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Abstract

Simulated annealing proposed by Kirckpatrick et aL has proven to be an effective tech

nique to solve general combinatorial optimization problems. Its derivation was based heavily

on the analogy between combinatorial optimization problems and the annealing process in sta

tistical physics.

A mathematical model of the operations of Simulated Annealing is needed to understand

the essential features which guarantee the algorithm to perform efficiently and to improve the

speed of execution. Markov chains are proposed as mathematical models of the Simulated

Annealing algorithm. Using these models, it has been possible to prove that under certain

assumptions on the rules used by the algorithm to generate the configurations of the problem

and on the time spent at each temperature, the Simulated Annealing algorithm generates a

global optimum solution with probability one.

This result has made possible the definition of a general class of algorithms with the

same statistical properties: the class of probabilistic hill-climbing methods. The mathematical

properties of this class are presented and rules on the selection of annealing schedules are

obtained from these properties.

1 On leave of absence from Honevwell Information Svstems Italv



The theoretical work on Simulated Annealing has been done in parallel with an experi

mental study aimed at building a general package for the layout of integrated circuits using

Simulated Annealing, Timber Wolf, developed at the University of California, Berkeley by C

Sechen.



1. Introduction

Many combinatorial optimization problems belong to a class of problems which are

difficult to solve, Le^ the class of NP-complete problems[GAR79]. For these problems, there is

no known algorithm whose worst-case complexity is bounded by a polynomial in the size of

the input. Heuristic algorithms are used to solve NP-complete problems approximately, Le. to

find "good" solutions which are "close" to the optimum. These algorithms explore a discrete

space of admissible configurations, 5, in a deterministic fashion. Starting from an initial

configuration jo, a. sequence of configurations is selected until a satisfactory one is found. The

rules according to which a configuration is generated and the algorithm terminates, specify the

algorithm. Often the search terminates with a local minimum, Le. with a configuration j

such that if we denote by c (j ) the cost of j and by S {j ) the set of configurations that can

be generated from / by the algorithm in one step, c(j) ^c(;'),V; €5 (/ ). This is often

due to the fact that heuristic algorithms are "greedy", Le, only moves which reduce "maxi

mally" the cost are accepted.

To avoid this behavior, randomizing algorithms (e.g. [SCH80]) can be devised which gen

erate the next configuration randomly. The configuration is recorded as a new temporary

solution if its cost is lower than the present temporary solution. The algorithm terminates

after a certain number of moves. Randomizing algorithms perform well if the number of

optimal solutions is fairly high, since the probability of stopping at an optimum is proportional

to the ratio between the number of optimal configurations and the number of total

configurations. Note that randomizing algorithms can "climb hills", i.e^ moves that generate

configurations of higher cost than the present one are accepted.

Simulated Annealing as proposed by Kirckpatrick et al. [K1R831 allows "hill climbing"

moves but these moves are accepted according to a certain criterion which takes the cost into

consideration and not blindly as randomizing algorithms. The controlling mechanism is based

on the observation that combinatorial optimization problems with a larye configuration space

exhibit properties similar to physical processes with many decrees of Jreedom.



In particular, bringing a fluid into a low energy state such as growing a crystal, has been

considered in [KIRS3] similar to the process of finding an optimum solution of a combinatorial

optimization problem. Annealing is a well-known process to grow crystals. It consists in melt

ing the fluid and then lowering the temperature slowly until the crystal is formed. The rate

of decrease of temperature has to be very low around the freezing temperature. The Metropo

lis Monte Carlo method [MET53, BIN78] can be used to simulate the annealing process. It has

been proposed as an effective method for finding global minima of combinatorial optimization

problems. This method when applied to combinatorial optimization generates moves randomly

and checks whether the cost of the new configuration satisfies an acceptance criterion based on

temperature. If the cost decreases, the move is accepted. If the cost increases, then a random

number between zero and one is generated and compared with / (Ac,; J ) - exp(—=—)

where Ac,-; is the change in cost obtained by moving from configuration i to j and T is tem

perature, the controlling parameter. If the random number is larger than / , the move is

accepted, otherwise the move is discarded. Note that the higher the temperature is, the more

likely it is that a "hill climbing" move is accepted. Note also that "hill climbing" moves are

less and less probable as the temperature is decreased. A certain number of moves are gen

erated and checked before a decrease in temperature is allowed. The initial temperature, the

number of moves generated at each temperature and the rate of decrease of temperature are

all important parameters that affect the speed of the algorithm and the quality of the final

configuration. Experimental results [KIR83, VEC83, SEC84, JOH84] show that Simulated

Annealing produces very good results when compared to other techniques for the solution of

combinatorial optimization problems such as those arising from the layout of integrated cir

cuits,at the expense of large computer time (a 1,500 standard cell placement problem can take

as much as 24 hours of a VAX 11/780 [SEC84]).

