PLA 7

PLA 8

size

nr*(ni+no)

30«(8+31)
30*(8+31)
30*(8+31)
30-(8+31)

52*(23+20)
52*(23+20)
52*(23+20)
52*(23+20)

86»(8+63)
B6*(B+63)
B6*(8+63)
B6'(8+63)

62*(24+14)
62*(24+14)
62*(24+14)
62*(24+14)

85*(27+10)
85*(27+10)
85*(27+10)
85*(27+10)

75*(35+29)
75*(35+29)
75*(35+29)
75*(35+29)

53*(35+29)
53*f35+29)
53*(35+29)
53*(35+29)

223*(47+62)
223*(47+62)
223»(47+62)
223*(47+62)

Constraints

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

none

row positions
conn-row positions
ordered conn-rows

TABLE 2.1

Folding
lists

7

14

15

15

7

12

13

13

9

15
12

15

11

10

9

8

Foldedju-ea
Unfolded
Area =100

29

51

53
53

37

60

46

58

56

67

63

73

58

73

68

76

Time
(sec)

8

14

23
16

15

34

62

53

112

257

305

328

23

36

45

75

14 54 30
10 67 58

9 72 87

6 70 59

17 53 50
19 62 119
IB 64 199

10 73 202

10 49 26

13 67 65

17 58 110

10 80 147

15 38 1262
39 55 3933
39 57 4722
33 60 4769

CHAPTER 3

ARRAY PARTITIONING

91

3.1. PROGRAMMABLE LOGIC ARRAYS PARTITIONING

There are two motivations in exploiting partitioning techniques for PLAs.

The first is to explore and compare a topological compaction technique alter

native to folding. The second is to provide a means of designing PLAs parti

tioned in subarrays of bounded size, when a technological limitation on the

array size is given.

Kang approached for the first time the PLA partitioning problem

[KANGBl]. He proposed two heuristic partitioning algorithms whose objec

tives were PLA area reduction only. The partitioning technique reported in

this Chapter introduces a graph theoretic interpretation of the problem and

addresses both PLA-area reduction and design of bounded size arrays.

Programmable Logic Array folding allows to compact an array by

exploiting its sparsity only. Array partitioning techniques attempt to achieve

a PLA implementation in a minimal area, by taking advantage of the

knowledge of array connectivity in exploiting the array sparsity.

A logical array (or a plane of a logical array) is connected if the rows of

the topological personality matrix (input/output TPM) cannot be partitioned

into two or more subsets, having non-zero entries only in mutually disjoint

column subsets. It is evident that disconnected arrays can be implemented

by an appropriate connection of smaller arrays. It is also easy to show that

such an implementation is always convenient in terms of silicon area

92

[KANG81]. However a good logical design of a switching function seldom leads

to a disconnected array. On the other hand, several PLAs show weakly-

connected structures. In this case, PLA partitioning techniques allow to

transform the array into a disconnected one, which has a convenient imple

mentation in terms of silicon area.

PLA partitioning does not exclude folding. In particular, partitioned

arrays can be folded to achieve an ultimate array compaction. As an exam

ple, Suwa presented a technique to obtain segmented-folded array in

[SUWA81]. In particular PLAs are partitioned into blocks, and column pairs

folded inside each block.

Partitioning a PLA may be a design necessity, in order to satisfy some

technological constraints. In particular, timing delay through an array grows

with the array size. Tlierefore it is often necessary to set an upper bound on

the physical array size and partition the original array into sub-units, which

satisfy the given size bounds.

The PLA structure partitioning problem is addressed first. Area-

effective implementations of partitioned arrays are presented in Section 3.5.

3.2. BASIC CONCEPTS AND DEFINITIONS

The PLA structure is represented by a set of rows and columns of the

input and output topological personality matrix, which are referred to in this

Chapter as A € (l,0(PxjV and B e fl,0)p*1' respectively. The input array

(output array) column set is defined as: I=|ii, H, • • >i/t\

(0=\ox, Qz, . . . ,oji\). The row set of the topological personality matrix

[4|i?] is denoted by: P-\px, pz pp\- Arow p; is split into two parts: pf

andpf corresponding to the input and output topological personality rows.

93

The logical disjunction (conjunction) of two 1-0 vectors x,y, xVy (xAy)

is defined to be the vector obtained by the component-wise disjunction (con

junction) of x and y. The logical disjunction (conjunction) of n vectors

X|, x2. • • • ,xn will be indicated as: Vtns, x< (Af=1 xx). Two vectors xty are

independent (orthogonal) if x Ay =0. where 0 is the null vector. Two

independent vectors are denoted by xj_y. Two vector sets X.Y are indepen

dent if xj_y , Vx e X and Vy e Y

Logic array partitioning relies on determining independent sets of vec

tors in the topological personality matrix. A logic array is said to be input

(output) partitionable if there exist input (output) column independent sets.

An input (output) partitionable array has also independent sets of input (out

put) product-rows pf(pf). Alogic array is said to be partitionable if there

exist row independent sets.

Remark 3.2.1: A partitionable array is input and output partitionable,

but the inverse is not true because input independent row sets and

output independent rows sets not necessarily coincide.

3.3. EQUIVALENT ARRAYS AND PARTITIONING

In general the TPMs of logic arrays do not have input and/or output

independent sets of products rows and cannot be partitioned as they are. It

is then necessary to transform an array into an equivalent one before parti

tioning it.

Two logic arrays are equivalent if they implement the same switching

function. Equivalent arrays can have different size and can be obtained by

94

introducing redundant rows [CHUQ82] and/or columns [KANGBl] [SUWA82]

or by rearranging the TPM of the array by a reshape [H0NG74] of the logic

function.

A general equivalence transformation based on row (column) augmenta

tion is considered here. The augmentation of an input, output or product, is

the substitution of the input, output column or product row with a set of

input, output columns or product rows which gives an equivalent logic array.

Three rules to obtain equivalent arrays by augmentation are defined here:

Rule 1: input column augmentation

The logic arrays defined by A,B and A'.B are equivalent if:

i) A* is obtained from A by replacing an input column i,- with a

column set Ij = tyi^s.....^! such that

V£=i ijk = ij

ii) Input signals to columns in Ij correspond to input signal to

column ij.

An input partitionable array can be obtained by a sequence of input column

augmentations.

Rule 2: output column augmentation

The logic array defined by A.B and A.B' are equivalent if

i) B' is obtained from B by replacing an output column o; with a

column set Oj = fo^j. 0j2 o^{ such that:

V£cl Ojt = Oj

ii) The output signal from column Oj corresponds to the logic dis

junction of the output signals from the column in Oj.

95

An output partitionable array can be obtained by a sequence of output

column augmentations, and a partitionable logic array by a sequence of

input and output augmentations.

Rule 3: product row augmentation

The logic array defined by A,B and A'.B' are equivalent if:

i) [A'jB'] is obtained from [AjB] by replacing a product rowpj- with

a row set Pjm\Pjv Pjz Pjs\ such that

P&-pf V* =l,2 s

An output partitionable array can be obtained by a sequence of product row

augmentations and a partitionable array by a sequence of product augmen

tations followed by a sequence of input augmentations.

It is clear that there are many different possible augmentations for a

row or a column according to rules 1,2 and 3. For optimal topological design

it is convenient that augmented rows and columns keep the array as sparse

as possible. Hence we require the augmented columns and the output part of

the augmented product rows to be independent. Moreover optimal topologi

cal design based on array partitioning requires the determination of an

optimal sequence of augmentations.

3.4. GRAPH INTERPRETATION OF THE PARTITIONING PROBLEM

A graph interpretation of the partitioning problem gives a pictorial

representation of the array connectivity and is useful in understanding the

underlying structure.

96

The AND plane (OR plane) of a PLA can be represented by a bipartite

graph GA{I%P,EA) (GB(PtO,EB)) whose adjacency matrix is: R AQ\

(L?r q). The whole logic array is therefore represented by the union of

such graphs. i.e. the tripartite graph G(I,P,0,E), where E~EA\jEB, as

shown in Fig. 3.4.1.

B
1

i i o i i i o "
I

i o o ! i o o

0 1 1| 0 1 1 2

0 0 1 j 0 0 1
3

Fig. 3.4.1 Tripartite graph G(J,P,0,E)

Hie node sets UP and 0 are in one-to-one correspondence with the PLA

input column, product row and output column sets respectively.

In order to give an estimate of the silicon area taken by the PLA, an area

function Fq on G is defined as follows:

97

F0 = (a|/|+6|0|)|/>| + c|/| + d|0| + e\P\

where coefficients a-e are parameters depending on the physical layout of

the PLA. The first term takes into account the area of the array and the last

three terms the area taken by the drivers, the output inverters and the

loads.

3.4.1 Input partitioning

In this case, only graph GA(I,P,EA) is considered, because input parti

tioning does not affect the OR plane. Let us consider first the trivial case in

which set P is the disjoint union on n input independent sets

Pj . j = l,2,...,n. Because of independence, input columns are also parti

tioned into n disjoint sets /,. As a consequence graph GA is disconnected into

subgraphs Gf-(Ij,Pj,Ef) j=l,2,...,n. Each subgraph Gf represents a

block of an input partitioned PLA. It is straightforward that in this case an

input partitioned array takes an area smaller than the original one.

However, in general, graph G is connected and the input array is not

partitionable. A transformation of the input array into an equivalent input

partitionable one is then required: this corresponds to transform graph GA

into an equivalent disconnected one. This goal can be achieved by an input

node splitting which is the counterpart of the input augmentation.

Example 3.4.1: Input node 2 is split into two nodes 2* and 2" (PLA in

put column augmentation) and the edges incident to 2 are now in

cident either to 2' or to 2". The equivalent augmented PLA is shown in

Fig. 3.4.2 with its input partitioned implementation.

AND

Ii
I o

2'

Fig. 3.4.2 Input partitioning

Gt

P,

o |

o 4

98

In general let us denote by TT^ (EA) a partition of the edge set EA into n sub

sets EAtE{ EA. Let Gf(Ij. Pj. EA) be any subgraph induced by the parti

tion where Ij and Pj are the sets of input and product nodes which are adja

cent to edges in Ef. Because of input node splitting in general J/) £ £ I/> I

while \P\ -.2^\Pj\ (no product augmentation is allowed). Subgraphs
JBX

99

Gf, j =l,2,...,n correspond to the blocks of the input partitioned array. An

estimate of the input partitioned array area is given by:

FA = £|P,l(a!/,-|+6|G|) +c£|/jl +d\0\ + b\P\
>=1 ;=1

+/(£i/ii-i/i)

where the last term takes into account the overhead due to the routing of

the augmented input columns.

The input partitioning optimization problem 0P1 can be stated as follows:

"Problem OPlM

Find a partition T1£(EA) such that:

PA(IK(EA))*FA(nn(EA)) ^T]n(EA) and Vn

PjDPk = 0 V;.A:=1,2 n; ;VA:

Note that the optimal solution can be not unique.

3.4.2 Output partitioning

In this case only graph GB(P,0,EB) is considered. As stated in Section

3.3, an output-partitionable array can be obtained by a sequence of output-

columns and/or product-row augmentations.

Example 3.4.2: Product node 1 is split into two nodes 1* and 1" (pro

duct row augmentation) and the edges incident to 1 are now incident

either to 1' or to 1". The equivalent augmented PLA is shown in Fig.

3.4.3 with its output-partitioned implementation.

Pr

P2

Pr

P»

P4

i, i2 i,

Fig. 3.4.3 Output partitioning

G?

100

Os

In general let us denote by Um(EB) a partition of the edge set EB into m

subsets EB,EB £&. Let Gf(Pj, Oj, Ef) be any subgraph induced by the

partition where Pj and Oj are the sets of product and output nodes which are

101

adjacent to edges in Ef. Because of output node splitting in general

\°\ * L \°i\ and \p\ * 2 I-Pj I • Subgraphs Gf, ; =1.2,..,m correspond to

the blocks of the output partitioned array.

An estimate of the output partitioned array area is given by:

FB = £|/5l(a|/|+b|CH) +c|/| +d%\0j\ +eg|^|
i«l i»l 3-1

+g[(E\Oj\)-\o\] +h[(fl\Pj\)-\p\]
Jfel >sl

where the last terms take into account the overhead due to the routing of

the augmented output columns and product rows. The output partitioning

optimization problem 0P2 can be stated as follows:

"Problem 0P2"

Find a partition U^(EB) such that:

FBmk(EB))sF'>(T]m(EB)) vH,fl«;aBd Vm

Note that the optimal solution can be not unique.

Remark 3.4.1: If only output column augmentations are allowed

\P\ = £ l-r^ I and therefore FB can be obtained from FA by inter-

changing I with 0. In this case the output partitioning is exactly the

dual of the input partitioning. Problem 0P2 is then obtained from

the problem 0P1 by adding the constraint equation

102

Pjf\Pk = 0 V;,* =l,2 n; j *k

3.4.3 Partitioning

The whole logic array is represented by graph G(I,P,0,E). Apartition-

able array is obtained by transforming the original PLA into an equivalent

one whose graph is disconnected.

This goal can be achieved by node splittings i.e. by means of input .pro

duct and/or output augmentations. The procedure is shown in Fig. 3.4.4 on

the same simple example. The equivalent augmented PLA is also shown with

its parallel partitioned implementation.

AND | OR

p,. HZ-V*-"
Pz !:-

ii it

AND j OR

TTi 4

Fig. 3.4.4 Partitioning (general case)

103

G2

In general let us denote by H (EB) a partition of the edge set EB into I

subsets jE**1, E*z E8'. Let GB(Pj, Ojt Ef) the subgraph induced by the
partition where Pj and Oj are the node sets of product and output nodes

which are adjacent to edges in Ef. Let Ef be the set of edges incident to

nodes in Pj and Ij be the set of nodes adjacent to Pj.

104

In general, because of output and product node splittings |0 | ^ £ | Oj \ and
/el

\P*Lt\Pi\' Moreover also |/| £ £ |/>| because of the input augmenta-
i»i i«i

tions required by Rule 3. Subgraphs Gj(Ij, Pj, Oj, EfjEf) J = 1. 2, ,1

correspond to the jth sub-units of the partitioned PLA.

An estimate of the area taken by the I logic subarrays and by the intercon

nect to route them is given by:

F=£|fJI(a|/,l+6|qH) +c£|/j| +d£\q,\ +e£\Pj\
j»i j=i *=i is»

+f[(£\ij\)-\i\] +g[(£\Oj\)-\o\) +h[(£\Pj\)-\p\]
i«i i=i is*

The partitioning optimization problem 0P3 can be stated as follows:

Problem 0P3

Find a partition Ui(EB) such that:

F(ni0(Ef))*F(Tll(Ef)) Vlk(Ef) and V*

Note that the optimal solution can be not unique.

Remark 3.4.2: The unconstrained partitioning of the edge set Ef may

lead to several product augmentations and consequently input aug

mentations as required by Rule 3. The augmentation may induce a

kind of "chain reaction". It is therefore more convenient to consider

a constrained partitioning of the set Ef which avoids product aug-

105

mentations, i.e. such that:

PjC\Pk = 0 V;,*=l,2 t; j*k

An example of PLA partitioning with no product augmentations is

shown in Fig. 3.4.5.

AND , OR AND

4

Pig. 3.4.5 Partitioning (no product augmentations)

108

3.5. PARTITIONED PLA IMPLEMENTATIONS

Different implementations of partitioned PLAs are possible. In particu

lar, MOS technology implementations are considered here.

Two-fold partitioned input-arrays can be implemented as simply column

block-folded arrays. This implementation is referred to as bipartite folded

implementation by Egan [EGAN82], and shown in Fig. 3.5.1.