A mathematical analysis of the algorithm is very important to understand the essential

features which make the algorithm work well and to suggest techniques for controlling its

operation. Markov chains (KAK73, 11:1.70, IX>()51, l:KK7l] can be used as a mathematical



model of Simulated Annealing. We proved that under certain assumptions on the number of

moves generated by the algorithm at each temperature, Simulated Annealing produces asymp

totically the optimum solution of combinatorial optimization problems with probability 1. A

similar proof was independently proposed by Lundy and Mees [LUN84]. The proof has under

lined the essential properties of the algorithm, so that we have been able to derive a class of

"probabilistic hill-climbing algorithms" that have the same asymptotic properties of Simulated

Annealing.

The paper is organized as follows. In Section 2, the class of Probabilistic Hill-Climbing

(PHC) algorithms is formally defined and its mathematical representation in terms of Markov

chains introduced. In Section 3, basic definitions and theorems specifying the properties of

Markov chains relevant to the analysis of PHC algorithms are reviewed. In Section 4, the

assumptions on the parameters of the PHC algorithms needed to guarantee the optimality pro

perties are introduced and the convergence theorems are proved. In Section 5, additional

results which give insight on how to select the parameters of PHC algorithms are presented

and some experimental results are provided. In Section 6, new research directions and con

cluding remarks are given.



2. Probabilistic Hill Climbing Algorithms

Given a combinatorial optimization problem specified by a finite set of configurations or

states S and by a cost function c defined on all the states j €5, Probabilistic Hill Climbing

(PHC) algorithms are characterized by a rule to generate randomly a new state or

configuration with a certain probability,and by a random acceptance rule according to which

the new configuration is accepted or rejected. A parameter T controls the acceptance rule.

We assume that T ^0 and that an updating rule generates a monotonically decreasing

sequence {Tm }, m =1,2— with limit zero. PHC algorithms define a random variable X which

takes values on the states generated and accepted by the algorithm. Their structure is shown

below.

PHC Algorithm Structure (j o, T0)

••'* Given an initial state j <, and an initial value for the parameter T ,T 0.*/

X = j <h
while( "stopping criterion" is notsatisfied )

{
while( "inner loop criterion" is not satisfied )

I
j = generate (X )
if( accept( c(j\c(X\T )

X = j ;
)

T =update (T )
}

The acceptance of a new state j is determined by accept, whose structure is shown

below.



accept( c (y ), c (i), T )

I

/*

returns J if the cost
variation passes a test.

T is the control parameter.
*/

hcij =c(y )- c(i);
y =/ (AclV,r );
r » random (0,1);

/*

random is a function which returns a pseudo
random number uniformly distributed on the
interval [ 0 ,1 J .

*/

if(r <y)
returnti);

else

return (0) ;

The acceptance strategy is essentially represented by the function / which takes

values on the interval [0,1]. It is possible to vary its shape by adjusting the parameter T .

Remark 2.1. Simulated annealing [KIR82], belongs to the PHC class. In Simulated

Annealing, the control parameter T, called "temperature", is updated by means of the follow

ing law

and hence it satisfies the property that 7^0 and that the sequence of updates converges to

zero. The acceptance function for the Simulated Annealing is

_ cQ)- c(») .
/(Ac(>,7) - e ' . <Ua)

for Ac, X) and



/ (Ac,, X ) = 1 (2.1.b)

otherwise. Hence, it takes values on the interval [0,1].

PHC algorithms applied to a combinatorial optimization problem can be represented by

Markov chains [KAJR73, FEL57,111171]. We derive this model on a simple example: a linear

placement problem.

Suppose that 3 interconnected modules {a Jb ,c } have to be placed on a monodimensional

grid, so that the global length of interconnections is minimized. The state space S consists of 6

configurations, all the possible placements of the three modules (3!), L&, £ ={ 1 ,..., 6 }

1 = {a ,b ,c }

2 = { c ,a tb)

3 - { b ,c ,g}

4 *= { a ,c ,b }

5 « { c ,b ,a }

6 = {6 , a , c }.

We assume that the generation of new configurations is done by PHC algorithms applied

to this problem by exchanging the positions of two elements. In this case, the set 5 (l) is

equal to {4,5,6}. All the other S (i ^s can be obtained easily. Note that for all i €S , IS (i )l=3.