>S >6 >7 '8
Jill

I
I I
I—

S
i TQ

t t t t t t
• •••••

*l t !3 U 'a 'to

i—\:

i 1
0, 02

Fig. 3.5.1 Column block-folded implementation of a partitioned input-array

Note that augmented input columns are implemented as unspiit columns and

therefore require connection to the input signal line from one side of the

array only. The column positions in each block are arbitrary and can be

assigned as to route optimally the PLA input signal lines from/to other cir-

107

cuit blocks.

Input arrays partitioned into more than two blocks can be implemented

by a multiply column block-folded array, where inputs are routed by means

of connection rows as described in Section 2.2 (Fig. 3.5.2).

ii

•

u

is
is

JZ

-4%-issj I

terI

Fig. 3.5.2 Multiply column block-folded implementation of a

partitioned input-array

o,

o2

Note that augmented input columns do not necessarily require extra

connection-rows. In particular column segments in adjacent blocks

corresponding to the same input can be connected internally.

Partitioned output-arrays are implemented similarly. Augmented out

puts from different blocks must be OR-ed together with the proper phase

(Fig. 3.5.3a). However, in NOR implementations, column segments

108

corresponding to the augmented columns can be connected internally by a

wired-NOR (Fig. 3.5.3b).

t t t
i, i2 i3

04 05
t t

r.~~.~T

R2=3
X

L_ !
I I 1
0, 02 03

1

I

3=5

Fig. 3.5.3 Column block-folded implementation of partitioned output-array

Partitioned arrays can be implemented as parallel connected arrays, as

shown in Fig. 3.5.4. In this case the component-PLAs are placed as to sim

plify the routing between them.

109

Pig. 3.5.4 Parallel connected implementation

In particular, partitioned arrays can be stacked or arranged in a line. The

former implementation is similar to a column block-folded implementation

(Fig. 3.5.5a). while the latter to a row block-folded one (Fig. 3.5.5b).

1! t
AND1 =3» OR1

AND 2 SS> OR 2

r i

ORl 0R2

T T

110

AND2

7F
Fig. 3.5.5 Column (row) block folded implementation of a partitioned array

3.6. A HEURISTIC CLUSTERING ALGORITHM FOR PLA PARTITIONING

The optimization problems arising from PLA partitioning require to

minimize a nonlinear function with integer constraints. The objective func

tions depend on the cardinality of the node subsets induced by an edge set

partitioning.

A heuristic algorithm based on a cluster search [SPAT80] and on array

transformations is proposed here. The same cluster search strategy is used

for the three partitioning problems. For this reason the graph related to a

partitioning problem is denoted by G(V,E). The node set V is defined as

luP, PuO and I^PuO and the edge set E as EA . EB and EAuEB for input

Ill

partitioning, output partitioning and partitioning respectively.

The algorithm attempts first to find a node cluster inside graph G{VtE) and

then partitions V into two subsets Vx and V2. The former contains the

cluster nodes and the latter the remaining ones. Let EcE be the set of edges

joining nodes in Vx to nodes in Kg. If E is empty, the node partition induces a

graph partition into two disjoint subgraphs G\(VX, E\) and Gz(V2, Ez)- If E

is not empty, the algorithm modifies the graph by adding to Vx and V2

appropriate nodes incident to E, so that E is partitionable into Ex and Ez

and GX(VX, Ex) and Gz(Vz, Ez) are disjoint. This operation corresponds to

node splitting (augmentation) and is described in detail in the sequel accord

ing to the different partitioning problems. Subgraph GX(VX, Ex) is stored

and the algorithm reattempts a cluster search on the updated graph

G(V,E) = G2(V2, Ez) • The selection of cluster nodes is driven by the values

taken by the objective function .

Different authors have dealt with clustering related problems

[LUCC69],[LAWL73a].[KERN70]. The partitioning algorithm is based on the

contour tableau approach described in [0GBU70] and in [SANG77]. The con

tour tableau is an array of three columns. The first one is called iterating set

(IS) and its entries are nodes of the graph. The second one is the adjacency

set {AS) and its entries are sets of nodes of the graph. The third column is

the objective function vector (OF) and its entries are the values of the

area estimates FA , FB and F for the three partitioning problems.

The tableau is built iteratively until a cluster is found and convenient

conditions are met to separate it from the rest of the graph. At this point the

tableau is cleared and the algorithm restarts on the rest of the graph. The

algorithm is described in Pidgin C.

112

PARTITIONING ALGORITHM

while {V* 0) |

IS = 0 ; AS = 0:0/-= 0 ;

t si:

/5(i) = inselect(V);

i45(i) = adj(/S(i)):

while (cluster criterion not satisfied) \

/5(i+l) = nextselect(AS(i));

AS(i+l) = nextadj(IS,AS(i));

i =i+l;

J:

G{V.E) = updzte(G{V,E));

1;

J.

Procedure adj(i) returns the nodes adjacent to node i.

Procedure nextadj(IS,AS{i)) returns all the nodes adjacent to node

/S(i+1) not contained in \j}al IS(J). An efficient way to evaluate the pro

cedure is described in [SANG77]: the nodes returned by procedure nextadj

are obtained from AS{i) by deleting 7S(i+l) and adding the set of all the

nodes which are adjacent to 75(i+l) that are not already in AS(i) or in

U/-i ts(j)-

Procedure inselect(V) selects an initial node of the graph G{V,E) and pro

cedure nextselect(AS(i)) selects the next iterating node in AS(i). Both

selections follow a heuristic criterion described in the sequel.

113

Procedure update(G{V,E)) stores subgraph GX(VX, Ex) and returns sub

graph GgfVg. Ez).

Graphs GX(VX, Ex) and GizfVg, E%) are defined according to the parti

tioning problem and the augmentation strategy, required. At each step of the

internal while loop of the algorithm, the set V is partitioned into three dis

joint subsets, namely:

X=u/-i 1SU) Y=AS(i) Z=V-X-Y (5-x)

The nodes in X are inside the cluster and are adjacent only to nodes in XuY.

Nodes in set Y are "border" nodes. By construction, the nodes in Z are not

adjacent to any node in X. Let WqX be the subset of nodes adjacent to Y at

the current step of the algorithm. Let us define

Xi (XP. Xo) , Yj (YP, Yo) , Wj (Wp, W0) , Zj (ZP, Z0) the subsets of

input (product and output) nodes of XtYtW and Z respectively (i.e.

Xj = Xnl).

In the case of input partitioning only input columns are augmented.

Hence the set Vx is obtained by adding to cluster nodes X the input nodes Yj

adjacent to cluster nodes. Set V2 is obtained by adding to the cluster comple

ment set YuZ the input cluster nodes Wj adjacent to them. Note that the

product node set P is partitioned into two subsets Xp and Zp'jYp. The edge

set E is partitioned accordingly: E\ and Ez are the subsets of E , whose ele

ments are incident to nodes in Xp and ZpuYp respectively. Hence:

Gi(Vi, Ex)= Gx(XuYJt Ex) G2(Vz. Ez)= GzfYuZuWj. Ez)

Example 3.6.1 : Consider the AND plane of PLA shown in Fig 3.3.1.

Suppose that at one step of the internal uhiie loop the cluster set

114

contains the following nodes: X = \IX, Px, Pz\< The adjacency set is:

Y = [Izl • The other two sets defined by the partitioning algorithm

are: W= \PX] and Z = }/3, P3. P4J (Fig. 3.6.1). Then

Vx = {/i. /8. Pv Pz\ and K2 = \IZ, 73. P3. P4(-

A similar definition applies , mutatis mutandis . to the output partitioning

problem with product (output) augmentations only:

GX(VX, Ex) = Gx(XuYP, Ex) Gz(V2. Ez)~ Gz(YuZuWP. E2)

(Gl(Vl.Ex)=Gl(XuY0.El) Gz(Vz.Ez)=Gz(YuZviY0,Ez))

X

Fig. 3.6.1 Node sets X, Y, Wand Z

115

In the case of parallel partitioning with input and output augmentations only,

the set Vx is obtained by adding to cluster nodes X the input nodes Yj and

the output nodes Yo adjacent to cluster nodes. Set Vz is obtained by adding

to the cluster complement set nodes YuZ the input and the output cluster

nodes WjuWq adjacent to them. Note that the product node set P is parti

tioned into two subsets Xp and ZpuYp as in the input partitioning problem.

The edge set E is partitioned accordingly: Ex and Ez are the subsets of E ,

whose elements are incident to nodes in Xp and ZpuYp respectively. Hence:

Ox(Vx. Ex) = G^XvYjuYq, Ex) Gz(V2, E2) = Gz(YuZuWjUW0, Ez)

Remark 3.6.1: In the case of output partitioning with product and

output duplications and parallel partitioning with input, output and

product duplications, subgraphs GX(VX, Ex) and GZ(V2, E2) are

defined differently. Since these definitions do not affect the analysis

of the algorithm, they are not reported here for the sake of simplici

ty.

The cluster criterion is satisfied when at least one of the following conditions

is met:

|AS(i)| =0

7(\X1\.\Xp\.\X0\.\YIl\Ypl\Y0\.\W1\,\Wp\,\Wo\) > 7,max

OF(i) is a Local mvnxmum

The first condition guarantees that a cluster is found if graph G(V,E) is not

connected. The second condition allows the user to define a scalar function yof

116

the cardinality of the subsets Xj. Xp. Xq, Yj, Yp, Y0. Wj, Wp and W0 in order

to specify the maximum size of each block. The third condition is a heuristic

rule to determine a cluster. It can be also required that OF{i) be smaller

than a proper fraction of the initial area 0^(0) to ensure that partitioning is

performed only if it gives a considerable saving in the total area. Since the

objective function vector may have several local minima close to each other,

the cluster decision can be taken a few steps after the minimum is detected.

Procedure nextselect uses a greedy strategy to select the next iterating

node among the nodes in AS(i). When any node in AS(i) is added to the clus

ter node set X , graph G{VtE) can be partitioned accordingly and the

corresponding value of the objective function be computed. The selected

node is the one that minimizes the objective function at that step of the algo

rithm. This means that the selected node is the "local best" node.

Procedure inselect returns the initial iterating node. As pointed out in

[SANG77], a node connecting two clusters is a bad selection of initial node.

Nodes with degree 1 cannot join two clusters and hopefully the lower the

degree of the node, the lower is the probability of choosing a "bad" node.

Hence procedure inselect returns the min-degree node in the actual imple

mentation of the algorithm.

It is interesting to show that the time computational complexity of the

algorithm is polynomially bounded , though the total number of nodes may

increase at each iteration. Let n = | V\.

Theorem 3.1: The time computational complexity of the Partitioning

Algorithm is bounded by 0(na).

117

Proof:

Every time the algorithm cycles through the external while loop, pro

cedure update(G(VtE)) returns Gz(V2, E2). At least one node of the

cluster set is not added to Vg.because otherwise G(V,E) = G2(V2. Ez)

and the cluster condition cannot be met. Hence Vzc Vand | V\ is de

creasing at every step of the external loop. The algorithm cycles at

most n times through the external while loop. Moreover since

AS(i)c Vand | AS(i) | < n , the algorithm will execute at most n inner

inner while loops, because there is necessarily an integer

m, m <nt such that |i45(m)| =0 and a cluster condition is

satisfied. Since procedures nextselect and nextadj can perform at

most n comparisons and objective function evaluations, the time

complexity of the algorithm is bounded by 0(ns).

3.7. SMILE

SMILE is an interactive program for Programmable Logic Arrays parti

tioning. The PLA description is given as input to the program in the form of

two-level sum-of-products logical implicants. The output file of logic minim-

izer PRESTO [BR0WB0] can be used as input to SMILE. Partitioning instruc

tions are entered to the program along with the personality in the input file.

Input, output or parallel partitioning can be requested. The program per

forms input and output augmentations by default. In the case of output par

titioning, product augmentations can be allowed.

The user can require to limit the number of clusters, i.e. the number of

subarrays in which a plane (or both pianes) is partitioned as well as the

118

maximum size of the subarrays.

SMILE generates an output file containing a symbolic matrix, represent

ing the personality of the partitioned array. The SMILE output file can be

processed by a silicon assembler program, which generates the mask layout

of the array according to a given technology. Note that the symbolic array is

technology independent.

Some SMILE output files are reported in App. C. As an example consider

the PLA whose personality is shown in Fig. 3.7.1a. Since the OR plane is very

sparse, output partitioning is attempted by the program as requested by the

user. SMILE partitions the output column set into two disjoint subsets:

Jo5, Og, oxq, oxx, oX4, oXy, Ojb. oZqI and |og, 07, oq, 0^, o13, oXi, ox$. ox9\ Three

product terms, namely jd3, pXi andpig, are augmented in order to transform

the original array into an equivalent partitionable one. Fig. 3.7.1b shows the

output partitioned array. The OR plane has been implemented as a block

folded array. Note that the array size has changed: eight columns are not

needed for the PLA implementation at the expenses of adding three extra

rows. A global area saving of 29% has been achieved.

Program PLAID [HOFFBl] was used to assemble the output-partitioned

PLA as a column block-folded array. The block-folded implementation of the

partitioned array in Fig. 3.7.2.

Program SMILE is coded in ratfor and consists of about 2000 lines of

code. Intermediate code in fortranll is available. SMILE runs in a VAX-

UNIX8 environment, but is easily transportable to other machines.

i 0000

2 0001

3 0010
4 0011
s 0100

6 0101
7 0110
e 0111
9 1000

10 1001

ii 1010

12 1011

13 1100
14 1101

IS 1110

16 1111

1000101010101010

0000101000001000

0100000010001000

0001010100010101
0010100000101000

0000010000010000
0000100000101010

0000001010100010
010101010100O1OO

0100010100000001
0100000100100001

0101010100100101
0101000100010001
0101000100000100
0100010000010100

1010000000101010

1111111

1234 1234S678901234S6

119

BLOCK FOLDED OR PLANE

000002
680246B0

• 3 0010 10000000
4 0011 01110111

6 0101 00100100
9 1000 11111010
10 1001 10110001

* 11 1010 10010001
« 12 1011 11110011

13 1100 11010101
14 1101 11010010
15 1110 10100110

1 0000 10111111
2 0001 00110010
3 0010 00001010

5 0100 01100110
7 0110 00100111
8 0111 00011101

11 1010 00000100
12 1011 00000100
16 1111 11000111

11111

1234 57913579

Partitioned PLA t«fco>« 712 tf th« original «r»«

Fig. 3.7.1 Personality of the original and block-folded PLA

120

Fig. 3.7.2 Check plots of the block folded PLA

121

3.8. EXPERIMENTAL RESULTS

Program SMILE has been tested on a large set of industrial PLAs. Some

results are reported in Table 3.1. The time spent by the algorithm ranges

from a few hundreds of milliseconds for PLA 1 to several seconds for larger

arrays (PLA 7). Since execution time is small, circuit designers may want to

use the program with different requirements in order to compare the

different partitioned structures.

Note that it is not possible to achieve an area reduction of PLA 2 by

means of input partitioning, because the AND plane has a full structure (no

"don't cares") (Fig. 3.7.1).

Normalized partitioned array areas. Initial area = 100.

Maximum number of clusters allowed: 5.

PLA size

P»(N+M)
Input
Partitioning

Output
Partitioning

Parallel
Partitioning

PLA1 6*(6+4) 71 64 61

PLA 2 16*(4+16) 100 71 65

PLA 3 30»(19+10) 78 81 67

PLA 4 75*(35+29) 75 70 46

PLA 5 62*(24+14) 75 60 60

PLA 6 B4»(27+10) 71 81 59

PLA 7 B4*(27+10) 69 81 57

TABLE 3.1

122

3.9. A COMPARISON BETWEEN FOIJHNG AND PARTITIONING TECHNIQUES

In order to compare the effectiveness of the two topological compaction

techniques, two similar array implementations must be considered. There

fore simply column-folded PLAs are compared to simply block-folded arrays.

In principle, the column block-folded structure could be obtained by

folding the array with the constraint of placing the cut in each folding pair at

the same level. Therefore implementing partitioned PLAs as block-folded

structures can be seen as a constrained folding problem. Therefore folded

PLAs can be expected to be smaller than the corresponding block-folded

implementation.

As a final remark, it is important to stress that heuristic algorithms are

used for both folding and partitioning. Kence some partitioned PLA imple

mentations may be found smaller than the corresponding folded ones and

vice versa. However, experimental results show that the algorithm of pro

gram PLEASURE yields in general a better compaction than the one of pro
gram SMILE.

123

Normalized folded versus partitioned array areas. Initial area = 100.

PLA size

P-(N+M)
Folding Partitioning

PLA1 6»(6+4) 60 61

PLA 2 16*(4+16) 60 65

PLA 3 30*(19+10) 68 67

PLA 4 75»(35+29) 53 46

PLA 5 62*(24+14) 58 60

PLA 6 84*(27+10) 54 59

PLA 7 B4«(27+10) 51 57

TABLE 3.2

124

CHAPTER 4

DESIGN OF PLA-BASED FINITE STATE MACHINES

4.1. SEQUENTIAL LOGIC IMPLEMENTATION

Sequential circuits play a major role in the control part of digital sys

tems. Digital computers are very complex examples of sequential systems

and involve a combination of sequential functions.

A sequential function can be represented by several models [H0PC79].

The Deterministic finite State Machine or Deterministic Automaton

representation is used in the sequel and is referred to as Finite State

Machine (FSM) for the sake of simplicity.

Finite State Machines consist oftwo major components: a combinational

circuit and a memory. The memory stores a representation of the state of

the machine at any given time and the combinational circuit generates the

machine primary outputs as a function of the machine state and/or the

machine primary inputs (Fig. 4.1.1).

A customized design of the combinational component can be achieved

by interconnecting logic gates. For example, the control part of the Z8000

micro-processor was implemented by random logic gates. Such a design

mayrequire a small silicon area, but it is highly dependent on the particular

logic function. Moreover design time is longer in comparison to other struc

tured implementations and engineering changes may require a complete
redesign.

PRIMARY

INPUTS

A

COMBINATIONAL

CIRCUIT

u

MEMORY

Fig. 4.1.1 Finite State Machine

125

PRIMARY

OUTPUTS

On the other hand, digital controllers are often implemented by Finite

State Machines whose combinational component is a ROM. The controller

operation can be altered by replacing or re-programming the ROM, giving a

high degree of flexibility. The control units of micro-programmed digital

computers are designed according to this methodology.

The implementation of sequential functions in VLSI system design has to

satisfy two major requirements:

i) regular and structured design that can be supported by computer-

aided tools;

ii) size and performance of the silicon implementation.

126

A PLA implementation of the FSM combinational component can satisfy both

requirements. Since FSM memory components, as well as PLAs, can be

designed by means of regular structures, the entire FSM implementation can

be regular and structured. This allows the automation of FSM-based

sequential-circuit design. Moreover several techniques, like logic minimiza

tion and topological compaction, allow the of design area-effective PLA imple

mentations. Therefore PLA-based FSM design can be optimized with regard

to silicon area requirement and subsequently to switching-time performance.

The memory component of a FSM consists of a set of latches that store

the machine state representation. Several types of latches (Delay, Toggle, JK)

can be used [HILLSl]. Some functions can be implemented more efficiently

i V

> / PLA

AND ! OR
PLANE l PLANE

/ C

±
K

*v

D-LATCHES
Fig. 4.1.2 Model of synchronous PLA-based FSM using D-latches.

127

with a particular type of latch: for example counters are usually imple
mented by means of Toggle-latches and generic sequential functions by
Delay-latches. Memory is implemented by Delay (D) latches in the FSM

model used in the sequel for the sake of simplicity.

The operation of VLSI systems is often synchronized to a system clock.

The main goal is to keep a race-free design even when the circuit size is

large. For this reason the model of a sequential function implementation

used here is a synchronous Finite State Machine as shown inFig. 4.1.2.

4.a SEQUENTIAL FUNCTION REPRESENTATION

Different functional representation of a Finite State Machine are possi

ble. Formally a FSM can be defined as a 5-tupie (X, Y. Z, o\ \; where:

X = \xh x2, •••, ZnJ is the set of primary inputs;

Y = JVi« Vs. ••• . VnJ is the setof internal states:

Z = \zx, z2, - •, ZnJ is the set of outputs;

6: Xx Y •* Y is the next state function and

A: XxY -» Z (\: Y-> Z) is the output function for a Mealy (Moore) machine.

AFinite State Machine representation is said to be incompletely-specified if

the next-state and/or output function are not specified for some input

and/or present-state. AFSM representation is incompletely-specified when

some inputs (outputs^ never occur (are never sampled) in some machine

state.

Other representations are often used in designing FSMs. The most com

mon are: state tables, flow-charts and Hardware Description Language (HDL)

programs. Note that all these representations are equivalent to the abstract

mathematical formulation.

128

Atabular representation of the FSM functionality is given by state tables

[HILLBl]. The state table is an array in which each column (row) is associated

to an input (state). The entries of the array are the corresponding values of

the next-state function 6 and the output function X. A"don't care" symbol

(•) represents the next-states and/or outputs when these arenot specified.

Example 4.2.1: The following state tables describes a FSM having

n, = 2 inputs, riy a 7 states and n» = 2 outputs

inputs 0 Input ss l

present
state

next

state output
next

state output

START stateJJ 00 stated 00

state.? state_5 00 stateJJ 00

stateJ3 state_£ 00 state_7 00

state_4 stateJ$ 00 state_0 10

state_$ START 10 state_jJ 10

state_$ START 01 stateJ2 01

Btate_7 state_£> 00 stated 10

Remark 4.2.1: Astate tablehas an equivalent graph representation in

the transition graph. The transition graph is a directed graph: the

node set is in one-to-one correspondence with the state set Y and

directed edges represent the state transition function 6. Each edge

has a label corresponding to the primary input and output associated

with that transition [HILLBl].[MEAD80].

129

State tables and state diagrams have been used extensively in the literature

in the past years. Unfortunately state-table representations of large,

Incompletely-specified Finite State Machines can be cumbersome. For this

reason designers use to describe the machine functionality by means of

Flow-charts or Hardware Description Languages.

Flow-chart descriptions, such as the Algorithmic State Machine chart

[CLAR75], allow an algorithmic description of the FSM and enable the

designer to visualize the functionality of the entire machine. Hardware

Description Language, such as ISP [BARB77], AHPL [HILL7B] or FTL2

[DEUT83], allow to describe a sequential function as a software program.

Both have advantages and disadvantages and a choice between them is left to

the designer's preference.

Example 4.2.2: The FSM ofExample 4.2.1 is described by the following

flow-cart, according to the notations given in [CLAR75]. Every square

box (state box) represents a state. Every directed path joining two

square boxes represents a transition between the two states depend

ing on the machine inputs tested by the condition boxes along the

path. Outputs are represented either in the state blocks or by condi

tional output boxes (rounded edge boxes) along the path (Fig. 4.2.1).

Note that the ASM representation is equivalent to the formal description.

Every specified value of the next state function 6 (output function X) is

related to one and only one directed path joining a state box to a state (out

put) box. The values of the functions are related to the present-state

130

represented by the state box that is origin of the directed path and to the

input associated to the conditional boxes along the pa'.h.

Fig. 4.2.1 ASM description

131

Example 4.2.3: The following FTL2 [DEUTB3] program is an equivalent

description of the FSM of Examples 4.2.1 and 4.2.2:

(which? state

(START (if (= input 0)
then

(<- state_0)
else

(<- stated))

(<- output 00b))

(state_g (if (= input 0)
then

(<- state_£)
else
(<- statej?))

(<- output 00b))

(state_3 (if (= input 0)
then

(<- state_£)
else

(<- state_J))

(<- output 00b))

(stated (if (= input 0)
then

(<- output 00b)
else

(<- output 10b))

(<- stateJ))

(state_$ (if (= input 0)
then

(<- START)
else

(<- stated))

(<- output 10b))

(statej* (if (= input 0)
then

(<- START)
else
(<- state.?))

(<- output 01b))

(state_7 (if (=input 0)
then
(<- stated)
(<-output 00b)
else

(<- stated))

(<- output 10b))))

Note that a formal description of a FSM can be mapped into a HDL program

in a straight-forward way. In particular the values of the next-state function 6

and output function X are represented by conditional statements, whose

clauses are the corresponding values of the inputs and present states.

132

4.3. OPTIMAL DESIGN OF FINITE STATE MACHINES: STATE ASSIGNMENT

State tables, flow-charts and HDL programs specify Finite State

Machines at the functional level. Optimal FSM design involves several

transformations, as described in Section 1.5. In particular: state minimiza

tion, state and memory element assignment, logic minimization and topo

logical compaction of the combinational component. Optimal state assign

ment is the subject of this Chapter. Basic concepts and definitions related to

the representation of a switching function at the logic level are reported in

App.A.

The state assignment, or state encoding problem consists of choosing a

Boolean representation of the internal states of the machine. State encoding

affects substantially the complexity of the FSM combinational component

[HART66]. In particular, the PLA size depends heavily on the state assign

ment. Therefore the optimum state assignment problem can be stated as

follows:

Fund the assignment corresponding to a PLA implementation of minimum area.

This task is formidable and some simplifying assumptions are needed. As a

first step, topological compaction techniques to reduce the PLA area, such as

folding and partitioning, are not considered. Under this assumption, the PLA

area is proportional to the product of the number of rows (product-terms)

times the number of columns. Both row and column cardinality depend on

state encoding. The (minimum) number of rows is the cardinality of the

(minimum) cover of the FSM combinational component according to a given

assignment. The code-length (Le. the number of bits used to represent the

states) is related to the number of PLA columns and in particular to the

133

number of PLA input (output) columns corresponding to the present (next)

states. Therefore the PLA area has a complex functional dependence on

state assignment.

For this reason two simpler optimal state assignment problems are

defined:

i) Find the assignment of minimum code length among the assignments

that minimize the number of rows of the PLA.

ii) Find the assignment that minimizes the number of rows of the PLA

among the assignments of given code length.

The optimum solution to the state assignment problem can be seen as a

trade-off between the solutions to problem i) and ii). Note that the above

problems are still computationally very hard and to date no method (other

than exhaustive search) is known that solves them. Therefore heuristic stra

tegies are used to approximate their solution.

A method that attempts a solution to problem i) is presented in the

sequel, as an intermediate step toward the solution of the complete problem.

Problem i) is referred to as the optimal state assignment problem

throughout this Chapter. Note that most of the previous state assignment

techniques attempted to solve problem ii) with minimum code length (Le.

logs **y)- The relevance of problem ii) was related to minimizing the

number of storage elements in discrete component implementations of Fin

ite State Machines. Today, optimizing the total usage of silicon area (related

only partially to the number of storage elements) is the major goal in

integrated circuit implementations of PLA-based Finite State Machines.

Many papers dealing with the state assignment problem can be found in

the literature (see Section 1.7). Most techniques can be reduced to algebraic

134

methods based on partition theory and on a reduced dependence criterion

[HART66]. However no theoretical result was ever presented that related

reduced dependencies to optimal implementation of the FSM and in particu

lar to the minimality of a cover of the FSM combinational component.

Armstrong [ARM62a] developed a method that related state encoding to

the number of gates required to implement the combinational component of

the FSM (he simplified the problem by neglecting the output function). In

particular his method can be specialized to PLA-based FSMs. The technique

is based on an inspection of the state table and on the following considera

tions:

i) If an input, say i, maps two states, say sA and sB into the same next-

state, i.e. 6(i<sA) = 5(i,sB) and the code of sA differs from the code of

sg in one coordinate only, then both transition sA-*6(i,sA) and

sB+6(i, sB) can be expressed by two implicants having distance one

(that can be merged by a logic minimizer into one implicant).

ii) If two inputs, say iA and iB map a state s into sA = 6(iA. s) and

sB s 6(iB, s) and the code of sA differs from the code of sB in one coor

dinate only, then both transition s-*sA and s->sB can be expressed by

two implicants having distance two. (Heuristic minimizers transform

distance-two implicants into one implicant and one minterm. This opera

tion is defined as reshape [H0NG74] and reduces the number of literals.

Moreover it is possible that the minterm is covered by some other impli

cant and can be dropped from the cover.)

If a state assignment satisfies distance relations according to the above

rules, then logic minimization of the encoded cover of the FSM combinational

component leads to a reduction of the number of product-terms and literals.

135

Therefore state encoding is constrained to satisfy appropriate adjacency

relations. Since adjacency relations can be represented by a graph, then

state assignment is equivalent to embedding a graph into a Boolean cube.

Armstrong's approach can in principle handle rather large machines,

but it has three serious drawbacks. The first is related to the fact that the

criteria suggested by Armstrong do not take into account the techniques of

fast heuristic logic minimizers such as MINI [K0NG74], or ESPRESSO-II

[BRAYB4] in use today (Armstrong's paper appeared before the work on

heuristic minimizers started). The second is that the state assignment prob

lem is transformed into a particular graph embedding problem, which

represents only partially the state encoding problem [DEMIB3f]. In particu

lar, state assignment is related to a more complex embedding problem, that

cannot be expressed only in terms of adjacency relations, as shown in Sec

tion 4.5. The third Is that the graph embedding technique used by Armstrong

to solve the problem he introduced was ineffective. In particular, a fixed

(minimal) code-length was chosen apriori . In this case graph embedding is

equivalent to a subgraph isomorphism problem, where a one-to-one relation

(coding) is sought between the set of the states (vertices of the adjacency

graph) and a subset of the vertices (codes) of the Boolean cube. Note that

even questioning the existence of a subgraph isomorphism is a hard problem:

in particular it was shown to belong to the class of NP-complete problems

[GARE7B], Since such an isomorphism may not exists, Armstrong relaxed

some adjacency requirements and proposed heuristic techniques to embed a

subgraph of the adjacency graph into the Boolean cube.

An enhanced technique, overcoming these difficulties, was presented in

[DEM183f]. The approach was based, as Armstrong's, on the use of distance

136

relations among the codes of the internal states. Armstrong rules were

replaced by a prediction of the effects of heuristic minimization [H0NG74] of

the combinational logic related to a symbolic description of the FSM. State

encoding was then achieved by a particular graph embedding technique:

states were assigned to vertices or faces of the Boolean hypercube. This

technique is equivalent to embed the adjacency graph into a squashed

hypercube , Le. a hypercube having appropriate faces squeezed into vertices.

Such an embedding can always be achieved in polynomial time [GRAH72].

This technique has proven to produce acceptable results even for large

machines, but has two drawbacks. The former is related to the prediction of

the effects of heuristic logic minimization, that is a difficult task, because

minimizers use rather complex techniques. The operations considered in the

prediction phase are a simple subset of the operations performed by a

sophisticated logic minimizer. Therefore an encoding based on the predic

tion step might not be the one that minimizes the combinational component

of the FSM. The latter drawback is related to code length. Since some states

may be assigned to rather large faces, the state set is contained in a cube of

large dimensions, i.e. the code length tends to approach cardinality of the

state set.

The state encoding technique reported in the sequel is based on an inno

vative strategy: instead of trying to estimate the effects of heuristic minimiz

ers, logic minimization is applied before state assignment. Logic minimiza

tion is performed on a symbolic (code independent) representation of the

combinational component of the FSM. A constrained encoding problem

relates the minimal symbolic representations to the class of assignments

that implement the combinational component of the FSM with at most as

137

many product-terms as the cardinality of the minimal symbolic cover. In this

class, an optimal encoding is one of minimal length.