For each placement i, we denote by S (i )CS the set of all the states j €S such that

there is an arc (i ,j ) in the graph. This is the set of all the configurations that can be gen

erated by a PHC algorithm with the generating rule introduced before in one step starting

from i.

The graph shown in fig. (2.1) is a schematic representation of the generating rule. Each

node of the graph represents one of the configurations; there is an arc (i J ) in the graph if j

can be obtained from i by interchanging the positions of two modules.



Fig. 2.1. Schematic representation of the generating rule.

For the sake of simplicity, assume that the configurations have been numbered so that

c(i)^c(j) Vt <y , i,y=l_6 .

We can now append to the arcs of the graph the probability that the transitions between

two configurations occurs when a PHC algorithm is applied. For example, if Simulated

Annealing is applied, there are certain transitions which are independent of T , Le., the transi

tions corresponding to a decrease in cost, and others which are dependent on T, e.g„ the "hill

climbing" transitions. In the example shown in fig (2.2), dashed arcs represent T -dependent

transitions, while solid arcs represent T -independent transitions.

In general, the application of a PHC algorithm to a combinatorial optimization problem

can In- repivsentftl l>v a graph whose- nodes are configurations, whose arcs represent
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r
\

Fig. 2.2. Transition graph. The dashed arcs represent
T -dependent transitions.

The solid arcs represent T -independent transitions

configurations which can be obtained by the generation rule of the PHC algorithm and whose

arc labels represent the probability that the corresponding transition is generated and accepted

by the algorithm.

In general, the probability that the configuration selected by a PHC algorithm at the

(k 41)—st iteration be j given that at the k —th iteration was i, is denned by

Prob\ Xi+1- y I Xi =» } * PtJ(T ) , (2.2)

where

r:, (v ) - t;, .('/•;•; ( Ar . . v » v y € .s w < •). <
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where Gti (T ) is the probability of generating state j being in state i possibly dependent on

the parameter T \ Aci; - c{j) —c(i\ and X* is the value taken on by the random vari

able X, representing the generic solution given by the algorithm, at the k —th iteration.

Since G%i (T ) must be a probability, the following relation must hold

Z GijiT) - 1 (2,4)
JtSU)

Eq. (2,3) is the product of two different terms : Gj} (7 ) is the probability that j is gen

erated by the algorithm, the second term is the probability that the new configuration is

accepted. An example of G,, (T ) is given by

J IAS d> Vj es G)
GijiT) = q otherwise

where the probability of generating all the states that can be generated is uniform and

independent of T. In our example, we assume that the generation probability is uniform and

independent of T, and since IS (i )l=3, Vi €S ,

Gij (T )
1/3 V j €S (i )

0 V j Jtsti)

We assume also that / is given by (2,1).

Note that since / is not in general identically equal to one, there is a finite probability

that the algorithm will remain in configuration i. The following equation determines this

probability:

PB(T)-l - Z Ptj(Tl (2.5)
J € SU)

The stochastic process represented by the evolution of the random variable X produced

by PHC algorithms is a Markov process. In fact, eqs. (2.3) imply that, given the value Xk ,

the value of XL +] depend only on the value of Xk , i^n the probability of any particular

future behavior of the process, when its present state is known exactly, is not altered by

'hiue that by definition GjjiT ) = 0 for the states that arc not in S U ).
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additional knowledge concerning its past behavior. Since the configuration space of combina

torial optimization problems is a countable and in general finite set, the process is a discrete

time Markov chain with a finite state space.
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3. Basic Definitions and Results on Markov Chains.

In this section, a few basic definitions and theorems on Markov chain which are relevant

to the discussion of PHC algorithms are reviewed. All the theorems are presented without

proofs since they can be found in [KAR73, FEL70, FRE7ll

Eq. (2.2) can be easily extended to describe an n -step transition of the Markov chain.

The probability of going from state i to state y in n iterations isgiven by

Prob { Xk +/l - j I X, - i ) * Pi/n \T ) .

Definition 3.1. State j is said to be accessible from state i if for some integer n £0,

P,j" >0. Two states i and j , accessible toeach other, are said to communicate .

I

The relation induced by this definition isan equivalence relation. The equivalence classes

induced by this relation consist of all those states for which there exist a probability greater

than zero to go from one state to the other in both directions ina finite number ofsteps.

Definition 3.2. A Markov chain is said to be irreducible if the equivalence relation

induces a unique class.

I

Example 3.1. The Markov chain represented by the following probability transition

matrix

P =
o r2

Pi o

where the elements of Pk, i =1,2 are all non zero, is irreducible. The Markov chain

represented by

y =

P\ 0

0 /'•»
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where P i and P 2 are two matrices with elements not all zero, is not irreducible.