4.4 LOGIC MINIMIZATION OF THE FSM COMBINATIONAL COMPONENT

Symbolic minimization of the FSM combinational component is per

formed on an intermediate representation of the FSM: the symbolic cover .

The concept of symbolic cover is a generalization of the logic cover represen

tation of combinational-logic functions.

A symbolic cover is a set of primitive elements called symbolic impli

cants . A symbolic implicant is a set of two-input and two-output character

strings and is denoted by the 4-tuple (i, s,s'. o). The two input strings,

represent a binary-valued representation of a primary input (i) and a sym

bolic representation of a present state (s). The two output strings represent

the corresponding symbolic representation of the next-state (s' = 6(i, s))

and a binary-valued representation of the primary outputs (o = \(i, s)).

Therefore a symbolic cover is equivalent to the formal mathematical

representation. Note that this representation can be generalized by letting i

and o describe symbolic inputs and outputs.

Example 4.4.1: Consider the finite State machine of Example 4.2.1:

The following is a symbolic implicant:

0 START stateJJ 00

showing that a "0" primary-input value maps state "START' into

"stateJT and asserts output 00. The symbolic cover is the collection

of the symbolic implicants representing the state transitions:

0 START . stateJ> 00
0 statej* stated 00
0 state_3 stated 00
0 state_£ stated 00
0 state_$ START 00
0 stated START 00
0 statej? stated 00

START state_£ 00
statejg stated 00
stated stated 00

stated stated 00
state_f> stated 00
stated state_£ 00
stated stated 00

138

Remark 4.4.1: An ASM chart can be easily transformed into a symbol

ic cover. In particular every path joining two state-boxes

corresponds to a symbolic implicant The symbolic implicant has the

s and s' entries as the labels of the boxes. The input string i is deter

mined by the condition-boxes along the path. The j-th entry in i is a

"1" or "0" if a condition-box with a "true" or "false" exit respectively

is placed along the path and corresponds to the j-th input qualifier.

Else the entry is a "•". The j-th entry in o is a "1" or "0" if the

corresponding output assertion is defined in any conditional-box

along the path, or in the terminating state-box. Else the entry is a

Remark 4.4.2: Hardware Description Language programs can be

transformed as well into a symbolic cover representation. For exam

ple, a symbolic implicant is denned for each of the assertions of the

conditional constructs of FTL2. The clauses of the conditional state

ments correspond to the i and s parts while the statements them-

139

selves correspond to the s' and o parts.

Note that a symbolic cover is a logic cover of a multiple-valued logic function

[SU72] [H0NG74], where each state takes a different logic level and is

represented by a character string. A symbolic implicant having n (m) pri

mary input (output) bits can be seen as a (n+l)-input, (m+l)-output

multiple-valued logic implicant.

Several notations are used to represent multiple-valued logic covers.

For example, the different logic levels can be represented by integer values :

0, 1, 2, • • • , p-1. This is an extension of the binary notation to a p-valued

representation.

The positional cube notation is used in the sequel [SU72]. A p-valued

logical variable is represented by a string of p binary symbols. Value r is

represented by a "1" in the r-f/i position, all others being "0". Note that the

positional cube notation allows to represent a set of values with one string.

The disjunction (multiple-valued logical OR) of several values is represented

by a string having "l"s in the corresponding positions. Therefore the "don't

care" value is represented by a string of "l"s and the empty value by a string

of "0"s.

The transformation of a symbolic cover into a multiple-valued cover with

positional cube notation is straight-forward, since the latter is itself a sym

bolic cover and the transformation involves only symbol translations. There

fore definitions and properties of multiple-valued logic covers carry over to

symbolic covers as well.

Example 4.4.2: The symbolic cover of Example 4.2.4 can be translated

140

into a multiple-valued positional-cube representation by associating a

value to each state. START is represented by 1000000, stated by

0100000. etc.

0 1000000 0000010 00
0 0100000 0000100 00
0 0010000 0000100 00
0 0001000 0000010 00
0 0000100 1000000 10
0 0000010 1000000 01
0 0000001 0000100 00

0000010 0100000 01
0000100 0100000 10
0001000 0000010 10

0000001 0000010 10

1000000 0001000 00
0100000 0010000 00
0010000 0000001 00

Finding a minimum multiple-valued cover is a computationally expensive

problem. Heuristic multiple-valued logic minimizers, such as MINI [H0NG74]

can be used.to compute a minimal (local minimum) cover. (Program MINI

[H0NG74] is used in general for binary-valued logic minimization; however it

supports multiple-valued minimization as well.) Alternatively the positional-

cube representation can be seen as a binary-valued encoding of a multiple-

valued function. This encoding is referred to as 1-hot coding , because each

value of the multiple-valued function corresponds to one and only one binary

value "1" (HIGH) in the coded representation. (See App. A for details.) By

using this representation, binary-valued minimizers, such as ESPRESS0-I1

[BRAY84], can be used to obtain minimal symbolic covers. Experimental

results have shown that ESPRESS0-II yields minimal (symbolic) covers that

are quite close to the minimum (symbolic) cover, for problems for which the

minimum cover can be determined.

141

Example 4.4.3: Consider the symbolic cover of Example 4.4.2. The re

lated minimal symbolic (multiple-valued) cover is the following:

0 0110001 0000100 00
0 1001000 0000010 00

1 0001001 0000010 10
0 0000010 1000000 01
1 0000100 0100000 10
0 0000100 1000000 10

1 1000000 0001000 00
1 0000010 0100000 01
1 0100000 0010000 00
1 0010000 0000001 00

Consider nowthe first symbolic implicant from the top:

0 0110001 0000100 00

This implicant shows that input "0" maps states "2", "3" and "7" into

next-Btate "5" and assert output "00". Asimilar condition is expressed

by the second and third implicants.

The example above shows that the effect of symbolic (multiple-valued) logic

minimization is to group together the states that are mapped by some input

into the same next-state and assert the same output. In other words, while

the original symbolic cover is a set of implicants:

i s 6(its) \(i,s)

where s represents a single state, the minimal multiple-valued cover may

contain symbolic implicants in which s represents a set of states. Each state

subset having more than one element and represented by a s string is

termed state group . A group set is a collection of state groups. Given a

state encoding and a state group, a group face (or simply face) is the smal

lest dimension subspace containing the codes of the states assigned to that

group (or equivalently the disjunction of the codes assigned to the states in

142

that group).

The goal of the state assignment technique presented here is to group

together the state codes in binary-valued logical Implicants in the same way

states are grouped in the minimal symbolic (multiple-valued) cover. In par

ticular, a state encoding is sought, such that each symbolic implicant can be

coded by one binary-valued implicant. For this assignment, there exist a

binary-valued cover of the FSM combinational component having as many

implicants as the minimal symbolic cover.

An encoding such that each group face contains all and only the codes of

the states included in the corresponding group satisfies the above require

ment. In fact, each coded implicant represents all and only the state-

transitions related to the corresponding symbolic implicant. For this reason,

a constrained encoding problem is considered:

Given a group set, find an encoding such that each group face does not

intersect the code assigned to any state not contained in the correspond

ing group.

In view of the previous considerations, any solution to the constrained coding

problem is a state assignment such that the coded Boolean cover has the

same cardinality of the minimal symbolic cover.

Example 4.4.4: Consider the minimized symbolic cover of Example

4.4.3. If the states are coded as follows:

START 100
Btate_£ 110

stateJ3 Oil

stated 000

state_£ 001
state_6 101

state_7 010

143

then the following Boolean cover specifies the FSM combinational

component:

0*0* 00100

0*00 10100

10*0 10110

0101 10001

1001 11010

0001 10010

1100 00000
1101 11001

1110 01100

1011 01000

The Boolean cover cardinality is the same as the minimal symbolic

cover cardinality.

Remark 4.4.3: It is important to note that most state assignment

technique are based on some grouping of the states. Hartmanis and

Stearns [STEA62] presented an approach based on partition pairs of

the state set. A partition pair (rr, if) is an ordered pair of partitions

such that any pair of states in the same block of n are mapped by any

input to states in the same block of rr'. When each block of if is a sin

gle state, Le. if = 0, the blocks of n are state groups as defined above.

Similarly Armstrong's approach [ARMS62a] lead to state grouping.

However both Hartmanis' and Armstrong's approach were inefficient

for large incompletely specified machines, because state grouping did

not take into account the primary-input don't care set.

144

For this reason, in a previous approach [DEMIB3f], symbolic impli

cants were considered pair-wise and the following rule was used to

determine a group: Let A = \iA, sA, s'A, oA\ and B = \iB. sB. s'B. oB\

be two symbolic implicants such that: iA2iB and oA?oB. Let S(A)be

the set of states which are mapped by any input representation i£iA

either into a next-state different from s'A or into an output represen

tation not covered by o^ or both. Then sA and sB share the same

group, while any state SqGS(A) cannot be in that group. The ra

tionale is the following: if the code of s'A s chosen to cover the code of

s'B. the two coded implicants can be merged. This approach pro

duced efficient state grouping, because it simulated better the

effects of logic minimization.

Symbolic minimization outperforms the other techniques in capturing the

group structure of a Finite State Machine. Suppose a minimum symbolic

cover is known and the related group set is determined. Then a solution to

the corresponding coding problem allowsto express each next-state function

by a minimum number of product-terms. Even if a minimum symbolic cover

is seldom found, experimental results have shown that the grouping related

to the minimal symbolic covers obtained by programs ESPRESSO-II and MINI

is very effective.

However there is still room to improve this technique. In the symbolic

cover, the components of the next-state function 6it i s 1, 2, • • • , Tiy have

disjoint on-sets. However, in the coded Boolean cover, some states codes

have a non-zero entry in the same position and therefore the components of

the next-state functions are not necessarily disjoint. Therefore the minimum

145

(minimal) Boolean cover of the FSM combinational component may require
fewer impUcants than the sum of the each minimum (minimal) cover related

to each next-state. In other words, state encoding transforms a minimal

symbolic cover Into a non-necessarily-minimal Boolean cover.

Example 4.4.5: Consider the coded cover of Example 4.4.2. Since the

code of stated is bitwise OR of the code of START and state_7, then

the transition stated -• state_g can berepresented bythe cover:

•001 10010
10*1 01000

that represents at the same time the transitions stated -» START and

statej? «♦ state.?.

The following is a minimal Boolean cover:

0*0* 10100
10*0 10110
•101 10001
•001 10010
1*01 01000
1110 01100
10*1 01000

In the present formulation, symbolic minimization groups present-states
only. Therefore the assignment optimizes the choice of present states, and

the implications of the corresponding next-state encoding is neglected.
State assignment techniques that take into account next-states encoding are
still under investigation.

Remark 4.4.4: 1-hot encoding of the Finite State Machine combina

tional component is widely used in industrial design. The reason is

that in general no technique capable of encoding FSM with large
state sets is available.

The penalty of using 1-hot coding is related to the number of PLA

146

columns required, that grows linearly with the state set cardinality.

Note that the minimal number of PLA columns required grows with

the logarithm of the state set cardinality.

Moreover 1-hot coding does not even minimize the number of PLA

rows required, because the components of the next-state function

representation have disjoint on-sets.

Remark 4.4.5: In general symbolic minimization is affected by the

machine primary inputs and/or outputs. If a minimal PLA implemen

tation is sought, primary inputs (outputs) can be considered as

machine input (output) states and coded as well as the internal

states.

However interfacing a FSM to other circuit building blocks often lim

its the possibility of finding an optimal coding for primary inputs

and/or outputs.

4.5 CONSTRAINED STATE ENCODING

Symbolic minimization is used to define a constrained encoding prob

lem, whose solutions are the state assignments that allow to implement the

FSM combinational component with at most as many product terms as the

minimal symbolic cover cardinality. According to the definitions given in

Section 4.4. the constrained encoding problem consists of finding a state

assignment such that each group face does not intersect the code assigned

to any state not contained in the corresponding group. An optimal state

assignment (as defined in Section 4.3) is a minimal code-length solution to

147

the constrained encoding problem.

The geometric interpretation of the optimal encoding problem is finding

the minimal dimension Boolean space in which group faces are subspaces

and state encodings lay only in those subspaces corresponding to groups con

taining the states themselves. State assignments are restricted here to one-

to-one mappings between the state set and a subset of the vertices of the

Boolean hypercube. This restriction is motivated by the objective of finding a

solution to the constrained encoding problem in the Boolean space of

minimal dimension.

Some definitions are introduced now to allow a formal statement of the

problem. The coding problem is studied using matrix notation. Let n. be the

cardinality of the state set cardinality, fij the cardinality of the group set

and n* the code length.

To be consistent with the positional-cube notation, state groups are

represented by a Boolean matrix and in particular by the subset of the

columns of the minimal multiple-valued cover corresponding to the present-

states.

The constraintmatrix A is a matrix: A C\0. i jn|Xn*

/4 =

*i.
oa.

representing fif state groups. State j belongs to group i if ay = 1.

A row of the constraint matrix is said to be a meet if it represents the inter

section of two or more state groups. A row of the constraint matrix is said to

be prime if it is not a meet.

Example 4.5.1: The following constraint matrix is derived from the

=ltt.ilo*l •••|a^j

148

minimal symbolic cover of Example 4.4.3 and represent the state

groups:

{ stateJJ , state_3 , stated j . | START . state_4 j and (stated ,

state_7)•

A =
0110001
1001000
000100 lj

All the rows of A are prime. If row a = 0001000 is appended to A. then

a is a meet because it represents { state_£), which is the intersec

tion between the second and the third group.

The state code matrix 5 is a matrix S e\0. l}***1*

S =

*i-
Sg»

whose rows are state codes. The state code matrix is the unknown of the

problem.

Definition 4.5.1: Let a e (0, lj and b e {0. 1. • j. The selection of b

according to a is:

a*
6 if a = l
0 if a = 0

Selection can be extended to two dimensional vectors and is similar to

matrix multiplication.

Definition 4.5.2: Let A € {0, 1|*K« and B € \0, 1, •J«*r. Then

A*B = C = leal*™-

149

where:

ctf- V «*-, a** bki

Selection is useful to determine group faces corresponding to a group set
and a given coding.

The face matrix F e {0, 1, *. a^*1*

/* =

/i.

is the matrix whose rows are the group faces. Note that the empty group

corresponds to the empty face 0. The face matrix is the selection of 5

according to .4:

F = A*S

Example 45.2: Consider the constraint matrix of Example 4.5.1 and

the state assignment represented by:

Then the face matrix is:

S =

100
110
[Oil
000
001
101

eoioj

F = A.S =
•1*
•00
0*0.

150

STATE 2

START

STATE 3

STATE 4
STATE 5

Fig. 4.5.1 Representation of the faces on the Boolean cube.

A solution to the constrained coding problem satisfies the constraint rela

tion:

a*«st. A F=

E« • s». A /1.
sa-*i. A /a. fil

i 1

I* J
s* Vi = l, 2. . TIS

where Oy is the complement of fity. In particular 5n«St. is a matrix whose rows

are the encoding of state i, if state i does not belong to the corresponding

group, else containing the empty value. Therefore the constraint relation is

satisfied if and only if 5 is a solution of the constrained state encoding prob

lem.

151

Example 4.5.3: The state matrix of Example 4.5.2 satisfies the con

straint relation. However if the 6-th row is changed to 111, the con

straint relation is no more satisfied, because the code of state_£ in

tersects the first face, or equivalently:

««**• = •[1U] =
111
111
111

A F =
111

0 J
*$

Remark 4.5.1: An implementable state assignment is such that codes

are disjoint from one another. This requirement can be embedded in

the constraint relation when n, groups, consisting of one different

state each, are added to the problem. In this case, n, faces

correspond to the ft, state codes, and any coding satisfying the con

straint relation is such that codes are disjoint from one another.