I

Definition 3.3. The period of the state x, is said to be the greatest common divisor of all

integersn ^ 1 such that

Pu{n) >0 .
I

Theorem 3.1 If the Markov chain is irreducible and there exists a state, i, such that

Pu >0 .

then all states have period one.

I

Definition 3.4. A Markov chain in which each state has period one is said to be

aperiodic.

I

Example 3.2. The Markov chain represented by the following probability transition

matrix

' 0 P2
Pi 0

where P xand P2 are two matrices which elements are not all zero, is periodic with period

two.

I

It is easy to show that periodicity is a class property Le^ all the states in an equivalence

class have the same period.

Definition 33 Let h„ (" ) be the probability that starting from state i. the first return to

state i occurs at the n -th transition, i.e.,
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hii{n) = Prob{Xn ~i,Xj*iJ » lA-^n -1,1 X0 = i }•

Then a state i is recurrent if £ /i* (n *= 1.
n =1

This definition says that a state i is recurrent if, starting from state i, the probability of

returning to state i after some finite length of time is one.

Example 33. The following probability transition matrix

Pij

p if i=j+l

q if i=j-l (3.1)
0 otherwise

represents the Markov process known as one-dimensional random walk on the positive and

negative integers where, at each transition, a particle moves with probability q one unit to

the right and with probability p one unit to the left with (p + q = 1 ). If the process

starts from the origin, if p ^ q,. there is a non zero probability that a particle initially at ori

gin will drift to + co if ^ ^ p ( —oo in the other case ) without ever coming back to the

origin. Hence the origin is not recurrent.

The following condition

P " 9 - -j • (3.2)

is necessary to ensure the recurrence of the Markov chain determined by eq. (3.1). In [KAR73]

a formal proof of condition (3.2) is given.

•

Recurrence as periodicity is a class property, Le^ all the states in an equivalence class are

either recurrent or non recurrent.

The properties that have been introduced above define a large class of Markov chains for

which an ergodic theory has been developed. The two main results of this theory are recalled

below.
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Theorem 3.2. Let i be the initial state and let P^ 0) £ 1. If a Markov chain is irreduci

ble, aperiodic and recurrent, then

a) the following limit exists

lim Pa (n >= —-i

n -0

where hu in *can be defined recursively by

k =0

1 if n=0

0 if n >0

b) For each y ,

lim P/n) = limPii('l) = 7ri. (3.3)
n -«oo n -«oo

I

An intuitive explanation of Theorem 33 is as follows. If it is large enough, P%9 the pro

bability of being at the k -th iteration in state i, starting from state j, depends only on the

state itself and is totally independent on the initial state j. Note that Wj defined in Theorem

33 is always larger than or equal to zero. If it is larger than zero, then the following impor

tant result holds.

Theorem 33. If trx of eq. (3.3) is greater than zero V i and the Markov chain is

recurrent, irreducible and aperiodic then

lim Pu; (n >- ITi - £ ITj Pji ,

and the tt, fs are uniquely determined by the following set of equations
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LSI

£ Vi - 1 , (3.4a)
i=l

£ IT, i^ - 7T; , (3.4.b)
i=l

Wi >0 V i . (3.4x)
I

The set {•&•, / =1,-4S 1} determined by Theorem 3.2 is called the stationary probability

distribution of the Markov chain.

The stationary probability distribution is very important since it completely character

izes the asymptotic behavior of a Markov chain.
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4. Asymptotic Properties of Probabilistic Hill Climbing Algorithms

Results quoted in Section 3 cannot be applied directly to the Markov chains representing

the stochastic processes induced by PHC algorithms. In fact, these results are in general valid

for stationary transition probabilities, Le, for transition probabilities that are independent of

time. Note that the transition probabilities defined in Section 2 depend on the parameter T

which is updated during the evolution of the algorithms and hence are dependent on time.

However, when the parameter is kept constant, iA, in the inner loop of PHC algorithms, the

transition probabilities are constant and the associatedMarkov chain stationary.

Our strategy to prove the propertiesof PHC algorithms is to determine first which condi

tions PHC algorithms must satisfy so that a stationary probabilitydistribution exists at a given

temperature. Then we will introduce a function 7T, (7*), defined on all the set of

configurations, with the property that, when T approaches zero, 7T, (T ) 5*0 only for those

configurations that are global optima for the combinatorial optimization problem. Finally con

ditions on the acceptance function / will be determined such that irt (7 ) is the stationary

probability distribution of the Markov chain describing the PHC Algorithm. If we can prove

that, given a function Wj (T ) with the above mentioned properties and a suitable generation

function G,-; (T ), it is possible to determine an acceptance function / with the features out

lined in section 2, then a PHC algorithm is obtained which generates with probability one,

asymptotically,a global optimal solution for the combinatorial optimization problem.

The first assumption on the PHC algorithms is related to the generation rule and the

acceptance rule. The rules must be such that for all T different from zero, the Markov chain

induced by the algorithm is irreducible. This means that for each pair of configurations, say

i J there must be integers m/i >0, so that PtJn }*Q and P/m)^0. In other words, the graph

obtained by representing the generation rule with directed arcs as in Section 2, must be

strongly connected. In addition, we must be sure that the acceptance rule does not eliminate

arcs of the graph by assigning them probability zero which cause the labeled graph obtained

by removing the arcs with zero weight not to be strongly connected. Note that the acceptance
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rule specified by simulated annealing assigns a non zero probability to all the arcs of the graph

corresponding to the generation rule and hence, for this PHC algorithm we only need to ver

ify that the generation rule produces a strongly connected graph in the configuration space.

The next condition is related to the aperiodicity of the Markov chain.

Proposition 4.1. Let the Markov chain corresponding to a PHC algorithm be irreducible

for all T 20. If the acceptance function / of the PHC algorithm is such that there exists at

least a pair of states i and j for which

0</ (Acij J )<1, V7 >0, (4.1)
then the Mwkov chain is aperiodic for all 7 >0.

Proof. If (4.1) holds, then according to (2.3), Ps(7 )>0, V7 >0 and the proof follows

from Theorem 3.1 and the irreducibility of the Msu-kov chain.

I

The condition of Proposition 4.1 is always satisfied by Simulated Annealing, since there

is at least one state for which (4.1) holds the global optimum.

The acceptance functions which satisfy the condition of Proposition 4.1 and which take

values in the closed set [0,1] are said to be admissible.

Nate that the Markov chain associated to PHC algorithms is obviously recurrent since it

is finite.

According to Theorem 3.3, the Markov chain associates with a PHC algorithm which

satisfies the conditions of Proposition 4.1, has a stationary probability distribution.

Now we look for a form of the stationary probability distribution which, when T goes

to zero, is different from zero only in global minima of c.

To this end, we have to find under which conditions a stationary probability distribution

7T, (7 ) is different from zero, as 7 goes to zero, only if the i-th configuration is the global

optimal solution.



Theorem 4.1. Let ir, (7 ), V i €S be defined by

7Tl(7)-^7)g(cG)J')
where tiT ) is a normalizing factor such that

and g is such that

then

2>;(7) ° 1
J€S

g(c(fl7)X> V7>0,Vc.

limg (c ,7 ) =
r lo &

0 if c £0

e» if c <0

g(cltT )
iTcTT77

= g(«i - c2,r )

lim TTi (7 )
T 10

g(0,7 ) = 1, V7 >0,

V \M \

0

if i € M

if » €S-A#

where the set M is defined by

M - { i I cGXcO) , V y €S } .

20

(4.2*)

(4.2.b)

(4.3*)

(4.3.b)

(4.3x)

(4.3.d)

(4.4*)

(4.4.b)

Proof. The proof of (4.4) is straightforward because of the properties of the function g

In fact Vi € M , by (4.3x-d), eqs. (4.2) can be rewritten as

but since

then bv (4.3.b),

ir, (7)
\M I + Z g(c(;)

;€(S-M )
- cG)tr )

(y ) - c(i) ><>, V i 6 M , V y € (5 -A/ )CW
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lim 7T, (7) - , * , V i €M .
T 10 I M I

If the same reasoning is applied for an i € (S —M~~) then at leastone element of the sum

goes to oo as 7 goes to 0. This completes the proof of the Theorem.

I

Ndw, we have to specify under which conditions on / and G a trt (7 ) of the form

described above is indeed the stationary probability function of the Markov chain associated to

the PHC algorithm.

Theorem 4.2. Let S Xy ) be defined by

Sij) = {i:j €SG)},

if / is admissible and

Z g(c(OX)Gu(7) / (Adj ,7) = (4.5)
itSXj)

= g(c(y),7) Z Gfi(.T)f (Ac;i,7)
ies(j)

then 7r, (7 ) defined by eqs. (4.2) is the stationary probability distribution of the Markov chain

whose one-step transition probability is given by eqs. (2.3-2^).