The optimal constrained encoding problem can be stated as follows:

Find a state code matrix S with minimal number of columns that

satisfies the constraint relation.

It is important to point out that there always exists a solution to this prob

lem.

Theorem 4.5.1: Given any constraint matrix A, 3 a. state code matrix

S € (0, lj""*1* satisfying the constraint relation. In particular the

identity matrix satisfies the constraint relation.

152

Proof:

Let F = A»S . Without loss of generality let us assume that no row of

F represents an empty group. Then f^ =0 when Oy =0 V

i = 1, 2, ••-,*« and V; =l, 2, • • ,n,. Since a^^ =1 Vo^ =0

Vi s l, 2, • • • , fij and Y; = 1, 2, • • • , n,, the constraint relation is

satisfied.

Theorem 4.5.1 shows that 1-hot coding satisfies any constraint relation. How

ever it is relevant to determine shorter codes that satisfy the constraint

relation as well. The constraint relation is invariant under a set of transfor

mations on matrices A and 5. These transformations allow to construct S as

will be shown in Section 4.6. For these reasons, addition (deletion) of rows

and/or columns to (from) matrices A and S are investigated. This

corresponds to modify parameters n% , n* and n, of the problem. The addi

tion (deletion) of a row in matrix A is considered first.

Proposition 4.5.1: If S satisfies the constraint relation for a given A,

then 5 satisfies the constraint relation for A' when A' is obtained

from A by dropping a row.

Let A' be a constraint matrix obtained from A by adding a row. Adding a row

corresponds to add a set of constraints to the state jodes and in general a

state code matrix 5 does not satisfy the constraint relation for an aug

mented constraint matrix A.

Example 4.5.4:
•

00

01

10
. Ifi4' =

1100

1011

11
> 1

Let: A =[1100] and 5 = 10 . If A' = 101, , then 5 does not satisfy

153

the constraint relation. In fact:

A'.S =

and

«*«3.= [l[[0l] = 01
A A'*S = #$

However note that given any constraint matrix A and a state code matrix S

satisfying the constraint relation. S satisfies the constraint relation for

A = Ia I. where the rows of Am represent all the state group intersections,

Le the rows of Am are all the meets of A. This is proven by:

-n

Lemma 4.5.1: If 5 satisfies the constraint relation for a given A, then

S' satisfies the constraint relation for A' = L/* , where o^ is a meet

of A'.

Proof:

Consider matrix F' = A'^S =

Suppose by contradiction that 3 a state, say k . such that:

oij-5 =jcL-sl

fc*fc. A A'*S * *

Since &*•«*. A A*S = *, then 2****. A f'm*$. Let now \aj.] be

the set of rows of A corresponding to the groups whose intersection is

represented by a^ Then 3a*. € |a7.{ such that S^*. A f'u*$ and

then

5***. A AS * $. Hence we have a contradiction.

154

The problem ofmodifying the code lengthis considered now.

Proposition 4.5.2: If S satisfies the constraint relation for a given A,

then S* satisfies the constraint relation when S' is obtained from 5

by dropping: i) any column equal to some other column; ii) any

column with all M0" ("1") entries.

Lemma4.5.2: If5 satisfies the constraint relation for a given A, then

S' satisfies the constraint relation when S* is obtained from S by

column permutation or complementation.

Proof:

i) column permutation:

Let P e {0. 11"**"9 be a permutation matrix. Then

alt-Si. A AS = $

=> dU^P A ASP = * Vi = l, 2, . • . , n,

=> «*«'<. A AS' = * Vi = l. 2, • • • , n,

ii) column complementation:

Suppose by contradiction that by complementing a column, say j,

the constraint relation is not satisfied. Then 3i such that

3*«i. A AS' * $ and in particular Bl such that 0^*'+ A f\.*$.

Therefore: $< = 1 and

Since:

s'v A /•„ # 0

« A /^ #0 V = l, 2. • • .n* ; **;

155

• if /tf = *
J\i = 1 if /(, = 0

0 if fij = 1

and f'tk = fue V* = l, 2, • • • , n,; j/A: then si# A /j.*0 and we have

a contradiction.

Corollary 4.5.1: If S satisfies the constraint relation for a given A,

then S' satisfies the constraint relation when 5' is obtained from 5

by dropping any column that is the complement of some other

column.

Lemma 4.5.3: If 5 satisfies the constraint relation for a given A, then

V7 € (0. l}"•*"» and Vn, , 5* = [S\ T] satisfies the constraint rela

tion.

Proof:

Let s'<,= [ffi.|£tJ Vi s l, 2, • • • , n, and suppose by contradiction

that Sib such that:

**«'*- A AS' * $

Then:

[ff*«fc.|a*.ffc.] A [AS\A-T] * *

=> a*«sfc. A AS **

156

and we have a contradiction.

The problem of adding (deleting) an element to (from) the state set is con

sidered now. Adding (deleting) a state corresponds to adding (deleting) a

row to the state code matrix 5 and a column to the constraint matrix A.

Proposition 4.5.a Let S be a state code matrix satisfying the con

straint relation for a given A. Let A' be the constraint matrix ob

tained from A by dropping a column and 5' be a reduced state code

matrix obtained from 5 by dropping the corresponding row. Then S'

satisfies the constraint relation for A'.

Adding an element to the state set is relevant in constructing a state code

matrix: given a set of state codes represented by 5 that satisfies the con

straint relation for a given A, let us add a new state to the state set and a

new column vector a to A, i.e the new constraint matrix is A' = [A\a]. The

non-zero entries in column o are related to the groups to which the new

state belongs. The problem consists of determining an augmented state

code matrix S\ that satisfies the augmented constraint relation. The most

desirable situation is to obtain 5* =£J. where ais the new state code. Unfor

tunately it is not always possible to determine such an 5*. However it is in

general possible to determine a binary matrix 7\ such that 5' =r ' *]
satisfies the augmented constraint relations.

Theorem 4.5.2: Let 5 satisfy the constraint relation for a given A.

Then 3amatrix S* =j5]7]; T€iO)"" *that satisfies the constraint
relation for A' = [A ja] if one of the following conditions is met:

157

i) The new state does not belong to any state group, i.e. a is a column

of "0"s;

ii) No state belongs to any group that includes the new state, i.e.

a* = 1 => a*, is a row of "0"s;

lii) The groups containing the new state have a non-empty intersec

tion, i.e. Bj s.t. Ojt = 1 Vfc s.t. a* = 1 and a*, is not a row of

M0Ms.

Proof:

The new face matrix is:

F' =A'S' =Mar]5]7] = [AS\A.T] V cnt
Let us consider the three following cases:

i) a is a column of "0"s

Let C be the set of coordinates of length n^. Let a = [c 11]; c e C.

There are 2^ choices for a, and a is disjoint from any other code.

Since cw is a matrix of empty values and from Lemma 4.5.3:

*4««i. A F s $ Vi = l, 2, • • • , n,, we need only verify that:

5«r A [AS\A*T] = *

Let us consider the right-most column of 5-a and matrix A"T . By con

struction, the right-most column of 5«cr has only "1" entries and A*T

has no "1" entry. Therefore the constraint relation is satisfied.

ii) Ofc = l=>Ofc. is a row of "0"s

Let C be the set of coordinates of length n*. Let a = [c 11]; c eC.

Hence F' » [F\<p] = [AS\A*T] V omt is such that <pk = 1 and

py = 0 Vj s 1, 2, • • • , n,;j*fc. Therefore:

156

a^sit A AS = $ V i=l, 2, • . n,

=> «'<«'* Ai4'.5 = $ Vi = i,2, -.n,

Let us consider now the right-most column, f, of 5«7.

Since V* - *and V; = 1 V; s i, 2. • • • , n,; jVA: then a* A /" = $.

iii) 3j s.t. Ojt = 1 V* s.f. a* = 1 and at. is not a row of "0"s.

l«t C be the set of coordinates covered by all the faces ft. for each

face k s.t. a* = 1 and a*, is not a row of M0"s. Note that C is non

empty. Let a = [c 11]; c eC.

Hence F' b [/>] = [^SM-r] V oxx is such that:

• Vfc s.f. a* s 1 and Ot.is nof a row of Os
9k - 1 Vfc s.f. a* = 1 and a^js a row of Os

0 Vfc s.f. a* a 0

Therefore:

3**i. A AS = * V i=l, 2, • • • , n,

=> fi'4«V A AS = $ Vi = 1,2, • • • . n,

Let us consider now the right-most column, ^, of 5-ct.

Since ^* = 0 V* s.f. a* = 1 tyfc = 1 VJfe s.t. ak = 0)

5«x A .P = $. This completes the proof.

then

Remark 4.5.2: In some cases it is not necessary to increase the code-

length when adding a state to the state set. Consider for example:

As

If:

110
101
111,

5 =
00
01

Uo,

fnoo]f1:= 1(
U:

159

Then 35* =]~J; a=11, that satisfies the augmented constraint rela

tion.

Let us consider now the general case in which no assumption is made on the

entries in column a.

Theorem 4.5.3: Let np be the number of prime rows in A' having a

non-zero entry in column a. If 5 satisfies the constraint relation for

agiven A. then BS' =[5|£|7]; Re(0, if1'*"*; Te{of**1 that
satisfies the constraint relation for A' = [A |a].

-ft-oo/:

Without loss of generality, let us permute the rows of A', so that

PA' = A**
A™

a"
a®
a®

where P is a permutation matrix, the entries of a^ and a^ (a^)

are all"l" ("0") and the rows of A{1) are prime.

Let:* = AW.

Let C be the set of codes of length n*. Let a = [c |x]; ceC and

x € {lj1***1.

We show that the constraint relation is satisfied for the three subma-

trices A{1\ A™ and A®\ Consider i4(,) first Let:

jrtMilWlaWjS' = [AMS\AM.R\AM.T] V a* =

160

Note that the diagonal elements of A^R = A{l)*A^1)T are all "1" and

therefore tp* a 1; Vi a i, 2. • • • , «p.

Suppose by contradiction that 3 a state , k, and a row, j, of F*l\ such

that:

£'*** A /V. *0

Then o^. a o and tk. A ^-.9^0 a> tki a i . Since a,* a o we have a

contradiction.

Consider now the constraint submatrix A&\ Since the rows of A^ are

meets of A^\ it follows from Lemma 4.5.1 that:

fff^i. A A&S' a $ vi = l, 2. • •• , n.

Consider last the constraint submatrix A^ and the corresponding

face submatrix /**> a [^W.51 i4{3,.# |X^r], From Lemma 4.5.3:

*[a)*Si. Ai4(a)-5' a $ Vi a i, 2, • •• , n.

Moreover i4(3J«7* is a column of "0" entries. Since the trailing bit of a is

"1", then &a A F<3> a $. This completes the proof.

4.6 AN ALGORITHM FOR OPTIMAL STATE ASSIGNMENT

Optimal constrained coding is a complex combinatorial optimization

problem. To date, it is not known whether an optimal solution can be com

puted by an non-enumerative procedure. A heuristic algorithm is presented

here, that constructs a state assignment satisfying the constraint relation.

Experimental results show that the length of the encoding generated by the

algorithm is reasonably short. However it is not known whether the com-

161

puted solution has shortest possible code length

The coding algorithm constructs the state code matrix 5 by an iterative

procedure. At each step a larger set of states is considered. The theoretical

results proven in Section 4.5 show that it is possible to construct a state

matrix 5 satisfying the constraint relation for a given constraint matrix A.

However such a procedure would be ineffective, if the code length grows at

each step. Therefore the heuristics of the algorithm take advantage of the

possibility of ordering the states and selecting the state codes, to keep the

code-length short.

The coding algorithm constructs the state code matrix starting from an

initial seed matrix 5 a [0]. An initial state is selected and assigned code "0".

The constraint relation is always satisfied for a state set consisting of one ele

ment only. Thereafter states are selected one at a time and the state code

matrix grows in a way that the constraint relation restricted to the coded

states is satisfied.

The input to the algorithm is the constraint matrix A and the set of

states U. The output is the state code matrix S, having rt« columns. The

algorithm is described in Pidgin C.

162

CODING ALGORITHM

u a inselect(U);

C/= £/-{u);

A' aa^;

5 = [0];

n» = l;

while (C/*0){

u a state_select(U);

do)

C a candidates(5,i4');

a a code_select(C);

if(a is 0){

tit = nj + 1;

5 a adjoin(5);

i

\

while (a is 0);

5-W.

Procedure inselect(£7) and state_select(U) sort the states according to a

heuristic strategy. The constraint matrix A' (face matrix F') represents a

permutation of the columns of A (F') corresponding to the coded states in

163

the given order.

Procedure candidates(S,A') returns the set of codes of length n* that

can be assigned to state u, while satisfying the constraint relation. Let

F'(c) denote the face matrix obtained by assigning code c to state u. By

definition:

F'(c) a F' V o^c

The set of candidate codes C = {c j for state u must satisfy the following

requirements:

i) Code c must not intersect any face corresponding to a group not

including state ut i.e. a'^c A F'(c) a $.

ii) The faces (rows of P(c)) must not intersect the code of any state not

included in the corresponding group, i.e. a'^im A F'(c) a $ for

each coded state i;

The candidate set C is computed in three steps.

first C is initialized to the complement of the set of the assigned state

codes, represented by 5, because no candidate can be equal to an already

assigned code: C a jo, l)"1 §S. Complementation is done using the disjoint

sharp operation, because computationally efficient and leading to a compact

representation of C. Note that other techniques, such as unate complemen

tation [BRAY84], might be efficiently used.

Then all the faces corresponding to state groups not containing u are

deleted from C. to satisfy requirement i). Since these faces are independent

ofc.theaCaC #f'JmVjs.t. a'^ a o. where f's. a f'^c) is a row of the

face matrix F\ The disjoint sharp operation is used again at this step. Now

the candidate set C is split into minterms (by procedure split(C)) because

state assignment is restricted to one-dimensional codes.

164

Eventually a new face matrix F'(c) a F' V a'^v? is computed for each ele

ment of C. An element c is dropped from the candidate set C, if a face of

F'(c) intersects the code of a state not belonging to the corresponding

group. This step is performed last, because computationally expensive.

The remaining elements of C satisfy the constraint relation. Note that candi-

dates(S,A') may return an empty set 0, when no code of length n* satisfy

the constraint relation.

eandidates(S, A')

C=|0, lj"* #5;

for(jal;j-S f!t;jaj+j;i

if (o^ isO)C= C # f'jj

i

C a Split(C);

foreach (c in C) j

/"(c)sf V a'^-c;

if(a**i. A F'(c)*$;c=C-ic),-

i

return (C);

The code_seiect routine returns an element of C according to a heuristic cri

terion. If C is empty, then code_select(0) returns 0 and the dimension of

the code space, n*, has to be increased.

The rationale of the choice of a code a is the following. Codes should be

selected in a way that the final code length n^ is as short as possible. There

fore it is desirable to have a non-empty candidate set C for each selected

165

state u. The candidate set C does not contain the vertices covered by some

faces; in particular \f'j. V jsuch that a'JU = Oj. It is therefore desirable

.that all the faces cover the fewest possible number of vertices of the n*-

dimensional Boolean space. Let n be the number of coded states at the

current step of the algorithm and m(c) be the total number of vertices

covered by at least one face. Then m(c)-n vertices are not assigned to

state codes, but still occupy a part of the nb dimensional space that cannot

be assigned to some other state. Therefore a is chosen as: a a arg min m(c)

Procedure adjoin(5) is invoked when the candidate set is empty, and

the code space dimension needs to be increased. Let R be defined as in Sec

tion 4.5: R a A^T, where A'k^ is the subset of prime rows of A having a non

zero entry in column o^. Procedure adjoin(5) returns:

[Si?]; T a {op at the first time procedure adjoin is invoked for a

given selected state u or when the right-most columns of 5 are the

columns of R\

[S\r] in the other cases. Column vector r is the column of R with

minimal "l"-count not already adjoined to 5 ; 5 is obtained by deleting

the right-most column of S at the second time procedure adjoin(5) is

invoked for a given selected state: else S = S.

adjoin(S)

tf (called for the first time for a given u) return (S|T);

else{

tf (calledfor the second time for a given u)

delete right-most column of S;

R' = set of the columns of R not already adjoined to S;

tf (R* is not 0) \

r a column of R' with minimal 1-count;

return ([S|r]);

I

else return ([S|T]);

temma 4.6.1: The candidate set C in not empty after a finite number

of iterations through procedure adjoin(S).

Proof:

Let rip be the number of prime rows in A' having a nonzero entry in

column o*j. After Tip+ 2 iterations, through procedure adjoin the

state code matrix is [S| j?| 7*]. where R is obtained from R by per
muting its columns. By Theorem 4.5.3 the candidate set is not emp

ty.

166

167

The rationale of procedure adjoin(S) is the following. The code Bpace

dimension, n*. is increased by one. By Lemma 4.6.1 a code a is found after a

finite number of iterations through adjoin (5). However it is desirable that

a code a is found while adding the fewest columns to 5, i.e. by the minimum

increase of the code space dimension. For this reason procedure adjoin(5)

adds to 5 a column at a time.

Procedure adjoin(S) returns 5 a [s \ T] the first time it is invoked. In

this case, the size of the faces not related to state u is not increased. More

over a state code a is always found after one iteration through procedure

adjoin(S), when one of the conditions of Theorem 4.5.2 is met The strategy

changes if the candidate set is still empty after one iteration through pro

cedure adjoin(5). The columns of R are adjoined to 5 one at a time. This

corresponds to reshaping the prime faces related to state u, i.e. the faces

corresponding to the prime rows in A having a non-zero entry in column o^.

Reshaping consists of adding one dimension to the state code space: the new

coordinate of the state codes in a prime face is set to "1", while is set to "0"

for the remaining state codes. Reshaping is performed considering one

prime face at a time, and by considering first the faces involving fewest

states. Since in general states are related to many faces, reshaping a prime

face leads to a size increase of some other face. Therefore the heuristic

strategy tries to increase the least the face dimensions. If a state code a is

not found after adjoining to 5 all the columns of R, then vector T is adjoined

to 5.

Example 4.6.1: Let:

.-104'a
m D - uj

5 a-fo!

Note that 5 satisfies the constraint relation. Let a« a [lj. Since

166

R* a l and all one dimensional codes have been assigned, the candi

date set is empty. Then procedure adjoin returns [51 T] a Pgl. The

candidate set is still empty, because l?l; c e {01,11} does not satisfy

the constrain relation for [j4|a„]. Therefore procedure adjoin is in

voked asecond time and returns [S\r] a Plj. The candidate set is

now Ca (00, 11 j, because Kj; c G(OO.llj satisfies the constraint re

lation for [i4|a«]. Since m(00) = m(ll) = 3. either candidate can be

chosen for state u.

State ordering is crucial to obtain a short coding. Procedures inselect(U)

and state_select(U) return the initial and current state to be coded respec

tively. The constraint matrix A is assumed to be connected: i.e. the rows of

A cannot be partitioned into two or more subsets having nonzero entries only

in mutually disjoint column subsets.

Remark 4.6.1: If matrix A is not connected, it can be rearranged into

a block diagonal matrix, whose blocks are connected matrices. Then

state ordering can be achieved by considering each block at a time.

The objective of state ordering is the following. States sharing the same

group should have codes whose distance is as short as possible, in order to

keep the size of the corresponding face small and eventually the code length

short. This leads to a very intricated problem, because states belong to

different state groups. Therefore it is important to consider all the intersec

tions among state groups. Moreover the states belonging to a state group

169

intersection should be coded first. In this way matrix A' satisfies the

assumptions of Theorem 4.5.2 and a code a satisfying the constraint relation

can be found for each state u by increasing at most by one the state code

space dimension.

•kiFor this reason matrix A a]/* is considered as far as state selection is

concerned. The rows of Am, correspond to all the state group intersections;

i.e. the rows of 4n are all meets of A. The definition of state groups is

extended to state groups intersections for the remaining part of this Sec

tion. A state group is said to be completely coded, if all the elements of the

group are coded.

At each iteration of the algorithm, the state constraint relation is satisfied

for A', where A' is obtained from A by considering only the columns related

to coded states.

The rows of A' represent:

i) state groups (completely coded)

ii) proper subsets of state groups

Let ti* be the code space dimension at the current iteration of the algorithm.

The faces corresponding to the rows of type i) are group faces. The first n*

coordinates of these faces cannot change, because all the elements of the

groups have been coded. The faces corresponding to the rows of type ii) may

change when the other states in the group are coded.

The state selection strategy is based on the following criterion: order the

states so that the largest number of state groups is completely coded at

each step of the algorithm. As a result the states in group intersections are

coded first

170

For this reason, let A" be the matrix obtained from A by deleting the

columns corresponding to the coded states. Then all the rows in A"

corresponding to the rows of type i) have "0" entries only, because they are

related to groups of coded states. The nonzero elements in each row of A"

correspond to the states that should be selected to complete the coding of

the corresponding state group.

Therefore procedure state_select(U) finds first the row in A" having

minimal (excluding zero) "1"-count row, Le. the minimal state subset that

has to be coded to complete a group. The selection of the state among the

elements of the subset is based on the following criterion: code the state with

maximum 'T'-count in the corresponding column of A". This choice minim

izes the nonzero elements of A" at the next iteration of the algorithm, Le.

the number of elements in state groups that are not completely coded.

A similar strategy is used by procedure inselect(U), that returns the

initial state to be coded. Procedure inseiect(U) returns the state

corresponding to the column of A a A" with maximum "1"-count. This

corresponds again to the state that minimizes the number of elements in the

state groups that are not completely coded at the next iteration of the algo

rithm.

Example 4.6.2: Consider the constraint matrix of Example 4.5.1 relat

ed to the FSM described in Example 4.2.1. Note that two columns

have only "0" entries: i.e. the corresponding states (state_J> and

state_$) do not belong to any state group.

Consider the reduced matrix:

i4a
01101
10010
POOH,

171

where the columns correspond to START, state.?, statej?, stated

and state_7 respectively. Then:

OllOl'
_ 10010
A a 00011

00010
D0001

ITERATION 1

Procedure inselect returns stated. Hence stated is coded by "0".

Then:

i4'a S a [o] and

satisfy the constraint relation.

ITERATION 2

Now.

A"'

0111
1000
0001
0000
pooij

/"a

The row selected is the second and the state selected is START. The

code candidate set is C = { 1 j . Then:

>i'a

bo]
11
10
10
PP

satisfy the constraint relation.

ITERATION 3

Now.

•fl and F' a

111
000

3" a 001
000
P01J

The row selected is the third and the state selected is state_7. The

candidate set is empty. Therefore procedure adjoin returns:

c_ 00
S " lioj

The candidate set is now Ca \ 01,11 J. Then:

A' a

001
110
101
100
P01J

5a
00
10

101J

satisfy the constraint relation.

ITERATION 4

Now:

A" a

11
00
00
00
P0J

and F'a

01
•0
0»
00
PU

172

The selected row is the first. The next states to be coded are state_g

and stateJ. The candidate set is: C a \ H (. Then:

i4'a

0011
1100
1010
1000

IP010J

5a

00
10
01
11J

and F'a

•1
•0
0»
00

01

satisfy the constraint relation.

ITERATION 5

StateJJ is selected. Since the candidate set is empty, procedure ad

join returns:

5a

000
100
010
II10,

Now C a {oil, 001. 101. Ill J. Then:

i4'a

00111
11000
10100
10000

looiooj

5a

000
100
010
110
P11J

and F' =

•1*
•00
0*0
000
010,

173

satisfy the constraint relation.

ITERATIONS 6 and 7

State_$ and state_7 can be assigned to any code not covered by any

face. Hence Ca j 001, 101 j. Stated is coded by 001 and stateJJ by

101.

Theorem 4.6.1: The coding algorithm terminates in a finite number of

steps and constructs a state code matrix satisfying the constraint re

lation.

Proof

The coding algorithm iterates n, times through the external while

loop. For every selected state u the algorithm loops through the

internal do-while loop until a valid code o is found: i.e. vl satisfies the

constraint relation for matrix A'. By Lemma 4.6.1 the number of

iterations through the internal d&while loop is finite. Therefore the

algorithm terminates in a finite number of steps.

Since every state-code a is selected so that g] satisfies the con
straint relation for matrix A\ eventually matrix 5 satisfies the con

straint relation for matrix A.

174

4.7. KISS

KISS is a computer program for state assignment of Finite State

Machines. The FSM description is given as input to the program in the form

of symbolic cover. Primary inputs (outputs) can be described by symbolic

strings and coded as well as the internal states. Kiss generates an output file

containing a minimal Boolean cover of the FSM combinational component.

Information about state coding is provided on request by the user. The KISS

output file can be processed by a topological compaction program, such as

PLEASURE or SMILE, and eventually by a silicon assembler which generates

the mask layout of a PLAwith clocked feedback registers (Fig. 4.5.2) accord

ing to a given technology.

Kiss performs the following tasks, first a symbolic cover is read and a

1-hot coded representation of the FSM combinational component is written

to a temporary file. The dont care set related to the 1-hot representation

(see App. A) is generated and appended to the temporary file. Second a two-

level binary-valued logic minimizer is invoked to minimize the cover; i.e. to

perform the equivalent operation of a symbolic minimization. Then the

minimized representation is used to define a constrained coding problem and

the coding algorithm constructs a state code matrix. Eventually the coded

states and state groups are replaced into the minimal symbolic cover.

Some Kiss output files are reported in App. D. For example, consider

the FSM described by a symbolic cover in Example 4.3.1. The coding gen

erated by KISS and the related minimal Boolean cover are reported in Fig

4.7.1 and 4.7.2 respectively.

STATE CODES

state a _§TART_ label a l code a HO
state a stateJJ label a 2 code a 100
state a statejj} label a 3 code =101
state a state_4 label a 4 code a 010
state a state_5 label a 5 code =111
state a stateJJ label a 6 code a oil
state a state_7 label a 7 code a 000

Fig. 4.7.1 State assignments

0*0* 10100
10*0 10110

•101 10001
•001 10010

1*01 01000
1110 01100
10*1 01000

Fig. 4.7.1 Minimal Boolean cover

175

Program KISS is coded in ratfor and consists of about 2000 lines of

code. Intermediate code in fortranll is available. KISS runs in a VAX-UNIX^

environment, but is easily transportable to other machines.

176

4.8. EXPERIMENTAL RESULTS

KISS has been tested on a set of industrial FSMs. Some results are

reported in Table 6.1 along with the execution times in seconds.

Note that the logic minimizer invoked by KISS performs a key role to

obtain a good coding. If the minimized symbolic cover is far from the

minimum one, the coded binary-valued cover contains redundant product-

terms. Moreover a partially minimized symbolic cover corresponds to a par

tial information about state groups and eventually to a coding close to a

binary enumeration of the states.

KISS has been tested in connection with minimizers POP, MINI and

ESPRESSO-II. Experimental results have shown that ESPRESSO-II outper

forms the other logic minimizers and enables KISS to obtain codings leading

to the minimal-area PLA implementing the FSM combinational component.

Table 6.2 compares the assignments generated by KISS to those

obtained using a previous approach [DEMI63f], 1-hot coding and a random

assignment of minimal length. Table 6.3 compares the area estimates c2X7^

of the PLA segment depending on the state representation.

LEGEND

Tit = number of inputs

fig a number of states

fio a number of outputs

cx a symbolic cover cardinality

c2 a minimal Boolean cover cardinality

fit a number of bits

177

Parameters of some Finite State Machines coded by KISS

Logic minimizer: ESPRESSO-H

FSM «t «. n» Cl c2 n0 time

FSM1 4 5 1 20 9 3 4

FSM 2 8 7 5 56 21 5 31

FSM 3 8 4 5 32 12 4 10

FSM 4 4 27 3 108 29 9 748

FSM 5 4 8 3 32 16 4 11

FSM 6 2 7 2 14 7 3 4

FSM 7 2 15 3 30 17 5 26

TABLE 4.1

178

Comparison of state assignments using different techniques

KISS SAP' 1-hot minimal n+

FSM c2 *6 Cg Tie, c2 Tlo cz Tit,

FSMl

FSM 2

FSM 3

FSM 4

FSM 5

FSM 6

FSM 7

9

21

12

29

16

7

17

3

5

4

9

4

3

5

9

33

18

80

25

9

26

3

6

2

22

5

3

14

13

24

16

52

18

10

23

5

7

4

27

8

7

15

13

44

24

87

26

8

23

3

3

2

5

3

3

4

TABLE 4.2

KISS SAP0 1-hot minimal Tig

FSM 1 27 27 65 39

FSM 2 105 198 168 132

FSM 3 48 36 64 48

FSM 4 261 1760 1404 435

FSM5 64 125 144 78

FSM6 21 27 70 24

FSM 7 85 312 345 92

TABLE 4.3

• SAP (State Assignment Program) implemented a previous technique

[DEMI83f].

CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

179

This dissertation has addressed the automated synthesis and optimiza

tion of PLA-based systems. It is shown how combinational and sequential

functions can be effectively implemented by means of PLAs and PLA-based

FSMs respectively. In particular three major contributions have been

presented:

i) An innovative PLA folding method that allows to compact the array

area while ensuring effective routing of the folded array.

ii) A new approach to PLA topological partitioning based on a graph

interpretation of the problem.

iii) A state assignment technique that optimizes the size of the PLA

implementing the FSM combinational component.

The above problems have been studied using theoretical formulations. The

related techniques have been implemented on three computer programs:

PLEASURE. SMILE and KISS. The programs are a part of the U.C. Berkeley

VLSI design system and have been used effectively in chip design by several

industries. Experimental results have shown their effectiveness in designing

macro-cells of complex electronic systems.

There are still some open problems related to the optimal automated

synthesis of PLA-based systems. Future work in the area is listed:

1B0

i) Design of a global software package for the automated optimal design

of PLA-based systems, implementing all the transformations among

representations at different levels of abstraction. Such an automated

design system is very complex, because a complete design of PLA-based

systems involves multiple-choice decisions. For example, PLA topologi

cal design can involve folding or partitioning, or a combination of both.

Therefore it will be interesting to explore the use of knowledge-based

systems in this perspective.

ii) Automated translation of HDL descriptions into symbolic cover and

the functional minimization of a FSM. The theoretical aspect of the

state minimization problem was addressed by [GRASS75] and others, but

no computer program has shown to be effective to achieve functional

minimization of large sequential functions.

iii) The present state assignment algorithm determines the class of

present-state encodings that minimizes the number of PLA rows and

selects one of minimal length. Two directions can be explored to

attempt a solution to the optimum state assignment problem. First

investigate the relations between next-state encoding and minimality of

the PLA cover. Second study an enhanced state assignment technique

that achieves minimal PLA area implementation exploiting the trade-offs

between code-length (related to PLA column cardinality) and the cardi

nality of the minimal PLAcover (PLArows).

iv) Memory element assignment techniques for FSMs. Curtis addressed

this problem in relation with reduced dependency criteria for state

assignment [CURT69]. However a unified theory of state and memory

assignment to achieve minimal PLA area implementation of the FSM

181

combinational component has not yet been presented.

v) Better techniques for the assembly of the symbolic layout of a PLA-

based FSM from a symbolic matrix with parametrized design rules and

flexible structures.

vi) Exploring the combination of two or more transformations for

optimal design. For example, study the interaction between logic

minimization (or state assignment) and topological compaction tech

niques.

vii) Eventually explore alternative structures - other than PLAs - to

implement combinational functions. Weinberger arrays and gate

matrices have been effectively used, as well as PLAs, in VLSI design. The

choice of a structure is still left to the designer's experience. However

formal criteria to decide the optimal implementation should be investi

gated.