Proof. The proof of Theorem is carried out by verifying that g ,G and / satisfy the

conditions of Theorem 3.3. In view of the assumptions made on function G and of Proposi

tions 4.1 and 4.2, the Markov chain defined by eq. (2.3, 2^) is irreducible, aperiodic and posi

tive recurrent. It is now immediate to see that -nt (7 ) defined by eq. (4.2*) satisfies eq. (3.6*)

because of (4.2.b) and (3.4.c) because of (4.3*). Finally it takes just a little thinking to see that

(3.4.b) is satisfied automatically once / is chosen as specified by (4.5).

I

Theorem 4.2 is important since it suggest a way to construct a PHC algorithm with

guaranteed convergence properties. In fact one first selects a function tr^ (7 ) that ensures the

convergence to the global optima (Theorem 4.1) and then selects an acceptance function /

and a generation rule G such that Propositions 4.1, 4.2 and Theorem 4.2 are satisfied.
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Up to now we placed no assumptions on Gtj (7 ) and obtained a general result. We now

assume that the rule to generate new states is such that the existence of G,, (7 ) implies the

existence of Gfi (7 ). Under this assumptions we can prove the following

Corollary 4.1. If the function Gi} (7 ) issuch that

Gij(T)GJi(T)piO (4.6)
then an admissible function / defined by

f(6cuX) G„(r)

satisfies eq. (4.6).

The proofof the Corollary follows directly from eqs. (4.2) (4.5) and (2.5).

Remark 4.1. Simulated Annealing as proposed by Kirkpatrick [KIR83] has g ,G and

/ defined as follows

c(i)

*(cGXT)-e ~r~ (4.7)

G„(7)

1

TsUTT V j €S G)
0 VjMSti)

_ cU)-c(i)

/ (Ac,, J ) » midU 7 ] Vj €S .

These functions satisfy the conditions of Corollary 4.1 and then, a fortiori, of Theorem

4.2. Hence the configurations generated by Simulated Annealing asymptotically converges to

the global optimum.

Another PHC algorithm can be generated just by replacing the acceptance function of

Simulated Annealing with the following one

_ c(j) - c(i)

f <*.y .7-) = e ~~^}_c(,r (4.8)
1 + e " T

and leaving functions G and ^ the same. Obviously the two algorithms exhibit an identical
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asymptotic behavior.

A slightly different PHC algorithm related to Simulated Annealing has been used in a

package for standard cell placement [SEC84J. In this algorithm, the acceptance function is the

same asSimulated Annealing and G,; (7 ) satisfy the following relations:

G„(7) - G„(7)
but are not uniform. This algorithm is described by a Markov chain with the same stationary

probability distribution as Simulated Annealing.

Note that when the control parameter 7, approaches zero, the acceptance functions /

given by (2.1) and (4.8) become a unitary step function that assigns probability one only to

those transitions which improve the cost function and probability zero to the others. Hence,

when 7 is set to zero, they degenerate into the usual greedy strategy and select, among all the

new configuration that are generated, the ones with lower cost than the present configuration

only.

Unfortunately Theorems 4.1 requires the algorithm to perform an infinite number of

iterations every time the parameter 7 is updated. It is clear that a strategy of this kind is

practically inapplicable. In fact, a PHC algorithm performing an infinite number of iterations

for each value of the parameter 7 is a conceptual, non implementable algorithm [POL711 in

the sense that an internal loop is never exited.

If we assume that the function g is continuous in its second argument, then also 7Tj (7 )

is a continues function.

The continuity of tr, (7 ) implies that the stationary probability distribution for a partic

ular value of the controlling parameter, say 7 , is a good approximation for the stationary pro

bability distribution for all the values of 7 sufficiently close to 7.

This result suggests a strategy for the control of 7 : start with a value of 7 for which

the stationary probability distribution is easy to estimate, and update 7 so that only a few

iterations are needed to obtain a good approximation to the new stationary probability distribu

tion.
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Remark 4.2. Simulated annealing as proposed in [KIR831 follows the strategy outlined

above. In fact, starting with a "high" temperature guarantees an easy estimation of ffi (7 ).

The acceptance function (Z2) implies that for 7 sufiiciently large, the probability of accepting

a move is close to one. Hence, if the generation probability is uniform and the associated Mar

kov chain irreducible, all the states are equally likely and the stationary probability distribu

tion trivial to estimate,

In Simulated Annealing, the temperature is slowly decreased. Since in this case, the

function g is given by (4.7)which is obviously continuous in 7 , we can interpret the control

strategy as a direct application of Proposition 4.3.

In addition, the updating rule of Simulated Annealing is

Tm +i = «wm yPm

where a can be a constant or a function of 7 but always less than one and larger than zero.