182

REFERENCES

[AK074] A.V.Aho J.E.Hopcroft and J.D.UUman . "The Design and Analysis of

Computer Algorithms", Addison Wesley. 1974.

[ALLEB1] J.Allen and P.Penfield. "VLSI Design Activities at MIT",

IEEE Trans, on Ore. and Syst., vol CAS-28, No. 7 pp. 845-653,

jul. 1981.

[ARMS62a] D.B.Armstrong, " A Programmed Algorithm for Assigning Internal

Codes to Sequential Machines ", IRE Trans. Elect. Comp. , vol.

EC-11. pp. 486-472 . aug. 1962.

[ARMS62b] D.B.Armstrong , " On the efficient Assignment of Internal Codes to

Sequential Machines ". IRE Trans. Elect. Comp. , vol. EC-11, pp.

611-622, oct. 196£

[AYRE79] RAyres. "Silicon Compilation- A Hierarchical use of PLAs",

Proc. Des. Aut. Cornf. pp. 314-326. 1979.

[BARB77] M.Barbacci. D.Siewiorek, RGordon. RHowbrigg and

S.Zuckermann, "An Architectural Research: ISP Description,

Simulation and Data Collection", Proc. Nat. Cbmp. Cbnf vol 46.

1977.

[BARBS 1] M.Barbacci. "Instruction Set Processor Specifications (ISPS): The

Notation and its Specification", IEEE Trans, on Cbmp., vol. C-30,

183

pp. 24-40. jan. 1981.

[BLUM79] RBlumberg and S.Brenner, "A 1500-gate Random-logic Large

Scale Integrated (LSI) Masterslice. IEEE Solid State Jour., vol.

SC-14, pp. 818-822. oct 1979.

[B0SEB3] A. Bose. B.Chawla and H.Gummel, "A VLSI Design System",

Proc. Int. Symp. on Ore. and Syst., pp. 734-737, 1983.

[BRAY82a] RBrayton,G.D.Hachtel,LKemachanandra,A.RNewton and

A.L.Sangiovanni Vincentelli, "A Comparison of Logic Minimization

Strategies Using Espresso. An APL Program Package for Parti

tioned Logic Minimalization", Proc. Int. Symp. on Ore. and Syst. ,

pp. 43-49, Rome, may 1982.

[BRAYB2b] RBrayton and KMcMullen. 'The Decomposition and Factorization

of Boolean Expressions", Proc. Int. Symp. on CLrc. and Syst.,

pp. 49-54, Rome 1982.

[BRAY84] RBrayton.G.D.Hachtei,C.McMullen and A.LSangiovanni- Vincen

telli. "ESPRESSO-II A New PLA Logic Minimization Program ". in

preparation.

[BR0W81] D.W.Brown, "A State-Machine Synthesizer - SMS".

Proc. Des. Aut. Conf.. pp. 301-304, Nashville, jun. 1981.

[CHUQ82] S-Chuquillanqui and T. Perez Segovia, " PAOLA: ATool for Topologi

cal Optimization of Large PLAs", Proc. Des. Aut. Conf., pp. 300-

306, Las Vegas, jun 1982.

184

[CLAR75] CRCiare, "Designing Logic Systems using State Machines",

McGraw Hill. 1975.

[C00K79] P.W.Cook, S.E.Shuster. J.T.Parrish, V.Di Lonardo and

D.RFreedman, "1 fjm MOSFET VLSI Technology: Part 111 - Logic

Circuit Design Methodology and Applications", IEEE Trans, on

Etec. Dev., vol ED-26, No 4, pp. 333-345, apr. 1979.

[CURT69] H.A. Curtis, "Systematic Procedures for Realizing Synchronous

Sequential Machines Using Flip-Flop Memory: Part 1",

IEEE Trans, on Comp.. vol. C-18. pp. 1121-1127, dec. 1969.

[CURT70] HA. Curtis, "Systematic Procedures for Realizing Synchronous

Sequential Machines Using Flip-Flop Memory: Part 2",

IEEE Trans, on Cbmp., vol. C-19, pp. 66-73, jan. 1970.

[DEMI81] G. De Micheli, "Pleasure: A Program for topological compaction of

PLAs" , Internal Report, Harris Corporation . 1981.

[DEMIB3a] G. De Micheli and A.Sangiovanni-Vincentelli. "Multiple Folding of

Programmable Logic Arrays", Proc. Int. Symp. on Ore. and Syst.,

Newport Beach (CA). pp. 1026-1029, may 1983.

[DEMIB3b] G. De Micheli and A.Sangiovanni-Vincentelli, "PLEASURE: A Com

puter Program for Simple/Multiple Constrained/Unconstrained

Folding of Programmable Logic Arrays", Proc. Des. Aut. Conf.,

Miami Beach (FL) pp. 530-537, jun 1983. and invited paper to be

published on Computer-Aided Design.

185

[DEMI83c] G.De Micheli and A.LSangiovanni Vincenteili , "Multiple Con

strained Folding of Programmable Logic Arrays: Theory and Appli

cations". IEEE Trans, on CAD of Int. Ore. and Syst., vol. CAD-2.

No. 3 pp. 167-180 jul. 1983.

[DEMlB3d] G.De Micheli and M.Santomauro, "SMILE: A Computer Program for

Partitioning of Programmed Logic Array", Computer Aided Design

No. 2 pp. 89-97, mar. 1983 and Memorandum UCB/ERL No.

62/74.

[DEM183e] G. De Micheli and M.Santomauro, "Topological Partitioning of Pro

grammable Logic Arrays", Proc. Int. Conf. on Comp. Add. Des.,

Santa Clara, pp. 182-184, sep. 1983.

[DEM183f] G. De Micheli. A.Sangiovanni-Vincentelli and T.Villa, "Computer-

Aided Synthesis of PLA-based Finite State Machines",

Proc. mt. Conf. on Comp. Aid. Des., Santa Clara pp. 154-157,

sep 1983.

[DEM184] G.De Micheli. M.Hoffman, A.RNewton and A.LSangiovanni Vincen

teili, "A Design System for PLA-based Digital Circuits", Advances

in Computer Engineering Design, Jai Press (in preparation).

[DEUT83] J.T.Deutsch and A.RNewton. "Data-flow based Behavioral-level

Simulation and Synthesis", Proc. Int. Conf. on Comp. Aid. Des.,

pp 63-64. Santa Clara, CAsep. 1983.

[D1ET68] D.LDietmeyer and J.R Duley, 'Translation of a DDL Digital System

Specification to Boolean Equations", IEEE Trans, on Comp., vol

186

C-18, pp. 305-313. apr. 1969.

[DIREBl] S.Director. A.Parker. D.Siewiorek and D.Thomas. "A Design Metho

dology and Computer Aids for Digital VLSI Systems".

IEEE Trans, on Ore. and Syst., vol cas-28. No 7, pp. 634-644,

aug. 1981.

[D0L064] T.A.Dolotta and E.G McCluskey, " The .coding of internal states of

sequential machines", IEEE Trans. Elect. Comp., vol EC-13, pp.

549-562, oct. 1964.

[DUTT81] RDutton, "Stanford Overview in VLSI Research",

IEEE Trans, on Ore. and Syst., vol CAS-28, No 7, pp 654-665, jul.

1981.

[EGAN82] J.REgan and C.Lliu , "Optimal Bipartite Folding of PLA".

Proc. Des. Aut. Conf., pp. 141-146, Las Vegas, jun. 1982.

[ELU82] S. Ellis K. Keller A. Newton D. Pederson A. Sangiovanni-Vincentelli

C. Sequin. "A Symbolic Layout Design System",

Proc. Int. Symp. on Ore. and Syst., Rome, Italy may 1982.

[FANGB3] S.Fang, High Speed Bipolar PLA Design Techniques, Ph.D. Disser

tation, U.C.Berkeley 1983.

[FELL76] A.Feller, "Automatic Layout of Low-cost Quick-turnaround

Random-logic Custom LSI devices", Proc. Des. Aut. Conf., pp.

79-85, jun. 1976.

187

[FLEI75] HFleisher and Ll.Maissel, "An Introduction to Array Logic",

IBM Jour, of Res. and Devel, vol 19, pp. 93-109, mar. 1975.

[FLET80] W.Fletcher, "An Enginnering Approach to Digital Design", Prentice

Hall, 1980.

[FL0Y82] RFloyd and J.Ullman, "The Compilation of Regular Expressions

into Integrated Circuits". ACM Jour., vol 29, No. 3, pp. 603-622, Jul.

1982.

[GARE78] M.RGarey and D.S.Johnson. "Computers and Intractability",

W.H.Freeman and Company San Francisco, 197B.

[GLAS80] LGlasser, "An Interactive PLA Generator as an Archetype for a

new VLSI design Methodology",

Proc. Int. Symp. on Ore. and Syst. pp. 608-611, oct 1980.

[GRAH71] RLGraham and HO.Pollak. "On The Addressing Problem for Loop

Switching", Bell Syst. Techn. Jour., vol. 50 No. 8 . pp. 2495-2519,

oct. 1971.

[GRAH72] RLGraham and HO.Pollak, "On Embedding Graphs in Squashed

Cubes", Graph Theory and Applications, Lecture notes in

mathematics, no. 303. Springer Veriag 1972.

[GRAS65] A. Grasselli and F. Luccio, "A Method for Minimizing the Number of

States in Incompletely Specified Sequential Networks", IRE Trans.

on Ettct. Comp. , vol. EC-14, pp. 350-359 jun. 1965.

168

[GRAS82] W. Grass, "A Depth-first Branch-and-Bound Algorithm for Optimal

PLA Folding", Proc. Des. Aut. Conf. pp. 133-140. Las Vegas 1982.

[GREE76] D.LGreer. " An Associative Logic Matrix ". IEEE Solid State Jour.

vol. SC-11. no 5, pp. 679-691, oct 1976.

[HACH80] G.D.Hachtel, A.LSangiovanni Vincentelli and A.R.Newton. "An Algo

rithm for Optimal PLA Folding" , Proc. Int. Conf. on Ore. and

Cbmp., pp. 1023-1028. New York. N.Y. oct. 1980.

[HACK82a] G.D.Hachtel,A.RNewton and A.LSangiovanni Vincentelli, "An Algo

rithm for Optimal PLA Folding",

IEEE Trans, on CAD of Int. Ore. and Syst. , pp. 63-77 vol. 1, No.

2, apr. 1982.

[HACH82b] G.D.Hachtel,A.RNewton and A.LSangiovanni Vincentelli. 'Tech

niques for Programmable Logic Arrays Folding",

Proc. Des. Aut. Conf.. pp. 147-152, Las Vegas, jun. 1982.

[HART61] J. Hartmanis. "On the State Assignment Problem for Sequential

Machines 1", IRE Trans. Elect. Comp. , vol. EC-10 pp. 157-165, jun.

1961.

[HART66] J.Hartmanis and RE.Stearns, "Algebraic Structure Theory of

Sequential Machines", Prentice Hall, 1966.

[HENN83] J. Hennessy. "Partitioning Programmable Logic Arrays. Sum

mary", Proc. Int. Conf. on Cbmp. Aid. Des., pp. 180,181 , Santa

Clara. CA sep. 1983.

189

[H1LL78] F.Hill and G.Peterson. "Digital Systems: Hardware Organization

and Design", Wiley, 1981.

[HILL81] F.Hill and G.Peterson, "Introduction to Switching Theory and Log

ical Design", Wiley, 1931.

[H0FF81] M. Hoffman, "A Method for Topological Compaction of Pro

grammed Logic Arrays", Master Report, University of California

Berkeley, 1981.

[H0NG74] S.J.Hong,RG.Cain and D.LOstapko. "MINI:a Heuristic Approach for

Logic Minimization". IBM Jour, of Res. and Devel vol. IB. pp.

443-458. sep. 1974.

[H0PC79] J. Hopcroft and J. Ullman, "/hiroducrion to Automata Theory,

Languages and Computation", Addison-Wesley 1979.

[HU83] T.C.Hu and Y.S.Kuor, "Graph Folding and Programmable Logic

Array", Computer Science Technical Report, No CS-71, UCSD 1983.

[J0NE75] J.W.Jones. "Array Logic Macros", IBM Jour, of Res. and Devel,

vol. 19. pp. 120-126, mar. 1975.

[KANG81] Sungho Kang. "Automated Synthesis of PLA Based Systems". Ph.D.

Dissertation, Stanford University, 1981.

[KANG83] S.M.Kang. RHKrambeck. H-F S.Law and A.d. Lopez. "Gate Matrix

Layout of Random Control Logic in a 32-bit CMOS CPU Adaptable

to Evolving Logic Design". IEEE Trans, on CAD of Int. Ore. and

190

Syst., voL CAD-2 No. 1 pp. 18-29. jan. 1983.

[KARP64] RKarp, " Some Techniques for State Assignment for Synchronous

Sequential Machines ", IEEE Trans. Elect. Cbmp. , vol. EC-13 pp.

507-518, oct 1964.

[KELL82] K. Keller A. Newtoa MA Symbolic Design System for Integrated Cir

cuits", ^"oc. Des. Aut. Conf., jun. 1982.

[KELL83] K.Keller, "An Electronic Circuit CAD Framework", Ph,D. Disserta

tion, U.C.Berkeley 1983.

[KERN70] B.W.Kernigham and S.lin, "An Efficient Heuristic Procedure for

Partitioning Graphs", Bell Syst. Techn. Jour., vol. 49 No. 2 pp.

291-307 feb. 1970.

[K0HA64] Z. Kohavi, "Secondary State Assignment for Sequential Machines".

IEEE Trans, on Elect. Cbmp. pp. 193-203 jun. 1964.

[LANDB1] HLandman, "Automatic Layout of Optimized PLA Structures",

M.S. Report, dept EECS, U.CBerkeley 1981.

[LAWL73a], RLLawler "Cutset and Partitions of Hypergraphs", Networks. No.

3. pp. 275-285, juL 1973.

[LAWL73b] E.LLawler. "Optimal Sequencing of a Single Machine Subject to

Precedence Constraints", Management Science , vol. 19 No. 5, pp.

544-546, jan. 1973.

191

[LAWL76] E.Lawler, "Combinatorial Optimization : Networks and Motroids",

Holt Rinehart and Winston 1976.

[L0GU75] J.C.Logue N.F.Brickman F.Howiey J.W.Jones and W.W.Wu,

"Hardware Implementation of a Small System in Programmable

Logic Arrays", IBM Jour, of Res. and Bevel, vol. 19, pp. 110-119,

mar. 1975.

[LUBY82] M.Luby U.Vazirani V. Vazirani and A. Sangiovanni-Vincentelli.

"Some Theoretical Results on the Optimal PLA Folding Problem",

Proc. mt. Conf. on Ore. and Comp., pp. 165-170, NewYork.N.Y..

oct 1982.

[LUCC69] F.Luccio and M.Sami. "On the Decomposition of Networks in

Minimally Interconnected Subnetworks", IEEE Trans, on Orcuit

Theory, vol. CT-16 pp. 184-188, may 1969.

[MAHB3] G.Mah. "PANDA - APLA Generator for Multiply Folded Arrays". M.S.

Report, depL EECS. U.CBerkeley 1983 (in preparation).

[MKCL56] EJ.McKluskey. "Minimization of Boolean Functions".

Bell Syst. Techn. Jour., vol. 35. pp. 1417-1444. apr. 1956.

[MEAD80] CMead and LConway, "Introduction to VLSI Systems", Addison

Wesley 1980.

[NEWTBl] A.RNewton. D.O.Pederson. A.LSangiovanni Vincentelli and

CH.Sequin. "Design Aids for VLSI: the Berkeley Perspective",

IEEE Trans, on Ore. and Syst., vol. CAS 28 pp. 618-633 jul. 1981.

192

[OGBU70] E.C0gbuobiri.W.F.Tlnney and J.W.Walker, "Sparsity-directed

Decomposition for Gaussian Elimination on Matrices", IEEE Trans,

onPowerApp. and Sys., vol. PAS-89. No. 1, pp. 141-150, jan. 1970.

[0UST84] J. Ousterhaut, G.Hamachi, RMayo, W.Scott and CTaylor. "Magic: A

VLSI Layout System", submitted for presentation at Des. Aut.

Conf 1984.

[PAIL81] J.F.Paillotia " Optimization of the PLA Area". Proc. Des. Aut.

Conf., pp 406-410, Nashville, jun. 1981.

[PATI79] S.Patil and T.Welch, "A Programmable Logic Approach for VLSI".

IEEE Trans, on Comp., vol. C-23, No. 9. pp. 594-601, sep. 1969.

[PR0E76] RProebsting. "Electronics", p. 82, oct. 28. 1976.

[R0TH58] J.P.Roth. "Algebraic Topological Methods for the Synthesis of

Switching Functions", 7rons. Amer. Math. Soc, vol. 88, pp 301-

326, juL 1958.

[ROTHBO] J.P.Roth. "Computer Logic, Testing and Verification", Computer

Science Press 1980.

[SANG77] A.Sangiovanni Vincentelli. li-Kuan Chen and LO.Chua. "An

Efficient Cluster Algorithm for Tearing Large-Scale Networks".

IEEE Trans, on Ore. and Syst., vol CAS-24, no. 12. pp. 709-717,

dec. 1977.

193

[SASA78] T.Sasao and H.Terada, "An Application of Multiple-valued Logic to

a Synthesis of Programmable Logic Arrays", Proc. ISMVL-76, pp.

65-72. may 1978.

[SAUC72] G.Saucier, "State Assignment of Asynchronous Sequential

Machines Using Graph Techniques". IEEE Trans, on Cbmp. vol.

C-21 pp. 282-288, mar. 1972.

[SCHM80] M.S.Schmookler. "Design of Large ALUs Using Multiple PLA Mac

ros", IBM Jour, of Res. and Devel, vol 24, pp. 2-14. jan I960.

[SEQUB3] CSequin. "Managing VLSI Complexity: An Outlook". Proceedings of

the IEEE, vol 71. No 1, pp. 149-166, jan 1983.

[SIGN79] Sigmetics Bipolar and MOS Memory Data Manual, pp 156-188.

1979.

[SIMA83] P.Simany. A.RNewton and A.Sangiovanni Vincentelli. "The POP PLA

Optimizer", U.CBerkeley CAD Group Users Quide, 1933.

[SPATBO] HSpath. "Ouster Analysis Algorithms", Ellis Horwood 1980.

[STEA61] RKStearns and J. Hartmanis. "On the State Assignment Problem

for Sequential Machines 2", IRE Trans. Elect. Comp., vol. EC-10

pp. 593-603, dec. 1961.

[ST0R72] J.RStory HJ.Harrison and E.A.Reinhard, "Optimum State Assign

ment for Synchronous Sequential Circuits". IEEE Trans, on

Cbmp., vol. C-21 pp. 1365-1373, dec. 1972.

194

[SU72] S.Y.HSu and P.T.Cheung, "Computer Minimization of Multi-Valued

Switching Functions", IEEE Trans, on Comp.. vol 21. pp. 995-

1003, 1972.

[SUWAB1] LSuwa and W.J.Kubitz, "A Computer Aided Design System for

Segment-Folded PLA Macro cells". .Proc. Des. Aut. Conf., pp.

398-405. Nashville, jun. 1981.

[TIS067] P.Bson, "Generalization of Consensus Theory and Application to
the Minimization of Boolean Functions", IEEE Trans, on Elect.

Cbmp.. vol. EC-16, pp. 446-456, aug. 1967.

[T0RN68] HCTorng, "An Algorithm for Finding Secondary Assignments of

Synchronous Sequential Circuits", IEEE Trans, on Comp., vol. C-

17 pp. 416-469, may 1968.

[TRAC66] J.HTracey, "Internal State Assignment for Asynchronous Sequen
tial Machines", IEEE Trans, on Elect. Cbmp., vol. EC-15. pp. 551-

560. aug. 1966.

[TRIMB1] S. Trimberger. J. Rowson. CRLang and J.P.Gray, "A Structured

Design Methodology and Associated Software Tools",

IEEE Trans, on Ore. and Syst., vol. CAS-28, pp. 618-633, jul.
1961.

[WEBE79] HWeber. "High Level Design of Programmed Logic Arrays". Proc.
Int. Symp. on CHDL, oct 1979.

195

[WEIN67a] A.Weinberger, "Large Scale Integration of MOS Complex Logic: a

Layout Method". IEEE Sol. St. Jour. vol. SC 2, No. 4, pp. 182-190,

dec 1967.

[WEIN67b] P.Weiner and E.J.Smith, "Optimization of Reduced Dependencies

for Synchronous Sequential Machines", IEEE Trans on Elect.

Comp., vol. EC-16, pp. 835-847, dec. 1967.

[WEIN79] A.Weinberger, "High-speed Programmable Logic Array Adders",

IBM Jour, of Res. and Devel, vol. 23, pp. 163-178, mar. 1979.

[W00D79] RA.Wood. "A High Density Programmable Logic Array Chip", IEEE

7rans. Comput., vol. C-28, pp. 602-608, sep. 1979.

196

APPENDICES

$

APPENDIX A

BASIC DEFINITIONS OF SWITCHING THEORY

197

The representation of combinational functions at the logic level is based

on the use of logic variables. Most implementations of logic functions, as

those addressed by this dissertation, use binary-valued circuits, Le. circuits

having two stable states, WW and HIGH that are represented by the logic

values (0,1). A logic (boolean) variable is a variable that can take a value in

the set {O.lj. A logic variable is represented by "•" when the variable oan

take either value in the set {O.lj. A variable represented by "*" is called a

don't care condition. In the other cases it is called care .

The n-dimensional boolean space j0,l(n can be represented by an n-

dimensional cube [R0TH80] and is referred to as n-dimensional cube. The

subspaces of the n-dimensional cube are termed subcubes or faces. An n-

dimensional cube has 2? vertices corresponding to each element of the n-

dimensional boolean space.

A switching function / in n input variables and m output variables is a

map:

/:f0.1jn-[0.1.»r

A switching function is called single output (multiple output) if m=l

(mfel).

Many representation of a combinational function are possible. The most

straight-forward one is the tabular form or truth table . In this form the

value of the outputs are specified for each input combination.

Example A1: The following is the truth table of a one-bit adder:

00 00
01 01
10 01
11 10

198

A ROM implementation of a logic function represented by a truth table is

straightforward, since inputs can be put in one-to-one relation with the

memory addresses and outputs with the corresponding memory-cell con

tents.

A more compact representation of a combinational logic function is

given by a logical cover, which has a straight-forward PLA implementation. To

define a logical cover, some basic concepts are reported here [KILLSl].

For each component of /. fit i = 1. 2. • • . m the on-set .#avC$0,l{n (

off-set .Xp^CfO, l{n, don't care set A?cC{0.1)n) is the set of the input values

such that fi(X?N) = 1 (fiCX?") =0. f^Xf0) = •).

A logical implicant is a pair of row vectors in {0,1.•)" and (0,l,sjTO

respectively. The former is called input part and the latter output part of the

implicant. An implicant of a switching function / is such that the subspace

specified by the input part belongs to the on-set (off-set, don't care set) of

A. i a 1. 2. • • • . m. if the i-th entry in the output part is "1" ("0","*").

A don't care condition in the j-th position of an input part means that the

j—th input variable may be either 1 or 0. A don't care condition in the i-th

position of an output part means that /» is not specified for the correspond

ing input and can be either 1 or 0.

It 4 It

199

A minterm is an implicant with no don't cares values ("•") and onlyone

1" in the output part.

Implicants and minterms have a geometrical representation. The

representation of multiple-output implicants (or sets of multiple-output

implicants) is obtained by considering each output component at a time.

Since each output component can have three values (0,1,•), three n-

dimensional cubes are used. An implicant (minterm) is represented in the

n-dimensional cube corresponding to the value of the output part com

ponent. In particular an implicant is represented by the face corresponding

to the subspace specified by the care entries of the input part. The size of

the implicant is the dimension of the corresponding subspace. A minterm is

represented by the vertex specified by the care entries of the input part.

Relations and operations on implicants represented in the same n-

dimensional cube are defined on the basis of this representation. Let A and

B be two implicants (or sets of implicants).

A is equivalent to the set of minterms corresponding to the vertices of

the face representing A. A = 0 if the equivalent minterm set is empty.

A covers (contains) B (A2B) if the set of minterms equivalent to A

contains the set of minterms equivalent to B.

A intersects B (Ar\B) if the set of minterms equivalent to A has a

non-empty intersection with the set of minterms equivalent to B.

A is disjoint from B if their intersection is empty.

The union of A and B (AuB) is the set of implicants equivalent to the

union of the minterm sets equivalent to A and B.

200

The (disjoint) sharp of A and B , A# B, (A$B) is the set of (mutually

disjoint) implicants equivalent to the minterm set equivalent to A after hav

ing deleted the minterms equivalent to AnB.

The conjunction (AND) of two implicants is the largest size implicant

contained in both of them.

The disjunction (OR) of two implicants is the smallest size implicant

containing both of them.

The distance between two implicants is the number of positions in which

they differ and both entries are cares.

A set of implicants is said to be a cover of a switching function / if the

set of the implicant input parts that have a 1 in the i-th position of the out

put part contains the on-set of/4 .Af and is disjoint from the off-set X^tor

any output variable i = 1, 2. • • , m. Note that a truth table is a cover.

A prime implicant of a switching function / is an implicant not con

tained in any implicant of /. Acover is said to be irredundant if no proper

subset is a cover of /. A minimal cover is an irredundant cover of prime

implicants. A minimum cover is a minimal cover ofminimum cardinality.

A cover of a switching function, and in particular a truth table, can be

seen as a pair of matrices. These matrices are referred to as input and out

put personality matrices. The PLA personality matrix is the partitioned

matrix whose components are the input and output personality matrices.

Example JL2 : A single-output switching functions can be specified as

follows:

X°N ={001, 100. 110. Ill j

JT^= {000. 010 1

X00 = {011. 100}

&t

The truth table of the function isa set of minterms:

000 0

001 1

010 0

Oil •

100 •

101 1

110 1

111 1

201

Alternatively the function can be specified by a cover Le. by a set of im

plicants:

HO 1
111 1

001 1

The cover is irredundant, but not minimal because the first implicant is

not prime. The following cover is prime and minimal:

1—
••1

y y

0

/ / y *y
o

/ y / y y y
X

Boolean cube representation

202

Multiple-valued logic functions have been studied in connection with cir

cuits having several stable equilibrium points [SU72]. Multiple-valued logic

functions are used in this dissertation in connection with symbolic (code

independent) representations of a logic function.

Several notations are used to represent multiple-valued logic values. For

example, the different logic levels can be represented by integer values :

0, 1, 2. • • • , j>-1. This is an extension of the binary notation to a p -valued

representation.

The positional cube notation is used in this dissertation [SU72]. A p-

valued logical variable is represented by a string of p binary, symbols. Value

r is represented by a "1" in the r-th position, all others being "0". Note that

the positional cube notation allows to represent a set of values with one

string. The disjunction (multiple-valued logical OR) of several values is

represented by a string having "l"s in the corresponding positions. Therefore

the "don't care" value is represented by a string of "l"s and the empty value

by a string of "0"s.

Example A3: Let z be a 7-valued variable. Variable x assuming value

2 can be represented by 0010000. Variable x assuming the disjunc

tion of values 2 and 4 is represented by 0010100.

Multiple-valued logic variables can be represented by means of a set of

binary-valued variables. This representation is very convenient, because it

allows to use techniques and methods for binary-valued functions on

multiple-valued functions. In particular, binary-valued logic minimizers can

be used to perform multiple-valued logic minimization [BRAY84].

203

In a binary-value representation, a p -valued variable can be represented

by the coordinates of a vertex of the p-dimensional Boolean cube, or

equivalently by a minterm. (Minterm and implicant input parts are referred

to as minterms and implicants for the sake of simplicity in the sequel.) Value

r is represented by the minterm having a "1" in the r-th position, all others

being "0"s. Therefore the binary-coded representation of a value is the same

as the positional-cube notation. This representation is referred to as 1-hot

coding , because each value of the multiple-valued variable corresponds to

one and only one binary value "1" (HIGH) in the binary representation.

The disjunction of two or more values is represented in the binary nota

tion by the disjunction of the corresponding minterms, i.e. by the implicant

having "*"s in the corresponding positions, all others being "0"s.

Example A.4: Let x be a 7-valued variable. The disjunction of values 2

and 4 is represented by: 00*0*00, corresponding to

0010000 V 0000100.

Therefore the dbnt care condition is represented by a string of don't care

values ("*"). Note that the representation of the disjunction of some values

differs from the corresponding positional-cube notation. However these

positional-cube notations can be transformed into binary-valued representa

tions by replacing "l"s with "*"s.

In the binary notation every value is a vertex of the p-dimensional cube.

Since there are 2P vertices and p values, only a subset of the vertices

represent a value, and in particular the subset of vertices adjacent to the

origin, Le. having one and only one coordinate equal to "1". All the remaining

204

vertices do not represent existing values and are included into the don't care

set of any multiple-valued function represented by 1-hot coding.

Example AS: Minterm 1100000 does not represent any existing value.

Implicant •100000 is equivalent to minterms 0100000 and 1100000

and therefore represents value 1.

A multiple-valued logic function can be represented by binary-valued vari

ables by specifying the appropriate don't care set.

Example A6: Consider the multiple-valued function specified in the

positional cube notation by:

X?N ={ 0011. 1000 \

yp*-1 oioo}

The corresponding binary-valued representation is:

X°N = { 00**. 1000 j

X0™* \ 0100 \

X™* {0000 . 11« , 1*1» , 1«1 . •!!•. «l«i , ••!! J

The don't care set specifies the non-existing values.

A binary-valued representation of a multiple-valued function can be inter

preted as follows. Each binary-valued implicant can be represented in the

positional-cube notation by the equivalent minterms. Note that onlya subset

of these represent logic values, and in particular those having one and only

one coordinate equal to "1". The implicant represents the multiple-valued

205

disjunction of the values corresponding to the elements of the subset.

Example A7:The binary-valued representation:

X°N =(*00» ,1100 J

^^={0100}

is equivalent to:

X°N =(0000. 1000 .0001, 1001 ,1100 J

*?**« {0100 i

Therefore the multiple-valued on-set is value "0" and "3" and the off-set is
value"!".

APPENDDC B

PLEASURE PROGRAM AND EXAMPLES

206

APPENDDC C

y SMILE PROGRAM AND EXAMPLES

207

208

APPENDDC D

KISS PROGRAM AND EXAMPLES j

&

	Copyright notice 1984
	ERL-84-31 (1 of 3)
	ERL-84-31 (2 of 3)
	ERL-84-31 (3 of 3)