Values of a that yielded good results are in general ~ ,9-.99, which forces the updating to

become slower and slower as the algorithm approaches 7 =0.

I

All the results presented in this section are asymptotic and hence they can only help

deciding the control strategy and how long the inner loop of PHC algorithms should be run.

However, no sharp bound is given on the actual choice of the number of steps to be taken in

the inner loop.
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5. Control Strategies and Experimental Results

In the previous section we have presented theoretical results which can be used to

explain the success of PHC algorithms and to derive qualitative reasoning on the strategy for

controlling the parameter 7. In this section, we present resultswhich can beused to estimate

how many steps should be attempted for each value of 7.

PHC algorithms can be used to compute the actual stationary probability distribution in

the following way. Store how many times each of the states has been visited by the algo

rithm during its evolution. The ratio between this number and the total number of iterations

gives an estimate on the trt (7 Js. Actually, when the number of iterations goes to infinity, the

result of the calculation converges to the 1T; (7 )*s.

The ideal approach to the determination of the number of iterations to take, would be to

detect when the approximation is within a specified distance from the stationary probability

distribution. Unfortunately, we have not been able to obtain such a result yet. Thus we have

to resort to another technique. This technique has been obtained by observing that, in order to

obtain a good final result, the PHC algorithms have to be able to leave local minima where

they could end up during the computation. Thanks to the properties of Markov chains, it is

indeed possible to estimate the number of iterations needed to get out of a local minima at a

given value of 7 with probability 1—€, € >0.

Proposition 5.1. Given a state , e.g„ i, such that PS(T)^ h then a PHC algorithm has

probability 1 — € to leave i if at least

"< " teKtt (5-])
iterations are performed by the algorithm.

Proof. For the sake of notational simplicity, in this proof and in the proof of Proposition

5.2. the dependence of P on T will be implicit. Let
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QiN - Z^iT^d-Pfi) (5.2)
n=l

be the probability of leaving the i after at most N iterations. Taking the sum of the series,

(5.2) becomes

„ (1 - Pa XI - Pf)
& t^tu •

Ndw if a number of iterations N ,, given by (5.1) are performed, then

Q»> - 1 - *»>

= 1 " P^

= 1 - Pui * = 1 - €.

I

The evaluation of Ps (7 ), V i €5 requires to know the values taken by the cost func

tion on the configuration space, which is obviously out of the question. Assuming that the

acceptance function is monotonic decreasing in the first argument as is the case of the accep

tance functions given in (2.1) and (4.8), there are a number of possible techniques to estimate

Pu (7 ). For the result stated by Proposition 5.1 to hold, we need a conservative estimate of

Pu (7 ). Unfortunately, the techniques we have been able to discover cannot be guaranteed to

obtain an upper bound on Pu (7 ). The most conservative bound is obtained by assuming that

Ac;; V y €S(i ),Vi €S, i & j is constant and equal to Ac }) where y is the worst

configuration and i is the best configuration found so far. To use this estimate, we have to

insert a step in the PHC algorithm to record the best and worst configuration.

Proposition 5.1 is a "worst case" result; a similar approach is useful to determine the

expected value of the number of iterations necessary to leave i.
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Proposition 5.2. Let i be a state such that Pu (7 ) <1 and let R* be the probability

that a PHC algorithm leave i after N iterations. The expected value of the number of itera

tions required to leave i, N , is given by

Nl " i -/KB

Proof. By the definition of expected value

Ni = Zn R" (5.3)
n=0

Substituting in (5.3) the expression for RtN given by

R.» . p/-i(i - Pu )

we obtain

n =0 •

(1 ~ P,)I» iV,""1
n =0

(1 " />*)-^ fitf
«*ii n =0

(1 -P„) '
dPU 1 - />B

1 ~ Pu

As in the previous case, Pu must be estimated. The approximations introduced above are

also needed to estimate N ,•.

Note that a Markov chain represents a stochastic dynamical system. The time (or

number of iterations, since the configuration space is finite and discrete) necessary to leave a
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particular state plays a role which is similar to the time constant in a linear dynamical sys

tem. If a linear dynamical system is controlled by a piece-wise constant function, a time as

long as a few time constants will bring the system to anew steady state condition. A similar

reasoning can be applied here if we assume that a number of iterations which is between 3

and 5 times N j is needed to reach a stationary probability distribution.

N and N defined as the the largest values of of N ; and N , respectively determine

two different estimates of the number of iterations necessary for the algorithm to obtain a

good estimate of the stationary probability distribution.

It is important to note that both N and N increase as 7 approaches zero. Once more

we find an agreement with the qualitative result introduced in Section 4: more time has to be

spent at lower values of 7 .

Some of the ideas on the control strategy have been tested on a particular problem whose

optimal configurations were known a priori. The test case consists of a two-dimensional

placement problem where 24 modules have to be placed on a 5-by-5 grid. A total of 25!

configurations are possible. Due to the particular structure of the example, we know that 16

configurations are optimal The value of the cost function atthe optimal configurations is 38.

Five different sets of experiments have been carried out changing the updating factor for

the parameter 7 and the function / . For all the experiments the same function Gtj has

been selected, i.e.

r - 2Gi> ~ n (n -1)

with n = 25, the number of available positionson the grid.

The parameter 7 is updated according to

7m+1 = a(7m)7m

starting from an initial condition of 7 0 ° 40
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The function / and the value of a selected for each experiment are shown in Table

5.1, where / i and / 2 are given by (2.1.a) and (4.8) respectively. In experiment 5, a has

been changed dynamically with the range indicated and hence is dependent on 7.

In each experiment a fixed number of iterations was used for each value of 7 . In partic

ular, for high values of 7,15 iterations were performed while as7 decreases, the number of

iterations was increased up to 30.

Each experiment was repeated 40 times. A few statistical data about the quality of the

results obtained are shown in Table 5.2.

The analysis of the results shown in Table 5.2 demonstrates that the updating factor has

a great influence on the quality of the final solution obtained by the algorithm. This is the

experimental verification of the qualitative remarks introduced in Section 4 and in this sec

tion: the slower is the updating of the parameter 7, the better is the solution determined by

the algorithm. In fact, since in both cases the number of iterations performed for each value of

7 is the same, when the updating factor is closer to one, better convergence to the stationary

probability distribution is obtained.

Exp. # f updating factor

Exp. #1 f x .95

Exp. #2 f'* .95

Exp. #3 f X .99

Exp. #4 f I .99

Exp. #5 f 2 .90-.95

Table 5.1 Experiment summary

Exp. # # of trials av. value 0" worst sol.

Exp. #1 40 39.60 1.26 44

Exp. #2 40 40.63 1.69 45

Exp. #3 40 38.75 .90 41

Exp. #4 40 38.85 .82 41

Exp. #5 40 40.63 1.71 47

Table 5.2. Experimental results.
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The use of different acceptance functions does not alter significantly the quality of the

solution obtained even if the results of Table 5.2 show that an acceptance function of the

form (2.1) gives results that are always slightly better then those obtained when (4.8) is used.

Finally, an adaptive control strategy for 7 was attempted but the results obtained were

not competitive with the ones in which a was constant. However, we do not suggest that

this strategy should be rejected on the basis of this experiment. The rule used to switch the

values of at was very simple-minded: a was increased when the cost function had large varia

tions from iteration to iteration, it was decreased again when the cost function showed little

improvement from iteration to iteration. These experiments were designed before we had

many of the results presented in the previous sections of the paper. A new set of experiments

is being designed to illustrate as many aspects of the theory as possible.
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6. Conclusions

A theory of a class of algorithms for the solution of combinatorial optimization problems

inspired by the technique known as Simulated Annealing has been developed. The class of

algorithms has the characteristic of being probabilistic and of being able to climb "hills", ue.

to accept intermediate solutions which increase the cost. For this reason, these algorithms have

been called Probabilistic Hill Climbing (PHC) algorithms. The mathematical model used in

the study of their properties is a Markov chain with finite state space.

Based on the key results on stationary probability distributions of Markov chains, we

have derived conditions on the parameters of PHC algorithms to guarantee that an optimum

configuration is found with probability one. The theory requires that an infinite number of

iterations be performed as intermediate steps.

Some guidelines in the selection of the number of iterations used in the intermediate

steps have been given. Finally some experimental results have been analyzed in view of the

theoretical results developed.

Geman and Geman [GEM84] have shown that the number of iterations can be limited in

the intermediate steps, provided that the annealing schedule varies logarithmically with the

number of iterations. This schedule guarantees that the algorithm reaches the optimum with

probability one, but it is also asymptotic since when approaching zero the temperature has to

be lowered infinitely slow.

Much work remains to be done to exploit fully the mathematical model. We are explor

ing new control strategies and techniques which we hope will give tight bounds on the

number of iterations needed to maintain a given level of confidence in the optimality of the

results. In particular, we are looking at the theory of nonhomogeneous Markov chains to be

able to find stronger results than the ones so far obtained. In addition, a set of placement and

routing packages is being developed by C. Sechen which incorporates the control strategies

suggested by the theory.
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